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Swarm systems have received increasing research attention in recent years and they can be found in many application areas as
diverse as unmanned vehicle formation systems, multi-robot systems, sensor networks, etc. Reliability and safety are important
issues in swarm systems, which can be improved by the fault diagnosis technology. In this paper, recent development of fault
diagnosis algorithms for swarm systems is reviewed. The description of swarm systems is given, followed by characteristics
of faults in swarm systems. Specially, faults in swarm systems are classified into topology faults and component faults.
Then fault diagnosis algorithms for swarm systems are classified according to their architectures, fault types and approaches,
respectively. Finally, several unsolved problems of fault diagnosis algorithms for swarm systems are highlighted.
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1. Introduction
Research on swarm systems has attracted much attention
in recent years. A swarm system is a system that consists
of multiple intelligent interconnected nodes and possesses
swarm capability. Swarm systems can be found in nature
and engineering areas. In nature, colonies, schools, flocks,
herd, crowds, and society are all examples of swarm sys-
tems. Nodes in natural swarm systems are able to make
better use of natural resources or escape from their ene-
mies in a better way than a single node. Inspired by natural
swarm systems, humans have designed many engineering
swarm systems such as unmanned vehicle formation sys-
tems, multi-robot systems, sensor networks, etc. to achieve
complex assignments. For instance, an unmanned airplane
formation system is able to search survivors or detect ene-
mies in larger areas than a single unmanned airplane (Miller
2006). Multi-robot systems are capable of providing service
to patients in hospitals in a collaborative mode (Barea et al.
2009). Compared with a single sensor, wireless sensor net-
works have the ability to measure environment parameters
in a cheaper and more reliable way (Chong & Kumar, 2003).

A swarm system consists of nodes and the topology of
nodes. The main characteristics of a swarm system are intel-
ligence of nodes, interconnection among nodes and swarm
intelligence. The intelligence of nodes means that nodes
can process data by themselves. The interconnection among
nodes means that nodes are able to exchange messages
with other nodes in a swarm system. The swarm intelli-
gence is achieved by the collaboration and cooperation of
nodes in a swarm system. Sensors in swarm systems possess
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more functions than those in a single dynamic system. In
swarm systems, sensors are classified into two categories,
i.e. the link-sensor and the node-sensor. The former is able
to measure the relative states between neighbor nodes. The
latter is able to measure the states of the nodes where it is
installed. This classification of sensors is helpful to study
the problems in swarm systems and has never been men-
tioned before to our knowledge. The interconnection among
nodes can be implemented in two ways, i.e. communication
by which some information of nodes can be transmitted and
link-sensors by which relative states between nodes can be
measured.

Many issues on swarm systems have been addressed.
Behaviors of natural swarm systems were investigated in
Reynolds (1987), Toner and Tu (1998), and Nagy, Akos,
Biro, and Vicsek (2010). In engineering areas, many results
about swarm systems have also been reported in recent
years. Five different formation flying control schemes were
presented in Scharf, Hadaegh, and Ploen (2003, 2004).
Consensus problems of single integral and double integral
multi-agent systems were addressed in Cheng, Hou, Tan,
and Wang (2011), Hu and Lin (2010) and Cheng, Wang,
Hou, Tan, and Cao (2012). A control algorithm of swarm
systems was proposed in Li, Duan, Xie, and Liu (2012),
Wang, Cheng et al. (2011), and Chang, Chen, Chang, and
Tao (2010). However, consensus algorithms and control
schemes were achieved under the assumption of the nor-
mal operation of systems in the aforementioned literature.
Faults have significant influences on the normal operation of
a swarm system. The reliable operation of a swarm system
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Figure 1. Leader–follower robots formation.

highly depends on the fault diagnosis algorithm which plays
a critical role in detecting and isolating faults. Though fault
diagnosis for swarm systems has been developed for many
years, results on this research topic are very limited.

In this paper, the recent progress on fault diagnosis for
swarm systems is surveyed. In Section 2, characteristics
of faults in swarm systems are presented and classifica-
tion for faults in swarm systems is proposed. In Section 3,
we classify the fault diagnosis algorithms into different
sorts according to three different criteria, respectively. In
Section 4, several issues on fault diagnosis for swarm
systems are highlighted.

2. Faults in swarm systems
Relationship between faults in different nodes is intricate
in a swarm system. The coupling of node states is the main
reason for the intricacy. Fault symptoms are thus transferred
among neighbor nodes. For example, in a leader–follower
robots formation as shown in Figure 1, a fault in node 2
will change the trajectory of node 2 and the local followers,
which means that the fault symptom is transferred from
node 2 to node 4 and node 5.

Faults in swarm systems can be classified into two types
according to their influences. If a fault changes the topology,
then the fault is termed as a topology fault. If a fault only
affects actuators, node-sensors, or controllers of a node and
does not change the system topology, the fault is termed as a
component fault. Main examples of topology faults are com-
munication link faults, link-sensor faults, and intrusions.
Links between different nodes are broken and data are lost
when the communication link faults happen. When an intru-
sion occurs in a swarm system, a node is lost or controlled
by other nodes that do not belong to the system. Examples
of component faults are actuator faults, node-sensor faults,
and controller faults in nodes where they are installed.

3. The classification of fault diagnosis algorithms
A lot of issues need to be considered in the design of fault
diagnosis algorithms for a swarm system. The architecture
of an algorithm, faults which an algorithm isolates, and
approaches on which a fault diagnosis algorithm is based

Figure 2. Centralized architecture.

are the top three factors that ought to be considered before
designing a fault diagnosis algorithm for a swarm system.

3.1. Architecture
Some effective architectures of fault diagnosis algorithms
for swarm systems have been proposed. These architec-
tures can be divided into three categories, the centralized
architecture where algorithms operate in only one node,
the hierarchical architecture where algorithms are imple-
mented in different layers, and the distributed architecture
where algorithms are allocated in all nodes.

3.1.1. Centralized architecture
Figure 2 depicts an overview of the centralized architecture
of a fault diagnosis algorithm for a swarm system. Cen-
tralized fault diagnosis algorithms are installed in only one
node of a swarm system or a virtual node which is not in
the swarm system, for example, a base station. The node
where the algorithm is installed is called the central node.
It has to know the structure of the whole system in a cen-
tralized fault diagnosis algorithm. The other nodes are not
able to perform self-diagnosis and they only send necessary
messages to the central node, subsequently the central node
can perform fault diagnosis for the whole system. Some
examples of centralized fault diagnosis algorithms are as
follows.

In Micalizio, Torasso, and Torta (2006), a centralized
supervisor in a virtual node was designed to achieve the
on-line monitoring and diagnosis for a multi-robot sys-
tem, where a team of robots provided service to patients.
It consisted of an on-line monitoring module, sensors, and
a diagnostic interpretation module. The monitoring module
was used to receive information from robots. Sensors were
used to track the status of the robots and to measure par-
tial environment variants. Then the diagnostic interpretation
module explained the abnormal behaviors of the system
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by exploiting a communicating automaton model of the
system.

A centralized monitoring system was developed to
detect malfunctions of robots in Wang, Shang, and Sun
(2011) based on a back-propagation neural-network detec-
tor. The neural-network detector was trained using both
positive and negative examples. The monitoring system
collected data on positions and any formation errors of
each robot to evaluate the working performance in terms
of current and past states.

In Meskin and Khorasani (2009c), the problem of fault
diagnosis for a network of the multi-agent system was
addressed. The system owned a discrete-time communi-
cation link with a stochastic packet dropping effect. The
communication was considered as a Gilbert–Elliott model
and the entire network was modeled as a discrete-time
Markovian jump linear system. A centralized H∞ and geo-
metric approach-based algorithm was developed to achieve
actuator fault diagnosis for nodes in the network. There
are also other examples of centralized fault diagnosis algo-
rithms in Micalizio, Torasso, and Torta (2004), Ardissono
et al. (2005), and Kalech and Kaminka (2005).

In a centralized fault diagnosis algorithm for a swarm
system, the central node is able to perform fault diagno-
sis for the whole system. The other nodes do not make
any fault diagnosis. What the other nodes do is to trans-
mit their messages such as inputs and outputs to the central
node. Therefore, a centralized fault diagnosis algorithm is
able to make the best use of the knowledge of a system
and achieve global optimization. However, disadvantages
of the centralization are obvious. Both communication load
and computation load are increasing rapidly as the number
of nodes increases. Therefore, the scalability of a central-
ized fault diagnosis is far from satisfactory. Moreover, the
whole system cannot achieve fault diagnosis in case of a
malfunction of the central node. Hence, the reliability of
the algorithm is poor.

3.1.2. Hierarchical architecture
A hierarchical architecture is introduced in order to improve
the scalability and reliability of the centralized fault diagno-
sis algorithms. Different from the centralized architecture,
a hierarchical algorithm is installed into a single node or all
nodes of a swarm system. Local diagnosis information is
pre-processed and then appropriate information is sent to the
next layer for further diagnosis in a hierarchical framework.
The hierarchical fault diagnosis is achieved by several lay-
ers and different layers accomplish different tasks in a swarm
system. Figure 3 describes the architecture of a hierarchical
fault diagnosis algorithm for a swarm system.

In Barua and Khorasani (2007), a hierarchical fault
detection and isolation framework was presented for a
spacecraft formation. In order to isolate faults, the fault
diagnosis algorithm was designed based on the four-layer
hierarchical decomposition of the formation flying system.

Figure 3. Hierarchical architecture.

The decomposition included a subsystem component level,
subsystem level, system level, and formation level from
low to high levels. Simple fuzzy rules were developed
to describe the relationship between faults in different
layers and to isolate faulty satellites in the formation.
Based on the results of Barua and Khorasani (2007), a
fuzzy reasoning-based algorithm was designed in Barua
and Khorasani (2008) for a leader–follower formation fly-
ing with faults in attitude control subsystem components.
The fuzzy rule in the algorithm modeled the relationship
between the formation level and the subsystem component
level. In Barua and Khorasani (2011a), a fuzzy-rule-based
fault diagnosis scheme was further investigated for intermit-
tent and non-abrupt faults in some components of a satellite
formation flight. The performances of fault diagnosis for
different levels were evaluated. The results showed that the
fault diagnosis for formation level was more accurate than
that for the subsystem component level. In Barua and Kho-
rasani (2011b), a Bayesian network was applied to model
the relationship between different layers in a satellite for-
mation flight. Then the fault diagnosis was achieved by
statistical inference.

In Valdes and Khorasani (2010) and Valdes, Khorasani,
and Ma (2009), fault detection and isolation schemes based
on hierarchical dynamic neural networks were designed.
The scheme in Valdes and Khorasani (2010) consisted of
three layers. The first layer and the second layer were devel-
oped based on the dynamic neural-network models of the
single node and the formation, respectively. The third layer,
integrated layer, combined the first two layer algorithms to
achieve fault detection and isolation with high accuracy
rates. Similar results can be found in Valdes et al. (2009)
where there were only two layers in the algorithm.

The same approach was used in different layers of the
above hierarchical fault diagnosis algorithms. Unlike those
algorithms, in Meskin, Khorasani, and Rabbath (2010) and
Carrasco, Nnez, and Cipriano (2011), different models or
approaches were applied in different layers. In Meskin et al.
(2010), a hybrid fault detection and isolation scheme was
developed for a network of unmanned vehicles that were
subject to large environmental disturbances. The proposed
fault diagnosis algorithm consisted of two layers. The first
layer was composed of a bank of continuous-time residual
generators. The second layer was a discrete-event system
fault diagnoser which was similar to a complex logic unit.
The diagnoser was able to isolate faults and distinguish
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Figure 4. Distributed architecture.

faults from large external disturbances. In Carrasco et al.
(2011), a two-layer architecture fault diagnosis scheme for
a multi-robot system was presented. The first layer of the
scheme was developed based on a bank of Kalman filters to
achieve the diagnosis for actuator and node-sensor faults.
The second layer was called the cooperative layer. It was
able to isolate faults in link-sensors such as global position-
ing system sensors based on the statistical inference and
sensor redundancy.

A hierarchical model is used to model a swarm system
in a hierarchical fault diagnosis scheme. It is simpler than
complex state space model. Moreover, due to the layered
structure, different approaches can be applied in different
layers. Algorithms can consequently be optimally imple-
mented based on the capabilities and resources of nodes.
However, the relationship between different layers is hard
to model. Furthermore, the scalability and the reliability of
the fault diagnosis algorithm are not satisfactory in a hier-
archical architecture even though they are better than those
in a centralized one.

3.1.3. Distributed architecture
Distributed architecture is proposed to improve the scala-
bility of centralized and hierarchical fault diagnosis algo-
rithms. Figure 4 shows the structure of a distributed fault
diagnosis algorithm. All nodes in a swarm system are
equipped with fault diagnosis algorithms in a distributed
architecture. Every node is able to get the knowledge of
the local structure of the swarm system and to receive mes-
sages from its neighbor nodes. Then these information is
used in fault diagnosis algorithms. Fault diagnosis for a
node is achieved in a collaborative way and the results of
the algorithms in the neighbors of the monitored node are
all needed. Distributed fault diagnosis for swarm systems
has stirred a lot of research interest and some results have
been reported in recent years.

In Daigle, Koutsoukos, and Biswas (2007), a dis-
tributed model-based qualitative fault diagnosis approach
for formations of mobile robots was presented. The model
of a mobile robot was a bond graph which described the
physical components, sensors, and actuators. The com-
munication among the robots was also modeled as bond
graphs. The diagnosis scheme achieved fault detection by
distributed Kalman filters. It then employed relative mea-
surement orderings to achieve fault isolation. However, the
qualitative model was lack of detailed information of the
swarm system. Hence, faults which the scheme was able to
isolate were very simple.

In Lchevin, Rabbath, and Earon (2007), a decentral-
ized fault detection scheme was proposed to address a
special problem in leader–follower formations of Almost-
Lighter-Than-Air Vehicles (ALTAVs). The problem was
that communication loss and component faults occurred
simultaneously. In this scheme, each ALTAV was equipped
with an H2/H∞ gain-minimization-based observer. The
observer was designed based on simplified models of the
neighboring ALTAVs. To illustrate the scheme in detail,
assumed that the node i, node j, and node k were in a
swarm system. Node j was a neighbor of node i, which
meant that node j sent messages to node i. Node k was
a neighbor of node j but not a neighbor of node i. An
observer in node i was designed according to the residuals
of node j. It also needed to dampen the impact of measure-
ment noises and exogenous disturbances from node k . Then
the fault diagnosis for the swarm system was achieved by
such observers. Similar results can be found in Lchevin and
Rabbath (2007). In Lchevin and Rabbath (2009), a novel
scheme based on signal processing was proposed to achieve
the detection of non-abrupt actuator faults in the formation
of ALTAVs. For example, node j was the neighbor of node
i, which meant that node j sent massages to node i. The
scheme embedded in node i required at least two signals
to detect a faulty behavior of node j. The signals included
the heading angle trajectory of node i and that of a neigh-
bor node of node j such as node k . The transients of the
correlation caused by faulty behavior were able to be distin-
guished from those caused by the formation of the flight path
changing. In Lchevin, Rabbath, Shanmugavel, Tsourdos,
and White (2008), a scheme was designed to achieve the
fault detection of both abrupt and non-abrupt faults based
on the results in Lchevin et al. (2007) and Lchevin and
Rabbath (2007, 2009).

In Meskin and Khorasani (2006), a bank of geomet-
ric approach-based distributed fault detection filters were
designed for a spacecraft formation flying. Each local space-
craft was able to detect and isolate not only its own faults,
but also the faults of other spacecrafts. The fault detection
filter in a node was designed by determining an unob-
servability subspace that contained measurements from
the neighbor nodes. The similar scheme was applied to a
network of unmanned vehicles in Meskin and Khorasani
(2009a). In Meskin and Khorasani (2009a), the solvability
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conditions of distributed fault diagnosis based on the
geometric approach were discussed. In Meskin and
Khorasani (2009b), a distributed actuator fault detection
and an isolation algorithm was proposed for a network of
unmanned aerial vehicles. The network underwent imper-
fect communication channels among vehicles. The commu-
nication was modeled as a two-state Markov process. The
residual was generated by the geometric approach. Neces-
sary and sufficient conditions for generating a structured
residual set were proposed by using unobservability sub-
spaces. A constrained-state distributed Kalman filter was
proposed to estimate the actuator fault in satellite formations
in Azizi and Khorasani (2009a) and Azizi and Khorasani
(2009b).

In Shames, Teixeira, Sandberg, and Johansson (2011), a
bank of distributed unknown input observers were designed
to achieve the fault detection for a network of intercon-
nected second-order linear time-invariant systems. Further-
more, the existence of such observers was also established
for various conditions on node interactions. In Shames,
Teixeira, Sandberg, and Johansson (2012), a distributed
fault detection and isolation scheme based on unknown
input observers was proposed. The nodes in this swarm sys-
tem were described as more complex models than double
integrators. The scheme also indicated that measurements
of the states of its two-hop neighbors were the mini-
mum amount of information to achieve fault detection and
isolation.

Only local information of the swarm system is able to be
gained for a node in a distributed fault diagnosis algorithm.
The algorithm is consequently not optimal. Fortunately,
the scalability of the distributed architecture is higher than
the other two. This fact means that communication loads
and computation loads do not increase heavily with the
rise of the number of nodes in a swarm system. Moreover,
the distributed architecture is much more reliable than the
centralized one and the hierarchical one.

3.1.4. Summary
The summary of different architectures of fault diagnosis
algorithms, including their advantages and disadvantages,
is listed in Table 1.

Different fault diagnosis algorithms are equal in
some sense. Meskin and Khorasani (2009a) showed that
solvability conditions of a distributed fault diagnosis prob-
lem were the same as those of a centralized scheme. The
performance of the centralized architecture is worse than
the other two. However, the properties of centralized fault
diagnosis algorithms can be analyzed in a more convenient
way than that of the other two.

3.2. Types of faults
According to the fault classification in Section 2, fault diag-
nosis algorithms for swarm systems can be classified into

Table 1. Summary of structures of fault diagnosis algorithms.

Classification Advantages Disadvantages

Centralized Using global
knowledge

Poor reliability;

poor scalability;
resource wasting

Hierarchical Flexible approaches
assignment

Low reliability;

low scalability
Distributed High reliability; Using local knowledge

high scalability;
resource saving

two types, i.e. topology fault diagnosis algorithms and com-
ponent fault diagnosis algorithms. In the former algorithms,
models of swarm systems are simple and fault detection
is achieved in a cooperative way. In the latter ones, diag-
nosis of component faults is achieved by more complex
approaches.

3.2.1. Topology fault diagnosis
Similar to the intrusions in the internet, the communication
network of a swarm system makes it vulnerable to malicious
attacks Teixeira, Sandberg, and Johansson (2010). There is
no state in the topology. Fault diagnosis for topology can
only be achieved in nodes of a swarm system. Topology
fault diagnosis algorithms are used to detect and isolate
faults such as communication breaks and node intrusions.
The algorithm in one node needs at least messages from
other two nodes to perform fault diagnosis. Some research
progresses on this topic have been made in recent years.

In Izadi, Gordon, and Zhang (2013), a simple cross-
comparing way was proposed to identify inter-vehicle
communication delays for a multiple-vehicle system. The
delay arose from communication failures. In this approach,
every vehicle received a normal signal from at least two
neighboring vehicles. Then, by cross-comparing the delays,
each vehicle was able to identify the fault.

In Guo, Dimarogonas, and Johansson (2012), two
communication-based distributed schemes were proposed
to detect the communication faults for a cooperative multi-
agent system. In the first scheme, every node transmitted
its own state and its control value to all its neighbors at
each time step. The control value was computed by its own
states and its neighbors’ states. In the second scheme, the
node transmitted its own absolute state and its neighbors’
states to all its neighbors. By comparing the neighbor’s
actual control with the estimated control, the node was
able to reach detection of the topology faults. The advan-
tage of communication-based schemes is the significant
reduction of required computational resources. Similar to
diagnosing communication faults in a swarm system, the
issue of detecting and isolating topology attacks in power
networks was addressed in Weimer, Kar, and Johansson
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(2012). In Weimer et al. (2012), the centralized and
decentralized fault diagnosis algorithms were presented
based on the stochastic hypothesis testing. In both algo-
rithms, different models were developed under the assump-
tion of different communication link breaks. The communi-
cation link break was detected by sampling the output of the
system and further using the stochastic hypothesis testing
algorithm. However, the scheme is unable to detect two or
more simultaneous communication link breaks.

In Fagiolini, Valenti, Pallottino, Dini, and Bicche
(2007), the problem of detecting uncooperative behav-
iors in a multi-agent system consisting of n vehicles was
addressed. In the system, all agents were traveling along
a two-lane automated highway. In normal operations, they
obeyed the same cooperation protocol and the number of
maneuvers in the protocol was finite. The agents were
modeled as automata which included the cooperation pro-
tocol. The paper proposed distributed monitors installed
in all agents. Each agent was able to judge whether its
neighbors were cooperative or not by the monitor installed
in it. For example, the monitor in node h was able to
estimate the number of other neighbor nodes of node
i. The estimation was achieved by using the protocol,
the state of node i, and the states of nodes which were
neighbors of node h as well as i. If there existed one
or more neighbor nodes of node i to explain the actions
of node i, then node i was normal. If there existed no
neighbor nodes of node i to explain its actions, then it
was intruded. In Fagiolini, Pellinacci, Valenti, Dini, and
Bicchi (2008), based on the results of Fagiolini et al.
(2007), the monitors were able to share the collected infor-
mation to overcome their sensing limitation. The shared
information was about the same monitored node. Then the
monitors used the information to estimate the states of the
monitored node. These monitors reached an agreement on
the estimated states when the topology of the swarm system
was connected and the operator of the estimated states was
idempotent. In Fagiolini, Babboni, and Bicchi (2009), the
detection capability of monitors was further improved. The
monitors collected information of monitored nodes at dif-
ferent time instants. A dynamic state observer was designed
to estimate states of the monitored nodes. Fault detection
was reached by comparison between the estimated states
and the observed states.

In Franceschelli, Egerstedt, and Giua (2008), a novel
scheme was proposed to achieve the fault diagnosis for
a swarm system. The swarm system was controlled by a
consensus algorithm. The nodes in the swarm system was
modeled as a single integrator dynamics. A motion probe
was proposed in the scheme, which is a maneuver executed
by either a single node or a team of nodes. In the scheme, the
motion probes must be able to preserve desirable properties
such as keeping the invariance of the state of the system
centroid. Then they were able to identify faulty agents in a
swarm system by changing their values. They can also be
used for fault recovery by canceling out fault impacts on the

behavior of the non-faulty agents. In Franceschelli, Giua,
and Seatzu (2009), motion probes were applied to fault
detection for a sensor network. A heuristic algorithm was
used to find nodes with suspected behaviors. Then motion
probes were applied to confirm the faulty nodes within the
suspected nodes.

In Pasqualetti, Bicchi, and Bullo (2007), a technique
based on unknown input observers was proposed for the
intrusion detection problem of a swarm system. The intru-
sion was modeled as an external input of the system. The
paper showed that if the topology was 2-connected then the
faulty nodes were able to be detected. An embedded filter
was also designed to estimate the states of the other nodes by
using the local information from the neighbors. The paper
also showed that the estimation rate was related to the num-
ber of the neighbor nodes. A more detailed conclusion was
reached in Sundaram and Hadjicostis (2011). The conclu-
sion presented the relationship between the number of the
detectable malicious nodes and the topology of a swarm
system. The node in the swarm was modeled as a linear
iteration. It updated its value to be a weighted average of
its own previous value and the value of its neighbors. The
paper showed that when the number of malicious nodes was
f or less, a node was able to detect the faults of all nodes if
the node had at least 2f vertex-disjoint paths from all other
non-neighboring nodes.

The models of nodes are simple in algorithms of topol-
ogy fault diagnosis. These algorithms do not need too many
computer resources. The efficiency of the algorithms is thus
satisfactory. The topology fault diagnosis is not an exclusive
issue in swarm systems. Any systems which have communi-
cation mechanisms such as the internet are also faced with
the problem. Therefore, the topology fault diagnosis for
swarm systems is able to inspire fault diagnosis for other
similar systems.

3.2.2. Component fault diagnosis
Swarm systems are also endured component faults such
as actuator faults, node-sensor faults, and controller faults
except topology faults. If systems immediately take action
when component faults happen, these faults only influence
local nodes. In algorithms of component fault diagnosis,
models of nodes are always complex so that components
can be described in detail. These models include state
space models, transfer functions, etc. These algorithms are
consequently more complex than topology fault diagnosis
algorithms. Some results are shown as follows.

In Semsar-Kazerooni and Khorasani (2009), three kinds
of actuator faults were considered. These faults included
effectiveness loss faults, float faults, and lock-in-place
faults. The influence of faults on the stability and the con-
sensus of a swarm system were presented. When an effec-
tiveness loss fault happened, the stability and the consensus
of the system was not influenced, but the convergence rate
changed. In the presence of float-type faults, the swarm
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system was not able to maintain the consensus but the stabil-
ity was guaranteed. Moreover, healthy nodes adapted them-
selves to the changes in the faulty node. Under the condition
of the lock-in-place faults, the stability was guaranteed if
the open-loop matrix of the faulty agent was stable.

In Valdes et al. (2009), a dynamic neural-network-based
fault diagnosis scheme was developed for thrusters in for-
mation flying of satellites. In Meskin and Khorasani (2006),
filters based on geometric fault diagnosis methodology were
designed to achieve actuator fault detection and isolation.
In Azizi and Khorasani (2009a), a distributed Kalman filter
scheme was proposed to estimate the actuator faults for a
deep space formation flying.

The fault isolation is so precise that the location of the
fault can be found easily in algorithms of component fault
diagnosis. However, these algorithms are resource consum-
ing. Fault diagnosis algorithms for component faults in
swarm systems are much more complex than those for a
single dynamic system. Usually, the node is only able to get
the relative information instead of the absolute information
in swarm systems. The difficulty increases when fault symp-
toms in other nodes are transmitted to the node. Moreover,
the real-time requirement of the algorithm is rigid in order
that fault tolerant control can be timely undertaken to avoid
serious consequences.

3.2.3. Summary
In general, topology faults and component faults have a dif-
ferent influence on a swarm system. A topology fault usually
affects two or more nodes at the same time. In contrast, a
component fault only affects the node where it is installed
on the occurrence of the fault. The node performing topol-
ogy fault diagnosis needs the information of the neighbor
nodes and that of nodes which does not belong to its neigh-
bors. However, the node performing the component fault
diagnosis only needs the information of its neighbor nodes
for the most part.

Table 2 shows advantages and disadvantages of topol-
ogy fault diagnosis algorithms and component fault diag-
nosis algorithms. A novel idea to achieve fault diagnosis
for swarm systems is to combine topology fault diagno-
sis schemes with component fault diagnosis schemes. For
example, in Teixeira et al. (2010), a distributed scheme
using observers was proposed to detect and isolate both
kinds of faults. The communication faults were described
as actuator faults and sensor faults. The sufficient condition
for the existence of unknown input observers was that the

Table 2. Summary of topology fault diagnosis and
component fault diagnosis.

Classification Advantages Disadvantages

Topology Simple; efficient Not precise
Component Precise Complex

topology of the system was connected. The combination of
two kinds of schemes is able to make good use of their
advantages to achieve resource saving and precise fault
isolation.

3.3. Approaches of fault diagnosis algorithms
Fault diagnosis for dynamic systems has been developed
for many years since the year 1971 when the Kalman
filter-based fault diagnosis algorithm was proposed in
Beard (1971). Fault diagnosis algorithms were reviewed
in Willsky (1976) and Frank (1990). In this section, we
refer to the classification of fault diagnosis for dynamic
systems in Zhou and Hu (2009) to classify fault diagnosis
algorithms for swarm systems. The fault diagnosis algo-
rithms thus can be classified into two types according to
the approaches on which fault diagnosis algorithms were
based. The two types are the qualitative algorithms and the
quantitative algorithms.

Qualitative fault diagnosis algorithms apply qualitative
models of the system to analysis the cause of faults. These
algorithms are easy and are widely used. Furthermore,
the simplicity of these algorithms makes them time and
resource saving. However, diagnosis results of the qualita-
tive algorithms are unreliable when the system is complex.
Quantitative algorithms apply quantitative information of
systems to reflect the inconsistency between the operating
system and the normal system. The quantitative information
includes the state space model of systems, data of systems,
etc. Though quantitative algorithms are more complex than
the qualitative ones, they are more reliable.

3.3.1. Qualitative approaches
In qualitative approaches, fault diagnosis is achieved in
qualitative ways such as expert systems, communication
automata, and so on. These schemes are simpler than quan-
titative ones because they do not need precise models of
systems.

In Barua and Khorasani (2008, 2011a), fault diagnosis
based on the fuzzy rule was used for a satellite formation
flying. Fuzzy rules were used to describe the relationship
between different layer faults. Then they were used to diag-
nose the component faults and to isolate faulty satellites in
the formation. The model is simple. However, the building
of the model needs the cooperation of too many experts.
Moreover, the results of the fuzzy rule-based reasoning are
a bit uncertain. In Khalil, Bagchi, and Nina-Rotaru (2005),
a communication-based fault diagnosis scheme was pro-
posed. For example, node i was the neighbor node of node
j and node h, which meant that node i sent messages to
node j and node k . Node j was the neighbor of both node h
and node k . In the scheme, when node i sent a data packet
to node j, node h also received the packet. Then node j
transmitted the packet to node k and node h. Then node
h was able to monitor node j by comparing the packet
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which node i transmitted and the packet which node j
transmitted.

Though qualitative fault diagnosis algorithms are not
precise, the simplicity makes them resource and time
saving.

3.3.2. Quantitative approaches
In quantitative approaches, models of swarm systems and
data are needed to design fault diagnosis algorithms. Quan-
titative approaches are widely used in fault diagnosis of
swarm systems. They can be classified into two sorts, i.e.
model-based approaches and data-driven approaches Zhou
and Hu (2009).

In Ilyas, Lim, Lee, and Park (2008), a federated
unscented Kalman filter was designed to achieve fault diag-
nosis for a multiple-satellite formation flying in the low
earth orbit. In Ilyas, Lee, and Park (2008), federated hybrid
extended Kalman filters were proposed to realize fault diag-
nosis for the same application as Ilyas, Lim, et al. (2008).
The approaches based on the Kalman filters are able to
deal with the system with state noises and measure noises.
Observer-based fault diagnosis algorithms for swarm sys-
tems can also be found. In Meskin et al. (2010) and Meskin
and Khorasani (2006, 2009a, 2009b), fault diagnosis were
achieved by observers designed based on the geometric
approach. Fault diagnosis was reached by unknown input
observers in Shames et al. (2011, 2012). Kalman filter-
based approaches and observer-based approaches are called
model-based approaches. Faults in these approaches are
always described as the actuator faults. Fault diagnosis
is achieved by analytical redundancy in these approaches.
These approaches are able to reach accurate fault diagnosis
results. However, the accurate model of the system is hard
to build, which limits the application of the model-based
fault diagnosis.

Data-driven methods are also broadly used in the design
of fault diagnosis algorithms for swarm systems. A machine
learning algorithm such as clustering analysis was used for
intrusion detection in wireless sensor networks in Loo, Ng,
Leckie, and Palaniswami (2006). A clustering algorithm
was used to build a model of normal traffic behavior. Then
this model was used to detect abnormal traffic patterns. It
was also able to detect attacks that had not been seen previ-
ously . The dynamic neural network is another example of
the machine learning algorithm. In Valdes and Khorasani
(2010) and Valdes et al. (2009), the dynamic neural net-
work was designed to model the dynamic properties of
thrusters in the satellites. Then it was used to perform fault
diagnosis for a formation of satellites. It is easy to build
the dynamic neural model in case of sufficient data. Nev-
ertheless, the data of the faulty system are hard to gain
in practice, especially when unknown faults happen. The
approaches based on dynamic neural networks are not suit-
able for swarm systems where the data are hard to get.
The signal processing is another widely used data-driven

method to design fault diagnosis algorithms for swarm sys-
tems. In Wu and Saif (2007), a bank of wavelet networks
were constructed to isolate and to estimate faults in a
multiple-satellite formation flying. The wavelet network
was proposed as an alternative to a neural network by
approximating the nonlinear observer. The proposed three-
layer wavelet network comprised an input layer, a wavelet
layer, and an output layer. When faults occurred, all the
wavelet networks generated a large amount of chattering.
Then the chattering was used to indicate the occurrence of
the fault with proper threshold values. In Wang, Chang,
and Chen (2009) and Lchevin and Rabbath (2009), statis-
tical analysis was used to deal with fault diagnosis for a
swarm system. In Wang et al. (2009), an efficient collab-
orative sensor fault detection scheme was proposed based
on statistical analysis. In the scheme, the results of a homo-
geneity test were used to identify the faulty nodes within
the sensor network. Their quantized messages were able to
be filtered out when the parameters of interest were esti-
mated in the normal case. However, the mean square error
increased dramatically if the information received from the
faulty sensors was not excluded from the estimated process.
The statistical analysis was based on this fact. Though the
performance is significantly better than a conventional esti-
mation scheme, it is only suitable to be applied in special
environments.

3.3.3. Summary
Figure 5 describes the classification of the current fault
diagnosis algorithms for swarm systems according to
approaches. The advantage of qualitative approaches is
time and resource saving. The advantage of quantitative
approaches is precise isolation of faults. The combination
of the two different approaches will generate a more efficient
tool to achieve fault diagnosis.

4. Unsolved problems of fault diagnosis for swarm
systems

Fault diagnosis for swarm systems is a new area in control
community and compute community. Though a few primary
results have been achieved, research is far from mature and
a lot of issues are challenging. In this section, we list some
research topics on fault diagnosis for swarm systems.

(1) Fault diagnosis for swarm systems with heteroge-
neous faults. The problem that topology faults and
component faults happen simultaneously is com-
mon, but there are few approaches toward this
topic. Though some results on this issue have been
reported such as Franceschelli et al. (2008), the
approach in the literature is only able to detect and
to isolate actuator faults by designing observers that
are robust to topology faults. Fault diagnosis in
the case that topology faults and component faults
happen simultaneously is worth investigating.
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Figure 5. The summary of qualitative approaches and quantitative approaches.

(2) Fault diagnosis for swarm systems with switch-
ing topologies. In a swarm system whose topology
is always changing to maintain the control per-
formance, the fault diagnosis algorithms should
have the capability to distinguish whether there are
faults or the swarm system is in normal topology
switching operation. For a swarm system whose
topology is switching according to its controller, it
is interesting to consider its fault diagnosis problem.

(3) Fault diagnosis for swarm systems with heteroge-
nous nodes. In military areas, the formation of war-
ships and unmanned aerial vehicles is very useful,
but fault diagnosis algorithms for such systems are
rarely reported. In Valenti, Bethke, Fiore, How, and
Feron (2006), health management was embedded
into a test bed and was used to execute many differ-
ent mission scenarios. Though the implementation
of the hardware was described, fault diagnosis algo-
rithms were not mentioned. How to perform fault
diagnosis for swarm systems with heterogeneities
nodes needs to be addressed.

(4) Fault diagnosis for swarm systems with a large
number of nodes. When the number of the nodes in
a swarm system is very large, new problems arise.
For example, the asynchronism may disturb the
fault diagnosis results and communication conflicts
increase. Though the scalability of distributed fault
diagnosis algorithms is better than that of the hier-
archal and centralized ones, the current distributed
algorithms are not capable of solving this issue.
Fault diagnosis algorithms for swarm systems with
a large number of nodes remains unexploited.

5. Conclusions
In this paper, a general description and characteristics of
swarm systems have been summarized. Faults of swarm

systems have been classified into topology faults and com-
ponent faults. Three different kinds of classification for
fault diagnosis algorithms for swarm systems have been
presented. Finally, some interesting research topics on the
fault diagnosis for swarm systems have been highlighted.
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