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This paper deals with the design of nonlinear observers for a class of nonlinear mechanical systems in presence of uncertainties
(or unknown inputs). Based on sliding-mode technique, a novel observer structure is developed in order to reconstruct the
unmeasured velocity variable. The proposed observer guarantees an asymptotic velocity observation also in presence of
uncertainties. Simulation results are included to show the effectiveness of our method.
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1. Introduction
In modern control theory, the observer design for mechan-
ical systems has been extensively studied. In fact, most of
control strategies of mechanical systems incorporate knowl-
edge of the all state variables. However, in practice, velocity
signals are always corrupted by noise. It is therefore nec-
essary to use a state observer in order to estimate the state
vector and then construct the control law.

In the literature, several types of observers have
been developed (Marino & Tomei, 1995; Resendiz, Wen,
& Fridman, 2008; Wu, Shi, Su, & Chu, 2012; Xian,
Queiroz, Dawson, & McIntyre, 2004). In Fradkov, Niki-
forov, and Andrievsky (2002), Zhang (2002), and Xu and
Zhang (2004), adaptive observers were designed for sys-
tems with parametric uncertainties but these observers
may lack robustness against sensors noise and unmod-
elled dynamics. By assuming that the dynamic model of
the system is completely unknown, high-gain differentia-
tors (filters) were used by Besançon (2003) and Khalil
(2005). However, these observers are not exact with any
fixed finite gain (as cited in Davila, Fridman, & Levant,
2005).

Recently, sliding-mode observers have been shown to
be efficient in many analytical and experimental studies
such as in robotic manipulator as presented by Canudas De
Wit and Slotine (1991), induction motors given by Tursini
and Petrella (2000), fault detection as cited by Edwards,
Spurgeon, and Patton (2000), and so on. The problem of
estimating motion from a sequence of images was studied
by Unel, Sabanovic, Burak, and Dogan (2008). A robust
exact differentiator was successfully applied in Bartolini,
Pisano, Punta, and Usai (2003) and Pisano and Usai (2004)
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with finite-time convergence and without requirement of
any model information. More recently, Davila et al. (2005)
developed a sliding-mode observer for a mechanical system
based on the super twisting algorithm. In Saadaoui, Leon,
Djemai, Manamanni, and Barbot (2006), a second-order
sliding-mode observer is implemented to reconstruct state
vector of the mechanical system in presence of uncertain-
ties. In Davila, Pisano, and Usai (2011), the authors studied
the problem of continuous and discrete state reconstruction
for nonlinear systems via sliding-mode observers. In Su,
Muller, and Zheng (2007), a simple sliding-mode observer
is proposed to reconstruct velocity signal for mechanical
systems with uncertainties. However, the design of this
observer requires the knowledge of uncertainties modelling
to determine the observer gains.

The purpose of this paper is to design a new sliding-
mode observer for a class of nonlinear mechanical systems
with uncertainties that ensure an asymptotic velocity obser-
vation in order to reconstruct the velocity signal. The results
are based on some physical properties of mechanical sys-
tems. This observer can be separately designed from a
controller; therefore, the separation principle theorem is
satisfied.

The remainder of this paper is structured as follows.
Section 2 displays the class of nonlinear mechanical sys-
tems and underlines important physical properties of these
systems. Section 3 presents the observer design and the
asymptotically convergence analysis. In Section 4, the main
results are discussed by an academic simulation exam-
ple to illustrate our observer performance. Finally, some
conclusions are included in Section 5.

© 2013 The Author(s). Published by Taylor & Francis.
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2. Problem statement
Consider a class of general mechanical systems represented
by

M (q)q̈ + C(q, q̇)q̇ + G(q) + �(t, q, q̇) = τ , (1)

where q ∈ Rn is the vector of generalized coordinates,
M (q) is the inertia matrix, C(q, q̇) is the Coriolis and
centrifugal forces matrix, G(q) is the vector of gravita-
tional forces, �(t, q, q̇) is an additional term Lebesgue
measurable, uniformly bounded, and which represents an
uncertainty disturbance, and τ is the torque delivered by
the actuators. The control input τ is assumed to be given
by some known feedback function. Let x1 = q, x2 = q̇, and
u = τ and the measured output y = x1. So, the model (1)
can be rewritten in the state-space form

ẋ1 = x2,

ẋ2 = −(M (y))−1[C(y, x2)x2 + G(y) + �(t, y, x2) − u].
(2)

By assuming that only angular positions are available, the
task is to design a nonlinear observer for the system (1)
such that the velocity estimation error tends to zero in finite
time. For our purpose, some physical properties of system
dynamics (1) are required. These properties are given as
follows (as cited in Canudas & Slotine, 1991):

(1) M (q) is a positive-definite symmetric matrix,
(2) there exists a parameterization for matrix C(·, ·)

such that

zT ·
[

Ṁ (x1)

2
− C(x1, x2)

]
· z = 0 ∀z ∈ Rn,

(3) the Coriolis and centrifugal forces matrix C(·, ·)
verify C(x1, x)y = C(x1, y)x ∀(x, y) ∈ Rn × Rn.

3. Observer design
Let x̂1, x̂2 ∈ �n denote the estimated position and velocity of
system (1), and the estimation errors e1(t), ė1(t), e2(t) ∈ �n

be defined, respectively, by

e1 = x̂1 − x1, (3)

ė1 = ˙̂x1 − ẋ1, (4)

e2 = x̂2 − x2. (5)

Let the signal r(t) ∈ �n be defined as

r(t) = αe1(t) + ė1(t), (6)

where α is a positive scalar chosen, under Assumption
1, so that sgn(r(t)) = sgn(e1(t)), ∀t ≥ 0, and sgn(·) is the

standard signum function defined as follows:

sgn(x) := [sgn(x1) sgn(x2) · · · sgn(xn)]T,

∀x = [x1 x2 · · · xn]T. (7)

Our objective is to ensure an asymptotic convergence of
e1(t)and e2(t) to zero as t → ∞. To this end, we propose
the following nonlinear observer:

˙̂x1 = x̂2 − (λ1 + α)e1,

˙̂x2 = −(M (y))−1[C(y, x̂2)x̂2 + G(y) − u]
− λ2e1 − λ3 sgn(e1), (8)

where λ1, λ2, λ3 are positive reals which represent the
observer gains to be given later by Theorem 1.

To demonstrate the asymptotic convergence of the error
dynamics to zero (i.e. the convergence of e1(t), ė1(t), and
therefore the convergence of e2(t) to zero as t → ∞),
we define here a positive-definite Lyapunov function that
regroups the dynamics of e1(t) and ė1(t). The proposed
function is given by

V = 1
2 rTr + 1

2 eT
1 e1. (9)

The objective is to find sufficient conditions on λ1, λ2, λ3
so that the time derivative of V is negative definite which
make the Lyapunov function V continually decreasing. The
time derivate of Equation (9) gives

V̇ = rTṙ + eT
1 ė1. (10)

Using Equation (6), the first derivate of the signal r gives

ṙ(t) = αė1(t) + ë1(t). (11)

The first derivate of the velocity error between system (2)
and observer (8) gives

ė2 = −(M (y))−1[C(y, x̂2)x̂2 − C(y, x2)x2 − �(t, y, x2)]
− λ2e1 − λ3 sgn(e1). (12)

Due to the third physical property (iii) of mechanical
systems mentioned in Section 2, we have C(y, x2)x̂2 =
C(y, x̂2)x2 and Equation (12) can be rewritten as follows:

ė2 = −(M (y))−1[C(y, x̂2) + C(y, x2)]e2

+ (M (y))−1�(t, y, x2)

− λ2e1 − λ3 sgn(e1). (13)

Using Equations (4)–(6) and (8), we have

e2 = ė1 + (λ1 + α)e1. (14)
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Using Equation (6), the velocity estimation error e2 can be
substituted by the term r + λ1.e1. Then, Equation (13) can
be rewritten as follows:

ė2 = −(M (y))−1[C(y, x̂2) + C(y, x2)]r
− (M (y))−1[C(y, x̂2) + C(y, x2)]λ1e1

+ (M (y))−1�(t, y, x2) − λ2e1 − λ3 sgn(e1). (15)

After taking the time derivate of Equation (4) and using
Equation (15), the second derivate of the output error
between system (2) and observer (8) leads to

ë1 = ė2 − (λ1 + α)ė1

= −(M (y))−1[C(y, x̂2) + C(y, x2)]r
− (M (y))−1[C(y, x̂2) + C(y, x2)]λ1e1

+ (M (y))−1�(t, y, x2) − λ2e1

− λ3 sgn(e1) − (λ1 + α)ė1. (16)

Using Equation (16) and substituting from Equation (11),
the first derivate of the signal r leads to

ṙ = ë1 + αė1

= −(M (y))−1[C(y, x̂2) + C(y, x2)]r
− (M (y))−1[C(y, x̂2) + C(y, x2)]λ1e1

+ (M (y))−1�(t, y, x2) − λ2e1

− λ3 sgn(e1) − λ1ė1. (17)

Now, considering Equation (17), the first time derivate of
the Lyapunov function given by Equation (9) leads to

V̇ = rTṙ + eT
1 ė1

= −rT(M (y))−1[C(y, x̂2) + C(y, x2)]r
− rT(M (y))−1[C(y, x̂2) + C(y, x2)]λ1e1

+ rT(M (y))−1�(t, y, x2) − rTλ2e1

− rTλ3 sgn(e1) − rTλ1ė1 + eT
1 ė1. (18)

From Equation (6), we substitute ė1 by r − α.e1. So,
dynamics given by Equation (16) can be rewritten as

V̇ = rTṙ + eT
1 ė1

= −rT(M (y))−1[C(y, x̂2) + C(y, x2)]r
− rT(M (y))−1[C(y, x̂2) + C(y, x2)]λ1e1

+ rT(M (y))−1�(t, y, x2) − rTλ2e1

− rTλ3 sgn(e1) − rTλ1r + rTλ1αe1 + eT
1 r − eT

1 αe1.
(19)

The following assumptions given by Menini and Tornambè
(2002) are required for our analysis.

Assumption 1 The initial conditions of the state vector of
the mechanical system (1) [qT(t0) q̇T(t0)]T and the control
force u(t) are chosen so that the position and the velocity
vector are bounded functions of time, that is, there exist two
constants kq, kv > 0 such that ||q(t)|| < kq and ||q̇(t)|| <

kv , for all times t ≥ t0.

By this assumption, the continuity of M (·) and C(·, ·),
the invertibility of M (·), and the linearity of C(q, ˙̂q) with
respect to ˙̂q, there exist two constants k1, k2 > 0 such that,
for each t ≥ t0,

||M−1(y(t))C(y(t), x2(t))|| ≤ k1, (20)

||M−1(y(t))C(y(t), x̂2(t))|| ≤ k2kv + k2||x̂2(t) − x2(t)||.
(21)

Assumption 2 The term �(t, y, x2), representing uncer-
tainties, is bounded by a positive constant�max.

Since the position vector is a bounded function of time
and by the continuity of M (·), we assume then that the term
M−1(y) · �(t, y, x2) is bounded by a positive constant μ,
that is,

||M−1(y(t))�(t, y, x2)|| < μ, (22)

where || · || denotes the matrix norm induced by the
Cartesian norm for vectors.

Note that by Assumption 1, and in order to guarantee
that sgn(r(t)) = sgn(e1(t)), ∀t ≥ 0, one can choose the pos-
itive scalar α such that α > ρ2/ρ1, where ρ1 and ρ2 are two
positive constants given by ||e1||−∞ = min1≤i≤n |e1,i| >

ρ1 and ||ė1||+∞ = max1≤i≤n |ė1,i| < ρ2. Indeed, using the
definition of the signal r given by Equation (6), we
have r(t) = αe1(t) + ė1(t). Then, to make sgn(r(t)) =
sgn(e1(t)), ∀t ≥ 0, we have to choose α as the following:

• if e1 > 0 ⇒ r(t) must be > 0 ⇒ αe1 + ė1 > 0 ⇒
α > || − ė1/e1||

• if e1 < 0 ⇒ r(t) must be < 0 ⇒ αe1 + ė1 < 0 ⇒
αe1 < −ė1 ⇒ α > || − ė1/e1|| (because e1 is nega-
tive).

Finally, α must be chosen such that α > ||ė1/e1||max.
So, under Assumptions 1 and 2, using the proprieties of

M (y), and substituting sgn(e1) by sgn(r) in Equation (19),
we can write

V̇ = rTṙ + eT
1 ė1

= −rT(M (y))−1[C(y, x̂2) + C(y, x2)]r
− rTλ1(M (y))−1[C(y, x̂2) + C(y, x2)]e1

+ rT(M (y))−1�(t, y, x2) − λ2rTe1

− λ3rT sgn(r) − λ1rTr + λ1αrTe1 + eT
1 r − αeT

1 e1.
(23)

Using the property x · sgn(x) = |x| and taking into account
that the signals r and e1 have the same sign (i.e. re1 =
|r||e1|), we can now upper bound the right-hand side of
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Equation (23) as follows:

V̇ ≤ −λ1||r||2 + ||r||2(k1 + k2 · kv + k2||e2||)
− λ2||r||||e1|| + λ1(k1 + k2kv + k2||e2||)||r||||e1||
+ λ1α||r||||e1|| + ||r||||e1|| − λ3||r||
+ μ||r|| − α||e1||2. (24)

Let γ = k1 + k2 · kv . So, we can write

V̇ ≤ −||r||2[λ1 − γ − k2||e2||]
− ||r||||e1||[λ2 − (1 + λ1(α + γ + k2||e2||))]
− ||r||[λ3 − μ] − α||e1||2. (25)
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Figure 1. Real and estimated pendulum position in the uncontrolled case.

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

1.5

Time [sec]

P
os

iti
on

 [r
ad

]

real

estimated

Figure 2. Real and estimated pendulum position in the controlled case.
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Finally, if the following conditions are satisfied

λ1 > γ ,

λ2 > 1 + λ1(α + γ ),

λ3 > μ, (26)

we can easily obtain a negative semi-definite function in a
neighbourhood of ||e2|| = 0. So, under conditions given by
system (26) and physical properties mentioned in Section

II, V is a positive-definite Lyapunov function whose time
derivative is negative semi-definite. From Equation (25) and
conditions of Equation (26), since V̇ ≡ 0 means r ≡ 0 and
e1 ≡ 0, from Equation (6), we have ė1 ≡ 0. By LaSalle’s
invariance theorem, we have e1(t) → 0 and r(t) → 0 as
t → ∞, that is, there exist a time tc > 0 such that r(t) =
e1(t) = 0, ∀t ≥ tc; from Equation (6), we have ė1 = 0; and
from Equation (14), e2(t) = 0, ∀t ≥ tc: the asymptotic con-
vergence of the estimation error system is then guaranteed.
Now, the main result of this note is given in Theorem 1.
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Figure 3. Finite-time velocity estimation error of the pendulum system.
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Theorem 1 Provided the conditions given by system (26),
the observer (8) ensures a finite-time asymptotical conver-
gence of estimated states to real states of system (2), that
is, (x̂1, x̂2) → (x1, x2) in a finite time.

Remark 1 For each ε > 0, define a compact set 	ε =
{e2 ∈ Rn/||e2|| < ε}. Then, the following conditions

λ′
1 > γ + k2ε,

λ′
2 > 1 + λ1(α + γ + k2ε),

λ′
3 > μ (27)

imply the semi-global asymptotical convergence of the
velocity estimation error system, the basin of attraction of
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Figure 5. (a, b) Oscillations around sliding surface. A comparison on methods.
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which is given by 	ε. This estimate depends on the positive
constant and can be chosen arbitrarily large.

4. Illustrative example
This section evaluates through simulations the performance
of the proposed approach applied to uncertain mechanical
systems.

Consider a pendulum system with Coulomb friction
and external perturbation as given in Su et al. (2007) and
Davila et al. (2005):

θ̈ = 1
J

u − g
L

sin(θ) − Vs

J
θ̇ − Ps

J
sgn(θ̇) + v, (28)

where J = 0.891, g = 9.815, L = 0.9, Vs = 0.18, Ps =
0.45, and v is an uncertain external perturbation with |v| ≤
1. We assume that the term representing uncertainties is
bounded. For simulation purposes, it was taken as v(t) =
0, 5[sin(2t) + cos(5t)]. As cited in Su et al. (2007), the con-
troller u was taken as u = −30 sgn(θ − θd) − 30 sgn(

˙̂
θ −

θ̇d), where θd = sin(t) and θ̇d = cos(t) are, respectively,
the reference position signal and its derivate. Our pro-
posed observer gains are chosen as λ1 = 12, λ2 = 740, and
λ3 = 2.

The model (28) can be rewritten in the state-space
form as

ẋ1 = x2,

ẋ2 = 1
J

u − g
L

sin(x1) − Vs

J
x2 − Ps

J
sgn(x2) + v. (29)

Our proposed observer is then given by

˙̂x1 = x̂2 − (λ1 + α)e1,

˙̂x2 = 1
J

u − g
L

sin(x̂1) − Vs

J
x̂2 − λ2e1 − λ3 sgn(e1), (30)

where e1 = x̂1 − x1.
Simulation results given by Figures 1 and 2 show the

efficiency of the proposed method in presence of uncer-
tainties. It can be clearly seen that the proposed observer
provides an excellent estimation of the pendulum position
in both controlled and uncontrolled cases. Figure 3 shows
the velocity estimation error of the system under consider-
ation. This error converges asymptotically to zero in finite
time.

To show the effectiveness of our approach, a comparison
of the proposed observer over those proposed by Davila
et al. (2005) and Su et al. (2007) is obtained. The observer
proposed by Davila et al. and applied to the same system
has the form

˙̂x1 = x̂2 + 1, 5(f +)1/2|x1 − x̂1|1/2sgn(x1 − x̂1),

˙̂x2 = 1
Jn

u − g
Ln

sin(x1) − Vsn

Jn
x̂2 + 1, 1(f +)sgn(x1 − x̂1),

(31)

where Mn = 1.0, Ln = 1.0, Jn = Mn · L2
n = 1.0, and Vsn =

0.2 are the estimated nominal parameters and f + is a
design parameter which is taken equal to 6 in Davila et al.
(2005). In Su et al. (2007), the authors applied a sliding-
mode observer to the model (24). According to them, their

1 2 3 4 5 6 7 8
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Figure 6. Robustness against uncertainties. A comparison on methods.
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proposed observer “obtains much better velocity estima-
tion” in comparison with the observer proposed by Davila
et al. So, our comparison is reduced to the approach pro-
posed in Su et al. (2007). The observer developed in this
approach has the form

˙̂x1 = x̂2,

˙̂x2 = −K0 sgn(e) − (K1 + IN )x̂2 − K2e, (32)

where e = x̂1 − x1 is the position estimation error, K0, K1,
and K2 are diagonal constant positive real definite matri-
ces with K1 < K2, IN denotes the n × n identity matrix
and sgn(·) being the standard signum function. In Su et al.
(2007), simulation results are obtained with the following
observer gains K0 = 25, K1 = 500, and K2 = 105.

Firstly, from convergence rapidity point of view, it is
clear from Figure 4 that our observer gives better tran-
sient than the Su et al. observer. Secondly, when zooming
around the sliding surface in different times, we will remark
from Figure 5(a) and 5(b) that the velocity estimation error
converges asymptotically with the minimum rate of oscilla-
tions around zero when using our approach which is not the
case for the Yuxin et al. approach. Finally, when extending
the axis time to 8 s, it can be clearly seen from Figure 6
the presence of significant noises in the velocity estima-
tion error by applying the observer given by Su et al. and
therefore we can conclude about robustness of our observer
against uncertainties.

From the comparison, we can conclude that our observer
obtains a much better velocity estimation error.

5. Conclusions
A sliding-mode observer has been proposed to reconstruct
the velocity signal for a nonlinear uncertain mechanical sys-
tem, from only position measurements. The observer has
been designed with the concept of simple gains without
requiring uncertainties modelling. The separation princi-
ple theorem is trivial since the observer can be designed
from a controller. Theoretical results have been supported
by numerical simulations applied to a pendulum system
with friction and external perturbation. These results are
compared with those given by Su et al. (2007) and applied
to the same system showing then the effectiveness of our
approach. Further works will be done on designing a nonlin-
ear observer for mechanical systems subject to non-smooth
impacts.
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