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A new method of model order reduction is introduced by combining the merits of big bang big crunch (BBBC) optimization
technique and stability equation (SE) method. A linear-continuous single-input single-output system of higher order is
considered and reduced to a lower order system. The denominator polynomial of the reduced system is obtained by SE
method, whereas the numerator terms are generated using BBBC optimization. Furthermore, step and frequency responses
of the original reduced system are plotted. The superiority of the proposed method is justified by solving numerical examples
from the available literature and comparing the reduced systems in terms of error indices.
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1. Introduction
The unending need for size reduction, driven by the demand
for increased system complexity, necessitates the speed-
ing up of simulation process in the design validation stage.
Hence, model diminution has become a routine work in sys-
tems and control engineering and is under active research.
This further ends up as a necessary procedure for simulat-
ing large complex systems. A plenty of order minimization
techniques are available in the literature today (Antonio &
Viaro, 1983; Desai & Prasad, 2011a; Genesio & Milanese,
1976; Jamshidi, 1983; Mahmoud & Singh, 1981; Prasad &
Pal, 1991; Prasad, Mittal, & Sharma, 2005) and the best
method is one which protects the vital dynamics of the
system under consideration. Also, disentangle the best
available model in light of the purpose for which the model
is to be used, namely to design a control system to meet cer-
tain specifications that helps to find low-order approximated
models, without incurring too much error. For such com-
plex problems, nature inspired approaches are among the
methods, that have proved to be useful. One such approach
called big bang big crunch (BBBC) is used here for order
reduction (Boby & Pal, 2010).

During the last decades, the use of optimization meth-
ods has gained popularity not only in model reduction but
in almost all fields (Zhang & Shi, 2012; Zhang, Shi, & Liu,
2013; Zhang, Shi, & Mehr, 2011). Some of the optimiza-
tion methods such as genetic algorithm (GA) and particle
swarm optimization (PSO) have already proved to be effec-
tive in developing lower order approximations for systems
having large dimension and controller design of the same
(Desai & Prasad, 2010, 2011b; Parmar, Prasad, & Mukher-
jee, 2007; Sivanandam & Deepa, 2009). This is because
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GA and PSO helps in the elimination/optimizing some of
the state variables from the original or a transformed sys-
tem representation, a task which cannot be accomplished
easily. This amounts to reduction in the storage and compu-
tation time requirements, without damaging the dynamical
properties of the model making it viable to use. In spite of
the current optimization methods, there is greater emphasis
for the advancement of the so-called global optimization
methods. Researchers are still striving to attain a universal
optimization method that can be applied to all multifaceted
problems with equal efficiency.

BBBC, a relatively recent method of evolutionary com-
putation has been applied and proved to be successful
in many areas, inclusive of target motion analysis, fuzzy
model inversion, space trusses design, nonlinear controller
design and airport gate assignment problem (Camp, 2007;
Dogan & Istefanopulos, 2007; Gen, Erol, & Eksi, 2009;
Gen & Hocaoglu, 2008; Kumbasar, Eksin, Guzelkaya, &
Yesil, 2008; Kumbasar, Yesil, Eksin, & Guzelkaya, 2008).
This method is attractive because of its intuitiveness, fast
convergence and simplicity; it requires no rigid first guess
algorithms. Ease of implementation and exploring the
majority of problem space (Pavel, 2011) are added advan-
tages. Furthermore, it is unfussy to code and comprehend
its most basic form. Hence, it is found to be useful in solv-
ing mixed integer optimization problems that are typical
of complex engineering systems (Genç Eksin, & Osman,
2010). BBBC being a numerical optimizer assists us in ratio-
nally searching the best values among the alternative ones
to satisfy our needs. On the other hand, stability equation
(SE) method basically being a stability preserving reduc-
tion technique (for stable original system) has been proved
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to be successful. Furthermore, this method helps in good
response matching during steady state between the original
and the reduced system when subjected to impulse/step
input. In this paper, a new composite method of reduc-
tion method combining the benefits of BBBC and biased
SE method is introduced to meet the purpose. Numerical
examples are solved by applying the proposed method. The
integral square error (ISE) and integral relative error (IRE)
values obtained justify that the proposed approach is better
as compared to other conventional techniques available in
the literature.

2. Big bang – big crunch algorithm
The BBBC method was developed and proposed as a novel
optimization method by Erol and Eksin (2006). This method
is derived from one of the evolution of the universe theo-
ries in physics and astronomy, describing how the universe
was created, evolved and would end, namely the BBBC
phase. The big bang phase comprising random energy dis-
sipation over the entire search space or the transformation
from an ordered state to a disordered or chaotic state. After
the big bang phase, a contraction occurs in the big crunch
phase. Here, the particles that are randomly distributed are
drawn into an order. This aims to reduce the computational
time and have quick convergence even in long, narrow
parabolic shaped flat valleys or in the existence of several
local minima.

The big bang phase is somewhat similar to creation of
initial random population in GA. The designer should han-
dle the impermissible candidates at this phase. Once the
population is created, fitness values of the individuals are
calculated (Genç, Eksin, & Osman, 2010). The crunching
phase is a convergence operator that has many inputs but
only one output, which can be referred to as the center of
“mass.” The center of mass represents the weighted aver-
age of the candidate solution positions. Here, the term mass
refers to the inverse of the merit function value (Singh &
Verma, 2011). After a number of sequential banging and
crunching phases the algorithm converges to a solution. The
point representing the center of mass “Xc” of the population
is calculated according to the formula

Xc =
∑N−1

k=0
Xk
fk∑N−1

k=0
1
fk

, (1)

where Xk is a point within an n-dimensional search space
generated, here it is related to the numerator polynomial
coefficients, fk is a fitness function or objective value of the
candidate k and N is the population size in banging phase.
The convergence operator in the crunching phase is differ-
ent from wild selection since the output term may contain
additional information (new candidate or member having
different parameters than others) than the participating ones.
In the next cycle of the big bang phase, new solutions are
created by using the previous knowledge (center of mass),

the fitness function fk (Erol & Eksin, 2006) is

fk =
M−1∑
i=0

[y(i�t) − yr(i�t)]2, (2)

where
M = T

�t
,

where y(i�t) and yr(i�t) are the unit step responses of the
higher-order and the reduced-order models at time t = �t.
Usually time T is taken as 10 s and �t = 0.1 s.

The basic BBBC algorithm utilized here is as follows:

Step 1 [Start] The Big bang starts by generating the
new population.
Step 2 [Evaluate Fitness value] For each iteration
the algorithm will act such that each candidates will
move in a direction to improve its fitness function.
The action involves movement updating of individ-
uals and evaluating the fitness function for the new
position.
Step 3 [Compare Fitness Function] Compare the
fitness function of the new position with the speci-
fied fitness function. Repeat the above steps for the
whole set of candidates.
Step 4 [Maximum iteration] Stop and return the best
solution if maximum iteration is reached or a spec-
ified termination criterion is met. Else, update and
start generating new population at step 1.
Step 5 [Loop] Go to step 2 for fitness evaluation.

3. Statement of problem
Consider an nth-order linear time invariant single-input
single-output (SISO) system described by the transfer
function

G(s) = N (s)
D(s)

=
∑n

j=1 a2,j sj−1

∑(n+1)
j=1 a1,j sj−1

, (3)

where a2,j’s and a1,j’s are scalar constants. The objective
is to find the rth (r < n) order-reduced model R(s), com-
prising scalar constants b2,i’s and b1,i’s represented in the
form of

R(s) = Nr(s)
Dr(s)

=
∑r

i=1 b2,isi−1∑(r+1)
i=1 b1,i si−1

. (4)

4. SE method
The model order reduction (MOR) problem has been inves-
tigated in the literature extensively (Antoulas, Sorensen, &
Gugercin, 2001; Dia, Othman, & Zaer, 2011). SE method
is essentially a stability criteria-based reduction method
and is one of the most popular frequency domain tech-
niques available in the literature (Chen, Chang, & Han,
1979; Rajendra, 1989). This method has the privilege of
yielding stable-reduced order system, provided the original
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system is stable. In other words, it retains the stability
of the original system and also nullifies the steady state
response matching issues. A composite method, making
use of the advantages of SE method and the Pade approx-
imation method for reducing high-order transfer functions
of single-input/single-output systems and multivariable
systems is presented in Chen, Chang, and Han (1980).
Similarly, Panda, Tomar, Prasad, and Ardil (2009) and
Vishwakarma and Prasad (2009) have dealt with perform-
ing MOR using heuristic techniques and are successful.
Another way to minify the given SISO/multiple input mul-
tiple output (MIMO) system to its equivalent reduced form
is being dealt with in this communication. A transfer func-
tion model of an original system is considered and its
denominator polynomial is reduced to a lower order by
using biased SE method. The reduction procedure by biased
SE method is illustrated in the following algorithm.

Algorithm for biased SE reduction method

1. Given a stable G(s) = N (s)/D(s) of “nth” order
2. Considering D(s) and bifurcating into even (De(s))
and odd (Do(s)) parts will provide the following SEs:
D(s) = De(s) + Do(s),
where

De(s) = a11

k1∏
i=1

(1 + s2/z2
i ),

Do(s) = a12s
k2∏

i=1

(1 + s2/p2
i ),

where k1 and k2 are the integer part of n/2 and
(n − 1)/2, respectively, and z2

1 < p2
1 < z2

2 < p2
2 . . . By

discarding the factors with larger magnitudes of zi and
pi, the reduced SEs of the desired order “r” become
(Pal, 1983; Rajendra, 1989)

Dre(s) = a11

r1∏
i=1

(1 + s2/z2
i ),

Dro(s) = a12s
r2∏

i=1

(1 + s2/p2
i ),

where r1 and r2 are the integer parts of r/2 and
(r−1)/2, respectively. Thus, the reduced denominator
is constructed as
Dr1(s) = Dre(s) + Dro(s).
3. Now, apply the reciprocal transformation to D(s) to
obtain

D̃(s) = snD
(

1
s

)
= D̃e(s) + D̃o(s).

Reducing the denominator further gives
D̃r2(s) = D̃re(s) + D̃ro(s).
4. Compute
Dr(s) = Dr1(s).Dr2(s)

= b11 + b12s + b13s2 + · · · + b1r+1sr ,
with ((r = r1 + r2) < n),
where Dr2(s) is reciprocal of D̃r2(s).

5. Numerical examples
Example 1 Consider a fourth-order system (Boby & Pal,
2010; Mukherjee & Mishra, 1987) described by the transfer
function as

G(s) = s3 + 7s2 + 24s + 24
s4 + 10s3 + 35s2 + 50s + 24

.

For r1 = 2, r2 = 0; the denominator polynomial of G(s) is
bifurcated into odd and even terms as

D(s) = De(s) + Do(s),

De(s) = 24 + 35s2 + s4,

De(s) = 24
(

1 + s2

0.6858

) (
1 + s2

34.71

)

Do(s) = 50s + 10s3

= 50s
(

1 + s2

5

)
.

Neglecting the factors with larger magnitudes of z2
i and p2

i
in De(s) and Do(s), respectively, the reduced second-order
equation will be

Dr1(s) = Dre(s) + Dro(s),

Dre(s) = 24
(

1 + s2

0.6858

)
,

Dro(s) = 50s,

Dr1(s) = 24
(

1 + s2

0.6858

)
+ 50s

= s2 + 1.428s + 0.6858.

For r1 = 0, r2 = 2; the reciprocal transformed D̃(s) is
expressed into the following SEs:

D̃(s) = 24s4 + 50s3 + 35s2 + 10s + 1

= D̃e(s) + D̃o(s),

D̃e(s) = 24s4 + 35s2 + 1,

D̃o(s) = 50s3 + 10s.

Neglecting the factors with larger magnitudes of z2
i and p2

i
in D̃e(s) and D̃o(s), respectively, the reduced second-order
equation will be

D̃r2(s) = D̃re(s) + D̃ro(s)

= 34.3s2 + 10s + 1

or

Dr2(s) = s2 + 10s + 34.3.
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Thus, the three second-order reduced denominators which
are properly normalized are given as

Dr(s) = Dr1(s).Dr2(s),

Dr(s) = s2 + 1.428s + 0.6858, r1 = 2, r2 = 0,

Dr(s) = s2 + 10s + 34.3, r1 = 0, r2 = 2,

Dr(s) = s2 + 3.913s + 1.6464, r1 = 1, r2 = 1.

Using BBBC algorithm the numerator coefficients are gen-
erated by minimizing (2) for initial population size as100
feasible solutions, the number of iterations is 50 and
reduction rate is 0.8.

Nr(s) = 0.6965s + 0.6858.

Thus, the reduced second-order system is given as

RA(s) = Nr(s)
Dr(s)

= 0.6965s + 0.6858
s2 + 1.428s + 0.6858

.

The second-order reduced system obtained by Boby and Pal
(2010) is

RB(s) = 0.9315s + 1.6092
s2 + 2.75612s + 1.6092

.

Figure 1 shows the step responses of the original system
G(s), the proposed reduced system RSE(s) and the reduced
system using dominant pole (Boby & Pal, 2010) RDP(s). It
is seen that the responses are matching both in steady and
transient states.

Figure 2 shows the bode plots of the original system
G(s), the proposed reduced system RA(s) and the reduced
system using dominant pole (Boby & Pal, 2010) RB(s). It
is seen that the responses are comparable. Table 1 exhibits
the superiority of the proposed method by comparing with
reduced-order systems obtained by alternative methods
available as a function of ISE calculated using

ISE =
∫ ∞

0
[y(t) − yr(t)]2 dt, (5)
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and IRE using

IRE =
∫ ∞

0
g2(t) dt, (6)

where y(t), yr(t) are the step responses of the higher- and
reduced-order system, g(t) is the impulse response of the
system.

Example 2 Consider a ninth-order system having transfer
function (Mukherjee, Satakshi, & Mittal, 2005)

G(s) = s4 + 35s3 + 291s2 + 1093s + 1700
s9 + 9s8 + 66s7 + 294s6 + 1029s5 + 2541s4

+4684s3 + 5856s2 + 4620s + 1700

.

Applying the algorithm for biased SE reduction method, the
reduced denominators are found as

Dr(s) = s3 + 1.494s2 + 1.34s + 0.493, r1 = 3, r2 = 0,

Dr(s) = s3 + 9s2 + 46.54s + 187.43, r1 = 0, r2 = 3,

Dr(s) = s3 + 9.96s2 + 8.994s + 3.1813, r1 = 2, r2 = 1,

Dr(s) = s3 + 9.367s2 + 49.84s + 17.08, r1 = 1, r2 = 2.

The numerator coefficients are generated similarly using
BBBC and is given below as

Nr(s) = 0.08717s2 + 0.3142s + 0.493.

Therefore, the reduced third-order model will be

RA(s) = Nr(s)
Dr(s)

= 0.08717s2 + 0.3142s + 0.493
s3 + 1.494s2 + 1.34s + 0.493

.

The third-order reduced system obtained by Boby and Pal
(2010) is

RB(s) = 0.5058s2 − 1.9848s + 3.5341
s3 + 3s2 + 5.5341s + 3.5341

.

Figure 3 shows the step responses of the original system
G(s), the proposed reduced system RA(s) and the reduced
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Table 1. Comparison between various reduced-order for example 1.

Method of order reduction Reduced system ISE IRE

Proposed Method
0.8s + 0.686

s2 + 1.47s + 0.686
3.5 × 10−4 47.497

Boby and Pal (2010)
0.9315s + 1.6092

s2 + 2.75612s + 1.6092
2.78 × 10−3 49.420

Parmar et al. (2007)
0.7442s + 0.699

s2 + 1.458s + 0.6997
2.85 × 10−3 48.828

Chen et al. (1980)
0.6997(s + 1)

s2 + 1.45771s + 0.6997
4.296 × 10−3 43.276

96s + 288
70s2 + 300s + 288

7.33 × 10−2 79.75

20.57s + 24
30s2 + 42s + 24

1.544 × 10−2 47.723

Pal (1983)
16s + 24

30s2 + 42s + 24
1.88 × 10−2 40.14

Prasad and Pal (1991)
s + 34.2465

s2 + 239.8082s + 34.2465
2.481 15.734

s + 2.3014
s2 + 5.7946s + 2.3014

2.295 × 10−1 33.968
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Table 2. Comparison between various reduced-order for example 2.

Method of order reduction Reduced system ISE IRE

Proposed Method
0.0789s2 + 0.3142s + 0.493
s3 + 1.3s2 + 1.34s + 0.493

2.52 × 10−2 27.59

Boby and Pal (2010)
0.5058s2 − 1.985s + 3.534
s3 + 3s2 + 5.534s + 3.534

2.82 × 10−2 29.42

Chen et al. (1979)
285s2 + 1093s + 1700

3408s3 + 5031s2 + 4620s + 1700
2.96 × 10−2 25.43

0.2882s2 − 2.159s + 3.99
s3 + 4.76s2 + 7.55s + 3.99

2.4 × 10−1 35.01

Mukherjee et al. (2005)
0.2945s2 − 2.202s + 2.32

s3 + 2.501s2 + 4.77s + 2.32
8.77 × 10−2 51.01

Vishwakarma and Prasad (2009)
1.0385s2 − 2.9906s + 4.686
s3 + 3s2 + 6.686s + 4.686

5.86 × 10−2 73.05

−0.264s2 + 0.483s + 0.751
s3 + 2.195s2 + 2.046s + 0.751

2.61 × 10−2 26.43

Table 3. Comparison between various reduced-order for example 3.

Method of order reduction Reduced system ISE IRE

Proposed Method
16.91s + 5.255

s2 + 6.87s + 5.26
6.83 × 10−4 23.17 × 102

Dia et al. (2011)
17.099s + 5.074

s2 + 6.972s + 5.151
3.01 × 10−3 24.19 × 102

24.11s + 8
s2 + 9s + 8

4.8 × 10−2 41.92 × 102

Parmar et al. (2007)
22.8212s + 8.01

s2 + 9s + 8
3.68 × 10−2 37.42 × 102

Mittal, Prasad, and Sharma (2004)
7.091s + 1.9906

s2 + 3s + 2
2.72 × 10−1 6.94 × 102

6.7786s + 2
s2 + 3s + 2

2.79 × 10−1 6.297 × 102

system using dominant pole (Boby & Pal, 2010) RB(s). It is
seen that the responses are comparable. Similarly, Figure 4
shows the comparison of the bode plots. Table 2 compares
various reduced-order systems in terms of ISE and IRE
values.

Example 3 Consider an eighth-order system (Dia et al.,
2011) described by the transfer function

G(s) =
18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3

+222088s2 + 185760s + 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3

+118124s2 + 109584s + 40320

.

Using the algorithm for biased SE reduction method, the
reduced denominators are found as

Dr(s) = s2 + 6.867s + 5.255, r1 = 2, r2 = 0,

Dr(s) = s2 + 36s + 501.94, r1 = 0, r2 = 2,

Dr(s) = s2 + 36.36s + 13.25, r1 = 1, r2 = 1.

The BBBC algorithm generates the numerator coefficients
to form the polynomial as

Nr(s) = 16.91s + 5.255.

Therefore, the reduced second-order model will be

RA(s) = Nr(s)
Dr(s)

= 16.91s + 5.255
s2 + 6.87s + 5.26

.

The second-order reduced system obtained by Dia et al.
(2011) is

RB(s) = Nr(s)
Dr(s)

= 17.0989s + 5.0742
s2 + 6.9722s + 5.1514

.

Figure 5 shows the step responses of the original system
G(s), the proposed reduced system RA(s) and the reduced
system using dominant pole (Dia et al., 2011) RB(s). It is
seen that the responses are comparable. Similarly, Figure 6
shows the comparison of the bode plots. Table 3 compares
the ISE and IRE values of various reduced-order systems.
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6. Conclusions
A simple and effective method of obtaining the reduced-
order model is presented using the BBBC and the SE
method. The denominator of the reduced method is obtained
by the SE method and the numerator of the reduced system
is generated using BBBC optimization method. The ISE
and IRE values obtained by the proposed reduced system
indicate that there is an improvement in the consistency
and computational efficiency. The worthiness of the pro-
posed method is justified in the above examples. Systems
with very large dimensions have been considered to explore
the powerfulness of the method. Furthermore, the proposed
method also works well for a general non square MIMO sys-
tem. As an extension, the same method can also be applied
for higher-order discrete systems by combining with other
methods.
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