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A novel three-dimensional autonomous chaotic system from the LÜ chaotic system is given. By using the theoretical analysis
and numerical simulation, we provide an insight into the dynamic properties and characterizations of this system, such as
Hopf bifurcation. In particular, we are interested in focusing on the dependence of varying parameters on chaos with the help
of some chaos indicators including the fast Lyapunov indicator, small alignment indexes and Lyapunov exponent. It is shown
that growing the parameter c leads to the extent of chaos. Finally, a chaotic electronic circuit is designed for the realization
of the chaotic attractor with aim of Multisim software, and it gives almost the same rules of types of orbits as numerical ones
by an alternating value of a circuital resistor.
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1. Introduction
Chaos with exponential sensitivity of initial conditions is
a typical nonlinear phenomenon in nonintegrable dynam-
ical systems. This phenomenon shows that two identi-
cal systems have different trajectories as time evolves
when initial points of these systems are slightly different.
Chaotic dynamics in classical physics has been intensively
investigated within the mathematics, science and engi-
neering communities for about 40 years. As well known,
since Lorenz (1963) discovered a simple three-dimensional
smooth autonomous chaotic system, the investigation of
chaotic behavior has attracted great attention. From then
on, many researchers have proposed and analyzed the novel
three-dimensional chaotic systems such as Rössler sys-
tems (Rössler, 1979), the Chua’s circuit (Cafagna & Grassi,
2003), the Chen system (Chen & Ueta, 1999) and the LÜ
system (Lü & Chen, 2002).

There are many ways for the identification of
chaotic orbits from regular ones in the classical systems
(Contopoulos, 2002). Each of them has its advantages and
disadvantages in quantifying the regular or chaotic nature
of orbits in the nonlinear systems. As well known, the
Lyapunov exponents (LEs) (Benettin, Galgani, & Strelcyn,
1976) are frequently used for the measuring the average
exponential deviation of two nearby trajectories. As an effi-
cient method to detect regular from chaotic orbits, the LEs
are applicable to a phase space with any dimension, but
quite a long integration time is often needed to get a reliable
value of LEs in a multidimensional system. There are also
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other qualitative methods for the nonlinear systems, such
as the power spectra, Poincaré sections (Hénon & Heils,
1964), Smaller Alignment Index (SALI) (Skokos, 2001;
Skokos, Bountis, & Antonopoulos, 2007), fast Lyapunov
indicators (FLIs) (Froeschlé, Lega, & Gonczi, 1997), etc.
As very fast tools to find chaos, both the SALI and the FLI
change following completely different time rates for differ-
ent orbits thus allowing them to detect between the ordered
and chaotic case. The SALI and the FLI are still suitable for
discussing dissipative system as in Huang and Wu (2012).

One main aim of the present paper is to use numerical
approaches to study the dynamical properties of a new three-
dimensional nonlinear system. Because the LÜ system
consists of quadratic nonlinearities, while the new system
has exponent nonlinearities, the latter shows more com-
plex dynamic characteristics than the former. As another
purpose, the FLI and the SALI are tested to be very fast,
efficient tools to distinguish chaotic orbits from regular
ones in the dissipative system, which are commonly used in
the conservative Hamiltonian systems and first applied to
treat the strongly dissipative system in our previous work
in Huang and Wu (2012). Finally, chaotic dynamics have
also been used in engineering and experimental applications
(Matsumoto, Chua, & Kobayashi, 1986; Qi, Wyk, Wyk, &
Chen, 2009). Some dissipative systems can be performed
as electronic oscillator circuits, and signals are seen from
an oscilloscope or a digital signal processor. Immediately,
the nature of chaotic or regular orbits is clearly shown by
the experimental observations.
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The rest of this paper is organized in the following
manner. In Section 2, we construct a three-dimensional
dynamical system based on the LÜ system, and analyze
the structure of equilibria and hopf bifurcation in the sys-
tem. Meantime in Section 3, we also study the transitions
from regular orbits to chaotic ones varying parameters by
chaos indicators such as the LEs, the FLIs and the SALI.
In Section 4, experiment circuit has been built for imple-
menting the novel system. Finally, Section 5 summarizes
the conclusions.

2. Numerical investigations
The LÜ Chaos system is written as dx/dt = a(y −
x), dy/dt = cy − xz, dz/dt = −bz + xy. With xy replaced
by exy, a novel simple three-dimensional autonomous sys-
tem is shown with an exponent nonlinear term as follows:

dx
dt

= a(y − x),

dy
dt

= cy − xz,

dz
dt

= −bz + exy, (1)

where x(t), y(t), z(t) are the state vector and a = 36, b =
3, c are positive constants. The new system (1) consists
of one quadratic and one exponent term. We obtain phase
portraits of individual orbits from various directions vary-
ing parameter that concern ordered or chaotic orbits. As
a single parameter c increases, the system has interesting
complex dynamical behavior. By setting parameter c = 25
in Figure 1 emerges the two irregular attractors in the novel
three-dimensional smooth system, namely the so-called
two-wing irregular attractors, which is similar to that of the
LÜ system. For the case c = 5, we can watch phase portraits
with respect to projections on the y − z plane in Figure 2.
It is clear to show that the solution is a regular attractor.
The simulation results are obtained by using the four-order
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Figure 2. Phase portraits (y − z) of the regular orbit with c = 5.

Runge–Kutta method with the step length taken as 0.01 and
initial conditions given with (x, y, z) = [1, −1, 1].

The equilibria as particular solutions of the system meet
the following algebraic equations:

a(y − x) = 0, cy − xz = 0, −bz + exy = 0. (2)

Obviously, we solve these nonlinear algebraic equations
and obtain three equilibriums:

s0 =
[

0, 0,
1
b

]
, s1,2 =

[
±√

ln(bc), ±√
ln(bc), c

]
. (3)

To study the stability of the equilibrium points, the system
(1) is linearized at s1 and the Jacobianb matrix is obtained:⎛

⎝ −a a 0
−z1 c −x1

y1ex1y1 x1ex1y1 −b

⎞
⎠ . (4)

The equilibrium points excluding s0 should depend on the
parameter c. We discuss them according to three differ-
ent values of c. For the first case c = 5, we obtain two
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Figure 1. Phase portraits of the chaotic orbit with c = 25.
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other nontrivial equilibria s1,2 = [±1.6456, ±1.6456, 5].
The equilibrium s1 is a stable node-focus point because three
eigenvalues of Equation (4) are [−32.6510, −0.6745 ±
9.4403i] with i = √−1. In addition, the eigenvalues at
the equilibrium s2 are the same as those at the equi-
librium s1 and also show that the equilibrium s2 has
the same property. This is because the system is sym-
metric with respect to the x − y plane, in other words,
it remains invariant under the transformation (x, y, z) →
(−x, −y, z). As far as the second case c = 25, two nontrivial
equilibria are s1,2 = [±2.0779, ±2.0779, 25]. The equilib-
rium s1 is an unstable node-focus point because there are
three eigenvalues [7.5845 ± 27.2350i, −29.1691]. For the
case c = 7.31, we obtain two nontrivial equilibria, s1,2 =
[±1.7572, ±1.7572, 7.31]. In this case, we obtain the char-
acteristic equation of the Jacobian matrix in the following
form:

λ3 + B1λ
2 + B2λ + B3 = 0, (5)

with B1 = 31.6918, B2 = 153.8443, and B3 = 4875.6038.
It is easy to find that B1 > 0, B2 > 0, B3 > 0 and B1B2 −
B3 ≈ 0. This ensures that Equation (5) has one pair of
approximate pure imaginary eigenvalues �1,2 = 0.0009 ±
12.4034 ≈ ±12.4034 and other negative eigenvalues �3 =
31.6918. On the one hand, all the eigenvalues of the char-
acteristic equations have negative real parts which verify
that the system is stable when c < 7.31, on the other hand,
there are always one eigenvalue with positive real part as
c > 7.31. Namely, the stability of the existing equilibrium
changes from being stable to unstable as the parameter
c grows to span the critical value of 7.31. Thus, we can
determine that a Hopf bifurcation occurs at c = 7.31. Our
analysis of the Hopf bifurcation is just based on that one pair
of purely imaginary eigenvalues and all other eigenvalues
containing negative real parts are sufficient conditions for
the emergence of a Hopf bifurcation at a critical parameter
value (Arrowsmith & Place, 1990).

3. Distinguishing orbits by different chaotic
indicators

There are various methods to distinguish between chaotic
and ordered orbits. Now we propose three methods to deal
with our problems.

3.1. Lyapunov exponents
In classical physics, LEs, as a common chaos indicator to
distinguish whether a system is chaotic or regular, have
been widely used to measure the chaoticity of orbits in
the nonlinear dynamical system. They calculate the rate
of exponential divergence between neighboring trajecto-
ries in the phase space, precisely, if the motion is ordered,
the corresponding LEs are all negative, otherwise. If the
motion is chaotic, the largest LE is strictly positive. There
are two different methods for numerically calculating LEs.

Figure 3. Lyapunov spectra with the variations of c.

One rigorous method is to use the tangent vector from the
solution of the variational equations of the system. Another
less rigorous method is the so-called two-particle method
(Tancredi, Sanchez, & Roig, 2001) using the deviation vec-
tor between two nearby trajectories in place of the tangent
vector. All LEs of the three-dimensional system (1) can be
attained, where initial conditions are (x, y, z) = (1, −1, 1).
In the case c = 5, there are three negative LEs (λ1, λ2, λ3) =
(−1.2217, −1.2592, −13.6291). This sufficiently tests that
the system is Lyapunov stable and its attractor is a stable
fixed point. For c = 25, there are one positive and three
negative LEs (λ1, λ2, λ3) = (3.8993, −1.7070, −16.5162).
The onset of such a positive LE confirms that the system is
dynamically unstable and chaotic.

An ordered and chaotic behavior can be checked with the
LEs method varying system parameters. There is a sudden
varying from regular behaviors to chaotic ones when the
parameter c passes 7.31 as shown in Figure 3. In addition, a
bifurcation is very convenient to search for an abrupt change
of a qualitatively different solution (such as the structure of
attractors) for a nonlinear system when a control parameter
is smoothly changed. With the help of the bifurcation, a
period doubling, quadrupling, etc., and the onset of chaos
can be found. Let the parameter c vary in the interval [2.0,
10.0] and give the initial condition (1, −1, 1), the bifurcation
diagram versus c is proposed to show how system changes
with increasing value of parameter c displayed in Figure 4.
The bifurcation is good to show the transition to chaos as
the parameter spans 7.31. The above ways offer enough
dynamical information that c = 7.31 is a threshold value
from regular to chaotic motion.

3.2. Fast Lyapunov indicators
It is well known that the time necessary to reach a limit
value, either of the length of any tangential vector or of the
angle between tangent vectors, is taken as an indicator of
stochasticity for a nonlinear dynamical system. Following
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Figure 5. The FLIs versus log(t).

this general idea, FLI, as a simple, qualitative index, was
first introduced by Froeschlé et al. and then modified by
Froeschlé and Lega (2000). Given any threshold, the FLI
will reach the value fast for a chaotic orbit, and slowly
for a regular orbit. Conversely, in the same time span, the
indicators will show different values for a regular and a
chaotic nature of orbit with completely different time rates.
More specifically, the logarithm of the length of a tangent
vector method of inspecting the dynamics of a nonlinear
physical evolves exponentially for a chaotic orbit, grows
only polynomially for a regular motion. In addition, this
index was further developed as the two-particle method (Wu
& Xie, 2007, 2008) in which the equations of motion must
be solved two times, and the renormalization technique was
used to calculate their FLI within a sufficiently long time
span. As shown from Figure 5 that FLIs change with the
two different values of parameter c. The variations of FLIs
are entirely different for the two case. The FLIs are almost
invariant for c = 5, but some grow exponentially for c =
25. As a consequence, the orbit is regular for the former, but
chaotic for the latter. The result is consistent with the one
given by the the Hopf bifurcation and LEs. It has proved
successful that FLI succeeds in detecting the nature of orbits
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Figure 6. The SALIs versus log(t).

faster than the computation of the LEs due to less or no
renormalization.

3.3. Small Alignment index
The construction of SALI (Skokos, 2001)also stems from
the idea of the calculation of two LEs in any degree system.
Two deviation vectors at the same point in the tangent space
converge to the direction of the eigenvector which corre-
sponds to the maximal Lyapunov characteristic exponent
(LCE) if the Gram–Schmidt orthogonalization is not used.
In general, any two randomly chosen initial tangent vec-
tors will become aligned with the most unstable direction
and the angle between them will rapidly converge to zero.
The speed of the convergence is completely of a opposite
nature for chaotic and regular orbits, namely the misalign-
ment between the two tangent vectors tends rapidly to zero
for chaotic orbits, while it shows small fluctuations around
non-zero values for ordered orbits and so it clearly detects
between the two types of orbits. The SALI method has
already been confirmed to be an efficient and quick indica-
tor of chaoticity for diagnosing between chaotic and ordered
motion independent of the dimensions of the system. In our
opinion, the indicator is still suitable for a dissipative sys-
tem because the speed of the SALI converging to zero is
strongly linked to the properties of trajectories but does not
at all depend on the conservative or dissipative nature of
the system. The SALI also converges exponentially to zero
for chaotic orbits in dissipative systems, while it exhibits
small fluctuations around non-zero values for ordered ones.
These facts can be confirmed in Figure 6. The SALI grows
to a constant for c = 5. This is a regular behavior of the
orbit. But the case c = 25 means the appearance of chaos
because their SALIs are fast close to the value −16 before
t = 10, 000. The result is in conformity to one given by the
above other methods.

4. Circuit realization of the chaotic system
There are some common methods of the circuit realization
of the chaotic system: one of them is to apply the piece-wise
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Figure 7. Circuit diagram of the system.

linear function to replace the quadratic, cubic term or other
nonlinear term. Other of methods is to use the switch
function to substitute the nonlinear term, respectively. The
present system is implemented by applying analog multi-
plier to replace the quadratic product term and by using the
triode emitter junction to substitute exponent term, without
influencing the system original nonlinear nature. In a prac-
tical circuit implementation concerning signals needs to be
observed, the strength of the experimental circuit signals
is changed to some scale to that of the original circuit sig-
nals so that the implementation can be obtained without any
difficulty. Of course, the replacement of chaotic variables
does not change system properties. As shown in Figure 7,
the voltages C1, C2, and C3 are used as UC1 , UC2 , and UC3 ,
respectively. The operational amplifiers and its electronic
circuitry perform the basic operations of addition, subtrac-
tion and integration. In the light of the characters of ideal
op-amp (virtual short and virtual open) and the Kirchhoff’s
current and voltage laws, the corresponding circuit equation
can be described as

dUC1

dt
= R4

R1R5C1
UC2 − R3(R1 + R4)

(R2 + R3)R1R5C1
UC1 ,

dUC2

dt
= R8R11(R6 + R9)

(R7 + R8)R10R12R6C2
UC2

− R11R9

R6R10R12C2
UC1 UC3 ,

dUC3

dt
= R14(R13 + R16)

(R14 + R15)R13R17C3
UC2 − R16Is

R17C3
eUC1 UC2 /VT ,

(6)

where VT = KT ≈ 26 mV is the thermal voltage and Is ≈
200 μA is the reverse saturation leakage current. In the
later analysis, related electronic devices are as follows. The
resistors are following as: R1, R2, R3, R4, R6, R8 = 10 k�;
R9, R10, R11, R13, R16 = 10 k�; R5 = 2.8 k�; R7 = 6 k�;
R12, R17 = 1 k�; R14 = 197 k� and R15 = 3 k�. Mean-
time, set the capacitors C1, C2, C3 = 100 nF. Two values
of the parameter c will be given by changing value resis-
tors R7. We get circuital simulation viewpoints in Figures 8

Figure 8. The experiment observations (y − z) of chaotic orbit
with c = 25.
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Figure 9. The experiment observations (y − z) of regular trajec-
tory with c = 5.

and 9, which correspond to the numerical counterparts of
Figures 1 and 2. Setting parameter c = 25 with the resistors
R7 = 6 k�, two chaotic attractors appear. As an illustration,
Figure 8 is the same as Figure 1, and it can be shown that the
experimental results and computational ones are consistent
with for the chaotic motions. For the case c = 5 with the
resistors R7 = 38.8 k�, we get phase portraits with respect
to projections on different planes in Figure 9. However, for
the chaos case, there is a slight difference between the exper-
imental views and the numerical views. Generally speaking,
the numerical views are clearer than the experimental ones
because experimental initial conditions are never known
perfectly.

5. Conclusions
A new modified LÜ chaotic system has been investi-
gated with exponential terms. Some basic properties of
this system have been discussed in terms of chaotic attrac-
tors, equilibria, and eigenvalues of the Jacobian matrices.
Bifurcations, LEs are used to find the dependence of the
transitivity from order to chaos on changing parameter
c. As a result, they get the same results that c = 7.31 is
a threshold value from a regular dynamic to an irregu-
lar one. Namely, under some necessary conditions for the
occurrence of chaotic motions, increasing the parameter c
always leads to the strength of chaos. With the help of SALIs
and FLI, we can explore two different types of orbits (reg-
ular or chaotic), as the dynamical parameter c varies. In
addition, an electronic circuitry is designed for the realiza-
tion of the chaotic attractor, identifying experiment results
with computer simulations. The new chaotic systems can

be regarded as information sources that naturally produce
digital communication signals.
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