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ABSTRACT
Purpose: We introduce a multiple attribute group decision mak-
ing (MAGDM)method under interval-valued intuitionistic fuzzy (IVIF)
domain. In these MAGDM problems, attribute values and attribute
weights are represented in terms of IVIF sets (IVIFSs).
Methodology: The present methodology is divided into two parts.
Firstly, an appropriate order function has been developed for IVIFSs.
Secondly, an algorithm has been proposed for solving the MAGDM
problems with IVIF decision information.
Findings: To show the effectiveness of the proposed method, a
theoretical comparative study with respect to some existing liter-
ature is provided. A real-life based numerical example is given to
demonstrate theproposed solutionprocedure. Theadvantageof this
method is also described.
Values:Using proposed order function, interval-valued intuitionistic
fuzzy hybrid geometric and ordered weighted averaging operators,
thepresentmethodprovides amostpreferred alternative in six steps.
On the basis of a comparative study, it can be observed that the
present method simple and easy to implement for solving the IVIF
MAGDMmodel occurrence in real-life decision making problems.
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1. Introduction

In a pluralistic environment, multiple attribute decision making (MADM) refers to making
thedecisions to rank alternatives or select thebest alternative(s) froma finite set of prespec-
ified alternatives with regard to various attributes. There aremany objective and subjective
factors in real-life decision making process, such as the limitations of cognitive structure
of decision makers (DMs), the cost concern, the complexity and fuzziness of the objects
and the unpredictability of events. In such a case, DMsmost often use natural languages or
linguistic terms to describe or evaluate the vagueness of the considered objects. For solv-
ing such decision making problems, the fuzzy set theory [1] provides an effective way for
expressing the decision information. This theory has been widely used in many research
problems [2–6]. But, because of considering the membership function only, this theory is
not capable for dealing the situations in which DMs face ‘neither this nor that’ situation to
evaluate their preferences. This kind of uncertainty is usually known as the uncertaintywith
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hesitation. The theory of intuitionistic fuzzy sets (IFSs) [7, 8] is very useful for handling such
types of uncertainty and vagueness in the data of decision making problems. In fact, this
theory can represent the preferences/information of DMs in terms of favour, unfavour and
neutral. It is sometimes difficult for the DMs to obtain the exact values of the membership
degree, the non-membership degree and the hesitancy degree. To copewith this situation,
Atanassov andGargov [9] introduced the concept of interval-valued intuitionistic fuzzy sets
(IVIFSs) that are expressed by an interval-valued membership function, an interval-valued
non-membership function and an interval-valued hesitancy function.

Xu and Chen [10] presented an approach to solve group decision making (GDM) prob-
lems with interval-valued intuitionistic judgement matrices on the basis of the arithmetic
aggregation operator and the hybrid aggregation operator. They defined the interval-
valued intuitionistic judgement matrix with its score matrix and accuracy matrix. Park
et al. [11] provided an extension of the technique for order preference by similarity to
the ideal solution (TOPSIS) method for solving MAGDM problems with IVIF information
in which attribute weights are partially known. They found the best alternative by using
the different distance definitions. Wang et al. [12] proposed a mathematical programming
approach for solvingMADMproblems inwhich both attribute values and attributeweights
are characterised by IVIFNs. The TOPSIS method is used in this work to rank alternatives.
Wan and Li [13] presented a fuzzy mathematical programming method for solving MADM
problems with incomplete attribute weights. In this method, attribute values are repre-
sented in terms of IVIFSs, IFSs, trapezoidal fuzzy numbers, linguistic variables, intervals
and real numbers. This method is based on the linear programming technique for multi
dimensional analysis of preference (LINMAP). Chen and Huang [14] proposed a solution
method forMADMproblems inwhich attribute values aswell as attributeweights are repre-
sentedby IVIF values. Thismethod is basedon the linear programmingmethodology.Wang
and Chen [15] developed a method for solving IVIF MADM problems based on the linear
programming method and the extension of the TOPSIS method. The linear programming
method is used to calculate optimal weights of attributes. Wang and Chen [16] proposed a
new score function IVIF values and the linear programmingmethod for solving IVIF MADM
problems. In this method, the authors removed the drawback of an existing method. Yu
et al. [17] studied a nonlinear programming method for solving MADM problems in which
ratings of alternatives on attributes are represented by IVIFSs. The preference informa-
tion on attributes in this method is incomplete. Kumar and Garg [18] solved an MADM
problem under IVIFS environment by using set pair analysis. Tyagi [19] presented a new
approach for solving intuitionistic fuzzyMADMproblems. Safarzadeh and Rasti-Barzoki [20]
developed a novel MADM method in which a lexicographic semi-order model is modified
by using the best-worst method for the weights determination of the criteria. Safarzadeh
et al. [21] extended a GDM method with the best-worst method. In this work, they pro-
posed two mathematical models for evaluating the optimal weights of the criteria. Wan
and Dong [22] launched several methods and theories for solving MADM/MAGDM prob-
lems under IVIF framework in formof a book ‘DecisionMaking Theories andMethods Based
on Interval-Valued Intuitionistic Fuzzy Sets’ published in 2020.

From the above discussion, we mainly face the following issues in this article:

(i) Due to the presence of complexity and uncertainty in problems, lack of knowledge,
time restriction, a group of DMs is required in the decision process.
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(ii) How to calculate the reasonable and accurate knowledge about the attribute weights
for a group of DMs in the decision making process under the IVIFS framework?

(iii) To obtain the ordering relation between two IVIFNs, there needs an appropriate order
function which satisfies some necessary properties of ordering.

(iv) How to obtain the reasonable ranking of alternatives by a group of DMs on the basis
of the OWA operator?

Motivated by these issues, therefore, the aim of this article is divided into two folds.
Firstly, anappropriateorder functionhasbeendevelopedby taking intoaccount thedegree
of indeterminacy of IVIFSs. Secondly, based on this order function, an algorithm has been
proposed for solving the MAGDM problems with IVIF decision information. In this method,
all given decisionmatrices are fused into a collective IVIF decisionmatrix by using the IIFHG
operator. After that the optimal attribute weights for a group of DMs are obtained by utilis-
ing the IIFHGoperator, the proposed order function and the concept of normalisation.With
the help of these weights, the weighted collective IVIF decisionmatrix is obtained. Utilising
the proposed order function, this matrix is converted into a crisp matrix. Finally, the overall
attribute value for each alternative is calculated from this crispmatrix. On the basis of these
values, the alternatives are ranked.

This article is organised as follows. In Section 2, some preliminary concepts are given. A
neworder function for the IVIFNs is proposed in Section 3. In Section 4, anMAGDMproblem
is introduced with IVIF information. In this section, we develop a new method for solving
such an MAGDM problem. In Section 5, a comparative study with respect to some existing
literature is provided. In Section 6, a numerical example is given to demonstrate the pro-
posed solution procedure. The work of this article is concluded in Section 7 with a future
scope.

2. Preliminaries

In this section, we give a brief introduction of IVIFSs, IVIFNs and IIFHG and OWA operators.

Definition 2.1 (Atanassov and Gargov [9]): Let X = {x1, x2, . . . , xn} be the finite universe
of discourse. Mathematically, an IVIFS Ã in X is represented as

Ã = {〈xi,μÃ(xi), νÃ(xi)〉|xi ∈ X , i = 1, 2, . . . , n},

where μÃ(xi) and νÃ(xi) are interval-valued membership degree and interval-valued non-
membershipdegreeof element xi belonging to the IVIFS Ã, respectively. The interval-valued
intuitionistic fuzzy value (IVIFV) (μÃ(xi), νÃ(xi)) of element xi belonging to the IVIFS Ã can be
expressed as

([μL
Ã(xi),μ

U
Ã(xi)], [ν

L
Ã(xi), ν

U
Ã (xi)]),

where μÃ(xi) = [μL
Ã
(xi),μU

Ã
(xi)], νÃ(xi) = [νL

Ã
(xi), νUÃ (xi)], 0 ≤ μL

Ã
(xi) ≤ μU

Ã
(xi) ≤ 1, 0 ≤ νL

Ã
(xi) ≤ νU

Ã
(xi) ≤ 1, i = 1, 2, . . . , n.

If an IVIFS Ã contains only one element, i.e. if μL
Ã
(xi) = μU

Ã
(xi) = μÃ(xi) and ν

L
Ã
(xi) =

νU
Ã
(xi) = νÃ(xi) for i = 1, 2, . . . , n, then the IVIFS Ã is reduced to an IFS= {〈xi,μÃ(xi), νÃ(xi)〉|

xi ∈ X , i = 1, 2, . . . , n}.
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The following interval is called an intuitionistic fuzzy interval [23] of x in Ã

πÃ(x) = 1 − μÃ(x)− νÃ(x)

= [1 − μU
Ã(x)− νUÃ (x), 1 − μL

Ã(x)− νLÃ(x)].

Let ã = 〈[a, b], [c, d]〉 be an IVIFN [24], where [a, b] ⊂ [0, 1], [c, d] ⊂ [0, 1] with b + d ≤ 1.
From [24, 25], three operational results of IVIFNs are as follows:

Let ã(1) = 〈[a1, b1], [c1, d1]〉, ã(2) = 〈[a2, b2], [c2, d2]〉 and ã = 〈[a, b], [c, d]〉 be three
IVIFNs, then

(i) ã(1) ⊗ ã(2) = 〈[a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2]〉;
(ii) ãλ = 〈[aλ, bλ], [1 − (1 − c)λ, 1 − (1 − d)λ]〉, λ > 0;
(iii) λ̃a = 〈[1 − (1 − a)λ, 1 − (1 − b)λ], [cλ, dλ]〉, λ > 0.

It is notable that the above results are also IVIFNs.
In [11], the hesitancy degree of the IVIFN ã is defined as themidpoint of the intuitionistic

fuzzy interval of ã, i.e.

π(̃a) = 1
2 ((1 − a − c)+ (1 − b − d)) .

For the measurement of an IVIFN ã, the score function s [24] is defined as

s(̃a) = 1
2 (a − c + b − d),

where s(̃a) ∈ [−1, 1].

Definition 2.2 (Xu and Chen [25], Wei andWang [26]): Let ã(k) = 〈[ak , bk], [ck , dk]〉, (k =
1, 2, . . . , n) be n IVIFNs, then IIFHG operator θ is defined as follows:

θα,λ (̃a
(1), ã(2), . . . , ã(n)) =

(
˙̃a(σ (1))

)α1 ⊗
(
˙̃a(σ (2))

)α2 ⊗ · · · ⊗
(
˙̃a(σ (n))

)αn
=
〈[

n∏
k=1

(
ȧ(σ (k))

)αk
,

n∏
k=1

(
ḃ(σ (k))

)αk]
,

[(
1 −

n∏
k=1

(
1 − ċ(σ (k))

)αk)
,

(
1 −

n∏
k=1

(
1 − ḋ(σ (k))

)αk)]〉

where α = (α1,α2, . . . ,αn)T is a weight vector of operator θ with αk > 0 (k = 1, 2, . . . , n)

and
n∑

k=1

αk = 1 and ˙̃a(σ (k)) = 〈[ȧ(σ (k)), ḃ(σ (k))], [ċ(σ (k)), ḋ(σ (k))]〉 is the kth largest of the

weighted IVIFNs ˙̃a(k) where ˙̃a(k) =
(̃
a(k)

)nλk
.
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Definition 2.3 (Yager [27]): Let φ : Rn −→ R be a function, if

φω(g1, g2, . . . , gn) =
n∑
j=1

ωjhj,

then the function φ is called an OWA operator, where hj is the jth largest of a collection of
the arguments gj(j = 1, 2, . . . , n),ω = (ω1,ω2, . . . ,ωn)

T is the weighting vector associated

with the function φ, ωj ≥ 0,
n∑
j=1

ωj = 1, and R is the set of real numbers.

3. Construction of NewOrder Function for IVIFNs

Consider an IVIFN ãwhich is represented as

ã = 〈[a, b], [c, d]〉.
The intuitionistic fuzzy interval of ã is defined as in [23]

πã = [1 − b − d, 1 − a − c].

The objective of an order function is to resolve the degree that shows howmuch a particu-
lar alternative satisfies the demand of the DM. The order function mainly tries to reduce
the degree of hesitancy by reducing the intuitionistic fuzzy interval πã in proportion of
[a, b]/[c, d] in the favour of interval of membership/non-membership degrees.

By motivating the work [28, 29], the intuitionistic fuzzy interval πã can be divided into
three following parts:

(i) [a, b]πã;
(ii) [c, d]πã;
(iii) [1 − b − d, 1 − a − c]πã.

Taking the middle point of the intervals, the above three parts can be recasted as

(i)′ ( a+b
2 )( 1−b−d+1−a−c

2 );
(ii)′ ( c+d

2 )( 1−b−d+1−a−c
2 );

(iii)′ ( 1−b−d+1−a−c
2 )( 1−b−d+1−a−c

2 ).

Now, the first-order function is defined as

ψ1,̃a =
(
a + b

2

)
+
(
a + b

2

)(
1 − b − d + 1 − a − c

2

)
,

which represents favour degree relative to ã for x ∈ X .
The functionψ2,̃a is defined as

ψ2,̃a =
(
c + d

2

)
+
(
c + d

2

)(
1 − b − d + 1 − a − c

2

)
,

which represents unfavour degree relative to ã for x ∈ X .
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From the function ψ2,̃a, the second-order function ψ3,̃a is defined as

ψ3,̃a = 1 − ψ2,̃a,

which gives the upper value of favour degree relative to ã for x ∈ X .
Here, we observe thatψ1,̃a ≤ ψ3,̃a for every IVIFN ã.
As is known that the IVIFNs 〈[1, 1], [0, 0]〉 and 〈[0, 0], [1, 1]〉 are the largest and the small-

est IVIFN, respectively. For these IVIFNs, we get ψ1,〈[1,1],[0,0]〉 = 1 and ψ1,〈[0,0],[1,1]〉 = 0. This
givesψ1,̃a ∈ [0, 1], for every ã. Similarly, we can obtain the following resultsψ2,̃a ∈ [0, 1] and
ψ3,̃a ∈ [0, 1].

Using the above concepts, we propose a new order function ψã which combines the
order functionsψ1,̃a andψ3,̃a as

ψã = ψ1,̃a + ψ3,̃a

2
,

where ψã ∈ [0, 1].
Some properties of the proposed new order functionψã of IVIFNs are described as:
Property 1. For any IVIFN ã = 〈[a, b], [c, d]〉,ψã ∈ [0, 1].
Property 2. If ã is the largest IVIFN, i.e. ã = 〈[1, 1], [0, 0]〉, then ψã = 1.

Proof: Let ã = 〈[1, 1], [0, 0]〉, then ψ1,̃a = 1, ψ2,̃a = 0 and thenψ3,̃a = 1.
Thus, we get

ψã = 1.

�

Property 3. If ã is the smallest IVIFN, i.e. ã = 〈[0, 0], [1, 1]〉, thenψã = 0.

Proof: Since ã = 〈[0, 0], [1, 1]〉, so we can get ψ1,̃a = 0, ψ2,̃a = 1 and thenψ3,̃a = 0.
Thus, we get

ψã = 0.

�

Property 4. If the IVIFN ã = 〈a, 1 − a〉, where a ∈ [0, 1], thenψã = a.

Proof: If ã = 〈a, 1 − a〉, where a ∈ [0, 1], then we obtain ψ1,̃a = a, ψ2,̃a = 1 − a and then
ψ3,̃a = a.

Thus, we get

ψã = a.

�

Theorem 3.1: Let ã(1) = 〈[a1, b1], [c1, d1]〉 and ã(2) = 〈[a2, b2], [c2, d2]〉 be two IVIFNs, then

a1 ≤ a2, b1 ≤ b2, c1 ≥ c2, d1 ≥ d2 ⇒ ψã(1) ≤ ψã(2) .
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Proof: If a1 ≤ a2, b1 ≤ b2, c1 ≥ c2 and d1 ≥ d2, then we get ψ1,̃a(1) ≤ ψ1,̃a(2) and ψ2,̃a(1) ≥
ψ2,̃a(2) . This gives

1 − ψ2,̃a(1) ≤ 1 − ψ2,̃a(2) ,

which implies that

ψ3,̃a(1) ≤ ψ3,̃a(2) .

We then obtain the following inequality:

ψ1,̃a(1) + ψ3,̃a(1)

2
≤ ψ1,̃a(2) + ψ3,̃a(2)

2

i.e. ψã(1) ≤ ψã(2) .
This completes the proof of Theorem 3.1. �

Remark 3.1: For IVIFNs ã(1) = 〈[a1, b1], [c1, d1]〉 and ã(2) = 〈[a2, b2], [c2, d2]〉, if

a1 ≥ a2, b1 ≥ b2, c1 ≤ c2, d1 ≤ d2 thenψã(1) ≥ ψã(2) .

4. Formulation and Solution Procedure for MAGDMProblem

This MAGDM problem contains n alternatives o1, o2, . . . , on andm attributes u1, u2, . . . , um.
The aim of this study is to select the most preferred alternative or rank of all alternatives
under the IVIF environment. Each alternative is assessed on each of the m attributes and
all these assessments, given by each DM are represented as IVIF decision matrices with the
entries as IVIFNs. Assume that attribute weights, given by DMs are represented by IVIFNs.
Let D = {d1, d2, . . . , dl} be the set of l DMs, and λ = (λ1, λ2, . . . , λl)T be the weight vector

of di’s where
l∑

k=1

λk = 1, λk ≥ 0 for every k. For the kth DM dk , the IVIF decision matrix is

denoted as D̃(k) = [̃d(k)ij ]m×n, where d̃(k)ij = 〈[p(k)ij , q(k)ij ], [s(k)ij , t(k)ij ]〉 is an evaluating IVIFN of

attribute ui for alternative oj. The intervals [p
(k)
ij , q(k)ij ] and [s(k)ij , t(k)ij ] are the degree of satis-

faction interval and the degree of dissatisfaction interval for alternative oj with respect to
attribute ui, respectively.

In an MAGDM problem, there are two following important concepts [30]:

(i) Aggregation of the opinions provided by DMs.
(ii) Aggregation the collective values of attributes for each alternative.

On the basis of these concepts, we develop the solution procedure for the present
MAGDM problem in the following steps:

Step1. In this step, all individual decisionopinions are fused into agroupopinion. For this,
all individual IVIF decision matrices D̃(k) = [̃d(k)ij ]m×n(k = 1, 2, . . . , l) are aggregated into a

collective IVIF matrix D̃ = [̃dij]m×n by utilising the IIFHG operator θ (Definition 2.2). Then,
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Table 1. The attribute weights.

Attributes(↓)/DMs(→) d1 d2 ··· dl

u1 w̃11 w̃12 ··· w̃1l
u2 w̃21 w̃22 ··· w̃2l
...

...
...

...
um w̃m1 w̃m2 ··· w̃ml

the ijth entry d̃ij of the matrix D̃ takes the following form:

d̃ij =
〈[

n∏
k=1

(
ṗij
(σ (k))

)αk
,

n∏
k=1

(
q̇ij
(σ (k))

)αk]
,

[(
1 −

n∏
k=1

(
1 − ṡij

(σ (k))
)αk)

,

(
1 −

n∏
k=1

(
1 − ṫij

(σ (k))
)αk)]〉

= 〈[pij, qij], [sij, tij]〉,

where α = (α1,α2, . . . ,αl)T is a weight vector of operator θ and 〈[ṗ(σ (k))ij , q̇(σ (k))ij ],

[ṡ(σ (k))ij , ṫ(σ (k))ij ]〉 is the kth largest of the weighted IVIFN ˙̃d(k)ij where ˙̃d(k)ij =
(
d̃(k)ij

)lλk
, (i =

1, 2, . . . ,m; j = 1, 2, . . . , n).
Since the entries in each decisionmatrix D̃(k) are represented by IVIFNs, where themem-

bership degree and the non-membership degree are contained in unit interval [0, 1], so the
normalisation of these entries is not necessary.

Step 2. The attribute weights provided by DMs can be represented in tabular form as in
Table 1.

In Table 1,where w̃ik = 〈[μL
w̃ik

,μU
w̃ik

], [νLw̃ik
, νUw̃ik

]〉 is an IVIFN (i = 1, 2, . . . ,m; k = 1, 2, . . . , l).
In this process, all the weights information given by DMs d1, d2, . . . , dl are aggregated

into a single group weight information for attributes ui, (i = 1, 2, . . . ,m) by utilising opera-
tor θ . This grouping weight information for attributes will also be the IVIFNs. Suppose that
these group weights are denoted by w̃1, w̃2, . . . , w̃m. The crisp value wi for the ith IVIFN w̃i

(i = 1, 2, . . . ,m) has been evaluated by using the proposed order function. Afterwards, the
values w1,w2, . . . ,wm have been normalised in order to determine the optimal attribute
weights, say,w∗

1,w
∗
2, . . . ,w

∗
m, respectively. The ith optimal attribute weightw∗

i is given by

w∗
i = wi

w1 + w2 + · · · + wm
,

where
∑

w∗
i = 1 andw∗

i > 0 (i = 1, 2, . . . ,m).
Step 3. Using the calculated optimal attribute weights from Step 2, the entries of the

weighted collective IVIF decision matrix D̃∗ = [̃d∗
ij ]m×n can be obtained as

d̃∗
ij = w∗

i d̃ij

= 〈[1 − (1 − pij)
w∗
i , 1 − (1 − qij)

w∗
i ], [s

w∗
i

ij , t
w∗
i

ij ]〉
= 〈[p∗

ij , q
∗
ij ], [s

∗
ij , t

∗
ij ]〉.

It is notable that the above ijth entry d̃∗
ij is an IVIFN by using the result (iii) in Definition 2.1.
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Step 4. Utilise the proposed order function to calculate the entries of matrix D̃∗. The
entries of calculated matrix D∗ = [d∗

ij ]m×n can be obtained as

d∗
ij = ψd̃∗

ij

=
ψ1,̃d∗

ij
+ ψ3,̃d∗

ij

2
,

where

ψ1,̃d∗
ij

=
p∗
ij + q∗

ij

2
+
(
p∗
ij + q∗

ij

2

)(
1 − q∗

ij − t∗ij + 1 − p∗
ij − s∗ij

2

)
,

ψ3,̃d∗
ij

= 1 −
[
s∗ij + t∗ij

2
+
(s∗ij + t∗ij )

2

(
1 − q∗

ij − t∗ij + 1 − p∗
ij − s∗ij

2

)]
.

Step 5. Utilise the OWA operator φ to aggregate all the attribute values d∗
ij (j = 1, 2, . . . , n)

of the alternative oj, and evaluate the overall attribute value φω(oj).

φω(oj) =
m∑
i=1

ωie
∗
ij ,

where e∗
ij is the ith largest of d∗

ij (i = 1, 2, . . . ,m) and ω = (ω1,ω2, . . . ,ωm)
T is the weight

vector associated with operator φ s.t. ωi ≥ 0,
m∑
i=1

ωi = 1. The value of ωi is determined by

using the following formula [31]:

ω1 = 1 − α

m
+ α,ωi = 1 − α

m
, i �= 1, α ∈ [0, 1].

Step 6. Rank all the alternatives oj(j = 1, 2, . . . , n) according to the values φω(oj)(j =
1, 2, . . . , n) in descending order.

5. A Comparative Study

In order to compare the performance of the proposed approach with respect to some
existing approaches, we describe a comprehensive study as follows:

5.1. Compare with Park et al.’s Method [11]

Park et al. [11] consideredanMAGDMproblemwith IVIFdecisionmatrices inwhichattribute
weights are partially known. Using the IIFHGoperator and the score function, a scorematrix
is constructed for a collective IVIF decision matrix. Then from this matrix and given incom-
plete information about the weights, the weights of attributes are determined through
an optimisation model. Therefore, it is observed that the technique for determining the
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weights is completely different from that of the present method. A numerical comparison
is also provided with this approach in the next section.

5.2. Compare withWan andDong’sMethod ([22, pp. 139–177])

First, Wan and Dong presented a method to aggregate different types of information such
as real numbers, interval numbers, triangular fuzzy numbers (TFNs) and trapezoidal fuzzy
numbers (TrFNs) into IVIFN. The attribute weights are incompletely known. The optimal
attribute weights are determined by using an intuitionistic fuzzy programming approach.
Finally, a ranking order is obtained for the considered heterogeneous MAGDM problem
with IVIF information. The present work is similar to this method in the sense that we also
aggregated the decision information into IVIFN for a GDMproblem and differs from this for
the following aspects:

(i) In the present work, the IIFHG operator is used for aggregating the IVIFNs into IVIFN.
The advantage of this operator is that it can aggregate real numbers, interval numbers,
TFNs, intuitionistic fuzzy numbers (IFNs) and IVIFNs into IVIFN. But, the operators in [22]
are unable to aggregate IFNs/IVIFNs into IVIFN.

(ii) In the present approach, each DM provides an attribute weight vector separately in
which every component of each vector is represented by an IVIFN on the basis of
his/her experience and knowledge. The set of attribute weights is incomplete in Wan
and Dong’s method. This description for the attribute weights seems more practical
rather than the concept of incomplete weights.

(iii) The IIFHG operator and the proposed order function are used to obtain the attribute
weights in this work instead of the intuitionistic fuzzy programming approach.

(iv) The OWA operator is used in order to find the ranking order of alternatives in place of
the TOPSIS method.

(v) Thepresent approach is completed in six steps onlywhereas the approach in [22] takes
10 steps to complete. This indicates that the present algorithm is more computation-
ally straightforward.

5.3. Compare withWan andDong’sMethod (22, pp. 243–270])

In thismethod, aGDMwith IVIF preference relations is discussed. Thepresentwork is similar
to this method in the sense that both methods are provided for solving an MAGDM prob-
lem under the IVIFS environment and differs from this method because of using the IIFHG
operator, the order function and the concept of normalisation for determining the weights
of attributes in IVIF MAGDM problems.

5.4. Compare with the Other Studies [10, 12–19]

The proposed approach is different from that of these studies because neither studies use
the concept of the proposed order function, the IIFHG operator and the OWA operator
simultaneously for the present MAGDM problem.
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6. Numerical Example

In this section, we show the validity of the proposed procedure via a selection problem
of suitable and ecofriendly air conditioning systems that can be installed in library of a
university (based on [11]).

Suppose a fourmember committee is constituted in auniversity to study the contractor’s
offers and give the recommendations to the best alternative among the four feasible alter-
natives. These four alternatives might be adapted to the physical structure of the library.
Whenmaking a decision, the attributes considered under which the alternatives are made,
are as follows:

u_1 : Performance
u_2 : Maintainability
u_3 : Flexibility
u_4 : Cost
u_5 : Safety

The IVIF decision matrices D̃(k) (k = 1, 2, 3, 4) are listed in Tables 2–5.
The information about the attribute weights, given by DMs d1, d2, d3 and d4, is listed in

Table 6.
Assume that the weight vector four DMs d1, d2, d3 and d4 is λ = (0.3, 0.2, 0.3, 0.2)T .

Table 2. First interval-valued intuitionistic fuzzy decision matrix D̃(1).

o1 o2 o3 o4

u1 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.3, 0.4], [0.4, 0.6]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.3, 0.5], [0.4, 0.5]〉
u2 〈[0.3, 0.5], [0.4, 0.5]〉 〈[0.1, 0.3], [0.2, 0.4]〉 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.7, 0.8]〉
u3 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.3, 0.4], [0.4, 0.5]〉 〈[0.5, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.5, 0.8]〉
u4 〈[0.5, 0.7], [0.1, 0.2]〉 〈[0.2, 0.4], [0.5, 0.6]〉 〈[0.4, 0.6], [0.2, 0.3]〉 〈[0.2, 0.3], [0.4, 0.6]〉
u5 〈[0.1, 0.4], [0.3, 0.5]〉 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.2, 0.3], [0.5, 0.6]〉

Table 3. Second interval-valued intuitionistic fuzzy decision matrix D̃(2).

o1 o2 o3 o4

u1 〈[0.4, 0.5], [0.2, 0.4]〉 〈[0.3, 0.5], [0.4, 0.5]〉 〈[0.4, 0.6], [0.3, 0.4]〉 〈[0.3, 0.4], [0.4, 0.6]〉
u2 〈[0.3, 0.4], [0.4, 0.6]〉 〈[0.1, 0.3], [0.3, 0.7]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.6, 0.8]〉
u3 〈[0.6, 0.7], [0.1, 0.2]〉 〈[0.3, 0.4], [0.4, 0.5]〉 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.7, 0.8]〉
u4 〈[0.5, 0.6], [0.1, 0.3]〉 〈[0.2, 0.3], [0.6, 0.7]〉 〈[0.4, 0.6], [0.3, 0.4]〉 〈[0.3, 0.4], [0.4, 0.6]〉
u5 〈[0.1, 0.3], [0.3, 0.5]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.5, 0.6], [0.2, 0.4]〉 〈[0.2, 0.4], [0.5, 0.6]〉

Table 4. Third interval-valued intuitionistic fuzzy decision matrix D̃(3).

o1 o2 o3 o4

u1 〈[0.4, 0.7], [0.1, 0.2]〉 〈[0.4, 0.5], [0.2, 0.4]〉 〈[0.2, 0.4], [0.3, 0.4]〉 〈[0.3, 0.4], [0.2, 0.4]〉
u2 〈[0.3, 0.5], [0.3, 0.4]〉 〈[0.2, 0.4], [0.4, 0.5]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.6, 0.8]〉
u3 〈[0.6, 0.7], [0.1, 0.2]〉 〈[0.4, 0.5], [0.3, 0.4]〉 〈[0.5, 0.7], [0.1, 0.3]〉 〈[0.1, 0.3], [0.5, 0.7]〉
u4 〈[0.5, 0.6], [0.1, 0.3]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.5, 0.7], [0.2, 0.3]〉 〈[0.2, 0.3], [0.5, 0.7]〉
u5 〈[0.3, 0.5], [0.4, 0.5]〉 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.6, 0.8]〉
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Table 5. Fourth interval-valued intuitionistic fuzzy decision matrix D̃(4).

o1 o2 o3 o4

u1 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.4, 0.5], [0.4, 0.5]〉 〈[0.4, 0.5], [0.3, 0.4]〉 〈[0.3, 0.4], [0.4, 0.5]〉
u2 〈[0.3, 0.4], [0.3, 0.4]〉 〈[0.1, 0.2], [0.2, 0.3]〉 〈[0.6, 0.7], [0.1, 0.3]〉 〈[0.1, 0.3], [0.6, 0.7]〉
u3 〈[0.7, 0.8], [0.1, 0.2]〉 〈[0.3, 0.4], [0.5, 0.6]〉 〈[0.5, 0.8], [0.1, 0.2]〉 〈[0.1, 0.2], [0.5, 0.8]〉
u4 〈[0.5, 0.6], [0.1, 0.3]〉 〈[0.2, 0.3], [0.4, 0.6]〉 〈[0.4, 0.5], [0.2, 0.3]〉 〈[0.2, 0.3], [0.4, 0.5]〉
u5 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.6, 0.7], [0.1, 0.2]〉 〈[0.5, 0.6], [0.3, 0.4]〉 〈[0.3, 0.4], [0.5, 0.6]〉

Step 1. Using the normal distribution based method [32], the weight vector α =
(0.155, 0.345, 0.345, 0.155)T is obtained for operator θ . After that all four IVIF decisionmatri-
ces D̃(k) (k = 1, 2, 3, 4) are aggregated into a collective IVIF decision matrix D̃ by using
operator θ . This matrix D̃ is listed in Table 7.

Step 2. The information about attribute weights, provided by DMs d1, d2, d3 and d4, is
given in Table 6. To calculate the group weights for each attribute and these calculated
weights are as follows:

w̃1 = 〈[0.1679, 0.3960], [0, 0.0001]〉, w̃2 = 〈[0.1516, 0.4565], [0, 0]〉,
w̃3 = 〈[0.2802, 0.6581], [0, 0]〉, w̃4 = 〈[0.2107, 0.5392], [0, 0.0001]〉,
w̃5 = 〈[0.1872, 0.4493], [0, 0.0002]〉.
Using proposed order function ψ , the crisp values of w̃i (i = 1, 2, 3, 4, 5) are determined

and these values are:
w1 = 0.7422,w2 = 0.7579,w3 = 0.8591,w4 = 0.8046,w5 = 0.7676.
Normalised the value wi for each i, to get the values of optimal weights w∗

i for i = 1, 2,
3, 4, 5. These values are as follows:

w∗
1 = 0.1888,w∗

2 = 0.1928,w∗
3 = 0.2185,w∗

4 = 0.2047,w∗
5 = 0.1952.

Step 3. To calculate the entries of the weighted collective IVIF decision matrix D̃∗ which
is listed in following Table 8.

Step 4. Utilize the function ψ to calculate the entries of the decision matrix D∗. The
calculated decision matrix D∗ is listed in Table 9.

Step 5. Calculate the overall attribute value by using the operator φ for each alternative
oj (j = 1, 2, 3, 4). These values are as follows:
φω(o1) = 0.1714,φω(o2) = 0.1350,φω(o3) = 0.2011,φω(o4) = 0.06555.
where ω = (0.36, 0.16, 0.16, 0.16, 0.16)T is the weight vector to operator φ for α = 0.2.
Step 6. From step 5, we get

φω(o3) > φω(o1) > φω(o2) > φω(o4).

Therefore, the alternative o3 is best according to this method.

6.1. Compare with Park et al.’s Approach [11]

Park et al. [11] considered anMAGDMproblemwith IVIF decisionmatrices. In this problem,
the weights of attributes are partially known. They used the TOPSIS approach to find the
best alternative or ranking of all the alternatives. With respect to different measures (Ham-
ming distance, normalised Hamming distance, Euclidean distance, normalised Euclidean
distance), in this method, the relative closeness of each alternative to the IVIF positive
ideal solution is calculated. In their work, they attempt the same numerical problem with
incomplete information about the attribute weights. The obtained ranking by the present
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Table 6. The attribute weights.

d1 d2 d3 d4

u1 〈[0.1032, 0.1669], [0.7032, 0.7889]〉 〈[0.0782, 0.1160], [0.8023, 0.8665]〉 〈[0.0785, 0.1196], [0.7936, 0.8495]〉 〈[0.0651, 0.0969], [0.8023, 0.8736]〉
u2 〈[0.0665, 0.1112], [0.8124, 0.8649]〉 〈[0.0230, 0.0667], [0.7661, 0.8671]〉 〈[0.1786, 0.2474], [0.6390, 0.7509]〉 〈[0.0201, 0.0445], [0.9066, 0.9503]〉
u3 〈[0.1867, 0.2380], [0.6160, 0.7098]〉 〈[0.0862, 0.1185], [0.8128, 0.8552]〉 〈[0.1487, 0.2820], [0.6020, 0.7098]〉 〈[0.0228, 0.0573], [0.8802, 0.9410]〉
u4 〈[0.1323, 0.1885], [0.6216, 0.7570]〉 〈[0.0388, 0.0741], [0.8783, 0.9155]〉 〈[0.1115, 0.1820], [0.7377, 0.7951]〉 〈[0.0472, 0.0734], [0.8311, 0.8885]〉
u5 〈[0.0273, 0.0841], [0.8256, 0.8893]〉 〈[0.1806, 0.2383], [0.6487, 0.7362]〉 〈[0.1426, 0.1854], [0.7132, 0.7908]〉 〈[0.0391, 0.0704], [0.8745, 0.9085]〉

Table 7. Collective interval-valued intuitionistic fuzzy decision matrix D̃.

o1 o2 o3 o4

u1 〈[0.4385, 0.6199], [0.1549, 0.2848]〉 〈[0.3502, 0.4797], [0.3114, 0.4681]〉 〈[0.3516, 0.4906], [0.2940, 0.4214]〉 〈[0.3000, 0.4170], [0.3114, 0.4887]〉
u2 〈[0.3000, 0.4573], [0.3404, 0.4710]〉 〈[0.1138, 0.3010], [0.2511, 0.4773]〉 〈[0.6395, 0.7711], [0.0980, 0.2263]〉 〈[0.1000, 0.2103], [0.6012, 0.7678]〉
u3 〈[0.6116, 0.7117], [0.1089, 0.2083]〉 〈[0.3379, 0.4387], [0.3872, 0.4887]〉 〈[0.5213, 0.7804], [0.0980, 0.2083]〉 〈[0.1000, 0.2366], [0.5577, 0.7569]〉
u4 〈[0.5000, 0.6395], [0.0980, 0.2567]〉 〈[0.1758, 0.3134], [0.5305, 0.6496]〉 〈[0.4387, 0.6252], [0.2263, 0.3262]〉 〈[0.2103, 0.3109], [0.4050, 0.5613]〉
u5 〈[0.1323, 0.3623], [0.3747, 0.5482]〉 〈[0.6395, 0.7521], [0.1089, 0.2083]〉 〈[0.5452, 0.6502], [0.1770, 0.3005]〉 〈[0.1849, 0.3121], [0.5031, 0.6118]〉
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Table 8. Weighted collective interval-valued intuitionistic fuzzy decision matrix D̃.∗

u1 u2 u3 u4 u5

D1 〈[0.2, 0.4], [0.3, 0.5]〉 〈[0.2, 0.6], [0.1, 0.2]〉 〈[0.4, 0.7], [0.1, 0.2]〉 〈[0.3, 0.5], [0.1, 0.3]〉 〈[0.1, 0.4], [0.2, 0.5]〉
D2 〈[0.2, 0.6], [0.1, 0.3]〉 〈[0.1, 0.4], [0.2, 0.4]〉 〈[0.3, 0.6], [0.2, 0.3]〉 〈[0.2, 0.5], [0.1, 0.4]〉 〈[0.4, 0.5], [0.3, 0.4]〉
D3 〈[0.1, 0.3], [0.2, 0.3]〉 〈[0.2, 0.5], [0.1, 0.3]〉 〈[0.2, 0.7], [0.1, 0.2]〉 〈[0.3, 0.6], [0.1, 0.3]〉 〈[0.3, 0.6], [0.1, 0.3]〉
D4 〈[0.3, 0.5], [0.2, 0.3]〉 〈[0.1, 0.3], [0.2, 0.4]〉 〈[0.2, 0.6], [0.1, 0.3]〉 〈[0.1, 0.5], [0.2, 0.4]〉 〈[0.1, 0.3], [0.2, 0.5]〉

Table 9. Decision matrix D∗.

O1 O2 O3 O4

u1 0.1582 0.1061 0.1101 0.0908
u2 0.0979 0.0607 0.02368 0.0343
u3 0.2466 0.0883 0.2514 0.0433
u4 0.1958 0.0602 0.1633 0.0683
u5 0.0642 0.2348 0.1813 0.0591

approach is similar to that given by Park et al.’s approach [11] with only the alternatives o1
and o2 interchanged. Some advantages of the proposed approach are as follows:

(i) This approach provides a pertinent tool especially for solving a more complicated IVIF
MAGDM problem in which attribute values and attributes weights are characterised in
terms of IVIFNs.

(ii) The present approach is simpler and easy to implement.
(iii) The best alternative is the same in both the approaches which shows the reliability of

the proposed approach.

7. Conclusions

In some cases, determining ratings of alternatives on attributes and attribute weights usu-
ally depend on decision makers’s judgement and intuition, which are often vague and
cannot be represented with crisp value and fuzzy numbers. In such a case, the concept of
interval-valued intuitionistic fuzzy sets is a trustworthy tool for group decision making. In
the presentwork, amultiple attribute group decisionmaking problem ismodelled inwhich
ratings of alternatives on attributes with the attribute weights are represented by interval-
valued intuitionistic fuzzy numbers. In this study, a method is introduced for solving such
decision problems. In this way, a new order function is made for comparing two or more
interval-valued intuitionistic fuzzynumbers. The technique for finding theattributeweights
is based on this function.

Using the proposed order function, interval-valued intuitionistic fuzzy hybrid geometric
and orderedweighted averaging operators, the presentmethod provides amost preferred
alternative in six steps. On the basis of a comparative study, it can be observed that the
present method is simple and easy to implement for solving the interval-valued intuition-
istic fuzzy multiple attribute group decision making model occurrence in real-life decision
making problems. A numerical example is given to illustrate the proposed method.

In future work, the present approach can be extended to interval-valued Pythagorean
fuzzy sets, interval-valuedcubic intuitionistic fuzzy sets, linguistic interval-valuedAtanassov
intuitionistic fuzzy sets and other uncertain and fuzzy environments.
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