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The Chen hyperchaotic systems are synchronized via linear feedback control and the parameter is identified by using the
adaptive control techniques even though the parameter is unknown. It is proved by the Lyapunov stability theory that the
response system is able to track the driving system well and the parameter is estimated exactly. Based on the synchronization
of Chen hyperchaotic systems, a scheme of secure communication using the parameter modulation method is presented and
the transmitted plaintext message can be successfully recovered. Finally, white Gaussian noise in different kinds of signal-
to-noise ratio is conducted to evaluate the performance of the proposed secure communication scheme. The return maps of
the transmitted signals are provided to show the higher degree of security. Numerical simulation shows its feasibility.
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1. Introduction
Chaos is a very interesting nonlinear phenomenon because
it is sensitively dependent on the initial conditions. In the
past few decades, many chaotic systems have been pro-
posed such as the Lorenz system, Chua’s circuit, Chen
system, and hyperchaotic system (Chen & Lü, 2002; Chen,
Lu, Lü, & Yu, 2006; Lorenz, 1963; Ueta & Chen, 2000).
Their complex behaviors have been widely studied, and
several techniques have been used to control the chaotic
system. The synchronization of chaotic system has been
investigated since the pioneering work of Pecora and Carroll
(1990), a series of synchronization schemes are proposed
such as active–passive decomposition (Kocarev & Parlitz,
1995), linear feedback control (Tao, Xiong, & Hu, 2006),
slide mode control (SMC) (Cai, Jing, & Zhang, 2010),
and controllable probabilistic particle swarm optimization
algorithm (Tang, Wang, & Fang, 2011). Wang, Han, Xie, &
Zhang (2009) develop the chaos control problem for a gen-
eral class of chaotic systems using a feedback controller to
guarantee asymptotical stability of the chaotic system based
on the SMC theory. The distributed synchronization of net-
works composed of agent systems with multiple randomly
occurring nonlinearities, multiple randomly occurring con-
trollers, and multiple randomly occurring updating laws
has been achieved by Tang, Gao, Zou, and Kurths (2013)
in mean square under certain criteria. The synchronization
criteria and the observed phenomena are demonstrated by
several numerical simulation examples and the advantage of
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distributed adaptive controllers over conventional adaptive
controllers is illustrated.

Since 1990, the synchronization of chaotic systems has
attracted much attention due to its potential applications
in secure communication, analysis of chemical reactions,
information processing, and so on (Arman, Kia, Naser,
& Henry, 2009; Xiang, Cheng, & Liao, 2008; Xiao &
Cao, 2009). The characteristics of broadband, noiselike,
and unpredictability make chaotic signals ideal for informa-
tion encryption or hiding in secure communication. Chaotic
secure communications have been proposed, and there are
many methods such as chaos masking (Cuomo, Oppenheim,
& Strogatz, 1993), chaos parameter modulation (Yang &
Chua, 1996), chaotic shift keying (Dedieu, Kennedy, &
Hasler, 1993), and impulsive synchronization to secure
communication (Yang, 2004). The key is to complete the
synchronization of the slave–master systems by driving the
slave with a signal derived from the master. It is easy to syn-
chronize the master–slave systems when the parameters of
the master system are known. But their parameters are usu-
ally unknown in advance, such an adaptive controller should
be designed to synchronize the master–slave systems and
identify the unknown parameters. Thus, the synchronization
of chaotic systems in the presence of unknown parame-
ters is more essential and useful in real-world applications
(Chen, 2012). Tang represents the first attempt to include
two measures of controllability into one unified framework,
and the detection problem of controlling regions in cortical
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networks is converted into a constrained optimization prob-
lem, then the detection of controlling regions of a weighted
and directed complex network is thoroughly investigated
(Tang, Wang, Gao, Stephen, & Kurths, 2012). Song and
Cao (2004) propose a secure communication scheme via
Chua chaos using an adaptive learning mechanism that the
parameters are applied to modulate the discrete message
signals, but it does not make any security analysis of the
proposed scheme. Based on the modified adaptive method,
Yu proposes some secure communication schemes that the
transmitted signal is masked by chaotic signal or modu-
lated into the system, which effectively blurs the constructed
return map and can resist this return map attack (Yu, Cao,
Wong, & Lü, 2007). Li and Zhao (2011) proposed a scheme
in which controllers not only realize the synchronization
of the state vectors, but also synchronize the unknown
response parameters to the given drive parameter as time
goes to infinity; however, the update laws of the parameters
are questionable. One can use the return map attack to break
both chaotic masking and chaotic modulating systems. Li
points out that the security of the modulation-based schemes
proposed by Wu, Hu, and Zhang (2004) is not so satisfactory
from a pure cryptographical point of view and the improved
scheme is still insecure against a new attack (Li, Alvarez,
& Chen, 2005). To overcome the security problems of most
traditional chaos-based secure communication schemes, a
number of new countermeasures have been proposed in
recent years. One widely suggested measure is to use more
complex chaotic systems rather than three-dimensional
systems like the Lorenz and Chua systems (Li, Alvarez, Li,
& Halang, 2007). Much different from the method above
(Song & Cao, 2004; Yu et al., 2007), a fourth dimension
hyperchaotic system is employed as the transmitter in this
scheme. Using the high-dimension hyperchaotic systems
that have multiple positive Lyapunov exponents may pro-
duce a more complex chaotic behavior to resist the return
map attack. We explore the simple parameter modulation
for secure communication by making use of hyperchaotic
systems, and this method can resist the well-known return
map attack, but note that the parameter embedded with
message signals of driven system is unknown.

In the present paper, we propose an adaptive synchro-
nization method for the Chen hyperchaotic systems with
unknown parameter, and a simple parameter modulation
scheme for secure communication is explored. Based on
the Lyapunov stability theory, a linear feedback controller
is used to synchronize the hyperchaotic systems. An adap-
tive update law is derived which enables the receiver to
retrieve the message signals sent by the transmitter. Simula-
tions show that synchronization is achieved asymptotically
and the modulated message signals are recovered well.
Finally, the robustness to noise and the security analysis
of the proposed scheme are given. It is found out that the
return maps generated from the chaotic carrier blur and
diffuse with each other; thus, to distinguish them is not
so easy.

2. Systems description and synchronization between
the Chen hyperchaotic systems

2.1. Systems description
The Chen hyperchaotic system is given by

dx1

dt
= a(x2 − x1) + x4,

dx2

dt
= dx1 − x1x3 + cx2,

dx3

dt
= x1x2 − bx3,

dx4

dt
= x2x3 + rx4, (1)

where x = [x1, x2, x3, x4] are state variables and a, b, c, d, r
are real constants. When a = 35, b = 3, c = 12, d = 7,
0 ≤ r ≤ 0.798 system (1) is chaotic, when a = 35, b = 3,
c = 12, d = 7, 0.0085 ≤ r ≤ 0.798, system (1) is hyper-
chaotic, when a = 35, b = 3, c = 12, d = 7, 0.798 ≤ r ≤
0.9, system (1) is periodic (Li, Tang, & Chen, 2005; Park,
2005).

We found that hyperchaos does exist in the Chen sys-
tem. In the numerical simulations, the parameters are always
chosen as a = 35, b = 3, c = 12, d = 7, r = 0.5, then
hyperchaotic attractors can be found.

2.2. Simple parameter modulation for secure
communication

We assume that the Chen hyperchaotic system is the master
system, and it can be presented in the form of

dx1

dt
= a(x2 − x1) + x4,

dx2

dt
= dx1 − x1x3 + cx2,

dx3

dt
= x1x2 − bx3,

dx4

dt
= x2x3 + rx4,

dr
dt

= 0. (2)

The response system can be presented in the form of

dy1

dt
= a(y2 − y1) + y4 − k1e1,

dy2

dt
= dy1 − y1y3 + cy2 − k2e2,

dy3

dt
= y1y2 − by3 − k3e3,

dy4

dt
= y2y3 + r̂y4 − k4e4,

dr̂
dt

= fr , (3)
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where y = [y1, y2, y3, y4] are the response system state vari-
ables, k1, k2, k3, k4 are feedback gains, e1 = y1 − x1, e2 =
y2 − x2, e3 = y3 − x3, e4 = y4 − x4, er = r̂ − r, and fr is
a function for learning to be determined. The parameter
r is the unknown constant parameter, r̂ is the estimated
parameter in the receiver side. Subtracting Equation (2)
from Equation (3) we would obtain

de1

dt
= ae2 − ae1 + e4 − k1e1,

de2

dt
= (d − e3)e1 + ce2 − k2e2 − x3e1 − x1e3,

de3

dt
= x1e2 − be3 − k3e3 + x2e1 + e1e2,

de4

dt
= x3e2 + r̂e4 + x4er − k4e4 + e2e3 + x2e3,

dr̂
dt

= fr . (4)

We can try to find the function fr in Equation (4) so
that the synchronization between Equations (2) and (3) is
realized, then all the states of receiver will track the cor-
responding states in transmitter, of course, r̂ will track r.
Therefore, r can be taken as the message signal carrier, and
the modulation of r will be done.

To this end, we take the Lyapunov function

V (e1, e2, e3, e4, er) = 1
2

(
1
α

e2
1 + e2

2 + e2
3 + e2

4 + 1
β

e2
r

)
,

α, β > 0.
(5)

Its derivative along the error dynamics (4) is

V̇ = 1
α

e1ė1 + e2ė2 + e3ė3 + e4ė4 + 1
β

erėr

= a
α

e1e2 − a
α

e2
1 + 1

α
e1e4 − k1

α
e2

1 + de1e2 + ce2
2

− k2e2
2 − e2e1e3 − x3e1e2 − x1e2e3 − be2

3 − k3e2
3

+ e1e2e3 + x1e2e3 + x1e1e3 + x2e3e4 + e4e2e3

+ r̂e2
4 + x4e4er + x3e2e4 − k4e2

4 + 1
β

erėr

= er

(
x4e4 + 1

β
ėr

)
−

(
k1

α
+ a

α
− 3

)
e2

1

−
(

k2 − c − 2 − (a/α + d − x3)
2

4

)
e2

2

−
(

k3 + b − x2
3

4
− 1

)
e2

3

−
(

k4 − 1
4α2 − x2

3

4
− y2

3

4
− r̂

)
e2

4

−
(

e1 − a/α + d − x3

2
e2

)2

−
(

e1 − 1
2α

e4

)2

−
(

e1 − x1

2
e3

)2 −
(

e2 − y3

2
e4

)2 −
(

e3 − x2

2
e4

)2
.

Obviously, if we let

ėr = −βx4e4, β > 0, k1 ≥
(

3 − a
α

)
α, k2 ≥ c + 2

+ (a/α + d − x3)
2

4
,

k3 ≥ x2
2

4
− b + 1, k4 ≥ 1

4α2 + y2
3 + x2

3

4
+ r̂ then

V̇ ≤ −
(

e1 − a/α + d − x3

2
e2

)2

−
(

e1 − 1
2α

e4

)2

−
(

e1 − x1

2
e3

)2 −
(

e2 − y3

2
e4

)2

−
(

e3 − x2

2
e4

)2
< 0. (6)

According to the Lyapunov theory, the inequality
V̇ (t) < 0 indicates that V (t) converges to zero and is
bounded for all time, i.e. V ∈ L∞. The definition of V (t)
in Equation (5) indicates e(t) ∈ L∞, r̂ ∈ L∞. Inequalities of
V̇ < 0 imply ė(t) ∈ L∞, it is noted that e(t) → 0 as t → ∞
by Babalat’s lemma (Khalil, 1992). We have

e1 → 0, e2 → 0, e3 → 0, e4 → 0 as t → ∞.

That means asymptotical tracking of all states will be
realized.

Meanwhile, from Equations (4) and (6), we have

ėr = ˙̂r − ṙ = −βx4e4 and

ė4 = x3e2 + r̂e4 + x4er − k4e4 = 0.

Hence ˙̂r = ṙ − βx4e4, x4er = 0, since ṙ = 0, and x4 is
not identically equal to zero. Therefore,

er → 0.

Then the resulting receiver for modulating r is written as

dy1

dt
= a(y2 − y1) + y4 − k1e1,

dy2

dt
= dy1 − y1x3 + cy2 − k2e2,

dy3

dt
= x1y2 − by3 − k3e3,

dy4

dt
= y2x3 + r̂y4 − k4e4,

dr̂
dt

= −βx4e4. (7)
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3. Application to secure communication
In this section, the preceding adaptive law-based synchro-
nization scheme is applied to chaotic secure communi-
cation. Figure 1 illustrates the proposed communication
system consisting of a transmitter, modulation, and receiver
at the receiving end of communication. At the transmitter
side, the original message m(t) is multiplied by a fac-
tor f and modulated by the parameter into the chaotic
signals x(t).

The scaling of factor f must be well chosen to reduce
the message signal to a degree that it can be successfully
modulated by the parameters and masked by x(t).

We first use a “modulation rule” to modulate s(t) in
a parameter of the transmitter in Equation (2). Then an
adaptive controller is used at the receiver to maintain syn-
chronization by continuously tracking the changes in the
modulation parameter. So that s(t) can be recovered by
this adaptive controller. In this section, we discuss the case
when only a parameter of the transmitter is modulated while
others remain constant.

3.1. Parameter r-modulation
In this case, the parameter r is used to modulate the signal
s(t), the modulation rule is given by

R(t) = f (s(t)) = s(t)
d

+ 0.5, R̃(t) = f −1s̃(t), (8)

where d = 10 and s̃(t) is the recovered message signal. We
choose the transmitted message signal as follows:

s(t) = sin(t)
2

+ cos(2t)
3

.

Figure 1. Secure communication systems based on parameters
modulation and adaptive controller.

Figure 2. The estimation of unknown parameters r (a) and signal
errors of ln |r(t) − r̂(t)| (b).

The unknown parameters are chosen as a = 35, b = 3,
c = 12, d = 7, r = 0.5. So the master system can exhibit
a chaotic behavior. According to the rules (6), we assume
k1 = 50, k2 = 100, k3 = 200, k4 = 500, α = 10, β = 100.
Simulation result is shown in Figure 2.

3.2. Security analyses
In the communication scheme, the transmitted message
signals may be disturbed by random noise, attackers may
retrieve the plaintext via some methods, such as return maps
analysis, power-spectral (filtering) analysis, etc. So a good
secure communication should resist all kinds of unknown
attacks, some security analysis has been performed on the
proposed secure communication scheme in this section.

3.2.1. Noise analyses
Channel noise is inevitable in secure communication. Not
only is this transmission scheme accurate, but it is robust
noise to some extent. Assume that the white Gaussian noise
is considered in this scheme.
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First, the signal-to-noise ratio (SNR) is defined as

dB = 10∗ log
(

S
N

)
,

where S is the power of signal and N is the power of noise.
Then the continuous signal is taken as follows:

s(t) = sin(2t)
2

+ cos(t)
3

;

it is modulated by the rule in Equation (8). White Gaussian
noise is added into the transmitter system as follows:

dx1

dt
= a(x2 − x1) + x4 + n1(t),

dx2

dt
= dx1 − x1x3 + cx2 + n2(t),

dx3

dt
= x1x2 − bx3 + n3(t),

dx4

dt
= x2x3 + rx4 + n4(t),

dr
dt

= 0,

where ni(t)(i = 1, 2, 3, 4) are random white Gaussian noise.
The transmitted message is modulated into the parameter r,
so we take ni(t) ≡ 0 (i = 1, 2, 3).

When the SNR is 103.7 dB, the transmission of a con-
tinuous signal can be recovered well as shown in Figures 3
and 4. The encrypted signals are almost chaotic and difficult
to be identified by the attackers.

Similarly, when the SNR is 32.91 dB, the transmission of
a continuous signal can be recovered as shown in Figure 5,
as it is disturbed by white Gaussian noise, we can see that the
recovered signal has been blurred. There are some experi-
mental results in Table 1 with the different kinds of SNR. In
Table 1, the |r(t) − r̂(t)| is the errors of the recovered signals
and sum |r(t) − r̂(t)|/n is the average value of |r(t) − r̂(t)|.
As we can see, the high SNR of the transmitted signals can
be recovered much better than the low one in Table 1.

In summary, the transmitted signals may be disturbed by
the unknown channel noises. Compared with the results in
Table 1, the original signal can be recovered well when
the SNR is higher than 65.44 dB, and the average error
of the |r(t) − r̂(t)| is lower than 0.0020 and bounds from
1.4789e–08 to 0.0560. On the other side, if the SNR is
below to 32.91 dB, the original signal can be just identified
roughly and even get poor results. So the proposed secure
communication scheme is robust noise to some extent.

3.2.2. Security of Chen hyperchaotic parameter
modulation

In this digital mode secure communication, as described by
Perez and Cerdeira (1995), the key to extracting message
from the chaotic mask is to recognize that a small change in

Figure 3. Original signal (a) and encrypted signal (b).

the parameters of the sender not only frustrates the synchro-
nization but also affects the attractor obtained in the return
map. Following Perez and Cerdeira, two modified return
maps are defined by

An = (Xn + Ym)

2
, Bn = Xn − Ym and

Cn = (Xn+1 + Ym)

2
, Dn = Xn − Ym+1,

where Xn, Ym denote the nth (local) maximum and mth
(local) minimum of the transmitted signal, respectively.

In this paper, we choose the following parameters as
the standard parameters: a = 35, b = 3, c = 12, d = 7, r =
0.5, and the system is hyperchaotic. First, a comparison of
the return maps with a small error in the standard parameters
is explored. Figure 6 shows the return maps An vs. Bn and
−Cn vs. − Dn of the Chen hyperchaotic system with the
standard parameters. From Figure 6(a), choose parameter
r = 0.5 and r = 0.5001, and we can see that the return maps
are scattered and diffused. It is sensitive to the parameter
r, so the transmitted signals are difficult to be identified
exactly. Then based on the proposed modulation rules in
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Figure 4. Recovered signal (a) and signal errors of
ln |r(t) − r̂(t)| (b).

Section 3.1, the return maps of the transmitted signal are
shown in Figure 6(b), and it is difficult to distinguish the
changes in the attractors because the two return maps are
also scattered.

In many cases, only amplitude return maps are not
enough to detect message signals. They also need some
return maps which can reveal frequency information. Sup-
pose that the state X4(t) is the transmitted condition. From
X4(t) we can construct different kinds of return maps. Let
tmax
n be the moment when X4(t) get its nth local maximum

Xmax(n), and tmin
n be the moment when X4(t) gets its nth

local minimum Xmin(n). Assume that Yn is the value of
X4(t) at that minimum moment, let Tmax(n) = tmax

n − tmax
n−1

and Tmin(n) = tmin
n − tmin

n−1 be two time intervals, then we
define the following return maps (Yang, Yang, & Yang,
1998):

rA
max : Xmax(n) 	→ Xmax(n + 1),

rA
min : Ymin(n) 	→ Ymin(n + 1),

rT
max : Tmax(n) 	→ Xmax(n),

rT
min : Tmin(n) 	→ Ymin(n).

Figure 5. Recovered signal (a) and signal errors of
ln |r(t) − r̂(t)| (b).

Table 1. The errors of estimated parameters r̂ with different
SNR.

Case SNR (db) sum |r(t) − r̂(t)|/n |r(t) − r̂(t)|
1 103.7 0.0017 1.1138e–09∼0.0560
2 89.88 0.0018 5.0526e–09∼0.0560
3 83.98 0.0018 7.6003e–09∼0.0560
4 70.05 0.0017 1.3541e–08∼0.0561
5 65.44 0.0020 1.4789e–08∼0.0560
6 44.57 0.0032 1.5475e–09∼0.0598
7 38.80 0.0048 1.3459e–07∼0.0596
8 32.91 0.0085 5.8395e–07∼0.0603

In Figure 7(a), the return maps with standard parameters
and modulated parameters are shown. We were not able to
find some shape deformations because they are scattered
and the two return maps are mixed or overlapped.

Compared with others existing works, such as the works
of Li, Chen, and Alvarez (2006), the return maps of the
Lorenz system is given in Figure 8; note that there are three
segments in the return map, and each segment is further
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Figure 6. The return maps of the Chen hyperchaotic system with
the parameter r = 0.5 and r = 0.5001 (a). The return maps (A(n)
and −C(n) vs. B(n) and −D(n)) of the transmitted signals with
modulated parameters and standard parameters (b).

split into 10 strips. It is obvious that the split of the map is
caused by the switching of the value of parameter b between
b0 and b1, where b0 = 3.1 and b1 = 4.0. From Figure 6(a),
however, it can be seen that the return maps of the Chen
hyperchaotic system do not have a clear strip and it is scat-
tered. In addition, it is much sensitive to the parameter r, so
our scheme certainly can resist the return map attacks and
the degree of security is high enough.

On the other hand, the changes of parameters not only
change the sizes of the attractors but also their natural fre-
quencies (Yang, 1995). From Figure 7(b), which shows
rT

max and rT
min, we obviously cannot find some vertical shifts

between rT
max and rT

min, which denote the changes in natu-
ral frequency. All the maps are blurred and diffused with
each other; thus, distinguishing them is not easy. There-
fore, by using the parameter modulation, this method can
resist the well-known return map attack. This secure com-
munication schemes whose return maps are complicated

Figure 7. The return maps (X (n) and Y (n) vs. X (n + 1) and
Y (n + 1)) of the Chen hyperchaotic system with standard param-
eters and modulated parameters (a). The return maps (Tmax(n) and
Tmin(n) vs. Xmax(n) and Ymin(n)) of rT

max and rT
min (b).

Figure 8. The return maps of the Lorenz system with different
parameters.
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and the changes of return maps are irregular, we know that
the degree of security is high enough.

4. Conclusions
In this paper, the synchronization of Chen hyperchaotic sys-
tems with unknown parameter is presented. The parameter
of transmitter can be identified exactly while the synchro-
nization is completed. Theoretical analysis and numerical
simulations are shown to verify the results. A new applica-
tion with parameter modulation in the continuous signals
transmission is given. We know that the continuous signals
are recovered well from the simulations using the method
of parameter modulation. The proposed scheme achieved
robustness to noise to some extent, and different kinds of
return maps show the higher degree of security. In the future,
we will do more analysis and design a chaos-based system
to secure communication.
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