
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tssc20

Systems Science & Control Engineering: An Open Access
Journal

ISSN: (Print) 2164-2583 (Online) Journal homepage: https://www.tandfonline.com/loi/tssc20

Finite-horizon H∞ filtering for time-varying delay
systems with randomly varying nonlinearities and
sensor saturations

Jinling Liang, Fangbin Sun & Xiaohui Liu

To cite this article: Jinling Liang, Fangbin Sun & Xiaohui Liu (2014) Finite-horizon H∞ filtering
for time-varying delay systems with randomly varying nonlinearities and sensor saturations,
Systems Science & Control Engineering: An Open Access Journal, 2:1, 108-118, DOI:
10.1080/21642583.2014.883339

To link to this article:  https://doi.org/10.1080/21642583.2014.883339

© 2014 The Author(s). Published by Taylor &
Francis.

Published online: 16 Dec 2014.

Submit your article to this journal Article views: 967

View related articles View Crossmark data

Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tssc20
https://www.tandfonline.com/loi/tssc20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/21642583.2014.883339
https://doi.org/10.1080/21642583.2014.883339
https://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tssc20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/21642583.2014.883339
https://www.tandfonline.com/doi/mlt/10.1080/21642583.2014.883339
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2014.883339&domain=pdf&date_stamp=2014-12-16
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2014.883339&domain=pdf&date_stamp=2014-12-16
https://www.tandfonline.com/doi/citedby/10.1080/21642583.2014.883339#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/21642583.2014.883339#tabModule


Systems Science & Control Engineering: An Open Access Journal, 2014
Vol. 2, 108–118, http://dx.doi.org/10.1080/21642583.2014.883339

Finite-horizon H∞ filtering for time-varying delay systems with randomly varying nonlinearities
and sensor saturations

Jinling Lianga∗, Fangbin Suna and Xiaohui Liub

aDepartment of Mathematics, Southeast University, Nanjing 210096, People’s Republic of China; bSchool of Computer Science and
Technology, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China

(Received 22 December 2013; final version received 10 January 2014 )

This paper mainly focuses on the H∞ filtering problem for a class of discrete time-varying systems with delays and randomly
varying nonlinearities and sensor saturations. Two sets of binary switching sequences taking values of 1 and 0 are introduced
to account for the stochastic phenomena of nonlinearities and sensor saturations which occur and influence the dynamics of the
system in a probabilistic way. To further reflect the realities of transmission failure in the measurement, missing observation
case is also considered simultaneously. By appropriately constructing a time-varying Lyapunov function and utilizing the
stochastic analysis technique, sufficient criteria are presented in terms of a set of recursive linear matrix inequalities (RLMIs)
under which the filtering error dynamics achieves the prescribed H∞ performance over a finite horizon. Moreover, at each
time point k , the time-varying filter parameters can be solved iteratively according to the explicit solutions of the RLMIs.
Finally, a numerical simulation is exploited to demonstrate the effectiveness of the proposed filter design scheme.

Keywords: H∞ filtering; time-varying delayed systems; randomly varying sensor saturations; recursive linear matrix
inequalities; finite horizon

1. Introduction
In practical engineering fields such as signal processing
area, to carry out some specific design tasks, the state infor-
mation or some combinations of the state information are
needed to be known which however, are often unavailable.
And this is one of the main backgrounds for investigating
the estimation problems. Generally speaking, the aim of the
estimation problem is to estimate certain system parameters
or state variables by utilizing the accessible measurements,
which might be with the existence of stochastic errors. In the
literature, much work has been done on various estimation
problems, and several filtering methodologies have been
proposed (Ahmad & Namerikawa, 2013; Lu, Xie, Zhang,
& Wang, 2007; Mohamed, Nahla, & Safya, 2013; Reif &
Unbehauen, 1999). Among them, the Kalman filtering (Lu
et al., 2007; Reif & Unbehauen, 1999; Xie, Soh, & de Souza,
1994) and the H∞ filtering (Dong, Wang, Ho, & Gao, 2011;
Li, Lam, & Shu, 2010; Zhang, Chen, & Tseng, 2005; Zhang,
Feng, & Duan, 2006) are two notable ones. The main idea
for the Kalman filtering is to estimate the future values of
the signal by utilizing the past/current observations. When
employing the H∞ filtering, criteria are often presented in
the form of Riccati difference equations (Gershon, Shaked,
& Yaesh, 2001; Hung & Yang, 2003; Xie & de Souza, 1992;
Zhang et al., 2006) or linear matrix inequalities (LMIs)
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(Li et al., 2010; Shen, Wang, & Liu, 2011; Shen, Wang,
Shu, & Wei, 2010; Wang, Shen, & Liu, 2012).

It is well known that almost all the realistic systems are
intrinsically time-varying, and frequently affected by the
nonlinear exogenous disturbances and time delays, which
markedly increase the difficulty when analyzing the system
due to the complexity. In the past decades, much efforts
have been devoted to the filtering and control problems for
the discrete time-varying systems (Shen et al., 2011; Shen,
Ding, & Wang, 2013). For instance, robust H∞ filtering
problem has been investigated in Dong et al. (2011) for the
Markovian jump time-varying systems. When dealing with
the time-varying systems in practice, a fundamental issue
arises naturally, that is, the state performance constrains
are restricted only over a finite horizon instead of the infi-
nite one. Such kind of finite-horizon filtering problem has
attracted much attention in recent years, and it is desirable
to develop effective and executable algorithms to determine
the filter parameters. Motivated by the novel difference lin-
ear matrix inequality method proposed in Shaked and Suplin
(2001), Gershon and Shaked (2008), Gershon, Shaked, and
Yaesh (2005), a new and practical recursive linear matrix
inequality (RLMI) approach has been firstly presented in
Shen et al. (2010) where the available state estimates have
also been utilized which might decrease the conservation of
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the results obtained. On the other hand, time delays are ubiq-
uitous in systems mainly due to the reasons such as finite
capabilities of signal transmission among different parts of
the systems. Numerous results pertaining to the filtering
problem have been obtained in Lu et al. (2007), Chen and
Zheng (2012), Wu and Wang (2009), Wei, Wang, and Shen
(2013) for the delayed time-invariant systems. When refer-
ring to the time-varying delayed systems, relating results
are relatively few (Basin, Shi, Alvarez, & Wang, 2009; Wei,
Wang, & Shen, 2010), which might mainly due to the math-
ematical complexity. For example, in Basin et al. (2009),
the central suboptimal H∞ filters have been defined for the
linear continuous-time systems with state or measurement
delay. Particularly, a numerically appealing algorithm has
been developed in Wei et al. (2010) for the error-constrained
filtering problem of the discrete time-varying delay systems
with bounded noise, where randomly varying nonlinearities
and sensor saturations are not considered.

When the inputs are large enough, the sensors turn to be
saturated rather than linear caused by physical constraints.
In other words, the sensors possess the nonlinear character-
istic when confronting saturations, and it may degrade the
filter performance (Liu, Wang, & Yang, 2003; Wang et al.,
2012; Yang & Li, 2009) when neglecting the amplitude sat-
uration effect. Therefore, sensor saturation issue is currently
an attracting and active research area. As pointed out in Shen
et al. (2010), when working circumstances change sud-
denly or instruments abrade, this will result in the randomly
changeable of the nonlinear disturbances in terms of their
type and/or intensity and the missing measurement situa-
tions. Such kinds of cases are characterized and named with
randomly occurring nonlinearities (RONs) and randomly
occurring sensor saturations (ROSSs) in Wang et al. (2012)
and Shen et al. (2010) and further studied in Shen, Wang,
Shu, and Wei (2011), Wang, Wang, and Liu (2010), Wei
et al. (2013), Ding, Wang, Shen, and Shu (2012). Specially,
an adaptive reliable H∞ filter method has been developed in
Yang and Ye (2007) to against the sensor failure case, and
the filter parameter gains are determined based on LMIs
by solving two optimization problems. It should be noted
that in all these references, time delay effects have not been
considered.

Based on the above discussions, in this paper, we will
concentrate on the H∞ filtering problem for a class of
discrete time-varying delayed systems with missing mea-
surements and randomly varying nonlinearities and sensor
saturations over a finite horizon. Illuminated by the ideas
reported in Shen et al. (2010), Dong et al. (2011), Wang,
Dong, Shen, and Gao (2013), the H∞ filtering problem
is investigated for the discrete time-varying system with
delays by introducing an improved time-varying Lyapunov
functional, and sufficient criteria are given which ensure
the validity of the H∞ performance constraint for the filter-
ing error dynamics. Moreover, in the output measurement
process, both possible sensor saturations and data-missing
phenomena are considered, which are introduced to reflect

the intricate working circumstances of the underlying sys-
tem. In addition, randomly varying nonlinearities between
the current and the delayed state nonlinearities are also
involved, which together make the H∞ filtering problem
hard to be analyzed, not to mention the design problem for
the H∞ filter. And this is the main aim of this paper to
shorten such a gap.

The rest of the paper is organized as follows. In
Section 2, the discrete time-varying delayed system with
randomly varying nonlinearities and sensor saturations is
presented, and the H∞ filtering problem addressed is for-
mulated. In Section 3, by resorting to the stochastic analysis
techniques, sufficient conditions are established in the form
of time-varying matrix inequalities under which the out-
put estimation error is assured to meet the constraint of the
given H∞ performance level. Furthermore, the parameters
of the H∞ filter are designed according to the feasible solu-
tions of a set of RLMIs and a recursive filtering algorithm is
developed. In Section 4, one illustrative example is given to
demonstrate the effectiveness of the results derived. Finally,
in Section 5 the conclusion is drawn.

Notations: The notations used here are fairly stan-
dard except where otherwise stated. R

n denotes the
n-dimensional Euclidean space. The set of all integers is rep-
resented by Z and R means the set of all real numbers. The
interval [m, n] with m, n ∈ Z and m < n denotes the set of
integer sequence {m, m + 1, . . . , n}, and [a, b] with a, b ∈ R

and a < b represents the set of real numbers between a
and b. The notation X ≥ Y (respectively, X > Y ), where
X and Y are real symmetric matrices, means that X − Y is
positive semi-definite (respectively, positive definite). M T

represents the transpose of the matrix M and I is used
to denote the identity matrix with compatible dimensions.
diag{· · ·} stands for a block-diagonal matrix. Moreover,
Prob{X } means the occurrence probability of the event X
and E{x} stands for the expectation of the stochastic vari-
able x with respect to the given probability measure Prob.
The asterisk “∗” in a matrix is used to denote a term that
is induced by symmetry. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

2. Problem formulation and preliminaries
Consider the following discrete time-varying delayed sys-
tem defined on the finite horizon k ∈ [0, N ]:
x(k + 1) = A(k)x(k) + A1(k)x(k − d) + B(k)v(k)

+ α(k)f (k , x(k)) + (1 − α(k))g(k , x(k − d)),

y(k) = ψ(C(k)x(k)) + D(k)v(k),

z(k) = M (k)x(k),

x(s) = φ(s), s = −d, −d + 1, . . . , 0, (1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

m is the mea-
sured output vector, z(k) ∈ R

r is the signal to be estimated;
A(k), A1(k), B(k), C(k), D(k) and M (k) are known real
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time-varying matrices with appropriate dimensions; d > 0
is an integer representing the constant delay of the sys-
tem; φ(·) ∈ R

n is the initial state vector function defined
on [−d, 0]; v(k) ∈ R

q is the exogenous disturbance signal
belonging to l2[0, N ] which denotes the space of square
summable sequences with the norm

‖v‖2
[0,N ] = E

{
N∑

k=0

‖v(k)‖2

}
.

The nonlinear functions f (·, ·), g(·, ·) : [0, N ] × R
n →

R
n are assumed to be continuous and satisfy the following

sector-bounded conditions (Cao, Lin, & Chen, 2003; Wang,
Liu, & Liu, 2008):

[f (k , x) − U1(k)x]T[f (k , x) − U2(k)x] ≤ 0, (2)

[g(k , x) − V1(k)x]T[g(k , x) − V2(k)x] ≤ 0, (3)

where k ∈ [0, N ] and x ∈ R
n; U1(k), U2(k), V1(k) and

V2(k) are known real matrices with appropriate dimen-
sions, and U (k) = U1(k) − U2(k), V (k) = V1(k) − V2(k)

are symmetric positive-definite matrices.
The random variable α(k) ∈ R takes values of 1 and 0

with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1 − ᾱ, (4)

where constant ᾱ ∈ [0, 1] is known.

Remark 1 Most of realistic systems are subject to nonlin-
ear disturbances which themselves might change abruptly
due mainly to the reasons such as sudden changes in envi-
ronment, random switching between subsystems, failure
connection between part of the nodes of networks as well
as asynchronous information transmission within networks.
In other words, the nonlinear disturbances might occur in a
probabilistic way. Such kind of phenomena has been firstly
named RONs in Wang, Wang, and Liang (2009) to account
for the probabilistic occurrence of different nonlinear func-
tions. Here, illuminated by the ideas proposed in in Wang
et al. (2009), α(k) is used just to account for the phenomena
of randomly varying nonlinearities between the current state
nonlinearity f (k , x(k)) and the delayed state nonlinearity
g(k , x(k − d))).

The nonlinear function ψ(·) : R
m → R

m is given as
follows:

ψ(C(k)x(k)) = β(k)σ (C(k)x(k))

+ (1 − β(k))γ (k)C(k)x(k), (5)

where σ(·) : R
m → R

m represents the sensor saturation
function with the following form:

σ(u) = [σ T
1 (u1), σ T

2 (u2), . . . , σ T
m(um)]T, (6)

where u = (u1, . . . , um)T ∈ R
m, σi(ui) = sign(ui)

min{ui,max, |ui|} for i = 1, 2, . . . , m and ui,max denotes the
ith element of the saturation vector umax.

In Equation (5), the random variables β(k) ∈ R and
γ (k) ∈ R are Bernoulli distributed sequences taking values
of 1 and 0 with

Prob{β(k) = 1} = β̄, Prob{β(k) = 0} = 1 − β̄,

Prob{γ (k) = 1} = γ̄ , Prob{γ (k) = 0} = 1 − γ̄ ,
(7)

where β̄, γ̄ ∈ [0, 1] are known constants. Here, β(k) is
introduced to account for the phenomena of randomly vary-
ing sensor saturations caused by physical electron device
constraints, while γ (k) is used to describe the probable
data-missing phenomenon caused by mutative working
conditions or fluctuant signal transmission channels when
the sensors fail to work. Throughout this paper, we further
assume that the stochastic variables α(k), β(k) and γ (k)

are mutually independent.

Remark 2 In recent years, the RONs have been exten-
sively studied in Dong et al. (2011), Wang et al. (2010)
and Wei, Wang, and Han (2013) for the Markovian jump
systems and the complex networks. When such kind of phe-
nomena occur in a sensor network, the notation of ROSSs
has been firstly introduced in Wang et al. (2012) and Ding
et al. (2012) by further considering the physical limitations
of components. It should be noted that such kind of ideas
have also been employed in earlier works such as Nahi
(1969) and Chau, Qin, Sayed, Wahab, and Yang (2010),
where a Markov chain has been proposed to capture the
battery recovery (Chau et al., 2010), an the missing mea-
surements (or uncertain observations) have been considered
for the optimal estimation problems (Nahi, 1969).

Remark 3 The measurement output model given in Equa-
tions (1) and (5) is originated from Wang et al. (2012)
where the H∞ filtering problem has been investigated for
the nonlinear sensor networks with time-invariant system
matrices. As pointed out in Wang et al. (2012), the main
advantage of such kind of measurement output equation is
that it is capable of accounting for the phenomena of both
ROSSs and missing measurements in a unified form. To
be specific, if β(k) = 0 and γ (k) = 0, the output observer
receives only the noise signal; if β(k) = 0 and γ (k) = 1, it
means that the output observer works regularly; if β(k) = 1,
whatever the value of γ (k) is, only saturated signals are
received by the output observer. In practice, the case that the
sensor saturation phenomenon and the data-missing phe-
nomenon occur simultaneously does exist. At this time, we
only consider the former one since the saturated signals
can also be viewed as one special form of the data-missing
phenomenon.

Illuminated by the analysis method used in Dong et al.
(2011) and Yang and Li (2009), we assume that there exist
diagonal matrices H1(k) and H2(k) such that 0 ≤ H1(k) <

I ≤ H2(k), and the saturation function σ(C(k)x(k)) in



Systems Science & Control Engineering: An Open Access Journal 111

Equation (5) is rewritten as follows:

σ(C(k)x(k)) = H1(k)C(k)x(k) + h(C(k)x(k)), (8)

where h(C(k)x(k)) is a nonlinear vector-valued function
satisfying the following inequality:

hT(C(k)x(k))(h(C(k)x(k)) − H (k)C(k)x(k)) ≤ 0 (9)

with H (k) = H2(k) − H1(k).
According to the above discussions, system (1) can be

rewritten as follows:

x(k + 1) = A(k)x(k) + A1(k)x(k − d) + B(k)v(k)

+ α(k)f (k , x(k)) + (1 − α(k))g(k , x(k − d)),

y(k) = β(k)H1(k)C(k)x(k) + β(k)h(C(k)x(k))

+ (1 − β(k))γ (k)C(k)x(k) + D(k)v(k),

z(k) = M (k)x(k),

x(s) = φ(s), s = −d, −d + 1, . . . , 0.
(10)

In this paper, we will design the following filter for the
time-varying system (10):

x̂(k + 1) = Ff (k)x̂(k) + Gf (k)y(k),

ẑ(k) = Mf (k)x̂(k),
(11)

where x̂(k) ∈ R
n is the state vector of the filter, ẑ(k) ∈ R

r

is the estimate of z(k); Ff (k), Gf (k) and Mf (k) are time-
varying filter matrices to be designed. Here, we take x̂(k) ≡
0 for k ≤ 0, which will be used when designing the filter
algorithm in the sequel.

For convenience of expression, we introduce the follow-
ing notions:

Ã (e(k)) = (A(k) − β̄Gf (k)H1(k)C(k)

− (1 − β̄)γ̄ Gf (k)C(k))e(k)

+ (B(k) − Gf (k)D(k))v(k)

+ (A(k) − β̄Gf (k)H1(k)C(k)

− (1 − β̄)γ̄ Gf (k)C(k)

− Ff (k))x̂(k) − β̄Gf (k)h(C(k)x(k))

+ ᾱf (k , x(k)) + (1 − ᾱ)g(k , x(k − d)),

B̃(e(k)) = −Gf (k)H1(k)C(k)e(k)−Gf (k)H1(k)C(k)x̂(k)

− Gf (k)h(C(k)x(k)),

C̃ (e(k)) = −Gf (k)C(k)e(k) − Gf (k)C(k)x̂(k),

Ã1(e(k)) = A1(k)e(k − d) + A1(k)x̂(k − d),

F̃ (e(k)) = f (k , x(k)) − g(k , x(k − d)),

M̃ (e(k)) = M (k)e(k) + (M (k) − Mf (k))x̂(k).

By letting e(k) = x(k) − x̂(k) and z̃(k) = z(k) − ẑ(k), the
error dynamics can be obtained as follows from Equations

(10) and (11):

e(k + 1) = Ã (e(k)) + (β(k) − β̄)B̃(e(k))

+ (
(1 − β(k))γ (k) − (1 − β̄)γ̄

)
C̃ (e(k))

+ (α(k) − ᾱ)F̃ (e(k)) + Ã1(e(k)),

z̃(k) = M̃ (e(k)).
(12)

The filtering problem to be addressed is as follows:
design the filter (11) such that the H∞ performance con-
straint (13) is satisfied. More specially, for any nonzero
exogenous disturbance v(k) ∈ l2([0, N ], Rq), the estima-
tion error z̃(k) satisfies the following inequality:

‖z̃‖2
[0,N ] ≤ γ 2

{
‖v‖2

[0,N ] + E

{
0∑

k=−d

eT(k)S(k)e(k)

}}

(13)
where γ > 0 is a given disturbance attenuation level and
{S(k)}−d≤k≤0 is a known positive-definite matrix sequence.

Remark 4 In recent years, the finite-horizon filtering prob-
lem has attracted much attention for its practicability. For
example, the robust H∞ filtering problem with error vari-
ance constraints has been investigated for the discrete linear
time-varying systems in Hung and Yang (2003), where the
conditions are in the form of forward recursive Riccatti
equations which are hard to be solved in practice. Recently,
novel works have been done in Shen et al. (2010) and Wei
et al. (2010), respectively, for the robust H∞ finite-horizon
filtering of systems with RONs and quantization effects and
the error-constrained filtering of nonlinear delayed systems
with non-Gaussian noises. It should be noted that the delay
effects have not been considered in Shen et al. (2010), and
in Wei et al. (2010) the phenomena of ROSSs and missing
measurements have not been taken into account. By taking
the phenomena of time delay, ROSSs and missing measure-
ments together, it will be hard to analyze the H∞ filtering
problem, not to mention the design problem for the time-
varying H∞ filter, which mainly motivates the present work
of this article.

3. Main results
In this section, in order to design the filter (11), we first give
a sufficient criterion to guarantee that the error system (12)
satisfies the H∞ performance constraint (13) via the RLMI
approach, which is given by the following theorem.

Theorem 1 Consider the error system (12) with known
filter parameters {Ff (k)}0≤k≤N , {Gf (k)}0≤k≤N and
{Mf (k)}0≤k≤N . Let the disturbance attenuation level γ > 0
and the positive-definite matrix sequence {S(k)}−d≤k≤0 be
given, the estimation error z̃(k) satisfies the H∞ per-
formance constraint (13) if there exist four families of
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positive scalars {ε1(k)}0≤k≤N , {ε2(k)}0≤k≤N , {ε3(k)}0≤k≤N ,
{μ(k)}0≤k≤N+1 and two families of positive-definite matri-
ces {P(k)}0≤k≤N+1, {Q(k)}−d+1≤k≤N+1 satisfying the fol-
lowing initial condition:

E

{
eT(0)P(0)e(0) +

−1∑
k=−d

eT(k)Q(k + 1)e(k)

}

+ μ(0) ≤ γ 2
E

{
0∑

k=−d

eT(k)S(k)e(k)

}
(14)

and the RLMIs

⎡
⎢⎢⎢⎢⎢⎢⎣

	1(k) Â T(k)P(k + 1) B̂T(k)P(k + 1)

∗ −P(k + 1) 0
∗ ∗ −P(k + 1)

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

μ̂C T(k)P(k + 1) α̂FTP(k + 1) L T(k)

0 0 0
0 0 0

−μ̂P(k + 1) 0 0
∗ −α̂P(k + 1) 0
∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 0 (15)

for 0 ≤ k ≤ N, where α̂ = ᾱ(1 − ᾱ), β̂ = β̄(1 − β̄), γ̂ =
(1 − β̄)γ̄ − (1 − β̄)2γ̄ 2, μ̂ = γ̄ (1 − γ̄ )(1 − β̄), m̂ = β̂1/2,
n̂ = β̂1/2γ̄ ,

	1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣


1(k) 0 0 −ε1(k)Ũ2(k)

∗ 
4(k) 0 0
∗ ∗ −γ 2I 0
∗ ∗ ∗ −ε1(k)I
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 
2(k) 
3(k)

−ε2(k)Ṽ2(k) 0 
5(k)

0 0 0
0 0 
6(k)

−ε2(k)I 0 
7(k)

∗ −ε3(k)I 
8(k)

∗ ∗ 
9(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,


1(k) = −P(k) + Q(k + 1) + M T(k)M (k) − ε1(k)Ũ1(k),


2(k) = ε3(k)CT(k)H T(k)

2
,


3(k) = M T(k)(M (k) − Mf (k))x̂(k) − ε1(k)Ũ1(k)x̂(k),


4(k) = −Q(k − d + 1) − ε2(k)Ṽ1(k),


5(k) = −ε2(k)Ṽ1(k)x̂(k − d),


6(k) = −ε1(k)Ũ T
2 (k)x̂(k),


7(k) = −ε2(k)Ṽ T
2 (k)x̂(k − d),


8(k) = ε3(k)H (k)C(k)x̂(k)

2
,


9(k) = μ(k + 1) − μ(k) − ε1(k)x̂T(k)Ũ1(k)x̂(k)

− ε2(k)x̂T(k − d)Ṽ1(k)x̂(k − d),

Â (k) = A (k) + A1(k), B̂(k) = m̂B(k) − n̂C (k),

A (k) = [Ā(k) 0 B(k) − Gf (k)D(k) ᾱI (1 − ᾱ)I

− β̄Gf (k) (Ā(k) − Ff (k))x̂(k)],
Ā(k) = A(k) − β̄Gf (k)H1(k)C(k) − (1 − β̄)γ̄ Gf (k)C(k),

A1(k) = [0 A1(k) 0 0 0 0 A1(k)x̂(k − d)],
B(k) = [B̄(k) 0 0 0 0 − Gf (k) B̄(k)x̂(k)],
B̄(k) = −Gf (k)H1(k)C(k), F = [0 0 0 I − I 0 0],
C (k) = [−Gf (k)C(k) 0 0 0 0 0 − Gf (k)C(k)x̂(k)],
L (k) = [0 0 0 0 0 0 (M (k) − Mf (k))x̂(k)],

Ũ1(k) = (U T
1 (k)U2(k) + U T

2 (k)U1(k))

2
,

Ũ2(k) = − (U T
1 (k) + U T

2 (k))

2
,

Ṽ1(k) = (V T
1 (k)V2(k) + V T

2 (k)V1(k))

2
,

Ṽ2(k) = − (V T
1 (k) + V T

2 (k))

2
.

Proof Select a Lyapunov function for the time-varying
system (12) as follows:

V (k , e(k)) = eT(k)P(k)e(k)

+
k−1∑

s=k−d

eT(s)Q(s + 1)e(s) + μ(k), (16)

where k = 0, 1, . . . , N + 1 and {P(k)}0≤k≤N+1,
{Q(k)}−d+1≤k≤N+1, {μ(k)}0≤k≤N+1 are the solutions of the
RLMIs (15) with the initial condition (14).

It follows from Equation (12) that

E{eT(k + 1)P(k + 1)e(k + 1)}
= E{Ã T(e(k))P(k + 1)Ã (e(k))

+ (β(k) − β̄)2B̃T(e(k))P(k + 1)B̃(e(k))

+ ((1 − β(k))γ (k) − (1 − β̄)γ̄ )2C̃ T(e(k))

× P(k + 1)C̃ (e(k))
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+ (α(k) − ᾱ)2F̃T(e(k))P(k + 1)F̃ (e(k))

+ 2Ã T(e(k))P(k + 1)[(β(k) − β̄)B̃(e(k))

+ ((1 − β(k))γ (k) − (1 − β̄)γ̄ )C̃ (e(k))

+ (α(k) − ᾱ)F̃ (e(k))

+ Ã1(e(k))] + 2(α(k) − ᾱ)F̃T(e(k))

× P(k + 1)Ã1(e(k)) + 2(β(k)

− β̄)B̃T(e(k))P(k + 1)[((1 − β(k))γ (k)

− (1 − β̄)γ̄ )C̃ (e(k))

+ (α(k) − ᾱ)F̃ (e(k)) + Ã1(e(k))]
+ Ã1

T
(e(k))P(k + 1)Ã1(e(k))

+ 2((1 − β(k))γ (k) − (1 − β̄)γ̄ )C̃ T(e(k))P(k + 1)

× [(α(k) − ᾱ)F̃ (e(k)) + Ã1(e(k))]}
= E{Ã T(e(k))P(k + 1)Ã (e(k))

+ β̄(1 − β̄)B̃T(e(k))P(k + 1)B̃(e(k))

+ Ã1
T
(e(k))P(k + 1)Ã1(e(k)) + ((1 − β̄)γ̄

− (1 − β̄)2γ̄ 2)C̃ T(e(k))P(k + 1)C̃ (e(k))

+ ᾱ(1 − ᾱ)F̃T(e(k))P(k + 1)F̃ (e(k))

+ 2Ã T(e(k))P(k + 1)Ã1(e(k))

− 2γ̄ β̄(1 − β̄)B̃T(e(k))P(k + 1)C̃ (e(k))}, (17)

where the independence properties of α(k), β(k) and γ (k)

in conditions (4) and (7) are utilized. More specifically, to
derive the second equality of Equation (17), the following
facts have been used:

E{(α(k) − ᾱ)2} = ᾱ(1 − ᾱ),

E{(β(k) − β̄)2} = β̄(1 − β̄),

E{[(1 − β(k))γ (k) − (1 − β̄)γ̄ ]2}
= (1 − β̄)γ̄ − (1 − β̄)2γ̄ 2,

E{(β(k) − β̄)((1 − β(k))γ (k) − (1 − β̄)γ̄ )}
= E{(β(k) − β̄)(γ (k) − β(k)γ (k)

+ β̄γ (k) − β̄γ (k) − γ̄ + β̄γ̄ )}
= E{(β(k) − β̄)((γ (k) − γ̄ ) + γ (k)(β̄ − β(k))

+ β̄(γ̄ − γ (k)))}
= E{0 − γ (k)(β(k) − β̄)2 + 0}
= −γ̄ β̄(1 − β̄).

Define η(k) = [eT(k) eT(k − d) vT(k) f T(k , x(k))

gT(k , x(k − d)) hT(C(k)x(k)) 1]T, we can easily calculate,

in view of Equations (12), (16) and (17) that

E{V (k + 1, e(k + 1))} − E{V (k , e(k))}
+ E{‖z̃(k)‖2} − γ 2

E{‖v(k)‖2}
= E{Ã T(e(k))P(k + 1)Ã (e(k)) + Ã1

T
(e(k))P(k + 1)

× Ã1(e(k)) + α̂F̃T(e(k))P(k + 1)F̃ (e(k))

+ β̂B̃T(e(k))P(k + 1)B̃(e(k))

+ γ̂ C̃ T(e(k))P(k + 1)C̃ (e(k))

+ 2Ã T(e(k))P(k + 1)Ã1(e(k))

− 2γ̄ β̄(1 − β̄)B̃T(e(k))P(k + 1)C̃ (e(k))

+ eT(k)Q(k + 1)e(k) − eT(k − d)Q(k − d + 1)

× e(k − d) + μ(k + 1) − eT(k)P(k)e(k)

− μ(k) + M̃ T(e(k))M̃ (e(k)) − γ 2vT(k)v(k)}
= E{ηT(k)A T(k)P(k + 1)A (k)η(k) + ηT(k)A T

1 (k)

× P(k + 1)A1(k)η(k) + α̂ηT(k)FTP(k + 1)Fη(k)

+ 2ηT(k)A T(k)P(k + 1)A1(k)η(k)

− 2γ̄ β̄(1 − β̄)ηT(k)BT(k)P(k + 1)C (k)η(k)

+ β̂ηT(k)BT(k)P(k + 1)B(k)η(k) + γ̂ ηT(k)

× C T(k)P(k + 1)C (k)η(k) + ηT(k)�(k)η(k)},
(18)

where

�(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11(k) 0 0 0
∗ −Q(k − d + 1) 0 0
∗ ∗ −γ 2I 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0 M T(k)(M (k) − Mf (k))x̂(k)

0 0 0
0 0 0
0 0 0
0 0 0
∗ 0 0
∗ ∗ γ̂ (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with �11(k) = −P(k) + Q(k + 1) + M T(k)M (k) and
γ̂ (k) = μ(k + 1) − μ(k) + x̂T(k)(M (k) − Mf (k))T

× (M (k) − Mf (k))x̂(k).
On the other hand, utilizing the notations defined in

Equation (15), it is straightforward to show that Equa-
tions (2) and (3) infer the validity of the inequalities given
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below:

ηT(k)�1(k)η(k) ≤ 0, ηT(k)�2(k)η(k) ≤ 0, (19)

where

�1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ1(k) 0 0 Ũ2(k) 0 0 Ũ1(k)x̂(k)

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ I 0 0 Ũ T

2 (k)x̂(k)

∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ x̂T(k)Ũ1(k)x̂(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

�2(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
∗ Ṽ1(k) 0 0 Ṽ2(k) 0 Ṽ1(k)x̂(k − d)
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ I 0 Ṽ T

2 (k)x̂(k − d)
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ x̂T(k − d)Ṽ1(k)x̂(k − d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, Equation (9) can be transformed to an equivalent
matrix inequality given as follows:

ηT(k)�3(k)η(k) ≤ 0, (20)

where

�3(k)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −CT(k)H T(k)

2
0

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ I −H (k)C(k)x̂(k)

2∗ ∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By considering Equations (18)–(20) together, the
inequality which guarantees the H∞ performance of the
error system turns to:

E{V (k + 1, e(k + 1))} − E{V (k , e(k))}
+ E{‖z̃(k)‖2} − γ 2

E{‖v(k)‖2}
≤ E{ηT(k)(�(k) + A T(k)P(k + 1)A (k)

+ A T
1 (k)P(k + 1)A1(k) + 2A T(k)P(k + 1)A1(k)

+ β̂BT(k)P(k + 1)B(k) + γ̂C T(k)P(k + 1)C (k)

+ α̂FTP(k + 1)F )η(k)

− 2γ̄ β̂BT(k)P(k + 1)C (k) − ε1(k)ηT(k)�1(k)η(k)

− ε2(k)ηT(k)�2(k)η(k) − ε3(k)ηT(k)�3(k)η(k)}
= E{ηT(k)(�(k) + (A (k) + A1(k))TP(k + 1)(A (k)

+ A1(k)) + α̂FTP(k + 1)F + β̂BT(k)

× P(k + 1)B(k) + β̂γ̄ 2C T(k)P(k + 1)C (k)

+ (γ̂ − β̂γ̄ 2)C T(k)P(k + 1)C (k)

− 2γ̄ β̂BT(k)P(k + 1)C (k))η(k)

− ε1(k)ηT(k)�1(k)η(k)

− ε2(k)ηT(k)�2(k)η(k) − ε3(k)ηT(k)�3(k)η(k)}
= E{ηT(k)(	1(k) + (A (k) + A1(k))TP(k + 1)(A (k)

+ A1(k)) + α̂FTP(k + 1)F + L T(k)L (k)

+ (m̂B(k) − n̂C (k))TP(k + 1)(m̂B(k) − n̂C (k))

+ μ̂C T(k)P(k + 1)C (k))η(k)}, (21)

where	1(k) = �(k) − ε1(k)�1(k) − ε2(k)�2(k) − ε3(k)

�3(k) − L T(k)L (k). Applying the Schur complement
formula (Boyd, EI Ghaoui, Feron, & Balakrishnan, 1994)
and noticing Equation (15), we can easily obtain from
Equation (21) that

E {V (k + 1, e(k + 1))} − E{V (k , e(k))} + E{‖z̃(k)‖2}
− γ 2

E{‖v(k)‖2} ≤ 0. (22)

Summing up both sides of Equation (22) with k varying
from 0 to N yields

‖z̃‖2
[0,N ] ≤ γ 2‖v‖2

[0,N ] + E
{
eT(0)P(0)e(0)

+
−1∑

k=−d

eT(k)Q(k + 1)e(k)

}
+ μ(0), (23)

and the H∞ performance constraint (13) is assured by also
considering the initial condition (14). The proof of this
theorem is complete. �

According to the H∞ performance analysis established
in Theorem 1, the design problem of the H∞ filter for
the stochastic system (1) is reduced to the one for finding
feasible solutions to a set of RLMIs.

Theorem 2 Let the disturbance attenuation level γ > 0
and the matrix sequence {S(k)}−d≤k≤0 be given. The H∞
filtering problem is solvable for the discrete time-varying
system (1) if there exist two families of positive-definite
matrices {P(k)}0≤k≤N+1, {Q(k)}−d+1≤k≤N+1, two families
of matrices {X (k)}0≤k≤N , {Y (k)}0≤k≤N and four families of
positive scalars {ε1(k)}0≤k≤N , {ε2(k)}0≤k≤N , {ε3(k)}0≤k≤N ,
{μ(k)}0≤k≤N+1 satisfying the initial condition (14) and the
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RLMIs [
	1(k) 	2(k)

∗ 	3(k)

]
≤ 0 (24)

for 0 ≤ k ≤ N , where 	1(k) is the same as defined in
Equation (15) and

	2(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣


̃1(k) 
̃2(k) −μ̂CT(k)Y T(k)

AT
1 (k)P(k + 1) 0 0


̃3(k) 0 0
ᾱP(k + 1) 0 0

(1 − ᾱ)P(k + 1) 0 0
−β̄Y T(k) −m̂Y T(k) 0


̃4(k) 
̃5(k) 
̃6(k)

0 0
0 0
0 0

α̂P(k + 1) 0
−α̂P(k + 1) 0

0 0
0 x̂T(k)

(
M (k) − Mf (k)

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

	3(k) = diag{−P(k + 1), −P(k + 1),

− μ̂P(k + 1), −α̂P(k + 1), −I },
in which


̃1(k) = AT(k)P(k + 1) − β̄CT(k)H T
1 (k)Y T(k)

− (1 − β̄)γ̄ CT(k)Y T(k),


̃2(k) = −m̂CT(k)H T
1 (k)Y T(k) + n̂CT(k)Y T(k),


̃3(k) = BT(k)P(k + 1) − DT(k)Y T(k),


̃4(k) = x̂T(k)AT(k)P(k + 1) − β̄ x̂T(k)CT(k)H T
1 (k)Y T(k)

− (1 − β̄)γ̄ x̂T(k)CT(k)Y T(k)

− x̂T(k)X T(k) + x̂T(k − d)AT
1 (k)P(k + 1),


̃5(k) = −m̂x̂T(k)CT(k)H T
1 (k)Y T(k)

+ n̂x̂T(k)CT(k)Y T(k),


̃6(k) = −μ̂x̂T(k)CT(k)Y T(k)

and the other symbols are the same as defined in Theorem 1.
Moreover, for each 0 ≤ k ≤ N , if inequalities (14) and (24)
are feasible, the desired filter is given by Equation (11) with
the parameters as

Ff (k) = P−1(k + 1)X (k), Gf (k) = P−1(k + 1)Y (k),
(25)

and the filter matrix Mf (k) can be obtained by solving the
corresponding LMI at time point k .

Proof By substituting Equations (25) into (24) and apply-
ing Theorem 1, we can easily conclude the validity of the
result. �

According to Theorem 2, the following RLMIs
algorithm is given for the H∞ filtering problem which is illu-
minated by the design ideas in Shen et al. (2010) and Dong
et al. (2011). The H∞ filtering problem can be implemented
recursively as follows:

Step 1. Let the H∞ performance index γ , the final time
N , the initial matrix sequence {S(k)}−d≤k≤0 and the initial
states {φ(k)}−d≤k≤0 be given. Select appropriate positive-
definite matrix P(0), positive-definite matrix sequence
{Q(s)}−d+1≤s≤0 and positive scalar μ(0) satisfying the
initial condition (14) and set k = 0;

Step 2. Solve the RLMIs (24) to obtain the positive-
definite matrices P(k + 1), Q(k + 1), the positive scalars
μ(k + 1), ε1(k), ε2(k), ε3(k), the matrices X (k), Y (k) and
the filter parameter matrix Mf (k) by utilizing the known
parameters P(k), {Q(s)}−d+1≤s≤k , μ(k) and x̂(k);

Step 3. From Equation (25), derive the other two fil-
ter parameter matrices Ff (k) and Gf (k), then get the state
estimate x̂(k + 1) according to Equation (11);

Step 4. If k < N , set k = k + 1 and go to Step 2, else go
to Step 5;

Step 5. Exit.

4. Numerical example
In this section, we provide a numerical example to test
the proposed design algorithm. Consider a discrete time-
varying delayed system described by model (1) with the
following time-varying parameters:

A(k) =
[

0 0.1 sin(k)

sin(6k) 0.2

]
,

A1(k) =
[

0 0.12
−0.12 0.1 sin(6k)

]
, D(k) = 1,

B(k) =
[

0.15
0.3

]
, C(k) = [0.12 sin(6k) 0.1],

M (k) = [0.1 0.1],

and the nonlinear functions f (·, ·), g(·, ·) are the same as
those in Shen et al. (2011) represented as follows:

f (k , x(k))

= 1
4

⎡
⎢⎣

0.1x1(k) + 0.1x2(k) + 0.25x2(k) sin(x1(k))

0.5(x1(k) + (1/3)x2(k))

1 + x2
2(k)

− 0.1x1(k) + 0.3x2(k)

⎤
⎥⎦ ,

g(k , x(k − d))

= 1
4

⎡
⎢⎢⎢⎣

0.3(x1(k − d) + x2(k − d))

1
+ x2

1(k − d)

+x2
2(k − d) + 0.1x1(k − d) + 0.1x2(k − d)

0.3x1(k − d) + 0.3x2(k − d)

⎤
⎥⎥⎥⎦.
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It has been shown in Shen et al. (2011) that the above
nonlinearities satisfying conditions (2) and (3) with

U1(k) = V1(k) =
[

0.1 0.05
0 0.1

]
,

U2(k) = V2(k) =
[−0.05 0
−0.05 0.05

]
.

It is assumed that the saturation function is

σ(u(k)) =

⎧⎪⎨
⎪⎩

u(k) if − umax ≤ u(k) ≤ umax,
umax ifu(k) > umax,
−umax ifu(k) < −umax,

where u(k) is the position value of target. In this example,
the saturation value umax is taken as 0.08, H1(k) and H2(k)

are set as H1(k) = 0.3(1 + | tanh(k)|), H2(k) ≡ 1.

In this simulation, we choose the exogenous distur-
bance input v(k) to be v(k) = exp(−k/20) × n(k), where
n(k) is uniformly distributed over [−0.05, 0.05]. The ran-
dom variables α(k), β(k) and γ (k) are with the prob-
abilities as ᾱ = 0.8, β̄ = 0.5, γ̄ = 0.6 and the constant
time delay is set with d = 1. For illustration purposes,
set N = 20, the H∞ performance level γ = 0.5, S(k) =
diag{20, 1} and the initial value x(−1) = [0.3 − 0.2]T,
x(0) = [0.2 0]T. The initial condition (14) is satisfied with
P(0) = I , Q(0) = diag{2, 2}, μ(0) = 0.3. According to the
given RLMI algorithm, the time-varying LMIs in Equation
(24) can be solved recursively and the desired filter matrices
Ff (k), Gf (k) and Mf (k) from time k = 0 to k = 6 are
given in Table 1. It follows from Theorem 2 that the H∞
filtering problem is solvable for the discrete time-varying
system (1).

Table 1. The desired filter parameters.

k 0 1 2 3

Ff (k)

[
0 0
0 0

] [
0.0283 0.0654
0.0692 0.0195

] [
0.1794 0.1440
0.1702 −0.3478

] [−0.0105 −0.0629
−0.0859 0.2099

]

Gf (k)

[
0.0998
0.2057

] [
0.1029
0.2105

] [
0.1032
0.2209

] [
0.1235
0.2834

]

Mf (k)
[
0 0

] [
0.0524 0.1066

] [
0.0597 0.1066

] [
0.0073 0.0676

]
k 4 5 6 · · ·

Ff (k)

[
0.0186 0.2248
0.3614 −0.1823

] [−0.0021 −0.0063
−0.0105 0.0618

] [−0.2377 0.0155
0.0572 −0.1260

]
· · ·

Gf (k)

[
0.1103
0.2924

] [
0.1308
0.3489

] [
0.1405
0.3104

]
· · ·

Mf (k)
[
0.0077 0.0681

] [−0.0176 −0.0417
] [−0.1006 0.0598

] · · ·
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Figure 1. Trajectories of the output z and its estimate ẑ.
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Figure 2. Trajectories of the estimation error z̃.

By employing the filter (11) with the parameters as given
in Table 1, the estimation trajectories are shown in Figures 1
and 2. More specially, Figure 1 presents the output z(k) and
its estimate ẑ(k) and Figure 2 draws the estimation error
output z̃(k). The simulation results further demonstrate the
effectiveness of the filter design scheme.

5. Conclusions
In this paper, we have investigated the finite horizon H∞
filtering problem for the time-varying delayed system with
incomplete information such as RONs, ROSSs as well
as missing measurements. A time-varying filter has been
designed for the system under consideration such that the
filtering error system satisfies the H∞ performance con-
straints on the finite horizon. By resorting to the stochastic
analysis and matrix inequality techniques, sufficient condi-
tions have been derived in the form of RLMIs which not
only guarantee the error system to preserve the H∞ perfor-
mance but also give the explicit expressions of the desired
filtering parameters. Simulation results further demonstrate
the feasibility of the proposed filtering methods.
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