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New delay-dependent stability conditions for linear systems with delay
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In this work, delay-dependent stability conditions for systems described by delayed differential equations are presented. The
employment of a special transformation to a state space representation named Benrejeb characteristic arrow matrix permits to
determine new asymptotic stability conditions. Illustrative examples are presented to show the effectiveness of the proposed
approach.
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1. Introduction
Many practical systems, such as biological processes,
population dynamics, neural networks (Richard, 2003),
feedback controlled mechanical systems (Hu, 2002), auto-
motive power train systems (Balachandran, Kalmár-Nagy,
& Gilsinn, 2009) and teleoperators (Loiseau, Michiels,
Niculescu, & Sipahi, 2009), are represented by models
which depend on the current states as well as on the past
ones, such systems are known as time-delay systems. The
obtained mathematical models of such systems can be for-
mulated by a set of delay differential equations (DDEs).
The presence of delay can degrade closed-loop system per-
formance and even can cause instability. Difficulties are
greater when these systems are nonlinear or have multi-
ple delays, see Cepeda-Gomez and Olgac (2011), Chen
(1995), Chen and Latchman (1995), Kosugi and Suyama
(2011), Niculescu, Verriest, Duggard, and Dion (1997) for
an excellent exposition of nonlinear DDEs. It is well known
that ensuring stability is a first and an essential step in
any design process. For all these reasons, there has been
an extensive literature on stability analysis of time-delay
systems, see, for example, Bellman and Cooke (1963),
Elmadssia, Saadaoui, and Benrejeb (2011), Hale (1977),
Hale, Infante, and Tsen (1985), Kamen (1980,1982), Lewis
and Anderson (1980), Malek-Zavarei and Jamshidi (1987).
Many methods are employed to study stability of time-
delay systems, these approaches include Lyapunov methods
and their extensions, the τ -decomposition method, the D-
decomposition method (Dugard & Verriest, 1998; Neimark,
1992) and frequency-domain methods (Dugard & Verriest,
1998; Malakhovski & Mirkin, 2006).

The first step in our study is determining stability con-
ditions for linear systems with a single delay. Then, a
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generalization of these conditions to multi-delay systems
is given. Our approach is based on transforming the rep-
resentation of the system under consideration into another
specific form and using an appropriate Lyapunov function
to determine sufficient delay-dependent stability conditions.
The developed criteria are mainly based on characteristic
arrow form matrix representation (Borne, Vanheeghe, and
Duflos, 2007; Elmadssia et al., 2011) associated with Borne
and Gentina practical criterion (Gentina, Borne, & Laurent,
1972). One of the main contributions of this paper is the
determination of an upper bound on the delays that guaran-
tee the stability of the system. This upper bound is expressed
as a function of the system’s parameters. In Niculescu et al.
(1997), a similar condition was derived for second-order
systems with a single delay. In this article, more general
conditions were derived for high-order systems with single
and multiple delays value. The obtained stability conditions
are presented explicitly and simply.

The paper is organized as follows. In Section 2, a delay-
dependent stability condition for linear systems with a
single delay is given. An application of this criteria to DDEs
with a single delay is presented in Section 3. Section 4
is devoted to studying stability problem of linear systems
with multiple delays. Finally, some illustrative examples
and concluding remarks are given.

2. Delay-dependent stability conditions for linear
systems with a single delay

Let us start by defining some notations. Let Rn denote
an n-dimensional linear vector space over the reals with
the norm ‖ · ‖. For any u = (ui)1≤i≤n, v = (vi)1≤i≤n ∈ Rn,
we define the scalar product of the vectors u and v as:

© 2013 S. Elmadssia, K. Saadaoui and M. Benrejeb
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〈u, v〉 = ∑n
i=1 uivi. Let R = (−∞ + ∞), R+ = [0 + ∞),

R∗+ = (0 + ∞), R∗n+ = {v = (vi)1≤i≤n ∈ Rn, vi ∈ R∗+, ∀i =
1, 2, . . . , n}, sgn(ψ) = 1 (respectively, sgn(ψ) = −1) if
ψ ∈ R∗+ (respectively, −ψ ∈ R∗+) and sgn(ψ) = 0 if ψ =
0, λ(M ) denotes the set of eigenvalues of the matrix
M , M ′ its transpose and M−1 its inverse and if M =
(mi,j)1≤i,j≤n, we denote M � = (m�

i,j)1≤i,j≤n with m�
i,j = mi,j

if i = j and m�
i,j = |mi,j| if i �= j and |M | = (|mij|)1≤i,j≤n.

Let Cn= C([−τ0], Rn) be the Banach space of continuous
functions mapping the interval [−τ0] into Rn with the topol-
ogy of uniform convergence. For a given φ ∈ Cn, we define
‖φ‖ = sup−τ≤θ≤0 ‖φ(θ)‖, φ(θ) ∈ Rn.

In the next, we introduce several useful tools, including
Kotelyanski lemma and definition of an M -matrix.

Kotelyanski Lemma. (Gentina et al., 1972) The real parts
of the eigenvalues of matrix A, with non-negative off diag-
onal elements, are less than a real number if and only if all
those of matrix M , M = In − A, are positive, with In the n
identity matrix.

Definition 1 The matrix A = (ai,j)n≤i,j≤n is called an
M-matrix if the following conditions are satisfied:

(1) ai,i > 0 (i = 1, 2, . . . , n), ai,j ≤ 0 (i �= j, i, j =
1, 2, . . . , n).

(2) Successive principal minors of A are positive, i.e.

det

⎛
⎜⎝

a1,1 . . . a1,i
... . . .

...
ai,1 . . . ai,i

⎞
⎟⎠ > 0 (i = 1, 2, 3, . . . , n).

Definition 2 A is the opposite of an M-matrix if (−A) is
an M-matrix.

There are many equivalent conditions for an M -matrix,
among them we used the condition given below.

ai,i > 0 (i = 1, 2, . . . , n), ai,j ≤ 0 (i �= j, i, j = 1,
2, . . . , n), and for any positive real numbers η =
(η1, η2, . . . , ηn)

′, the algebraic equations Ax = η have a
positive solution w = (w1, w2, . . . , wn).

Remark 1 When successive principal minors of matrix
(−A) are positive, which amounts to that successive main
minors of the matrix A are alternating sign with the first is
negative, the Kotelyanski lemma allows us to conclude the
stability of the system characterized by A.

Now, consider a time-delay system given by the follow-
ing state space representation:

ẋ(t) = Ã0x(t) + μÃ1x(t − τ), (1)

where Ãi ∈ Rn×n, i = 0, 1, x(t) ∈ Rn is the state vector with
components xi (i = 1, . . . , n), τ > 0 is the time delay of the
system and μ is a real scalar parameter which is introduced

by convenience to govern the size of the delayed dynamics
(De la Sen, Malaina, Soto, & Gallego, 2005).

First of all, we start by writing our system with another
form. By using the Newton–Leibniz formula

x(t − τ) = x(t) −
∫ t

t−τ

ẋ(θ) dθ . (2)

Equation (2) can be written as

x(t − τ) = x(t) − Ã0

∫ t

t−τ

x(θ) dθ − μÃ1

∫ t

t−τ

x(θ − τ) dθ .

(3)
Then, Equation (1) becomes

ẋ(t) = (Ã0 + μÃ1)x(t) − μÃ1Ã0

∫ t

t−τ

x(θ) dθ

− μ2Ã2
1

∫ t

t−τ

x(θ − τ) dθ . (4)

The next result gives a delay-dependent stability condition
for system (1).

Theorem 1 The system (1) is asymptotically stable if the
matrix T1, given by

T1 = (Ã0 + μÃ1)
� + τ(|μ||Ã1Ã0| + μ2|Ã2

1|) (5)

is the opposite of an M-matrix.

Proof Let w ∈ Rn with components wi > 0 (i = 1, . . . , n)

and let us consider the radially unbound Lyapunov func-
tional given by

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (6)

where

V1(t) = 〈|x(t)|, w〉, (7)

V2(t) = |μ|
〈
|Ã1Ã0|

∫ 0

−τ

∫ t

t+θ

|x(s)| ds dθ , w
〉

, (8)

V3(t) = μ2
〈
|Ã2

1|
∫ 0

−τ

∫ t

t+θ

|x(s − τ)| ds dθ , w
〉

(9)

and

V4(t) = τμ2
〈
|Ã2

1|
∫ t

t−τ

|x(s)| ds, w
〉

(10)

it is clear that
V (t0) < ∞.

The right Dini derivative of V along the solution of
Equation (4) gives

D+V (t)|(4) = D+V1(t)|(4) + D+V2(t)|(4) + D+V3(t)|(4)

+ D+V4(t)|(4), (11)
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we have

D+V1(t)|(4) =
〈

d+|x(t)|
dt+

, w
〉

=
〈
Dx(t)

d+x(t)
dt+

, w
〉

, (12)

where

Dx(t) =
⎛
⎜⎝

sgn(x1)

. . .
sgn(xn)

⎞
⎟⎠ . (13)

Next, we have

D+V1(t)|(4) =
〈
Dx(t)

(
(Ã0 + μÃ1)x(t)

− μÃ1Ã0

∫ t

t−τ

x(θ) dθ

)
, w

〉

−
〈
μ2Dx(t)

(
Ã2

1

∫ t

t−τ

x(θ − τ) dθ

)
, w

〉
.

(14)

So, by overvaluing D+V1(t)|(4), we get

D+V1(t)|(4) ≤
〈(

(Ã0 + μÃ1)
�|x(t)|

+ |μ||Ã1Ã0|
∫ t

t−τ

|x(θ)| dθ

)
, w

〉

+
〈(

μ2|Ã2
1|

∫ t

t−τ

|x(θ − τ)|dθ

)
, w

〉
, (15)

D+V2(t)|(4) = |μ|
〈
|Ã1Ã0|

(
τ |x(t)| −

∫ t

t−τ

|x(s)| ds
)

, w
〉

,

(16)

D+V3(t)|(4) = μ2
〈
|Ã2

1|
(

τ |x(t − τ)|

−
∫ t

t−τ

|x(s − τ)| ds
)

, w
〉

, (17)

D+V4(t)|(4) = μ2〈τ |Ã2
1|(|x(t)| − |x(t − τ)|), w〉. (18)

Replacing D+Vi(t)|(4), i = 1, 2, 3, 4 by the expressions
found above, we get

D+V (t)|(4) ≤ 〈T1|x(t)|, w〉, (19)

where

T1 = (Ã0 + μÃ1)
� + τ(|μ||Ã1Ã0| + μ2|Ã2

1|). (20)

Now, suppose that T1 is the opposite of an M -matrix. Using
proprieties of an M -matrix, we can find a vector ρ ∈ R∗n+ ,
i.e. with components ρk ∈ R∗+ satisfying the relation T ′w =
−ρ, ∀w ∈ R∗n+ .

Knowing that

〈T1|x(t)|, w〉 = 〈T ′
1w, |x(t)|〉.

So, we can write

〈T ′
1w, |x(t)|〉 = 〈−ρ, |x(t)|〉.

Finally, we obtain

D+V (t)|(4) < −
n∑

k=1

ρk |xk(t)| < 0.

Then, the system is asymptotically stable. �

3. Application to systems defined by delayed
differential equations with a single delay

The delay systems considered in this section are governed
by the linear differential–difference equation of the follow-
ing form (Brierley, Chiasson, Lee, and Zak, 1982; Chiasson,
1988; Elmadssia et al., 2011; Hale et al., 1985; Kamen,
1980, 1982):

y(n)(t) +
n−1∑
i=0

aiy(i)(t) + μ

n−1∑
i=0

biy(i)(t − τ) = 0. (21)

The presence of delay terms makes the stability study
of Equation (21) very difficult. A solution is to use the
following matrix representation:

z̃i+1(t) = y(i)(t) (i = 0 . . . n − 1). (22)

Equation (21) becomes

˙̃zi(t) = z̃i+1(t) (i = 1, 2, . . . , n − 1),

˙̃zn(t) = −
n−1∑
i=0

aiz̃i+1(t) − μ

n−1∑
i=0

biz̃i+1(t − τ).
(23)

Or under matrix form

˙̃z(t) = A0z̃(t) + μA1z̃(t − τ), (24)

where z̃(t) is a vector of components z̃i(t) (i = 1, 2, . . . , n),
A0 and A1 are given by

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0
. . . 0

...
...

. . .
...

0 0 · · · 1
−a0 −a1 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

A1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
...

...
...

0 · · · 0
−b0 · · · −bn−1

⎞
⎟⎟⎟⎟⎟⎠ . (25)
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Next, we define the four polynomials pA0 , pA1 , σ and Q
given by

pA0(s) = sn +
n−1∑
i=0

aisi, (26)

pA1(s) =
n−1∑
i=0

bisi, (27)

σ(s) = −pA1(s)s + bn−1pA0(s) =
n−1∑
i=0

σisi, (28)

where the parameters σi (i = 0, . . . , n − 1) are given by

σ0 = bn−1a0,

σi = bn−1ai − bi−1 (i = 1, 2, . . . , n − 1)

and

Q(s) =
n−1∏
j=1

(s − αj), (29)

where αj (j = 1, 2, . . . , n − 1) are free real parameters,
distinct in pairs, that can be chosen arbitrary.

The same regular basis change P, in Benrejeb (1978) and
Elmadssia et al. (2011), permits to characterize the dynam-
ics of the system (62) by the evolution of the new state
vector z given by

z̃(t) = Pz(t) (30)

with

P =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1 0
α1 α2 · · · αn−1 0
...

... · · · ...
...

αn−2
1 αn−2

2 · · · αn−2
n−1 0

αn−1
1 αn−1

2 · · · αn−1
n−1 1

⎞
⎟⎟⎟⎟⎟⎠ . (31)

The new state space representation is

ż(t) = Fz(t) + μ�z(t − τ), (32)

where F is Benrejeb characteristic matrix (Borne et al.,
2007; Elmadssia et al., 2011) given by

F := P−1A0P =

⎛
⎜⎜⎜⎜⎜⎝

α1 β1
α2 β2

. . .
...

βn−1
γ1 γ2 · · · γn−1 γn

⎞
⎟⎟⎟⎟⎟⎠ . (33)

Elements of the matrix F are defined in Benrejeb (1978) by

γi = −pA0(αi) (i = 1, 2, . . . , n − 1), (34)

γn = −an−1 −
n−1∑
i=1

αi, (35)

βi = αi − s
Q(s)

∣∣∣∣
s=αi

(i = 1, 2, . . . , n − 1) (36)

and the matrix � is given by

� := P−1A1P =
(

On−1,n−1 On−1,1
δ1 · · · δn−1 δn

)
, (37)

where

δi = −pA1(αi) (i = 1, 2, . . . , n − 1) (38)

and

δn = −bn−1. (39)

According to Theorem 1, system (4) is stable if the matrix
T1 is the opposite of an M -matrix.

We obtain a stability condition for system (21), as given
in the following theorem:

Theorem 2 If there exist αi < 0, i = 1, 2, . . . , n − 1 sat-
isfying the inequality (40),

τ <
−γn + μbn−1 + ∑n−1

i=1 α−1
i |pA0(αi) + μpA1(αi)||βi|

μ2b2
n−1 + |μ||an−1bn−1 − bn−2|

−∑n−1
i=1 α−1

i (|μ||σ(αi)| + μ2|pA1(αi)bn−1|)|βi|
(40)

then, system (21) is asymptotically stable.

Proof It is sufficient to verify that the matrix

T1 = (F + μ�)� + τ(|μ||�F | + μ2|�2|)

is the opposite of an M -matrix.
We have

(F + μ�)� =

⎛
⎜⎜⎜⎜⎜⎝

α1
α2

. . .

|γ1 + μδ1| |γ2 + μδ2| · · ·
|β1|
|β2|

...
|βn−1|

|γn−1 + μδn−1| γn + μδn

⎞
⎟⎟⎟⎟⎟⎠ ,

|�F | =
⎛
⎝ On−1,n−1 On−1,1

|σ(α1)| · · ·
|σ(αn−1)| |δnγn + ∑n−1

i=1 δiβi|

⎞
⎠ .

(41)

Notice that |�F | can be simplified. In fact, δnγn +∑n−1
i=1 δiβi = trace(�F). Based on the proprieties of trace,

we can write trace(�F) = trace(A1A0) = bn−1an−1 −
bn−2. Then, δnγn + ∑n−1

i=1 δiβi = bn−1an−1 − bn−2 = an−1
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bn−1 − bn−2. Yields a new form of |�F |

|�F | =
(

On−1,n−1 On−1,1
|σ(α1)| · · · |σ(αn−1)| |an−1bn−1 − bn−2|

)
.

(42)
It is easy to calculate |�2|

|�2| =
(

On−1,n−1 On−1,1
|δ1||bn−1| · · · |δn−1||bn−1| |b2

n−1|
)

. (43)

Taking into account the previous matrix value, we obtain
the matrix T1 as follows:

T1 =

⎛
⎜⎜⎜⎜⎜⎝

α1 |β1|
α2 |β2|

. . .
...

|βn−1|
t1 t2 · · · tn−1 tn

⎞
⎟⎟⎟⎟⎟⎠ , (44)

where

ti = |γi + μδi| + τ(|μ||σ(αi)| + μ2|δibn−1|)
(i = 1, 2, . . . , n − 1), (45)

tn = γn − μbn−1 + τ(|μ||an−1bn−1 − bn−2| + μ2b2
n−1).

(46)

Since the elements αi (i = 1, 2, . . . , n − 1) can be arbi-
trarily selected, according to Kotelyanski lemma (Gentina
et al., 1972), the choice αi < 0 with αi �= αj , ∀(i, j =
1, . . . , n − 1), permits to reduce checking that T1 is the
opposite of an M -matrix to determining a simple sign test
which is easier to perform.

det(T1) =
(

tn −
n−1∑
i=1

ti|βi|
αi

)
n−1∏
i=1

αi. (47)

The exploitation of results developed in Elmadssia
et al. (2011) permits us to determine a simple sufficient
condition for delayed linear system (21). In fact, the
condition: T1 is the opposite of an M -matrix, becomes
tn − ∑n−1

i=1 (ti|βi|/αi) < 0. This achieves the proof of
theorem. �

Remark 2 The choice of the parameters αi plays an
important role. Indeed, the delay can be considered as
function of αi’s, so it can be varied until the maxi-
mum value of delay for which stability holds is found.

On the other hand, a necessary condition for having T1
the opposite of an M -matrix is that trace(T1) < 0, which
yields

∑n−1
i=1 αi + γn − μbn−1 + τ(|μ||an−1bn−1 − bn−2| +

μ2b2
n−1) < 0. Taking into account the value of γn given

by Equation (35), the last inequality becomes −an−1 −
μbn−1 + τ(|μ||an−1bn−1 − bn−2| + μ2b2

n−1) < 0.
Then, a necessary condition that the time delay τ must

satisfy is

τ <
an−1 + μbn−1

|μ||an−1bn−1 − bn−2| + μ2b2
n−1

:= τ 1
max(μ). (48)

For the particular case, n = 1 and μ = 1, the condition
(69) is given by Niculescu et al. (1997) as a necessary and
sufficient condition for stability.

Other results can be determined by varying the choice
of parameters αi (i = 1, 2, . . . , n − 1). A particular choice
of these αi’s can widely simplify conditions of Theorem 1.
This is given in the following corollary.

Corollary 1 Let μ = 1, if there exist αi < 0 (i =
1, 2, . . . , n − 1), satisfying the following conditions:

B(V0 + V1) > 0,

bn−1BV1 > 0,

B(−AV1 + bn−1V0) > 0

are satisfied.
Where matrices A, B ∈ R(n−1)×(n−1) and Vi ∈ Rn−1, i =

0, 1, are such as

B =

⎡
⎢⎢⎢⎢⎣

β1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 βn−1

⎤
⎥⎥⎥⎥⎦ ,

A =

⎡
⎢⎢⎢⎢⎣

α1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 αn−1

⎤
⎥⎥⎥⎥⎦ , (49)

Vi = V (pAi) =

⎡
⎢⎢⎢⎣

pAi(α1)

pAi(α2)
...

pAi(αn−1)

⎤
⎥⎥⎥⎦ , i = 0, 1 (50)

Table 1. Delay-dependent stability conditions.

Assumptions Delay conditions

an−1bn−1 > bn−2 τ < min
(

1
bn−1

, τ 1
max(1)

)

an−1bn−1 < bn−2 τ < min
(

pA0(0) + pA1(0)

2Q(0)(bn−2 − an−1bn−1) + bn−1(pA0(0) + pA1(0))
, τ 1

max(1)

)
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then system (21) is asymptotically stable if the time delay
satisfies the constraints in Table 1.

4. Delay-dependent stability conditions for linear
systems with multiple delays

In this section, a generalization of the results given in the
previous section to systems with multiple delay elements is
given. Consider the differential–difference equation

ẋ(t) = A0x(t) + μ

m∑
k=1

Akx(t − τk), (51)

where Ak ∈ Rn×n (i = 0, 1, . . . , m). By a particular choice
of a radially unbounded Lyapunov function, the following
sufficient stability condition is obtained.

Theorem 3 The system (51) is asymptotically stable if the
matrix Tm, given by

Tm =
(

A0 + μ

m∑
k=1

Ak

)�

+
m∑

k=1

τk(|μ||A0Ak | + μ2|A2
k |)
(52)

is the opposite of an M-matrix.

Proof Let w ∈ Rn with components wi > 0 (i = 1, . . . , n)

and let us consider the radially unbound Lyapunov func-
tional given by

VG(t) = VG1(t) + VG2(t) + VG3(t) + VG4(t), (53)

where

VG1(t) = 〈|x(t)|, w〉, (54)

VG2(t) = |μ|
m∑

k=1

〈
|A0Ak |

∫ 0

−τk

∫ t

t+θ

|x(s)| ds dθ , w
〉

, (55)

VG3(t) = μ2
m∑

k=1

〈
|A2

k |
∫ 0

−τk

∫ t

t+θ

|x(s − τ)| ds dθ , w
〉

(56)

and

VG4(t) = μ2
m∑

k=1

τk

〈
|A2

k |
∫ t

t−τk

|x(s)| ds, w
〉

. (57)

Using the same steps as those given in the proof of
theorem 1 leads to the following condition:

D+VG(t) = 〈Tmx, w〉 < 0. (58)

Finally, we conclude that the system is asymptotically stable
if Tm is the opposite of an M -matrix. �

We now determine delay-dependent stability conditions
for systems having the following form:

S̃ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(n)(t) +
n−1∑
i=0

aiy(i)(t)

+μ

m∑
k=1

n−1∑
i=0

bi,ky(i)(t − τk) = 0,

y(i)(θ) = φi(θ), ∀θ ∈
[
− max

1≤k≤m
τk 0

]
(i = 0, . . . , n − 1).

(59)

Next, ∀k = 1, 2, . . . , m, we define the new polynomial as
follows:

pAk (s) =
n−1∑
i=0

bi,k si

and

σAk (s) = −pAk (s)s + bn−1,kpA0(s) =
n−1∑
i=0

σi,k si, (60)

the parameters σi,k (i = 0, . . . , n − 1) are given by

σ0,k = bn−1,ka0,

σi,k = bn−1,kai − bi−1,k (i = 1, 2, . . . , n − 1).

The same idea is used to determine a delay-dependent stabil-
ity condition in the general case. After making the following
change of variables:

z̃i+1(t) = y(i)(t) (i = 0 . . . n − 1), (61)

we get the new state space representation

˙̃z(t) = Ã0z̃(t) + μ

m∑
k=1

Ãk z̃(t − τk), (62)

where z̃(t) is a vector of components z̃i(t) (i = 1 . . . n), A0
and Ak (k = 1, . . . , m), are given by

Ã0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0

0 0
. . . 0

...
...

. . .
...

0 0 · · · 1
−a0 −a1 · · · −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Ãk =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
...

...
...

0 · · · 0
−b0,k · · · −bn−1,k

⎞
⎟⎟⎟⎟⎟⎠ . (63)

The same variable change given by Equation (30) per-
mits us to obtain the new state space representation given
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by

ż(t) = Fz(t) + μ

m∑
k=1

�k z(t − τ), (64)

where F is given by Equation (33) and the matrices �k
(k = 1, . . . , m) are given by

�k := P−1AkP =
(

On−1,n−1 On−1,1
δ1,k · · · δn−1,k δn,k

)
(65)

with
δi,k = −pAk (αi) (i = 1, . . . , n − 1) (66)

and
δn,k = −bn−1,k . (67)

Based on the result of Theorem 2, we can deduce the fol-
lowing delay-dependent stability condition for the system
defined by Equation (59).

Corollary 2 If there exist αi < 0 (i = 1, 2, . . . , n − 1)

satisfying the inequality (68)

max
1≤k≤m

τk <

−γn + ∑m
k=1 μbn−1,k

+∑m
k=1

∑n−1
i=1 α−1

i |pA0(αi) + μpAk (αi)||βi|∑m
k=1

(
(μ2b2

n−1,k + |μ||an−1bn−1,k − bn−2,k |)
−∑n−1

i=1 α−1
i (|μ||σAk (αi)|

+μ2|pAk (αi)bn−1,k |)|βi|
)

(68)
then, system (59) is asymptotically stable.

Remark 3 A necessary condition for having

Tm :=
(

F + μ

m∑
k=1

�k

)�

+
m∑

k=1

τk(|μ||F�k | + μ2|�2
k |)

the opposite of an M -matrix is that

trace

((
F + μ

m∑
k=1

�k

)�

+
m∑

k=1

τk(|μ||F�k | + μ2|�2
k |)

)
< 0,

which yields

n−1∑
i=1

αi + γn − μ

m∑
k=1

bn−1,k +
m∑

k=1

τk(|μ||an−1bn−1,k

− bn−2,k | + μ2b2
n−1,k) < 0.

The last inequality becomes

− an−1 − μ

m∑
k=1

bn−1,k + max
1≤k≤m

τk

m∑
k=1

(|μ||an−1bn−1,k

− bn−2,k | + μ2b2
n−1,k) < 0.

Then, a necessary condition that the time delay τ must
satisfy is

max
1≤k≤m

τk <
an−1 + μ

∑m
k=1 bn−1,k

|μ|∑m
k=1 |an−1bn−1,k − bn−2,k | + μ2b2

n−1,k

:= τm
max(μ). (69)

For the particular case n = 1 and μ = 1, the condition (69)
is given by Niculescu et al. (1997) as a necessary and
sufficient condition for stability.

A particular choice of these αi’s can widely simplify the
theorem’s condition. This is given by the next corollary.

Corollary 3 Let μ = 1, if there exist αi < 0 (i =
1, 2, . . . , n − 1), satisfying the following conditions:

B
(

V0 +
m∑

k=1

Vk

)
> 0,

bn−1,kBVk > 0 (k = 1, . . . , m),

B(−AVk + bn−1,kV0) > 0 (k = 1, . . . , m),

where Vk ∈ Rn−1 (k = 0, . . . , m) are such as

Vk = V (pAk ) =

⎡
⎢⎢⎢⎣

pAk (α1)

pAk (α2)
...

pAk (αn−1)

⎤
⎥⎥⎥⎦ , (k = 1, . . . , m) (70)

then system (59) is asymptotically stable if the time delay
satisfies the constraints in Table 2.

5. Examples
Let us consider the system defined by the differential
equation given by

ÿ(t) + a1ẏ(t) + a0y(t) + b1ẏ(t − τ) + b0y(t − τ) = 0.

By applying the method of Section 3, we get the following
state representation:

ẋ(t) =
(

0 1
−a0 −a1

)
x(t) +

(
0 0

−b0 −b1

)
x(t − τ).

After transformation of the matrix to Benrejeb’s character-
istic arrow form matrix, we obtain the new representation

ż(t) =
(

α 1
−pA0(α) −a1 − α

)
z(t)

+
(

0 0
−pA1(α) −b1

)
z(t − τ).
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Table 2. Maximum delay value for stability condition.

Assumptions ∀k = 1, 2, . . . , m Delay conditions max1≤k≤m τk <

an−1bn−1,k > bn−2,k min
(

pA0(0) + ∑m
k=1 pAk (0)∑m

k=1 bn−1,k (pA0(0) + pAk (0))
, τm

max(1)

)

an−1bn−1,k < bn−2,k min
(

pA0(0) + ∑m
k=1 pAk (0)∑m

k=1(2Q(0)(bn−2,k − an−1bn−1,k ) + bn−1,k (pA0(0) + pAk (0)))
, τm

max(1)

)

Figure 1. Parameters domains of (a1, b1) stabilizing for
τ = 0.1s.

By applying the result of Theorem 1, the following
delay-dependent stability condition is determined:

− a1 − α − b1 − α−1|pA0(α) + pA1(α)|) + τ(b2
1

+ |a1b1 − b0| − α−1(|σ(α)| + |pA1(α)b1|)) < 0.

Suppose that the parameters of our system are given
by b0 = −1.5, a0 = 16 and a1 and b1 are to be determined.
Choosing α = −1 and using the result of Theorem 2, we can
determine the stability domains of the parameters (a1, b1)

for different values of delay τ .
We can clearly see from Figures 1–3 that stability

domain depends on the value of time delay. In fact, as delay
increases the stability domain will decrease. This can be
explained by condition (40) of Theorem 2.

Remark 4 As the given conditions, in the proposed
approaches, are dependent on the parameters αi, i =
1, . . . , n − 1, we can determine the optimal values of
the parameters αi’s that minimize or maximize stability
domain.

Figure 2. Parameters domains of (a1, b1) stabilizing for τ = 1s.

Figure 3. Parameters domains of (a1, b1) stabilizing for τ = 2s.
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–3.0 –2.5 –2.0 –1.5
x

y

–1.0 –0.5

Figure 4. Value of τ as function of α for a0 = 16, b0 = −1.5,
a1 = 51 and b1 = 0.1.

In Figure 4, we plot delay as a function of the parameter
α. We can remark from this figure that our system remains
stable for values of τ greater than 8s for the particular choice
of α.

6. Conclusion
In this paper, we proposed some delay-dependent stability
conditions for linear systems with delay. The improvement
of the proposed conditions shows itself at the level of their
representation as an explicit form according to the delay
and the parameters of the system. This allows drawing the
stability domains of the system’s parameters as a function
of delay. Besides, the proposed basic change permits us to
find a relation between the parameters arbitrarily chosen and
the upper bound of the delay which ensures stability. The
proposed approaches in this article can be applied to fuzzy
TSK systems with delay and they can generalize the work
of Benrejeb and Abdelkrim (2003) and Benrejeb, Sakly,
Ben Othmana, and Borne (2008) in the case of time-delay
systems.
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