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A novel state-dependent control approach for discrete-time nonlinear systems with general performance criteria is presented.
This controller is robust for unstructured model uncertainties, resilient against bounded feedback control gain perturbations
in achieving optimality for general performance criteria to secure quadratic optimality with inherent asymptotic stability
property together with quadratic dissipative type of disturbance reduction. For the system model, unstructured uncertainty
description is assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive real
uncertainties as special cases. By solving a state-dependent linear matrix inequality (LMI) at each time step, sufficient
condition for the control solution can be found which satisfies the general performance criteria. The results of this paper unify
existing results on nonlinear quadratic regulator, H∞ and positive real control to provide a novel robust control design. The
effectiveness of the proposed technique is demonstrated by simulation of the control of inverted pendulum.

Keywords: nonlinear control; robust control; linear matrix inequality

1. Introduction
Optimal control of nonlinear systems is traditionally
characterized in terms of Hamilton Jacobi Equations
(HJEs). The solution of the HJEs provides the necessary
and sufficient optimal control condition for nonlinear sys-
tems. Furthermore, when the controlled system is linear
time invariant and the performance index is linear quadratic
regulator (LQR), the HJEs are reduced to Algebraic Riccati
Equations (AREs). As for H∞ nonlinear control problem,
the optimal control solution is equivalent to solving the
corresponding Hamilton Jacobi Inequalities (HJIs). How-
ever, HJEs and HJIs, which are first-order partial differential
equations and inequalities, cannot be solved for more than a
few state variables. In the past few years, it has been shown
that the problems of quadratic regulation and H∞ nonlinear
control can be effectively solved by state-dependent Riccati
equation (SDRE) and nonlinear matrix inequality (NLMI)
techniques (Huang & Lu, 1996). The state-dependent LMI
control of nonlinear systems, as pointed out in Wang and
Yaz (2009), Wang, Yaz, and Jeong (2010), and Wang,
Yaz, and Yaz (2010, 2011), synthesizes a controller to
achieve mixed nonlinear quadratic regulator (NLQR) and
H∞ control.

Dissipative control for linear systems has also received
considerable attention over the past two decades. The con-
cept of dissipative system was first introduced by Willems
(1972a, 1972b), and further generalized by Hill and Moylan
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(1976, 1980), playing an important role in systems,
circuits and controls. The theory of dissipative sys-
tems generalizes the basic tools including the passiv-
ity theorem, bounded real lemma, Kalman–Yakubovich
lemma and circle criterion. Dissipativity performance
includes H∞ performance, passivity, positive realness
and sector-bounded constraint as special cases. Research
addressing the problems of H∞ and positive real con-
trol systems can be found in Safonov, Jonckheere, Verma,
and Limebeer (1987), Doyle, Glover, Khargonekar,
and Francis (1989), Haddad and Bernstein (1991), Sun,
Khargonekar, and Shim (1994), and Shim (1996). Con-
trol of uncertain linear systems with l2-bounded struc-
tured uncertainty satisfying H∞ and passivity criteria
has been tackled in Petersen (1987) and Khargonekar,
Petersen, and Zhou (1990). More recent development
involving the quadratic dissipative control for linear sys-
tems problem has been tackled in Xie, Xie, and De Souza
(1998) and Tan, Soh, and Xie (2000).

In this paper, we further consider the problem of opti-
mal, robust and resilient LMI control of discrete-time
nonlinear systems with general performance criteria. The
controller is robust for model uncertainties and resilient
for gain perturbations. As for the uncertain nonlinear sys-
tems, we consider a general form of l2-bounded uncertainty
description, without any standard structure, incorporating
commonly used types of uncertainty, such as norm-bounded
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and positive real uncertainties as special cases. The pur-
pose behind this novel approach is to convert a nonlinear
system control problem into a convex optimization prob-
lem which is solved by state-dependent LMI. The recent
development in convex optimization provides very effi-
cient algorithms for solving LMIs. If a solution can be
expressed in an LMI form, then there exist optimization
means providing efficient global numerical solutions (Boyd,
Ghaoui, Feron, & Balakrishnan, 1994). Therefore if the
LMI is feasible, then the LMI control technique provides
asymptotically stable solutions satisfying the general per-
formance criteria. We further propose to employ general
performance criteria to design the controller guarantee-
ing the quadratic sub-optimality with inherent stability
property in combination with dissipativity type of distur-
bance attenuation. The general performance criteria is a
generalization of the NLQR, H∞, positive realness and
sector-bounded constraint. The results of the paper unify
existing results on NLQR, H∞ and positive real control
and provide a novel robust control design. The paper is
organized as follows: Section 2 covers the general perfor-
mance criteria including the performance of NLQR, H∞,
positive realness and sector-bounded constraint. Section 3
presents state-dependent LMI-based control for nonlinear
systems achieving general performance criteria. In the final
section, an inverted pendulum on a cart system is used to
demonstrate the effectiveness and robustness of the new
approach.

2. System model and general performance criteria
The following notation is used in this work: �+ stands
for the set of non-negative real numbers, �n stands for
the n-dimensional Euclidean space. xk ∈ �n denotes n-
dimensional real vector with norm ‖xk‖ = (xT

k xk)
1/2, where

(·)T indicates transpose. �n×m is the set of n × m real
matrices. In is the n × n identity matrix. A ≥ 0 for a sym-
metric matrix denotes a positive semi-definite matrix. l2 is
the space of finite-dimensional vectors with finite energy:∑∞

k=0 ‖xk‖2 < ∞. The inner product on �n is defined by
〈u, v〉 = ∑n

i=1 uivi.
Consider the nonlinear dynamical system and perfor-

mance output equation as following:

xk+1 = f (xk , uk , wk)

= (A(xk) + �A(xk)) xk + (B(xk) + �B(xk)) uk

+ (E(xk) + �E(xk)) wk

= (A + �A) xk + (B + �B) uk + (E + �E) wk , (1)

zk = g (xk , uk) = Ck · xk + Dk · wk , (2)

where xk ∈ �n is the state of the dynamical system; uk ∈
�m the applied input; wk ∈ �p the l2 type of distur-
bance; zk ∈ �r the performance output; f , g the nonlinear
vector functions; Ak ∈ �n×n, Bk ∈ �n×m, Ek ∈ �n×p, Ck ∈
�r×n and Dk ∈ �r×p the state-dependent coefficient (SDC)

matrices and �A ∈ �n×n, �B ∈ �n×m and �E ∈ �n×p the
state-dependent uncertainty matrices.

Note that the discrete-time, state feedback, input affine
and autonomous nonlinear system must be fully con-
trollable and state observable. The way of finding the
nominal system parameter matrices Ak , Bk , Ek , Ck and Dk
is a process of factorizing the nonlinear system into a
linear-like structure which contains SDC matrices, so-
called mathematical factorization. The l2-bounded per-
turbation matrices �A, �B and �E are the unstructured
uncertainty matrices, which can also be time-varying state-
dependent matrices. Without any standard structures, the
uncertainty matrices provide us a general framework to
compensate for effect of the unmodeled system dynamics,
external disturbances, perturbation and noise. The com-
monly used types of uncertainty, such as norm-bounded,
structured uncertainties and positive real uncertainties are
special cases of the uncertainty matrices description in this
work.

It is assumed that the full state is available for feedback
and the state feedback control input is given by

uk = (K(xk) + �k(xk)) xk = (Kk + �k) xk , (3)

where there is additive (possibly state dependent) perturba-
tion on the feedback gain.

Introducing the quadratic energy supply function E
associated with the system equations, defined by Hill and
Moylan (1976, 1980) as

E (zk , wk) = 〈zk , Qzk〉 + 2 〈zk , Swk〉 + 〈wk , Rwk〉 , (4)

where Q ∈ �r×r , S ∈ �r×p, R ∈ �p×p are the chosen weigh-
ing matrices. Next, from the definition of dissipativity, we
have

Definition 2.1 Given matrices Q ∈ �r×r , S ∈ �r×p, R ∈
�p×p with Q, R symmetric, the system (1) and (2) with
energy function (4) is said to be (Q, S, R) dissipative if for
some real function β(·) with β(0) = 0,

E(zk , wk) + β(x0) ≥ 0, ∀w ∈ l2, ∀k ≥ 0. (5)

Furthermore, if for some scalar α > 0,

E(zk , wk) + β(x0) ≥ α 〈wk , wk〉 , ∀w ∈ l2, ∀k ≥ 0. (6)

The system (1) and (2) is said to be strictly (Q, S, R)

dissipative.

Theorem 1 Consider the quadratic function Vk = xT
k Pkxk

> 0, matrices Q ∈ �r×r , S ∈ �r×p, R ∈ �p×p with Q, R
symmetric, M ∈ �n×n, M > 0, N ∈ �m×m, N > 0 with M ,
N symmetric, the system (1) and (2) control will achieve
mixed NLQR and dissipative performance if the following
condition holds:

Vk+1 − Vk + xT
k Mxk + uT

k Nuk

− (
zT

k Qzk + 2zT
k Swk + wT

k Rwk
)

< 0, ∀k ≥ 0. (7)
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Proof Note that upon summation over k , we have

N−1∑
i=0

[
zT

k Qzk + 2zT
k Swk + wT

k Rwk
]

>

N−1∑
i=0

[
xT

k Mxk + uT
k Nuk

] + VN − V0. (8)

Let β (x0) = V0, Vk(x) = xT
k Pkxk , VN ≥ 0, Equation (8)

implies

N−1∑
i=0

(
zT

k Qzk + 2zT
k Swk + wT

k Rwk
) + β (x0) > 0, (9)

which is the condition for (Q, S, R) dissipativity. �

Remark 1 By adding the terms xT
k Mxk + uT

k Nuk , we
include the NLQR control performance into the original
(Q, S, R) dissipative criteria.

Remark 2 Note that both H∞ and passivity are special
cases of (Q, S, R) dissipativity.

The special cases are summarized as follows:

Case 1 Q = −I , S = 0, R = γ 2I , the strict (Q, S, R) dissi-
pativity reduces H∞ design (Doyle et al., 1989). The overall
control design satisfies mixed NLQR–H∞ performance.

Case 2 Q = 0, S = I , R = 0, the strict (Q, S, R) dissipa-
tivity reduces to strict positive realness (Sun et al., 1994).
The overall control design satisfies mixed NLQR–strict
positive realness performance.

Case 3 Q = −θ I , S = (1 − θ) I , R = θγ 2I , the strict (Q,
S, R) dissipativity reduces to mixed H∞ and positive real
performance design, when θ ∈ (0, 1). The overall control
design satisfies mixed NLQR–H∞–positive real perfor-
mance.

Case 4 Q = −I , S = 1
2 (K1 + K2)

T , R = − 1
2

(
KT

1 K2

+KT
2 K1

)T, where K1 and K2 are constant matrices of appro-
priate dimensions, the strict (Q, S, R) dissipativity reduces
to a sector-bounded constraint (Gupta & Joshi, 1994).
The overall control design satisfies mixed NLQR–sector-
bounded constraint performance.

Before introducing the main result of the paper, the
following model of uncertainties is introduced.

Assumption 1 The following general form of l2-bounded
unstructured uncertainties is considered:

�A�T
A ≤ γAI ,

�B�T
B ≤ γBI ,

�E�T
E ≤ γEI ,

�K�T
K ≤ γK I , (10)

for ∀xk ∈ �n and k ≥ 0.

3. State-dependent LMI control
Lemma 1

ABT + BAT ≤ αAAT + α−1BBT. (11)

This can be proven easily by considering(
α1/2A − α−1/2B

) (
α1/2A − α−1/2B

)T ≥ 0. (12)

Also, by choosing A and B matrices as A =[
aT

0

]
and B =

[
0
bT

]
, we have

[
0 aTb

bTa 0

]
≤

[
ζaTa 0

0 ζ−1bTb

]
. (13)

The following theorem summarizes the main results of
the paper:

Theorem 2 Given the system equation (1), performance
output (2) and control input (3), if there exist matrices Xk =
P−1

k > 0 and Yk for all k > 0, such that the following state-
dependent LMI holds:

If Q < 0,

⎡
⎢⎢⎢⎢⎢⎢⎣

Xk ϒ12 ϒ13 Y T
k ϒ15 Xk

∗ ϒ22 ET 0 0 0
∗ ∗ ϒ33 0 0 0
∗ ∗ ∗ ϒ44 0 0
∗ ∗ ∗ ∗ ϒ55 0
∗ ∗ ∗ ∗ ∗ ϒ66

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0, (14)

If Q = 0,

⎡
⎢⎢⎢⎢⎣

Xk ϒ12 ϒ13 Y T
k Xk

∗ ϒ22 ET 0 0
∗ ∗ ϒ33 0 0
∗ ∗ ∗ ϒ44 0
∗ ∗ ∗ ∗ ϒ66

⎤
⎥⎥⎥⎥⎦ > 0,

(15)

where

ϒ12 = XkCT
k QDk + XkCT

k S,
ϒ13 = XkAT

k + Y T
k BT

k ,
ϒ15 = XkCT

k ,
ϒ22 = DT

k S + STDk + DT
k QDk + R + I ,

ϒ33 = Xk + (2γB + γE + 1) I + BkBT
k ,

ϒ44 = N −1,
ϒ55 = −Q−1,
ϒ66 = M−1 − (γA + 2γK )−1 I .

(16)

Then the inequality (7) to guarantee mixed NLQR and
dissipative performance is satisfied. The nonlinear feedback
control gain is given by

Kk = Yk · Pk . (17)
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Proof In the proof below, the time and state argument will
be dropped for notational simplicity. By applying system
and performance output equations (1) and (2), and state
feedback input equation (3), the performance index can be
formed as follows:

{xT
k [Ak + �A + (Bk + �B)(Kk + �K )]T + wT

k [Ek + �E]T}
· Pk+1 · {[Ak + �A + (Bk + �B)(Kk + �K )]xk

+ [Ek + �E]wk} − xT
k Pkxk

+ xT
k Mxk + xT

k [Kk + �K ]TN [Kk + �K ]xk

− [Ckxk + Dwk ]TQ[Ckxk + Dwk ] − 2[Ckxk + Dkwk ]T

Swk − wT
k Rwk < 0. (18)

By grouping the terms, we have

[
xT

k wT
k

]
	

[
xk wk

]T = [
xT

k wT
k

] [
	11 	12
∗ 	22

] [
xk
wk

]

< 0, (19)

where

	11 = {(Ak + �A) + (Bk + �B) (Kk + �K )}T · Pk+1

· {(Ak + �A) + (Bk + �B) (Kk + �K )}
+ M − Pk + [Kk + �K ]T N [Kk + �K ] − CT

k QCk ,

	12 = {(Ak + �A) + (Bk + �B) (Kk + �K )}T

Pk+1 [Ek + �E] − CT
k QDk − CT

k S,

	22 = [Ek + �E]T Pk+1 [Ek + �E] − DT
k QDk

− (
DT

k S + STDk
) − R. (20)

Denote the following terms:

A = (Ak + �A) + (Bk + �B) (Kk + �K ) ,

K = Kk + �K ,

E = Ek + �E . (21)

Then Equation (19) is equivalent to[
ATPk+1A − Pk ATPk+1E

∗ ETPk+1E

]

+
[
M +KTNK−CT

k QCk −CT
k QDk −CT

k S

∗ −DT
k S −STDk −DT

k QDk −R

]

< 0. (22)

By adding and subtracting Pk term, we have[
AT

ET

]
(Pk+1 − Pk + Pk)

[
A E

] −
[

I
0

]
Pk

[
I 0

]

+
[
M +KTNK−CT

k QCk −CT
k QDk −CT

k S

∗ −DT
k S −STDk −DT

k QDk −R

]

< 0. (23)

Imposing the property Pk+1 ≤ Pk , the sufficient condi-
tion for Equation (23) is given as follows:

[
AT

ET

]
Pk

[
A E

] −
[

I
0

]
Pk

[
I 0

]

+
[
M +KTNK−CT

k QCk −CT
k QDk −CT

k S

∗ −DT
k S −STDk −DT

k QDk −R

]

< 0. (24)

Equivalently, we obtain

[
Pk −M −KTNK+CT

k QCk CT
k QDk +CT

k S

∗ DT
k S +STDk +DT

k QDk +R

]

−
[

AT

ET

]
Pk

[
A E

]
> 0. (25)

Applying the Schur complement (Boyd et al., 1994), we
have

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
Pk − M − KTNK

+CT
k QCk

)
CT

k QDk + CT
k S AT

∗
(

DT
k S + STDk

+DT
k QDk + R

)
ET

∗ ∗ P−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

> 0.

(26)
Taking Q < 0 (the case where Q = 0 will be con-

sidered later), we apply the Schur complement twice to
Equation (26), then

⎡
⎢⎢⎢⎢⎢⎣

Pk − M CT
k QDk + CT

k S AT KT CT
k

∗ DT
k S + STDk + DT

k QDk + R ET 0 0
∗ ∗ P−1

k 0 0
∗ ∗ ∗ N −1 0
∗ ∗ ∗ ∗ −Q−1

⎤
⎥⎥⎥⎥⎥⎦

> 0. (27)

Let Xk = P−1
k , by pre- and post-multiplying the above

matrix inequality by diag
{
Xk I I I I

}
, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk − XkMXk XkCTQDk + XkCTS XkAT XkKT XkCT
k

∗
(

DT
k S + STDk+
DT

k QDk + R

)
ET 0 0

∗ ∗ Xk 0 0
∗ ∗ ∗ N −1 0
∗ ∗ ∗ ∗ −Q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (28)
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By applying the Schur complement again, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk XkCT
k QDk + XkCT

k S XkAT XkKT XkCT Xk

∗
(

DT
k S + STDk+
DT

k QDk + R

)
ET 0 0 0

∗ ∗ Xk 0 0 0
∗ ∗ ∗ N −1 0 0
∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0 (29)

Denote

Yk = KkXk (30)

By replacing the variables with Equation (21) and apply-
ing Lemma 1 and Assumption 1, the sufficient condition for
inequality (29) is given below

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk

(
XkCT

k QDk+
XkCT

k S

) (
XkAT

k +
Y T

k BT
k

)
XkKT

k XkCT
k Xk

∗
(

DT
k S + STDk+
DT

k QDk + R

)
ET

k 0 0 0

∗ ∗ Xk 0 0 0
∗ ∗ ∗ N −1 0 0
∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ M−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣


11 0 0 0 0 0
∗ 
22 0 0 0 0
∗ ∗ 
33 0 0 0
∗ ∗ ∗ α−1

1 I 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0 (31)

where


11 = (α1γK + α1γA + α4γK ) XkXk + α2Y T
k Yk ,


22 = α2I ,


33 = α−1
1 γBI + α−1

2 (γB + γE) I + α−1
3 I + α−1

4 BkBT
k .
(32)

Finally, by applying the Schur complement twice, we
have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xk ϒ12 ϒ13 Y T
k ϒ15 Xk

∗ ϒ22 ET 0 0 0
∗ ∗ ϒ33 0 0 0
∗ ∗ ∗ ϒ44 0 0
∗ ∗ ∗ ∗ ϒ55 0
∗ ∗ ∗ ∗ ∗ ϒ66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

> 0, (33)

where

ϒ12 = XkCT
k QDk + XkCT

k S,

ϒ13 = XkAT
k + Y T

k BT
k ,

ϒ15 = XkCT
k ,

ϒ22 = DT
k S + STDk + DT

k QDk + R + α2I ,

ϒ33 = Xk + α−1
1 γBI + α−1

2 (γB + γE) I + α−1
3 I

+ α−1
4 BkBT

k ,

ϒ44 = N −1 + (
α−1

1 − α−1
2

)
I ,

ϒ55 = −Q−1,

ϒ66 = M−1 − (α1γA + α2γK + α4γK )−1 I . (34)

Note that Equation (33) is derived under the condition
that Q < 0. However, when strict positive realness criteria
are chosen for control design, then condition Q = 0 must
be satisfied. In this case, matrix inequality (33) should be
replaced by⎡

⎢⎢⎢⎢⎣
Xk ϒ12 ϒ13 Y T

k Xk
∗ ϒ22 ET 0 0
∗ ∗ ϒ33 0 0
∗ ∗ ∗ ϒ44 0
∗ ∗ ∗ ∗ ϒ66

⎤
⎥⎥⎥⎥⎦ > 0. (35)

Since positive constants α1, . . . , α5 are arbitrary, choos-
ing all of them as 1, we obtain Equations (14) and (15).
Therefore, if LMI e (14) or (15) holds under different condi-
tions on Q, the inequality (7) is satisfied. By solving the LMI
at each step, the values of Pk , Yk can be obtained. The non-
linear feedback control gain can be found by Kk = Yk · Pk .
This concludes the proof. �

Remark 3 At this point, it is to be noted that other choices
of constants α1, ..., α4 are possible and can be tried if the
value 1 for all these constants does not work.

4. Application to the inverted pendulum on a cart
We test the novel robust and resilient state-dependent LMI
approach with the inverted pendulum on a cart (Wang et al.
2010) to compare the performance of different controllers.
Using the Euler–Lagrange Equation technique, the com-
plete equations of motion for the inverted pendulum on a
cart are found to be

(M + m)ẍ + bẋ + mLθ̈ cos(θ) − mLθ̇ sin(θ) = F ,

(I + mL2)θ̈ + mgL sin(θ) + mLẍ cos(θ) = 0. (36)

The following system parameters are assumed

M = 0.5 kg, m = 0.5 kg, b = 0.1N s/m, L = 0.3 m,

I = 0.06 kg m2.

Sampling time : T = 0.01 s.
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Denote the following state variables:

x1,k = x(kT ), x2k = ẋ(kT ), x3k = θ(kT ), x4k = θ̇ (kT ).

The following initial conditions are assumed:

x1 = 1, x2 = 0, x3 = π/4, x4 = 0.

The following design parameters are chosen to satisfy
different mixed criteria:

Mixed NLQR–H∞design (predominant NLQR)

C = [
0.01 0.01 0.01 0.01

]
, D = [0.01], M = I4,

N = 1, Q = −1, S = 0, R = 5.

Mixed NLQR–H∞ design (predominant H∞)

C = [
1 1 1 1

]
, D = [1], M = 0.01 × I4, N = 0.01,

Q = −1, S = 0, R = 5.

Mixed NLQR–H∞–positive real design (NLQR passiv-
ity)

C = [
1 1 1 1

]
, D = [1], M = I4, N = 1,

Q = −0.01,

S = 0.5, R = 0.01.

All of the above-mixed criteria control performance
results are shown in the Figures 1–5, in comparison with
the traditional LQR technique based on linearization. From
these figures, we find that the novel state-dependent LMI
control has better performance compared with the tradi-
tional LQR technique based on linearization. Especially,
Figures 1 and 2 show that the traditional LQR technique
loses control of the position and velocity of the cart, respec-
tively, while the state-dependent LMI approach effectively
stabilizes the position and the velocity of the cart. It should
also be noted that predominant NLQR and predominant
H∞ control techniques lead to faster response times than
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Figure 1. Position trajectory of the inverted pendulum.
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Figure 2. Velocity trajectory of the inverted pendulum.
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Figure 3. Angle “theta” trajectory of the inverted pendulum.
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Figure 4. Angular velocity trajectory of the inverted pendulum.

the NLQR-passivity technique. We observe that predomi-
nant H∞ control shows the fastest response. Figure 5 shows
that the highest magnitude of control is needed by the
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Figure 5. Control input.

predominant H∞ control and the lowest control magnitude
is needed by the linearization-based LQR technique.

5. Conclusions
This paper has addressed discrete-time nonlinear control
system design with general NLQR and quadratic dissipative
criteria to achieve asymptotic stability, quadratic optimal-
ity and strict quadratic dissipativeness. For systems with
unstructured but bounded uncertainty, the LMI-based suffi-
cient conditions are derived for the control solution. These
results unify the existing results on SDRE control, robust
H∞ and positive real control. The relative weighting matri-
ces of these criteria can be achieved by choosing different
coefficient matrices. The optimal control can be obtained
by solving LMI at each time step. The inverted pendulum
on a cart is used as an example to demonstrate the effective-
ness and robustness of the proposed method. The numerical
simulation studies show that the proposed method provides
a satisfactory alternative to the existing nonlinear control
approaches.
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