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Effective fault-tolerant control paradigm for path tracking in autonomous vehicles
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A novel fault-tolerant control paradigm that integrates fault detection (FD) with optimal control for path tracking is designed
to ensure accurate path tracking in the presence of faults. The proposed approach is designed to maintain vehicle stability,
dynamics, and maneuverability in the event of a faulty steering system. A sensor fusion-based fault detection and identifica-
tion approach is proposed to accurately detect and identify sensor faults when they occur. A weight adjustment algorithm is
considered to ensure accurate detection while providing robustness against parameter variations and uncertainties. Follow-
ing FD and using the estimated fault vector, a fault-tolerant controller is designed to guarantee the stability of the closed loop
system. The proposed controller incorporates a linear quadratic regulator (LQR)-based algorithm with a feed-forward gain.
The LQR-based controller is designed to maintain system stability under faulty conditions while operating the dynamic sys-
tem at minimum cost. The proposed approach is validated using a ground vehicle required to track various paths while being
subject to multiple fault scenarios. For accurate performance analysis, vehicle handling and dynamics were implemented
using CarSim, a high-fidelity vehicle simulator. Effective path tracking capabilities, vehicle handling, and stabilization under
both fault-free and faulty conditions are the main positive features of the proposed approach.

Keywords: fault detection and identification (FDI); fault-tolerant control (FTC); linear quadratic regulator (LQR); sensor
fusion; observer

1. Introduction
As modern day autonomous vehicles become more and
more complex and highly integrated, the vulnerability of
their components to faults/failures increases (Cheng, 2011;
Fekih, 2014). Defects in sensors, actuators, or the system
itself can degrade overall system performance. Undetected,
faults can develop into failures which probably increase
with the increased complexity of the system. Moreover,
mitigating unsatisfactory performances or even instability
caused by the unpredictable faults in actuators, sensors,
or other components is of foremost priority, especially in
safety-critical systems such as ground vehicles.

According to the International Federation of Automatic
Control SAFEPROCESS technical committee (Gustaffson,
2000), a fault is defined as any unpermitted deviation of at
least one characteristic property or parameter of the sys-
tem from the acceptable/usual/standard condition, while a
failure is a permanent interruption of a system’s ability to
perform its function under specific operating conditions.
In order to maintain high levels of performance and guar-
antee proper system behavior, it is important that faults
be promptly detected and identified and appropriate reme-
dies be applied to prevent system malfunctions. Diagnosis
is the primary stage of active fault-tolerant control (FTC)
systems. Its goal is to perform two main decision tasks:

∗Corresponding author. Email: afef.fekih@louisiana.edu

fault detection (FD), consisting of deciding whether or
not a fault has occurred, and fault isolation, consisting of
deciding which element of the system has failed (Fekih,
2014).

A FTC system is a control system specifically
designed to automatically accommodate faults among sys-
tem components while maintaining system stability along
with a desired level of overall performance (Blanke &
Staroswiecki, 2006; Noura, Theilliol, Ponsart, & Noura,
2009). The key issue of a FTC system is to prevent local
faults from developing into system failures that can end the
mission of the system and cause safety hazards for man
and environment. Existing efforts in FTC design can be
classified into two main approaches: the passive and active
approaches (Jiang & Yu, 2012). In the passive approach,
robust control techniques are used to ensure that the con-
trol loop system remains insensitive to certain faults. The
effectiveness of this strategy, which usually assumes very
restrictive repertory of faults, depends upon the robustness
of the nominal closed-loop system. In the active approach,
a new control system is redesigned according to the esti-
mation of the fault performed by the fault detection and
identification (FDI) filter and according to the specifica-
tions to be met by the faulty system. In contrast to passive
approaches that are mostly conservative, active approaches
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are able to deal with a large number of fault scenarios and
can handle a certain number of unforeseen faults that were
not considered at the design stage.

A growing body of research in this area has resulted in a
number of FD and FTC schemes for ground vehicles (Aro-
geti, Wang, Low, & Yu, 2008; Chen, Song, & Li, 2011;
Dong, Verhaegen, & Holweg, 2008; Fekih & Seelem,
2012; Herpin, Fekih, Golconda, & Lakhotia, 2007; Lau-
reiro, Benmoussa, Touati, Merzouki, & OuldBouamama,
2014; Morteza & Fekih, 2014a, 2014b; Tabbache, Ben-
bouzid, Kheloui, & Bourgeot, 2011; Wang & Wang, 2013;
Yang, Cocquempot, & Jiang, 2008). A passive actuator
FTC was proposed for Four-Wheel Independently Actu-
ated electric ground vehicle in Wang and Wang (2013). The
approach exploits the redundancy of the system and groups
actuators with similar faults in one subsystem and applies
control allocation to distribute the control effort. Actuator
grouping was attempted to reduce the significant compu-
tational cost typically associated with control allocation.
In Laureiro et al. (2014) a bond graph model-based FD
approach and an FTC were designed for an over-actuated
heavy size autonomous vehicle. The approach relied heav-
ily on analytical redundancy relations derived from the
bond graph model. A robust and adaptive FTC tracking
approach was proposed in Chen et al. (2011). An FTC
strategy which considers a maximum-likelihood voting
algorithm was proposed for sensor faults in Tabbache et al.
(2011). Note that most of these works exploited system
redundancy and required high computational costs, draw-
backs that might prevent their real-time implementation.

In this paper, an FTC framework that implicitly inte-
grates FDI with FTC is designed for the automatic steering
of an autonomous ground vehicle subject to sensor faults.
The proposed controller is based on a linear quadratic
regulator (LQR) augmented with a feed-forward gain.
The LQR-based controller is designed to place the sys-
tem’s eigenvalues in the stable region while operating the
dynamic system at minimum cost function. An observer-
based FDI approach is proposed to detect and identify
sensor faults when they occur. Using the estimated fault
vector, the fault-tolerant controller is designed to maintain
system stability when faults occur. The proposed frame-
work is implemented on a ground vehicle required to
follow a given path, while being subject to sensor faults.
The steering controller is designed to maintain vehicle sta-
bility, dynamics, and maneuvrability in the event of a faulty
steering system.

Compared with the existing work already reported in
the literature (Arogeti et al., 2008; Chen et al., 2011; Lau-
reiro et al., 2014; Morteza & Fekih, 2014b; Tabbache et al.,
2011; Wang & Wang, 2013), the contributions of this paper
are in the following aspects:

It presents a complete FTC design with the FDI algorithm
as integral part of the framework and applies it to the
automatic steering of an autonomous vehicle.

The FDI algorithm incorporates a weight adjustment
algorithm to ensure accurate detection, while providing
robustness against parameter variations and uncertainties.

It integrates the optimal properties of the LQR framework
with an observer-based fault detection scheme to achieve
effective fault tolerance.

It provides an easy to implement algorithm which achieves
fault-tolerance with optimum computational costs. This is
crucial in autonomous vehicles, which often work under
tight real-time deadlines and cannot tolerate prolonged
delays in control reconfiguration.

The rest of this paper is organized as follows. Section 2
presents the dynamic model of the vehicle and discusses
the design specifications. The proposed control paradigm
is detailed in Section 3. Section 4 is dedicated to the per-
formance analysis of the proposed algorithm. Finally, some
concluding remarks end this paper in Section 5.

2. Vehicle dynamic model and problem formulation
A dynamic model of the vehicle, with the front and rear
wheels lumped together into a pair of single wheels at
the center of gravity (CG) (Fekih & Deveriste, 2013), is
considered as shown in Figure 1.

Assuming constant longitudinal velocity and combin-
ing the lateral forces with the available slip angles, the
vehicle’s dynamic model is defined as follows (Fekih &
Deveriste, 2013):

[
v̇y

ṙ

]
=

⎡
⎢⎢⎣

−(cf + cr)

mvx

lrcr − lfcf

mvx
− vx

lrcr − lfcf

Izvx

−(l2f cf + l2r )
Izvx

⎤
⎥⎥⎦

[
vy

r

]
+

⎡
⎢⎣

cf

m
lfcf

m

⎤
⎥⎦ δ,
(1)

where v̇y is the rate of change of lateral velocity, ṙ is the
yaw rate of the vehicle, δ is the steering angle, θ is the yaw

Figure 1. Dynamic bicycle model.
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angle (orientation angle of the vehicle with respect to the
X axis), and vy , vx are the lateral and longitudinal veloc-
ity, respectively. cf and cr are the cornering stiffness of the
front and rear tires, respectively. �f is the distance from the
CG to the front axle and �r is the distance from the CG
to the rear axle. Iz is the vehicle yaw moment of inertia.
The remaining variables and parameters are defined in the
Appendix (Table A1). Since our objective is to develop
a steering control system for automatic lane keeping, the
state variables are being expressed in terms of position and
orientation error. If we consider a vehicle traveling at a
constant velocity on a road of a large radius with curvature
k and assume a constant longitudinal velocity, the rate of
change of the desired orientation of the vehicle is given by

ṙdes = vxk, (2)

where ṙdes is the desired yaw rate and k is the curvature of
the road. The desired path lateral acceleration of the vehicle
can be written as

v̇y = kv2
x . (3)

Define e as the distance of the CG of the vehicle from the
center line of the path and e1 as the yaw angle error of the
vehicle with respect to the path; then, we have

ë = v̈y + vx(ṙ − ṙdes),
ė = v̇y + vx(r − rdes),

e1 = r − rdes.
(4)

The state-space model in tracking error variables is there-
fore given by

ẋ = Ax + B1δ + B2ṙdes, (5)

with x = [e ė e1 ė1]T.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 − (cf + cr)

mvx

cf + cr

m
lfcf − lrcr

mvx

0 0 0 1

1
lrcr − lfcf

Izvx

lfcf − lrcr

Iz
− (l

2
f cf + l2r cr)

Izvx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. . . ,

B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
cf

m
0

lf cf

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . .B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

lrcr − lfcf

mvx
− vx

0

−(l2f cf + l2r cr)

Izvx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The output vector of the system consists of measurements
from the two sets of sensors. Sensor failures are modeled

as additive signals to the sensor output as follows:

y = [y1 y2]T = Cx + Ff , (6)

where y1 and y2 are the measurements from the two sensors
which measure the lateral deviation of the vehicle and f is
the fault signal, which is a function of time and state x, and
C is the output matrix, defined as C = [ C1

C2

] = [ 1 0 d1 0
1 0 −d2 0

]
,

where d1 and d2 are, respectively, the distances from the
CG of the vehicle to the front and rear bumpers where the
sensors are located. F = [1 0]T in the event of failure of
sensor 1 and F = [0 1]T in the event of failure of sensor
2, respectively. Here, we consider that the lateral sensing
system consists of two sets of sensors which provide the
information of the lateral deviation.

3. FTC paradigm
The faults under investigation are sensor faults with vary-
ing severities and types. The FTC objectives are to main-
tain vehicle stability, dynamics, and maneuverability in the
event of faulty sensors.

3.1. Observer-based FDI algorithm
The following are some important features of the vehi-
cle’s dynamic model that can aid in designing an easy-
to-implement FDI algorithm: (1) it has two zero eigen-
values and (2) (A, C1) and (A, C2) are observable. This
implies that we can estimate the state through either y1
or y2. This makes FDI easy to implement with minimum
computational cost.

The observability properties of the vehicle imply that
we can build two observers, each of which is being driven
by a single sensor output. Furthermore, in order to ensure
that no erroneous estimates of the state are obtained under
sensor failures, we fuse the sensor output and the estimated
output from one observer prior to their use by the other
observer. Fusion blocks play the role of switches, which
select the healthy signal. Then post-filters are designed
such that the transfer functions from fault signals to resid-
uals have consistent behavior in order to facilitate fault
identification.

Output fusion is a convex combination of the sensor
output and the estimated output from the observer. The
fused output yfi is given by

yfi = (1 − λi)yi + λiŷ
j
i , (7)

where ŷ j
i is the estimate of the ith output from the j th

observer, and i, j = 1, 2, and λi is a weight function. The
weights λi ∈[0, 1] are adjusted using a weight adjustment
algorithm. When there are no faults, that is, λi = 0, then
the fused output yfi is identical to the sensor output yi.
When faults occur, the corresponding values of λi will
increase toward one. When λi = l, the sensor output is
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incorrect and therefore is not being taken into account at
all. The observers will switch between two configurations
according to the relative size of the weights as follows:

If λ1 < λ2, then the observers are defined by

˙̂x1 = Ax̂1 + B1δ + L1(yf 1 − ŷ1
1 )+ λ1L1C1(x̂1 − x̂2),

˙̂x2 = Ax̂2 + B1δ + L2(yf 2 − ŷ2
2 ).

(8)

If λ1 > λ2, then

˙̂x1 = Ax̂1 + B1δ + L1(yf 1 − ŷ1
1 )

˙̂x2 = Ax̂2 + B1δ + L2(yf 2 − ŷ2
2 )+ λ2L2C2(x̂2 − x̂1),

(9)

where L1 and L2 are the solutions of the character-
istic equation defined by det(sI-A + L1C1) and det(sI-
A + L2C2), respectively. Observers (8)–(9) are variations
of the Luenberger observer where the fused outputs replace
the sensor outputs.

3.2. Threshold generation logic
For accurate FD, define the following fault indicator func-
tion or threshold logic:

‖ri(t)‖ < Th ⇒ fault-free conditions,

‖ri(t)‖ > Th ⇒ faulty conditions,
(10)

where Th is a predefined threshold typically chosen based
on the application at hand. Note that setting low thresholds
results in high false-positive rates (alarms are issued under
no fault conditions), and setting high thresholds increases
the false-negative rates (alarms are missed when faults
occur). Clearly, the selection of the thresholds is closely
related to robustness and sensitivity of the residual gener-
ator. Different analysis procedures are used depending on
the techniques employed to generate the residual signal.
The most widely used approaches to analyze the resid-
ual signal generated by observers are threshold logic and
limit monitoring. Threshold level selection methods are
generally problem specific and are not useful for a gen-
eral case (Hsiao & Tomizuka, 2005). To avoid improper
FD, threshold level selection is often done on the basis
of the designer’s experience and in response to problem
requirements.

3.3. Post-filters
Consider the error vector:

eyi = [
y1 − ŷ1

1 y1 − ŷ2
1 y2 − ŷ1

2 y2 − ŷ2
2

]T . (11)

Residuals are generated by filtering ey through post-filters
Mi(s), that is,

ri = Mieyi i = 1, 2, 3, 4. (12)

Mi(s) define the transfer functions from the faulty sig-
nals to the residuals such that the residuals from the two

observers are comparable in magnitude. Note that r1 and r2
are related to sensor 1 and r3 and r4 are related to sensor
2, respectively. Notice that observers (8)–(9) are coupled,
that is, faults in either of the two sensors affect all residu-
als. The problem of identifying the exact fault sensor can
be solved by using properly designed post-filters (Zhang,
Ding, Lam, & Wang, 2003).

Define the state-space transfer function from fault f to
ey by

Vi(s) = C(sI − A)−1B + F , (13)

where F is a matrix which represents the sensor failure as
follows:

F = [
1 0

]T If sensor 1 fails,

F = [
0 1

]T If sensor 2 fails.

Consider the scenarios when sensor 1 has failed and
λ1 < λ2, then from Equation (12) we have

V1(s) = −(1 − λ1)C1(sI − A + (1 − λ1)L1C1)
−1L1 + 1

= n1(s)
d(s)

, (14)

V3(s) = −(1 − λ1)C2(sI − A + (1 − λ1)L1C1)
−1L1

= (1 − λ1)n3(s)
d(s)

, (15)

where ((n1(s), d(s)) and (n3(s), d(s)) are the co-prime pairs
of the polynomials defined as follows:

n1(s) = det
([

sI − A L1
0 1

] [
I 0

(1 − λ1)C1 1

])
, (16)

n3(s) = det
([

sI − A L1
0 1

] [
I 0

(1 − λ1C2 1

])
, (17)

where n1(s) and n3(s) are also independent of λ1.
Factorizing n1(s) = n+

1 (s)n
−
1 (s) and n3(s) = n+

3 (s)n
−
3 (s),

where n+
i (s) and n−

i (s), i = 1,3, are the factors of ni(s)
which have their roots in the left half plane.

Choosing:

M1(s) = n1
+(s)

n−
3 (s)k(s)

, (18)

M3(s) = n+
3 (s)

n−
1 (s)k(s)

, (19)

where k(s) is a Hurwitz polynomial such that M1(s) and
M3(s) are proper and stable, yields

(1 − λ1)M1(s)V1(s) = M3(s)V3(s). (20)

This implies that if we choose post-filters Mi’s such
that a1M1V1 = M3V3 and a2M4V4 = M2V2 for some real
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numbers a1 > 0 and a2 < 1, we can define the following
identification rules:

If λ1 < λ2, and a fault was detected, |r1| > |r3| indi-
cates that sensor 1 has failed, while |r1| < |r3| implies that
sensor 2 has failed.

Similarly, if λ1 > λ2, and a fault has been detected,
|r2| > |r4| suggests that sensor 1 has failed, while |r2| <
|r4| implies that sensor 2 has failed. In order to accom-
modate faults, when these latter happen, the controller
considers the fused outputs, that is, yf 1 and yf 2 instead of
the sensor outputs y1 and y2.

If the fault occurs, the faulty sensor output is replaced
by the observer output.

The next step after residual generation is the analysis
of the residual signal for FD. The residual generator takes
the sensor measurements as inputs and generates residu-
als. The latter are small, ideally zero, when there are no
fault; but when a fault occurs, the residuals are significantly
large. Due to the effect of disturbances, model uncertain-
ties, and measurement noise, the residuals are different
from zero even when there are no faults. A robust residual
generator is proposed next to alleviate these effects while
remaining sensitive to faults.

3.4. Weight adjustment algorithm
If any fault has been detected and identified, weights λi,
i = 1, 2 in the fusion blocks will be adjusted. Suppose sen-
sor 1 fails, then we adjust the weights according to the
following 1st order differential equations:

λ̇1 = −α(λ1 − g(|[r1 r2]T|) (21)

λ̇2 = −αλ2. (22)

If sensor 2 fails, then the adaption rule becomes

λ̇1 = −αλ1 (23)

λ̇2 = −α(λ2 − g(|[r3 r4]T|), (24)

where g is a sigmoid function defined as follows:
g: R →[0, 1] g(x) = 1/(1 + e−ax) a > 0 with a ∈
[−10, 10]. The value of a is determined based of the
fault magnitude. For instance, complete failure of sensor
1 results in a = − 10, hence the use of information from
residuals r1 and r2. If no failure is reported, then a = + 10,
resulting in g = 0, hence residual signals not being con-
sidered in the adjustment algorithm. Values between − 10
and 10 represent faults with various magnitudes. The suffi-
cient conditions for convergence of the estimated state are
|λ̇1| < α and λ1 + λ2 ≤ 1. The parameter α > 0 and is a
trade-off between stability and FDI performance. Large α
increases the response of the FDI unit to faults, while small
α results in a slowly varying condition which guarantees
system stability.

3.5. FTC strategy
When a fault is detected, the state variables are recon-
structed accordingly and the feedback controller is
redesigned as follows:

δ(t) = −Kf x̂(t), (25)

where Kf is the feedback controller gain when the lateral
control system enters into a degraded mode, that is, when
the information is lost in one of the lateral deviation sen-
sors. A fault in any of the sensors results in a change in the
output measurements and the state variables are defined as
follows:

ẋ(t) = Ax(t)+ B1δ(t)+ B2ṙdes, (26)

y(t) = C̄x(t)+ Ff , (27)

where A is the state matrix, B1 is the control matrix, and
C̄ is the output matrix of the faulty system; ṙdes is the
desired yaw rate, f is the additive fault signal, and F rep-
resents sensor faults. Now an optimal estimator can easily
be designed by solving the relevant Riccati equation asso-
ciated with the system given by Equations (25) and (26).
Assuming the system is observable, the state estimates x̂
are defined as follows:

˙̂x(t) = (A − LC̄)x̂(t)+ B1δ(t)+ Ly(t), (28)

where L is the observer gain which is defined by L =
YC̄B

−1
1 and Y is the positive semi-definite stabilizing solu-

tion of the following algebraic Riccati equation:

(A − B1C̄)Y + Y(A − C̄)T − YC̄Y + B1B1
T = 0. (29)

In order to guarantee the stability of the proposed
observers, define the estimation error ε(t) as follows:

ε(t) = x(t)− x̂(t). (30)

The error dynamics are stable if and only if the matrix
U = [ A−LC K

−C 1

]
is Hurwitz stable.

Note that the matrix U can be written as follows:

U =
[
A B
0 1

]
−

[
L
1

]
[C 0]. (31)

Therefore, the poles of the matrix U can be arbitrar-
ily assigned, provided that

([
A B
0 1

]
, [C 0]

)
is observable.

Hence, stability of the proposed observer is guaranteed by
the proper choice of observer gain L, which is selected in a
way such that the matrix U is Hurwitz stable.
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Figure 2. Schematic diagram of the proposed FTC framework.

Define the objective cost function to be minimized by
the controller as follows:

J =
∫ ∞

0
x̂T(t)Qx̂(t)+ δ̇T(t)Rδ(t), (32)

where P satisfies the following Riccati equation:

P = ATPA − ATPB1(R + BT
1 PB1)

−1BT
1 PA + Q. (33)

Here, Q is a diagonal weighting matrix with an entry for
each state corresponding to the performance aspects con-
tributing to the cost function and R is the weighting value
corresponding to the control effort contributing to the cost
function.

The proposed FTC framework is illustrated in Figure 2.
The approach uses two observers driven by sensor

outputs. Following FD, faulty sensors are identified. The
state variables are then constructed from the output of the
healthy sensor and the controller is updated accordingly to
ensure proper steering and maintain system stability when
faults occur.

4. Application of the FTC framework to an
automotive steering system

To validate the performances of the proposed control
paradigm, we provide a series of computer experiments
using various paths and fault scenarios. For accurate eval-
uation, the proposed controller is implemented using Car-
Sim (Mechanical Corporation). The latter is used in the
automotive industry as the standard by which vehicle han-
dling and dynamics are tested. It provides a high-fidelity
and complete model of the vehicle and its environment.
The performance of the proposed control paradigm is com-
pared to that of the CarSim steering controller, which

details are illustrated in the Appendix. Two driving maneu-
vers are chosen to perform the various experiments as
detailed in the following.

4.1. Lane change maneuver
Lane change maneuver is a common test for vehicle
handling as it represents an essential collision avoidance
maneuver. A lane change path is chosen to demonstrate the
tracking capability on a straight path as well as the response
to a quick, yet continuous transient section (position and
curvature). Experiments on this path are performed at
a constant longitudinal speed of 30 m/s (108 km/h) and
considering a road adhesion factor of one.

A double lane change path is selected to illustrate the
tracking capability as well as the steering control of the
vehicle on a straight path. Figures 3 and 4 show the vehicle
following a lane change maneuver. Computer experiments
were first carried out when 90% of the information from
the sensor is lost and the front sensor has failed at t = 4
sec. For comparison purposes, simulations were carried
out with and without FTC. The fault considered here is an
abrupt change in the front sensor.

Figures 5 and 6 depict the responses of the vehicle at
a longitudinal speed of 40 m/s (144 km/h) and consider-
ing a road adhesion factor of 0.75 when 90% of the sensor
information is lost (a = 3). The observer gains in this case
were L1 = 10 and L2 = 20, while the controller gain was
K = 80. Note a reduction in the friction between the road
and the tire of the vehicle in this case. We can observe
from the figures that when the FTC approach is considered,
the vehicle is able to recover from the fault fairly quickly
and follow the prescribed path without much delay. This is
important since lane change control operation is high band-
width in nature and cannot tolerate significant delays in the
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Figure 3. Lateral offset with 90% loss at v = 30 m/s and u = 1.
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Figure 4. Steering angle with 90% loss at v = 30 m/s and u = 1.
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Figure 5. Steering angle with 90% loss at v = 40 m/s and u = 0.75.

control loop. Therefore, quick accommodation of faults in
the lane-keeping control system is an important issue. Note
though that due to the increase in speed and decrease in the

road adhesion factor, the vehicle takes more time to follow
the path. In contrast, the vehicle is not able to track the set
path after the fault occurrence in the case without FTC.



184 A. Fekih and S. Seelem

0 2 4 6 8 10 12

–3

–4

–2

–1

0

1

2

3

Time (sec)

S
te

er
in

g 
an

gl
e 

(d
eg

)

without FTC
with FTC

Figure 6. Steering angle with 90% loss at v = 40 m/s and u = 0.75.
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Figure 7. Lateral offset with 70% sensor information loss at v = 40 m/s and u = 0.75.
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Figure 8. Steering angle at 70% sensor information loss at v = 40 m/s and u = 0.75.

Next, a 70% sensor information loss is considered
(a = 1). The observer gains in this case were L1 = 8 and
L2 = 10, while the controller gain was K = 50. Figures 7

and 8 illustrate the response of the vehicle with a longitu-
dinal speed of 40 m/s (108 km/h) and considering a road
adhesion factor of one.
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Figure 9. Lateral offset on a circular track with v = 30 m/s and u = 1.
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Figure 10. Steering angle on a circular track with v = 30 m/s and u = 1.
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Figure 11. Lateral offset at 70% sensor information loss with v = 30 m/s and u = 1.

In this case, as expected fewer disturbances can be
observed in the presence of faults when compared to the
case with 90% information loss.

4.2. Circular track
In this section, we consider a circular track of 500 ft in
order to show the performance of the observer-based FTC
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Figure 12. Steering angle at 70% sensor information loss with v = 30 m/s and u = 1.

algorithm. This path can provide valuable insight into the
handling of a vehicle as well as some important charac-
teristics of the proposed controller. Hence, this path was
chosen to illustrate the steady-state characteristics of the
controller while executing a constant nonzero curvature
path. Experiments on this path are performed at a constant
longitudinal speed of 30 m/s (108 km/h) and considering a
road adhesion factor of one. Figures 9 and 10 illustrate the
response of the vehicle when considering 90% of sensor
information loss.

Note that information from the sensor is lost after 2
s and the vehicle requires more time to follow the path,
as shown in Figure 9. The steering controller is stabilized
after 4 s and system stability is maintained as shown in
Figure 10. Next, the simulation was carried out with 70%
sensor information loss. Figures 11 and 12 illustrate the
lateral offset and steering angle in such case.

The simulation results show the effectiveness of the
proposed FTC algorithm in improving the vehicle response
under different paths and using various driving scenarios
under several faulty conditions. Note that compared to the
case without an FTC algorithm, the system is not able
to recover from the sensor fault and the controller loses
its steering capabilities shortly after the occurrence of the
sensor fault. This is more prominent when the vehicle is
following a circular path.

5. Conclusion
This paper presented an effective FTC paradigm that inte-
grates the optimal properties of the LQR framework with
an observer-based FD scheme to maintain vehicle stabil-
ity and ensure handling in the presence of faults. A weight
adjustment algorithm is incorporated in the FDI unit to
ensure robust performance in the presence of parameter
variations and disturbances. For accurate validation, the
control routines were implemented in MATLAB/Simulink
environment and tested using CarSim, a high-fidelity vehi-
cle simulator. The results confirmed the ability of the

proposed FTC framework to effectively monitor the sys-
tem and ensure correct tracking performance under faulty
conditions. Future work will focus on the integration of
the proposed methodology with environment information
devices such as radars and vision systems.
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Appendix
A.1. CarSim steering controller
The theory and the algorithm used to steer a road vehicle in Car-
Sim environment are described in this section. The algorithm
is intended to provide optimal control for a continuous linear
system:

ẋ = Ax + Bu + Hv (A1)

y = Cx + Du + Ev. (A2)

where x is an array of n state variable, u is control input, y is
an output, and A, B, C, D, E, and H are matrices with constant
coefficients. The control objective is to determine the value of

u to predict output to y(t) to match a target y target(t) over some
preview time t.

The system has initial conditions x0 at time t = 0, a constant
input u, and a constant disturbance v, then the time response is
defined by

x(t) = eAtx0 +
∫ t

0
eAηBudη +

∫ t

0
eAηHvdη. (A3)

The term eAη is an (n × n) matrix called the state transition
matrix. Each coefficient in the matrix is the portion of state vari-
able i at time t that is linearly related to the state variable j at
time zero. The two integrals in Equation (A3) define the forced
responses to each state variable due to constant control u and
disturbance v over the time interval.

Combining Equations (A2) and (A3), we obtain the following
output response:

y(t) = Cx = CeAtx0 + C
[∫ t

0
eAηdη

]
[Bu + Hv]. (A4)

A control response scalar g(t) and a disturbance response scalar
h(t) are defined to relate the responses over the time t. A free
response array F is defined and relates the state variables at time
0 to the resulting output variable y at time t.

F(t) = CeAt (A5)

The response equation is defined by

y(t) = F(t)x0 + g(t)u + h(t)v (A6)

To determine the optimal control, a quadratic performance index
J is defined by

J = 1
T

∫ T

0
{ytarget(t)− y(t)}2W(t)dt. (A7)

Here, W(t) is an arbitrary weighting function. A optimal control
law is designed by minimizing the cost function J, representing
the squared deviation of response variable y(t) relative to the tar-
get function ytarget(t). The control function u minimizing J can be
found by substituting Equation (A6) into (A7) and taking a partial
derivative of J with respect to u.

J = 1
T

∫ T

0
(F(t)x0 + g(t)u + h(t)v − ytarget(t))2W(t)dt. (A8)

Solving for u results in

u =
∫ T

0 {ytarget(t)− F(t)x0 − h(t)v}g(t)W(t)dt∫ T
0 g(t)2W(t)dt

. (A9)

In practice, the integrals over T can be replaced with finite
summations

u =
∑m

i=1 (ytarget(t)− Fix0 − hiv)giWi∑m
i=1 g2

i Wi
. (A10)

The algorithm is programmed to generate a steering wheel angle
in the vehicle solver program for a given target path. The
algorithm synthesizes the target path over the preview time and
calculates the optimal front steering effort u to minimize devia-
tions from the path. It also delays the driver steering control by
a constant time. The geometry of the road is given as a sequence
of X and Y coordinates that define a reference line. Station S is
defined as the distance along the reference line, typically a road

file:www.carsim.com


188 A. Fekih and S. Seelem

centerline. For each pair of X –Y coordinates, a corresponding
increment of S is computed by

Si = Si−1 +
√
(Xi − Xi−1)

2 + (Yi − Yi−1)
2. (A11)

To calculate the optimal steering control using Equation (A10),
the target position is needed at each point considered in the
summation. The station target location is

Starg,i = S + iVxT
m

, (A12)

where Vx is the vehicle forward speed.
The controller calculations are performed using an axis sys-

tem where the vehicle is located such that the center of the vehicle
front axle is at X = 0 and Y = 0 and the X and Y axes are aligned
with the longitudinal and lateral axes of the vehicle. The target
lateral translation is calculated by first getting the inertial X and
Y coordinates of the path as a function of the station at the target

location (Starg):

Ytarget = [Y(Starg)− YV] cos(ψ)− [X (Starg)− XV] sin(ψ).
(A13)

A.2. Vehicle parameters

Table A1. Vehicle parameters.

M Vehicle mass, 1573 kg
cf, cr Cornering stiffness of front/rear wheels 2*60,000 N/rad
lf Distance between the front wheels and the center of

gravity, 1.137 m
lr Distance between the rear wheels and the center of

gravity, 1.530 m
Iz Yaw moment of inertia, 2753 kg m2
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