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Stability analysis of fractional-order systems with the Riemann–Liouville derivative

Zhiquan Qin∗, Ranchao Wu and Yanfen Lu
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In this paper, the stability of fractional-order systems with the Riemann–Liouville derivative is discussed. By applying the
Mittag-Leffler function, generalized Gronwall inequality and comparison principle to fractional differential systems, some
sufficient conditions ensuring stability and asymptotic stability are given.

Keywords: asymptotic stability; generalized Gronwall inequality; Riemann–Liouville derivative; fractional differential
system

1. Introduction
Fraction calculus has more than 300 years history. With the
development of science and engineering applications, frac-
tional calculus has become one of the most hottest topics.
Up to now, many fractional results have been presented
which are very useful (Debnath, 2004; Miller & Ross,
1993; Podlubny, 1999; Samko, Kilbas, & Marichev, 1993;
Zhang & Li, 2011).

Stability analysis is the most fundamental for studying
fractional differential equations. Recently, many stability
results of fractional-order systems are interesting in physical
systems, so more and more stability results have been found,
see, for instance, Ahn and Chen (2008), Ahmed, EI-Saka,
and EI-Saka (2007), Deng, Li, and Liu, (2007), Li, Chen,
and Podlubny (2009), Li and Zhang (2011), Miller and
Ross (1993), Moze, Sabatier, and Oustaloup (2007), Odibat
(2010), Qian, Li, Agarwal, and Wong (2010), Radwan,
Soliman, Elwakil, and Sedeek (2009), Sabatier, Moze, and
Farges (2010), Samko et al. (1993), Tavazoei and Haeri
(2009), Wen, Wu, and Lu, (2008) and Zhang and Li (2011).
These stability results are mainly concerned with the lin-
ear fractional differential system. For example, in Matignon
(1996), a sufficient and necessary condition on asymptotic
stability of linear fractional differential system with order
0 < α < 1 was first given. Then some other research on the
stability of fractional-order systems appeared. Of course,
there also exist fractional-order systems with order lying
in (1, 2). In Zhang and Li (2011), authors dealt with the
following fractional differential system:

Dα
t0,tx(t) = Ax(t) + B(t)x(t),

where 1 < α < 2, Dα
t0,t denotes either the Caputo or the

Riemann–Liouville fractional derivative operator. They

∗Corresponding author. Email: zquan2174@163.com

analysed stability of the above fractional differential system
by applying Gronwall’s inequality (Corduneanu, 1971) and
related results.

In this paper, three conditions about B(t) are given as
follows:

(I) 0 < α < 1,
∫ ∞

0 P B(t)Pdt is bounded;
(II) 1 < α < 2, ‖B(t)‖ is bounded;

(III) 1 < α < 2, B(t) = O(t − t0)θ (θ < −α, t0 > 0).

Under these conditions, the stability and asymptotic
stability of nonautonomous linear fractional differential sys-
tems with the Riemann–Liouville derivative are analysed by
using generalized Gronwall’s inequality, some properties of
the Mittag-Leffler function and relevant results. From the
results derived in this paper, we can also analyse the stability
of these nonlinear systems in the future.

This paper is organized as follows. In Section 2 some
necessary definitions and lemmas are recalled, which will
be used later. The main results are presented in Section 3.
Finally, some conclusions are drawn in Section 4.

2. Preliminaries
In this section, the most commonly used definitions and
results are stated, which will be used later.

Definition 2.1 The Riemann–Liouville fractional deriva-
tive with order α of function x(t) is defined as

RLDα
a,tx(t) = 1

�(m − α)

dm

dtm

∫ t

a
(t − τ)m−α−1x(τ )dτ ,

where m − 1 ≤ α < m, �(·) is the Gamma function.
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The Laplace transform of the Riemann–Liouville frac-
tional derivative is∫ ∞

0
e−st

RLDα
a,tx(t)dt = sαX (s)

−
n−1∑
k=0

sk [Dα−k−1x(t)]t=a (n − 1 ≤ α < n).

Definition 2.2 The Mittag-Leffler function with two
parameters is defined as

Eα,β(z) =
∞∑

k=0

zk

�(kα + β)
,

where α > 0, β > 0, z ∈ C. When β = 1, one has Eα(z) =
Eα,1(z), furthermore, E1,1(z) = ez.

The Laplace transform of the Mittag-Leffler function is∫ ∞

0
e−st tkα+β−1E(k)

α,β(±atα)dt = k!sα−β

(sα ∓ a)k+1

(�(s) > |a|1/n).

Definition 2.3 The zero solution of

RLDα
t0,tx(t) = f (t, x(t)),

with order 0 < α ≤ 1(1 < α < 2) is said to be stable if,
for any initial values xk(k = 0)(xk(k = 0, 1)), there exists
ε > 0 such that ‖(t)‖ < ε for all t > t0. The zero solution
is said to be asymptotically stable if, in addition to being
stable, ‖x(t)‖ → 0 as t → +∞.

Lemma 1 If A ∈ Cn×n and 0 < α < 2, β is an arbitrary
real number, μ satisfies απ/2 < μ < min{π , απ}, and
C > 0 is a real constant, then∥∥Eα,β(A)

∥∥ ≤ C
1 + ‖A‖ ,

where μ ≤ | arg(spec(A))| ≤ π , spec(A) denotes the eigen-
values of matrix A and ‖ · ‖ denotes the l2 norm.

Lemma 2 If A ∈ Cn×n and 0 < α < 2, β is an arbitrary
complex number and μ satisfies απ/2 < μ < min{π , απ},
then for an arbitrary integer p ≥ 1, the following expan-
sions hold:

Eα,β(z) = 1
α

z1−β/α exp(z1/α)

−
p∑

k=1

z−k

�(β − kα)
+ O(|z|−p−1),

with |z| → ∞, | arg(z)| ≤ μ and

Eα,β(z) = −
p∑

k=1

z−k

�(β − kα)
+ O(|z|−p−1),

with |z| → ∞ and μ < | arg(z)| ≤ π .

Especially, in Zhang and Li (2011) it has been obtained
that the matrix (t − t0)α−k−1Eα,α−k(A(t − t0)α) is bounded,
i.e.

‖(t − t0)α−k−1Eα,α−k(A(t − t0)α)‖ ≤ Mk ,

for some Mk > 0.

Lemma 3 Suppose α > 0, a(t) is a nonnegative locally
integrable function on 0 ≤ t < T (some T ≤ ∞) and g(t)
is a nonnegative and nondecreasing continuous function
defined on 0 ≤ t < T , g(t) ≤ M (constant), and suppose
u(t) is nonnegative and locally integrable on 0 ≤ t < T
with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)α−1u(s)ds,

on this interval, then

u(t) ≤ a(t) +
∫ t

0

[ ∞∑
n=1

(g(t)�(α))n

�(nα)
(t − s)nα−1a(s)

]
ds.

Moreover, if a(t) is a nondecreasing function on [0, T ), then

u(t) ≤ a(t)Eα(g(t)�(α)tα).

Lemma 4 Suppose that g(t) and u(t) are continuous on
[t, t0], g(t) ≥ 0, λ ≥ 0 and r ≥ 0 are two constants, if

u(t) ≤ λ +
∫ t

t0
[g(τ )u(τ ) + r]dτ ,

then

u(t) ≤ (λ + r(t1 − t0)) exp
∫ t

t0
g(τ )dτ , t0 ≤ t ≤ t1.

3. Stability of nonautonomous linear fractional
differential systems

3.1. Fractional-order α : 0 < α < 1
Consider the nonautonomous fractional system

RLDα
0,tx(t) = Ax(t) + B(t)x(t) (0 < α < 1), (1)

with the initial condition

RLDα−1
0,t x(t)|t=0 = x0, (2)

where x ∈ Rn, matrix A ∈ Rn×n, B(t) : [0, ∞] → Rn×n is a
continuous t matrix.

Theorem 1 Suppose ‖tα−1Eα,α(Atα)‖ ≤ Me−γ t , 0 ≤ t <

∞, γ > 0 and
∫ ∞

0 ‖B(t)‖dt is bounded, i.e.
∫ ∞

0 ‖B(t)‖dt ≤
N, where M , N > 0, then the solution of Equation (1) is
asymptotically stable.
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Proof By the Laplace transform and the inverse Laplace
transform, the solution of Equations (1) with (2) can be
written as

x(t) = tα−1Eαα(Atα)x0

+
∫ t

0
(t − τ)α−1Eαα(A(t − τ)α)B(τ )x(τ )dτ ,

then we can obtain

‖x(t)‖ ≤ ‖tα−1Eαα(Atα)‖‖x0‖

+
∫ t

0
‖(t − τ)α−1Eαα(A(t − τ)α)‖‖B(τ )‖

‖x(τ )‖dτ .

From the boundedness, we can obtain

‖x(t)‖ ≤ Me−γ t‖x0‖ +
∫ t

0
Me−γ (t−τ)‖B(τ )‖‖x(τ )‖dτ .

(3)
Multiplying by eγ t both sides of Equation (3), we have

eγ t‖x(t)‖ ≤ M‖x0‖ +
∫ t

0
Meγ τ‖B(τ )‖x(τ )‖dτ .

Let eγ t‖x(t)‖ = u(t), then according to Lemma 4, one
has

eγ t‖x(t)‖ ≤ (M‖x0‖) exp
(

M
∫ t

0
‖B(t)‖dt

)
. (4)

Multiplying by e−γ t both sides of Equation (4), we can
obtain

‖x(t)‖ ≤ (M‖x0‖) exp
(

M
∫ t

0
‖B(t)‖dt

)
e−γ t ,

then ‖x(t)‖ ≤ (M‖x0‖)eMN−γ t , so ‖x(t)‖ → 0, t → ∞.
That is, the solution of Equation (1) is asymptotically

stable. �

3.2. Fractional-order α : 1 < α < 2
Consider the following fractional-order system:

RLDα
t0,tx(t) = Ax(t) + B(t)x(t) (1 < α < 2), (5)

with the initial conditions

RLDα−k
t0,t x(t)|t=t0 = xk−1 (k = 1, 2), (6)

where x ∈ Rn, matrix A ∈ Rn×n, B(t) : [t0, ∞) → Rn×n is a
continuous matrix.

Theorem 2 If the eigenvalues of matrix A satisfy
| arg(λ(A))| > απ/2 and ‖B(t)‖ is bounded, i.e. ‖B(t)‖ ≤
M for some M > 0, then the zero solution of Equation (5)
is asymptotically stable.

Proof By the Laplace transform and the inverse Laplace
transform, the solution of Equations (5) with (6) can be
written as

x(t) = (t − t0)α−1Eαα(A(t − t0)α)x0

+ (t − t0)α−2Eαα−1(A(t − t0)α)x1

+
∫ t

t0
(t − τ)α−1Eαα(A(t − τ)α)B(τ )x(τ )dτ ,

then we can obtain

‖x(t)‖ ≤ ‖(t − t0)α−1Eαα(A(t − t0)α)‖‖x0‖
+ ‖(t − t0)α−2Eαα−1(A(t − t0)α)‖‖x1‖

+
∫ t

t0
(t − τ)α−1‖Eαα(A(t − τ)α)‖

× ‖B(τ )‖‖x(τ )‖dτ

≤ M0‖x0‖ + M1‖x1‖ + LM
∫ t

t0
(t − τ)α−1

× ‖x(τ )‖dτ ,

where L, M , M0, M1 > 0 such that

‖(t − t0)α−k−1Eα,α−k(A(t − t0)α)‖ ≤ Mk (k = 0, 1),

‖Eαα(A(t − t0)α)‖ ≤ L.

Based on Lemmas 2 and 3, we can obtain

‖x(t)‖ ≤ (M0‖x0‖ + M1‖x1‖)Eα(LM�(α)(t − t0)α)

= (M0‖x0‖ + M1‖x1‖)

×
[
−

p∑
k=1

(LM�(α)(t − t0)α)−k

�(1 − kα)

+ O(|LM�(α)tα|)−1−p

]
.

When t → ∞, ‖x(t)‖ → 0. That is, the solution of
Equation (5) is asymptotically stable. �

Remark 1 Suppose the Caputo derivative takes the place
of the Riemann–Liouville derivative in Equation (1) and
all other assumed conditions remain the same, then the
conclusions of Theorem 2 still hold.

Theorem 3 If all eigenvalues of matrix A satisfy
| arg(λ(A))| > απ/2, ‖B(t)‖ is nondecreasing and B(t) =
O(t − t0)θ , (θ < −α, t0 > 0), then the zero solution is
asymptotically stable.

Proof By the Laplace transform and the inverse Laplace
transform, the solution of Equations (5) with (6) can be
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written as

x(t) = (t − t0)α−1Eαα(A(t − t0)α)x0

+ (t − t0)α−2Eαα−1(A(t − t0)α)x1

+
∫ t

t0
(t − τ)α−1Eαα(A(t − τ)α)B(τ )x(τ )dτ ,

then one can obtain

‖x(t)‖ ≤ ‖(t − t0)α−1Eαα(A(t − t0)α)‖‖x0‖
+ ‖(t − t0)α−2Eαα−1(A(t − t0)α)‖‖x1‖

+
∫ t

t0
(t − τ)α−1‖Eαα(A(t − τ)α)‖

‖B(τ )‖‖x(τ )‖dτ . (7)

Then

‖x(t)‖ ≤ M0‖x0‖ + M1‖x1‖

+ L
∫ t

t0
(t − τ)α−1‖B(τ )‖‖x(τ )‖ dτ ,

where L, M0, M1 > 0 such that

‖(t − t0)α−k−1Eα,α−k(A(t − t0)α)‖ ≤ Mk (k = 0, 1),

‖Eα,α(A(t − t0)α)‖ ≤ L.

Multiplying by ‖B(t)‖ on both sides of Equation (7), one
obtains

‖B(t)‖‖x(t)‖ ≤ ‖B(t)‖(M0‖x0‖ + M1‖x1‖) + L‖B(t)‖

×
∫ t

t0
(t − τ)α−1‖B(τ )‖‖x(τ )‖ dτ .

Applying Lemma 3 leads to

‖B(t)‖‖x(t)‖ ≤ ‖B(t)‖(M0‖x0‖ + M1‖x1‖)
× Eα(L‖B(t)‖�(α)tα).

Then

‖x(t)‖≤(M0‖x0‖+M1‖x1‖)Eα(L‖B(t)‖�(α)(t − t0)α)

≤(M0‖x0‖+M1‖x1‖)
∞∑

k=0

(L�(α)‖B(t)‖(t − t0)α)k

�(kα + 1)
.

Since B(t) = O(t − t0)θ , (θ < −α, t0 > 0), then
‖B(t)‖ (t − t0)α → 0 as t → ∞, so ‖x(t)‖ is bounded,

i.e. ∃N , such that ‖x(t)‖ ≤ N .

We also can obtain the following expression from the
solution:

‖x(t)‖ ≤ (t − t0)α−2L1‖x0‖ + (t − t0)α−2L2‖x1‖

+ L1

∫ t

t0
(t − τ)α−2‖B(τ )‖‖x(τ )‖ dτ ,

where

‖(t − t0)Eα,α(A(t − t0)α)‖ < L1,

‖Eα,α−1(A(t − t0)α)‖ < L2.

Since ‖x(t)‖ ≤ N , then

‖x(t)‖ ≤ (t − t0)α−2(L1‖x0‖ + L2‖x1‖)

+ L1N
∫ t

t0
(t − τ)α−2‖B(τ )‖ dτ

≤ (t − t0)α−2(L1‖x0‖ + L2‖x1‖)

+ L1N
�(α − 1)�(1 + θ)

�(α + θ)
O(t − t0)α+θ−1.

When t → ∞, ‖x(t)‖ → 0. So the solution of Equation (5)
is asymptotically stable. �

Remark 2 Suppose the Caputo derivative takes the place
of the Riemann–Liouville derivative in Equation (5) and
all other assumed conditions remain the same, then the
conclusion is stable.

4. Conclusions
In this paper, we have studied the stability and asymptotic
stability of the nonautonomous linear differential system
with the Riemann–Liouville fractional derivative and estab-
lished the corresponding stability results of its zero solution.
By using the Laplace transform, Mittag-Leffler function,
the generalized Gronwall inequality, some sufficient con-
ditions ensuring the stability and asymptotic stability of
the perturbed linear fractional differential system with the
Riemann–Liouville fractional derivative were given.
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