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This paper studies the admissibility of switched discrete-time singular systems. Sufficient conditions for this admissibility
are derived in a form of a set of strict linear matrix inequalities. Design of both state feedback and static output feedback
controllers is given. Numerical examples are presented to illustrate the proposed approaches.
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1. Introduction
Switched systems have received a lot of attention dur-
ing the last decade. They are dynamical and consist of
finite number of subsystems and a logical rule that governs
the switching between these subsystems. Mathematically,
these subsystems are generally described by a collection
of induced differential or difference equations. The moti-
vation for studying switched systems comes from the fact
that switched systems have many applications in control
of mechanical systems, power systems, aircraft and traffic
control (Liberzon, 2003). Many works dealing with the sta-
bility analysis and the stabilization of regular or standard
switched systems have been developed recently (Daafouz,
Riedinger, & Iung, 2002; Ge, Sun, & Lee, 2001; Gelig &
Churilov, 1998; Liberzon, 2003; Mancilla-Aguilar, 2003;
Stevens & Lewis, 1991).

On the other hand, singular systems (known also as
generalized, descriptor or differential algebraic systems)
describe a large class of systems which are of great impor-
tance in theoretical and practical points of view (Boukas,
2008; Dai, 1989; Mills & Goldenberg, 1989; Newcomb
& Dziurla, 1989; Xu & Lam, 2006). They are encoun-
tered in chemical, mineral, electronic and economic systems
(Luenberger, 1979). In recent years a great deal of works has
been devoted to the analysis and design techniques for sin-
gular systems (Chadli et al., 2008; Dai, 1989; Masubuchi,
Akiyama, & Saeki, 2003; Masubuchi, Kato, Saeki, &
Ohara, 2004; Yao, Guan, Chenb, & Hoc, 2006). However,
if interesting results on controllers and observers design
are developed for singular linear systems (Boukas, 2008;
Chadli & Darouach, 2012, 2013; Darouach & Boutayeb,
1995; Xu & Lam, 2006 and references therein), only few
results exist for the switched singular systems compared
to the standard systems (Daafouz et al., 2002; Ge et al.,
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2001; Liberzon, 2003; Mancilla-Aguilar, 2003). Then a lot
of efforts are still necessary to investigate new approaches
and to improve existing results in the standard systems
and to extend them to switched singular systems. Recently
switched singular systems have been considered in Boukas
(2008), this work treats the case of the stability and con-
trol design in the framework of systems with Markovian
jumps. The systems considered are modeled with mode
independent singular matrix E.

In this paper we consider the switched singular sys-
tems whose subsystems are discrete-time linear-invariant
systems, where the matrix E is mode dependent. First, the
stability for switched singular systems is introduced via a
switched quadratic Lyapunov function, then the admissibil-
ity is defined and extends the existing admissibility notion
for singular systems. Sufficient conditions for switched
singular systems to be admissible are given in strict lin-
ear matrix inequalities (LMIs) terms (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994). The obtained results are
then applied to the stabilization of switched discrete-time
singular systems using both state feedback controller and
static output feedback controller. The results of this work
extend the existing results of switched standard systems
presented in Daafouz et al. (2002), where the less conser-
vative approach based on the switched Lyapunov function
is introduced.

The paper is organized as follows. In Section 2, the con-
sidered class of a discrete-time singular switched systems
and the corresponding admissibility concepts are presented.
In Section 3, the connection between our results and the
existing ones is presented. In Section 4, a static state and
output feedback controllers are designed in LMIs for-
mulation. Finally, two numerical examples are provided to
illustrate the effectiveness of the obtained results.

© 2013 The Author(s). Published by Taylor & Francis.
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Notation. Throughout this paper, Rn and Rn×m denote,
respectively, the n dimensional Euclidean space and the
set of all n × m real matrices. The superscript “T” denotes
matrix transposition, the notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means
that X − Y is positive semi-definite (respectively, positive
definite), the symbol (∗) denotes the transpose elements
in the symmetric positions, I is the identity matrices with
compatible dimensions and IN = {1, 2, . . . , N }.

2. Admissibility of switched discrete-time singular
systems

Let us consider the following autonomous switched
discrete-time singular system given by

Eσ(t+1)x(t + 1) = Aσ(t)x(t), (1)

where x(t) ∈ Rn is the state vector and Aσ(t) ∈ Rn×n. The
matrix Eσ(t) ∈ Rn×n and σ(t) is a switching signal taking
values in the finite set IN and assumed to be available in
real time.

Let ξ(t) = [ξ1(t), ξ2(t), ξ3(t), . . . , ξN (t)]T be the indica-
tion function such that

ξi(t) =
{

1 if σ(t) = i;
0 otherwise.

Then the switched system (1) can be written as

N∑
i=1

ξi(t + 1)Eix(t + 1) =
N∑

i=1

ξi(t)Aix(t). (2)

In the sequel of this paper we assume that matrices Ei
are of constant and equal rank, i.e. rankEi = r � n. This
condition permits to study the singular switched sys-
tems with states running in the manifolds with the same
dimensions.

For system (1) or (2) we can give the following
definitions.

Definition 1 System (2) or the pair (Ei, Ai) is said to be
regular if det(zEi − Ai) is not identically zero.

Definition 2 System (2) or the pair (Ei, Ai) is said to be
causal if deg(det(zEi − Ai)) = rankEi.

Definition 3 The pair (Ei, Ai) is said to be stable if it
is regular and all of λ(Ei, Ai) are within D(0, 1), where
λ(Ei, Ai) = {z|det(zE − A) = 0} and D(0, 1) represents a
disk with center at 0 and radius 1.

Remark 1 As in the standard switched systems, the
stability of the pairs (Ei, Ai) for all i ∈ IN does not
guarantee the stability of system (2). In fact switch-
ing between two stable systems can produce an unstable
trajectory.

Definition 4 System (2) is said to be stable, if it is regular
and if there exists a switched quadratic Lyapunov function

V (x(t), t) = x(t)TE�
σ(t)Pσ(t)Eσ(t)x(t), Pσ(t) =

N∑
i=1

ξi(t)Pi

(3)

with
E�

i PiEi ≥ 0, i ∈ IN .

and whose difference�V = V (x(t + 1), t + 1) − V (x(t), t)
is negative.

Definition 5 System (2) is said to be admissible if it is
regular, causal and stable.

Remark 2

• When Ei = I , the singular system (1) or (2) becomes
a standard switched one presented in Daafouz et al.
(2002) and the switched Lyapunov function (3)
becomes exactly the one given in Daafouz et al.
(2002), where Pi > 0.

• When Ei and Ai are constant matrices Ei = E, and
Ai = A in this case the system becomes a non-
switched singular system and the Lyapunov func-
tion (3) becomes the classical quadratic Lyapunov
function (Owens & Debeljkovic, 1985).

Now let the pair (Ei, Ai) be given, then it is always
possible to find nonsingular matrices Mi and Ni such that
Ei = Mi

[
Ir 0
0 0

]
Ni and Ai = Mi

[ Ai1 Ai2
Ai3 Ai4

]
Ni. This decompo-

sition can be obtained via singular value decomposition of
matrix Ei followed by scaling of the bases. Then, we have
the following lemmas (Dai, 1989).

Lemma 1 The pair (Ei, Ai) is causal if Ai4 is nonsingular.

Lemma 2 The pair (Ei, Ai) is regular if and only if
there exist two nonsingular matrices Mi and Ni such that
Ei = Mi

[ Ir 0
0 Ni

]
Ni and Ai = Mi

[
Ai 0
0 In−r

]
Ni, where Ni is a

nilpotent matrix.

Lemma 3 Let the pair (Ei, Ai) be regular, then it is causal
if and only if Ni = 0.

Let the matrix A† be any generalized inverse satisfying
AA†A = A, then we have the following useful lemma, which
can be used in the sequel of the paper (Harville, 1997).

Lemma 4 Let A and B be two matrices of dimensions n × p
and p × m, respectively, then we have

(1) rank AB = rank B if and only if p = rank
[ A

I−BB†

]
.

In particular when B is of full row rank, the neces-
sary and sufficient condition for rankAB = rankB
is that A must be of full column rank.
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(2) rankAB = rankA if and only if p = rank [ B I−A†A ].
In particular when A is of full column rank, the nec-
essary and sufficient condition for rankAB = rankA
is that B must be of full row rank.

The following theorem gives sufficient conditions for
system (2) to be admissible.

Theorem 5 System (2) is admissible if one of the following
assertions is satisfied:

(1) There exist positive-definite matrices Pi, symmetric
matrices Qi and matrices Fi and Gi such that the
following LMIs hold ∀ (i, j) ∈ I 2

N .⎡
⎢⎢⎣

−E�
i PiEi + A�

i Fi
+F�

i Ai
−F�

i + AT
i Gi

(∗)
Pj − E⊥�

j QjE⊥
j

−Gi − G�
i

⎤
⎥⎥⎦ < 0,

(4)

where E⊥
i is any full row rank matrix such that

E⊥
i Ei = 0.

(2) There exist positive-definite matrices Xi, symmetric
matrices Ri and matrices Fi and Gi such that the
following LMIs hold ∀ (i, j) ∈ I 2

N :⎡
⎢⎢⎢⎣
−Ei(Xj − E�⊥�

j RjE�⊥
j )E�

i

+AiFi + F�
i A�

i
−F�

i + AiGi

(∗)
Xi − E�⊥�

i RiE�⊥
i

−Gi − G�
i

⎤
⎥⎥⎥⎦<0.

(5)

Proof First, we prove that the conditions of assertion 1 are
sufficient for system (2) to be admissible.

Assume that there exist positive-definite matrices Pi,
symmetric matrices Qi and matrices Fi and Gi such that
inequalities (4) are satisfied and let Yj = Pj − E⊥T

j QjE⊥
j in

this case we obtain

ET
i YiEi = ET

i PiEi � 0 (6)

since Pi > 0. Then inequalities (4) become ∀(i, j) ∈ I 2
N :[−E�

i YiEi + A�
i Fi + F�

i Ai −F�
i + A�

i Gi
(∗) Yj − Gi − G�

i

]
< 0. (7)

By pre-multiplying (7) by [ I AT
i ] and post-multiplying

it by
[

I
Ai

]
we obtain

A�
i (Pj − E⊥�

j QjE⊥
j )Ai − E�

i PiEi < 0 (8)

or equivalently

A�
i YjAi − E�

i YiEi < 0. (9)

Now, let Mi and Ni be two nonsingular matrices such
that Ei = Mi

[
Ir 0
0 0

]
Ni and Ai = Mi

[ Ai1 Ai2
Ai3 Ai4

]
Ni, also let

M�
i YjMi =

[
Ȳij Yij2

Y �
ij2 Yij3

]
and M�

i YiMi =
[

Ȳi Yi2
Y �

i2 Yi3

]
, then from

Equation (9) we obtain

N �
i

[
τ1 τ2

∗ A�
i2ȲijAi2 + Rij + R�

ij

]
Ni < 0, (10)

where τi represents a matrix without any importance and
Rij = A�

i2Yij2Ai4 + 1
2 AT

i4Yij3Ai4. Now, since A�
i2ȲijAi2 � 0

and by using Equation (10) we have Rij + R�
ij < 0, or

equivalently Rij is nonsingular, i.e. (A�
i2Yij2 + 1

2 A�
i4Yij3)Ai4

is nonsingular, which leads to Ai4 nonsingular. From
Lemma 1 the pair (Ei, Ai) is causal. On the other hand, since
Ai4 is nonsingular, define the following nonsingular matri-
ces, M̄i =

[
Ir −Ai2A−1

i4

0 A−1
i4

]
M−1

i and N̄i = N −1
i

[
Ir 0

−A−1
i4 Ai3 In−r

]
,

then we have M̄iEiN̄i = [
Ir 0
0 0

]
and M̄iAiN̄i =

[
Āi 0
0 In−r

]
,

where Āi = Ai1 − Ai2A−1
i4 Ai3. From Lemmas 2 and 3 the

pair (Ei, Ai) is regular.
Let V (x(t), t) = x�(t)E�

σ(t)Yσ(t)Eσ(t)x(t), with Yσ(t) =∑N
i=1 ξi(t)Yi and E�

i YiEi ≥ 0, i ∈ IN , be a switched Lya-
punov function candidate as defined in Definition 4. Then
the difference of V (x(t), t) along the solution of Equation
(2) is given by

�V = V (x(t + 1), t + 1) − V (x(t), t)

= x�(t + 1)E�
σ(t+1)Yσ(t+1)Eσ(t+1)x(t + 1)

− x(t)�E�
σ(t)Yσ(t)Eσ(t)x(t)

= x�(t)

(
N∑

i=1

ξi(t)A�
i Yσ(t+1)

N∑
i=1

ξi(t)Ai

)
x(t)

− x�(t)
N∑

i=1

ξi(t)E�
i Yσ(t)

N∑
i=1

ξi(t)Eix(t)

= x�(t)
N∑

i=1

ξi(t)
N∑

j=1

ξj(t + 1)(A�
i YjAi − E�

i YiEi)x(t).

(11)

Thus, from condition (9) we guarantee that �V < 0. Con-
sequently, the unforced singular system (2) is admissible
since it is regular, causal and stable.

Now, since the pair (Ei, Ai) is regular and causal,
there exist two nonsingular matrices Si and Ni such
that Ei = Si

[
Ir 0
0 0

]
Ni and Ai = Mi

[
Āi 0
0 In−r

]
Ni. Let Yi =

M−�
i

[
Ȳi Yi2
Y �

i2 Yi3

]
M−1

i and Yj = M−�
i

[
Ȳij Yij2

Y �
ij2 Yij3

]
M−1

i then
Equation (9) can be written as

N �
i

[
Ā�

i Ȳij Āi − Ȳi Ā�
i Yij2

Y �
ij2Āi Yij3

]
Ni < 0

or equivalently, since Ni is nonsingular matrix,[
Ā�

i Ȳij Āi − Ȳi Ā�
i Yij2

Y �
ij2Āi Yij3

]
< 0
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and since Yij3 < 0 (see Xu & Yang, 1999) we obtain

Ā�
i �ij Āi − Ȳi < 0. (12)

Where �ij = Ȳij − Yij2Y −1
ij3 Y �

ij2 > 0. Now, the Schur com-
plement applied to Equation (12) gives the following
inequality: [−Ȳi ĀT

i
Āi −�−1

ij

]
< 0

which is equivalent to

Āi�iĀ�
i − �ij < 0, (13)

where matrices �i = Ȳ −1
i > 0 and �ij = �−1

ij > 0.
Now let us prove that if Equation (5) is satisfied then

system (2) is admissible. Assume that there exist positive-
definite matrices Xi and symmetric matrices Ri such that
inequalities (5) are satisfied. and let Zi = Xi − E�⊥�

i RiE�⊥
i

in this case inequalities (5) become[
−EiZjE�

i + AiFi + F�
i A�

i −F�
i + AiGi

(∗) Zi − Gi − G�
i

]
< 0 (14)

∀(i, j) ∈ I 2
N . By pre-multiplying Equation (14) by [ I Ai ] and

post-multiplying it by
[

I
A�

i

]
we obtain

AiZiA�
i − EiZjE�

i < 0. (15)

Let Mi and Ni be two nonsingular matrices such that
Ei = Mi

[
Ir 0
0 0

]
Ni and Ai = Mi

[ Ai1 Ai2
Ai3 Ai4

]
Ni. On the other

hand, let NiZiN �
i =

[
Z̄i Zi2
Z�

i2 Zi3

]
and NiZjN �

i =
[

Z̄ij Zij2

Z�
ij2 Zij3

]
, then

inequalities (15) become

Mi

[
τ3 τ4

∗ Ai3Z̄iA�
i3 + Qi + Q�

i

]
M�

i < 0, (16)

where τ3 and τ4 represent matrices without any importance
and Qi = (Ai3Zi2 + 1

2 Ai4Zi3)A�
i4. As in the above proof we

have Qi < 0 which implies that matrix A�
i4 is nonsingular

or equivalently Ai4 is nonsingular, consequently the pair
(Ei, Ai) is causal and regular. By using the same reasoning
as above, we can show that Equation (15) is equivalent to
Equations (13) or (9). This proves the theorem. �

Remark 3 Note that for Ei = E, conditions (5) are reduced
to the existence of matrices Xi > 0, Fi and Gi such that the
following LMIs hold⎡

⎣−EXjE� + AiFi + F�
i A�

i −F�
i + AiGi

(∗)
Xi − E�⊥�RiE�⊥

−Gi − G�
i

⎤
⎦ < 0

(17)

which is only the dual conditions of (4) with Ei = E. This
duality is not guaranteed for singular switched systems with
matrix E mode dependent.

3. Connection with the existing results
3.1. Standard switched systems
For the standard case Ei = I , we have E⊥

i = 0. Then con-
ditions (4) are reduced to the existence of matrices Pi > 0,
Fi and Gi such that the following LMIs hold ∀(i, j) ∈ I 2

N :[
−Pi + A�

i Fi + F�
i Ai −F�

i + A�
i Gi

(∗) Pj − Gi − G�
i

]
< 0 (18)

and conditions (5) are reduced to the existence of matrices
Xi > 0, Fi and Gi such that the following LMIs hold[

−Xj + AiFi + F�
i A�

i −F�
i + AiGi

(∗) Xi − Gi − G�
i

]
< 0. (19)

Conditions (18)–(19) with Fi = 0 are exactly the sta-
bility conditions given in Daafouz et al. (2002) using
poly-quadratic switched Lyapunov function. Note also that
the conditions (18) or (19) with Pj = Pi or Xj = Xi cor-
respond exactly to the stability condition for uncertain
linear system presented in Peaucelle, Arzelier, Bachelier,
and Bernussou (2000).

3.2. Singular systems
Singular linear systems. For Ei = E and Ai = A, the sin-
gular system (2) becomes a time-invariant one, in this case
condition (8) implies that

A�(P − E⊥�QE⊥)A − E�PE < 0. (20)

Which is exactly the condition given in Xu and Lam (2006).
Singular switched systems. When Ei = E, the case

where the matrix E is mode independent, we have Qi = Q.
For Pi = P, this case corresponds to the classical common
Lyapunov function, which is less general than the poly-
quadratic function presented in this note. In addition, the
proposed conditions are in strict LMIs.

4. Stabilization of discrete-time singular switched
systems

Let us consider the following controlled discrete-time
switched system

Eσ(t+1)x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t) (21a)

y(t) = Cσ(t)x(t) (21b)

with x(t) ∈ Rn being the state vector, y(t) ∈ Rp the output
vector, u(t) ∈ Rm is the input vector, Aσ(t) ∈ Rn×n, Bσ(t) ∈
Rn×m and Cσ(t) ∈ Rp×n. The matrix Eσ(t) ∈ Rn×n and σ(t)
is a switching signal taking values in the finite set IN and
assumed available in real time.

In this section, we consider the stabilization of system
(21) via state feedback controller and static output feedback
control. Sufficient conditions for admissibility are given in
a set of LMIs form.
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4.1. State feedback controller
The closed loop system of (21) via state feedback controller

u(t) =
N∑

i=1

ξi(t)Kix(t), (22)

with Ki ∈ Rm×n, can be written as

N∑
i=1

ξi(t + 1)Eix(t + 1) =
N∑

i=1

ξi(t)(Ai + BiKi)x(t). (23)

Definition 6 The closed-loop system (23) is said to be
admissible, if there exists a state feedback (22) which
guarantees that system (23) is regular, causal and stable.

To derive the admissibility conditions of (23), it suffices
to substitute Ai by Ai + BiKi in conditions (5), conditions
more adapted to this problem than conditions (4), with Fi =
Gi and by putting Li = KiGi, in this case we obtain the
following theorem.

Theorem 6 The singular system (23) is admissible if there
exist positive-definite matrices Xi, symmetric matrices Ri,
matrices Gi and Li such that the following set of LMIs
hold ∀ i ∈ IN :⎡
⎢⎢⎣
−Ei(Xj − E�⊥�

j RjE�⊥
j )E�

i

+	i + 	�
i

−G�
i + 	i

(∗)
Xi − E�⊥�

i RiE�⊥
i

−Gi − G�
i

⎤
⎥⎥⎦ < 0

(24)

with 	i = AiGi + BiLi. The controller gains are given by

Ki = LiG−1
i . (25)

This result presents sufficient conditions for state feed-
back control of discrete-time singular switched systems
(23). These conditions are linear in parameter matrices Xi,
Gi and Li, i ∈ IN . They can be efficiently solved using exist-
ing numerical tools such as the LMITOOL software (El
Ghaoui & Commeau, 1999; Vandenberghe & Boyd, 1996).

4.2. Static output feedback controller
In this section we consider the admissibility of system (21)
via static output feedback control of the form

u(t) =
N∑

i=1

ξi(t)Kiy(t), (26)

where Ki ∈ Rm×p. The closed-loop system is given by

N∑
i=1

ξi(t + 1)Eix(t + 1) =
N∑

i=1

ξi(t)Aix(t) (27)

with

Ai = Ai + BiKiCi. (28)

For this closed-loop system we can give the following
definition.

Definition 7 The closed-loop system (27) is said to be
admissible, if there exists an output feedback given by
Equation (26) which guarantees that system (27) is regular,
causal and stable.

Now, without loss of generality, we can make the following
assumption which will be used in the sequel.

Assumption 1 The matrices Ci are of full row rank for all
i ∈ IN .

Remark 4 Assumption is generally used in the control,
it means that the measurements are not redundant. If this
condition is not satisfied we can always find a coordinates
change which leads to this condition.

Based on this assumption, sufficient conditions for (27)
to be admissible are given by the following lemma.

Lemma 7 Under Assumption 1, the closed-loop system
(27) is admissible if there exist positive-definite matrices
Xi, symmetric matrices Ri, matrices Gi, Si and Ti such that
the following linear constraints hold ∀ i ∈ IN :

⎡
⎢⎢⎣

−Ei(Xj − E�⊥�
j RjE�⊥

j )E�
i

+�i + ��
i

−G�
i + �i

(∗)
Xi − E�⊥�

i RiE�⊥
i

−Gi − G�
i

⎤
⎥⎥⎦ < 0

(29)

CiGi = SiCi (30)

with �i = AiGi + BiTiCi. In this case the controller gains
are given by

Ki = TiS−1
i . (31)

Proof Under Assumption 1, matrices Ci are of full row
rank. Now assume that there exist positive-definite matri-
ces Xi and matrices Gi, matrices Si and Ti such that
Equation (29) are satisfied, then we can see that matri-
ces Gi are nonsingular and from Lemma 4 and (30) we
can deduce that Si is nonsingular for all i ∈ IN . Now, con-
sider Equation (5) with Fi = Gi and Ai replaced by Equation
(28). Let Ti = KiSi, then by using Equation (30) we obtain
Equation (29). �

Conditions of Lemma 7 are in LMIs form (29) under
the linear equalities (30). They can be solved easily by
LMI tools (such as the LMITOOL software El Ghaoui &
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Commeau, 1999; Vandenberghe & Boyd, 1996) or by elim-
ination of the equality constraints (30) to obtain only strict
LMIs inequalities, this can be done as follows:

Assume that matrices Ci are of full row rank, this can
be always obtained by a some regular transformation. In
this case by singular value decomposition, there exist two
unitary matrices Ui and Vi such that UiCiV �

i = [ 
i 0 ].
Let Ūi = 
−1

i Ui be a nonsingular matrix, then ŪiCiV �
i =

[ Ipi 0 ], where pi = rankCi. Let ViGiV �
i = [ Gi1 Gi2

Gi3 Gi4

]
, in this

case Equation (30) becomes

ŪiCiV �
i ViGiV �

i = ŪiSiŪ −1
i ŪiCiV �

i

or equivalently[
Gi1 Gi2

] = [
ŪiSiŪ −1

i 0
]

which leads to Si = Ū −1
i Gi1Ūi and Gi2 = 0. From the proof

of Lemma 7, since Gi is nonsingular, we deduce that Gi1 is
nonsingular.

Now Let the partition of matrices Vi, ViEi, ViBi,
ViE�⊥�

i and ViAiV �
i according to that of Gi be

Vi = [ Vi1
Vi2

]
, ViEi = [ Ei1

Ei2

]
, ViE�⊥�

i =
[

Ēi1

Ēi2

]
, ViBi = [ Bi1

Bi2

]
and ViAiV �

i = [ Ai1 Ai2
Ai3 Ai4

]
. Let T̄i = TiŪ −1

i , then by pre-
multiplying (29) by

[ Vi 0
0 Vi

]
and post-multiplying it by[

V �
i 0
0 V �

i

]
yields to the following theorem.

Theorem 8 Under Assumption 1, the closed-loop system
(27) is admissible if there exist positive-definite matrices Xi,
symmetric matrices Ri, matrices Gi1, Gi3, Gi4 and T̄i such
that the following LMIs hold ∀ i ∈ IN :⎡

⎢⎢⎣

i11 
i12 
i13 
i14
(∗) 
i22 
i23 
i24
(∗) (∗) 
i33 
i34
(∗) (∗) (∗) 
i44

⎤
⎥⎥⎦ < 0 (32)

with


i11 = −Ei1(Xj − E�⊥�
j RjE�⊥

j )E�
i1 + Ai1Gi1 + Ai2Gi3

+ Bi1T̄i + G�
i1A�

i1 + GT
i3A�

i2 + T̄ �
i B�

i1,


i12 = −Ei1(Xj − E�⊥�
j RjE�⊥

j )E�
i2 + Ai2Gi4 + G�

i1A�
i3

+ G�
i3A�

i4 + T̄ �
i B�

i2,


i13 = −G�
i1 + Ai1Gi1 + Ai2Gi3 + Bi1T̄i,


i22 = Ai4Gi4 + G�
i4A�

i4 − Ei2(Xj − E�⊥�
j RjE�⊥

j )E�
i2,


i14 = −G�
i3 + Ai2Gi4,


i23 = Ai3Gi1 + Ai4Gi3 + Bi2T̄i,


i24 = −G�
i4 + Ai4Gi4,


i33 = Vi1XiV �
i1 − Ēi1RiĒ�

i1 − Gi1 − G�
i1,


i34 = Vi1XiV �
i2 − Ēi1RiĒ�

i2 − G�
i3,


i44 = Vi2XiV �
i2 − Ēi2RiĒ�

i2 − Gi4 − G�
i4.

In this case the controller gains are given by

Ki = T̄iG−1
i1 Ūi. (33)

5. Numerical examples
This section gives two illustrative numerical examples to
show the effectiveness of the proposed approach. The first
example deals with the state feedback control problem and
the second one with the output feedback problem.

5.1. Example 1
For the first example, we consider unstable model with two
modes:

E1 =

⎡
⎢⎢⎣

5.6 1.68 1.4 0
4.2 9.8 7.14 0.28
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎣

−4.34 −9.52 5.74 −8.40
11.34 5.60 −7.14 10.08
7.00 −3.92 −1.40 1.68

0 0 0 0

⎤
⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣

27.5 6.0 13.5 11.5
−7.0 −12.5 32.5 23.5
18.5 25.5 −19.5 18.0

−26.5 −7.5 11.0 23.0

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

−31.0 14.5 15.5 −14.0
−9.5 18.5 −21.5 −7.5
−12.0 −29.5 11.5 −9.5
−8.0 −15.5 −11.0 −27.5

⎤
⎥⎥⎦ ,

B1 =

⎡
⎢⎢⎣

0.96 2.52 2.88
2.28 −1.80 1.68

−0.72 3.00 3.36
1.92 4.56 1.44

⎤
⎥⎥⎦

and B2 =

⎡
⎢⎢⎣

3.00 4.44 3.48
−4.08 5.04 −3.24
4.32 2.52 2.16
3.24 3.00 −2.8800

⎤
⎥⎥⎦ .

It is easy to see that the condition rank E1 = rank E2
is satisfied, also the regularity conditions for these subsys-
tems are satisfied. By solving LMIs (24), we obtain the
following results:

X1 =

⎡
⎢⎢⎣

0.7901 0.2433 −0.8078 1.7744
0.2433 6.9993 −8.3014 3.3363

−0.8078 −8.3014 10.3857 −4.7721
1.7744 3.3363 −4.7721 14.7301

⎤
⎥⎥⎦ ,

X2 =

⎡
⎢⎢⎣

7.0915 5.6637 5.6332 −6.2404
5.6637 5.0343 5.6973 −4.4717
5.6332 5.6973 15.5431 2.3735

−6.2404 −4.4717 2.3735 10.5729

⎤
⎥⎥⎦ ,
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Figure 1. States x1(t) and x2(t) of the closed-loop system.
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Figure 2. States x3(t) and x4(t) of the closed-loop system.

G1 =

⎡
⎢⎢⎣

1.9067 14.8773 42.7721 27.5002
−14.1328 5.2717 −95.2632 −93.7725
−43.8234 96.7773 0.4448 −106.7421
−24.4442 97.3287 103.2599 −3.1477

⎤
⎥⎥⎦ ,

G2 = 103

⎡
⎢⎢⎣

0.0037 0.3441 −2.4533 1.4025
−0.3444 0.0007 −0.3425 0.3826
2.4575 0.3463 0.0046 −1.3308

−1.4010 −0.3777 1.3289 −0.0010

⎤
⎥⎥⎦ ,

R1 = 104

⎡
⎢⎢⎣

0.0042 −0.0566 −0.3092 0.2218
−0.0566 −2.9013 3.1250 1.7915
−0.3092 3.1250 5.9163 1.4588
0.2218 1.7915 1.4588 0.1190

⎤
⎥⎥⎦ ,

R2 = 104

⎡
⎢⎢⎣

−0.4056 0.1711 −2.9062 0.0560
0.1711 0.5037 1.7560 0.1243

−2.9062 1.7560 0.9914 −0.5837
0.0560 0.1243 −0.5837 0.0482

⎤
⎥⎥⎦ ,

L1 = 103

⎡
⎣ 0.5969 −1.6163 −1.0477 0.8133

−0.0902 0.2432 0.1101 −0.1612
0.1949 −0.6736 −0.3867 0.3068

⎤
⎦ ,

L2 = 103

⎡
⎣−8.8616 −1.3831 1.1373 4.1474

−1.2309 0.6289 −5.6387 3.9006
−5.9036 0.2913 −8.1805 7.8677

⎤
⎦ .

In this case the controller gains obtained from Equation
(25) are

K1 =
⎡
⎣ 7.3407 9.3057 −13.7690 −4.5421

81.0161 −6.3068 29.0567 −38.4358
−71.7610 −0.2671 −21.8896 25.8279

⎤
⎦ ,

K2 =
⎡
⎣−1.0798 11.5894 −0.9239 1.8529

6.1208 −10.3406 0.5433 4.3894
5.2579 −14.5859 −4.5641 −0.1930

⎤
⎦ .

The simulation results under an arbitrary switching law,
with the initial value x� = [ −3 2 0 −1 ], shows the stability of
the considered switched system; i.e. all the state trajectories
converge to the origin (Figures 1 and 2).

Next, a second example is proposed to show the effec-
tiveness of the derived static output controller.

5.2. Example 2
This example consists of a switched singular system with
three modes and described by

E1 =

⎡
⎢⎢⎣

5.59 2.47 1.963 0.026
3.90 9.10 6.630 0.260
5.20 1.56 1.300 0

0 0 0 0

⎤
⎥⎥⎦ ,

E2 =

⎡
⎢⎢⎣

5.2 1.56 1.3 0
3.9 9.1 6.63 0.26
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

E3 =

⎡
⎢⎢⎣

4.81 0.65 0.637 −0.026
3.90 9.10 6.630 0.260

0 0 0 0
0.39 0.91 0.663 0.026

⎤
⎥⎥⎦ ,

A1 =

⎡
⎢⎢⎣

3.30 0.72 1.62 1.38
−0.84 −1.50 3.90 2.82
2.22 3.06 −2.34 2.16

−3.18 −0.90 1.32 2.76

⎤
⎥⎥⎦ ,
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A2 =

⎡
⎢⎢⎣

2.48 −1.16 −1.24 1.12
0.76 −1.48 1.72 0.60
0.96 2.36 −0.92 0.76
0.64 1.24 0.88 2.20

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎣

2.80 −2.24 −1.36 0.72
1.84 1.28 3.60 3.76
1.36 5.20 2.56 1.92
0.88 1.92 2.96 3.12

⎤
⎥⎥⎦ ,

B1 =

⎡
⎢⎢⎣

0.9600 2.5200 2.8800
2.2800 −1.8000 1.6800

−0.7200 3.0000 3.3600
1.9200 4.5600 1.4400

⎤
⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎣

3.0000 4.4400 3.4800
−4.0800 5.0400 −3.2400
4.3200 2.5200 2.1600
3.2400 3.0000 −2.8800

⎤
⎥⎥⎦ ,

B3 =

⎡
⎢⎢⎣

2.3800 0.7000 1.1200
1.3300 0.7700 1.8900
1.8900 1.3300 −2.2400
1.3300 2.3800 2.5200

⎤
⎥⎥⎦ ,

C1 =
[

0.4000 −1.0000 1.2000 1.8000
−14.0000 −5.0000 18.0000 17.0000

]
,

C2 =
[

0.6250 3.8750 −0.8750 −3.7500
0.3125 −1.0625 0.5625 0.6250

]
,

C3 =
[

0.4920 0.0900 −0.3120 −0.0300
0.0600 −0.4500 0.8400 −0.1500

]
.

Solving Equations (29)–(30), we obtain the following
results

X1 =

⎡
⎢⎢⎣

83.3869 −49.8576 3.3627 53.9172
−49.8576 368.2777 −422.9244 −73.1192

3.3627 −422.9244 554.9655 9.9328
53.9172 −73.1192 9.9328 844.8909

⎤
⎥⎥⎦ ,

X2 =

⎡
⎢⎢⎣

90.6961 −29.8137 −28.4899 28.1298
−29.8137 400.5853 −459.7174 −158.4733
−28.4899 −459.7174 600.5969 85.9891
28.1298 −158.4733 85.9891 978.1242

⎤
⎥⎥⎦ ,

X3 =

⎡
⎢⎢⎣

91.0129 −27.5422 −33.7177 20.3228
−27.5422 293.2606 −372.7821 −27.0162
−33.7177 −372.7821 564.1515 −39.0869
20.3228 −27.0162 −39.0869 837.1100

⎤
⎥⎥⎦ ,

G1 =

⎡
⎢⎢⎣

218.4840 −94.7511 77.5316 126.3899
53.4081 3.8116 169.1636 194.9970

−122.6607 183.7677 −62.2326 −336.0752
318.0391 25.8317 −260.8759 −73.6182

⎤
⎥⎥⎦ ,

G2 =

⎡
⎢⎢⎣

395.3906 −192.3779 188.5014 −109.1839
32.5598 18.1982 12.8981 −92.4736

−244.3229 346.8400 −142.0194 −195.5994
77.9093 222.3521 −80.0590 −266.3606

⎤
⎥⎥⎦ ,

G3 =

⎡
⎢⎢⎣

416.8837 −107.7716 88.7741 −94.3066
−183.9055 −206.7481 584.1589 −45.0112
−22.5166 276.7853 −466.4941 79.6081
48.4921 −33.9213 −57.6439 −78.1847

⎤
⎥⎥⎦ ,

T1 =
⎡
⎣ 381.5663 0.6047

−11.6820 −3.2195
−204.5626 18.4734

⎤
⎦ ,

T2 =
⎡
⎣−31.6377 −84.8732
−53.1620 −206.6860
−18.8201 −248.1433

⎤
⎦ ,

T3 = 103

⎡
⎣−1.0658 −0.4133

1.2638 −0.1727
−0.7219 0.5238

⎤
⎦ ,

S1 = 103
[−0.0536 −0.0343
−4.4623 −0.1184

]
,

S2 = 103
[−0.0307 1.0052

0.0426 −0.0844

]
,

S3 =
[
343.6435 417.5517
247.6266 −670.8262

]
.

Then from Equation (31), we get the following output
feedback controller gains

K1 =
⎡
⎣ 0.2893 −0.0890

0.0884 0.0016
−0.7262 0.0546

⎤
⎦ ,

K2 =
⎡
⎣−0.1563 −0.8561

−0.3305 −1.4876
−0.3023 −0.6604

⎤
⎦ ,

K3 =
⎡
⎣−2.4477 −0.9075

2.4108 1.7580
−1.0617 −1.4417

⎤
⎦ .

The obtained results illustrate the effectiveness of the given
sufficient LMIs admissibility conditions for a switched
singular system.

6. Conclusion
In this paper we have presented a new approach to the sta-
bilization of switched singular discrete-time systems. The
properties of stability and admissibility for this class of sys-
tems are first introduced, then sufficient conditions for a
switched singular system to be admissible are given in strict
LMIs form. Both state feedback and static output feedback
stabilization are presented. Two numerical examples were
given to illustrate the obtained results.
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