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This paper is concerned with the probability-dependent gain-scheduled fault-tolerant control problem for a class of discrete-
time stochastic nonlinear delayed systems with randomly occurring actuator faults (ROAFs) by utilizing parameter-based
Lyapunov functional. The occurrence of the possible actuator faults is modeled by a random sequence in terms of a
time-varying Bernoulli distribution with measurable probability in real time. The nonlinear functions are assumed to sat-
isfy the sector nonlinearities. The purpose of the addressed fault-tolerant control problem is to design a controller with
scheduled gains such that, for the admissible ROAFs, nonlinearities, time delays and noises, the closed-loop system is
exponentially mean-square stable while preserving a guaranteed H∞ performance. By using the semi-definite programme
method, the time-varying fault-tolerant controller is derived which is dependent on the occurrence probability of the
actuator faults. Therefore, the main results lead to less conservatism than those obtained by conventional methods with
fixed controller gains only. A simulation example is exploited to demonstrate the effectiveness of the proposed design
procedures.

Keywords: fault-tolerant control; randomly occurring actuator fault; time-varying Bernoulli distribution; probability-
dependent Lyapunov function; gain-scheduled controller; discrete-time stochastic systems

1. Introduction
In modern practical systems, the increasing operational con-
ditions inevitably magnify the possibility of faults, which
may potentially cause a reduction of performance and/or
launch a threat to the safety and reliability of the plant.
Therefore, fault detection and fault-tolerant control prob-
lems have been intensively studied in the past decades,
see Gao and Ding (2007a), Gao and Ding (2007b), Ding,
Guo, and Jeinsch (1999), Ye and Yang (2009), Yang and Ye
(2008), Blanke, Kinnaert, Lunze, and Staroswiecki (2003),
Niemann and Stoustrup (2005), Zhang and Jiang (2008),
and Zhou and Ren (2001). In view of the application
domains, a host of fault-tolerant controller design tech-
niques has been developed to keep the system stable and
maintain acceptable performance in the presence of faults,
see e.g. Yang and Ye (2008), Patton (1997), Gao and Ding
(2007b), Ye and Yang (2009), Blanke et al. (2003), Niemann
and Stoustrup (2005), Zhang and Jiang (2008), and Zhou
and Ren (2001). In general, the controller design meth-
ods can be classified into ‘passive’ and ‘active’ approaches
according to the structure of the designed controllers. The
passive one is a simple method appropriate to the slight
changes of parameters and signals. On the other hand,
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the controllers designed by the active approach can be
scheduled on-line according to the different situations, and
are therefore more suitable to significant changes of system
parameters caused by faults.

It is well known that stochastic perturbation exists per-
vasively in reality and is frequently a source of system per-
formance degradation. Over the past few decades, stochas-
tic systems have been extensively investigated by many
researchers and considerable results have been reported in
the literature, see e.g. Boukas and Liu (2002), Chen, Guan,
and Liu (2005), Gao, Lam, and Wang (2006), Wei and
Wang (2009), Shen, Wang, Shu, and Wei (2009), Shen,
Wang, Liang, and Liu (2011), and Ding, Wang, Dong, and
Shu (2012). Time delays also serve as one of the main
causes for system performance reduction or even instabil-
ity. Consequently, the time-delay systems with stochastic
perturbations have drawn a lot of research attention, see
Chen et al. (2005), Gao et al. (2006), Hu, Wang, and Gao
(2011), Hu, Wang, and Gao (2012), and Dong, Wang, Ho,
and Gao (2010). Moreover, in real-world applications, non-
linearity is an inevitable feature that has long been the
main stream of research topics in the control community.
In the past years, the analysis and synthesis problems of
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nonlinear stochastic systems have been intensively stud-
ied, see e.g. Yue and Han (2005), Wang, Wang, and Liang
(2009), and Wei and Wang (2009). Among others, the so-
called sector-nonlinearity has attracted particular attention,
because such kind of nonlinearity is quite general that cov-
ers the widely used Lipschitz condition as a special case.
So far, the control, filtering and model reduction problems
for systems with sector-nonlinearities have stirred recur-
ring research interests, see e.g. Han (2005), Lam, Gao, Xu,
and Wang (2005), and Lin and Hu (2001) for some recent
publications.

The randomly occurring phenomenon is a newly
emerged research topic that has drawn initial research
attention. It refers to those phenomenon that appears inter-
mittently in a random way based on certain probabilistic
law. If not properly catered, the randomly occurring phe-
nomenon may potentially cause a lot of undesired problems
that would seriously degrade the operating efficiency of the
plant. Therefore, the randomly occurring phenomenon has
started to gain the focus from researchers and some impor-
tant results have appeared, see e.g. Wang, Yang, Ho, and
Liu (2006), Shu, Lam, and Xiong (2009), Yang, Wang,
Ho, and Gani (2007), Wang et al. (2009), Gao and Chen
(2007), and Wei and Wang (2009). Based on the Bernoulli
distribution, a very flexible and effective model has been
built and extensively applied to characterize some kinds of
randomly occurring phenomena including the missing mea-
surements (Dong, Wang, & Gao 2010; Dong et al. 2010;
Shu et al. 2009; Wei & Wang 2009), the randomly varying
sensor delays (He, Wang, & Zhou 2007; Shen et al. 2009;
Wang, Ho, & Liu 2004) and the randomly occurring non-
linearity (Ding, Wang, Hu, & Shu 2013; Hu et al. 2011;
Hu et al. 2012; Wang et al. 2009). Similarly, the system
faults may occur in a random way especially in a networked
environment. Rather than assuming that the faults occur
definitely, the probabilistic faults occur due probably to
random failures and repairs of the components, intermit-
tently switching in the interconnections of subsystems, etc.
As such, there is a great need to develop a new strategy
to cope with such kind of system faults. The main pur-
pose of this paper is to introduce a new randomly occurring
actuator fault model based on the time-varying Bernoulli
distribution.

Recently, the gain-scheduled control and filtering prob-
lems have become significant research topics in the control
community, see e.g. de Souza and Trofino (2006), Rugh and
Shamma (2000), and Cao, Lin, and Shamash (2002). For
the gain-scheduling design, the gains of controllers/filters
consist of not only the constant part but also the time-
varying parameters of systems that are securable in real
time. Consequently, the gain-scheduled controllers and fil-
ters can be scheduled online according to the time-varying
parameters. Apparently, this kind of controllers/filters have
less conservatism than the conventional ones with constant
(fixed) gains only. The gain-scheduled control/filtering
problems have been thoroughly dealt with for both the

continuous- and discrete-time systems in the past decade,
see e.g. de Souza and Trofino (2006), Hoang, Tuan, Apkar-
ian, and Hosoe (2004), and Rugh and Shamma (2000). On
the other hand, the parameter-dependent Lyapunov function
approach has recently been exploited to design controllers
and filters for uncertain time-varying systems (see e.g. Gao,
Shi, & Wang 2007) and applied in the gain-scheduling
control/filtering problems with hope to achieve bet-
ter control/filter performance requirements (Apkarian,
Pellanda, & Tuan 2000; de Souza & Trofino 2006).
Motivated by the above discussion, in this paper, the
gain-scheduled approach and the parameter-dependent Lya-
punov functional are utilized to design a fault-tolerant con-
troller for discrete-time stochastic systems with randomly
occurring actuator faults (ROAFs).

In this paper, the gain-scheduled fault-tolerant con-
trol problem is addressed for the discrete-time stochastic
delayed systems with ROAFs. The main contributions of
this paper can be described as follows: (1) a new fault-
tolerant control problem is considered by a gain-scheduling
approach for a class of discrete-time stochastic delayed sys-
tems with ROAFs; (2) a new actuator fault model is built
by a stochastic variable sequence satisfying time-varying
Bernoulli distribution; (3) the time-varying fault-tolerant
controller gains are designed that consist of not only the
constant part but also the time-varying probability param-
eters; and (4) an easy-to-implement algorithm is devel-
oped to design the controller. The desired fault-tolerant
controller is designed by employing the gain-scheduling
method which leads to less conservatism than the tradi-
tional one with constant gains only. In the simultaneous
presence of ROAFs, time delays, nonlinearities and noise
disturbances, the closed-loop system is guaranteed to be
exponentially mean-square stable and satisfies a given
H∞ performance level. A simulation example is exploited
to illustrate the effectiveness of the proposed design
procedures.

Notation . In this paper, R
n, R

n×m, Z
+ denote, respec-

tively, the n-dimensional Euclidean space, the set of all
n × m real matrices, the set of all positive integers. | · |
refers to the Euclidean norm in R

n. l2[0, ∞) is the space of
square-integrable vector functions over [0, ∞). I denotes
the identity matrix of compatible dimension. The nota-
tion X ≥ Y (respectively, X > Y ), where X and Y are
symmetric matrices, means that X − Y is positive semi-
definite (respectively, positive definite). For a matrix M ,
M T and M−1 represent its transpose and inverse, respec-
tively. The shorthand diag{M1, M2, . . . , Mn} denotes a block
diagonal matrix with diagonal blocks being the matrices
M1, M2, . . . , Mn. In symmetric block matrices, the symbol
∗ is used as an ellipsis for terms induced by symmetry.
Matrices, if they are not explicitly stated, are assumed
to have compatible dimensions. In addition, E{x} and
Prob{y} will, respectively, mean expectation of x and
probability of y.
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2. Problem formulation
Consider the following discrete-time stochastic delayed
systems:

x(k + 1) = Ax(k) + Aτ x(k − τ) + Bu(k) + Eφ(r(k))

+ D1v(k) + D2x(k)ω(k), (1)

z(k) = Lx(k) + Lτ x(k − τ), (2)

x(k) = ρ(k), k = −τ , −τ + 1, . . . , 0, (3)

where x(k) ∈ R
n1 is the state, z(k) ∈ R

n2 is the controlled
output, ρ(k) is the initial state of the system, τ is a con-
stant delay and r(k) := Cx(k) + Cτ x(k − τ). v(k) ∈ R

n3 is
the vector of unknown disturbance input, which is assumed
to belong to l2[0, ∞). ω(k) is an one-dimensional Gaus-
sian white noise sequence satisfying E{ω(k)} = 0 and
E{ω2(k)} = 1. A, Aτ , B, C, Cτ , D1, D2, E, L and Lτ are
constant matrices with appropriate dimensions.

The nonlinear disturbance φ(·) with (φ(0) = 0) satisfies
the following sector-bounded condition:

[φ(r(k)) − �1r(k)]T[φ(r(k)) − �2r(k)] ≤ 0, (4)

where �1 and �2 are constant real matrices of appropriate
dimensions with �2 − �1 > 0. In this case, the nonlinear
function φ(·) is said to belong to the sector [�1, �2].

Setting � = �2 − �1 > 0 and φ(r(k)) = �1r(k) +
φs(r(k)), the sector-bounded condition (4) can be trans-
formed to the following form:

φT
s (r(k))(φs(r(k)) − �r(k)) ≤ 0. (5)

Remark 1 The sector-bounded condition described in
Equation (4) is a more general bounded condition of non-
linearity than the widely used Lipschitz condition. The
sector nonlinearity has been extensively applied in neural
networks and gene regulatory networks to describe nonlin-
ear activation functions. In the past few years, a rich body
of literature about the control, filtering and model reduc-
tion problems for systems with sector nonlinearities have
appeared, see e.g., Han (2005), Lam et al. (2005), and Lin
and Hu (2001).

When the actuators experience failures, we let uf (k)

describe the control signal from the actuators and denote
the faulty actuator model as

uf (k) = θ(k)u(k), (6)

where θ(k) is a random variable sequence to depict the
randomly occurring characteristic of the actuator fault and
satisfies the following time-varying Bernoulli distribution:

Prob{θ(k) = 1} = E{θ(k)} = δ(k),

Prob{θ(k) = 0} = 1 − E{θ(k)} = 1 − δ(k), (7)

where δ(k) is a time-varying positive scalar sequence that
takes values on the interval [δ1δ2] ⊆ [01] with δ1 and δ2

being the lower and upper bounds of δ(k), respectively. In
this paper, for simplicity, we assume that θ(k), ω(k) and
ρ(k) are uncorrelated.

Remark 2 Recently, the randomly occurring phenomenon
has been initially discussed and some results can be found
in e.g. Wang et al. (2004, 2006, 2009). The practical
Bernoulli distribution model with time-invariant probabil-
ity has been exploited to account for the randomly occurring
phenomenon (Gao & Chen 2007; Wei & Wang 2009; Wang
et al. 2006). In practice, the actuator fault may occur ran-
domly due to some environmental changes which gives
rise to a randomly occurring phenomenon. In this paper,
the occurrence of actuator fault is described by a random
variable sequence θ(k) satisfying a time-varying, rather
than time-invariant Bernoulli distribution model, which
certainly has less conservatism to deal with the time-
varying systems with ROAFs according to time-varying
probabilities.

Remark 3 In Equation (7), the time-varying parameter
1 − δ(k) is called the failure rate of actuator, which rep-
resents the occurring probability of actuator failure. In
practical system, the failure rate of system component rises
due to the increase in the component’s life and some envi-
ronment causes. Even though, in engineering, the failure
rate cannot be permitted to exceed some certain levels,
the change of the failure rate brings serious effects on the
performances of the system.

In this paper, the following probability-dependent gain-
scheduled fault-tolerant controller is considered

u(k) = G(δ)x(k), (8)

where G(δ) is the fault-tolerant controller gain sequences
to be designed that have the following structure:

G(δ) = G0 + δ(k)Gu, (9)

where, for every time step k , δ(k) is the time-varying prob-
ability of Bernoulli distribution taking value over [δ1, δ2],
and G0 and Gu are the fixed parts of the controller gain to
be designed.

Remark 4 The fault-tolerant controller gain proposed in
Equation (9) consists of the time-varying occurrence prob-
ability of actuator faults in systems (1), which will be
scheduled according to the time-varying probability. Such a
controller would certainly lead to less conservatism than the
conventional fault-tolerant controller with constant gains
only for parameter-varying systems (1). Note that gain-
scheduled control/filtering problems have recently been
paid considerable research attention (Cao et al. 2002; de
Souza & Trofino 2006; Rugh & Shamma 2000).
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The closed-loop system of Equation (1) with the state-
feedback gain-scheduled fault-tolerant controller (8) is
given as follows:

x(k + 1) = Ax(k) + Aτ x(k − τ) + θ(k)BG(δ)x(k)

+ Eφ(r(k)) + D1v(k) + D2x(k)ω(k). (10)

In the next section, the fault-tolerant controller proposed
in Equation (8) is designed by developing a probability-
dependent Lyapunov functional and the convex program-
ming method such that, for all admissible time delays,
nonlinearities, ROAFs and disturbance noises, the closed-
loop system (10) is exponentially mean-square stable and,
under zero initial condition, the controlled output z(k)

satisfies
∞∑

k=0

E{|z(k)|2} ≤ γ 2
∞∑

k=0

E{|v(k)|2} (11)

for all non-zero v(k) and given attenuation level γ > 0.

3. Main results
In the following theorem, a sufficient condition is obtained
to solve the desired parameter-dependent fault-tolerant con-
trol problem for a class of discrete-time stochastic delayed
systems (1) with ROAFs by exploiting the Lyapunov the-
ory and convex programming method. It is shown that the
gains of the fault-tolerant controller can be derived by solv-
ing the convex optimization problem via the semi-definite
programme method in terms of the securable time-varying
probability.

Theorem 1 Consider the discrete-time stochastic delayed
systems (10). Assume that there exist positive-definite matri-
ces P(δ(k)) > 0, Pτ > 0, nonsingular slack matrix S and
matrices Ḡ0 and Ḡu such that the following linear matrix
inequalities (LMIs) hold:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pτ − P(δ(k)) ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Pτ ∗ ∗ ∗ ∗ ∗ ∗

�CS �Cτ S −2I ∗ ∗ ∗ ∗ ∗
0 0 0 −γ 2I ∗ ∗ ∗ ∗
Ā Āτ E D1 −T (k) ∗ ∗ ∗


δ(k)BḠ(δ) 0 0 0 0 −
δ(k)T (k) ∗ ∗
D2S 0 0 0 0 0 −T (k) ∗
LS Lτ S 0 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (12)

where

Ā = AS + δ(k)BḠ(δ) + E�1CS,

Ḡ(δ) = Ḡ0 + δ(k)Ḡu, 
δ(k) = δ(k)(1 − δ(k)),

Āτ = Aτ S + E�1Cτ S, T (k) = −P(δ(k + 1)) + S + ST.
(13)

In this case, the constant gains of the desired fault-tolerant
controller can be obtained as follows:

G0 = Ḡ0S−1, Gu = ḠuS−1 (14)

and the closed-loop system (10) is then exponentially
mean-square stable and satisfies Equation (11) with the
prescribed H∞ index γ > 0 for all δ(k) ∈ [δ1δ2].
Proof Let P(δ(k)) = S−T P(δ(k))S−1, Pτ = S−T Pτ S−1

and define the following probability-dependent Lyapunov
function:

V (k) := xT(k)P(δ(k))x(k) +
k−1∑

l=k−τ

xT(l)Pτ x(l). (15)

Then, noting E{θ(k) − δ(k)} = 0 and E{ω(k) = 0}, we
have from Equation (10) that

E{
V (k)}
= E{xT(k + 1)P(δ(k + 1))x(k + 1) − xT(k)

× (P(δ(k)) − Pτ )x(k) − xT(k − τ)Pτ x(k − τ)}
= E{[(A + δ(k)BG(δ))x(k) + Aτ x(k − τ) + Eφ(r(k))

+D1v(k)+D2x(k)ω(k) + (θ(k)−δ(k))BG(δ))x(k)]T

× P(δ(k + 1))[(A + δ(k)BG(δ))x(k) + Aτ x(k − τ)

+ Eφ(r(k)) + D1v(k) + D2x(k)ω(k) + (θ(k)

− δ(k))BG(δ))x(k)] − xT(k)(P(δ(k)) − Pτ )x(k)

− xT(k − τ)Pτ x(k − τ)}
= E{[(A + δ(k)BG(δ))x(k) + Aτ x(k − τ) + Eφ(r(k))

+ D1v(k)]TP(δ(k + 1))[(A + δ(k)BG(δ))x(k)

+ Aτ x(k − τ) + Eφ(r(k)) + D1v(k)] − xT(k)

× (P(δ(k)) − Pτ )x(k) − xT(k − τ)Pτ x(k − τ)

+ xT(k)DT
2 P(δ(k + 1))D2x(k) + δ(k)(1 − δ(k))

× xT(k)GT(δ))BTP(δ(k + 1))BG(δ))x(k)}. (16)

From Equations (4)–(5) and (16), it can be seen that

E{
V (k)}
≤ E{[(A + δ(k)BG(δ) + E�1C)x(k) + (Aτ + E�1Cτ )

× x(k − τ) + Eφs(r(k)) + D1v(k)]TP(δ(k + 1))

× [(A + δ(k)BG(δ) + E�1C)x(k) + Eφs(r(k))

+ (Aτ + E�1Cτ )x(k − τ) + D1v(k)] + xT(k)DT
2

× P(δ(k + 1))D2x(k) + δ(k)(1 − δ(k))xT(k)GT(δ))

× BTP(δ(k + 1))BG(δ))x(k) − 2φT
s (r(k))φs(r(k))

+ 2φT
s (r(k))�(Cx(k) + Cτ x(k − τ)) − xT(k − τ)

× Pτ x(k − τ) − xT(k)(P(δ(k)) − Pτ )x(k)}. (17)
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We are now ready to prove the exponential stability of
the system (10) with v(k) = 0. Obviously, Equation (17)
with v(k) = 0 results in

E{
V (k)} ≤ E{ξT(k)�ξ(k)}, (18)

where ξ(k) = [xT(k)xT(k − τ)φT
s (r(k))]T and

� =
⎡
⎣�1 ∗ ∗

�2 �3 ∗
�4 �5 �6

⎤
⎦ , (19)

with

�1 = (A + δ(k)BG(δ) + E�1C)TP(δ(k + 1))(A + δ(k)

× BG(δ) + E�1C) + Pτ − P(δ(k))

+ DT
2 P(δ(k + 1))D2 + δ(k)(1 − δ(k))GT(δ))BT

× P(δ(k + 1))BG(δ)),

�2 = (Aτ + E�1Cτ )
TP(δ(k + 1))(A + δ(k)BG(δ)

+ E�1C),

�3 = (Aτ + E�1Cτ )
TP(δ(k + 1))(Aτ + E�1Cτ ) − Pτ ,

�4 = ETP(δ(k + 1))(A + δ(k)BG(δ) + E�1C) + �C,

�5 = ETP(δ(k + 1))(Aτ + E�1Cτ ) + �Cτ ,

�6 = −2I + ETP(δ(k + 1))E. (20)

Now, we prove that � < 0 follows from Equation
(12). Pre- and post-multiply the LMIs in Equation (12) by
diag{S−T , S−T , I , I , I , I , I , I } and its transpose, and, from
the inequality P−1(δ(k + 1)) ≥ −STP(δ(k + 1))S + S +
ST, we can obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pτ − P(δ(k)) ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Pτ ∗ ∗ ∗ ∗ ∗ ∗

�C �Cτ −2I ∗ ∗ ∗ ∗ ∗
0 0 0 −γ 2I ∗ ∗ ∗ ∗
Ã Ãτ E D1 −(k) ∗ ∗ ∗


δ(k)BG(δ) 0 0 0 0 −
δ(k)(k) ∗ ∗
D2 0 0 0 0 0 −(k) ∗
L Lτ 0 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(21)

with(k) = P−1(δ(k + 1)), Ã = A + δ(k)BG(δ) + E�1C
and Ãτ = Aτ + E�1Cτ . Furthermore, by the Schur com-
plement, we can know from Equation (21) that � < 0 and,
subsequently,

E{
V (k)} < −λmin(�)E|ξ(k)|2, (22)

where λmin(�) is the minimum eigenvalue of �. Finally, it
can be confirmed from Lemma 1 of Wang et al. (2006) that
the closed-loop system (10) is exponentially mean-square
stable.

Let us now move to the proof of the H∞ performance
for the system (10). To do so, assume zero initial condition
and consider the following index:

J := E

{
N∑

k=0

[zT(k)z(k) − γ 2vT(k)v(k)]
}

= E

{
N∑

k=0

[zT(k)z(k) − γ 2vT(k)v(k) + 
V (k)]
}

− EV (N + 1)

≤ E

{
N∑

k=0

[zT(k)z(k) − γ 2vT(k)v(k) + 
V (k)]
}

= E

{
N∑

k=0

ηT(k)�η(k)

}
, (23)

where η(k) = [xT(k)xT(k − τ)φs(r(k))vT(k)]T and

� =

⎡
⎢⎢⎣

�1 + LTL ∗ ∗ ∗
�2 + LT

τ L �3 + LT
τ Lτ ∗ ∗

�4 �5 �6 ∗
�1 �2 �3 �4

⎤
⎥⎥⎦ , (24)

with �i (i = 1, . . . , 6) being defined in Equation (20) and

�1 = DT
1 P(δ(k + 1))(A + δ(k)BG(δ) + E�1C),

�3 = DT
1 P(δ(k + 1))E,

�2 = DT
1 P(δ(k + 1))(Aτ + E�1Cτ ),

�4 = −γ 2I + DT
1 P(δ(k + 1))D1.

(25)

Again, by the Schur Complement, it is easily known
that � < 0 holds from Equation (21), which implies J < 0.
Letting N → ∞, we can have that Equation (11) is satisfied
with the prescribed performance index γ > 0. The proof of
this theorem is now complete. �

Remark 5 In Theorem 1, a parameter-dependent Lya-
punov functional has been developed to design the pro-
posed gain-scheduled fault-tolerant controller gains and
reduce the conservatism of the designed controllers. Such
parameter-dependent Lyapunov functional technique has
been extensively used to solve the control and filtering
problems for uncertain systems and parameter-varying sys-
tems, see e.g. de Souza and Trofino (2006) and Gao et al.
(2007). Unfortunately, the number of LMIs in Equation (12)
is actually infinity due to the time-varying parameter δ(k) ∈
[δ1 δ2] and therefore constant gains of the fault-tolerant
controller cannot be obtained directly by solving LMIs in
Equation (12). In the following theorem, by transforming
the description of δ(k), we attempt to convert LMIs in
Equation (12) into computationally accessible ones.

Setting P(δ(k)) = P0 + δ(k)Pδ , we can easily know
that P(δ(k)) = P0 + δ(k)Pδ . Then, we have the following
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theorem by converting the expression of the time-varying
parameter δ(k) in Theorem 1 into a new form.

Theorem 2 Consider the discrete-time nonlinear stochas-
tic systems (10). If there exist positive-definite matrices
P0 > 0, Pδ > 0, Pτ > 0, nonsingular matrices S, Ḡ0 and
Ḡu such that the following LMIs hold:

M
ijmn =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P ijmn ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −Pτ ∗ ∗ ∗ ∗ ∗ ∗

�CS �Cτ S −2I ∗ ∗ ∗ ∗ ∗
0 0 0 −γ 2I ∗ ∗ ∗ ∗

Āijmn Āτ E D1 −T ijmn ∗ ∗ ∗



ijmn
δ B̄ijmn 0 0 0 0 0 −


ijmn
δ T ijmn ∗ ∗

D2S 0 0 0 0 0 0 −T ijmn ∗
LS Lτ S 0 0 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(26)

where i, j, m, n = 1, 2 and

P ijmn = Pτ − P0 − δiPδ , T ijmn = −P0 − δnPδ + S + ST,

Āijmn = AS + δiB(Ḡ0 + δmḠu) + E�1CS,



ijmn
δ = δi(1 − δj),

B̄ijmn = B(Ḡ0 + δmḠu), (27)

then there exists a controller in the form of Equation (8)
(G0 and Gu can be obtained according to Equation (14))
such that the closed-loop system (10) is exponentially mean-
square stable and, under zero initial condition, satisfies
Equation (11) with the prescribed index γ > 0.

Proof First, for δ(k), letting

α1(k) = δ2 − δ(k)

δ2 − δ1
, α2(k) = δ(k) − δ1

δ2 − δ1
, (28)

it is easy to obtain that

δ(k) = α1(k)δ1 + α2(k)δ2 (29)

with αi(k) ≥ 0 (i = 1, 2) and α1(k) + α2(k) = 1.
Similarly, for δ(k + 1), setting

β1(k) = δ2 − δ(k + 1)

δ2 − δ1
, β2(k) = δ(k + 1) − δ1

δ2 − δ1
, (30)

we can have

δ(k + 1) = β1(k)δ1 + β2(k)δ2, (31)

where βi(k) ≥ 0 (i = 1, 2) and β1(k) + β2(k) = 1.

From the above transformations, we can see that

P(δ(k)) =
2∑

i=1

αi(k){P0 + δiPδ}, (32)

Ḡ(δ) =
2∑

i=1

αi(k){Ḡ0 + δiḠu}, (33)

P(δ(k + 1)) =
2∑

n=1

βn(k){P0 + δnPδ}. (34)

Again, from Equation (26), it is easy to find that

2∑
i,j,m,n=1

αi(k)αj(k)αm(k)βn(k)Mijmn < 0. (35)

Then, from Equations (28)–(34), it can be concluded that
Equation (12) is true. The proof is now complete. �

Remark 6 In Theorem 2, we have changed the infinite
LMIs that are dependent on the time-varying probability in
Theorem 1 to finite ones that are dependent on the upper and
lower bound of δ(k). By Theorem 2, the constant parame-
ters of controller can easily be obtained by solving a set of
LMIs via available softwares.

In the following, according to Theorem 2, a detailed
design procedure is given to obtain the desired fault-tolerant
controller.

Algorithm 1 Probability-dependent fault-tolerant con-
troller design algorithm.

Step 1: Initialize the positive integer N , the initial state
ρ(k), time delay τ , the bounds δ1 and δ2 of the time-varying
parameters, the matrices A, Ad, B, C, Cτ , D1, D2, E, �1,
�2, L and Lτ and set k = 0.

Step 2: Solve the LMIs in Equation (26) for i, j, m, n =
1, 2 to obtain the positive-definite matrix P0, Pδ , Pτ , non-
singular slack matrices S, matrices Ḡ0, Ḡu and then the
constant gains of fault-tolerant controller G0 and Gu by
Equation (14).

Step 3: Derive gain-scheduled controller gain G(δ) in
Equation (9) according to measured time-varying proba-
bility δ(k) in real time and then set k = k + 1.

Step 4: If k < N, then go to Step 3, otherwise go to
Step 5.

Step 5: Stop.

4. An illustrative example
In this section, a numerical example is given to illustrate
the effectiveness of the proposed fault-tolerant controller
design method.
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Table 1. The measured time-varying probabilities δ(k).

k 1 2 3 4 5 6 7 8 9 10 · · ·
δ(k) 0.9691 0.9681 0.9672 0.9662 0.9651 0.9641 0.9630 0.9619 0.9607 0.9595 · · ·

0 5 10 15 20 25 30 35 40
−100

0

100

200

300

400

500

600

k

x1(k)
x2(k)

Figure 1. State evolution x(k) of uncontrolled systems.
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Figure 2. State evolution x(k) of controlled systems.

The system parameters are given as follows:

A =
[

0.9 −0.2
0 0.74

]
, Aτ =

[
0.31 0
0.02 0.26

]
,

B =
[

0.56 0.02
0 0.43

]
, C =

[
0.31 0

0 0.52

]
,

Cτ =
[

0.21 0
0 0.32

]
, D1 =

[
0.14 0

0 0.11

]
,

D2 =
[−0.13 0

0.15 0.28

]
, E =

[
0.05 0

0 0.05

]
,
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Figure 3. Time-varying failure rate 1 − δ(k).

�1 =
[

0.06 0
0 0.07

]
, �2 =

[
0.51 0

0 0.4

]
,

L =
[

0.21 0
0 0.11

]
, Lτ = [0.11 0.12],

δ1 = 0.9, δ2 = 0.97, γ = 0.9, N = 40.

Set the initial state ρ(k) = [2 − 2]T (k = −τ , −τ +
1, . . . , 0) and assume the measured time-varying probability
parameter as the data in Table 1.

The parameters of the sector-bounded nonlinearity are
selected as

φ(r(k)) = �1 + �2

2
r(k) + �2 − �1

2
sin(r(k)).

According to Theorem 2 and Algorithm 1, the Lyapunov
matrices P0, Pδ and Pτ , slack matrix S and the constant
controller parameters G0 and Gu can be obtained as follows:

P0 =
[

0.3473 0.0184
0.0184 0.3453

]
, Pδ =

[
0.3338 0.0203
0.0203 0.3317

]
,

Pτ =
[

0.3331 0.0202
0.0202 0.3310

]
, S =

[
1.9095 −0.1455

−0.1455 1.9249

]
,

G0 =
[−1.7113 0.4454
−0.0000 −1.8350

]
,

Gu =
[

0.0025 −0.0007
0.0000 0.0027

]
.

Figure 1 gives the response curves of state x(k)of uncon-
trolled systems. Figure 2 depicts the simulation results of
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state x(k) of the controlled systems. Figure 3 shows the
time-varying failure rate 1 − δ(k). The simulation results
have illustrated our theoretical analysis.

5. Conclusions
In this paper, the probability-dependent gain-scheduled
fault-tolerant control problem has been dealt with for a class
of discrete-time stochastic delayed systems with ROAFs.
The actuator faults are assumed to occur in a random way
in terms of a time-varying Bernoulli distribution. Two the-
orems and an algorithm have been established to obtain the
sufficient condition for solving the addressed fault-tolerant
control problem by employing probability-dependent Lya-
punov functional. According to the obtained results, the
fault-tolerant controller with the gain including the time-
varying distribution probability has been designed such
that, for the admissible ROAFs, time delays, nonlinearities
and noise disturbances, the closed-loop system is expo-
nentially mean-square stable and satisfies H∞ performance
with a prescribed index γ > 0. The effectiveness of the pro-
posed design procedure has been illustrated via a numerical
example.
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