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This objective of this study is to analyze the stability of an oil producing reservoir under closed-loop control. Given a five-spot
pattern reservoir as an example, a nonlinear reduced-order model is identified and an asymptotically stabilizing controller is
proposed based on the circle criterion.
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1. Introduction
Oil consumption worldwide has experienced dramatic
increases due to unprecedented growth in more than one
emerging country. As a consequence, the management of
oil production is becoming increasingly complex. An oil
producing reservoir system is difficult to manage because
of the unknown and complex geology (Gu & Olive,
2004; Jensen, 2007; Nævdal, Mannseth, & Vefring, 2002;
Nævdal, Johnsen, Aanonsen, & Vefring, 2003). Several
studies have appeared that uses a closed-loop optimal
control framework to manage the reservoir production.
However, none of these studies consider the issue of
closed-loop stability when a complex nonlinear system
is in a feedback loop with a model-based optimal con-
troller. One of the most important reasons is the nonlinear
behavior of the oil reservoir system, which confounds
the stability analysis of the oil production management
system.

Many implementation studies of the design of the
model-based, optimal controllers reveal that it is reason-
able to develop a regulator based on a first-principles,
mechanistic model that describes the process. Here, the first-
principles model of an oil production process is nonlinear, of
high dimension, and is represented by a system of partial dif-
ferential algebraic equations (Nævdal, Brouwer, & Jansen,
2006; Sarma, Aziz, & Durlofsky, 2005; Sarma, Durlofsky,
& Aziz, 2005). Intuitively, these features detract from effi-
cient real-time applications. Many studies have overcome
this limitation, by replacing the first-principles, mechanistic
model with a reduced-order model (ROM), identified from
real and simulated data (taken from the mechanistic model)
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(Chen Hoo, 2011a, 2011b; van Doren, Markovinović, and
Jansen, 2006; Sarma et al., 2006).

One advantage of a nonlinear reduced-order model
(NLROM) is that it can represent the primary nonlinear
dynamic behavior to some prescribed satisfactory degree.
Thus, applications that involve the analysis of a model, such
as closed-loop model-based control, become tractable with-
out ignoring the nonlinear behavior of the original system.
In this work, a NLROM will be identified. The stability
of the nonlinear process in closed-loop with a nonlinear
model-based regulator should be guaranteed for the known
operating modes.

Stabilization of nonlinear dynamic systems has been
studied widely (Kurtz & Henson, 1998; Michalska &
Mayne, 1993; Wu, He, Liu, & She, 2005). However,
because of the existence of both model and parameter uncer-
tainties, the management of an oil reservoir focuses on
reducing the uncertainty between the current data and his-
torical data (referred to as history matching) without the
consideration of the objectives of the controller or the sta-
bility of the closed-loop management structure (Brouwer,
2004; Brouwer, Nævdal, Jansen, Vefring, & van Kruijs-
dijk, 2004; Chen & Hoo, 2012). Section 2 introduces an oil
producing reservoir. The highly nonlinear first-principles
model is provided. An NLROM is identified, based on the
first-principles model, for model-based optimal controller
design and for closed-loop stability analysis. Next, Section 3
will introduce the circle criterion used to establish closed-
loop stability. Section 4 analyzes the closed-loop stability
of the reservoir as represented by the NLROM. Finally,
Section 5 summarizes the contributions of the study.

© 2013 Yingying Chen and Karlene A. Hoo
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2. Reservoir and NLROM identification
2.1. Reservoir
Consider the following two-dimensional and two-phase
flow (oil and water) porous media oil producing reservoir
system as depicted in Figure 1.

To represent the reservoir, the ubiquitous five-spot pat-
tern is used (Latil, 1980). The water injection wells are
located at the four corners of the reservoir and the oil well is
located in the middle of the reservoir. The region is modeled
by a 9 × 9 × 1 horizontal two-dimensional grid blocks. The
fluid system consists of two phases, with 0.1 connate water
saturation and 0.3 residual oil saturation. Following Giles
(2008), the porosity and permeability distributions are in the
intervals [0.04, 0.33] and [0.006, 0.6] × 10−13 m2 ([6, 600]
milliDarcy), respectively. The relative permeability curve
used to solve the reservoir model is shown in Figure 2.

The following mathematical representation is a first-
principles model for the above two-dimensional reservoir
based on the assumptions of immiscible porous media flow,

∇
(

krok
μoBo

∇po

)
= ∂

∂t

(
φSo

Bo

)
+ qo,

∇
(

krwk
μwBw

∇pw

)
= ∂

∂t

(
φSw

Bw

)
+ qw, (1)

So + Sw = 1,

po − pw = Pc(Sw),

where subscripts o,w stand for oil and water, respectively.
The definition of the variables and parameters can be found
in Table 1.

2.2. Identification of a NLROM
The use of a nonlinear and high-dimension mechanis-
tic model constrains real-time applications because of the
potential lengthy computational burden. A means to over-
come this limitation is to identify a suitable low-order model
using system identification methods. In this example, a
nonlinear autoregressive exogenous (NARX) model (De
Nicolao, Magni, & Scattolini, 1997; Zhang & Ljung, 2004),
which is a type of NLROM is identified.

Injection well 2

Injection well 4

Injection well 1

Injection well 3

Production well

I II

III IV

Figure 1. Schematic of a two-dimensional reservoir and wells.
↓, water injection well; ↑, oil production well.
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Figure 2. Relative permeability curve.

Table 1. Definition of reservoir variables and parameters.

Variable Definition Unit

∇ Gradient operator
k Absolute permeability m2

kr Relative permeability –
μ Viscosity Pa·s
B Formation volume factor RB/STB (real

barrels/standard
barrels)

p Pressure Pa
Pc Capillary pressure Pa
φ Porosity %
qo Oil production rate m3/day
qw Water injection rate m3/day
S Fluid phase saturation –
So Oil saturation %
Sw Water saturation %
t Time day

The form of the NARX is given by The MATH
WORKS, Inc.,

F(X ) = (X − r)Pl +
∑

i

as
i f (bs

i ((X − r)Q − cs
i ))

+
∑

j

aw
j g(bw

j ((X − r)Q − cw
j )) + d, (2)

where X is a 1 × m vector containing regressors; f is a
scaling function, z is a 1 × q row vector

f (z) = exp(− 1
2 zzT)

and g is a wavelet function

g(z) = (q − zzT) exp(− 1
2 zzT).

The other variable definitions and sizes are listed in
Table 2.

Assume there is a pseudo-oil producing well located in
each of the four parts of the well (Figure 1). Let the true oil
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Table 2. Definition of NARX variables.

Variable Definition Size

r Regressor mean 1 × m
P Linear subspace m × p
l Linear coefficients p × l
Q Nonlinear subspace m × q
as Scaling coefficients ns × 1
bs Scaling dilation ns × 1
cs Scaling translation ns × q
aw Wavelet coefficients nw × 1
bw Wavelet dilation nw × 1
cw Wavelet translation nw × q
d Output offset Scalar

production be represented by a summation of what is pro-
duced by the four-pseudo wells. How much water to inject
is the decision variable determined by the optimizer. Using
system identification methods, an NARX model is identi-
fied from data taken from the simulation of the mechanistic
model for each part of the reservoir. There is one deci-
sion variable and one control variable associated with each
NARX model. In the NARX reservoir model (2), F(X )(k)

is the amount of oil produced by the addition of water. The
vector X consists of the regressors, including oil and water
rates at time (k − 1), that is the pair, {x(k − 1), u(k − 1)}.
In this model, the water injection flow rates to the four water
wells are the manipulated variables, while the oil production
rates of the four pseudo-oil wells are the model’s outputs.

The length of the simulation covers 30 time steps. The
step interval used to calculate the production rate is 10 days.
Figure 3 is the water cut (ratio of water production to the sum
of water and oil production from a well) from the production
well. After 300 days, only 14% of the product is oil. The
top graph in Figure 4 compares the oil production rate of
each part of the reservoir between the predictions of the
first-principles model and the NARX model. The bottom
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Figure 3. Water cut from the production well.

graph of Figure 4 compares the total oil production rates.
From this figure, it can be observed that the oil production
rate from the identified model is a satisfactory fit to that of
the results from the first-principles model. The maximum
error is within 20% and the average error is 1.8%.

To check the accuracy of the identified NARX model
to that of the first-principles model ±10% change in the
water injection flow rates are made. Figure 5 shows
the comparison. The average errors between the results of
the first-principles model and the NARX model are 1.18%
for a 10% decrease and 1.92% for 10% increase in the water
injection flow rates.

3. Circle criterion for stability of closed-loop systems
Consider a nonlinear system described by

ẋ = Ax + Bu + F(x, u),

y = Cx + Du
(3)

and its related linear form,

ẋ = Ax + Bu,

y = Cx + Du,
(4)

where x and u are the functions of t, t ∈ R
+, x ∈ R

n, u ∈
R

p, y ∈ R
m, A ∈ R

n×n, B ∈ R
n×p, C ∈ R

m×n, D ∈ R
m×P .

The system is assumed to be controllable with A Hurwitz
and the pair (A, C) assumed to be observable. The func-
tion F (R+ × R

n → R
n) represents the nonlinearity of the

system.

3.1. Definitions
Definition 1 (Benabdallah & Hammami, 2006) A non-
linearity ϕ: R

+ × R
m → R

m is said to belong to a closed
section [0, K] if

ϕ(y)T[ϕ(y) − Ky] ≤ 0, ∀t ≥ 0, ∀y ∈ R
m

for some symmetric positive-definite matrix K.

Definition 2 A (p × p) matrix Z(s) composed of functions
of complex variables s is called positive real if

• Z(s) has elements that are analytic for Re[s] > 0,
• Z(s) is Hermitian, Z∗(s) = Z(s∗), for Re[s] > 0, and
• ZT(s∗) + Z(s) is positive semi-definite for Re[s] > 0,

where ∗ denotes complex conjugation.
The matrix Z(s) is called strictly positive real if Z(s − ε)

is positive real for some ε > 0.

For closed-loop control, the following controller is
proposed,

u(y(t)) = −φ(y(t)) = −ϕ(y(t)) − v(y(t)), (5)

where vector function ϕ(y) is a k-Lipschitz function
(‖ϕ(y) − ϕ(z)‖ ≤ k‖y − z‖, ∀t ≥ 0, ∀y, ∀z) which belongs
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Figure 4. Comparison of oil production flow rates between first-principles model and NARX. ◦, results from first-principles model;
∗, results from NARX.

to a section [0, K ], K is a symmetric positive-definite matrix,
and v(y) is a nonlinear vector function of y whose proposed
form is given by

v(y) = α(y)K−1y, (6)

with α(y), a function to be selected to stabilize the closed-
loop system given in Equation (3).

3.2. Theorem
To investigate the stability of the nonlinear closed-loop
system given in Equation (3), the following quadratic

Lyapunov function is proposed,

V (x) = xTPx, P = PT > 0,

where P is a symmetric positive-definite matrix.
The circle criterion design depends on the Kalman–

Yakubovich–Popov lemma (Khalil, 1996).

Lemma 1 Let Z(s) = I + KC(sI + A)−1B be a p × p
transfer function matrix where A is Hurwitz (A, B) is
controllable, and (A, C) is observable. Then, Z(·) is strictly
positive real if and only if there exist a symmetric positive
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Figure 5. Comparison of oil production flow rates between first-principles model and NARX. Top: decrease 10% of injected water.
Bottom: increase 10% of injected water. ◦, results from first-principles model; ∗, results from NARX.

matrix P, a matrix L, and a positive constant ε such that

PA + ATP = −LTL − εP,

PB = CTK − √
2LT.

(7)

(A1) The p × p matrix Z(s) defined by

Z(s) = I + KC(sI + A)−1B

is strictly positive real. Then, u(y) = −ϕ(y) stabilizes expo-
nentially and globally the nominal system (4). To achieve
stabilization of the uncertain system in Equation (3) sub-
ject to the controller proposed in Equation (5), assume A1
and the following assumptions are satisfied (Benabdallah &
Hammami, 2006):

(A2) There exists a mapping h : R
n × R

p → R
n

satisfying
F(x, u) = P−1CTh(x, u)

where P is the positive-definite matrix obtained from
Equation (7).

(A3) There exists a nonnegative continuous function
ρ(·) such that h(x, u) is bounded

‖h(x, u)‖2 ≤ ρ(y).

(A4) There exists a nonnegative function ρ0(·) such that

ρ(y) ≤ ρ0(y)‖y‖2

with

ρ0(y) <
(2k − λmin(K))2

4
,

where λmin(K) denotes the minimum eigenvalue of the
matrix K and k is the Lipschitz constant.

According to Benabdallah and Hammami (2006), the
following theorem is proposed.
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Theorem 1 Consider the nonlinear system described by
Equation (3) and assume that (A1)–(A4) are satisfied. Then,
there exists a function α(y) such that the closed-loop system
(3)–(5) is globally exponentially stable.

Proof Consider the quadratic Lyapunov function,

V (x) = xTPx.

The time derivative of V with reference to system (3) is
given by,

V̇ = 2xTPAx + 2xTPBu + 2xTPF(x, u).

Due to the fulfillment of (A1), Equation (7) can be
applied to the first and second terms in the above expression
to give,

2xTPAx = −‖Lx‖2
2 − εxTPx

and

2xTPBu = 2yTKu − 2
√

2(Lx)Tu.

Substitution of these expression into the derivative of V
gives,

V̇ = −‖Lx‖2
2 − εxTPx + 2yTKu − 2

√
2(Lx)Tu

+ 2xTPF(x, u)

= −‖Lx + √
2u‖2

2 − εxTPx + 2yTKu + 2‖u‖2
2

+ 2xTPF(x, u),

The above implies that

V̇ ≤ −εxTPx + 2yTKu + 2‖u‖2
2 + 2xTPF(x, u).

Based on Definition 1 and Equations (5) and (6), the
second and third terms above can be analyzed to arrive at,

2yTKu + 2‖u‖2
2

= 2ϕT(y)(ϕ(y) − Ky) − 2yTKv(y) + 2‖v(y)‖2
2

+ 4ϕT(y)yv(y)

≤ −2yTKv(y) + 2‖v(y)‖2
2 + 4ϕT(y)v(y)

= −2α‖y‖2
2 + 2α2‖K−1y‖2

2 + 4αϕT(y)K−1y

≤ −2α‖y‖2
2 + 2α2‖K−1‖2

2‖y‖2
2 + 4αϕT(y)‖K−1‖2‖y‖2

2

≤
(

−2α + 2
α2

λ2
min(K)

+ 4kα

λmin(K)

)
‖y‖2

2,

where λ is the spectral radius of K .
The establishment of the above inequality is based on

the fact that the spectral radius of K is no larger than the
spectral norm of K (Rugh, 1996). That is,

|λ(K)| ≤ ‖K‖2

The square of the spectral norm can be written in terms
of the dot product,

‖Ka‖2
2 = Ka · Ka = (Ka)TKa = aTK TKa.

Thus,

‖K‖2
2 = max‖a‖2=1

aT(K TK)a,

where the entries of a and K are real.
Let Q ≡ K TK be a symmetric matrix. For any symmet-

ric matrix, there is an orthonormal basis consisting of unit
length eigenvectors that are pairwise perpendicular. Let the
order of the basis set be q, where q is also the order of K . Let
λi be the corresponding eigenvalues such that Qqi = λiqi.
Since ‖a‖2 = 1, then

∑q
i=1 a2

i = 1.
We can express the square of the norm of K as

aT(K TK)a = aTQa =
q∑

i=1

λia2
i .

It then follows that

‖K‖2
2 = max∑

a2
i =1

q∑
i=1

λia2
i

and

‖K‖2
2 = max(λi),

|λ(K)| ≤ ‖K‖2.

By (A2)–(A4),

2xTPF(x, u) = 2yTh(x, u) ≤ 2‖y‖2 ‖h(xu)‖2

≤ 2‖y‖2ρ(y) ≤ 2ρ0(y)‖y‖2
2

It then follows that

V̇ ≤ −εxTPx + 2
(

1
λ2

min(K)
α2(y) +

(
2k

λmin(K)
− 1

)
α(y)

+ ρ0(y)
)

‖y‖2
2.

If the choice of α(y) is such that

1
λ2

min(K)
α2(y) +

(
2k

λmin(K)
− 1

)
α(y) + ρ0(y) ≤ 0 (8)

then V̇ ≤ 0 and global exponential stability of the closed-
loop system is achieved.

Remark 1 An analysis of the above equation reveals
that the coefficients of α2(y) are positive. Thus, the min-
imum value of this quadratic equation can be calculated,
which is ρo(y) − (k − λmin(K)/2)2. According to (A4), the
minimum value is less than 0.
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The solution to
1

λ2
min(K)

α2(y) +
(

2k
λmin(K)

− 1
)

α(y) + ρ0 = 0

can be calculated. Let

� = (2k − λmin(K))2 − 4ρ0(y).

According to (A4), � > 0, thus two, distinct real solutions
exist,

α(y) = λmin(K)

2
[λmin(K) − 2k ± √

�].
Because the quadratic equation has a minimum value, the
selection of α(y) can satisfy the inequality in Equation (8),

λmin(K)(λmin(K) − 2k − √
�)

2
≤ α(y)

≤ λmin(K)(λmin(K) − 2k + √
�)

2
(9)

�

Remark 2 The existence of α(y) in Equation (9) is suf-
ficient for the nonlinear closed-system to be globally
asymptotically stable.

4. Closed-loop stability of reservoir NARX
In the NARX reservoir model (2), the oil production is con-
trolled by the injection of water flow rates. According to
the above stability analysis, to guarantee the closed-loop
control stability, it is required that each part should satisfy
(A1)–(A4) and the circle criterion.

Initially, the NARX form (2) is transformed to the form
of Equation (3),

x(k) = ([x(k − 1)u(k − 1)]T − r)Pl

+
∑

i

as
i f (bs

i (([x(k − 1)u(k − 1)]T − r)Q − cs
i ))

+
∑

j

aw
j g(bw

j (([x(k − 1)u(k − 1)]T − r)

× Q − cw
j )) + d

= [x(k − 1)u(k − 1)]TPl − rPl + F1(x, u, k)

= A1x(k − 1) + B1u(k − 1) + F2(x, u, k),

ẋ = �t(A−1
1 A1 − x + A−1

1 B1u + A−1
1 F2).

The form of Equation (3) can be obtained with

A = �tA−1
1 (A1 − 1),

B = �tA−1
1 B,

F(x, u) = �tA−1
1

⎛
⎝∑

i

as
i fi +

∑
j

as
j gj − rPl + d

⎞
⎠ .

In Equation (3), y is the oil production rate; thus, C = 1.
Because each model has one manipulated variable and one
control variable, u, x and y are scalars; thus, A, B and C. are
scalar. The k-Lipschitz function is simply,

‖ϕ(y) − ϕ(z)‖ = ‖u(y) − u(z) + v(y) − v(z)‖ ≤ k‖y − z‖.

The relationship between the amount of water added and
the amount of oil produced is

y = u(1 − wc),

where wc is the water cut value, which is the ratio between
the water produced to the sum of oil and water produced,

k ≥ 1
1 − wc

.

For part I of the reservoir: A = −0.5818, B = −0.5840.
To satisfy (A1), assume P = 1 and thus 0 < ε < 1.1636,
|L| < 1.0787 and 0 < K < 0.9415. For condition (A2),
h(t, x, u) = f (t, x, u). Based on the NARX model, it can be
found that values of ρ = 33.0462 and ρ0 = 0.1957 satisfy
(A3). Also, k ≥ 1/(1 − wc) and 0 < K < 0.9415 satisfy
(A4).

For part II of the reservoir: A = −0.1658, B =
2.1516. Assume P = 1; then 0 < ε < 0.3316, |L| < 0.5758
and 1.3373 < K < 2.9659 to satisfy (A1). Values of
ρ = 27.9713 and ρ0 = 0.1401 satisfy (A3). And k ≥
1/(1 − wc) and 0 < K < 1.2548 or 2.7520 < K < 2.9659
satisfy (A4).

For part III of the reservoir: A = −0.5752, B =
−0.4143. Assume P = 1; then 0 < ε < 1.1504, |L| <

1.0726 and 0 < K < 1.1028 to satisfy (A1). Values of
ρ = 47.9380 and ρ0 = 0.2410 satisfy (A3). And k ≥
1/(1 − wc) and 0 < K < 1.0290 satisfy (A4).

For part IV of the reservoir: A = −0.2904, B =
−0.0409. Assume P = 1; 0 < ε < 0.5808, |L| < 0.7621
and 0 < K < 1.0369 to satisfy condition (A1). Values of
ρ = 5.3165 and ρ0 = 0.0269 satisfy condition (A3). And
k ≥ 1/(1 − wc) and 0 < K < 1.0369 satisfy (A4).

It was already demonstrated that with the satisfaction
of (A1)–(A4), there exists an α(·) function to stabilize the
closed-loop system given by Equation (3) (Theorem 1).
Thus, the closed-loop stability of the reservoir example is
established.

5. Summary
The primary contribution of this work is the analysis of
closed-loop stability of a nonlinear dynamic system (3) in
feedback with an optimal model-based controller design.
An original theorem was developed and proven about
the existence of a model-based controller that guarantees
that the closed-loop system is globally exponentially sta-
ble (Section 3). An approximate nonlinear reduced-model
of a two-phase oil producing reservoir was introduced to
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demonstrate the design of the stabilizing controller. The
controller parameters that satisfy the condition for closed-
loop stability were analyzed to establish this state. Because
of the varying but natural geological conditions, any math-
ematical model of an oil reservoir model will contain
uncertainty. In the future, it will be interesting to con-
sider the main sources of uncertainty and their effect on
the closed-loop stability analysis for the designed controller
and oil reservoir system.
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