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A nonlinear oscillator with strange attractors featured Sinai-Ruelle-Bowen measure
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This paper studies a class of Duffing oscillator with a forcing parameter ε. We obtain Hénon-like attractors, rank one attractors,
and periodic sinks as ε changes. Hénon-like attractors and rank one attractors are chaotic in the sense of SRB measures, while
periodic sinks represent stable dynamics with a basin of positive Lebesgue measure. As ε → 0, three attractors construct
a dynamical pattern repeating with certain period. Through numerical simulations, we observe three attractors perfectly as
well as the dynamical pattern.
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1. Introduction
Duffing oscillator is known as a simple model displaying
rich nonlinear dynamics, such as homoclinic tangles and
horseshoes. In general, for an equation with homoclinic
solution, periodic perturbation often leads to the intersec-
tion of stable and unstable manifolds. Therefore, Melnikov
method is an efficient tool to detect horseshoes. However, it
is possible for stable and unstable manifolds pulling apart.
In this case, Melnikov method fails. Are there any important
dynamics in this situation? What methods can be used to
clear the important dynamics? How to deal with the inter-
section and pulling apart of stable and unstable manifolds
together? Recently, Wang and Oksasoglu (2011) provided
a complete theory on two-dimensional homoclinic tangles.
With a new return map, they proved Hénon-like attractors
and periodic sinks in homoclinic tangles beyond horse-
shoes. Further, for pulling apart, they obtained rank one
attractors.

This paper studies a special class of Duffing oscillator,
concentrating on its strange attractors as the forcing param-
eter changes. First, we present homoclinic solutions and
heteroclinic solutions in unperturbed equation. Then, with
double homoclinic tangle theory (Wang, 2009), we obtain
Hénon-like attractors, rank one attractors, and periodic
sinks, along with two dynamical patterns. With heteroclinic
tangle theory (Chen, Oksasoglu, & Wang, 2013), we show
Hénon-like attractors, periodic sinks, and transient tangles,
also with a dynamical pattern. During this course, horse-
shoes are always participants, though we cannot observe it
in numerical simulations.

∗Corresponding author. Email: fjchen@zjnu.cn

2. Dynamics of perturbed homoclinic solutions
Although homoclinic tangles was discovered earlier by
Poincaré (1899), the overall dynamics are far from
understood. In Wang and Oksasoglu (2011), the authors
presented a systematic study on homoclinic tangles for
equation:

dx
dt

= f (x, y) + εP(x, y, t),

dy
dt

= g(x, y) + εQ(x, y, t),

(1)

where f (x, y), g(x, y), P(x, y, t), Q(x, y, t) are Cr(r ≥ 3)

functions, and P(x, y, t + T ) = P(x, y, t), Q(x, y, t + T ) =
Q(x, y, t) for a constant T > 0.

Assume that the unperturbed equation, that is, ε = 0 in
Equation (1), has a dissipative saddle point O connected
with a homoclinic solution �(t). If O is non-resonant, then
a new return map R was derived in Wang and Oksasoglu
(2011). Let �− be a section, and (θ , x) be variables on �−.
Denote (θ1, x1) = R(θ , x). Then

θ1 = θ + a − ω

β
ln F(θ , x, ε) + Oθ ,x,h(ε),

x1 = bF−α/β(θ , x, ε),
(2)

where a, b are constants, α < 0, β > 0 are two eigenvalues
of saddle O, and

F(θ , x, ε) = W(θ) + kx + E(θ , ε) + Oθ ,x,h(ε). (3)
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In Equation (3), W(θ) is a Melnikov function defined as

W(θ) =
∫ +∞

−∞
[P(�(t), t + θ), Q(�(t), t + θ)]

· τ⊥
�(t)e

− ∫ t
0 E�(s) ds dt, (4)

k is a small constant, and E(θ , ε), Oθ ,x,h(ε) are small error
terms. In Equation (4), τ⊥

�(t) is a vector perpendicular to the
tangent vector of �(t) at time t, and E�(t) is the expansion
rate of solutions in the neighborhood of �(t).

From Equation (2), the domain of R depends on the
image of F(θ , x, ε), which is related to the zeros of W(θ).
Denote

M = max
θ∈S1

W(θ), m = min
θ∈S1

W(θ), (5)

where S1 = R/{nT } for n ∈ Z.

Theorem 2.1 (Wang, 2011; Wang & Oksasoglu, 2011)

(i) If W(θ) is a Morse function satisfying m < 0 <

M , then Hénon-like attractors, periodic sinks, and
horseshoes of infinitely symbols occur in the space
of ε. Moreover, as ε → 0, there is a dynamical
pattern repeating with period eβT , where β is the
unstable eigenvalue of saddle O.

(ii) If m > 0, then rank one attractors occur for large
ω, where ω is the frequency of perturbation.

Remark 1 In Theorem 2.1(ii), m > 0 implies the pulling
apart of stable and unstable manifolds. At this time, R
defines on the full �−. It is a rank one map admitting rank
one attractors (Wang & Oksasoglu, 2008) characterized by
SRB measures (Young, 2002; Benedicks & Young, 1993).

Denote two Melnikov functions by W+(θ) and W−(θ).
Let

M+ = max
θ∈S1

W+(θ), m+ = min
θ∈S1

W+(θ),

M− = max
θ∈S1

W−(θ), m− = min
θ∈S1

W−(θ).
(6)

Theorem 2.2 (Wang, 2009; Wang & Oksasoglu, 2010)
Assume that W+(θ) and W−(θ) are two Morse functions.

(i) If m+, m− < 0 < M+, M−, then Equation (1)
shows the mixture of two homoclinic tangles.
It contains Hénon-like attractors, rank one
attractors, and periodic sinks.

(ii) If m+ < 0 < M+, m− > 0 (or m− < 0 < M−,
m+ > 0), then Equation (1) shows one homo-
clinic tangle and one rank one attractor.
One-sided Hénon-like attractors, one-sided rank
one attractors, and one-sided periodic sinks are
created.

(iii) If m+ < 0 < M+, M− < 0 (or m− < 0 < M−,
M+ < 0), then Equation (1) shows one tangle
mixed with one rank one attractor. Hénon-like
attractors, rank one attractors, and periodic sinks,
including two-sided and one-sided, are permitted.

(iv) If m+ > 0, m− > 0, then Equation (1) shows two
rank one attractors.

(v) If m+ > 0, M− < 0 (or m− > 0, M+ < 0 or
M+ < 0, M− < 0), then Equation (1) shows only
one rank one attractor.

As ε → 0, each case shows a repetitive dynamical
pattern.

Remark 2 In Theorem 2.2, one-sided attractor means that
the attractor is only on the left side or right side of saddle
O. If it is on both sides, we call it two-sided attractor.

The setting of Theorems 2.1 and 2.2 are homoclinic
solutions. Intuitively, heteroclinic cycle, formed by hete-
roclinic solutions, looks like a homoclinic loop. Therefore,
perturbation to heteroclinic cycle also leads to complicated
dynamics (Chen et al. 2013). Precisely, given two saddles
O and O∗, connecting with two heteroclinic solutions �(t)
and �∗(t) in unperturbed equation of (1). Let W(θ), W∗(θ)

be two Melnikov functions with four extrema M , m, and
M∗, m∗. We have

Theorem 2.3 (Chen et al. 2013) Suppose W(θ) and W∗
(θ) are two Morse functions satisfying m < 0 < M ,
m∗ < 0 < M∗, and O, O∗ are both dissipative and non-
resonant saddles. Then, Hénon-like attractors, periodic
sinks, and horseshoes of infinitely many symbols occur for
Equation (1) as ε > 0 changes.

Remark 3 For homoclinic tangles, there is a well-defined
dynamical pattern repeating itself periodically. However,
for heteroclinic tangles, the repetitive dynamical pattern
depends on two unstable eigenvalues. If they are rationally
related, we have a repetitive pattern. If not, the repetitive
pattern disappears.

3. Strange attractors in a class of duffing oscillator
In this section we study a nonlinear oscillator

ẍ + (α + γ x2)ẋ + βx + δx3

+ ε[ηxẋ + (x2 − 1)2 cos ωt] = 0, (7)

where α > 0, γ , β, δ, and ε > 0, η, ω are parameters. We
are interested in strange attractors for every ε > 0.

In history, many studies were carried out for Equation (7)
on some parameters. For example, when ε = 0, Holmes and
Rand (1980) studied its phase portrait and bifurcation set
in (α, β) space. When γ = η = 0, ε �= 0, Holmes (1979)
discussed strange attractors with Poincaré map only for
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Figure 1. Case (i) of Equation (9). (a) One-sided Hénon-like attractor at ε = 2.3 × 10−4; (b) Time evolution of (a); (c) Two-sided
Hénon-like attractor at ε = 1.577 × 10−4; (d) Time evolution of (c); (e) Two-sided rank one attractor at ε = 3.2 × 10−4; (f) Time evolution
of (e); (g) Two-sided periodic sink at ε = 3.3 × 10−4 ; (h) Time evolution of (g); (m) One-sided periodic sink at ε = 2.2 × 10−4; and (n)
Time evolution of (m).

certain ε. According to what we know, few studies are on
strange attractors for every ε.

Write ẋ = y, Equation (7) becomes

ẋ = y,

ẏ = −βx − δx3 − (α + γ x2)y (8)

− ε[ηxy + (x2 − 1)2 cos ωt].

We consider two cases for Equation (8). One case
is (β, δ) = (−1, 1). In this case, we present dynamics of

double homoclinic tangles. The other case is (β, δ) =
(1, −1). This case leads to the heteroclinic tangles.

3.1. Homoclinic tangles
For (β, δ) = (−1, 1), Equation (8) simplifies to

ẋ = y,

ẏ = x − x3 − (α + γ x2)y − ε[ηxy + (x2 − 1)2 cos ωt].
(9)
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Table 1. The dynamical pattern of Equation (9, case i).

α = 0.5, γ = −0.620831624826
η = 0.0, ω = 2π
Theoretical multiplicity eλ2 ≈ 2.1832

ε Behavior type Actual ratio

3.4 × 10−4 HL(2) –
3.3 × 10−4 S(2) –
3.2 × 10−4 R(2) –
2.3 × 10−4 HL(1) –
2.2 × 10−4 S(1) –
2.1 × 10−4 R(2) –

1.577 × 10−4 HL(2) 2.1560
1.552 × 10−4 S(2) 2.1263
1.477 × 10−4 R(2) 2.1666
1.057 × 10−4 HL(1) 2.1760
1.006 × 10−4 S(1) 2.1869
1.000 × 10−4 R(2) 2.1000

7.231 × 10−5 HL(2) 2.1809
7.114 × 10−5 S(2) 2.1816
6.775 × 10−5 R(2) 2.1801
4.823 × 10−5 HL(1) 2.1916
4.588 × 10−5 S(1) 2.1927
4.586 × 10−5 R(2) 2.1805

3.313 × 10−5 HL(2) 2.1826
3.260 × 10−5 S(2) 2.1822
3.104 × 10−5 R(2) 2.1827
2.215 × 10−5 HL(1) 2.1774
2.103 × 10−5 S(1) 2.1816
2.101 × 10−5 R(2) 2.1828

1.518 × 10−5 HL(2) 2.1825
1.494 × 10−5 S(2) 2.1821
1.422 × 10−5 R(2) 2.1828
1.019 × 10−5 HL(1) 2.1737
9.633 × 10−6 S(1) 2.1831
9.629 × 10−6 R(2) 2.1820

6.955 × 10−6 HL(2) 2.1826
6.844 × 10−6 S(2) 2.1829
6.517 × 10−6 R(2) 2.1820
4.661 × 10−6 HL(1) 2.1862
4.415 × 10−6 S(1) 2.1818
4.411 × 10−6 R(2) 2.1830

First, we need a dissipative saddle and homoclinic solution
for the unperturbed equation

ẋ = y,

ẏ = x − x3 − (α + γ x2)y.
(10)

Proposition 3.1 For sufficiently small α > 0, there is a
γα such that Equation (10) has a saddle point O(0, 0) and
two homoclinic solutions.

Proof O(0, 0) is an equilibrium point of Equation (10)
with eigenvalues

λ1 = −α − √
α2 + 4

2
, λ2 = −α + √

α2 + 4
2

.

So, for α > 0, we have λ1 < 0, λ2 > 0, and hence O(0, 0)

is a saddle. Since λ1 + λ2 = −α < 0, O(0, 0) is a dissipa-
tive saddle. The non-resonant is guaranteed by the irrational√

α2 + 4.
For small α > 0, we rewrite Equation (10) as

ẋ = y,

ẏ = x − x3 − α(1 + γαx2)y,
(11)

where γα = γ /α. Equation (11) is an auto-perturbation of
equation

ẋ = y,

ẏ = x − x3.
(12)

By simple computation, Equation (12) has two homo-
clinic solutions: �1(t) = {(a1(t), b1(t)) : t ∈ R} and �2(t) =
{(−a1(t), −b1(t)) : t ∈ R}, where

a1(t) = √
2 secht, b1(t) = −√

2secht · tanh t.

The standard Melnikov function on �1(t) is

M1 =
∫ ∞

−∞
(1 + γαa2

1(t))b
2
1(t) dt = 4

3
+ 16

15
γα . (13)

Thus, we have M1 = 0 at γα = − 5
4 , and a new homo-

clinic solution arises for Equation (10). Denote this homo-
clinic solution as �̃1(t) = {(ã1(t), b̃1(t)) : t ∈ R}. Note that
�̃2(t) = {(−ã1(t), −b̃1(t)) : t ∈ R} is also a homoclinic
solution for Equation (10). They are all homoclinic to
O(0, 0). This completes the proof of Proposition 3.1. �

In the following, we fix α, γα as in Proposition 3.1, and
consider Equation (9):

ẋ = y,

ẏ = x − x3 − α(1 + γαx2)y − ε[ηxy + (x2 − 1)2 cos ωt].
(14)

Comparing Equation (14) with Equation (1), we have
P(x, y, t) = 0, Q(x, y, t) = −[ηxy + (x2 − 1)2 cos ωt].
Therefore, the Melnikov function (4) on �̃1(t) is

W1(θ) = A1η +
√

B2
1 + C2

1 cos(ωθ + ϕ1), (15)

where, for (x, y) ∈ �̃1(t),

A1 =
∫ ∞

−∞
xy2e− ∫ t

0 E�̃1
(s) ds√

y2 + [x − x3 − α(1 + γαx2)y]2
dt,

B1 =
∫ ∞

−∞
(x2 − 1)2ye− ∫ t

0 E�̃1
(s) ds cos ωt√

y2 + [x − x3 − α(1 + γαx2)y]2
dt,

C1 =
∫ ∞

−∞
(x2 − 1)2ye− ∫ t

0 E�̃1
(s) ds sin ωt√

y2 + [x − x3 − α(1 + γαx2)y]2
dt,

tan ϕ1 = C1

B1
,

(16)
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Figure 2. Case (v) of Equation (9). (a) One-sided Hénon-like attractor at ε = 5.8 × 10−3; (b) Time evolution of (a); (c) One-sided rank
one attractor at ε = 4.2 × 10−3; (d) Time evolution of (c); (e) One-sided periodic sink at ε = 5.1 × 10−3; and (f) Time evolution of (e).

and

E
�̃1

(t) = τ⊥
�1

(t)
(

0 1
1 − 3x2 − 2αγαxy −α(1 + γαx2)

)
τ̃⊥
�1

(t),

with

τ⊥
�1

(t) = (x − x3 − α(1 + γαx2)y, −y)√
y2 + [x − x3 − α(1 + γαx2)y]2

.

Since �̃2(t) = −�̃1(t), t ∈ R, the Melnikov function on
�̃2(t) is

W2(θ) = −A1η +
√

B2
1 + C2

1 cos(ωθ + ϕ1). (17)

From Equations (15) and (17), the four extrema of
W1(θ), W2(θ) are

M1 = A1η +
√

B2
1 + C2

1 ,

m1 = A1η −
√

B2
1 + C2

1 ,

M2 = −A1η +
√

B2
1 + C2

1 ,

m2 = −A1η −
√

B2
1 + C2

1 .

With Theorem 2.2, only two cases (i): m1 < 0 <

M1, m2 < 0 < M2, and (v): m1 > 0, M2 < 0 or m2 > 0,

M1 < 0 hold for real η. Solve case (i), we have

−
√

B2
1 + C2

1

A1
< η <

√
B2

1 + C2
1

A1
. (18)

Solve case (v) of m1 > 0, M2 < 0, we have

η >

√
B2

1 + C2
1

A1
, (19)

and from m2 > 0, M1 < 0, we have

η < −
√

B2
1 + C2

1

A1
. (20)

With Theorem 2.2(i), for η in Equation (18), Equation (9)
exhibits mixture of two homoclinic tangles. Consequently,
both one-sided and two-sided Hénon-like attractors, rank
one attractors, and periodic sinks occur for Equation (9), see
Figure 1. The corresponding dynamical pattern is listed in
Table 1, which repeats itself with period eλ2 ≈ 2.1832. The
symbols “HL(1), HL(2)” stand for respectively one-sided
and two-sided Hénon-like attractors. The same meaning
also applies to symbols “S(1), S(2), R(1), R(2).” For η in
Equation (19) or Equation (20), Theorem 2.2(v) tells us
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Table 2. The dynamical pattern of Equation (9, case v).

α = 1.0, γ = −1.219038499970
η = 0.3, ω = 2π
Theoretical multiplicity eλ2 ≈ 1.85527

ε Behavior type Actual ratio

5.8 × 10−3 HL(1) –
5.1 × 10−3 S(1) –
4.4 × 10−3 HL(1) –
4.2 × 10−3 R(1) –
3.8 × 10−3 S(1) –
3.7 × 10−3 R(1) –
3.6 × 10−3 HL(1) –
3.4 × 10−3 S(1) –
3.3 × 10−3 HL(1) –
3.2 × 10−3 S(1) –

3.167 × 10−3 HL(1) 1.8314
2.782 × 10−3 S(1) 1.8332
2.389 × 10−3 HL(1) 1.8418
2.283 × 10−3 R(1) 1.8397
2.051 × 10−3 S(1) 1.8528
1.999 × 10−3 R(1) 1.8509
1.958 × 10−3 HL(1) 1.8396
1.847 × 10−3 S(1) 1.8408
1.819 × 10−3 HL(1) 1.8142
1.746 × 10−3 S(1) 1.8328

1.707 × 10−3 HL(1) 1.8553
1.499 × 10−3 S(1) 1.8559
1.288 × 10−3 HL(1) 1.8548
1.230 × 10−3 R(1) 1.8561
1.104 × 10−3 S(1) 1.8578
1.099 × 10−3 R(1) 1.8189
1.054 × 10−3 HL(1) 1.8577
9.949 × 10−4 S(1) 1.8565
9.832 × 10−4 HL(1) 1.8501
9.403 × 10−4 S(1) 1.8569

9.195 × 10−4 HL(1) 1.8564
8.054 × 10−4 S(1) 1.8612
6.929 × 10−4 HL(1) 1.8589
6.629 × 10−4 R(1) 1.8555
5.947 × 10−4 S(1) 1.8564
5.916 × 10−4 R(1) 1.8577
5.678 × 10−4 HL(1) 1.8563
5.359 × 10−4 S(1) 1.8565
5.296 × 10−4 HL(1) 1.8565
5.063 × 10−4 S(1) 1.8572

only one rank one attractor for Equation (9). Therefore,
one-sided Hénon-like attractors, one-sided rank one attrac-
tors, and one-sided periodic sinks emerge expectedly, see
Figure 2. Table 2 is the corresponding dynamical pattern.

3.2. Heteroclinic tangles
For (β, δ) = (1, −1), Equation (8) is changed to

ẋ = y,

ẏ = −x + x3 − (α + γ x2)y − ε[ηxy + (x2 − 1)2 cos ωt].
(21)

To apply Theorem 2.3 to Equation (21), we need two hete-
roclinic solutions together with two saddles for unperturbed
equation

ẋ = y,

ẏ = −x + x3 − (α + γ x2)y.
(22)

Proposition 3.2 For sufficiently small α > 0, there is a
γα such that Equation (22) has two heteroclinic solutions
associated with two saddles O1(−1, 0) and O2(1, 0), which
are dissipative and non-resonant.

Proof O1(−1, 0) and O2(1, 0) are two equilibrium points
of Equation (22), sharing the same eigenvalues

λ1 = −α − γ − √
(α + γ )2 + 8
2

,

λ2 = −α − γ + √
(α + γ )2 + 8
2

.

For α + γ > 0, we have λ1 < 0, λ2 > 0. So O1(−1, 0) and
O2(1, 0) are both saddles. Since λ1 + λ2 = −(α + γ ) < 0,
they are simultaneously dissipative. Moreover, they are both
non-resonant due to the irrational

√
(α + γ )2 + 8.

For small α > 0, Equation (22) is also equivalent to

ẋ = y,

ẏ = −x + x3 − α(1 + γαx2)y,
(23)

which perturbs from equation

ẋ = y,

ẏ = −x + x3.
(24)

Clearly, Equation (24) has two heteroclinic solutions
with symmetry: �(t) = {(a(t), b(t)) : t ∈ R} and �∗(t) =
{(−a(t), −b(t)) : t ∈ R}, where

a(t) = tanh

(√
2

2
t

)
, b(t) =

√
2

2
sech2

(√
2

2
t

)
.

The standard Melnikov function on �(t) is

M =
∫ ∞

−∞
(1 + γαa2(t))b2(t) dt = 2

√
2

3
+ 2

√
2

15
γα . (25)

So M = 0 at γα = −5, and thus a new heteroclinic
solution arises for Equation (23). Denote this heteroclinic
solution as �̃(t) = {(ã(t), b̃(t)) : t ∈ R}. Easy to check that
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�̃∗(t) = {(−ã(t), −b̃(t)) : t ∈ R} is also a heteroclinic solu-
tion for Equation (23). They are both heteroclinic to saddles
O1(−1, 0) and O2(1, 0). This confirms Proposition 3.2. �

For Equation (21), two Melnikov functions on �̃(t), �̃∗(t)
are

W(θ) = Aη +
√

B2 + C2 cos(ωθ + ϕ),

W∗(θ) = −Aη +
√

B2 + C2 cos(ωθ + ϕ),
(26)

where, for (x, y) ∈ �̃(t),

A =
∫ ∞

−∞
xy2e− ∫ t

0 E�̃(s) ds√
y2 + [−x + x3 − α(1 + γαx2)y]2

dt,

B =
∫ ∞

−∞
(x2 − 1)2ye− ∫ t

0 E�̃(s) ds cos ωt√
y2 + [−x + x3 − α(1 + γαx2)y]2

dt,

C =
∫ ∞

−∞
(x2 − 1)2ye− ∫ t

0 E�̃(s) ds sin ωt√
y2 + [−x + x3 − α(1 + γαx2)y]2

dt,

tan ϕ = C
B

,

(27)

Figure 3. Case (v) of Equation (21).

Table 3. The dynamical pattern of Equation (21, case i).

α = −0.5, γ = 2.429857626335
η = 0, ω = 2π
Theoretical multiplicity eλ2 ≈ 2.0793

ε Behavior type Actual ratio

3.7 × 10−3 Hénon-like attractors –
3.6 × 10−3 Periodic sinks –
3.5 × 10−3 Transient tangles –
1.772 × 10−3 Hénon-like attractors 2.0880
1.749 × 10−3 Periodic sinks 2.0583
1.669 × 10−3 Transient tangles 2.0971

8.386 × 10−4 Hénon-like attractors 2.1130
8.276 × 10−4 Periodic sinks 2.1133
7.896 × 10−4 Transient tangles 2.1137

3.960 × 10−4 Hénon-like attractors 2.1177
3.900 × 10−4 Periodic sinks 2.1221
3.728 × 10−4 Transient tangles 2.1180

1.864 × 10−4 Hénon-like attractors 2.1245
1.839 × 10−4 Periodic sinks 2.1207
1.753 × 10−4 Transient tangles 2.1266

8.710 × 10−5 Hénon-like attractors 2.1401
8.595 × 10−5 Periodic sinks 2.1396
8.175 × 10−5 Transient tangles 2.1443

and

E�̃(t) = τ⊥
� (t)

(
0 1

3x2 − 1 − 2αγαxy −α(1 + γαx2)

)
τ̃⊥
� (t),

with

τ⊥
� (t) = (−x + x3 − α(1 + γαx2)y, −y)√

y2 + [−x + x3 − α(1 + γαx2)y]2
.

Figure 4. Case (i) of Equation (21). (a) Hénon-like attractor at ε = 8.710 × 10−5; (b) Time evolution of (a); (c) Periodic sink at
ε = 3.900 × 10−5; and (d) Time evolution of (c).
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The four extrema of W(θ), W∗(θ) are M = Aη +√
B2 + C2, m = Aη − √

B2 + C2, M∗ = − Aη + √
B2 + C2,

m∗ = −Aη − √
B2 + C2. With the same reason, only two

cases hold for real η: (i) m < 0 < M , m∗ < 0 < M∗; (v)
m > 0, M∗ < 0 or m∗ > 0, M < 0. However, for hetero-
clinic tangles, there is no return map corresponding to case
(v), see Figure 3. Therefore, only case (i) make sense. With-
out loss of generality, we assume A > 0. Then case (i)
implies

−
√

B2 + C2

A
< η <

√
B2 + C2

A
. (28)

Take η satisfying Equation (28), from Theorem 2.3
we have Hénon-like attractors and periodic sinks, see
Figure 4. Horseshoes are there, but we can not visualize
it in numerical simulations. Table 3 is a dynamical pattern
for Equation (21) when α = −0.5, γ = 2.42985626335,
η = 0.

4. Conclusions
In this paper, Hénon-like attractors, rank one attractors,
and periodic sinks are obtained in a class of Duffing
oscillator. Among the three attractors, Hénon-like attrac-
tors and rank one attractors are chaotic in the sense
of the SRB measure. All the three attractors are orga-
nized in an invariant pattern that repeats itself peri-
odically with respect to the forcing magnitude ε as
ε → 0.
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