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ABSTRACT
Observing that every k-irreducible ideal of a semiring R is a k-
primary ideal, if R is an additively cancellative, yoked and commu-
tative Noetherian semiring, we establish the primary decomposition
and uniqueness of the primary decomposition of k-ideals of such
semirings. Finally, the primary decomposition and uniqueness of pri-
mary decomposition proved for k-ideals is also generalised for fuzzy
k-ideals of these semirings.
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1. Introduction

Ideals play an important role in both ring theory and semiring theory. But in the absence
of additive inverses in semirings, the structure of ideals in semirings differs from that of
ring theory. The ideals in semirings possessing the very obvious property of ideals of rings,
‘if x + y ∈ I, x ∈ I, then y ∈ I’ are known as k-ideals and the role of these ideals in semirings
becomes significant in the absence of additive inverses. The results which are true for ideals
in rings have also been established for k-ideals in semirings by various authors (cf. [1–13]).
In viewof these facts various researchers attempted the primary decomposition for k-ideals
in semirings analogous to the primary decomposition of ideals in rings: In a commutative
Noetherian ring, every ideal can be decomposed as a finite intersection of primary ideals
(Lasker–Noether Theorem [14]). For a deep study of primary ideals in rings and semirings
one can refer to [8–12, 15–19].

The above result of ring theory is not true for arbitrary ideals in semirings as noticed in
[20]. Atani and Atani [20, Theorem 4] had proved that in a commutative Noetherian semir-
ing, every proper k-ideal can be represented as a finite intersection of k-primary ideals. But
it was observed by Lescot [21] that there were some errors in the results used to prove
the aforementioned result. For example, I + Ran is not a k-ideal, even if I is a k-ideal. But in
[20], it is taken for granted that the ideal I + Ran is a k-ideal. Lescot [21] found these errors
after observing in Example 6.2 that {0} ideal may not be a finite intersection of k-primary
ideals in a commutative Noetherian semiring. With these observations, he developed
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the theory of weak primary decomposition for semirings of characteristic 1. But still the
question of settling the primary decomposition for a proper k-ideal (other than {0} and
semiring R) remained unsolved. In this direction, Kar et al. [22, Theorem 4.4] proved that
every proper k-ideal of a commutative Noetherian semiring R can be expressed as a finite
intersection of k-irreducible ideals (Definition 2.1). They tried to prove the primary decom-
position by observing that in a commutative Noetherian semiring, every k-irreducible ideal
is a k-primary ideal [22, Theorem 4.6]. But the proof of this result has the same errors
again and the problem still remains unsolved. This motivated us to establish the primary
decomposition of k-ideals in commutative Noetherian semirings.

In this paper, we provide a correct proof of Theorem 4.6 of [22], which settles the pri-
marydecomposition for k-ideals in commutativeNoetherian semirings. In order to establish
the uniqueness of primary decomposition for semirings, first we prove some required basic
results for uniqueness and finally establish the uniqueness of primary decomposition for
k-ideals in commutative Noetherian semirings: If I = ∩n

i=1Qi, where each Qi is a primary
ideal and

√
Qi = Pi, then the set {P1, P2, . . . ., Pn} is independent of particular choice of

decomposition of I.
Fuzzy k-ideals play an important role for the study of different classes of semirings. These

ideals havebeen studiedbymany authors (cf. [1, 7, 18, 23–27]). From theprimary decompo-
sition of k-ideals in semirings, the fuzzy primary decomposition of fuzzy k-ideals follows as
given in [22]. But the uniqueness theorem for fuzzy k-ideals [22, Theorem 5.5], is also incor-
rect. This motivated us to reinvestigate the uniqueness of fuzzy k-primary decomposition
in semirings.

2. Primary Decomposition of k-Ideals in Semirings

Throughout this paper, R is a commutative semiring with identity. First, we recall some
definitions and results which are necessary to prove the primary decomposition and
uniqueness theorems for k-ideals in commutative Noetherian semirings.

Definition 2.1: A proper k-ideal I of a semiring R is called k-irreducible ideal if for any two
k-ideals J, K of R, I = J ∩ K implies that either I = J or I = K.

Definition2.2: Let Ibe a k-ideal of a semiring R. Then I is said to have a primary decomposi-
tion if I can be expressed as I = ∩n

i=1 Qi, where eachQi is a primary ideal of R. Also, a primary
decomposition of the type I = ∩n

i=1 Qi with
√
Qi = Pi, is called a reducedprimary decompo-

sition of I, if Pi’s are distinct and I cannot be expressed as an intersection of a proper subset
of ideals Qi in the primary decomposition of I. A reduced primary decomposition can be
obtained from any primary decomposition by deleting those Qj that contains ∩n

i=1
i �=j

Qi and

grouping together all distinct
√
Qi’s-primary ideal.

Themain aim of this section is to prove the existence and uniqueness of primary decom-
position for k-ideals in a commutative Noetherian semiring. First, we prove the existence
part as stated below:

Theorem 2.3 (Primary Decomposition of k-Ideals): Let I be a k-ideal of an additively can-
cellative, yoked and commutative Noetherian semiring R. Then I can be represented as a finite
intersection of primary ideals of R, that is, I has a reduced primary decomposition.
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The decomposition of k-ideals in terms of k-irreducible ideals has already been proved
in [22] as follows:

Theorem 2.4 ([22], Theorem 4.4): Every proper k-ideal of a commutative Noetherian semir-
ing R can be expressed as a finite intersection of k-irreducible ideals.

Therefore, primary decomposition for k-ideals in semirings follows immediately if we
prove

Theorem 2.5: Let R be an additively cancellative, yoked and commutative Noetherian semir-
ing. Then every k-irreducible ideal of R is a primary ideal of R.

Kar et al. [22, Theorem 4.6], made an attempt to prove the same without considering
additively cancellative and yoked semiring, but the proof of the result has some errors as
mentioned in the introduction. For the proof of the required result, we first analyse some
commonerrors committedbymanyauthors regarding k-ideals, andprove some facts about
k-ideals. First, we note that any ideal I =< a > is not a k-ideal in semirings as observed
by Golan in [28, Example 6.17]. That is, if I = < (1 + x) > is an ideal of N[x] (semiring of
polynomials over non-negative integers N in the indeterminate x), then (1 + x)3 = (x3 +
1) + 3x(1 + x) ∈ I, 3x(1 + x) ∈ I, but (x3 + 1) /∈ I implies that I is not a k-ideal of N[x]. Any
ideal generated by a single element becomes a k-ideal, if we impose some conditions on a
semiring as shown below:

Lemma2.6: Let R be an additively cancellative, yoked and zerosumfree semiring. Then for any
a ∈ R, the ideal I =< a > is a k- ideal of R.

Proof: Let a1 + a2, a1 ∈ I. Then there exist some r1, r2 ∈ R such that a1 + a2 = ar1 and
a1 = ar2. As R is yoked, there exists some r3 ∈ R such that r1 + r3 = r2 or r2 + r3 = r1. If r1 +
r3 = r2, then ar1 = ar2 + a2 = ar1 + ar3 + a2 implies that ar3 + a2 = 0, as R is additively
cancellative. Also, a2 = ar3 = 0 ∈ I, as R is zerosumfree.

Further, if r2 + r3 = r1, then ar2 + a2 = ar1 = a(r2 + r3) = ar2 + ar3 implies that a2 =
ar3 ∈ I, since R is additively cancellative. Thus, I =< a > is a k-ideal of R. �

The semiring considered in above example is additively cancellative, zerosumfree, but it
is not yoked, for let

f (x) = 5x2 + 9x + 2 and g(x) = 11x2 + 3x + 5

be two polynomials in N[x], then there exists no h(x) ∈ N[x] such that either f (x) + h(x) =
g(x) or g(x) + h(x) = f (x).

Similar to an ideal generated by a single element, the sum of two k-ideals may not be
a k-ideal in a semiring. There are plenty of k-ideals in the semiring N, but their sum is not
a k-ideal. However, the sum of two k-ideals is a k-ideal in a lattice ordered semiring ( cf.
[28, Corollary 21.22]). While proving Theorem 2.5, the authors wrongly used that the ideals
(Q+ < ak >) and (Q+ < b >) are k-ideals. In view of the above observations, Theorem 2.5
follows verbatim as proved in [22, Theorem 4.6] for additively cancellative, yoked, zerosum-
free and lattice ordered semirings, because in this case, both an ideal generated by a single
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element and sum of two k-ideals are k-ideals. Here, we give a proof of Theorem 2.5 without
resorting to the restrictions: lattice ordered and zerosumfree semiring.

Proof of Theorem 2.5.: LetQbe a k-irreducible ideal of aNoetherian semiring R. Let ab ∈ Q
be such that b /∈ Q. Now, we construct two ideals I and J of R as follows:

I =< ak > +Q and J =< b > +Q.

Then, clearly, Q ⊆ I ∩ J.
Let y ∈ I ∩ J. Then y = anz + q for some z ∈ R and q ∈ Q. Again aJ ⊆ Q ( since ab ∈ Q)

and so ay ∈ Q ( since y ∈ J).
Therefore, ay = an+1z + aq. Thus, we get that an+1z + aq ∈ Q. Also, aq ∈ Q, since q ∈ Q

andQ is an ideal of R. It follows that an+1z ∈ Q, sinceQ is a k-ideal of R. Construct a set An =
{x ∈ R | anx ∈ Q}. It is easy to check that An is an ideal of R and A1 ⊆ A2 · · · . is an ascending
chain of ideals. Since R is Noetherian, so An = An+1 = · · · . for some n ∈ Z+. Again an+1z ∈
Q implies that z ∈ An+1 = An. It demonstrates that anz ∈ Q which implies that y ∈ Q and
hence I ∩ J = Q.

Let rad(R) denote the Jacobson Bourne radical of a semiring R, that is, the intersection
of all maximal k-ideals of R, as R is assumed to be additively cancellative and yoked (cf. [29,
Proposition 23]). Assume that A is an ideal of R and rad(A) denotes the intersection of all
maximal k-ideals of R containing A.

Let Ādenotes the k-closure of an idealAof R, i.e.Ā = {a ∈ A | a+ b = c, for some b, c ∈ A}
and

√
I = {x ∈ R | an ∈ I for some positive integer n}.

Obviously, Ī is a k-ideal of R and every Noetherian semiring is weakly Noetherian (a
semiring R is weakly Noetherian if every ascending chain of k-ideals of R is ultimately sta-
tionary). Then by Lescot [21, Corollary 6.6], there are prime k-ideals P1, P2, . . . ., Pn of R such
that

√
I = P1 ∩ P2 · · · . ∩ Pn. Thus, we have

√
I ⊆ rad(R) and by Lescot [21, Lemma 2.2],

I ∩ J ⊆
√
I ∩

√
J =

√
I ∩ J ⊆ rad(I ∩ J). Therefore, rad(I ∩ J) ⊆ rad(I ∩ J). Again, I ∩ J ⊆ I ∩ J

implies that rad(I ∩ J) ⊆ rad(I ∩ J). Thus, rad(I ∩ J) = rad(I ∩ J) = rad(I) ∩ rad(J). So, we
have rad(I ∩ J) = rad(I) ∩ rad(J).

Now, Q = I ∩ J which implies that Q = I ∩ J ⇒ Q = I ∩ J, since Q is a k-ideal of R. This
shows that rad(Q) = rad(I ∩ J) = rad(I) ∩ rad(J), that is, rad(Q) = rad(I) ∩ rad(J).

Again,Q is a k-irreducible ideal, which implies that rad(Q) is k- irreducible. Also rad(Q) =
Q ∩ rad(R), but rad(Q) �= rad(R). Thus, rad(Q) = Q, since rad(Q) is k-irreducible. Accord-
ingly, Q = rad(I) ∩ rad(J), where each of rad(I) and rad(J) are k-ideals of R. Now b ∈ J
implies that b ∈ rad(J), but b /∈ Q, that is,Q �= rad(J). SoQ = rad(I), sinceQ is k-irreducible.
Further, an ∈ I leads to an ∈ rad(I) = Q. Hence, Q is a primary ideal. �

Remark 2.7: Now Theorem 2.3, follows by combining Theorems 2.4 and 2.5. It is impor-
tant to note here that allQi’s in the primary decomposition of a k-ideal I have an additional
property that theseare also k-ideals.Now it only remains toprove theuniquenessofprimary
decomposition of a k-ideal I.

The following lemma will be used to prove the uniqueness of reduced primary decom-
position of k-ideals in semirings.
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Lemma 2.8: Let R be a semiring and Q a P-primary ideal of R. Then we have

(i) If x ∈ R, (Q : x) = {r ∈ R | rx ∈ Q} is an ideal of R;
(ii) If x ∈ Q, then (Q : x) = R;
(iii) If x /∈ P, then (Q : x) = Q;
(iv) If x /∈ Q, then (Q : x) is P-primary.

Proof: (i) Let r1, r2 ∈ (Q : x) and a ∈ R. Then r1x, r2x ∈ Q implies that (r1 + r2)x ∈ Q and
r1ax ∈ Q, as Q is an ideal of R. Hence (Q : x) is an ideal of R.

(ii) If x ∈ Q, then Rx ⊆ Q, as Q is an ideal of Rwhich implies that R ⊆ (Q : x). Also, (Q : x)
is an ideal of R and so, (Q : x) = R.

(iii) Assume that x /∈ P. If a ∈ Q, then ax ∈ Q implies that a ∈ (Q : x). For the converse
part, suppose that b /∈ Q and xb ∈ Q. Then x ∈ √

Q = P, as Q is P-primary ideal of R which
contradicts that x /∈ P. This infers that xb /∈ Q and so b /∈ (Q : x).

(iv) Suppose that x /∈ Q. If y ∈ (Q : x), then xy ∈ Q implies that y ∈ √
Q = P, as Q is P-

primary ideal of R. Thus,Q ⊆ (Q : x) ⊆ P implies that P = √
Q ⊆ √

(Q : x) ⊆ √
P. Also,

√
P =

P, as P is a prime ideal of R and so P = √
(Q : x). Now, we show that (Q : x) is a primary ideal

of R. Clearly, the ideal (Q : x) is a proper as x /∈ Q and so 1 /∈ (Q : x). Assume that ab ∈ (Q : x)
andb /∈ √

(Q : x) for a,b ∈ R. Then abx ∈ Q andQ is a P-primary ideal of Rwhich implies that
either ax ∈ Q or b ∈ P = √

(Q : x). Thus, a ∈ (Q : x) as b /∈ √
(Q : x). �

We now prove the uniqueness of the reduced primary decomposition of a k-ideal of a
semiring as follows:

Theorem2.9 (Uniquenessof PrimaryDecomposition): Let Rbeanadditively cancellative,
yoked and commutative Noetherian semiring and I be a k-ideal of R. If I = ∩n

i=1Qi is a reduced
primary decomposition of I with

√
Qi = Pi for i = 1, 2 · · · .n, then

{P1, P2, . . . ., Pn} = {Prime ideals P |there exists x ∈ R such that P =
√

(I : x)}.

The set {P1, P2 · · · .Pn} is independent of the particular reduced primary decomposition chosen
for I.

Proof: Let x ∈ R. Then by Lemma 2.8 (iv),

√
(I : x) =

√(
n∩
i=1

Qi : x
)

= n∩
i=1

√
(Qi : x) = ∩

i, x/∈Qi
Pi

and therefore,
√

(I : x) ⊆ Pi, for all i = 1, 2 · · · .n. Also, if √(I : x) is prime, then � Pi, x/∈Qi ⊆
∩i,x/∈QiPi =

√
(I : x) implies that Pi ⊆

√
(I : x) for some i = 1, 2 · · · n.

Thus, we have

{P1, P2, . . . ., Pn} ⊆ {Prime ideals P |there exists x ∈ R such that P =
√

(I : x)}.

On the other hand, for i ∈ {1, 2 · · · .n}, we have ∩n
j �=iQj � Qi, as the primary decomposition

is reduced. So there exists some xi ∈ ∩n
j �=iQj and xi /∈ Qi. If y ∈ (Qi : xi), then yxi ∈ Qi and

yxi ∈ (∩n
j �=iQj) ∩ Qi = Iwhich implies that y ∈ (I : xi).
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Thus, (Qi : xi) ⊆ (I : xi) ⊆ (Qi : xi), as I ⊆ Qi.
So, (Qi : xi) = (I : xi) and by Lemma 2.8(iv),

√
(I : xi) = √

(Qi : xi) = Pi. Hence, {P1,
P2, . . . ., Pn} = {Prime ideals P | ∃x ∈ R such that P = √

(I : x)}. �

3. Fuzzy Primary Decomposition of Fuzzy k-Ideals in Semirings

In this section, we prove the existence and uniqueness of fuzzy primary decomposition of
fuzzy k-ideals of semirings. We first recall some definitions from [22] which are required to
prove the uniqueness

Definition 3.1: Letμ be a fuzzy ideal of a semiring R. Then the radical ofμ, denoted by
√

μ

is defined by
√

μ(x) = supn≥1{μ(xn), for all x ∈ R}.

Example 3.2: Consider the semiring R = (N,+, .) of non-negative integers with respect to
usual addition and multiplication of integers. Define a fuzzy ideal μ of N as follows:

μ(x) =
{
1 − 1

n , if x ∈ 〈2n−1〉 \ 〈2n〉, n = 1, 2, . . .

1, if x = 0
.

Observe that im μ = {0, 1, 12 , 23 , . . . ., n
n+1 , . . .} and clearly,

√
μ(x) =

{
1, if x ∈ 〈2〉
0, if x ∈ Z \ 〈2〉 .

Definition 3.3: Let μ be a non-constant fuzzy k-ideal of a semiring R. Then μ is said to be
a fuzzy k-irreducible ideal of R if for any two fuzzy k-ideals θ and η of R, μ = θ ∩ η implies
either μ = θ or μ = η.

Example3.4 ([22]): LetRbe a semiring as in Example 3.2 andμbe a fuzzy ideal ofRdefined
as follows:

μ(x) =
{
1, if x ∈ 〈16〉
0.4, otherwise

.

Then, by Kar et al. [22, Theorem4.2], one can easily check thatμ is a fuzzy k- irreducible ideal
of R.

Definition 3.5: A fuzzy ideal μ of a semiring R is said to be fuzzy prime ideal of R if it is
non-constant (i.e. |imμ| ≥ 2) and any two fuzzy ideals θ and η of R, θ ◦ η ⊆ μ implies that
either θ ⊆ μ or η ⊆ μ.

Definition 3.6: A fuzzy ideal μ of a semiring R is said to be fuzzy primary ideal of R if it is
non-constant (i.e. |imμ| ≥ 2) and any two fuzzy ideals θ and η of R, θ ◦ η ⊆ μ implies that
either θ ⊆ μ or η ⊆ √

μ. If
√

μ = ν, then μ is called fuzzy ν-primary ideal of R.

Definition 3.7: Let μ and θ be two fuzzy subsets of a semiring R. Then fuzzy colon ideal
(μ : θ) is defined by (μ : θ)(x) = supλ∈IFS{λ(x) | λ ◦ θ ⊆ μ}, where IFS(R) denotes the set of
all fuzzy subsets of R.
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Definition 3.8: Let μ be a fuzzy ideal of a semiring R. Then μ0 is defined as, μ0 = {x ∈ R|
μ(x) = μ(0)}.

Definition 3.9: If μ is a fuzzy k-ideal of a semiring R, then μ is said to have a fuzzy primary
decomposition ifμ can be expressed as μ = ∩n

i=1μi, where eachμi is a fuzzy primary ideal
of R. A fuzzy primary decomposition μ = ∩n

i=1μi is said to be reduced if
√

μi’s are distinct
and∩n

j �=iμj � μi, for all i = 1, 2 · · · n. By Kar et al. [22, Theorem 5.3], a reduced fuzzy primary
decomposition can be obtained from a fuzzy primary decomposition μ = ∩n

i=1μi, where
each μi is a fuzzy primary ideal of R.

The primary decomposition proved for k-ideals in a commutative Noetherian semiring
(Theorem 2.5) can be generalised to fuzzy k-ideals as in [22, Theorem 5.2]. Thus we have

Theorem 3.10 (Fuzzy Primary Decomposition of Fuzzy k-Ideals): Let R be an additively
cancellative, yoked and commutative Noetherian semiring and μ a fuzzy k-ideal of R such
that imμ = {1,α}, where α ∈ [0, 1). Thenμ can be represented as a finite intersection of fuzzy
primary ideals of R, i.e,μ has a primary decomposition.

Similar to the primary decomposition of k-ideals in semirings, allμi’s in the fuzzy primary
decomposition of μ have an additional property that these are also fuzzy k-ideals.

There are some errors (as mentioned below) in the result used for the proof of unique-
ness of fuzzy primary decomposition of fuzzy k-ideals in semirings. So the question of
establishing the result still remains unsolved. First, we state the result used for uniqueness.

Theorem 3.11 ([22], Theorem 5.4): Letμ be a fuzzy k- ideal of a semiring R andμ = ∩n
i=1μi

be a reduced fuzzy primary decomposition of μ. Let λ be a fuzzy k-prime ideal of R. Then λ =√
μi for some i = 1, 2 · · · .n if and only if there exists a fuzzy k-ideal θ of R such that θ � μ and√
(μ : θ) = λ, i.e. (μ : θ) is a fuzzy λ-primary ideal of R.

In the proof of above result, μ = ∩n
i=1μi is a reduced fuzzy primary decomposition of

fuzzy k-idealμ, so
√

μi’s aredistinct for each i = 1, 2, . . . .n. But theauthorshaveused
√

μi =
λ, for each i = 1, 2, . . . .n in the step

√
n∩
i=1

(μi : θ) = n∩
i=1

√
(μi : θ) = n∩

i=1

√
μi =

n∩
i=1

λ = λ

contrary to the assumption that the decomposition is reduced.
In order to establish a correct proof of the uniqueness of fuzzy primary decomposition

of a fuzzy k-ideal in a semiring, first we need the following result:

Lemma 3.12: Letμ be a fuzzy ν− primary ideal of a semiring R and θ a fuzzy ideal of R. Then
the following hold:

(i) If θ ⊆ μ, then (μ : θ) = χR , where χR is the chai function on R;
(ii) If θ � μ, then (μ : θ) is a fuzzy ν− primary ideal of R, i.e.

√
(μ : θ) = ν.
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Proof: (i) Let x ∈ R and θ ⊆ μ. Then we have

(μ : θ)(x) = sup
λ∈IFS(R)

{λ(x)|λ ◦ θ ⊆ μ}.

Also,

(χR ◦ θ)(x) = sup{min(χR(y), θ(z))|x = yz}
= sup{θ(z)|x = yz}
≤ θ(x)

≤ μ(x)

as θ ⊆ μ. Thus, by the definition of colon ideal and (χR ◦ θ) ⊆ μ, we get (μ : θ) = χR .
(ii) Let

θ � μ and η1 ◦ η2 ⊆ (μ : θ)

for some fuzzy ideals η1 and η2 of R. Thenby thedefinition of fuzzy colon ideal,η1 ◦ η2 ◦ θ ⊆
μ. Sinceμ is a fuzzy ν− primary ideal of R and θ � μ, we have η1 ◦ η2 ⊆ √

μwhich further
implies that either η1 ⊆ √

μ or η2 ⊆ √
μ, as

√
μ is a fuzzy prime ideal of R.

If η1 ⊆ √
μ, then by Kar et al. [22, Lemma 3.2 (iii) and Lemma 5.2 (i)],

√
μ ⊆ √

(μ : θ)

implies that η1 ⊆ √
(μ : θ). Similarly, if η2 ⊆ √

μ, then we get η2 ⊆ √
(μ : θ). Thus, (μ : θ)

is a fuzzy primary ideal of R.
We now show that

√
(μ : θ) = ν. For this, let x ∈ R. Then√
(μ : θ)(x) = sup

n≥1
{(μ : θ)(xn)}

= sup
n≥1

{
sup

λ∈IFS(R)
{λ(xn)|λ ◦ θ ⊆ μ}

}

= sup
n≥1

{
sup

λ∈IFS(R)
{λ(xn)|λ ⊆ √

μ}
}

≤ sup
n≥1

{√μ(xn)}

=
√√

μ(x) = √
μ(x)

as θ � μ and
√

μ is a fuzzy prime ideal of R. Thus,
√

(μ : θ) ⊆ √
μ. Also by Kar et al. [22,

Lemma 3.2 (iii) and Lemma 5.2 (i)],
√

μ ⊆ √
(μ : θ) implies that

√
(μ : θ) = √

μ = ν. �

Now, we give the correct proof of Theorem 3.11, which is required for the establishment
of uniqueness of fuzzy primary decomposition of a fuzzy k- ideal of a semiring as follows:

Theorem 3.13: Let R be an additively cancellative, yoked, zerosumfree and commutative
Noetherian semiring, and μ a fuzzy k- ideal of R such that imμ = {1,α}, where α ∈ [0, 1). Let
μ = ∩n

i=1μi be a reduced fuzzy primary decomposition of μ and λ be a fuzzy prime ideal of R.
Then λ = √

μi , for some i = 1, 2, . . . ., n if and only if there exists a fuzzy k-ideal θ of R such that
θ � μ and

√
(μ : θ) = λ, i.e. (μ : θ) is a fuzzy λ-primary ideal of R.
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Proof: Let λ = √
μi, for some i = 1, 2, . . . ., n. As μ = ∩n

i=1μi is a reduced fuzzy k-primary
decomposition of μ, so ∩n

j=1
j �=i

μj � μi, for any i �= j. Therefore, there exists some xi ∈ R such

that ∩n
j=1
j �=i

μj(xi) > μi(xi). Assume that ∩n
j=1
j �=i

μj(xi) = a, where a ∈ [0, 1). We now establish a

fuzzy subset θ of R as follows:

θ(x) =
{
a, if x ∈ 〈xi〉
0, otherwise

.

By Lemma 3.8, the ideal 〈xi〉 is a k-ideal as R is additively cancellative, yoked and zerosum-
free, which clearly implies that θ is a fuzzy k-ideal of R. Also,

θ(xi) = a = n∩
j=1
j �=i

μj(xi) > μi(xi) >
n∩
i=1

μi(xi) = μ(xi)

implies that θ � μ and θ � μi, for i �= j. Further,

θ(xi) = a = n∩
j=1
j �=i

μj(xi) = inf {μ1(xi),μ2(xi), . . . .,μi−1(xi),μi+1(xi), . . . .μn(xi)} ≤ μj(xi)

for all j �= i and j = 1, 2, . . . n. Now, we claim that θ ⊆ μj, for all j �= i and j = 1, 2, . . . , n. Let
x = xiyi ∈< xi >, for some yi ∈ R. Then

θ(x) = θ(xi) ≤ μj(xi) ≤ μj(xiyi) = μj(x)

implies that θ ⊆ μj for all j �= i and j = 1, 2, . . . , n. Thus, by Lemma 3.12 (i), we have

(μj : θ) = χR , for all j �= i, j = 1, 2, . . . , n and√
(μi : θ) = √

μi = λ.

Finally, by Kar et al. [22, Theorem 3.2 (v) and Lemma 5.2 (iii)], we get

√
(μ : θ) =

√(
n∩
i=1

μi : θ
)

=
√

n∩
i=1

(μi : θ) = n∩
i=1

√
(μi : θ) =

√
(μi : θ) = λ.

Also by Lemma 3.12 (ii), (μ : θ) is a fuzzy λ-primary ideal of R.
Conversely, assume that there exists a fuzzy k-ideal θ ofR such that θ � μ and

√
(μ : θ) =

λ. As

θ � μ = n∩
i=1

μi, we get θ � μj for some j ∈ {1, 2 · · · .n}

and by Lemma 3.12 (ii), we have
√

(μj : θ) = √
μj.
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Also, √
(μ : θ) = n∩

i=1

√
(μi : θ) = λ

implies that
n∩
i=1
i �=j

√
(μi : θ) ∩ √

μj = λ.

Further, ⎛
⎝ n∩

i=1
i �=j

√
(μi : θ) ◦ √

μj

⎞
⎠ ⊆

⎛
⎝ n∩

i=1
i �=j

√
(μi : θ)

⎞
⎠ ∩ √

μj = λ

and

λ = n∩
i=1

√
(μi : θ) ⊆ n∩

i=1
i �=j

√
(μi : θ)

implies that
√

μj ⊆ λ, as λ is prime.
Also,

λ =
√

(μ : θ) =
√

n∩
i=1

(μi : θ) = n∩
i=1

√
(μi : θ) ⊆

√
(μj : θ) = √

μj.

Thus, we get λ = √
μj for some, j ∈ {1, 2 · · · .n}. �

Finally, we are in a position to give the correct proof of uniqueness theorem of reduced
fuzzy k-primary decomposition of a fuzzy k-ideal in semirings as follows:

Theorem3.14 (Uniquenessof FuzzyPrimaryDecomposition): LetRbeanadditively can-
cellative, yoked, zerosumfree and commutative Noetherian semiring, andμ a fuzzy k-ideal of R
such that imμ = {1,α}, where α ∈ [0, 1). Letμ = ∩n

i=1μi with
√

μi = νi for i = 1, 2, . . . .n and
μ = ∩m

i=1ξi with
√

ξi = ηi for i = 1, 2, . . . .m be two reduced fuzzy k- primary decompositions
ofμ. Then, n = mand {ν1, ν2 · · · .νn} = {η1, η2, . . . ., ηm}.

Proof: Let νi ∈ {ν1, ν2 · · · .νn}. Then by Theorem3.13, there exists a fuzzy k-ideal θ of R such
that

θ � μ and
√

(μ : θ) = √
ui = νi for some, i ∈ {1, 2, . . . , n}.

Also, since μ = ∩m
i=1ξi with

√
ξi = ηi for i = 1, 2, . . . .m is another reduced fuzzy k-primary

decomposition ofμ, therefore there exists some j ∈ {1, 2 · · · .m} such that νi =
√

(μ : θ) =√
ξj = ηj. This implies that

{ν1, ν2 · · · .νn} ⊆ {η1, η2, . . . ., ηm} and so n ≤ m.

By reversing the role of νi and ξj, we get

{η1, η2, . . . ., ηm} ⊆ {ν1, ν2 · · · .νn} and m ≤ n.

Thus,

{ν1, ν2 · · · .νn} = {η1, η2, . . . ., ηm} and n = m.

�
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4. Conclusions

All the results that hold good for ideals in rings may not be true for the ideals in semirings
and not even for the k-ideals in semirings. But this fact was ignored by various mathemati-
cians while generalising the Lasker-Noether’s Theorem for semirings. Thismade Lescot [21]
to establishweak primary decomposition for k-ideals in semirings in 2015. But the question
of settling the primary decomposition for k- ideals still remained unsolved. In this paper, we
prove:

Let I be a k-ideal of an additively cancellative, yoked and commutativeNoetherian semir-
ing R. Then I can be uniquely represented as a finite intersection of primary ideals of R, i.e.I
has a unique reduced primary decomposition. The above said result is also generalised for
fuzzy k-ideals of same class of semirings.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Professor Ram Parkash Sharma has a remarkable 33 years of academic career (including 29 years
in Himachal Pradesh University) with Doctorate from Ramanujan Institute for Advanced Study in
Mathematics, University of Madras, India and has published 60 research papers in reputed jour-
nals. Gold medallist in Masters, Prof. Sharma has been a dedicated and resolute researcher who has
received highly prestigious fellowships, including UGC-JRF, Visiting Fellowship of Panjab University,
Post-Doctoral Fellowship of NBHM,Department of Atomic EnergyGovt. of India, SERC Visiting Fellow-
ship, DST, Govt. India, Indian National Science Academy Fellowship, Hungarian Scholarship (Type-E)
and most prestigious Commonwealth Fellowship (UK). Twelve Students have completed doctorate
under his supervision.

Dr.MadhuDadhwal obtained her M.Sc. M.Phil. and Ph. D degrees from Himachal Pradesh University,
Shimla, India. She was HPU Junior and Senior Research Fellow at the Department of Mathemat-
ics, Himachal Pradesh University, Shimla, India. During 2210–2016, she worked at Department of
Higher education Himachal (India) as Assistant Professor in Mathematics. From 2016 to till date, she
is working at the Himachal Pradesh University, Shimla, India. Presently she is working as an Assistant
Professor at the Department of Mathematics, Himachal Pradesh University, Shimla, India. Her main
scientific interests are ternary semirings, group action and derivations in semirings, distinguishing
labelling and distinguishing numbers for group actions. She is the author/co-author of more than 15
scientific research papers and 1 book.

Richa Sharma obtained her M.Phil and Ph.D degrees from Himachal Pradesh University Shimla
Himachal Pradesh, India. Shewas awardedHPU JRF andBSR fellowships. Shewas awardedgoldmedal
inM.Phil. Presently she is working as an assistant professor at Government degree College Chintpurni
Una India. She is the author/ co author of more than five research papers.

Professor S. Kar obtained his M.Sc. and Ph. D degrees from the University of Calcutta, Kolkata, India.
He was a CSIR Junior and Senior Research Fellow at the Department of Pure Mathematics, University
of Calcutta, Kolkata, India. During 2005–2009, he worked at P. R. M. S. Mahavidyalaya, Bankura, West
Bengal, India. From 2009 to till date, he is working at the Jadavpur University, Kolkata, India. Presently
he isworking as a Professor at theDepartment ofMathematics, JadavpurUniversity, Kolkata, India. His
main scientific interests are ternary algebras, ordered algebras, ring derivation theory and algebraic
graph theory. He is the author/coauthor of more than 60 scientific research papers and 3 books. He
visited many places in abroad like Indonesia, Thailand, Vietnam, Hong Kong for academic activities.



234 R. P. SHARMA ET AL.

ORCID

Madhu Dadhwal http://orcid.org/0000-0002-6059-4408

References

[1] Feng F, Zhao X, Jun YB. *-μ-semirings and *-λ-semirings. Theor Comput Sci. 2005;347:423–431.
[2] Mahmood T, TariqU. Generalized k-ideals in semirings using soft intersectional sets. Int J Algebra

Statist. 2015;4(1):20–38. (ISSN:2314-4548)
[3] Mahmood T, Shabir M. Characterizations of h-hemiregular and h-semisimple hemirings by

interval valued fuzzy h-ideals. World Appl Sci J. 2012;17:1821–1827. (ISSN:1818-4952)
[4] Shabir M, Anjum R. Characterizations of hemirings by the properties of their k-ideals. Appl Math

(Irvine). 2013;4(5). Article ID: 31225, 16 pages.
[5] Shabir M, Bashir S. Regular and intra-regular semirings in terms of bipolar fuzzy ideals. Comput

Appl Math. 2019;38:197.
[6] Shabir M, Hussain S. Semirings characterized by their p-ideals. Southeast Asian Bull Math.

2010;34:109–112.
[7] Shabir M, Mahmood T. Hemirings characterized by interval valued-fuzzy k-ideals. World Appl Sci

J. 2012;20(12):1678–1684. (ISSN:1818-4952)
[8] Sharma RP, Joseph R. Prime ideals of group graded semirings and their smash products. Vietnam

J Math Springer-Verlag. 2008;36(4):415–426.
[9] Sharma RP, Madhu . Prime correspondence between a semiring R and its G-fixed semiring RG.

J Combinator Inform Syst Sci. 2010;35(3–4):281–299.
[10] Sharma RP, Madhu , Sharma R. Relationships between a semiring R and its quotient semiring

RQ(I). J Combinator Inform Syst Sci. 2016;41(4):227–234.
[11] Sharma RP, Madhu . On connes subgroups and graded semirings. Veitnam J Math.

2010;38(3):287–298.
[12] Sharma RP, Sharma TR, Joseph R. Primary ideals in noncommutative semirings. South-East Asian

Bull Math. 2009;33:749–766.
[13] Sharma RP, Sharma TR. G-prime ideals in semirings and their skew group semirings. Comm

Algebra. 2006;34(12):4459–4465.
[14] Noether E. Idealtheorie in Ringbereichen. Math Ann. 1921;83(1):24–66.
[15] Chaudhari JN, Gupta V. Weak primary decomposition theorem for right Noetherian semirings.

Indian J Pure Appl Math. 1994;25(6):647–654.
[16] Dasgupta U, Mukhopadhyay P. On p-prime ideals in semirings. South-East Asian Bull Math.

2005;29:859–872.
[17] Dubey MK, Sarohe P. Generalization of prime and primary ideals in commutative semirings.

South-East Asian Bull Math. 2017;41(1):9–20.
[18] Nawaz S, Gulistan M, Yaqoob N. A study of (α,β)-complex fuzzy hyperideals in non-associative

hyperrings. J Intel Fuzzy Syst. 2019;36(6):6025–6036.
[19] Sharma RP, Gupta JR, Banota R. Primary ideals and fuzzy ideals in a ring. South-East Asian Bull

Math. 2006;30:731–744.
[20] Atani RE, Atani SE. Ideal theory in commutative semirings. Buletinal Academiei De Stiinte.

2008;57(2):14–23.
[21] Lescot P. Prime and primary ideals in semirings. Osaka J Math. 2015;52(3):721–737.
[22] Kar S, Purkait S, Davvaz B. Fuzzy k-primary decomposition of fuzzy k-ideals in a semiring. Fuzzy

Inform Engin. 2015;7(4):405–422.
[23] Azhar M, Gulistan M, Yaqoob N, et al. On fuzzy ordered LA-semihypergroups. Int J Anal Appl.

2018;16(2):276–289.
[24] Breikhna B, Hussain F, Hila K, et al. Soft congruence relations over semirings. Honam Math J.

2021;43(1):1–16.
[25] Mahmood T, Ejaz A. On bipolar valued fuzzy k-ideals in hemirings. Nucleus. 2015;52(3):115–122.

(ISSN:0029-5698)

http://orcid.org/0000-0002-6059-4408


FUZZY INFORMATION AND ENGINEERING 235

[26] Mahmood T, Aslam M. On interval-valued -fuzzy k-ideals in hemirings. Neural Comput Appl.
2012;21(1):231–244. (ISSN:0941-0643)

[27] Tang J, Yaqoob N. A novel investigation on fuzzy hyperideals in ordered *-semihypergroups.
Comput Appl Math. 2021;40(2):1–24.

[28] Golan JS. Semirings and their applications. Dordrecht: Kluwer Academic Publishers; 1999.
[29] Pawar K, Doere R. On normal radicals. Int J Pure Appl Math. 2011;72(2):145–157.


	1. Introduction
	2. Primary Decomposition of k-Ideals in Semirings
	3. Fuzzy Primary Decomposition of Fuzzy k-Ideals in Semirings
	4. Conclusions
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


