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ABSTRACT
In this paper, the completion of fuzzy normed linear space (in the
sense of Bag and Samanta) is studied. First, some properties of con-
vergence fuzzy point sequences are discussed. Specially, we give
another characterisation of Q-neighbourhood base of θλ(λ ∈ (0, 1])
for I-topology introduced by Saheli. Then we show that each fuzzy
normed linear space has an (up to isomorphism) unique complete
fuzzy normed linear space which contains an uniformly dense in
every stratum subspace isomorphic to it.
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1. Introduction

The notion of fuzzy norm on a linear space was first introduced by Katsaras [1]. Felbin [2]
gave an idea of fuzzy norm on a linear space whose associated metric is Kaleva type [3].
Influenced by thework given by Karmosil andMichalek [4], Cheng andMenderson [5] intro-
duced another definition of fuzzy norm on a linear space. Bag and Samanta [6] modified
slightly the notion of fuzzy norm determined by Cheng and Menderson. The relationships
between above three types of fuzzy norms are discussed by Bag and Samanta [7]. Based on
the notion of fuzzy norm in the sense of Bag and Samanta, the theory of fuzzy normed lin-
ear spaces is studied systematically [8–12]. Moreover, some notions and properties of finite
dimensional fuzzy cone normed linear spaces are discussed in [13–15].

Among them, Saheli [12] introduced a new I-topology on fuzzy normed linear space, and
show that this I-topology is compatible with the vector structure. The Q-neighbourhood
base of θλ(λ ∈ (0, 1]) for this I-vector topology is obtained. Moreover, a comparative study
of I-topologies which obtained by Saheli in [11, 12] on fuzzy normed linear spaces is
presented.

The study of completion of fuzzy metric space and fuzzy normed linear space consti-
tutes a natural and interesting open question in the analysis of such spaces. The first effort
is due to Kaleva [16] in the frame of fuzzy metric space introduced by Kaleva. From then
on, many authors devoted to study the completion of fuzzy metric spaces or fuzzy normed
linear spaces in the sense of Kaleva typeor Felbin type, and several important results are dis-
cussed ([17–20]). The study of completion on the fuzzymetric space introducedbyKarmosil
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and Michalek is originally Gregori and Romaguera [21], an ordinary topology is considered
in their study. They show that for each fuzzy metric space there is an (up to uniform iso-
morphism) unique complete fuzzy metric space that contains a dense subspace uniformly
isomorphic to it. The original research of completion on the fuzzy normed linear spaces
was Felbin’ s work in [19] with help of usual classical topology. As above claimed, Saheli
[12] introduced a new I-topology on fuzzy normed linear space in the sense of Bag and
Samanta recently. From the properties discussed by the author, we may consider this new
I-topology is more suitable for the further study in fuzzy normed linear space.

The main purpose of this paper is to study the completion of fuzzy normed linear
space with respect to the I-topology determined by Saheli. At first, we study some prop-
erties of fuzzy point sequences and give another structure of Q-neighbourhood base of
θλ(λ ∈ (0, 1]) for the I-topology. Then we prove that each fuzzy normed linear space has a
completion with respect to I-vector topology.

First we fix some notations, throughout this paper, I = [0, 1] and IX denotes the family of
all fuzzy sets on the nonempty set X. The notation Pt(IX) denotes the set of all fuzzy points
on X. For every xλ ∈ Pt(IX),A ∈ IX , the notation xλ∈̃A denotes the relationship A(x) + λ > 1.
According to the terminology introduced by Rodabaugh [22], for r ∈ [0, 1], r denotes the
fuzzy set on X which takes the constant value r.

Definition 1.1 ([6]): Let X be a vector space over R (real number), N a fuzzy set of R such
that for all x, u ∈ X and c ∈ R:

(N1) N(x, t) = 0 for all t ≤ 0;
(N2) x = θ if and only if N(x, t) = 1 for all t>0;
(N3) If c �= 0, then N(cx, t) = N(x, c

|t| ) for all t ∈ R;
(N4) N(x + u, s + t) ≥ N(x, s) ∧ N(u, t) for all s, t ∈ R;
(N5) N(x, ·) is nondecreasing function of R and limt→∞ N(x, t) = 1.

Then N is called a fuzzy norm on X and the pair (X ,N) is called a fuzzy normed linear
space.

Definition 1.2 ([23]): An I-topology on a set X is a family τ of fuzzy subsets of X satisfying
the following:

(1) For each λ ∈ [0, 1], λ ∈ τ

(2) τ is closed under finite intersection of fuzzy subsets
(3) τ is closed under arbitrary union of fuzzy subsets.

The pair (X , τ) is called an I-topological space.

Definition1.3 ([24]): An I-topology τ on a vector space X is said to be an I-vector topology,
if the following two mappings

f : X × X → X , (x, y) → x + y and g : K × X → X , (k, x) → kx

are continuous, where K is equipped with the I-topology induced by the usual topology
and X × X , K × X are equipped with the corresponding product I-topologies. At this time,
the pair (X , τ) is called an I-topological vector space.
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Definition 1.4 ([24]): Let (X , τ) be an I-topological space and xλ ∈ Pt(IX).

(1) A fuzzy set U on X is called Q-neighbourhood of xα iff there exists G ∈ τ such that
xα∈̃G ⊆ U.

(2) A family Uxα of Q-neighbourhoods of xα is called Q-neighbourhood base of xα iff for
every Q-neighbourhood A of xα , there exists U ∈ Uxα such that U ⊆ A.

(3) (X , τ) is called first countable, if for each xλ ∈ Pt(IX), there existsQ-neighbourhoodbase
Uxα of xα such that Uxα has countable fuzzy sets.

Definition 1.5 ([24]): An I-topological vector space is said to be a QL-type, if there exists a
family U of fuzzy sets on X such that for each λ ∈ (0, 1],

Uλ = {U
⋂

r | U ∈ U, r ∈ (1 − λ, 1]}.
is a Q-neighbourhood base of θλ in (X , τ). The family U is called a Q-prebase for τ .

Theorem 1.6 ([12]): Let (X ,N) be a fuzzy normed linear space. Then the family

τN = {μ ∈ IX | ∀ x ∈ σ0(μ), r ∈ (0,μ(x)), there is ε > 0, s.t. x + Bε

⋂
r ⊆ μ}

is an I-topology on X. Here Cε(x) = ∨{α ∈ (0, 1] |N(x, ε) ≥ α}, ∀x ∈ X.

Theorem1.7 ([12]): Let (X ,N) be a fuzzy normed linear space. Then (X , τN) is an I-topological
vector space and for each λ ∈ (0, 1],

Uλ = {Cε

⋂
r | ε > 0, r ∈ (1 − λ, 1]}

is a Q-neighbourhood base of θλ.

2. Some Basic Properties in Fuzzy Normed Linear Spaces

Definition 2.1: Let (X ,N) be a fuzzy normed linear space, ε > 0. The fuzzy set Bε on X is
defined as follows:

Bε(x) =
∨

{1 − α |
∧

{ t > 0 : N(x, t) > 1 − α} < ε}, ∀ x ∈ X .

Lemma 2.2: Let (X ,N) be a fuzzy normed linear space, xα ∈ Pt(IX). Then xα∈̃Bε iff
∧{ t > 0 :

N(x, t) > 1 − α} < ε.

Proof: Necessity. Since xα∈̃Bε , then there exists β ∈ (0,α) such that
∧{ t > 0 : N(x, t) >

1 − β} < ε. So we have t0 < ε which implies N(x, t0) > 1 − β > 1 − α. This deduces that∧{ t > 0 : N(x, t) > 1 − α} ≤ t0 < ε.
Sufficiency. First we want to prove

lim
β→α−

∧
{ t > 0 : N(x, t) > 1 − β} =

∧
{ t > 0 : N(x, t) > 1 − α}.

In fact, for each sequence {βn} which increases and convergence to α, since

{ t > 0 : N(x, t) > 1 − βn} ⊆ { t > 0 : N(x, t) > 1 − α}, ∀n ∈ N,

we have
∧{ t > 0 : N(x, t) > 1 − βn} ≥ ∧{ t > 0 : N(x, t) > 1 − α}, ∀n ∈ N. Thus

limn
∧{ t > 0 : N(x, t) > 1 − βn} ≥ ∧{ t > 0 : N(x, t) > 1 − α}. If limn

∧{ t > 0 :
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N(x, t) > 1 − βn} >
∧{ t > 0 : N(x, t) > 1 − α}, then there exists k>0 such that

limn
∧{ t > 0 : N(x, t) > 1 − βn} > k >

∧{ t > 0 : N(x, t) > 1 − α}. This implies that
there exists q ∈ N such that

∧{ t > 0 : N(x, t) > 1 − βn} > k for all n>p. Hence N(x, k) ≤
1 − βn for all n>p. Put n → ∞, we have N(x, k) ≤ 1 − α. So

∧{ t > 0 : N(x, t) > 1 − α} ≥
k, this contradicts with the fact k >

∧{ t > 0 : N(x, t) > 1 − α}. Then limn
∧{ t > 0 :

N(x, t) > 1 − βn} = ∧{ t > 0 : N(x, t) > 1 − α}. Because ∧{ t > 0 : N(x, t) > 1 − α} is
decrease for the variable α, it deduces limβ→α−

∧{ t > 0 : N(x, t) > 1 − β} = ∧{ t > 0 :
N(x, t) > 1 − α}.

From the assumption
∧{ t > 0 : N(x, t) > 1 − α} < ε and above proof, there exists

β ∈ (0,α) such that
∧{ t > 0 : N(x, t) > 1 − β} < ε. Then Bε(x) ≥ 1 − β > 1 − α. Hence

xα∈̃Bε . �

Theorem2.3: Let (X ,N) be a fuzzy normed linear space, τN an I-topology determined by fuzzy
norm. Then τ canbedeterminedby theQ-neighbourhoodbaseBλ = {Bε

⋂
r | ε > 0, r ∈ (1 −

λ, 1]} of θλ, λ ∈ (0, 1].

Proof: For each ε > 0, we may prove the following

Bε ⊆ Cε ⊆ B2ε .

In fact, for each xα∈̃Bε , there is β ∈ (0,α) such that xβ ∈̃Bε . Then
∧{ t > 0 : N(x, t) > 1 −

β} < ε. This impliesN(x, ε) > 1 − β . ThusCε(x) ≥ 1 − β > 1 − α. So xα∈̃Cε . HenceBε ⊆ Cε .
On the other hand, for each xλ∈̃Cε , there exists μ ∈ (1 − λ, 1) such that N(x, ε) ≥ μ >

1 − λ. Then
∧{ t > 0 : N(x, t) > 1 − λ} ≤ ε < 2ε. So xλ∈̃B2ε . This implies Cε ⊆ B2ε .

By Theorem 1.7, the family Bλ(λ ∈ (0, 1]) of fuzzy sets is Q-neighbourhood base of θλ

which determined the I-topology is equivalent to τN. �

Theorem2.4: Let (X ,N) be a fuzzy normed linear space, τN an I-topology determined by fuzzy
norm. Then (X , τN) is first countable I-topological vector space.

Proof: By Theorem 1.7 and Theorem 2.3, (X , τN) is an I-topological vector space, and for
any λ ∈ (0, 1], Uλ = {Bε

⋂
r | r ∈ (1 − λ, 1], ε > 0} is a Q-neighbourhood base of θλ. Since

for each ε > 0, there exists n ∈ N such that B 1
n

⊆ Bε , hence the family of fuzzy sets Bλ =
{B 1

n

⋂
r | r ∈ (1 − λ, 1]

⋂
Q, n ∈ N} is aQ-neighbourhood base of θλ andBλ has countable

elements. So (X , τN) is first countable an I-topological vector space. �

Theorem2.5: Let (X ,N) be a fuzzy normed linear space, τN an I-topology determined by fuzzy
norm. Then the fuzzy sequence {x(n)

λn
} is convergent to xλ with respect to τN if and only if for any

ε ∈ (0, λ), there exist t ∈ (0, ε), p ∈ N such that N(x(n) − x, t) > 1 − λn, λn > λ − ε.

Proof: Necessity. For any ε ∈ (0, λ), Bε

⋂
1 − λ + ε is a Q-neighbourhood of θλ. Since

x(n)
λn

→ xλ, there exists p ∈ N such that x(n)
λn

∈̃ x + Bε

⋂
1 − λ + ε for all n>p. Then (x(n) −

x)λn ∈̃ Bε and λn > λ − ε. So we have α which satisfies N(x(n) − x, ε) ≥ α and α > 1 − λn.
From the fact N(x, t) holds the condition (N7∗), there is t < ε such that N(x, t) > 1 − λn.

Sufficiency. Let W be a Q-neighbourhood of xλ, then we have ε ∈ (0, λ) such that x +
Bε

⋂
1 − λ + ε ⊆ W . From the assumption of sufficiency, there exist t ∈ (0, ε), p ∈ N such
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that N(x(n) − x, t) > 1 − λn, λn > λ − ε for all n ≥ p. Then there is δn ∈ (0, λn) such that
N(x(n) − x, t) > 1 − λn + δn. This implies N(x(n) − x, ε) > 1 − λn + δn, so Bε(x(n) − x) ≥
1 − λn + δn > 1 − λn. Thus (x(n) − x)λn ∈̃Bε . This deduces that x

(n)
λn

∈̃x + Bε

⋂
1 − λ + ε ⊆

W . Hence {x(n)
λn

} converges to xλ with respect to τN. �

Definition 2.6: Let (X ,N) be a fuzzy normed linear space, {x(n)
λn

} a sequence of fuzzy points
in X. Then

(1) {x(n)
λn

} is called λ-Cauchy sequence, if for each W ∈ Uλ, there exists p ∈ N such that

x(n)
λn∧λ − x(m)

λm∧λ∈̃W for all n,m ≥ p.

(2) {x(n)
λn

} is calledCauchy sequence, if for eachλ ∈ (0, limnλn), {x(n)
λn

} isλ-Cauchy sequence.

(3) (X ,N) is called fuzzy complete if for each Cauchy sequence {x(n)
λn

}, there exists x ∈ X

such that x(n)
λn

converges to xμ with respect to I-topology τN, where μ = limnλn.

Theorem 2.7: Let (X ,N) be a fuzzy normed linear space, {x(n)
λn

} a sequence of fuzzy points in X.
Then {x(n)

λn
} is a Cauchy sequence if and only if limn λn = μ and for any λ ∈ (0,μ), ε ∈ (0, λ),

there exist t0 ∈ (0, ε), p ∈ N such that N(x(n) − x(m), t0) > 1 − λ for all n,m ≥ p.

Proof: Necessity. Suppose that {x(n)
λn

} is a Cauchy sequence and limnλn = μ. For any

λ ∈ (0,μ) and ε ∈ (0, λ), Bε

⋂
1 − λ + ε ∈ Uλ, then there exists p ∈ N such that x(n)

λn∧λ −
x(m)
λm∧λ∈̃Bε

⋂
1 − λ + ε for all n,m ≥ p. This deduces that λn > λn ∧ λ > λ − ε and (x(n) −

x(m))λn∧λm∧λ∈̃Bε . So λn > λ − ε for all n ≥ p and∧
{ t > 0 : N(x(n) − x(m), t) > 1 − λ}

≤
∧

{ t > 0 : N(x(n) − x(m), t) > 1 − (λn ∧ λm ∧ λ)} < ε.

Thus there is t0 ∈ (0, ε) such that N(x(n) − x(m), t0) > 1 − λ. In addition, limn λn ≥ λ, since
the arbitrariness of λ, we have limn λn ≥ μ. Hence limn λn = μ.

Sufficiency. If limn λn = μ and for any λ ∈ (0,μ), ε ∈ (0, λ), there exist t0 ∈ (0, ε), p ∈ N
such thatN(x(n) − x(m), t0) > 1 − λ for all n,m ≥ p. From the fact limn λn = μ > λ, we have
q ∈ N with q>p which implies λn > λ for all n ≥ q. Then

∧{ t > 0 : N(x(n) − x(m), t) >

1 − λ} ≤ t0 < ε. So we have (x(n) − x(m))λ = x(n)
λn∧λ − x(m)

λm∧λ∈̃Bε

⋂
1 − λ + ε for all n,m ≥

q. This means that {x(n)
λn

} is a Cauchy sequence. �

Remark 2.8: The notion of Cauchy sequences and fuzzy complete is based on I-topology
in this paper. This notions is not different from the corresponding notions introduced by
Felbin [19]. In fact, the notion of Cauchy sequences and complete given by Felbin [19] is
based on crisp topology, equivalently, every Cauchy sequence {xn} is convergent in every
stratum (X , ‖ · ‖α) for all α ∈ (0, 1]. In addition, the notions of fuzzy normed linear spaces
are not completely same. By Theorem 2.7, the notion of Cauchy sequences in this paper is
for fuzzy points (not crisp points).
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3. The Completion of Fuzzy Normed Linear Spaces

Definition 3.1: Let (X ,N) be a fuzzy normed linear space, A ⊆ X is called uniformly dense
in every stratum if for any x ∈ X , there exists a sequence {xn} ⊆ A such that for each λ ∈
(0, 1], ε > 0, there is t < ε, which deduces that N(xn − x, t) > 1 − λ.

Definition 3.2: Let (X ,N), (Y ,N1) be two fuzzy normed linear spaces, then they are called
isomorphic if there exists a linear operator T : X → Y such that for any x ∈ X , λ ∈ (0, 1], the
next equality holds.

∧{t > 0 : N(x, t) > 1 − λ} = ∧{t > 0 : N1(Tx, t) > 1 − λ}.

Definition 3.3: A complete fuzzy normed linear space (̃X ,N1) is said to a completion of the
fuzzy linear space (X ,N) if (̃X ,N1) has an uniformly dense subspace in every stratum (W ,N1)

being isometric to (X ,N).

Theorem 3.4: Any fuzzy normed linear space has a completion.

Proof: By the Definition 3.3, the whole proof is divided into following four steps.
Step 1. Construct a fuzzy normed linear space (̃X ,N1). At first we define the sets Xc and

θ̃ as follows:
Xc = {{x(n)} : ∀ λ ∈ (0, 1], ε > 0, ∃ t < ε, p ∈ N,N(x(n) − x(m), t) > 1 − λ(for all n,m >

p)}.
θ̃ = {{x(n)} : {x(n)} ∈ Xc, ∀λ ∈ (0, 1], ε > 0, ∃ t < ε, p ∈ N,N(x(n), t) > 1 − λ(for any n >

p)}.
It is easy to find Xc �= ∅ and θ̃ �= ∅. The relation ∼ on Xc \ θ̃ is defined as follows:
{x(n)} ∼ {y(n)} ⇐⇒ ∀ λ ∈ (0, 1], ε > 0, ∃ t < ε, p ∈ N,N(x(n) − y(n), t) > 1 − λ(for

each n > p).
By the definition of fuzzy norm, the above relation is equivalent. For each ξ = {x(n)} ∈

Xc \ θ̃ , its equivalent class is denotedby ξ̃ = {̃x(n)}. Specially, if {x(n)} ∈ θ̃ , thenwe claim that

{̃x(n)} = θ̃ . Denote X̃0 = (Xc \ θ̃ )/ ∼, and X̃ = X̃0
⋃{θ̃}. The addition and scalar multiplica-

tion in X̃ are well-defined as follows:
For all {̃x(n)}, {̃y(n)} ∈ X̃0, k ∈ K,

{̃x(n)} + {̃y(n)} = ˜{x(n) + y(n)};
{̃x(n)} + θ̃ = θ̃ + {̃x(n)} = {̃x(n)};
kθ̃ = θ̃ ;

k{̃x(n)} =
{

θ̃ , k = 0

{̃kx(n)}, k �= 0
.

It is easy to verify that X̃ is a linear space. The mapping N1 : X̃ × R → [0, 1] is defined as
follows:

N1(ξ̃ , t) =
{
0, (ξ̃ , t) = (θ̃ , 0)
1 − ∧

λ∈(0,1]{λ : ‖ξ̃‖X̃λ ≤ t}, (ξ̃ , t) �= (θ̃ , 0)
.
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Here ‖ξ̃‖X̃λ =
{
0, ξ̃ = θ̃∧

μ<λ limn→∞
∧{ t > 0 : N(x(n), t) > 1 − μ}, ξ̃ �= θ̃

, and {x(n)} ∈ ξ̃ .

Since {x(n)} ∈ ξ̃ , the sequence
∧{ t > 0 : N(x(n), t) > 1 − μ} is a real Cauchy sequence.

Thus the limit of this sequence exists. In what follows, we must prove that ‖ξ̃‖X̃λ is deter-
mined by ξ uniquely. In fact, if {x(n)} ∼ {y(n)}, then for each λ ∈ (0, 1], ε > 0, there exists
t < ε such that N(x(n) − y(n), t) > 1 − λ when n → ∞. This implies limn→∞

∧{ t > 0 :
N(x(n) − y(n), t) > 1 − μ} = 0. On the other hand, since∧

{ t > 0 : N(x(n), t) > 1 − μ} −
∧

{ s > 0 : N(y(n), s) > 1 − μ}

≤
∧

{ s + t > 0 : N(x(n) − y(n), s + t) > 1 − μ}.

So ‖{̃x(n)}‖X̃λ = ‖{̃y(n)}‖X̃λ . This means that the mappings N1 is well-defined.
In the following, it needs to verify that (̃X ,N1) is a fuzzy normed linear space.

(N1) Clearly, N1(ξ̃ , t) = 0 for each t ∈ (−∞, 0].
(N2) IfN1(ξ̃ , t) = 1 for each t>0, then ‖ξ̃‖X̃λ = 0 for any λ ∈ (0, 1]. For any ε > 0, λ ∈ (0, 1],

there existsμ < λ such that limn→∞
∧{ t > 0 : N(x(n), t) > 1 − μ} < ε. Then there is

t < ε, p ∈ N such thatN(x(n), t) > 1 − μ for each n>p. So ξ̃ = {̃x(n)} = θ̃ . Conversely,
if ξ̃ = θ̃ , the equality N1(θ̃ , t) = 1 for each t>0 holds obviously.

(N3) For any t>0, c ∈ R, c �= 0,

N1(cξ̃ , t) = 1 −
∧

λ∈(0,1]

{λ : ‖cξ̃‖X̃λ ≤ t}

= 1 −
∧

λ∈(0,1]

{
λ : ‖ξ̃‖X̃λ ≤ t

|c|
}

= N1

(
ξ̃ ,

t

|c|
)
.

(N4) Suppose that N1(ξ̃ , t) = 1 − ∧
λ∈(0,1]{λ : ‖ξ̃‖X̃λ ≤ t} = a and N1(η̃, s) = 1 −∧

λ∈(0,1]{λ : ‖η̃‖X̃λ ≤ s} = b. Without loss of generality, let a ∧ b �= 0, then for any

r ∈ (0, a ∧ b), there exist α,β ∈ (0, 1] with α < 1 − r, β < 1 − r such that ‖ξ̃‖X̃α ≤ t
and ‖η̃‖X̃β ≤ s. From the definition of ‖η̃‖X̃β , ‖η̃‖X̃1−r ≤ ‖η̃‖X̃β and ‖ξ̃‖X̃1−r ≤ ‖ξ̃‖X̃α . Thus
we have

‖ξ̃ + η̃‖X̃1−r ≤ ‖ξ̃‖X̃1−r + ‖η̃‖X̃1−r ≤ ‖ξ̃‖X̃α + ‖η̃‖X̃β ≤ t + s.

Hence N1(ξ̃ + η̃, s + t) = 1 − ∧
λ∈(0,1]{λ : ‖ξ̃ + η̃‖X̃λ ≤ s + t} ≥ 1 − (1 − r) = r.

By the arbitrariness of r, it deduces that N1(ξ̃ + η̃, s + t) ≥ a ∧ b = N1(ξ̃ , t) ∧
N1(η̃, s).

(N5) For all t1, t2 ∈ (0,+∞), t1 < t2,

N1(ξ̃ , t1) = 1 −
∧

λ∈(0,1]

{λ : ‖ξ̃‖X̃λ ≤ t1} ≤ 1 −
∧

λ∈(0,1]

{λ : ‖ξ̃‖X̃λ ≤ t2} = N1(ξ̃ , t2).

In addition, for any ξ̃ = {̃x(n)} ∈ X̃ , λ ∈ (0, 1], since ‖ξ̃‖X̃λ ∈ [0,+∞) and ‖ξ̃‖X̃λ ≤ s

implies
∧

λ∈(0,1]{λ : ‖ξ̃‖X̃λ ≤ s} ≤ λ. Then we have 1 − ∧
λ∈(0,1]{λ : ‖ξ̃‖X̃λ ≤ s} ≥ 1 −

λ. So limt→+∞ N1(ξ̃ , t) = 1.
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Step 2. Define a mapping: T : (X ,N) → (̃X ,N1) and prove that T(X) is uniformly dense in
every stratum.

Let T : X → X̃ be defined as follows.

Tx =
{
θ̃ , x = θ

x̃, x �= θ
, ∀ x ∈ X .

Here the notation is the equivalent class of the element {x, x, x, x, . . .}. Denote T(X) = W , it
is easy to find T is a linear operator from X ontoW. In the nextwe prove that T is an isometric
mapping.

In fact, if x = θ , bothN(θ , t) = 1 andN1(θ̃ , t) = 1 for any t>0. Then
∧{ t > 0 : N(θ , t) >

1 − λ} = ∧{ t > 0 : N(Tθ , t) > 1 − λ} for any λ ∈ (0, 1].
If x �= θ , for each λ ∈ (0, 1] and s >

∧{ t > 0 : N1(Tx, t) > 1 − λ}, there is t< s such that
N1(Tx, t) > 1 − λ. Then we have μ < λ which satisfies ‖x̃‖X̃μ ≤ t < s. By the definition of

‖x̃‖X̃μ, there exists ν < μ and r< s such that N(x, r) > 1 − ν > 1 − μ > 1 − λ. So
∧{ ω >

0 : N(x,ω) > 1 − λ} ≤ r < s. This means that
∧{ t > 0 : N1(Tx, t) > 1 − λ} ≥ ∧{ ω >

0 : N(x,ω) > 1 − λ}. On the other hand, for each s >
∧{ ω > 0 : N(x,ω) > 1 − λ}, there

is ω < s such that N(x,ω) > 1 − λ. Further we have δ > 0 with N(x,ω) > 1 − (λ − δ).
Then ‖x̃‖X̃λ−δ = ∧

μ<λ−δ limn→∞
∧{ t > 0 : N(x, t) > 1 − μ} ≤ ω. Thus N1(x̃,ω) ≥ 1 −

(λ − δ) > 1 − λ. This implies that
∧{ t > 0 : N1(Tx, t) > 1 − λ} ≤ ω < s. So we can obtain∧{ t > 0 : N1(Tx, t) > 1 − λ} ≤ ∧{ t > 0 : N(x, t) > 1 − λ}. Therefore T is an isometric

mapping.
In what follows, it needs to prove T(X) = W is uniformly dense in every stratum with

respect to fuzzy normed linear space (̃X ,N1). For any ξ̃ = {̃x(n)} ∈ X̃ , it is clear x̃(n) ∈ W for
any n ∈ N, here the notation x̃(n) ∈ W is the equivalent class of {x(n), x(n), x(n), . . .}. For all
λ ∈ (0, 1], ε > 0, from the fact {x(n) ∈ Xc and let μ0 ∈ (0, λ), there exist t < ε, p ∈ N such
that N(x(n) − x(m), t) > 1 − μ0 for all n,m ≥ p. Thus we have the following

‖x̃(n) − ξ̃‖X̃λ ≤ ‖x̃(n) − x̃(p)‖X̃λ + ‖x̃(p) − ξ̃‖X̃λ
=

∧
μ<λ

∧
{ s > 0 : N(x(n) − x(p), s) > 1 − μ}

+
∧
μ<λ

lim
n→∞

∧
{ s > 0 : N(x(p) − x(n), s) > 1 − μ}

≤
∧

{ s > 0 : N(x(n) − x(p), s) > 1 − μ0}

+ lim
n→∞

∧
{ s > 0 : N(x(p) − x(n), s) > 1 − μ0}.

Then ‖x̃(n) − ξ̃‖X̃λ ≤ t for all n ≥ p. So N1(x̃(n) − ξ̃ , t) > 1 − λ for all n ≥ p. This means that
W is uniformly dense in every stratum.

Step 3. We prove that (̃X ,N1) is complete. Suppose that {ξ̃ (n)
λn

} is Cauchy fuzzy point
sequence in (̃X ,N1), from Theorem 2.7, limn→∞ λn = μ > 0. In addition, for each λ ∈
(0, 1], ε > 0, there exist t < ε, p ∈ N such that N1(ξ̃

(m) − ξ̃ (n), t) > 1 − λ for all n,m ≥ p.
Since W is uniformly dense in every stratum, and for any k ∈ N, ξ̃ (k) ∈ X̃ , we have a

sequence {x̃(n)k } ⊆ W such that for above λ and 1
k > 0, there is sk < 1

k and q ∈ N, q > p,

which implies that N1(x̃(n)k − ξ̃ (k), sk) > 1 − λ for all n ≥ q.
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For each k ∈ N, there exists nk ≥ q such that N1(x̃(nk)k − ξ̃ (k), sk) > 1 − λ. Denote

x̃(nk)k = x̃(k). Then form, n ≥ q, the following inequality holds:

N1

(
x̃(m) − x̃(n), t + 1

m
+ 1

n

)
≥ N1

(
x̃(m) − ξ̃ (m),

1
m

)∧
N1(ξ̃

(m) − ξ̃ (n), t)
∧

N1

(
ξ̃ (n) − x̃(n),

1
n

)
≥ N1(x̃(m) − ξ̃ (m), sm)

∧
N1(ξ̃

(m) − ξ̃ (n), t)
∧

N1(ξ̃
(n) − x̃(n), sn) > 1 − λ.

So {x̃(n)} is Cauchy sequence in W. Notice that T is isometric, we have {x(n)} ∈ Xc. Let

ξ̃ = {̃x(m)}, clearly ξ̃ ∈ X̃ . We will prove ξ̃
(n)
λn

→ ξ̃μ as n → ∞. In fact, for each ε ∈ (0,μ),

λ ∈ (
μ
2 ,μ), since limn→∞ λn = μ and N(x(m) − x(n), t) → 1(m, n → ∞), there is p ∈ N, t <

ε such that λn > λ and N(x(m) − x(n), t) > 1 − μ
2 for all n,m ≥ p. Thus for any n ≥ p,

‖x̃(n) − ξ̃‖X̃λ =
∧
ν<λ

lim
m→∞

∧
{ s > 0 : N(x(n) − x(m), s) > 1 − ν}

≤ lim
m→∞

∧{
s > 0 : N(x(n) − x(m), s) > 1 − μ

2

}
≤ t.

This implies N1(x̃(n) − ξ̃ , t) ≥ 1 − μ
2 > 1 − λ for all n ≥ p. Furthermore,

N1

(
ξ̃ (n) − ξ̃ , t + 1

n

)
≥ N1

(
ξ̃ (n) − x̃(n),

1
n

) ∧
N1(x̃(n) − ξ̃ , t) > 1 − λ.

For above t < ε, there isq ∈ N, q > p such that t + 1
n < ε for alln>q. So theproof of ξ̃ (n)

λn
→

ξ̃μ is completed. This means that (̃X ,N1) is complete fuzzy normed linear space.
Step 4. The completion of fuzzy normed linear space (̃X ,N1) is unique except for isomet-

rics. Suppose that (Y ,N2) is also a completion of (X ,N) and S is an isometric linear operator
from X onto Y. SinceW = TX is uniformly dense in every stratum, then for each ξ̃ ∈ X̃ , there
exists a sequence {x̃(n)} ⊆ W such that for each λ ∈ (0, 1], ε > 0, there exist t < ε

2 , p ∈ N,

which deduces that N1(x̃(n) − ξ̃ , t) > 1 − λ for all n>p. Thus for allm, n>p,

N1(Tx
(n) − Tx(m), 2t) = N1(x̃(n) − x̃(m), 2t)

≥ N1(x̃(n) − ξ̃ , t)
∧

N1(ξ̃ − x̃(m), t) > 1 − λ.

That is to say {Tx(n)
α }, (α ∈ (0, 1]) is a Cauchy fuzzy points sequence inW. Since T and S are

isometrics, we have ∧
{ s > 0 : N1(Tx

(n) − Tx(m), s) > 1 − λ}

=
∧

{ s > 0 : N(x(n) − x(m), s) > 1 − λ}

=
∧

{ s > 0 : N2(Sx
(n) − Sx(m), s) > 1 − λ}.

Thus deduces that {Sx(n)
α }, (α ∈ (0, 1]) is a Cauchy fuzzy point sequence in SX. From the

fact Y is complete, there is a unique y ∈ Y such that Sx(n)
α → yα . It may be proved that the
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element y has nothing to do with the choice of {x̃(n)}. In reality, if there exists a sequence
{z̃(n)} ⊆ W such that for each λ ∈ (0, 1], ε > 0, there exist t < ε

2 , p ∈ N, which deduces that

N1(z̃(n) − ξ̃ , t) > 1 − λ for all n>p. Taking the same method, we may prove that there
exists unique z ∈ Y such that for each λ ∈ (0, 1], ε > 0, ∃t < ε, q > p, q ∈ N, which implies
N2(Sz(n) − z, t) > 1 − λ for all n>q. Since∧

{ s > 0 : N2(Sx
(n) − Sz(n), s) > 1 − λ}

=
∧

{ s > 0 : N(x(n) − z(n), s) > 1 − λ}

=
∧

{ s > 0 : N1(Tx
(n) − Tz(n), s) > 1 − λ}.

Moreover, N1(Tx(n) − Tz(n), 2t) ≥ N1(Tx(n) − ξ̃ , t)
∧

N1(ξ̃ − Tz(n), t) > 1 − λ.
Then N2(Sx(n) − Sz(n), 2t) > 1 − λ. So we have

N2(y − z, 4t) ≥ N2(y − Sx(n), t)
∧

N2(Sx
(n) − Sz(n), 2t)

∧
N2(Sz

(n) − z, t) > 1 − λ.

By the arbitrariness ofλ, y = z. Define amappingϕ : X̃ → Y as follows:ϕ(ξ̃ ) = y. In the next
we prove the mapping ϕ is isometric from X̃ onto Y.

Since S and T is isometric, then for any λ ∈ (0, 1],∧
{ t > 0 : N2(Sx

(n), t) > 1 − λ} =
∧

{ t > 0 : N(x(n), t) > 1 − λ}

=
∧

{ t > 0 : N1(Tx
(n), t) > 1 − λ}.

Thus ∧
{ t1 + t2 + t3 > 0 : N2(ϕ(ξ̃ ), t1 + t2 + t3) > 1 − λ}

≤
∧

{ t1 > 0 : N2(y − Sx(n), t1) > 1 − λ}

+
∧

{ t2 + t3 > 0 : N2(Sx
(n), t2 + t3) > 1 − λ}

=
∧

{ t1 > 0 : N2(y − Sx(n), t1) > 1 − λ}

+
∧

{ t2 + t3 > 0 : N1(Tx
(n), t2 + t3) > 1 − λ}

≤
∧

{ t1 > 0 : N2(y − Sx(n), t1) > 1 − λ}

+
∧

{ t2 > 0 : N1(Tx
(n) − ξ̃ , t2) > 1 − λ}

+
∧

{ t3 > 0 : N1(ξ̃ , t3) > 1 − λ}.

Putn → ∞, wehave
∧{ t > 0 : N2(ϕ(ξ̃ ), t) > 1 − λ} ≤ ∧{ t > 0 : N1(ξ̃ , t) > 1 − λ}. Simi-

larly, wemay prove
∧{ t > 0 : N2(ϕ(ξ̃ ), t) > 1 − λ} ≥ ∧{ t > 0 : N1(ξ̃ , t) > 1 − λ}. So the

mapping ϕ is isometric.
At last, we prove the mapping ϕ is surjective. For any z ∈ Y , there exists {z(n)} ∈ SX such

that for eachλ ∈ (0, 1], ε > 0, p ∈ N,N2(z(n) − z, t) > 1 − λholds for alln>p. Thenwehave
sequence {x(n)} satisfies S(x(n)) = z(n), n = 1, 2, . . .. From the above proof, there is unique
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η̃ ∈ X̃ such that for each λ ∈ (0, 1], ε > 0, q ∈ N,N1(x̃(n) − η̃, t) > 1 − λ holds for all n>q.
Since ϕ is isometric, then∧

{ t > 0 : N2(ϕ(Tx(n)), t) > 1 − λ} =
∧

{ t > 0 : N1(Tx
(n), t) > 1 − λ}

=
∧

{ t > 0 : N(x(n), t) > 1 − λ} =
∧

{ t > 0 : N2(Sx
(n), t) > 1 − λ}.

Furthermore, ∧
{ t > 0 : N2(Sx

(n) − ϕ(η̃), t) > 1 − λ}

=
∧

{ t > 0 : N2(ϕ(Tx(n)) − ϕ(η̃), t) > 1 − λ}

=
∧

{ t > 0 : N2(ϕ(Tx(n) − η̃), t) > 1 − λ}

=
∧

{ t > 0 : N1(Tx
(n) − η̃, t) > 1 − λ}

Thus N2(z − ϕ(η̃), 2t) ≥ N2(z − z(n), t)
∧

N2(Sx(n) − ϕ(η̃), t) > 1 − λ.
So z = ϕ(η̃). Therefore we complete the whole proof. �
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