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This paper deals with the finite-time stabilization of a class of nonlinear systems. Based on the backstepping technique, a new
recursive procedure is proposed which entwines the choice of the Lyapunov function with the design of the feedback control
laws. The main efficiency of the proposed technique is due to adding a dummy state variable to the state vector. The dynamic
equation of this state variable has a special structure which makes the design procedure of the finite-time controller more
feasible. The designed controller guarantees the stabilization of the closed-loop system in a finite time. Computer simulations
reveal the efficiency of the proposed technique and also verify the theoretical results.
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1. Introduction
The classical stability concepts, such as Lyapunov stability,
asymptotical stability and bounded input–bounded output
(BIBO) stability, study the stability of systems in an infi-
nite time-interval. The concept of finite-time stabilization
naturally arises from finite-time optimal control problems
(Bhat & Bernstein, 2000) and deals with the dynamical
systems whose operation time is limited to a fixed finite
time-interval. From practical considerations, for such sys-
tems which should operate only over a finite time-interval,
finite-time stability is the only meaningful description of
stability. Additionally, when the classical concepts of stabil-
ity require that system states be bounded, the bound values
are not prescribed while the finite-time stability requires
prescribed bounds on system states (Dorato, 2006). It also
should be noted that the term finite-time stability has been
used with different meanings in the literature. In this paper,
this definition is used to describe the dynamical systems
whose states approach to zero in a finite time (Hong, Wang,
& Xi, 2005).

Recently, finite-time control of nonlinear systems has
received increasing attentions (Amato, Ariola, & Dorato,
2001; Guo & Vincent, 2010; Honga, Xub, & Huangb,
2002; Zhu, Shen, & Li, 2009). Finite-time stabilization
of higher-order systems (Hong, 2002), lower-triangular
systems (Hong, Wang, & Cheng, 2006; Huang, Lin, &
Yang, 2005; Pongvuthithum, 2009; Zhanga, Fengb, & Sunb,
2012), switched systems (Orlov, 2005), non-autonomous
systems (Moulay & Perruquetti, 2008), time-delay sys-
tem (Moulay, Dambrine, Yeganefar, & Perruquetti, 2008)
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and finite-time stabilization using output feedback (Hong,
Huang, & Xu, 2001), dynamic gain (Praly & Jiang, 2004),
backstepping (Reichhartinger & Horn, 2011) and control
vector Lyapunov function (Nersesov, Haddad, & Hui, 2008)
have been developed in the literature. Also, finite-time con-
trol via the terminal sliding mode (Chen, Wu, & Cui, 2013;
Chuan-Kai, 2006; Feng, Yu, & Man, 2002; Lu, Chiu, &
Chen, 2010) and fast terminal sliding mode (Hao, Lihua,
& Zhong, 2013) has been studied, extensively. In all of
these methods, in addition to structural limitations in each
approach, the design procedure of the finite-time controller
is almost complicated.

This paper presents a simple design method for the
finite-time stabilization of a class of nonlinear systems. In
the proposed method, first a dummy state variable is aug-
mented to the state vector. The dynamic equation of this
state variable has a special structure which makes the design
procedure of the finite-time control law more feasible. Then,
based on the backstepping technique, a recursive procedure
that entwines the choice of a Lyapunov function with the
design of the feedback control law is proposed. In this pro-
cedure, the controller design for the whole system breaks
into a sequence of design problems for some lower order
systems. In order to show the great positive effects of adding
the dummy state variable, a design example is considered.
The finite-time stabilizing controller is designed with and
without adding the dummy state variable to the equations
of the design example. Finally, simulation results of the
closed-loop system verify the theoretical result and also
reveal the great improvements, due to adding the dummy
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state variable, on the stability of the closed-loop system
and also the transient responses of the state variables and
the control input.

The remainder of the paper is arranged as follows. First,
the preliminaries about the finite-time stability are given in
Section 2. In Section 3, the design procedure of the finite-
time stabilizing control law is explained in detail. Next,
in Section 4, the proposed approach is applied to a design
example. Finally, conclusions are made in Section 5.

2. Preliminaries
Consider the following nonlinear system:

ẋ = f (x), x(t0) = x0, (1)

where x ∈ U ⊂ Rn(0 ∈ U ) is the state vector, f : U → Rn

is a continuous vector function and f (0) = 0.

Definition 1 The equilibrium point (x = 0) of system (1)
is finite-time stable, if it is the Lyapunov stable and finite-
time convergent. In other words, for every initial condition
x(0) ∈ U/{0}, there is a settling time T > 0 such that
limt→T x(t) = 0 and x(t) = 0 for all t ≥ T (Hong et al.,
2005).

Lemma 1 Suppose that there exists a continuously differ-
entiable function V (x) : U → R, and real numbers c > 0
and 0 < α < 1, such that,

V (0) = 0,

V (x) is positive definite on U,

V̇ (x) ≤ −cV α(x), ∀x ∈ U . (2)

Then the settling time T (refer to Definition 1) exists and
satisfies,

T (x0) ≤ V (x0)
1−α

c(1 − α)
, (3)

where V (x0) is the initial value of V (x).

Proof See (Bhat & Bernstein, 2000) �

Lemma 2 For real numbers li, i = 1, 2, . . . , n and every
α ∈ (0, 1), the following inequality holds:

(|l1| + · · · + |ln|)α ≤ |l1|α + · · · + |ln|α . (4)

Proof See (Yu, Yu, Shirinzadeh, & Man, 2005) �

3. Design of the finite-time controller
Consider the following nonlinear system which is given in
the strict-feedback form:

ẋ1 = f1(x1) + g1(x1)x2,

...

ẋn−1 = fn−1(x1, x2, . . . , xn−1) + gn−1(x1, x2, . . . , xn−1)xn,

ẋn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u, (5)

where xi ∈ R(i = 1, . . ., n), u ∈ R and f1 to fn are continuous
functions which vanish at origin, and also over the domain
of interest, gi 	= 0 for i = 1, 2, . . . , n.

Moreover, consider a dummy state variable with the
following dynamical equation:

ẋ0 = −xβ

0 + g0(x0)x1, (6)

where g0 	= 0 and β = (2q − p)/p. (where p and q are
positive odd integers and q < p < 2q).

The approach of considering a new state variable x0
increases the dimension of state vector; however, the struc-
ture of Equation (6) is such that x0 is finite-time stable (in
the absence of x1) and adding this equation to state-space
equations (5) makes the design procedure of the finite-
time controller more feasible. Therefore, the augmented
state-space equations are as follows:

ẋ0 = −xβ

0 + g0(x0)x1,

ẋ1 = f1(x1) + g1(x1)x2,

...

ẋn−1 = fn−1(x1, x2, . . . , xn−1) + gn−1(x1, x2, . . . , xn−1)xn,

ẋn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)u. (7)

The goal is to design a finite-time stabilizing control law
u for system (7). In order to show the design procedure, let
us start with the following special case of Equations (7) and
then gradually complete it:

ẋ0 = −xβ

0 + g0(x0)x1, (8a)

ẋ1 = u. (8b)

Equation (8a) is finite-time stable for x1 = ϕ1(x0) = 0.
To show this point, consider V0(x0) = 0.5x2

0 as a Lyapunov
function candidate for equation ẋ0 = −xβ

0 . Then,

V̇0 = ∂V0

∂x0
ẋ0

= −xβ+1
0 = −2(β+1)/2(

1
2

x2
0)

(β+1)/2

= −2(β+1)/2V (β+1)/2
0 = −cV α

0 , (9)

where α = (β + 1)/2 = q/p ∈ (0, 1) and c = 2(β+1)/2 =
2α > 0. Therefore, according to Lemma 1, Equation (8a)
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is finite-time stable with x1 = 0. Now, the finite-time sta-
bilizing control law u will be designed for system (8). For
this purpose, consider the following Lyapunov function:

V1(x0, x1) = V0(x0) + |x1|. (10)

Therefore,

V̇1 = ∂V0

∂x0
(−xβ

0 + g0x1) + sgn(x1)u

= −cV α
0 + ∂V0

∂x0
g0x1 + sgn(x1)u

= −cV α
0 + g0x0x1 + sgn(x1)u. (11)

Now, choosing,

u = −g0|x1|x0 − cxα
1 (12)

and considering that sgn(x1)xα
1 = |x1|α (because α = q/p

and q and p are odd integers), thus,

V̇1 = −cV α
0 − c|x1|α . (13)

According to Lemma 2, V α
1 = (V0 + |x1|)α ≤ V α

0 +
|x1|α , thus,

V̇1 = −cV α
0 − c|x1|α ≤ −cV α

1 . (14)

Therefore, according to Lemma 1, the closed-loop sys-
tem (8) is finite-time stable with the proposed control
law (12). Now, if the following more general structure is
considered:

ẋ0 = −xβ

0 + g0(x0)x1

ẋ1 = f1(x1) + g1(x1)u (15)

Then the input transformation u = (w1 − f1)/g1 will
reduce Equation (15) to the following equations:

ẋ0 = −xβ

0 + g0(x0)x1,

ẋ1 = w1, (16)

where according to above discussion, Equations (16) can be
stabilized in a finite time by w1 = −g0|x1|x0 − cxα

1 . There-
fore, the finite-time stabilizing controller u for system (15)
is as follows:

u = ϕ2(x0, x1)

= 1
g1

(−g0|x1|x0 − cxα
1

︸ ︷︷ ︸

w1

−f1). (17)

The above discussions are summarized in the following
Lemma.

Lemma 3 Considering system (15), the state feedback
control law (17) stabilizes the origin of Equation (15) in

a finite time and the corresponding Lyapunov function is
V1(x0, x1) = 0.5x2

0 + |x1|.
Now, consider the following third-order system:

ẋ0 = −xβ

0 + g0(x0)x1,

ẋ1 = f1(x1) + g1(x1)x2,

ẋ2 = f2(x1, x2) + g2(x1, x2)u. (18)

After one step of backstepping, the first two equa-
tions in Equation (18), with x2 as the control input, can
be globally stabilized in a finite time by x2 = ϕ2(x0, x1)

(where ϕ2(x0, x1) is given in Equation (17)) and V1(x0, x1) =
0.5x2

0 + |x1| is the corresponding Lyapunov function. To
backstep, apply the following change of variables z2 =
x2 − ϕ2. Thus, state-space equations (18) are transformed
to the following equations:

ẋ0 = −xβ

0 + g0x1,

ẋ1 = f1 + g1ϕ2 + g1z2,

ż2 = f2 + g2u

− ∂ϕ2

∂x0
(−xβ

0 + g0x1) − ∂ϕ2

∂x1
(f1 + g1ϕ2 + g1z2)

︸ ︷︷ ︸

−ϕ̇2

.

(19)

By the input transformation u = (w2 − f2 + ϕ̇2)/g2, one has

ẋ0 = −xβ

0 + g0x1,

ẋ1 = f1 + g1ϕ2 + g1z2,

ż2 = w2. (20)

Consider the following Lyapunov function for system (20),

V2(x0, x1, z2) = V1(x0, x1) + |z2|. (21)

Thus, V̇2 can be easily calculated as follows:

V̇2 = ∂V1

∂x0
(−xβ

0 + g0x1) + ∂V1

∂x1
(f1 + g1ϕ2)

+ ∂V1

∂x1
g1z2 + sgn(z2)w2. (22)

Since ϕ2 is previously designed such that ((∂V1/∂x0)

(−xβ

0 + g0x1) + (∂V1/∂x1)(f1 + g1ϕ2) ≤ −cV α
1 ), thus

V̇2 ≤ −cV α
1 + ∂V1

∂x1
g1z2 + sgn(z2)w2, (23)

Choosing,

w2 = −|z2|∂V1

∂x1
g1 − czα

2

= −|z2|sgn(x1)g1 − czα
2 , (24)

results in,
V̇2 ≤ −cV α

1 − c|z2|α . (25)
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Using Lemma 2 and the inequality (25) (similar to the
case of V1), it can be obtained that V̇2 ≤ −cV α

2 . Thus, the
following control law guarantees finite-time stabilizing of
system (18):

u = ϕ3(x0, x1, x2)

= 1
g2

(−|z2|sgn(x1)g1 − czα
2

︸ ︷︷ ︸

w2

+ϕ̇2 − f2), (26)

with the following Lyapunov function:

V2(x0, x1, x2) = 1
2

x2
0 + |x1| + |x2 − ϕ2|. (27)

Now, consider the following forth-order system:

ẋ0 = −xβ

0 + g0(x0)x1,

ẋ1 = f1(x1) + g1(x1)x2,

ẋ2 = f2(x1, x2) + g2(x1, x2)x3,

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)u. (28)

After two step of backstepping, the first three equa-
tions in Equation (28) can be globally stabilized in a finite
time by x3 = ϕ3(x0, x1, x2) (where ϕ3(x0, x1, x2) is given in

Equation (26)) and V2(x0, x1, x2) = 1
2

x2
0 + |x1| + |x2 − ϕ2|

is the corresponding Lyapunov function. To backstep, apply
the change of variables z3 = x3 − ϕ3. Similar to the previ-
ous case, the process can be repeated to obtain the finite-time
stabilizing control law for the system (28).

Ultimately, the backstepping method may be applied
in a systematic way to design the finite-time stabilizing
control law, u = ϕn(x0, x1, x2, . . . , xn) for state-space equa-
tions (7). If the proposed process be repeated n times, then
the corresponding Lyapunov function Vn(x0, x1, x2, . . . , xn)

for system (7) will be obtained as

Vn(x0, x1, x2, . . . , xn) = 1
2

x2
0 + |x1 − ϕ1| + |x2 − ϕ2|

+ · · · |xn − ϕn|,
where ϕ1 is zero function and the scalar functions ϕis
(i = 2, 3, . . . , n) should be computed in a backstepping pro-
cedure (similar to the proposed procedure in the design of
ϕ2 and ϕ3). Finally, the finite-time stabilizing control law
u = ϕn(x0, x1, x2, . . . , xn) will be achieved.

4. Design example
In this section, a design example is considered to show the
efficiency of the proposed method in the design of a finite-
time stabilizing controller and also to show the positive
effects of adding a dummy state variable to the system equa-
tions. For this purpose, the design of a finite-time stabilizing
control law is done by the proposed method once without

adding a dummy state variable and another time by adding
this state variable.

Consider the following state-space equations:

ẋ1 = x2
1 + x2,

ẋ2 = −x1 + u. (29)

4.1. First approach (without adding the dummy state
variable x0)

Consider the first state equation ẋ1 = x2
1 + x2. Choosing

x2 = ϕ(x1) = −x2
1 − xβ

1 , leads to the finite-time stabiliza-
tion of this equation with the Lyapunov function V1(x1) =
0.5x2

1, where V̇1(x1) = −xβ+1
1 = −cV α

1 . Set z = x2 − ϕ,
then,

ẋ1 = x2
1 + ϕ + z,

ż = −x1 + u − ϕ̇. (30)

By input transformation u = w + ϕ̇ + x1, one has

ẋ1 = x2
1 + ϕ + z,

ż = w. (31)

Choosing V2(x1, z) = V1(x1) + |z| as the Lyapunov func-
tion for Equation (31), then,

V̇2 = ∂V1

∂x1
(x2

1 + ϕ) + ∂V1

∂x1
z + sgn(z)w. (32)

Putting

w = −∂V1

∂x1
|z| − czα

= −x1|z| − czα , (33)

then V̇2 ≤ −cV α
2 . Therefore, the following control law

guarantees the finite-time stabilization of system (29):

u = w + ϕ̇ + x1

= x1 − x1|z| − czα + ∂ϕ

∂x1
(x2

1 + x2), (34)

where ϕ = −x2
1 − xβ

1 and z = x2 − ϕ = x2 + x2
1 + xβ

1 .

4.2. Second approach (adding the dummy state
variable x0)

After adding a dummy state variable with state equation (6)
to the equations (29), one has

ẋ0 = −xβ

0 + x1,

ẋ1 = x2
1 + x2,

ẋ2 = −x1 + u, (35)
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which has the same structure as state-space equations (18).
By substituting

g0 = 1, f1 = x2
1, g1 = 1

f2 = −x1, g2 = 1. (36)

And according to the proposed procedure in the previous
section and considering Equations (26) and (36), the finite-
time controller is as follows:

u = (−|z2|sgn(x1) − czα
2 + ∂ϕ2

∂x0
(−xβ

0 + x1)

+ ∂ϕ2

∂x1
(x2

1 + x2) + x1), (37)

whereϕ2 = −|x1|x0 − cxα
1 − x2

1 (refer to Equation (17)) and
z2 = x2 − ϕ2.

4.3. Computer simulations
The time responses of the state variables related to
designed control laws (34) and (37) (in the first and second
approaches) are shown in Figures 1 and 2. As it can be seen,
adding the dummy state variable has great improvements
on the transient response and settling time of the closed-
loop system. The time responses of control signals (34) and
(37), which are related to the first and second approaches,

Figure 1. Time responses of x1(t) in the first and second
approaches.

Figure 2. Time responses of x2(t) in the first and second
approaches.

Figure 3. Time responses of u(t) in the first and second
approaches.

respectively, are shown in Figure 3. As it is seen in Figure 3,
the time response of control law (34) is highly oscillating. In
fact, computer simulations show that the proposed idea in
adding the dummy state variable leads to a better transient
response, less settling time and less control effort.

5. Conclusions
In this paper, a new procedure was presented to design a
finite-time stabilizing controller. In the proposed method,
a dummy state variable with a finite-time stable dynamic
equation was added to the state vector. Then, based on
backstepping idea, a recursive procedure that interlaced
the choice of a Lyapunov function with the design of the
finite-time control law was proposed. Finally, by means of
computer simulations, the theoretical results were verified
and the great improvements due to adding the dummy state
variable on the stability of the closed-loop system and tran-
sient responses of state variables and the control input were
shown.
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