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In this paper, we investigate the positive invariant sets and global exponential attractive sets for a class of bidirectional asso-
ciative memory (BAM)-type Cohen–Grossberg neural networks with multiple time-varying delays. By applying inequality
techniques, some easily verifiable delay-independent criteria for the ultimate boundedness and global exponential attractive
sets of BAM-type Cohen–Grossberg neural networks are obtained by constructing appropriate Lyapunov functions. Finally,
one example with numerical simulations is given to illustrate the results obtained in this paper.
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1. Introduction
Recently, the stability of different types of Cohen–
Grossberg neural networks and the bidirectional associa-
tive memory (BAM) neural networks has been widely
studied by many researchers and various interesting
results have been reported (Jiang & Cao, 2008; Li,
2009; Li, Fei, Tan, & Zhang, 2009; Li, Zhang, Zhang, &
Li, 2010; Liu & Zong, 2009; Wang, Jian, & Guo, 2008;
Zhang, Liu, & Zhou, 2012). In many applications, since
BAM-type Cohen–Grossberg neural networks consider the
interaction between two neural networks, the studies of the
stability behavior of BAM-type Cohen–Grossberg neural
networks are of greater interest than the studies of the stabil-
ity of Cohen–Grossberg neural networks and BAM neural
networks.

For BAM-type Cohen–Grossberg neural networks, the
existence of periodic solution and an equilibrium point
and their stability have been investigated in Jiang and Cao
(2008), Li (2009), Li et al. (2010) and Zhang et al. (2012).
But in many actual applications, these conclusions are no
longer appropriate in the multistable dynamics which have
multiple equilibrium and so many of them are unstable (Lu,
Wang, & Chen, 2011; Wang & Chen, 2012). Such as the
Cohen–Grossberg neural network, when applications are
taken into account in biology, it is necessary and impor-
tant to deal with multistable properties. In this context, it is
worth mentioning that the Lagrange stability refers to the
stability of the total system which does not require the infor-
mation of equilibrium points, because the Lagrange stability
is considered on the basis of the boundedness of solutions
and the existence of global attractive sets (Liao, Luo, &
Zeng, 2008). Just as verified in (Liao et al., 2008), outside
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the globally attracting set, there is no equilibrium point,
chaos attractor, periodic state or almost periodic state in the
neural networks. Therefore, the research on positive invari-
ant sets and globally attractive sets of the neural networks
have been done by many scholars (Liao et al., 2008; Luo,
Zeng, & Liao, 2011; Song & Zhao, 2005; Tu, Jian, & Wang,
2011; Tu, Wang, Zha, & Jian, 2013; Wang, Jian, & Jiang,
2010). Song and Zhao (2005) investigated the dissipativity
of neural networks with both variable and unbounded delays
by constructing proper Lyapunov functions and using some
analytic techniques. And the global stability in the Lagrange
sense for a class of Cohen–Grossberg neural networks with
time-varying delays and finite distributed delays was stud-
ied in Tu et al. (2011) and Wang et al. (2010). In Tu et al.
(2013), the authors study the global dissipativity of a class of
BAM neural networks with both time-varying and unbound
delays. To our best knowledge, few authors have discussed
the global attractive sets for BAM-type Cohen–Grossberg
neural networks.

Motived by the above analysis, the aim of this paper is
to study Lagrange stability and global exponential attrac-
tive sets for BAM-type Cohen–Grossberg neural networks
with time-varying delays and some delay-independent cri-
teria for the ultimate boundedness and global exponential
attractive sets of BAM-type Cohen–Grossberg neural net-
works are obtained. And some results here obtained in this
paper are more general than that of the existing reference
on the globally exponentially attractive (GEA) set as spe-
cial cases. The remaining paper is organized as follows:
Section 2 describes some preliminaries including some
necessary notations, definitions, assumptions and some
lemmas. The main results are stated in Section 3. Section 4
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gives a numerical example to testify the theoretical analysis.
Finally, conclusions are drawn in Section 5.

2. Problem statement
Consider the following BAM-type Cohen–Grossberg neu-
ral network model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = ai(xi(t))

⎡
⎢⎢⎢⎢⎢⎣

− ci(xi(t)) +
m∑

j=1

aijfj(yj(t))

+
m∑

j=1

bijfj(yj(t − τj(t))) + Ii

⎤
⎥⎥⎥⎥⎥⎦ ,

i = 1, 2, . . . , n,

ẏj(t) = bj(yj(t))

⎡
⎢⎢⎢⎢⎣

− dj(yj(t)) +
n∑

i=1

mjigi(xi(t))

+
n∑

i=1

njigi(xi(t − σi(t))) + Jj

⎤
⎥⎥⎥⎥⎦ ,

j = 1, 2, . . . , m,
(1)

where x(t) = (x1(t), . . . , xn(t))T, y(t) = (y1(t), . . . , ym(t))T

are the neuron state vectors of the neural network (1),
ai(xi(t)) > 0 for i ∈ � = {1, 2, . . . , n} and bj(yj(t)) > 0 for
j ∈ � = {1, 2, . . . , m} represent amplification functions of
the ith neurons from the neural field Fx and the jth neu-
rons from the neural field Fy, respectively; ci(xi), dj(yj) are
appropriately behaved functions of the ith neurons from
the neural field Fx and the jth neurons from the neural
field Fy, respectively; fj and gi are the activation func-
tions, Ii and Jj are the exogenous inputs. A = (aij)n×m,
M = (mji)m×n; B = (bij)n×m, N = (nji)m×n are the con-
nection weight matrices and the delayed weight matrices,
respectively, I = (I1, I2, . . . , In)

T, J = (J1, J2, . . . , Jm)T are
external input vectors. The time-varying delays τj(t), σi(t)
are non-negative and bounded, i.e. 0 ≤ τj(t) ≤ τj , 0 ≤
σi(t) ≤ σi. We define the vector functions f , g by

g(x(·)) = (g1(x1(·)), g2(x2(·)), . . . , gn(xn(·)))T ∈ Rn,

f (y(·)) = (f1(y1(·), f2(y2(·), . . . , fm(ym(·)))T ∈ Rm.

The initial conditions associated with Equation (1) are given
by {

xi(θ) = φi(θ), θ ∈ [−σ , 0], i ∈ �,
yj(θ) = ψj(θ), θ ∈ [−τ , 0], j ∈ �,

(2)

where φi(θ) and ψj(θ) are continuous real valued functions
defined on their respective domains, σ = max1≤i≤n{σi},
τ = max1≤j≤m{τj}.

Remark 1 It is obvious that system (1) includes neural
systems considered in Tu et al. (2013) as its special case. For
example, ai(xi(t)) = 1, bj(yj(t)) = 1 for i ∈ � and j ∈ �,
ci(xi(t)) = ãixi(t) and dj(yj(t)) = c̃jyj(t) with the constants

ãi > 0 and c̃j > 0, system (1) reduces to the BAM neural
network in Tu et al. (2013).

In order to establish the conditions of main results for the
neural networks (1), we have the following assumptions:

(H1) ai(u), bj(u) ∈ C(R, R+). Furthermore, there exist
positive constants ai, āi, bj and b̄j(i ∈ �, j ∈ �)

such that 0 < ai ≤ ai(u) ≤ āi, 0 < bj ≤ bj(u) ≤
b̄j , u ∈ R.

(H2) ci(u), dj(u) ∈ C(R, R+). Moreover, there exist
positive constants ci, c̄i, dj and d̄j(i ∈ �, j ∈ �)

such that ciu
2 ≤ uci(u) ≤ c̄iu2, dju

2 ≤ udj(u) ≤
d̄ju2, u ∈ R.

The set of bounded activation functions is defined as

B = {p(x)|pi(xi) ∈ C(R, R), ∃ki > 0, |pi(xi)| ≤ ki, ∀xi ∈ R}
The sigmoid function is defined as

S =
{

p(x)

∣∣∣∣∣
pi(0) = 0, pi(xi) ∈ C(R, R),

D+pi(xi) ≥ 0, |pi(xi)| ≤ ki, ∀xi ∈ R

}
.

Remark 2 In this paper, f (·), g(·) ∈ B represent |gi(·)| ≤
si, |fj(·)| ≤ rj for i ∈ � and j ∈ �, respectively, where si, rj
are all positive constants.

Let

M̃ =
n∑

i=1

āiMisi,

Mi = āi

⎛
⎝ m∑

j=1

(|aij| + |bij|)rj + |Ii|
⎞
⎠ , i ∈ �;

Ñ =
m∑

j=1

b̄jNjrj ,

Nj = b̄j

(
n∑

i=1

(|mji| + |nji|)si + |Jj|
)

, j ∈ �.

Let 	 ⊂ Rn+m be a compact set in Rn+m. Denote the
complement of 	 by Rn+m\	. For any(

x(t)
y(t)

)
∈ Rn+m, ρ

((
x
y

)
, 	
)

= inf
(xT

1 ,yT
1 )∈	

∥∥∥∥
(

x
y

)
−
(

x1
y1

)∥∥∥∥
is the distance between

( x
y
)

and 	. We call a compact set
	 as a global attractive set of networks (1), if for every
solution (

x(t)
y(t)

)
∈ Rn+m\	



Systems Science & Control Engineering: An Open Access Journal 3

with initial condition (2), we have

lim
t→+∞ ρ

((
x(t)
y(t)

)
, 	
)

= 0.

Obviously, if the network (1) has global attractive sets, then
the solutions are ultimately bounded.

Definition 1 A compact set 	 ∈ Rn+m is said to be a
global exponential stable (GES) set of system (1), if there
exists a constant α and a non-negative bounded continuous
functional K such that for every solution

(
x(t)
y(t)

)
∈ Rn+m\	

with an initial condition (2), we have

ρ

((
x(t)
y(t)

)
, 	
)

≤ K(φ, ψ) e−α(t−t0).

Definition 2 If there exists a radially unbounded and
positive definite Lyapunov function V (t) = V (x(t), y(t))
and positive constants l and α such that for any solu-
tion
(

x(t)
y(t)

)
∈ Rn+m\	 of (1), V (t) > l for t ≥ t0 implies

V (t) − l ≤ (V (t0) − l) e−α(t−t0), system (1) is said to be
GEA. The compact set

	 =
{(

x
y

)
∈ Rn+m|V (t) ≤ l.

}

is called a GEA set of Equation (1).

Definition 3 Network (1) is called GES in the Lagrange
sense, if it is both uniformly bounded and GEA.

Lemma 1 For ∀x, y ∈ R, a > 0, the inequality −ax2 +
xy ≤ − 1

2 ax2 + y2/2a holds.

Lemma 2 (Wang et al., 2010) Let a ≥ 0, b ≥ 0, p > 1, q >

1 with 1/p + 1/q = 1. Then the inequality ab ≤ (1/p)ap +
(1/q)bq holds, and the equality holds if and only if ap = bq.

Lemma 3 (Luo et al., 2011) Let V (t) ∈ C[Rn, R+] be a
positive definite and radially unbounded function, and
suppose there exist two constants α > 0, β > 0 such
that D+V (t) ≤ −αV (t) + β for t ≥ t0, then V (t) ≥ β/α

implies

V (t) − β

α
≤
(

V (t0) − β

α

)
e−α(t−t0).

3. Main results
Theorem 1 If the activation functions f (·), g(·) ∈ B and
(H1), (H2) are also satisfied, then system (1) is glob-
ally exponentially stable in Lagrange sense and 	i for

i = 1, 2, 3, 4, 5 are all GES set and the set 	 =⋂5
i=1 	i

is a better GES set of Equation (1), where

	1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(

x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

x2
i (t) +

m∑
j=1

y2
j (t)

≤
∑n

i=1 M 2
i /aici+

∑m
j=1 N 2

j /bjdj

min 1≤i≤n
1≤j≤m

{aici ,bjdj}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

	2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

|xi(t)| +
m∑

j=1

|yj(t)|

≤
∑n

i=1 Mi +∑m
j=1 Nj

min 1≤i≤n
1≤j≤m

{
aici, bjdj

}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

	3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(

x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣
|xi(t)| ≤ Mi

aici
, i ∈ �;

|yj(t)| ≤ Nj

bjdj
, j ∈ �

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

	4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(

x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

x2
i (t) ≤

∑n
i=1 M 2

i /aici

min1≤i≤n{aici}
,

m∑
j=1

y2
j (t) ≤

∑m
j=1 N 2

j /bjdj

min1≤i≤n{bjdj}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

	5 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
(

x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

|xi(t)| ≤
∑n

i=1 Mi

min1≤i≤n{aici}
,

m∑
j=1

|yj(t)| ≤
∑m

j=1 Nj

min1≤j≤m{bjdj}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Proof (1) Employ a radially unbounded and positive
definite Lyapunov function as

V (t) = 1
2

n∑
i=1

x2
i (t) + 1

2

m∑
j=1

y2
j (t).

Calculating the Dini derivative of V (t) along the
positive semi-trajectory of Equation (1), and by
virtue of Lemma 1, we obtain

dV (t)
dt

∣∣∣∣
(1)

≤ −
n∑

i=1

aicix
2
i (t)

+
n∑

i=1

āi

⎛
⎝ m∑

j=1

(|aij| + |bij|)rj + |Ii|
⎞
⎠ |xi(t)|

−
m∑

j=1

bjdjy
2
j (t)
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+
m∑

j=1

b̄j

(
n∑

i=1

(|mji| + |nji|)si + |Jj|
)

|yj(t)|

= −
n∑

i=1

aicix
2
i (t) +

n∑
i=1

Mi|xi(t)| −
m∑

j=1

bjdjy
2
j (t)

+
m∑

j=1

Nj|yj(t)|

≤ −1
2

n∑
i=1

aicix
2
i (t) + 1

2

n∑
i=1

M 2
i

aici

− 1
2

m∑
j=1

bjdjy
2
j (t) + 1

2

m∑
j=1

N 2
j

bjdj

≤ − min
1≤i≤n
1≤j≤m

{aici, bjdj}V (t) + 1
2

n∑
i=1

M 2
i

aici
+ 1

2

m∑
j=1

N 2
j

bjdj

= −αV (t) + β,

where

α = min
1≤i≤n
1≤j≤m

{
aici, bjdj

}
,

β = 1
2

n∑
i=1

M 2
i

aici
+ 1

2

m∑
j=1

N 2
j

bjdj
.

According to Lemma 3, for V (t) ≥ β/α, V (t0) ≥
β/α, we have

V (t) − β

α
≤ (V (t0) − β

α
)e−α(t−t0).

Hence 	1 is a GES set of Equation (1).
(2) Construct another positive definite and radially

unbounded Lyapunov function as

V (t) =
n∑

i=1

|xi(t)| +
m∑

j=1

|yj(t)|.

So we can get

D+V (t)|(1)

≤ −
n∑

i=1

aici|xi(t)|

+
n∑

i=1

⎛
⎝āi

m∑
j=1

(|aijt| + |bij|)rj + |Ii|
⎞
⎠

−
m∑

j=1

bjdj|yj(t)|

+
m∑

j=1

b̄j

(
n∑

i=1

(|mji| + |nji|)si + |Jj|
)

≤ −αV (t) + β,

where

α = min
1≤i≤n
1≤j≤m

{aici, bjdj}, β =
n∑

i=1

Mi +
m∑

j=1

Nj .

So we get

V (t) − β

α
≤
(

V (t0) − β

α

)
e−α(t−t0).

And the set 	2 is a GES set of Equation (1).
(3) Choose another two positive definite and radially

unbounded Lyapunov functions as

Vi(t) = |xi(t)|, i ∈ �; Vj(t) = |yj(t)|, j ∈ �.

And we have

D+Vi(t)|(1) ≤ −aiciVi(t) + Mi, i ∈ �,

D+Vj(t)|(1) ≤ −bjdjVj(t) + Nj , j ∈ �.

So we have

Vi(t) − Mi

aici
≤
(

Vi(t0) − Mi

aici

)
e−aici(t−t0), i ∈ �,

Vj(t) − Nj

bjdj
≤
(

Vj(t0) − Nj

bjdj

)
e−bjdj(t−t0), j ∈ �.

So the 	3 is a GES set of Equation (1).
(4) Employ only the following two radially unbounded

and positive definite Lyapunov functions as

Vx(t) = 1
2

n∑
i=1

x2
i (t), Vy(t) = 1

2

m∑
j=1

y2
j (t).

The remaining proof is similar to the proof in the
previous part (1). Meanwhile, consider only the
following other two Lyapunov functions

Vx(t) =
n∑

i=1

|xi(t)|, Vy(t) =
m∑

j=1

|yj(t)|.

The remaining proof is similar to that in the previous
part (2). So the sets 	4 and 	5 are also GES sets of
(1). According to the definition of intersection set,
we know that the set 	 =⋂5

i=1 	i is a better GES
set of NN (1). The proof of Theorem1 is completed.

�

Remark 3 When ai(xi(t)) = 1, bj(yj(t)) = 1 for i ∈ � and
j ∈ �, ci(xi(t)) = ãixi(t) and dj(yj(t)) = c̃jyj(t) with the



Systems Science & Control Engineering: An Open Access Journal 5

constants ãi > 0 and c̃j > 0, the set 	5 in Theorem 1 here
is just the main result (I) of Theorem 3.2 in Tu et al. (2013).

Theorem 2 Let p > 1, q > 1 and 1/p + 1/q = 1. Choose
εi > 0, ε̄j > 0(i ∈ �, j ∈ �) such that μi = paici − (p −
1)εi > 0, ηj = qbjdj − (q − 1)ε̄j > 0. If the activation
functions f (·), g(·) ∈ B and (H1), (H2) are also satisfied,
then NN (1) is globally exponentially stable in Lagrange
sense and 	6 is a GES set, where

	6 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣∣

1
p

n∑
i=1

|xi(t)|p + 1
q

m∑
j=1

|yj(t)|q

≤
∑n

i=1 M p
i /pε

p−1
i +∑m

j=1 N q
j /qε̄

q−1
j

min 1≤i≤n
1≤j≤m

{μi, ηj}

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Proof We introduce the following Lyapunov function

V (t) = 1
p

n∑
i=1

|xi(t)|p + 1
q

m∑
j=1

|yj(t)|q.

Calculating the Dini derivative of V (t) along (1), and by
virtue of Lemma 2, we can obtain

D+V (t)|(1)

≤ −
n∑

i=1

aici|xi(t)|p +
n∑

i=1

Mi|xi(t)|p−1

−
m∑

j=1

bjdj|yj(t)|q +
m∑

j=1

Nj|yj(t)|q−1

≤ −
n∑

i=1

aici|xi(t)|p +
n∑

i=1

(
p − 1

p
εi|xi(t)|p + 1

pε
p−1
i

M p
i

)

−
m∑

j=1

bjdj|yj(t)|q +
m∑

j=1

⎛
⎝q − 1

q
ε̄j|yj(t)|q + 1

qε̄
q−1
j

N q
j

⎞
⎠

≤ −
n∑

i=1

(
aici − p − 1

p
εi

)
|xi(t)|p +

n∑
i=1

1

pε
p−1
i

M p
i

−
m∑

j=1

(
bjdj − q − 1

q
ε̄j

)
|yj(t)|q +

m∑
j=1

1

qε̄
q−1
j

N q
j

≤ −αV (t) + β,

where

α = min
1≤i≤n
1≤j≤m

{μi, ηj}, β =
n∑

i=1

M p
i

pε
p−1
i

+
m∑

j=1

N q
j

qε̄
q−1
j

.

And by Lemma 3, we get

V (t) − β

α
≤
(

V (t0) − β

α

)
e−α(t−t0).

So the set 	6 is a GES set of Equation (1). �

Remark 4 When ai(xi(t)) = 1, bj(yj(t)) = 1 for i ∈ � and
j ∈ �, ci(xi(t)) = ãixi(t) and dj(yj(t)) = c̃jyj(t) with the
constants ãi > 0 and c̃j > 0 the sets 	6 in Theorem 2 here
are just the main result of Theorem 3.1 in Tu et al. (2013).

Theorem 3 If the activation functions f (·), g(·) ∈ S and
(H1), (H2) are also satisfied, then NN (1) has positive
invariant and globally exponential attractive sets

	7 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

∫ xi(t)

0
gi(s) ds

+
m∑

j=1

∫ yj(t)

0
fj(η) dη

≤ M̃ + Ñ
min 1≤i≤n

1≤j≤m

{aici, bjdj}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

	8 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x
y

)
∈ Rn+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

∫ xi(t)

0
gi(s) ds

≤ M̃
min1≤i≤n{aici}

,

m∑
j=1

∫ yj(t)

0
fj(η) dη ≤

Ñ
min1≤j≤m{bjdj}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

And 	 = 	7 ∩ 	8 is a better GES set of Equation (1).

Proof Firstly, employ the following Lyapunov function

V (t) =
n∑

i=1

∫ xi(t)

0
gi(s) ds +

m∑
j=1

∫ yj(t)

0
fj(η) dη.

Calculating the derivative of V (t), we have

dV (t)
dt

∣∣∣∣
(1)

=
n∑

i=1

gi(xi(t))ẋi(t) +
m∑

j=1

fj(yj(t))ẏj(t)

≤ −
n∑

i=1

aicixi(t)gi(xi(t)) + M̃

−
m∑

j=1

bjdjyj(t)fj(yj(t)) + Ñ

≤ − min
1≤i≤n
1≤j≤m

{aici, bjdj}V (t) + M̃ + Ñ = −αV (t) + β,
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where α = min 1≤i≤n
1≤j≤m

{aici, bjdj}, β = M̃ + Ñ . In the light

of Lemma 3, we get

V (t) − β

α
≤
(

V (t0) − β

α

)
e−α(t−t0).

So the set 	7 is a GES set of Equation (1).
Secondly, consider the following Lyapunov functions

V1(t) =
n∑

i=1

∫ xi(t)

0
gi(s) ds, V2(t) =

m∑
j=1

∫ yj(t)

0
fj(η) dη.

Similar to the proof in the previous part, we can obtain
that the set 	8 is a GES set of Equation (1). Hence, 	 =
	7 ∩ 	8 is a better GES set of neural network (1). �

4. Illustrative examples
In this section, we will give an example to verify our
theoretical results.

Example 4.1 Consider the following example:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = ai(xi(t))

⎡
⎢⎢⎢⎢⎢⎣

−ci(xi(t)) +
2∑

j=1

aijfj(yj(t))

+
2∑

j=1

bijfj(yj(t − τj(t))) + Ii

⎤
⎥⎥⎥⎥⎥⎦ ,

i = 1, 2,

ẏj(t) = bj(yj(t))

⎡
⎢⎢⎢⎢⎢⎣

−dj(yj(t)) +
2∑

i=1

mjigi(xi(t))

+
2∑

i=1

njigi(xi(t − σi(t))) + Jj

⎤
⎥⎥⎥⎥⎥⎦ ,

j = 1, 2,
(3)

where ai(xi(t)) = 2 + cos xi(t), ci(xi(t)) = 3xi(t), gi(xi) =
2xi/(1 + x2

i ); bj(yj(t)) = 2 + sin yj(t), dj(yj(t)) = 3yj(t),
f (yj) = 1

2 (|yj + 1| − |yj − 1|). Let A = ( 1 2
2 1

)
, B = ( 1 0

0 1

)
,

M = ( 2 1
1 0

)
, N = ( 2 0

0 1

)
, I = ( 1 2 )T, J = ( 2 1 )T. So ai =

bj = 1, āi = b̄j = 3, ci = c̄i = dj = d̄j = 3, si = rj = 1,
M1 = 15, M2 = 18, N1 = 21, N2 = 9. Since f (·), g(·) ∈ B,
according to Theorem 1, the neural network model (3) has
positive invariant and globally exponential attractive sets
as follows:

	1 =
{(

x
y

)
∈ R4

∣∣∣x2
1(t) + x2

2(t) + y2
1(t) + y2

2(t) ≤ 119
}

,

	2 =
{(

x
y

)
∈ R4 ||x1(t)| + |x2(t)| + |y1(t)| + |y2(t)| ≤ 21

}
.

Meanwhile, let the initial conditions x1(t) = 0.7 +
y2(t), x2(t) = 1 + y2(t), y1(t) = 1.2 + y2(t), y2(t) = 0.9 +
0.5 sin 2t, and the delays τ1 = τ2 = 100 − sin t,
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y2

Figure 1. Time response of states x1(t), x2(t), y1(t) and y2(t) of
Equation (3).
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Figure 2. The ultimate bound of Equation (3) in coordinate
system (x1, y1, y2).
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Figure 3. The ultimate bound of Equation (3) in coordinate
system (x2, y1, y2).
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Figure 4. The ultimate bound of Equation (3) in coordinate
system (x1, x2, y2).
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Figure 5. The ultimate bound of Equation (3) in coordinate
system (x1, x2, y1).

σ1 = σ2 = 100 − sin t. Figure 1 shows time response of
states x1(t), x2(t), y1(t) and y2(t). Figures 2–5 show the
estimations of the ultimate bound of system (3) in the
three-dimensional phase space, respectively.

5. Conclusions
Based on the Lyapunov stability theory and some
inequalities, this paper has derived some sufficient
delay-independent conditions of positive invariant set
and globally exponential attractive set for the BAM-
type Cohen–Grossberg neural networks with time-varying
delays. According to the parameters, the detailed estima-
tions for the positive invariant and globally attractive set
of the BAM-type Cohen–Grossberg neural networks have
been established without any hypothesis on the existence.
Meanwhile, the results obtained in this paper are more gen-
eral than that of the existing references (Tu et al., 2013)
on the GEA set as special cases. Moreover, the proposed
methods here can be also applied to nonlinear discrete-time
systems with time-varying delays such as that in Dong,
Wang, and Gao (2013) and Hu, Wang, Niu, and Stergioulas
(2012). Finally, an illustrative example is shown to verify
our results.
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