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Abstract 

Model-based control and process optimization technologies are becoming more commonly used 

by chemical engineers. These algorithms rely on fundamental or empirical models that are 

frequently described by systems of differential equations with unknown parameters. It is, 

therefore, very important for modellers of chemical engineering processes to have access to 

reliable and efficient tools for parameter estimation in dynamic models.  The purpose of this 

thesis is to develop an efficient and easy-to-use parameter estimation algorithm that can address 

difficulties that frequently arise when estimating parameters in nonlinear continuous-time 

dynamic models of industrial processes.  

The proposed algorithm has desirable numerical stability properties that stem from using piece-

wise polynomial discretization schemes to transform the model differential equations into a set of 

algebraic equations. Consequently, parameters can be estimated by solving a nonlinear 

programming problem without requiring repeated numerical integration of the differential 

equations.  

Possible modelling discrepancies and process disturbances are accounted for in the proposed 

algorithm, and estimates of the process disturbance intensities can be obtained along with 

estimates of model parameters and states. Theoretical approximate confidence interval 

expressions for the parameters are developed.   

Through a practical two-phase nylon reactor example, as well as several simulation studies using 

stirred tank reactors, it is shown that the proposed parameter estimation algorithm can address 

difficulties such as: different types of measured responses with different levels of measurement 

noise, measurements taken at irregularly-spaced sampling times, unknown initial conditions for 

some state variables, unmeasured state variables, and unknown disturbances that enter the process 

and influence its future behaviour. 
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Chapter 1 
 
General Introduction 
 
Model-based control and process optimization technologies are becoming more commonly used 

by chemical engineers. These algorithms generally rely on fundamental or empirical models that 

are frequently described by systems of ordinary differential equations (ODEs) with unknown 

parameters. The popularity of model-based control and process optimization algorithms has 

consequently led to an increased interest in developing fundamental models with precise 

parameter estimates (Biegler and Grossman, 2004; El-Farra and Christofides, 2003; Nagy and 

Braatz, 2003). Therefore, it is very important for modellers of chemical engineering processes to 

have access to reliable and efficient tools for parameter estimation in dynamic models.  The 

purpose of this thesis is to develop an efficient and easy-to-use parameter estimation algorithm 

that can address difficulties that frequently arise when estimating parameters in nonlinear 

continuous-time dynamic models of industrial processes. This thesis builds on the research work 

by Poyton et al. (2006), which is described in the next section.   

In this chapter the problem of parameter estimation in continuous-time dynamic models is 

formulated, and the traditional method for approaching this problem is discussed. Disadvantages 

of the traditional approach are then pointed out to motivate the development of the proposed 

parameter estimation approach. Finally the overall outline of the thesis and the objectives of the 

remaining chapters are presented.      
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1.1 Problem definition 

Improving the performance of control systems that are used in chemical engineering processes 

can increase the quality of the products and safety of the processes while reducing the cost. One 

way to improve the performance of model-based control systems is to provide them with more 

accurate process models. When parameters of a dynamic model are efficiently estimated using 

input-output data, the quality of the model is improved. It is, therefore, very important for 

modellers of chemical engineering processes to have access to efficient parameter estimation 

algorithms since this will eventually lead to better product quality, lower cost, and safer 

processes.  

To introduce the parameter estimation problem we consider the following simple first-order 

single-input single-output (SISO) nonlinear ODE model:  

)()()(

)(
)),(),(()(

00

mjmjmj ttxty

xtx
tutxftx

ε+=

=
= θ&

 (1.1) 

x is the state variable, u is the input variable and y is the output variable. f is a nonlinear function 

of the vector of model parameters θ , state variable, and input variable. It is assumed that f is 

Lipschitz in its first argument, and continuous in its second argument, so that eq. (1.1) has a 

unique solution (Maybeck, 1979).ε  is a zero-mean uncorrelated random variable with 

variance 2
mσ .  

The objective is to find a set of parameter estimates, θ̂ , given n measurements of the response 

outputs at times tm1 to tmn, T
mnm tyty )](,),([ 1 L=y , so that the output predicted by the model 

using the estimated parameters, θ̂ , is as close as possible to the unknown true process response.  
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The most commonly used optimality criterion to quantify the closeness of observed and predicted 

output responses is the sum of squared prediction errors; however, other optimality criteria such 

as sum of absolute errors can also be used (Seber and Wild, 1989).    

A common method for obtaining θ̂  is the Nonlinear Least-Squares (NLS) approach in which the 

sum of squared deviations of the model predictions from the measured output is minimized:  
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(1.2) 

This method is the same as the method of Maximum Likelihood (ML) if the distribution of the 

measurement noise is assumed to be independent, identically distributed (IID) Normal (Seber and 

Wild, 1989). In NLS a nonlinear minimization technique is employed along with an ODE solver 

to find the optimal set of parameter estimates (Bard, 1974; Bates and Watts, 1988; Seber and 

Wild, 1989; Ogunnaike and Ray, 1994; Englezos and Kalogerakis, 2001). This method is 

sometimes referred to as the Single Shooting method (Tanartkit and Biegler, 1995) or the Initial 

Value Problem approach (Bock, 1983) because it requires the solution of an initial value problem  

and a single shooting method is used for the forward integration of ODEs. In this thesis, the term 

(traditional) NLS is used to refer to this algorithm. Note that obtaining the sensitivity information 

required for the minimization step in NLS may not be easy, and can be computationally very 

expensive (Leis and Kramer, 1988).  

An important problem that can arise in the NLS approach comes from the numerical integration 

of the ODEs. If the ODEs have exponentially increasing and decreasing modes, the successful 

integration of the ODE models can be difficult due to error-propagation and stability issues (Bard, 
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1974; Ascher et al., 1988; Tanartkit and Biegler, 1995; Li et al., 2005). To illustrate this problem 

we consider the following ODE model (Bock, 1983):  

πµµ =+−=

==

)0(              sin)()()(
0)0(                                               )()(

2
22

1
2

2

121

xptptxtx
xtxtx

&

&
   ]1,0[∈t  (1.3) 

where 20=µ is a constant and p is the model parameter with the true value of π=p .  

The particular solution for this problem is: 

          cos)(
               sin)(

2

1

ttx
ttx
ππ

π
=
=

     

We attempted to numerically solve the above set of ODEs using the “ode45” solver in Matlab™, 

which employs an explicit Runge-Kutta method (Dormand and Prince, 1980), with relative and 

absolute tolerances set to 10-6 and 10-12, respectively. As shown in Figure 1.1, the numerical 

solution diverges from the true solution significantly.  

To understand why this problem occurs, we consider the general solution of (1.3): 

          )exp()exp(-cos)(
               )exp()exp(-sin)(

212

211

tctcttx
tctcttx
µµππ

µµπ
+−=

++=
     

where c1 and c2 are constants that can be determined using the given initial conditions. Suppose 

that initial conditions have some errors. Although the true initial conditions for x1 and x2 are zero 

and π, respectively, we believe that 11 )0( ex =  and 22 )0( ex µπ +=  where e1 and µe2 are errors. 

Using the general solution and the erroneous initial conditions, c1 and c2 can be obtained as: 

2/)( 211 eec µ−= and 2/)( 212 eec µ+= . Note that error propagation is exponential with 

respect to µ and t and, consequently, even small errors can lead to disastrous results (Bock, 1983).  

Even if there are no errors in the initial conditions, there will always be a (small) error after the 
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first time step of the Runge-Kutta algorithm, which will propagate to result in large errors in 

subsequent steps. 
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Figure 1.1 Numerical and true solutions of the ODEs in (1.3); (dashed line: numerical solution 

obtained by single shooting; solid line: true solution). Note that the numerical and true trajectory 

curves overlap at low times.  

 

This stability issue can be addressed by using a piece-wise polynomial discretization scheme for 

the ODE solution. In this method, the state trajectories are approximated by piece-wise 

polynomial functions, such as B-spline basis function expansions (de Boor et al., 1973; de Boor, 

2001). The appropriate values of the polynomial coefficients are then determined by forcing the 

piece-wise polynomial to satisfy the ODE model at some specified points, which are called the 

collocation points (Ascher et al., 1988).  Figure 1.2 shows that using a B-spline collocation 
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method to approximate the solution of the model in (1.3) eliminates the problem observed in 

Figure 1.1.  
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Figure 1.2 B-spline approximation and true solutions of the ODEs in (1.3); (dashed line: B-spline 

approximation; solid line: true solution). Note that the numerical and true trajectory curves are 

nearly coincident.  

 

Another important issue in parameter estimation algorithms for dynamic models is that the 

developed models, which are generally derived based on material, energy, and momentum 

balances, are not exact. These equations are merely approximations of the physical processes. 

Model discrepancies can arise from model simplifications, and from input and process 

disturbances (Gagnon and MacGregor, 1991). Hence, the traditional NLS method, and other 

methods that disregard model imperfections may not result in the best parameter estimates. 

Modelling imperfections are very common in chemical engineering applications; therefore, 
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developing parameter estimation tools that account for possible modelling errors and process 

disturbances, is of crucial importance. Recently, Poyton et al. (2006) proposed an iterative 

technique referred to as iteratively-refined Principal Differential Analysis (iPDA) for parameter 

estimation in continuous-time nonlinear dynamic models. iPDA addresses the error-propagation 

and stability issues, by approximating the model states using piece-wise polynomial functions (B-

splines). Possible modelling discrepancies are also taken into account in iPDA, by allowing the 

estimated state trajectories to differ from the solution of the model ODEs. A brief account of the 

iPDA algorithm is given below. A detailed discussion appears in Chapter 3. 

In iPDA, the state trajectory is approximated using a B-spline curve of the form: 

∑
=

=
c

i
iitx

1
~ )( φβ  (1.4) 

where iβ , ci L1=  are B-spline coefficients and )(tiφ ci L1=  are B-spline basis functions. 

As an example, in Figure 1.3 seven 4th order (3rd degree) B-spline basis functions are illustrated. 

The shown basis functions can be used to approximate x(t) for ]40,0[∈t . The knot sequence 

used in this example is (0,10,20,30,40). The fourth B-spline function for instance has the 

following form: 
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Figure 1.3 Seven B-spline basis functions used to construct spline fit 

 

The iPDA objective function used for parameter estimation, is 

dttutxftxtxty
mnt
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where n is the number of data points and tmj is the time at which the jth data point was measured. 

iPDA alternates between the following two steps until convergence occurs. In the first step, the 

objective function shown in (1.6) is minimized with respect to B-spline coefficients, using current 

parameter estimates. In the second step, the same objective function in (1.6) is minimized with 

respect to model parameters, using current B-spline coefficients obtained from the first step. Note 

that the vector of model parameters, θ , appears only in the integrand in (1.6). Hence, the first 

term in the objective function can be ignored in the second step.   
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The first term in objective function (1.6), which is a sum of squared errors term, ensures that the 

B-spline trajectories are close to the measurements, while the second term forces the B-spline 

curve to satisfy the model ODE to some extent, which is determined by a positive weighting 

factor λ . In other words, λ  determines how the empirical B-spline curve balances between 

matching the observed data and satisfying the ODE model. In iPDA, the modeller can account for 

modelling errors and process disturbances by selecting a relatively smallλ . A very large λ on the 

other hand, corresponds to the assumption that the model is perfect with no modelling 

discrepancies. In the case of a very large λ , iPDA and NLS lead to the same parameter estimates.  

This thesis builds on the work presented by Poyton et al. (2006). A survey of existing parameter 

estimation methods is presented in Chapter 2. In Chapter 3,  iPDA is extended for use in 

stochastic differential equation (SDE) models (Astrom 1970, Maybeck 1979, Brown and Hwang 

1992; Kloeden and Platen, 1992), which can be obtained by adding a continuous zero-mean 

stationary white-noise process, )(tη , to the right-hand- side of the ODE in (1.1): 

)()()(

)(
)()),(),(()(

00

mjmjmj ttxty

xtx
tηtutxftx

ε+=

=
+= θ&

 (1.7) 

where the intensity of )(tη  is Q.  Further information about continuous white-noise processes 

and SDEs is presented in Chapter 3 where the probabilistic interpretation of the iPDA objective 

function, shown in (1.6), is also demonstrated. This development naturally leads to an equation 

for selecting the optimal weighting factor in the iPDA objective function:  

Q
m

opt

2σ
λ =  (1.8) 
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This optimal choice of λ ensures that iPDA properly accounts for the measurement noise and the 

model imperfections. In Chapter 3, the effectiveness of the iPDA methodology is demonstrated 

using a simple Continuous Stirred Tank Reactor (CSTR) example. It is shown that the 

minimization of (1.6), which is performed in an iterative fashion in iPDA, can also be performed 

simultaneously over the joint vector of the model parameters and the B-spline coefficients. From 

Chapter 4 onwards, instead of the iterative scheme, the simultaneous minimization approach is 

used. Therefore, since the modified algorithm does not iterate between the two steps (spline 

fitting and parameter estimation), and also because the algorithm corresponds to maximizing an 

approximate likelihood function (as shown in Chapter 3), the modified iPDA algorithm is referred 

to as Approximate Maximum Likelihood Estimation (AMLE) from Chapter 4 onwards. 

In Chapter 4 the applicability of AMLE to parameter estimation in stochastic dynamic models, in 

which unmeasured states and non-stationary disturbances are present, is demonstrated. 

Furthermore, theoretical approximate confidence interval expressions for the model parameters 

are derived and are compared to results from Monte Carlo simulations. 

Determining the optimal value for the weighting factor λ in (1.8), requires knowledge of the 

amount of modelling error (the process disturbance intensity in the model) as well as the value of 

the measurement noise variance.  In engineering applications, knowledge about the quality of the 

measurements that are available for parameter estimation can be obtained from repeated 

measurements or from sensor suppliers, but a priori knowledge about the quality and accuracy of 

the model equations is not easily attainable. To address this problem, in Chapter 5, the AMLE 

algorithm is extended so that it can be applied to parameter estimation in SDE models, in which 

the process disturbance intensity, Q,, is not known a priori. The theoretical results are tested 

using a nonlinear CSTR simulation study.  
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The theoretical developments presented in Chapter 3 to Chapter 5, are tested using simple two-

state CSTR simulation studies. To examine the performance of AMLE in a practical chemical 

engineering problem with a larger scale, parameter estimation in a lab-scale nylon reactor model 

is considered in Chapter 6. First, the structure of the reactor model, initially developed by 

Schaffer et al. (2003) and subsequently modified by Zheng et al. (2005) and Campbell (2007), is 

re-evaluated and further improved. Then, AMLE is used to estimate the parameters and states of 

the revised model using experimental data provided by Schaffer et al. (2003) and Zheng et al. 

(2005 and 2007). In this practical example, it is shown that AMLE can address practical 

difficulties such as: different types of measured responses with different levels of measurement 

noise, measurements taken at irregularly-spaced sampling times, unknown initial conditions for 

some state variables, unmeasured state variables, and unknown disturbances that enter the process 

and influence its future behaviour.          

The material presented in Chapter 3 to Chapter 6 (sometimes with minor modifications) has been 

either published, accepted for publication, or submitted to peer-reviewed scientific journals for 

publication. Therefore, to keep each chapter self contained, and also to keep the presentation in 

this thesis close to the format of the original manuscripts, some information appears in multiple 

chapters. Most of the repetition is associated with reviewing the AMLE algorithm at the 

beginning of each chapter, and introducing the case studies.     
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Chapter 2  
 
Literature Review 
 

The problem of parameter estimation in dynamic models was introduced in Chapter 1. The NLS 

method, which is the traditional approach for common parameter estimation problems, was also 

described. By means of an example, it was illustrated that the numerical integration step in the 

traditional NLS method can result in stability problems. It was also discussed that if the degree of 

modelling errors and process disturbances is significant, then using the traditional NLS approach 

(and in general, methods that disregard model imperfections), may not be appropriate.  To 

address problems associated with the traditional NLS method, researchers have proposed various 

parameter estimation algorithms. In this chapter, a survey of these alternative approaches to 

parameter estimation in dynamic models is presented.  

This review is divided into two parts. The first part provides a literature review of parameter 

estimation in deterministic Ordinary Differential Equation ODE models (where model 

imperfections are usually ignored), while the second part discusses available approaches for 

parameter estimation in Stochastic Differential Equation (SDE) models, in which modelling 

errors and process disturbances are explicitly accounted for by adding stochastic disturbance 

terms to the model equations.  
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2.1 Parameter estimation in ODE models 

The traditional NLS method can be computationally intensive, particularly for complicated 

models, and also prone to stability and error-propagation issues. Hence, researchers have 

proposed various modified algorithms for parameter estimation in ODE models to avoid 

difficulties associated with the traditional approach. Some of these proposed methods are 

reviewed below.  

The solution of the ODE model in (1.1) can be written as: 

∫+=
mjt

t
mj dttutxftxtx

0

)),(),(()()( 0 θ  (2.1) 

To avoid computationally-intensive (for 1967) forward integration (single shooting) of the ODE 

model, Himmelblau et al. (1967) proposed substituting the noisy state measurements y(tmj) (rather 

than x(tmj)) and the corresponding inputs into the integrand in (2.1) and calculating the integral 

using a numerical quadrature method. In this way eq. (2.1) is transformed into an (approximate) 

algebraic equation, which is regarded as a constraint when parameter estimates are obtained by 

minimizing the sum of squared residuals with respect to θ. Tang (1971) noted that this method is 

no longer applicable when only a small number of data points are available for parameter 

estimation. Therefore, Tang proposed fitting natural cubic splines through calculated values of 

f(y(tmj), u(tmj), θ) to approximate the integrand in (2.1). Note that spline curves can be integrated 

analytically, thereby transforming equation (2.1) to an algebraic equation. Vajda et al. (1987) 

concluded that using this “direct integration” method results in biased parameter estimates, but is 

computationally more efficient than the traditional NLS approach. They also demonstrated that, 

in some cases, the direct integration approach can outperform the traditional method and lead to a 

smaller mean-squared error. Fitting the observations (rather than calculated values of 
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)),(),(( θmjmj tutyf ) directly by natural cubic splines was proposed by Tang (1971) as an 

alternative approach, especially if some of the observations are missing. 

Swartz and Bremermann (1975) pointed out that the sum of squares of the errors in the predicted 

derivatives of the observations, rather than the traditional sum of squares, can be used as an 

alternative objective function, for carrying out the parameter estimation problem. For ODE model 

(1.1), the corresponding objective function that considers deviations in the derivative is: 

( )∑
=

−
n

i
mimimi tutxftx

1

2)),(),(()( θ&  (2.2) 

Swartz and Bremermann also noted that small errors in the measured values of the state variables 

may result in unacceptably large errors in numerical differentiation. Therefore, they proposed 

fitting a piecewise polynomial to the measurements, which can smooth out much of the noise in 

the measurements. A similar method was employed by Benson (1979), in which the observations 

are fitted by piecewise cubic splines and by cubic Hermite polynomials when sharp bends occur 

in the observed data. As noted by Varah (1982), minimizing the sum of squares of the derivative 

errors, unfortunately, does not necessarily lead to minimum sum of squared deviations between 

the observations and the model predictions. Parameter estimates obtained using objective function 

(2.2) can be biased, inconsistent, and very sensitive to outliers (Maria, 2004).   

Swartz and Bremermann and Varah pointed out that using smoothing methods makes the 

parameter estimates less sensitive to the initial parameter guesses and initial state conditions. The 

disadvantage of the works of Swartz and Bremermann, Benson, and Varah, however, is that these 

approaches lack a systematic method for fitting the empirical piece-wise polynomials to data. If 

the data are noisy, the resulting empirical curves can contain too much rippling, producing 

unrealistically large derivative values at certain points. If smoother splines are selected to reduce 

the rippling, then important model information from the data can be lost. A comparative study of 



 

  18

various parameter estimation methods that use a shortcut approach for estimating the integral, like 

those described above, is provided by Hosten (1979). Hosten concluded that such shortcut 

methods tend to produce biased parameter estimates. This is because these shortcut methods 

either treat noisy measurements as true state values (e.g., Himmelblau et al. 1967; Tnag, 1971) or 

calculate the derivative information based on the noisy measurements (e.g., Swartz and 

Bremermann, 1975; Benson 1979; Varah, 1982).  

An effective approach to parameter estimation in ODE models that does not suffer from error-

propagation and stability issues was proposed by Biegler (1984) and discussed by Logsdon and 

Biegler (1992). In this method, orthogonal collocation is used to discretize the ODE equations 

and to transform them into (nonlinear) algebraic equations. The parameter estimation problem is 

then treated as a constrained nonlinear programming problem. Parameter and state estimates can 

be simultaneously obtained by minimizing the parameter-estimation objective function, subject to 

the discretized model equations.  

Ramsay (1996) recommended using basis functions such as Fourier series or B-spline functions 

to represent the observations in a method called Principal Differential Analysis (PDA), which is 

described below. In the first part of this two-step method, basis functions such as B-splines (eq. 

(1.4)) are used to fit the response empirically, where spline coefficients are obtained from the 

following optimization problem 

dt
dt
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In the smoothing-spline roughness-penalty approach shown in eq. (2.3), the integral of the 

squared pth order derivatives is penalized so that the smoothness of the spline fits is ensured. 

Often p=2 is used as the order of the penalized derivative.  
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In the second step, Ramsay’s PDA uses the integral of the squares of the deviations of the 

smoothed curves from the fundamental model as the corresponding objective function for 

parameter estimation (the second step used in the iPDA algorithm described in Sections1.1 and 

3.2.1 uses the same objective function):  

( ){ }∫ −= dttutxftx 2
~~ )),(),(()(minargˆ θθ

θ
&  (2.4) 

In other words, Ramsay’s PDA approach is based on minimizing the integral squared prediction 

error of the derivatives, which is convenient because derivatives can be readily computed and 

integrated from the smoothing spline representation of the state trajectories. Note that in PDA 

(and iPDA), and unlike the traditional NLS method, the Jacobian matrix required for the 

minimization step can readily be derived analytically. 

Poyton et al. (2006) demonstrated the application of PDA with a second-order derivative penalty 

using a continuous stirred tank reactor (CSTR) example with one input and two unknown 

parameters, and reported that in the case of sparse and noisy data, the parameter estimates from 

PDA were imprecise and biased. The reason is that the penalty term in objective function (2.3) 

forced the second derivative of the splines to be smaller than the true second derivates, so that the 

penalty term and the fundamental model structure were inconsistent. Therefore, Poyton et al. 

(2006) introduced iPDA, which as previously discussed, addresses these problems by using a 

model-based penalty in the smoothing step, and also by iterating between the smoothing and 

estimation steps several times until convergence occurs. 

Ramsay et al. (2007) proposed a parameter estimation algorithm based on a Generalized 

Smoothing scheme (GS). Similar to PDA and iPDA, GS is also a collocation-based algorithm that 

uses B-spline basis functions to discretize the estimated state trajectories. GS consists of outer 

and inner optimization problems. In the outer, an appropriate objective function, (usually the 
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weighted sum of squared errors, similar to that in nonlinear least-squares) is minimized with 

respect to the model parameters. The objective function in the inner optimization problem is the 

same objective function with model-based roughness penalty as used in iPDA (eq. (1.6)).  Note 

that the parameter estimates obtained using GS and iPDA are different, due to the different outer 

(or step 2) objective functions.   The relationship between the GS and AMLE (or iPDA) schemes 

is described further in Chapter 6. 

Problems faced in traditional NLS can also be addressed by the method of multiple shooting 

(Bock, 1981&1983; Baake et al., 1992; Kallrath et al., 1993; Timmer 1998; Timmer et al., 2000; 

Horbelt et al., 2002). In this method the fitting interval is partitioned into several subintervals. 

The ODEs are then solved numerically over each of the subintervals. Since initial values for each 

interval are not precisely known, they are included as additional parameters in the algorithm to be 

estimated along with the fundamental model parameters. Initial guesses for these additional 

parameters are simply chosen as observations at those points; therefore, the generated trajectories 

are close to the observations, making multiple shooting numerically more stable than traditional 

NLS. A disadvantage of multiple shooting is that it can be computationally very expensive since 

generally a large number of ODEs with unknown initial conditions is integrated numerically. It 

should be noted that a collocation-based method can be used to solve the ODEs in the sub-

intervals. 

Among the various parameter estimation approaches that were discussed in this section, those 

based on multiple shooting (Bock, 1983) and orthogonal collocation (Biegler, 1984), have 

received considerable attention because of their sound stability properties. These methods 

however, do not take possible modelling discrepancies into account.  
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iPDA (Poyton et al., 2006) and GS (Ramsay et al., 2007) methods also posses desirable stability 

properties that stem from discretizing state trajectories using piece-wise polynomial functions. In 

addition, the form of the objective function (1.6) that is used in iPDA and GS allows for taking 

possible modelling errors into account, since the estimated state trajectories can deviate from the 

solution of the ODEs to some extent. One disadvantage of these methods, however, is that they 

require specification of the weighting factor, λ , which is usually selected by trial and error.  This 

disadvantage is addressed in Chapters 3 and 5 of this thesis, where methods for selecting 

appropriate values of λ are discussed.     

2.2 Parameter estimation in SDE models  

As previously discussed, mathematical models of physical processes are not exact and modelling 

discrepancies are inevitable. A common approach to account for modelling errors and 

imperfections is to consider random process disturbances as additional inputs to the model, 

thereby, transforming the model equations to stochastic differential equations (SDEs) (e.g., eq. 

(1.7)). In a general SDE frame-work, stochastic disturbances can enter the model in a nonlinear 

fashion; however, for tractability issues, the most widely-used models consider additive 

stochastic disturbances (Maybeck, 1982). Our goal in this section is not to discuss stochastic 

systems in any detail, but rather to lay out the difficulties that arise when estimating parameters in 

SDE models, and to briefly review the most widely used approaches to parameter estimation in 

SDEs. Before proceeding, it should be mentioned that the first equation in (1.7) can be more 

rigorously written as )()),(),(()( tdwdttutxftdx += θ  where dw(t) is the increment of a 

Wiener process or a Brownian motion. The reason for this representation is that the continuous 

white noise, )(tη  , cannot be integrated since it has infinite variance (Maybeck, 1979). Note that 

the covariance matrix of )(tη  is { } )()()( τδτ QtηtηE =+ , where Q is the corresponding power 
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spectral density and )(.δ  is the Dirac delta function. Furthermore, the solution of (1.7) can then 

be written as (Maybeck, 1979; Kloeden and Platen, 1992): 

∫∫ ++=
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where dw(t) is the increment of a Wiener process or a Brownian motion.    

The Maximum Likelihood (ML) method is a popular parameter estimation method for standard 

nonlinear regression problems where model discrepancies are ignored, due to the desirable 

statistical properties of the ML parameter estimates (Rao, 1973; Timmer, 2000). In the ML 

approach, model parameters are estimated, so that the likelihood of the measurements (i.e., the 

joint density function of the measured states given the model parameters) is maximized. 

Obtaining the density function of the measurements, however, requires integrating out the 

(unobserved) states. In SDE models, difficulties arise since the states and stochastic disturbances 

undergo a nonlinear mapping. Therefore, obtaining the corresponding density functions becomes 

very difficult, and in general requires the solution of a set of partial differential equations (e.g., 

Jazwinski, 1970; Maybeck, 1982).  If the SDE is linear, the time-varying state covariance matrix 

can be obtained by solving a set of ordinary differential equations (Maybeck, 1979).   

In engineering applications, Kalman-filter-related algorithms for estimating parameters in SDE 

models are popular. In linear models, the likelihood function can be obtained by solving the 

standard Kalman filter equations. In nonlinear models, the Extended Kalman filter, which is 

based on iteratively linearizing the nonlinear SDE model, can be used to obtain an approximate 

likelihood function (Kristensen et al., 2004; Voss et al., 2004). If the model is highly nonlinear, 

linearization-based methods may perform poorly. In such cases, the state covariance matrix can 

be estimated based on deterministic sampling techniques (Sitz et al., 2002; Julier and Uhlmann, 
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2004) or ensemble averaging (Evensen, 2003). These methods, however, are computationally 

intensive. 

An alternative method to maximize the ML criterion in SDE models is the Expectation 

Maximization (EM) method (Roweis and Ghahramani, 2001). EM is an iterative algorithm that 

continuously solves the following two steps until convergence occurs. In the first step a 

smoothing problem is solved, in which optimal states, x(ti), are estimated given measurements 

y(ti), and a current estimate for the model parameters. In the second step, the optimal states 

obtained from the first step, along with the measurements, are used to re-estimate the model 

parameters. New parameter estimates are obtained by maximizing the expected log-likelihood of 

the joint data (states and measurements), where the expectation is taken over the distribution of 

the states given the measurements and the current estimate of the model parameters. EM is an 

elegant method; however, calculating the expectation in the second step makes EM very 

computationally intensive. Note that iPDA and EM are very similar. Nonetheless, there are two 

main distinctions. The first difference is in the first step. In the EM method presented by Roweis 

and Ghahramani (2001), the smoothing problem is solved by employing the Extended Kalman 

smoother, whereas, as discussed in Chapter 3, iPDA transforms the smoothing problem into a 

nonlinear programming problem by deriving the pertinent likelihood function using a continuous-

time SDE model, and then discretizing the likelihood function using piece-wise polynomials. The 

second difference between EM and iPDA is associated with the parameter-estimation objective 

function in the second step. In iPDA the log-likelihood of the joint data is maximized whereas, as 

discussed above, in the second step of EM the expected value of the joint data is maximized. 

Comprehensive reviews of articles related to parameter estimation in SDEs are provided by 

Young (2000), Bohlin and Graebe (1995), and Nielsen et al. (2000). 
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In this chapter, two aspects of the parameter estimation problem in dynamic models were 

considered. In the first part of the chapter, various approaches for parameter estimation in ODE 

models were reviewed. Several methods that address the computational issues associated with 

integrating ODEs were discussed. Parameter estimation in SDE models that account for possible 

modelling imperfections was reviewed in the second part of the chapter. It was demonstrated that 

addition of stochastic process disturbances can significantly increase the difficulties of the 

parameter estimation problem. The remainder of this thesis is devoted to developing a novel and 

easy-to-use parameter estimation technique that can address difficulties that are encountered 

when estimating parameters in imperfect ODE models and SDE models.      
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Chapter 3  
 
Selecting Optimal Weighting Factors in iPDA for Parameter 
Estimation in Continuous-Time Dynamic Models 
 

3.1 Abstract 

As briefly discussed in Chapter 1, iteratively-refined Principal Differential Analysis (iPDA) 

(Poyton et al., 2006) is a spline-based method for estimating parameters in ordinary differential 

equation (ODE) models. In this chapter we extend iPDA for use in differential equation models 

with stochastic disturbances, and we demonstrate the probabilistic basis for the iPDA objective 

function using a maximum likelihood argument. This development naturally leads to a method for 

selecting the optimal weighting factor in the iPDA objective function. The effectiveness of iPDA 

is demonstrated using a simple two-output continuous-stirred-tank-reactor example. Monte Carlo 

simulations are used to show that iPDA parameter estimates are superior to those obtained using 

traditional nonlinear least squares techniques, which do not account for stochastic disturbances.  

This chapter has been accepted for publication as a journal paper by Computers and Chemical 

Engineering.  
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3.2 Introduction 

Parameter estimation in mathematical models is an important, difficult, and ubiquitous problem in 

chemical engineering and in many other areas of applied science. Fundamental process models 

can be exploited by many process optimization and control technologies (Biegler and Grossman, 

2004), but it is important that appropriate parameter values are used so that model predictions 

match the underlying process behaviour.  Obtaining good parameter values requires informative 

data for parameter estimation, as well as reliable parameter estimation techniques.   

It is particularly difficult to estimate parameters in ordinary differential equation (ODE) models. 

The weighted sum of squared prediction errors is the usual minimization criterion for parameter 

estimation, and evaluating this criterion requires (numerical) solution of the ODEs. Sensitivity 

information, used by gradient-based parameter-estimation techniques, requires the solution of 

sensitivity equations (Leis and Kramer, 1988) or numerous additional simulations using perturbed 

parameter values. Numerical overflow and stability problems can arise when poor initial or 

intermediate parameter values are used during the course of parameter estimation (Biegler and 

Grossman, 2004).  
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A variety of ODE parameter estimation techniques have been used, ranging from traditional least-

squares methods combined with repeated solution of differential equations (Bard, 1974; Bates 

and Watts, 1988; Seber and Wild, 1989; Ogunnaike and Ray, 1994;) to multiple shooting (Bock, 

1981&1983), collocation-based methods (Biegler, 1984), and algorithms that use spline functions 

(Varah, 1982; Vajda and Valko, 1986). Biegler and Grossman (2004) provide a detailed survey of 

the existing methods.  

In an attempt to develop an efficient and easy-to-use algorithm for estimating parameters in ODE 

models, Poyton et al. (2006) proposed iteratively refined Principal Differential Analysis (iPDA), 

which builds upon ideas from Principal Differential Analysis (PDA). PDA is a functional data 

analysis tool that was proposed by Ramsay (1996) for empirical modelling using linear ODEs.  

PDA makes use of basis functions (usually B-splines) for estimating ODE parameters (Ramsay, 

1996; Ramsay and Silverman, 2005; Poyton et al., 2006).  

In this paper we will address some of the issues raised by Poyton et al. (2006) regarding iPDA. 

Most importantly we extend the use of iPDA to cases in which process noise (unmeasured 

disturbances that pass through the process) and measurement noise are both present, and we 

propose a criterion for selecting optimal weighting factors in the iPDA algorithm. We begin with 

a brief review of the iPDA algorithm and its advantages and shortcomings. Then we describe how 

iPDA can be used to estimate parameters in differential equation models with process 

disturbances (stochastic ODE models (Maybeck, 1979)).  Finally, we use a simple continuous-

stirred-tank-reactor example to compare parameter estimates obtained using iPDA with those 

obtained using a traditional Nonlinear Least Squares (NLS) approach (Ogunnaike and Ray, 

1994), which does not account for the stochastic process disturbances.   
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3.2.1 iPDA algorithm 

To explain the iPDA algorithm, we will use the following simple first-order single-input single-

output (SISO) nonlinear ODE model:  
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 (3.1) 

x is the state variable, u is the input variable and y is the output variable (which is the same as the 

state variable in this case). f is a nonlinear function of the vector of model parameters θ , state 

variables, and input variables. ε  is a zero-mean uncorrelated random variable with variance 2
mσ .  

The first step in iPDA is to fit a B-spline curve to the observed data. This empirical B-spline 

model is of the form: 

∑
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iitx
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~ )( φβ  (3.2) 

where iβ , ci L1=  are B-spline coefficients and )(tiφ ci L1=  are B-spline basis functions, 

for which a knot sequence must be specified. Please refer to Poyton et al. (2006) for a short 

introduction to B-splines and to de Boor (2001) for a detailed treatment. Note that eq. (3.2) can be 

written in matrix form: 

βφ )()(~ ttx T=  (3.3) 

 where )(tφ  is a vector containing the c basis functions and β is vector of c spline coefficients. 

Note that the “~” subscript is used to imply an empirical curve that can be easily differentiated: 
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The empirical function )(~ tx is determined by selecting the spline coefficients β  that minimize 

the following objective function, given the most recent estimates for the fundamental model 

parameters θ : 
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where n is the number of data points and tmj is the time at which the jth data point was measured. 

We will refer to the first term ∑ − 2
~ ))()(( mjmj txty in the objective function as SSE (the sum of 

squared prediction errors) and to the second term  ))),(),(()(( 2
~~~ dttutxftx∫ − θ& as PEN (the 

model-based penalty). PEN is a measure of how well the empirical curve satisfies the ODE 

model. In the initial iteration of iPDA, initial guesses for the fundamental parameters θ  are 

required to compute PEN.  Optimal B-spline coefficients β  are obtained by considering the 

measured observations and also the extent to which the empirical curve satisfies the model. The 

model-based penalty prevents B-spline curves that make the SSE small, but are inconsistent with 

the behaviour of the fundamental model.  The positive weighting factor λ  determines how the 

empirical B-spline curve balances between matching the observed data and satisfying the ODE 

model. A small λ is appropriate when we believe the measurements more than the model and a 

largeλ is appropriate when we have confidence in our model but our measured observations are 

noisy. Poyton et al. (2006) pointed out that proper selection of λ is of crucial importance and 

showed that the quality of the B-spline curves (and also the parameter estimates θ̂  obtained using 

iPDA) depends very much on the value ofλ . In this paper we propose a means of determining an 

optimalλ given some knowledge about measurement noise and model disturbances. 
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The second step in iPDA is to estimate the vector of fundamental model parameters θ̂ , using 

fixed values of the B-spline coefficients β̂  (and hence fixed ~x ) from step one.  The fundamental 

model parameters are selected to minimize the following objective function: 

dt ))),(),(()((min
0

2
~~~∫ −

mnt

t

tutxftx θ
θ

&  (3.6) 

Next, we return to the first step and re-estimate the B-spline coefficients using θ̂ obtained from 

step two. iPDA iterates between step one and step two until convergence, as shown in Figure 3.1.  

 

Figure 3.1.  iPDA algorithm 
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The original PDA algorithm (Ramsay, 1996) is not iterative, and it uses penalties on higher-order 

derivatives (e.g., ( ) dttx∫ 2)(&& ) to prevent over-fitting of the data, instead of the model-based 

penalty of iPDA.  PDA has been used in various areas such as handwriting analysis (Ramsay, 

2000), analysis of movement of the lips during speech (Lucero, 2002; Ramsay and Munhall, 

1996), economic modelling (Ramsay and Ramsey, 2002) and meteorological modelling (Ramsay 

and Silverman, 2005). Poyton et al. (2006) showed that poor spline fits from the first step of the 

original PDA algorithm give misleading derivative information, which results in inaccurate 

parameter estimates from the second step. They showed that inclusion of the model-based penalty 

in the first step of iPDA, along with its iterative nature, eliminates this problem.  

Since ∑ − 2
~ ))()(( mjmj txty is constant when β̂  is fixed, step two of iPDA is equivalent to 

minimizing:  
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As a result, when the estimates for β  and θ  have converged, the following overall objective 

function is minimized:  
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This optimization problem can be solved simultaneously for β and θ , instead of using the 

iterative two-step procedure described above.  Since the vector of spline coefficientsβ is 

generally of high dimension, eq. (3.8) is the objective function for a large-scale nonlinear 

minimization problem. One benefit of the crude iterative approach shown in Figure 3.1 is that it 

can simplify this large-scale nonlinear problem: If the ODE is linear in the inputs and outputs, 

then the first step of iPDA is a large linear least-squares problem, and the second step of iPDA, 
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which is a nonlinear least-squares problem is of much smaller dimension. Nonetheless, we 

believe that alternative approaches for solving large-scale minimization methods (Biegler, 1984) 

should be investigated for obtaining the iPDA parameter estimates.   

3.2.2 iPDA advantages, shortcomings and the purpose of current paper 

Since the empirical B-spline curve that is fitted to the observations can be easily differentiated 

with respect to time, iPDA circumvents the need for repeated numerical solution of ODEs, which 

is required by traditional NLS methods (Ogunnaike and Ray, 1994). Solving ODEs numerically 

during NLS estimation can sometimes lead to numerical overflow and instabilities, especially 

when the initial guesses (or along-the-way estimates) of model parameters are poor, or if the 

dynamic model contains unstable modes (Bard, 1974; Ascher et al., 1988; Tanartkit and Biegler, 

1995; Li et al., 2005).  These problems are not encountered by iPDA. 

Another advantage of iPDA arises from the form of the objective function for the parameter 

estimation step (step two). Since the integral of the squared deviation for the differentiated form 

of the model is minimized in eq. (3.6), as opposed to the sum of squared prediction errors as in 

traditional NLS, sensitivity information is readily available. Analytical derivatives can be used 

because )),(),(()( ~~~ θtutxftx −&  can easily be differentiated with respect to θ . Thus, unlike 

traditional NLS, there is no need to numerically integrate sensitivity equations (Bard, 1974; Bates 

and Watts, 1988; Seber and Wild, 1989). Objective function (3.6) has a further advantage in that 

the nonlinearity of parameters is often less severe in the differentiated form of the model than in 

the integrated solution (e.g., kinetic rate constants and heat-transfer coefficients often appear 

linearly on the right-hand side of the ODE, but would appear in exponential terms in the 

integrated response). Therefore, iPDA may be less susceptible to problems associated with poor 

initial parameter guesses than are traditional methods.     
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iPDA is particularly well suited to parameter estimation in ODE models in which some or all of 

the initial conditions for the states are unknown.  When using iPDA, there is no need to 

repeatedly solve the ODEs with different guesses for the initial conditions. Estimates for initial 

conditions are provided automatically by )0(~x .  As we will show using the examples in this 

article, it is straightforward to incorporate known initial conditions in the B-spline curve-fitting 

step by fixing the value of one of the spline coefficients. Parameter estimation problems 

involving state-variable constraints (Biegler and Grossman, 2004) could also be readily handled 

using iPDA.   

Using basis functions, either to empirically fit the observations or to approximate the solution of 

the ODEs (collocation-based methods), during parameter estimation, is not exclusive to iPDA 

(e.g., Tang, 1971; Swartz and Bremermann, 1975; Benson, 1979; Varah, 1982; Vajda and Valko, 

1986; Biegler, 1984; Logsdon and Biegler 1992). Several types of basis functions have been used 

for discretizing ODE models during parameter estimation (Biegler and Grossmann, 2004). For 

example, Biegler (1984) used Lagrange interpolating polynomials because they facilitate 

providing bounds and starting points for coefficients that are to be estimated. B-spline functions 

were selected for our iPDA algorithm (and for original PDA) because they are bounded 

polynomials that are non-zero only over a finite interval.  B-splines provide “compact support” 

for the empirical curve (de Boor, 2001), which leads to banded matrices that are numerically 

attractive for smoothing and inverse problems (O’Sullivan, 1986; Eilers and Marx, 1996; Ramsay 

and Silverman, 2005).  

A further benefit of iPDA over other basis-function methods is that the model-based penalty 

(PEN) in the B-spline fitting objective function (eq. (3.5)) regularizes the fitted curve and 

prevents it from having unrealistic features that are not consistent with the model. Because of this 
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property, iPDA is an algorithm in the class of regularization methods, which are widely used for 

solving linear and nonlinear inverse problems (O’Sullivan, 1986; Kirsch, 1996, Binder et al., 

2002). Note that the model-based penalty (PEN) in iPDA is not a hard constraint, but rather a soft 

constraint that is only satisfied to some extent, which is determined by the value of the weighting 

factorλ . In other collocation-based methods the parameter estimation problem is posed as a hard-

constrained minimization problem, where the sum of squared prediction errors (SSE) is 

minimized subject to the discretized ODE (Biegler and Grossmann, 2004). As suggested by 

Poyton et al., (2006), imposing the discretized ODE as a soft constraint in iPDA may be 

particularly advantageous for estimating parameters in models in which unmeasured stochastic 

disturbances influence dynamic process behaviour. In this paper we consider these types of 

models and we demonstrate how iPDA readily addresses the resulting parameter estimation 

problem. 

Another issue raised by Poyton et al. (2006) is whether or not iPDA can be used for problems in 

which some of the states are not measured. Our recent investigations confirm that the answer is 

yes; iPDA can readily handle estimation problems with unmeasured states (Chapter 4) so long as 

certain observability conditions are met, which are analogous to the conditions required for 

estimation of unmeasured states using an extended Kalman filter. It should be noted that the 

observability of the dynamic model depends on the model parameters which are not known. If the 

dynamic model is not observable, either changes in some of the states will not affect the 

responses, or effects of some of the states on the responses are not distinguishable. This will lead 

to an ill-conditioned estimation problem.   

Shortcomings of iPDA as listed by Poyton et al. (2006) are as follows. 
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 iPDA requires an appropriate B-spline knot sequence. The quality of the parameter 

estimates θ̂ depends on the empirical B-spline curve which, in turn, relies on the selected 

knot sequence. Optimal knot placement is currently under investigation in our research 

work. However, it seems that if enough data points are available, placing one knot at each 

observation point (as will be shown in the case study) can lead to satisfactory results. 

Additional knots maybe required when there are sharp changes in the output.   Using too 

many knots can lead to long computational times. 

 iPDA parameter estimates depend on the weighting factorλ in eq. (3.5). Heuristically, the 

weighting factor should depend on measurement uncertainties and model disturbances. 

The more uncertain the measurements are, the larger λ should be and the more uncertain 

the model is, the smaller λ should be. The uncertainty in the model (due to unmodelled 

disturbances or other model imperfections) can have several sources. One possible source 

of model disturbances is uncertainty in the inputs to the system. Traditional NLS assumes 

that the inputs to the system are perfectly known, however in practice, due to flaws in 

measurement devices and valves and also because of external unmeasured or unmodelled 

disturbances, this is rarely the case. Finally, model uncertainty arises because there are 

some physical phenomena that have not been included in the model; in other words there 

may be missing or improperly specified terms in the model. In the current article we add 

a stochastic term to the right-hand side of the ODE in eq. (3.1) to account for model 

uncertainties. We then show that minimizing the objective function in eq. (3.5) leads to 

optimal B-spline coefficients for smoothing the observations, taking into account the 

levels of process noise and measurement noise in the system. This development naturally 

leads to an expression for the optimal value of the weighting factor λ .   



 

  40

 No confidence interval expressions have been developed to assist modellers in making 

inferences about the quality of parameter estimates and model predictions obtained using 

iPDA.  We will address this issue in our ongoing iPDA research (Chapter 4).  Also, iPDA 

has not yet been used for parameter estimation in larger-scale parameter estimation 

problems (Chapter 6).  Further research will be required to determine efficient algorithms 

for obtaining iPDA parameter estimates. 

3.3 iPDA in presence of model disturbance 

To keep the notation compact we use a single-input single-output (SISO) nonlinear model; the 

multi-input multi-output (MIMO) case is presented in the Appendix 3.6. 

Consider the following continuous-time stochastic dynamic model (Astrom 1970, Maybeck 1979, 

Brown and Hwang 1992): 
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The initial condition, 0x is a Normally distributed random variable with mean { }0xE and variance 

2
0σ . )(tη  is a continuous zero-mean stationary white-noise process with covariance matrix 

{ } )()()( τδτ QtηtηE =+ , where Q is the corresponding power spectral density and )(.δ  is the 

Dirac delta function. For the discrete-time white-noise process (Maybeck, 1979): 

{ }

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠

=
∆

=∆∆

21

21

21

0

 

)()(
jj

jj
t

Q

tjηtjηE  (3.10)



 

  41

where 1j  and 2j are integers and t∆ is the sampling period. A discrete random white noise 

sequence as shown in Figure 3.2 is a series of step functions with sampling interval t∆ , where 

the variance of the white noise, tQp ∆= /2σ . In the limiting case where 0→∆t we get the same 

behaviour as in the continuous case (using the Dirac delta function).   All the other terms in (3.9) 

remain the same as those in (3.1). We also assume that the process noise )(tη  and the 

measurement noise )(tε are not correlated. In the next section we use maximum likelihood 

arguments to justify the use of the B-spline-fitting objective function in (3.5) and we prescribe a 

method for selecting an optimal λ given Q and 2
mσ .   
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Figure 3.2.  Process disturbance 
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3.3.1 Selecting the optimal weighting factor 

We will show that 

 
2

Q
m

opt
σ

λ =  (3.11) 

where the subscript “opt” indicates the optimal weighting factor, which will lead to  maximum a 

posteriori parameter estimates for β , given θ .  The resulting optimal spline curves x~ will lead to 

optimal values of θ̂  (the estimate ofθ ) after the algorithm converges. 

Before we begin the mathematical derivations, it is helpful to outline the approach that we will 

use. The state variable x  in (3.9) is a random variable (due to the stochastic input )(tη ), which 

evolves in time.  Values of x, sampled at various times, have a prior joint distribution, which is 

multivariate normal due to the assumptions about )(tη . Once the measured data become 

available, the posterior joint distribution of the sampled values of x  and the measured response, 

y , can be obtained. We will consider the general case when the initial value 0x  is not perfectly 

known, and then we will demonstrate that maximizing the likelihood of the joint distribution of 

the sampled state values and measured observations given the parameter values, is equivalent to 

minimizing the iPDA objective function (3.5) in the restricted case when we assume that 0x in 

(3.9) is perfectly known.      

At the discrete time ttt ii ∆+= −1 , where the sampling interval t∆  is small, eq. (3.9) can be 

written using the following Euler approximation. 

tηttutxftxtxttx iiiii ∆+∆+==∆+ −−−− )(t)),(),(()()()( 1-i1111 θ    (3.12)

Consider )( itx  at q+1 uniformly spaced time points, it , qi L0=  so that Ttq =∆ , where  

0ttT q −=  is the overall time span for the model predictions. For brevity, we define )( ii txx = .  
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Please note that the set of times at which the measurements are available is a subset of 

it ( qi L0= ) and is denoted by mjt ( nj L1= ). The measurement times mjt  do not need to be 

uniformly spaced. The vector of outputs at observation times )( mjty ( nj L1= ) and its 

corresponding state vector of true values )( mjtx ( nj L1= ) and measurement noise vector 

)( mjtε ( nj L1= ) are denoted by my , mx , and mε respectively.  

From Bayes’ rule, the joint probability distribution of qxx K,0 and the vector of observations ym, 

given the model parameters can be written as 

)|,,(),,,|()|,,,( 000 θθyθy qqmmq xxpxxpxxp KKK ×=  (3.13)

Due to the Markov property (Maybeck, 1979; Gong et al., 1998): 

)|(),|(),|()|,,( 00110 θθθθ xpxxpxxpxxp qqq ×××= − LK  (3.14)

Substituting (3.14) into (3.13) gives: 
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We now evaluate each term on the right-hand side of (3.15). From: )()()( mjmjmj ttxty ε+=   

mmm εxy +=  (3.16)

where mx  is the vector of true state values at the measurement times. Therefore, 

),,,|( 0 θy qm xxp K , is a multivariate Gaussian distribution:  
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with mean { } mqm xxE xθy =,,,| 0 K  and covariance matrix , { } nnmqm xx ×= Iy 2
0 ,,|cov σK . 
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From, eq. (3.12), )|( 1−ii xxp is a Gaussian distribution:  
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with  
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We assume that the initial condition 0x has a Gaussian distribution: 
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Therefore, from equations (3.15), (3.17), (3.18), and (3.20): 
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The optimal state and parameter estimates are denoted qxx ˆ,,ˆˆ 0 K=x and θ̂  respectively and 

minimize: 
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which is the natural logarithm of the right-hand side of eq. (3.21) multiplied by -1. 

In the limiting case where 0→∆t (Jazwinski, 1970), eq. (3.19) implies 
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and assuming that }{}|{ 00 xExE =θ eq. (3.22) becomes 
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If the initial condition 0x is perfectly known, the last term in eq. (3.24) vanishes. If we assume 

that )(tx can be approximated by B-spline curves so that βφ )()()( ~ ttxtx T=≅ , then 

minimizing (3.24) is equivalent to minimizing: 
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Eq. (3.25) is the same as the iPDA objective function for B-spline fitting, eq. (3.5), with  
2

Q
mσλ = .  

As a result, we have shown that optimal B-spline coefficients, which result in x~ approximating 

the true curve for x, are obtained using the iPDA weighting coefficient  
2

Q
m

opt
σλ = . 

If the integral in (3.25) is approximated by discrete sums: 
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where 
t

Q
p ∆
=2σ is the process noise variance, so that the optimal weighting factor using a 

discretized model and discrete process noise is 

 2

2

p

m
discreteopt σ

σ
λ =−  (3.27) 

If the modeller has knowledge about 2
mσ  from replicate measurements of the outputs, and about 

2
pσ  from uncertainties in input settings, and the types and magnitudes of anticipated disturbances, 



 

  46

then a reasonable value of λ can be selected.  The information required for optimal selection of  λ 

is analogous to the information required to tune a Kalman filter (Gagnon and MacGregor, 1991). 

Traditional NLS parameter estimation corresponds to optimizing the iPDA objective function in 

(3.8) in the limiting case when ∞→λ , because traditional NLS methods assume that 02 =pσ .  

In this case, the B-spline curve tends to satisfy the differential equation model perfectly 

(assuming there are sufficient spline knots), and the SSE is minimized through optimal selection 

of the fundamental parameter estimates θ̂  (which influences ~x ) as the iterations proceed.   

In the Appendix 3.6, we extend these results to the general multivariate case. To illustrate what 

happens to the iPDA objective function in a simple multivariate estimation problem, we consider 

the following nonlinear dynamic system with two measured outputs: 
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For this system, the matrices defined in eq. (3.36) of the appendix are 
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Q . The resulting iPDA objective function for optimal spline fitting (from eq. 

(3.47) in the appendix) is: 
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where N1 and N2 are the number of available measurements for outputs y1 and y2, respectively.   

This multivariate iPDA objective function readily accommodates outputs that are measured using 

different sampling rates and measurements that are made using irregularly spaced sampling times.  

The two SSE terms that appear in this objective function are each weighted by the reciprocal of 

the variance for their respective measurements.  The objective function also contains two PEN 

terms corresponding to the integral of the squared deviations in the two stochastic differential 

equations.  Because the development in the appendix assumes that the noise variables η1(t) and 

η2(t) are independent, no cross-product term (involving both 1x&  and 2x& ) appears in the objective 

function.  Each of the PEN terms is weighted by reciprocal of its respective process noise 

variance, which becomes more readily apparent if the integrals are approximated by sums: 
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where 
t

Qp
p ∆
=2 1

1σ and 
t

Qp
p ∆
=2 2

2σ . 
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Since each SSE term in the objective function is inversely proportional to its corresponding 

measurement error variance and each PEN term is inversely proportional to its corresponding 

model disturbance variance, it is straightforward to write an appropriate iPDA objective function 

for any multivariate problem.  The main difficulty lies in obtaining estimates for these variances 

(or their ratios) in cases where all that is available is a dynamic model and some data.  We are 

hopeful that the literature on tuning of Kalman filters (Maybeck, 1979) will provide some insight 

into this problem.  

 Objective functions in (3.29) and (3.30) reveal how iPDA can be conducted when some of the 

states are unmeasured (Chapter 4).  For example, if no measurements are available for output y1 

so that N1=0, the first term in the objective functions disappears, and the spline curves x1~ and x1~ 

are fitted simultaneously using the remaining SSE term and the two PEN terms.  Then, step 2 of 

the iPDA algorithm involves selecting  θ  to minimize the sum of the two PEN terms (Chapter 4). 

3.4 Case study 

In this case study we test our results for optimal selection of weighting factors in the iPDA 

objective function using two examples: a linear SISO continuous stirred tank reactor (CSTR), and 

a nonlinear MIMO CSTR. Note that we have also demonstrated the applicability of iPDA to more 

complicated problems including a nonlinear CSTR in which unmeasured states and non-

stationary stochastic disturbances are present (Varziri et al., 2008a; Chapter 4), and a nylon 

polymerization reactor model (Varziri et al., 2008b; Chapter 6).  The algorithm has also been 

extended so that it can be applied to cases in which the process disturbance intensity, Q, is 

unknown (Varziri et al., 2008b, 2008c) (Chapter 5 and Chapter 6).  
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3.4.1 Linear SISO CSTR 

First, we use a simple linearized continuous CSTR example from Poyton et al., (2006), with a 

stochastic term )(tη  added to the original model:   
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where AsAA CCC −='  and sTTT −=' are the concentration of reactant A and the temperature, 

respectively, in deviation variables. The discrete process disturbance η(t) used in our simulations 

(see Figure 3.2) is a series of random step inputs whose duration ( min 1.0=∆t ) is very short 

compared to the simulation time (24 minutes) and the process time constant.  For this disturbance 

sequence in Figure 3.2, 2332 )/min(kmol/m 102 −×=pσ .  The measurement noise 

njtmj ..1   =)(ε  is a white noise sequence with variance 2342 )(kmol/m 104 −×=mσ . 

The stochastic differential equation in eq. (3.31) was obtained by linearizing the following 

nonlinear stochastic differential equation: 
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Thus, the coefficients wC and wT in (3.31) depend on the unknown parameters kref (a kinetic rate 

constant) and E/R (an activation energy parameter), as well as the steady-state operating 

conditions: 
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We assume that 1min461.0 −=refk and K 1.8330/ =RE  are the true values of the parameters, 

that the feed rate is steady at -13 min m 05.0=sF , the inlet reactant concentration CA0 is constant 

at 2.0 kmol m-3, the reactor volume is V = 1.0 m3 and the reference temperature is K 350=refT .  

When the reactor is operated at a constant temperature, K 332=sT , the resulting (expected) 

steady-state concentration of reactant A is  -3m kmol 567.0=AsC . We assume that the initial 

concentration in the reactor is AsC  and that this initial concentration is known to the modeller.  

We also assume that the temperature control system is very effective, so that step changes in the 

temperature set point result in nearly instantaneous step changes in the reactor temperature.   

The parameters kref and E/R were estimated using the step change in temperature shown in Figure 

3.3, which produces the concentration response shown in Figure 3.4.  The true response of the 

concentration (obtained using the true parameter values and the true stochastic disturbance 

sequence η(t)) is shown as the dashed line in Figure 3.4.  The noisy measurements (241 equally 

spaced concentration measurements, with ten measurements per minute) and the spline fit 

)(~ tCA  are also shown. 

The objective function used to fit )(~ tCA  was: 
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where )(~ tCA is the B-spline fit and the optimal value of λ  is 

min 2.0 // 222 =∆== tQ pmmopt σσσλ  (from eq. (3.11)). In our objective function evaluations, 

we approximated the integral in eq. (3.33) by discrete sums with min 1.0=∆t , so that 

2.0/ 22 ==− pmdiscreteopt σσλ  min2
.  In our simulations of the true response, we solved the 



 

  51

linearized stochastic differential equation model using a Runge-Kutta method (ode45 in Simulink 

with relative tolerance 1e-3 and automatic absolute tolerance).   In our subsequent example, the 

true plant is a more realistic nonlinear CSTR. 
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Figure 3.3. Input Signal 

 

We obtained optimal parameter values in two different ways: i) using the iterative procedure 

shown in Figure 3.1 iPDA and ii) by simultaneously estimating the combined vector of two 

fundamental model parameters and B-spline coefficients [ ]''' ,βθτ =  in eq. (3.33) using 

“lsqnonlin” routine in Matlab. The parameter estimates from the simultaneous approach were on 

average better than the iterated method and hence preferred. When fitting the B-splines we used 

one knot at each observation time. We found that due to the stochastic disturbance, using 

coincident knots at the time when the step change in T occurred did not improve the overall fit to 

the observed data. Another reason is that placing one knot at each observation point in this 
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example provides B-spline curves that are flexible enough to fit the observed data. The effect of 

coincident knots is more obvious when fewer knots are used. 
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Figure 3.4. Measured, true, and fitted response for Linear SISO CSTR MODEL Obtained using 

iPDA with  λopt-discrete =0.2 min2 . (• , simulated data;-----, response of the system with true 

parameters and true stochastic noise; ___ , iPDA response) 

 

Using the simulated data shown in Figure 3.4, model parameters were also estimated using 

traditional nonlinear least squares estimation (ode45 in Simulink was used to repeatedly solve the 

ODE model with η(t)=0 and the associated sensitivity equations).  The fitted response is shown 

along with the data and the true process behaviour in Figure 3.5.  Note that the fitted model 

response obtained from traditional NLS is much further from the true response curve than is the 

iPDA state response curve CA~(t), which is shown in Figure 3.4. When iPDA is used for 

parameter estimation, two options are available for estimating (or smoothing) the state values. 
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One possibility, is to use the iPDA parameter estimates, θ̂ , in the model and solve the differential 

equations numerically, ignoring the stochastic disturbance. The other way is to use )(~ tx  as a 

state estimate (like a Kalman smoother) as is shown in Figure 3.4.   
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Figure 3.5. Observed, true, and predicted response for NLS, linear SISO CSTR (• , simulated 

data;-----, response of the system with true parameters and true stochastic noise; ___ , NLS 

response) 
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Figure 3.6. Box-plots for refk  using NLS and iPDA linear SISO CSTR 
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To compare the parameter estimates obtained using iPDA and traditional NLS, and to examine 

the effect of the iPDA weighting factor on the quality of the parameter estimates, parameters 

refk and RE /  were estimated using iPDA with three different weighting factors 

( optλ1.0 , optλ , optλ10 ) as well as traditional NLS, for 50 simulated data sets. The initial parameter 

guesses were 50% of the true parameter values. iPDA (NLS) iterations were stopped, when the 

change in τ ( θ in case of NLS) was less than 1E-12, or if a maximum of 1000 iterations was 

reached. Figure 3.6 and Figure 3.7 show the corresponding box plots for the estimates of refk and 

RE / , respectively. Both iPDA and traditional NLS produced good and comparable estimates. 

iPDAopt (iPDA with optλ ) gave the most precise estimates. 

When optλλ 10=  was used, the iPDA parameter estimates were closer to those obtained 

traditional NLS than the estimates using optλλ = . This result was expected, because traditional 

NLS assumes that )(tη  can be neglected because 02 →pσ , which corresponds to very large λ.   

When we attempted iPDA estimation with very large weighting factors (e.g., 100=−discreteoptλ  

min2) the iterations stopped before reaching the NLS parameter estimates.  Unfortunately, the 

spline knot sequence that we specified was too coarse for the empirical B-spline curve to be able 

to solve the ODE arbitrarily well.  As a result, the PEN term 
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dttTwtCw
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A
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~
~ )()()(λ  in the iPDA objective function was not able to 

approach zero, and remained large, relative to the SSE term.  We anticipate that a large number of 

spline knots (and perhaps long computational times) will be required to obtain accurate iPDA 

parameter estimates using very large values ofλ .  This is not a serious problem for modellers, 
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because in situations where a large λ is appropriate, traditional NLS or collocation-based methods 

provide good parameter estimates, and iPDA would not be particularly beneficial.  We advocate 

that iPDA be used in situations where there are significant process disturbances, uncertainties in 

input variables, or an imperfect or simplified ODE model, so that traditional least-squares 

assumptions do not apply.  In such situations, very large values of λ are not required.   To confirm 

that we had used a sufficient number of spline knots to obtain good iPDA parameter estimates for 

our stochastic CSTR problem, we re-estimated the parameters using twice as many spline knots 

and obtained almost exactly the same results.   

To confirm that iPDA becomes even more beneficial when there are significant process 

disturbances, we generated additional simulated data sets using the same measurement noise 

variance as in Figure 3.4, but ten times the amount of process noise variance (making the optimal 

choice of λ ten times smaller).  As expected, because of the larger process noise, both iPDA and 

traditional NLS parameter estimates worsened, but the traditional NLS parameter estimates 

deteriorated more than iPDA parameter estimates.  

3.4.2 Nonlinear MIMO CSTR 

The second case study is a non-isothermal CSTR. The model equations consist of material and 

energy balances (Marlin, 2000) with additional stochastic terms:   
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222 jipji tttηtηE −(=)()( δσ , 11 ..1   Njtmj =)(ε  and 

22 ..1   Njtmj =)(ε  are white-noise sequences with variances 2
1mσ and 2

2mσ , respectively.  We also 

assume that 1η , 2η , 1ε , and 2ε are independent. 

This stochastic differential equation model is nonlinear in the states ( AC , T) and parameters and 

does not have an analytical solution. 

As in the previous example, AC  is the concentration of the reactant A, T is the reactor 

temperature, V is the volume and Tref = 350 K is the reference temperature.  The parameters to be 

estimated and their true values are the same as those of the SISO case study: RE / = 8330.1 K, 

refk  = 0.461 min-1. The initial parameter guesses were set at 50% of the true parameter values.  

This nonlinear system has five inputs:  the reactant flow rate F, the inlet reactant concentration 

CA0, the inlet temperature T0, the coolant inlet temperature, and the coolant flow rate Fc.  

Parameters a =1.678E6, 5.0=b  which we assume to be known from previous heat-transfer 

experiments, account for the effect of Fc on the heat transfer coefficient.  Values for the various 

other known constants (Marlin, 2000) are as follows: 0.1=V  m3, 1=pC  cal g-1K-1, 6E1=ρ  

gm-3, 1=pcC  cal g-1K-1, 6E1=cρ  g m-3, and 6E130=∆− rxnH  cal kmol-1. The initial steady-
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state operating point is: 569.1=AsC  kmol m-3
 and 37.341=sT  K. The linear SISO case study 

used a simplified form of this model that assumed perfect temperature control.   

In this example, there is no temperature controller, and perturbations are introduced into each of 

the five inputs using the input scheme shown in Figure 3.8. Each input consists of a step up, 

followed by a step down back to the steady-state point. 

We assume that concentration can be measured once per minute and temperature can be measured 

once every 0.3 minutes. The duration of the simulation is 64 minutes, so that there are 64 

concentration measurements and 213 temperature measurements. The noise variances for the 

concentration and temperature measurements are 2342
1 )(kmol/m 104 −×=mσ and 

212
2 K 104.6 −×=mσ , respectively. The corresponding process noise intensities are 

/min)(kmol/m 104 233
1

−×=pQ  and /minK 4 2
2 =pQ . Since 

t
Qp

p ∆
=2 1

1σ and 
t

Qp
p ∆
=2 2

2σ , 

for min 1=∆t  the corresponding process noise variances are 

2332
1 )/min(kmol/m 104 −×=pσ and 22

2 (K/min) 4=pσ . 

From eq. (3.29), the iPDA objective function is: 
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Figure 3.8. Input scheme for MIMO nonlinear CSTR 

From (3.11), the optimal weighting factors in this case are 1.01 =λ min and 16.02 =λ  min. We 

used two different knot sequences to fit B-spline curves to concentration and temperature 

observations, with the knots placed at observation times. Again, we obtained optimal parameter 

values using the iterative procedure shown in Figure 3.1 iPDA and also by simultaneously 

estimating the B-spline coefficients along with the two parameters in eq. (3.35) using “lsqnonlin” 

routine in Matlab. However, in this example the simultaneous approach proved to be much slower 

(due to the existence of two states and considerably fewer concentration observations), so that the 

iterative approach was preferred. To compare the sampling behaviour of the iPDA and NLS 

parameter estimates, 50 sets of concentration and temperature measurements were generated 

using different measurement and process noise sequences. Gaussian quadrature was used to 

calculate the integrals in eq. (3.33).  Box-plots for the parameter estimates are shown in Figure 
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3.9 and Figure 3.10. Both iPDA and traditional NLS produced reasonable estimates; the iPDA 

parameter estimates are better, on average, than the traditional NLS estimates.  The iPDA and 

NLS predicted responses are compared against the true responses in Figure 3.11, Figure 3.12, 

Figure 3.13, andFigure 3.14. The iPDA predicted responses closely follow the true trajectories. 

3.5 Summary and Conclusions  

Parameters were estimated in differential equation models with stochastic disturbances using 

iPDA. By considering the joint probability distribution of the states and observations, given the 

parameters, we demonstrated that optimal model parameters and B-spline coefficients can be 

obtained by minimizing the iPDA objective function.  We also demonstrated that the optimal 

value of the weighting factor λ is proportional to the measurement noise variance, and inversely 

proportional to the model disturbance variance, so that tuning the weighting factor in iPDA 

resembles tuning the Kalman gain in Kalman filtering applications. For parameter estimation in 

MIMO dynamic models, the overall iPDA objective function includes a sum-of-squared errors 

term for each response, with the reciprocal of the corresponding measurement variance as a 

weighting factor, and a model-based penalty term for each differential equation, with the 

reciprocal of the process noise variance as a weighting factor.  Optimizing the iPDA objective 

function, using either a simple iterative two-step procedure (in which spline coefficients are 

estimated in the first step and fundamental parameters are estimated in the second) or 

simultaneous estimation of spline coefficients and model parameters, produces maximum 

likelihood estimates for the parameters, conditional on the data and knowledge about the 

measurement and disturbance variances. 
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Figure 3.9. Box-plots for refk  using NLS and iPDA nonlinear MIMO CSTR 
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Figure 3.10. Box-plots for 
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 using NLS and iPDA nonlinear MIMO CSTR 
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Figure 3.11. Measured, true, and predicted concentration response for iPDA for the nonlinear 

MIMO CSTR Example (• , simulated data;-----, response of the system with true parameters and 

true stochastic noise; ___ , iPDA response) 
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Figure 3.12. Measured, true, and predicted concentration responses using NLS for the nonlinear 

MIMO CSTR Example (• , simulated data;-----, response of the system with true parameters and 

true stochastic noise; ___ , NLS response)   
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Figure 3.13. Measured, true, and predicted temperature response for iPDA for the nonlinear 

MIMO CSTR Example (• , simulated data;-----, response of the system with true parameters and 

true stochastic noise; ___ , iPDA response) 
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Figure 3.14. Measured, true, and predicted temperature response for NLS for the nonlinear 

MIMO CSTR Example (• , simulated data;-----, response of the system with true parameters and 

true stochastic noise; ___ , NLS response) 
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Two examples were used to validate the results. In the first, parameters were estimated in a 

linearized SISO differential equation model with a stochastic disturbance using both traditional 

NLS and iPDA.  iPDA parameter estimates were superior to those obtained using traditional 

NLS, and iPDA was effective in reconstructing the true underlying response trajectory. When 

iPDA was used with λ larger than the optimal value, parameter estimates were similar to those 

obtained using traditional NLS because large values of λ are appropriate when the traditional 

NLS assumptions (i.e., negligible stochastic disturbance compared to the measurement noise) 

hold. In the second case study, two parameters in a nonlinear MIMO CSTR with a stochastic 

disturbance were estimated. Similar to the first case study, iPDA performed better than traditional 

NLS in estimating parameters and reconstructing the response trajectory. 

From the case studies we see that iPDA (like a Kalman filter) can be used as a state smoother.  

Recent simulation studies (Chapter 4) have confirmed that iPDA can also be used to observe 

unmeasured states and to estimate parameters when some of the states are unmeasured. 

In our case studies, the measurement noise variance and the model disturbance variance were 

assumed known. In practical situations however, this is not the case.  Although knowledge about 

measurement variances can be obtained from replicate measurements,   it is difficult to obtain a 

priori knowledge about the model disturbance variance. One objective of our ongoing work is to 

establish a means of estimating the weighting factor without the limiting assumptions for the 

model parameters. This issue is discussed in Chapter 5. 

In iPDA the objective function is minimized by an iterative approach but other approaches for 

minimizing the same objective function are also possible. In particular, nonlinear and quadratic 

programming techniques that can handle large-scale minimization problems are potential 

candidates. These methods have been applied to problems in which orthogonal collocation on 
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finite elements is used to discretize the ODEs (Tjoa and Biegler, 1991; Tanartkit and Biegler, 

1995; Biegler and Grossman, 2004). In the remaining chapters, we show that efficient nonlinear 

programming tools can be used effectively to reduce the computational requirements of iPDA. 
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3.6 Appendix 

In this section, the results of Section 3.3 are repeated for a multivariate case. 

We consider a Multi-Input Multi-Output first order, nonlinear system defined as follows:  
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 (3.36)

where: 

 x is the vector of n state variables, F (nonlinear function) is an 1×n  vector, u is the vector of u 

input variables, y is the vector of m output variables, and C is a nm× matrix. 0x is a multivariate 

normal random variable with mean { }0xE and 00 )cov( Σx = . 

)(tη is a continuous zero-mean stationary white noise process with covariance 

matrix { } )()()( 1221 ttttE T −= δQηη , whereQ is the corresponding power spectral density and 

)(.δ  is the Dirac delta function. For the discrete time white noise process: 
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where 1j  and 2j are integers and t∆ is the sampling period. T
mjjjt ],...,[)( 1 εε=ε is a vector of 

m zero-mean random variables. We assume that measurements of different responses from the 

same experimental run are independent.  
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E is diagonal with T
mjj ],...,[)(diag 22

1 σσ=E for the jth run. We also assume that measurements 

from different experimental runs are independent. Whenever the above assumptions are not 

appropriate, they can be made more general. However, the results in that case maybe more 

complex depending on the covariance matrix structure. 

We assume that the response of the above stochastic system can be approximated by a linear 

combination of some B-splines: 

i
T
ii ttx β)()(~ ϕ=  for i = 1…n (3.39)

where )(tiϕ  is a vector containing ci basis functions, iβ is vector of ic  spline coefficients and 

)(tiω is the stochastic term. Therefore 
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is the concatenated vector of 

spline coefficients. 

Again we consider eq. (3.13), from the same arguments that were used for the SISO case, we will 

get the same expression for )|,,( 0 θxx qp K as before: 
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Suppose the ith response ( mi L1= )is measured Ni times observations. Let 
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From (3.13), (3.41), and (3.44): 
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Therefore the optimal state and parameter estimates, θx ˆ,ˆ  minimize 
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If we assume that the initial condition is perfectly known and that the states can be approximated 

by eq. (3.40) we have: 
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If the integral in (3.47) is discretized: 
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3.7 Nomenclature 

a CSTR model parameter relating heat-transfer coefficient to coolant flow 
rate 

 

b CSTR model exponent relating heat-transfer coefficient to coolant flow 
rate 

 

ci Number of spline coefficients for state i  

CA Concentration of reactant A  kmol m-3 

CA0 Feed concentration of reactant A kmol m-3 

CAs Concentration of reactant A at steady state kmol m-3 

Cp Reactant heat capacity cal g-1K-1 

Cpc Coolant heat capacity cal g-1K-1 

C Output matriz  

E{.} Expected value  

E Covariance matrix of the measurement noise  

E/R Activation energy over the ideal gas constant K 

F Reactant volumetric flow rate m3 min-1 

Fc Coolant volumetric flow rate m3 min-1 

fi, fi Nonlinear function on the right-hand side of the differential equation for 
state i 

 

F Vector of all fis  

kref Kinetic rate constant at temperature Tref min-1 

n Number of measurements  

p(.) Probability density function  

q Number of discretization points for differential equations  
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Qpi Process noise intensity of stochastic differential equation for state i  

Q Matrix of process noise intensities  

tmj j-th measurement time  min 

T Temperature of reactor contents K 

T0 Reactant feed temperature K 

Tcin Inlet temperature of coolant K 

Ts Temperature of reactant at steady state value K 

Tref Reference temperature K 

ui, ui Input to the differential equation for state i  

V Volume of the reactor m3 

x,  State variables  

x~ B-spline approximation of the state  

xi~ B-spline approximation of the i-th state  

x Vector of state variables  

xc Concatenated vector of state variables corresponding to yc  

y, y Noisy output measurements   

ym Stacked vector of measured outputs for one state  

,yc Concatenated vector of measures outputs for all states  

   

iβ  i-th B-spline coefficient  

β  Vector of B-spline coefficients  
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iβ  Vector of B-spline coefficients of the i-th state  

cβ  Concatenated vector of B-spline coefficients for all states  

(.)δ  Dirac delta function  

rxnH∆  Enthalpy of reaction cal g-1 K-1 

ιε  Normally distributed measurement noise for state i   

mε  Vector of measurement noise for one state   

cε  Concatenated vector of measurement noise for all states   

η  White Gaussian process disturbance entering model differential equation  

η  Vector of White Gaussian process disturbances  

θ  Vector of model parameters  

θ̂  Vector of parameter estimates  

λ  Weighting factor in iPDA objective function  

optλ  Optimal weighting factor in iPDA objective function  

ρ  Density of reactor contents  g m-3 

cρ  Coolant density  g m-3 

2
miσ  Measurement noise variance for the i-th state  

2
piσ  Process noise variance of the discrete-time process for the i-th state  

Σ  Measurement noise covariance matrix for cε   

τ  Combined vector of model parameters and spline coefficients  

iφ  i-th B-spline basis function  

ϕ  Vector of B-spline basis functions  
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iϕ  Vector of B-spline basis functions for the i-th state  

Φ  Matrix containing all iϕ   

   

CSTR Continuous Stirred Tank Reactor  

diag Diagonal elements of matrix  

iPDA iteratively-refined Principal Differential Analysis  

MIMO Multi-Input Multi-Output  

ODE Ordinary Differential Equation  

PEN Model-based penalty  

SISO Single-Input Single-Output  

SSE Sum of Squared Errors  

NLS Nonlinear Least-Squares  
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Chapter 4 
 
Parameter Estimation in Continuous-Time Dynamic Models in 
the Presence of Unmeasured States and Non-Stationary 
Disturbances 
 

4.1 Abstract 

In Chapter 3 (Varziri et al.,2008), the iPDA algorithm (Poyton et al., 2006) was reviewed in 

detail. By considering a stochastic differential equation model, and also using probabilistic 

principles, it was shown that the iPDA objective function is an approximate maximum likelihood 

criterion. In this chapter, we investigate the applicability of the iPDA, as an Approximate 

Maximum Likelihood Estimation (AMLE) algorithm, to parameter estimation in nonlinear 

stochastic dynamic models, in which some of the states are unmeasured. We also demonstrate 

that AMLE can be employed in models with non-stationary process disturbances. Theoretical 

confidence interval expressions are obtained and are compared to empirical box plots from Monte 

Carlo simulations. Use of the methodology is illustrated using a continuous-stirred-tank-reactor 

model. 

This chapter has been published as a journal paper in Industrial Engineering and Chemistry 

Research, 47, 2008, 380-393.  
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Parameter Estimation in Continuous-Time Dynamic Models in 

the Presence of Unmeasured States and Non-Stationary 

Disturbances 

 

M.S. Varziri,  K. B. McAuley and P. J. McLellan, Department of Chemical Engineering, Queen’s 
University, Kingston, ON, Canada  K7L 3N6 

 

4.2 Introduction 

Parameter estimation in nonlinear dynamic models is generally treated as a traditional nonlinear 

least-squares (TNLS) minimization problem where a weighted sum of the squared deviations of 

the model responses from the observed data is minimized, subject to the ordinary differential 

equations (ODEs) that describe the dynamic model (Seber and Wild, 1989; Bates and Watts, 

1988; Bard, 1974; Ogunnaike and Ray, 1994). If the ODE model has an analytical solution then, 

by substituting this solution into the objective function, the parameter-estimation problem can be 

transformed into an unconstrained nonlinear minimization problem. Unfortunately this is rarely 

the case, because it is usually not possible to find analytical solutions for nonlinear ODE models 

that represent dynamic chemical processes. In such cases, TNLS methods require that the model 

ODEs, possibly along with sensitivity ODEs (Leis and Kramer, 1988), be solved numerically and 

repeatedly for each parameter perturbation. Repeated numerical solution of the ODEs makes the 

traditional methods computationally expensive and also prone to numerical stability problems 

(Biegler and Grossman, 2004).  

The aforementioned problems have motivated new parameter-estimation algorithms that do not 

require repeated numerical solution of the differential equation models. One method to avoid 
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repeated integration is to fit an empirical curve (e.g., smoothing splines) to the observed data 

(Poyton et al., 2006; Tang, 1971; Swartz and Bremermann, 1975; Varah, 1982, Vajda and Volko, 

1986). Once the empirical curve is obtained, it can be differentiated and substituted into the 

model differential equations, thereby transforming the ODEs into algebraic equations. However, 

these methods often result in biased parameter estimates since there is no guarantee that the 

empirical curve is consistent with solution of the ODEs (Hosten, 1979). Biegler and coworkers 

(Biegler, 1984; Biegler and Grossman, 2004) used collocation discretization to approximate the 

solution of the ODEs, assuming that the solution of the ODEs can be expressed as a linear 

combination of some basis functions (e.g., polynomials). The constant coefficients of the 

(polynomial) basis functions are obtained by requiring the response trajectories to satisfy the 

ODEs. Basis-function representation of the response trajectories transforms the ODEs into 

algebraic equations, and hence the ODE constraints in the nonlinear parameter estimation 

problem become algebraic constraints. The main expense of collocation-based methods is that 

they usually require the solution of a large-scale nonlinear minimization problem to 

simultaneously select the basis-function coefficients and determine the optimal parameter 

estimates. Fortunately, advanced optimization algorithms are capable of carrying out these kinds 

of problems quickly and efficiently (Wächter and Biegler, 2006). 

Traditional nonlinear least-squares and collocation-based methods enforce the model equations 

(in ODE and algebraic form, respectively) as hard constraints, implying that the structure of the 

model is perfect. More often than not, however, mathematical models describing chemical 

processes are only approximately true, and discrepancies between the model and physical reality 

should not be neglected.  When it is not appropriate to assume that the model structure is perfect, 

implementing the model equations as hard constraints in the parameter-estimation problem results 

in biased or inconsistent parameter estimates.  
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Poyton et al. (2006) showed that iterative Principal Differential Analysis (iPDA) is an effective 

method for parameter estimation in ODE models.  In iPDA, basis functions (i.e., B-splines) are 

used to discretize the model ODEs, transforming them into algebraic equations.  Unlike the 

previous collocation-based methods, Poyton’s technique treats the model equations as soft 

constraints, allowing for possible model imperfections. The iPDA objective function was 

originally minimized in an iterative way, with each iteration consisting of two steps. Optimal B-

spline coefficients are obtained in the first step, given the most recent parameter estimates; in the 

second step, fundamental model parameters are estimated using the B-spline coefficients obtained 

from the first step. The iterations continue until the parameter estimates converge.  

Recently, Ramsay et al. (2007) proposed another spline-based method that also accounts for 

possible model uncertainties. In this profile-based method, the dimensionality of the parameter 

estimation problem is reduced because the spline coefficients are treated as functions of the 

fundamental model parameters. Ramsay’s method uses a two-level optimization scheme wherein 

the outer (primary) optimizer determines optimal values of fundamental model parameters to 

minimize the sum of squared prediction errors.  The inner (secondary) optimizer selects spline 

coefficients to minimize a weighted sum of the squared prediction errors and a model-based 

penalty using the parameter estimates from the outer optimization loop.  In the present article we 

focus on Poyton’s iPDA objective function since it has a direct relationship to the likelihood 

function of stochastic differential equation models that are appropriate for describing chemical 

processes. 

We have shown that minimizing the iPDA objective function is equivalent to maximizing the log-

likelihood of the conditional joint density function of the states and measurements, given the 

fundamental model parameters, when model mismatch results from additive stochastic white-

noise disturbance inputs (Varziri et al., 2008) (Chapter 3). We have also shown that fundamental 
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model parameters and B-spline coefficients can be minimized simultaneously. Since we no longer 

solve the optimization problem using the two-step iterative method, and because a likelihood 

criterion is approximated using B-splines, we call the technique Approximate Maximum 

Likelihood Estimation (AMLE) throughout the remainder of this article.  

The contributions in the current article are as follows. We demonstrate that AMLE can be readily 

used in parameter estimation in cases in which some of the states are not observed. We also show 

that AMLE can estimate the unmeasured states along with fundamental model parameters. This 

capability naturally leads to the application of AMLE to parameter estimation in dynamic models 

driven by non-stationary process disturbances, because non-stationary disturbances can be 

considered to be unmeasured states (Gagnon and MacGregor, 1991). Another important 

contribution is the development of theoretical confidence-interval expressions for parameter 

estimates and B-spline coefficients. The application of the AMLE technique is examined using a 

multi-input multi-output (MIMO) nonlinear Continuous Stirred Tank Reactor (CSTR) model. In 

the CSTR case study, theoretical confidence intervals are compared to confidence intervals from 

Monte Carlo simulations to confirm the theoretical results. 

The manuscript is organized as follows.  First, we briefly review the AMLE algorithm using a 

multivariate nonlinear dynamic model. Detailed information about the algorithm and its 

mathematical basis can be found in Poyton et al., (2006), and Varziri et al., (2008) (presented in 

Chapter 3). We then show how AMLE can be used for cases in which unmeasured states or non-

stationary disturbances are present and we obtain theoretical confidence-interval expressions for 

the fundamental model parameters. Next, we use a nonlinear CSTR example to study the 

effectiveness of AMLE in several different scenarios: i) when all states are measured, ii) when 

temperature is measured, but the concentration is not, and iii) when a non-stationary disturbance 

enters the material-balance differential equation and both states are measured. Finally, we 
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highlight some of the remaining challenges that need to be addressed to make AMLE more 

applicable for parameter estimation in dynamic chemical process models. 

4.2.1 Review of the AMLE algorithm 

Varziri et al., (2008) derived the AMLE objective function using probabilistic principles for a 

multi-input multi-output first-order nonlinear dynamic system. Here, for simplicity, we use a 

first-order model with two inputs and two states to review the AMLE algorithm: 
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1x and 2x are state variables, 1u  and 2u are input variables, and 1y and 2y are output variables. 

1f and 2f are suitably well-behaved nonlinear functions (Lipschitz continuous; bounded growth) 

and θ is the vector of fundamental model parameters. )(1 tη and )(2 tη  are independent continuous 

zero-mean stationary white-noise processes with intensities Qp1 and Qp2 respectively. 1ε  and 2ε  

are zero-mean independent Normal random variables with variances 2
1mσ and 2

2mσ respectively. 

jmt 1  and jmt 2 are the time points at which outputs 1y and 2y are measured. We assume that there 

are N1 and N2 measurement times for 1y and 2y , respectively. 

In AMLE the system state trajectories are approximated using linear combinations of B-spline 

basis functions (de Boor, 2001; Ramsay and Silverman, 2005):  
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∑
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1
~ )( φβ                  2,1=k  (4.2) 

where kiβ , kci L1=  and )(tkiφ kci L1=  are B-spline coefficients and B-spline basis 

functions, respectively, for the kth state. Eq. (4.1) can be written in matrix form: 

k
T
kk ttx β)()(~ ϕ=            2,1=k  (4.3) 

where )(tkϕ  is a vector containing the ck basis functions and kβ is vector of ck spline 

coefficients. Note that the “~” subscript is used to imply an empirical curve that can be easily 

differentiated: 
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In AMLE, the spline coefficients kβ  and the vector of fundamental model parameters θ are 

obtained so that the following objective function is minimized: 
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We will refer to the first two terms ∑ − 2
~ ))()(( mjkmjk txty in the objective function as SSE (the 

sum of squared prediction errors), while PEN (the model-based penalty) will be used to refer to 

the third and fourth terms ( )∫ )− dttututxtxftx kk
2

212~1~~ ),(),(),(),(()( θ& .  The SSE and PEN 

terms in (4.5) are weighted by the reciprocals of the measurement noise variances and process 
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disturbance intensities, respectively. In its original form, AMLE (which was called iPDA by 

Poyton et al. (2006)) left the values of these weighting coefficients unspecified as tuning 

parameters that could be adjusted by trial and error, and the tuning requirement was therefore 

listed as a disadvantage of the methodology. Recently, we used a likelihood argument to show 

that, in the dynamic model described in (4.1), the optimal weighting coefficients are the 

reciprocals of the measurement noise variances for the SSE terms and reciprocals of the process 

disturbance intensities for the PEN terms and hence the objective function in (4.5) was derived 

(Varziri et al., 2008) (Chapter 3). However, we acknowledge that selecting the optimal weighting 

factors requires knowledge of measurement variances and process disturbance intensities. In real-

world applications, the true values of these parameters are not known and estimates must be 

obtained. Measurement noise variances can be estimated from replicate measurements; however, 

estimating the process disturbance intensities is a difficult task requiring expert knowledge of the 

dynamic system and the corresponding mathematical model. Therefore, efficient algorithms for 

estimating the unknown variances and intensities need to be developed, which is a subject of our 

ongoing research (addressed in Chapter 5). 

Another shortcoming highlighted in our previous publications on AMLE was the lack of a 

systematic method to assess the variability of the parameter estimates (and the B-spline 

coefficients). We address this problem in Section 4.4 of the current article where we present the 

confidence interval results. We briefly review the major advantages of AMLE: 

 AMLE provides an easy-to-implement method for estimating fundamental model 

parameters and system states in dynamic models in which stochastic process disturbances 

are present. 
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 The AMLE objective function considers model uncertainties and measurement noise at 

the same time, and the trade off between poor measurements and model imperfections is 

addressed by the optimal choice of weighting coefficients. 

 AMLE uses B-spline basis functions to discretize the differential equations in the 

dynamic model, thereby transforming them into algebraic equations. Hence, AMLE 

circumvents the repeated numerical integration used by traditional methods.   

 The discretization approach used in AMLE removes the requirement of deriving and 

integrating the sensitivity differential equations used by conventional methods.   

 AMLE inherits and combines the advantages of Kalman filters for state and parameter 

estimation in stochastic dynamic models and the benefits of the collocation-based 

methods for state and parameter estimation in deterministic dynamic models. 

In addition to these advantages, we will demonstrate in the next section that AMLE can readily be 

applied to problems with unmeasured states and non-stationary disturbances, which are important 

in chemical processes.        

4.3 Unmeasured states and non-stationary disturbances 

Handling unmeasured states in AMLE is straightforward. There is no SSE term for the 

unmeasured state in the objective function, because the number of measurements in the 

corresponding summation is zero. For instance, if 1x  is not measured, the new objective function 

is:  
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When a state is measured, there are two sources of information (i.e., the measured data and the 

corresponding differential equation) that can be used to estimate the states and eventually the 

model parameters. However, with an unmeasured state we are only left with the differential 

equation and hence, the B-spline curve should be flexible enough to follow the solution of the 

differential equation quite closely. More flexibility can be achieved by placing more knots within 

the time frame over which the integrals in (4.6) are evaluated. Parameter estimation in a nonlinear 

MIMO CSTR with an unmeasured state is studied in Section 4.5.2 as an example. 

So far, we have considered dynamic models with stationary Gaussian process disturbances. 

Dynamic models with non-stationary disturbances can be handled by considering these 

disturbances as unmeasured states.  To accommodate such problems, we consider the model in 

(4.7) below, which is a slightly modified version of the model in (4.1). We have added a non-

stationary disturbance ( )(1 td ) to the right-hand side of the first differential equation. Please note 

that it is possible to add a non-stationary disturbance to any of the differential equations in the 

model.   

In (4.7), )(1 td is a non-stationary disturbance driven by )(1 tηd  which is a continuous zero-mean 

stationary white-noise process with intensity Qpd1. (.)1df is a function defining the non-stationary 

noise model and 1dθ is the vector of noise model parameters (Maybeck, 1979). If 1dθ is not 
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known (which generally is the case) it can be estimated along with the vector of fundamental 

model parametersθ . 

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+=

+=

=
=
=

+=

+)=
++)=

)()()(

)()()(

0)0(
)0(
)0(

)()),(()(

)(),(),(),(),(()(
)()(),(),(),(),(()(

222222

111111

1

202

101

11111

2212122

11212111

jmjmjm

jmjmjm

ddd

ttxty

ttxty

d
xx
xx

tηtdftd

tηtututxtxftx
tηtdtututxtxftx

ε

ε

θ

θ
θ

&

&

&

 (4.7) 

By treating )(1 td like any other unmeasured state, assuming that 1x and 2x  are measured, the 

AMLE objective function can be written as: 
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where, 111~ )()( d
T
d tφtd β= . Note that (4.8) is minimized with respect to θ , 1dθ ,β ,and 1dβ . 

As an example, parameter estimation in a nonlinear MIMO CSTR with a non-stationary 

disturbance is studied in Section 4.5.3. 
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4.4 Theoretical confidence intervals 

Varziri et al. (2008) (Chapter 3) considered the model in (4.1) and showed that minimizing the 

AMLE objective function is equivalent to maximizing the likelihood of the conditional joint 

density function of states and measured output values given the model parameter 

values, )|,( θyx mp , where x is the vector of states and my is the vector of measured outputs (this 

likelihood function is recommended by Maybeck (1982) as the most appropriate for combined 

state and parameter estimation). Therefore, in AMLE we maximize the log-likelihood 

of )|,( θyx mp , denoted by ),,( mL yθx :    

( ))|,(ln),,( θyxyθx mm pL =  (4.9) 

{ }),,(minargˆ,ˆ
,

mL yθxxθ
xθ

−=  (4.10)

Analogous objective functions have been used in nonlinear filtering problems (Mortensen, 1968; 

Jazwinski, 1970; Evensen et al., 1998). Classical maximum likelihood parameter estimates 

(which are obtained by maximizing )|( θy mp ), under general regularity conditions, are 

consistent, asymptotically unbiased, asymptotically Normally-distributed and asymptotically 

efficient (Rao, 1973; Kay, 1993). Barshalom (1972), proved the asymptotic efficiency of 

parameter estimates obtained from the minimization problem in (4.10) in case of a discrete-time 

linear dynamic model. However, as noted by Yeredor (2000), this may not be true for a general 

nonlinear dynamic model.      

Assuming that x can be represented using B-splines as in (4.3), the parameter estimation problem 

reduces to: 

{ }),,(min
, mL yθβ
βθ
−  (4.11)
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By stacking the fundamental model parameters and spline coefficients in a vector 

TTT ],[ βθτ = the problem becomes: 

{ }),(min mL yτ
τ

−  (4.12)

We assume that L satisfies the required regularity conditions (e.g., Kay (1993), Appendix 7B, 

page 212). Then, from the asymptotic properties of maximum likelihood estimators (e.g., Kay 

(1993), Theorem 7.3, page 183) we have: 

))(,(~ˆ 1 τIττ −N  (4.13)

where )(τI is the Fisher information matrix (Seber and Wild, 1989) evaluated at the true values 

of τ : 
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In the examples of Section 4.5, we have approximated )(τI  by equation (4.25) in Appendix 4.8.1 

evaluated at τ̂ .  

Approximate 100(1-α)% confidence intervals for the model parameters and spline coefficients 

can be obtained as follows: 

))ˆ((diagz  ˆ 1
/2 τIττ −×±= α  (4.15)

The confidence intervals obtained from (4.15) are approximate because: 

1. The model is nonlinear with respect to the parameters and spline coefficients; 

2. The parameter estimates obtained from maximizing the prescribed likelihood function 

may not necessarily be asymptotically Normal and even if they are, asymptotic results are 

generally violated when small data samples are used; 
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3. The state trajectories are approximated by B-splines; 

4. The true parameter values are not known; therefore, the approximate Fisher information 

matrix is evaluated at the estimated parameter values rather than true parameter values, 

and the observed measurements rather than taking expected values over the joint 

distribution of the observations. 

Note also that we have used the standard Normal random deviate in equation (4.15), rather than a 

value from student’s t distribution because we are assuming that the noise variance is known.  

4.5 Case study 

In this section we examine our results using a MIMO nonlinear CSTR model (Marlin, 2000). In 

Section 4.5.1 we estimate 4 parameters in the CSTR model, assuming that both temperature and 

concentration can be measured. In Section 4.5.2, we assume that only temperature can be 

measured and concentration is unmeasured. In Section 4.5.3, we consider the CSTR where both 

states are measured and non-stationary disturbances are present in the system.   

We use the simulations to compare parameter estimation results obtained using the proposed 

AMLE algorithm and TNLS. In all case studies, the Simulink™ toolbox of MATLAB™ was 

used to solve the nonlinear dynamic models (using the ode45 solver) and to generate noisy 

measurements.  TNLS parameter estimates were obtained using the lsqnonlin optimizer (default 

solver option), which employs a subspace trust region method and is based on the interior-

reflective Newton method.  Sensitivity equations were solved along with the model differential 

equations.  

The AMLE objective function, in all examples, was optimized simultaneously over the 

fundamental model parameters and B-spline coefficients using the IPOPT solver (Wächter  and 

Biegler, 2006) via AMPL™. Initially, we tried to use lsqnonlin of MATLAB™ for minimizing 
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the AMLE objective function; although we had satisfactory convergence, the computation time 

was prohibitively high due to the large dimension of combined vector of model parameters and 

B-spline coefficients. Hence, we switched to IPOPT, which converged very quickly so that the 

computation time was not an issue. We note again that AMLE, and collocation-based methods in 

general, circumvent potential problems associated with numerical integration at the expense of 

solving a large nonlinear programming problem; hence, fast and efficient nonlinear programming 

solvers such as IPOPT (Wächter and Biegler, 2006) are essential for the successful 

implementation of these algorithms, especially for larger problems.  

4.5.1 Nonlinear MIMO CSTR with measured temperature and concentration 

We consider the following model that represents a MIMO nonlinear CSTR. The model equations 

consist of material and energy balances (Marlin, 2000) with additional stochastic disturbance 

terms:   
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where { } )2
111 jipji tttηtηE −(=)()( δσ , { } )2

222 jipji tttηtηE −(=)()( δσ  ( (.)δ is the Dirac 

delta function), 11 ..1   Njtmj =)(ε  and 22 ..1   Njtmj =)(ε  are white-noise sequences with 

variances 2
1mσ and 2

2mσ , respectively.  We also assume that 1η , 2η , 1ε , and 2ε are independent.   

This stochastic differential equation model is nonlinear in the states ( AC , T) and parameters and 

does not have an analytical solution. 

AC  is the concentration of the reactant A, T is the reactor temperature, V is the volume and Tref = 

350 K is a reference temperature.  The true values of the parameters to be estimated are: RE / = 

8330.1 K, refk  = 0.461 min-1, a =1.678E6, 5.0=b . The initial parameter guesses were set at 

50% of the true parameter values. Parameters a  and b  account for the effect of the coolant flow 

rate Fc on the heat transfer coefficient. This nonlinear system has five inputs:  the reactant flow 

rate F, the inlet reactant concentration CA0, the inlet temperature T0, the coolant inlet temperature 

Tcin, and the coolant flow rate Fc. Values for the various other known constants (Marlin, 2000) are 

as follows: 0.1=V  m3, 1=pC  cal g-1K-1, 6E1=ρ  g m-3, 1=pcC  cal g-1K-1, 6E1=cρ  g m-3, 

and 6E130=∆− rxnH  cal kmol-1. The initial steady-state operating point is: 569.1=AsC  kmol 

m-3
 and 37.341=sT  K. 
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Figure 4.1. Input scheme for MIMO nonlinear CSTR 

 

In this example, there is no temperature controller, and perturbations are introduced into each of 

the five inputs using the input scheme shown in Figure 4.1 (Poyton, 2005). Each input consists of 

a step up, followed by a step down, and then a step back to the steady-state point. 

We assume that concentration and temperature are measured and initial values are known 

Temperature is measured once every 0.3 minutes while concentration is measured once per 

minute. The duration of the simulated experiment is 64 minutes, so that there are 213 temperature 

measurements and 64 concentration measurements. The noise variance for the concentration and 

temperature measurements are 2342
1 )(kmol/m 104 −×=mσ and 212

2 K 104.6 −×=mσ  

respectively. The corresponding process noise intensities for the stochastic disturbances are 

/min)(kmol/m 104 233
1

−×=pQ  and /minK 4 2
2 =pQ . From equation (4.5) , the AMLE 

objective function is:  
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For the temperature trajectory, B-spline knots were placed at the observation times (one knot at 

every 0.3 minutes) and for the concentration trajectory, we placed one knot at every 0.2 minutes. 

For both the concentration and temperature trajectories, 5 Gaussian Quadrature points were used 

between every two knots to numerically calculate the integrals in (4.17).  

We repeated this parameter estimation problem using 100 different sets of noisy observations to 

study the sampling properties of the parameter estimates. The Monte Carlo box plots for AMLE 

and TNLS parameter estimates are shown in Figure 4.2 to Figure 4.5. The AMLE and TNLS 

predicted responses are with the true responses in Figure 4.6 to Figure 4.9. On average, the 

AMLE parameter estimates are better than the TNLS parameter estimates (more precise and less 

biased) and the AMLE response trajectories are closer to the true trajectories than are the TNLS 

trajectories.  
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Figure 4.2. Box plots for a  using TNLS and AMLE 
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Figure 4.3. Box plots for b  using TNLS and AMLE 
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Figure 4.4. Box plots for 
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 using TNLS and AMLE 
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Figure 4.5. Box plots for refk  using TNLS and AMLE 
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Figure 4.6. Measured, true, and predicted concentration response for AMLE (• simulated data, --

-- response with true parameters and true stochastic noise, ___  AMLE response) 
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Figure 4.7. Measured, true, and predicted concentration response for TNLS (•  simulated data, --

-- response with true parameters and true stochastic noise, ___  TNLS response) 
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Figure 4.8. Measured, true, and predicted temperature response for AMLE 

(•  simulated data, ---- response with true parameters and true stochastic noise, ___  AMLE 

response) 
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Figure 4.9. Measured, true, and predicted temperature response for TNLS (•  simulated data, ---- 

response with true parameters and true stochastic noise, ___  TNLS response) 
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Table 4.1 presents 95% confidence intervals (derived in Section 4.4) for this case study. Please 

note that the confidence intervals shown correspond to one particular data set chosen randomly 

from the 100 data sets used to generate the box plots, and the approximate Fisher Information 

matrix is evaluated using these parameter estimates.  

By inspecting the Monte Carlo box plots and the scatter plot matrix given in Appendix 4.8.2, and 

comparing them to the theoretical results in Table 4.1, we see that the empirical and theoretical 

confidence intervals are consistent. 

Table 4.1.  95% Confidence Intervals for AMLE parameter estimates 

Parameter Estimates Lower Bound Upper Bound 

a  1.4501 2.6322 

b  0.3307 0.5400 

RE /  8.3152 8.7592 

refk  0.4575 0.4866 

           

4.5.2 Nonlinear MIMO CSTR with unmeasured concentration 

In this example we consider the same CSTR model as in the previous section. The only difference 

is that concentration is unmeasured.  

From equation (4.6) , the appropriate AMLE objective function is: 
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because N1=0. We used 100 sets of noisy observations to study the sampling properties of the 

parameter estimates. The Monte Carlo box plots are shown in Figure 4.10 to Figure 4.13. The 

AMLE and TNLS predicted responses are compared against the true responses in Figure 4.14 to 

Figure 4.17. From Figure 4.10 to Figure 4.17 we observe that, on average, AMLE parameter 

estimates are better than those of TNLS, and the AMLE response trajectories are closer to the true 

trajectories than are the TNLS trajectories.  We also observe that, since concentration is not 

measured, both TNLS and AMLE parameter estimates are worse than those in the previous 

section when both states were measured. 
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Figure 4.10. Box plots for a  using TNLS and AMLE (unmeasured concentration) 



 

  103

TNLS AMLE

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

Figure 4.11. Box plots for b  using TNLS and AMLE (unmeasured concentration) 
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Figure 4.12. Box plots for 
R
E

 using TNLS and AMLE (unmeasured concentration) 
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Figure 4.13. Box plots for refk  using TNLS and AMLE (unmeasured concentration) 
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Figure 4.14. Measured, true, and predicted concentration response for AMLE (unmeasured 

concentration) (---- response with true parameters and true stochastic noise, ___  AMLE response) 
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Figure 4.15. Measured, true, and predicted concentration response for TNLS (unmeasured 

concentration) (---- response with true parameters and true stochastic noise, ___  TNLS response) 
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Figure 4.16. Measured, true, and predicted temperature response for AMLE (unmeasured 

concentration) (•  simulated data, ---- response with true parameters and true stochastic noise, ___ 

AMLE response) 
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Figure 4.17. Measured, true, and predicted temperature response for TNLS (unmeasured 

concentration) (•  simulated data, ---- response with true parameters and true stochastic noise, ___  

TNLS response) 

 

Theoretical 95% confidence intervals for AMLE parameter estimates are presented in Table 4.2. 

Table 4.2.  95% Confidence Intervals for AMLE parameter estimates (unmeasured 

concentration) 

Parameter Estimates Lower Bound Upper Bound 

a  1.0750 2.4559 

b  0.3062 0.5765 

RE /  8.0477 8.9000 

refk  0.3932 0.4577 

    

Note that removing the concentration measurements resulted in slightly wider confidence 

intervals. However, since the temperature measurements are more frequent and more precise than 
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concentration measurements, removing the concentration measurements did not worsen the 

confidence intervals as dramatically as removing the temperature measurements does (not 

shown).  A scatter plot matrix of the parameter estimates for this case study is presented in 

Appendix 4.8.2. 

4.5.3 Nonlinear MIMO CSTR with non-stationary disturbance 

In the third case study we consider the same CSTR model as in previous sections but with an 

additional non-stationary disturbance affecting the concentration differential equation.  This non-

stationary disturbance could be used to account for a meandering input that is not included in the 

fundamental part of the material balance equation. We assume that both concentration and 

temperature are measured and we estimate the vector of fundamental model parameters along 

with the non-stationary disturbance:   
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{ } )333 τδτ (=)−()( pQtηtηE  where 232
3 min)/(kmol/m 106 −×=pQ and everything else 

remains the same as in Section 4.5.1. 

From equation (4.8), the AMLE objective function is: 
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 (4.20) 

The input scheme and the knot placements for the temperature and concentration trajectories are 

the same as the previous examples. For the non-stationary disturbance trajectory, ~1d , knots were 

placed at 0.3 minute intervals.    

Figure 4.18 to Figure 4.21 show the Monte Carlo box plots for the parameter estimates. Estimated 

concentration and temperature trajectories are presented (for one data set) in Figure 4.22 to Figure 

4.25.   
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Figure 4.18. Box plots for a  using TNLS and AMLE (with non-stationary disturbance) 
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Figure 4.19. Box plots for b  using TNLS and AMLE (with non-stationary disturbance) 
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Figure 4.20. Box plots for 
R
E

 using TNLS and AMLE (with non-stationary disturbance) 
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Figure 4.21. Box plots for refk  using TNLS and AMLE (with non-stationary disturbance) 
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Figure 4.22. Measured, true, and predicted concentration response for AMLE, non-stationary 

example (• simulated data, ----- response with true parameters and true stochastic noise,  ___ 

AMLE response) 
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Figure 4.23. Measured, true, and predicted concentration responses using TNLS, non-stationary 

example (• simulated data, ----- response with true parameters and true stochastic noise, ___ TNLS 

response) 
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Figure 4.24. Measured, true, and predicted temperature response for AMLE, non-stationary 

example (•  simulated data, ----- response with true parameters and true stochastic noise, ___  

AMLE response) 
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Figure 4.25. Measured, true, and predicted temperature response for TNLS, non-stationary 

example (• simulated data, ----- response with true parameters and true stochastic noise, ___  

TNLS response) 
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As expected, the advantage of AMLE over TNLS is more pronounced when there are non-

stationary disturbance inputs, which are not accounted for using TNLS. The AMLE parameter 

estimates are less biased and more precise than TNLS parameter estimates. AMLE does a 

significantly better job at estimating (smoothing) the concentration and temperature trajectories 

and captures the sharp and meandering features in the response that appear due to the stationary 

and non-stationary disturbance terms in the model.  The estimated disturbance in one of the data 

sets is illustrated in Figure 4.26. Please note that the non-stationary disturbance was estimated 

using different sets of random observations (not shown) and it was confirmed that the apparent 

bias in Figure 4.26 is not systematic.      
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Figure 4.26. True, and estimated non-stationary disturbance using AMLE, 

(----- non-stationary stochastic disturbance, ___  AMLE estimate) 
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Theoretical confidence intervals for the AMLE parameter estimates for the second example are 

presented in Table 4.3.  As expected, these confidence intervals are wider than when there was no 

meandering disturbance (Table 4.1). 

A scatter plot matrix for the parameter estimates  is presented in Appendix 4.8.2. 

 

Table 4.3.  95% Confidence Intervals for AMLE parameter estimates (with non-stationary 

disturbance) 

Parameter Estimates Lower Bound Upper Bound 

a  0.6019 2.0615 

b  0.3337 0.7259 

RE /  7.8400 8.8890 

refk  0.3924 0.4549 

 

4.6 Summary and Conclusions  

We show that AMLE can be readily used for parameter and state estimation in nonlinear dynamic 

models in which stochastic process disturbances and measurement noise are present and some 

states are not observed. We also show that the AMLE can be modified to accommodate 

unmeasured states by simply removing the corresponding sum-of-squared-error terms from the 

objective function. AMLE can handle parameter estimation in nonlinear dynamic systems in 

which non-stationary disturbances are present by treating these disturbances as unmeasured 

states. We develop theoretical confidence interval expressions for AMLE parameter estimates. 

The inference method is based on the asymptotic properties of maximum-likelihood estimators.  
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We test our results using a MIMO nonlinear CSTR model. In the first scenario, both states are 

measured. In the second, the temperature is measured, but the concentration is unmeasured. We 

estimate the concentration and temperature trajectories, along with four fundamental-model 

parameters, using both AMLE and TNLS. The parameter estimation results from AMLE are, on 

average, more precise and less biased than the TNLS results because AMLE is able to properly 

account for the process disturbances and measurement noise. 

We also consider an additive non-stationary input disturbance (Brownian motion) in the material 

balance equation. Again AMLE and TNLS methods are compared and, in the case of AMLE, the 

non-stationary disturbance is estimated. The AMLE parameter estimates are more precise and 

less biased than TNLS parameter estimates. AMLE obtains significantly better estimates of the 

state trajectories. Confidence intervals for AMLE parameter estimates are obtained and compared 

with empirical box plots generated by Monte Carlo simulations. Confidence intervals and box 

plots are consistent. 

Application of AMLE relies on knowledge of measurement noise variances and stochastic 

process intensities. These constants, however, are usually unknown in real-world applications. 

Before AMLE can enjoy widespread use, a means for estimating the noise and process 

disturbance constants, along with the model parameters, needs to be developed.    This is the 

subject of our ongoing research (addressed in Chapter 5). 
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4.8 Appendix  

4.8.1 Derivation of the Hessian for the AMLE objective function  

In this appendix, we show how the exact or approximate Hessian matrix for the AMLE objective 

function can be derived by exploiting the least-squares structure of the objective function.  

Rewriting equation (4.5) in the matrix-vector form where we replace the integrals by Gaussian 

Quadrature sums we have: 
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where iy and ix , respectively, are vectors of outputs )(tyi and states )(~ tx i  evaluated at the 

observation points. qi~x , qi~x& , if , and iu are vectors containing )(~ tx i , )(~ tx i& , )(tf i  and )(tui , 

respectively, evaluated at Gaussian Quadrature points. 1w  and 2w are diagonal matrices 

containing the Gaussian Quadrature weights. Equation (4.21) can further be simplified by 

introducing the following vectors and matrices: 
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vectors of )(1 tϕ evaluated at observation times and Gaussian Quadrature points, respectively. 

Analogous definitions apply to 2φ and 2qφ .  

We let 1Σ and 2Σ be 11 NN × and 22 NN × diagonal matrices with 2
12 mσ and 2

22 mσ , 

respectively, on the diagonals. Then, the AMLE objective function in (4.21) can be written in the 

following form:  

))−=), m
T

mmL yτWgyτgyτ ,(,((  (4.22) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

),−

−
=)

βθfβφ

φβy
yτg

(
,(

q

m

m

&

  (4.23) 

and  W is a diagonal matrix with: 
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Since, according to (4.22), the objective function is in a least-squares form, the Hessian matrix 

can be written as: 
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If the second-order-derivative terms in the summation on the right-hand side of the above 

expression can be neglected, then equation (4.24) can be further simplified by the following 

approximation: 
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Note that, to obtain the inverse of the matrix in (4.27), the following property can be used (Seber 

and Wild, 1989). 
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4.8.2  Scatter plot matrices 
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Figure 4.27. Scatter plot matrix for 100 sets of parameter estimates obtained using AMLE with 

both states measured 
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Figure 4.28. Scatter plot matrix for 100 sets of parameter estimates obtained using MLE without 

concentration measurements 
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Figure 4.29. Scatter plot matrix for 100 sets of parameter estimates obtained from AMLE with 

both temperature and concentration measured and a non-stationary disturbance in the material 

balance 
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4.9 Nomenclature 

a CSTR model parameter relating heat-transfer coefficient to coolant flow 
rate 

 

b CSTR model exponent relating heat-transfer coefficient to coolant flow 
rate 

 

ci Number of spline coefficients for state i  

CA Concentration of reactant A  kmol m-3 

CA0 Feed concentration of reactant A kmol m-3 

CAs Concentration of reactant A at steady state kmol m-3 

Cp Reactant heat capacity cal g-1K-1 

Cpc Coolant heat capacity cal g-1K-1 

d1 Non-stationary disturbance term kmol m-3 
min-1 

d1~ B-spline approximation of the non-stationary disturbance kmol m-3 
min-1 

E{.} Expected value  

E/R Activation energy over the ideal gas constant K 

F Reactant volumetric flow rate m3 min-1 

Fc Coolant volumetric flow rate m3 min-1 

fi, fi Nonlinear function on the right-hand side of the differential equation for 
state i 

 

fd Nonlinear function on the right-hand side of the non-stationary 
disturbance differential equation 

 

g Vector of combined sum-of-squared-errors and model-based penalties  

I Fisher information matrix  

kref Kinetic rate constant at temperature Tref min-1 

L Log-likelihood function  



 

  123

Ni Number of observations of state i  

p(.) Probability density function  

Qpi Process noise intensity of stochastic differential equation for state i  

Qpd Process noise intensity of stochastic differential equation for non-
stationary disturbance 

 

tmij j-th measurement time for the i-th state min 

T Temperature of reactor contents K 

T0 Reactant feed temperature K 

Tcin Inlet temperature of coolant K 

Ts Temperature of reactant at steady state value K 

Tref Reference temperature K 

ui, ui Input to the differential equation for state i  

V Volume of the reactor m3 

wi Matrix of Gaussian quadrature weights for calculating the model-based 
penalty integrals of differential equation for state i 

 

W Overall weighting matrix to define the log-likelihood function in a least-
squares form  

 

x, X State variables  

xi~ B-spline approximation of the i-th state  

y, Y Noisy output measurements   

ym Stacked vector of measured outputs  

zα/2 Normal random deviate corresponding to an upper tail area of α/2  

   

α Significance level for confidence intervals  
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ijβ  j-th B-spline coefficient of the i-th state  

iβ  Vector of B-spline coefficients of the i-th state  

dβ  Vector of B-spline coefficients of the disturbance term  

(.)δ  Dirac delta function  

rxnH∆  Enthalpy of reaction cal g-1 K-1 

ιε  Normally distributed measurement noise for state i   

ιη  White Gaussian process disturbance for differential equation of the i-th 
state 

 

dη  White Gaussian process disturbance for the non-stationary disturbance 
differential equation 

 

θ  Vector of model parameters  

dθ  Vector of disturbance model parameters  

ρ  Density of reactor contents  g m-3 

cρ  Coolant density  g m-3 

2
miσ  Measurement noise variance for the i-th state  

iΣ  Measurement noise covariance matrix of the i-th state vector  

Σ  Measurement noise covariance matrix  

τ  Combined vector of model parameters and spline coefficients  

ijφ  j-th B-spline basis function of the i-th state  

iϕ  Vector of B-spline basis functions for the i-th state  

1dϕ  Vector of B-spline basis functions for disturbance d1  

iφ  Matrix of all iϕ s evaluated at the i-th state observation times  

φ  Matrix containing all iφ s  
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qiφ  Matrix of all iϕ s evaluated at the quadrature points of the differential 
equation corresponding to the i-th state  

 

qφ  Matrix containing all qiφ s  

   

AMLE Approximate Maximum Likelihood Estimation  

CSTR Continuous Stirred Tank Reactor  

diag Diagonal elements of a matrix  

iPDA iteratively-refined Principal Differential Analysis  

MIMO Multi-Input Multi-Output  

ODE Ordinary Differential Equation  

PEN Model-based penalty  

SSE Sum of Squared Errors  

TNLS Traditional Nonlinear Least-Squares  
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Chapter 5  
 
Parameter and State Estimation in Nonlinear Stochastic 
Continuous-Time Dynamic Models with Unknown Disturbance 
Intensity  
 

5.1 Abstract 

In the development of AMLE in Chapter 3 (Varziri et al., 2008b) and Chapter 4 (Varziri et al. 

2008a) it was assumed that the process-disturbance intensities and measurement-noise variances 

in the stochastic dynamic models are known. In this chapter, a new formulation of the AMLE 

objective function is proposed for the case in which measurement-noise variance is available but 

the process-disturbance intensity is not known a priori. The revised formulation provides 

estimates of the model parameters and disturbance intensities, as demonstrated using a nonlinear 

CSTR simulation study. Approximate parameter confidence intervals are computed using 

theoretical linearization-based expressions. The proposed method compares favourably with a 

Kalman-filter-based maximum likelihood method. The resulting parameter estimates and 

information about model mismatch will be useful to chemical engineers who use fundamental 

models for process monitoring and control. 

This chapter has been accepted for publication as a journal paper in Canadian Journal of 

Chemical Engineering. 
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Parameter and State Estimation in Nonlinear Stochastic 

Continuous-Time Dynamic Models with Unknown Disturbance 

Intensity 

 

M.S. Varziri, K. B. McAuley and P. J. McLellan, Department of Chemical Engineering, Queen’s 
University, Kingston, ON, Canada  K7L 3N6 

   

5.2 Introduction 

Developing mechanistic mathematical models is of great importance in many disciplines in 

engineering and science (Biegler and Grossman, 2004). In fundamental dynamic models of 

chemical processes, which are based on material and energy balances, it is important for the 

modeller to obtain appropriate values of kinetic and transport parameters using experimental data. 

Parameter values are generally selected so that the model predictions are as close as possible 

(usually in the sense of sum of squared errors (SSE)) to the measured responses of the process. 

Deviations between the model predictions and the measured responses arise from two sources:  i) 

measurement errors and ii) process disturbances.  Measurement errors, which arise due to sensor 

inaccuracy and fluctuations, only influence the measured outputs at the current time.  Process 

disturbances, however, can influence the future behaviour of the process, and hence future 

measured responses. If discrepancies caused by process disturbances and model mismatch are 

very small, it is appropriate to model lumped dynamic systems using ordinary differential 

equations (ODEs). On the other hand, when unknown disturbances and mismatch cause 

significant discrepancies, it is appropriate to use stochastic differential equation (SDE) models 
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that explicitly account for unmeasured process disturbances in the states (Jazwinski, 1970; 

Maybeck, 1979).         

Parameter estimation in ODEs is usually treated as a constrained nonlinear optimization problem 

that requires iterative numerical solution of the ODEs (Bard, 1974; Seber and Wild, 1989; Bates 

and Watts, 1988; Ogunnaike and Ray, 1994). Robust and efficient methods such as multiple 

shooting (Bock, 1981 and 1983) and collocation-based techniques (Biegler, 1984) have also been 

developed. Unfortunately, these methods, which neglect process disturbances, can result in biased 

parameter estimates if disturbances are significant (Voss et al., 2004). 

Several methods are available for parameter estimation in SDEs (Nielsen et al., 2000). In 

engineering applications, Kalman-filter-related algorithms are popular. These methods generally 

require the time-varying state covariance matrix. If the model is linear, the time evolution of the 

state covariance matrix can be described by a set of ODEs (Maybeck, 1979). However, if the 

model is nonlinear, the state covariance matrix satisfies a system of partial differential equations 

(PDEs) (the forward Kolmogorov equation) that is generally hard to solve. Alternatively, the 

model can be linearized and then treated as a linear SDE parameter estimation problem. Extended 

Kalman filters combine numerical integration of the model differential equations with a 

linearization-based solution for the state covariance matrix. (Maybeck, 1982) If the model is 

highly nonlinear, linearization-based methods may perform poorly. In such cases, the state 

covariance matrix can be estimated based on deterministic sampling techniques (Julier and 

Uhlmann, 2004) or ensemble averaging (Evensen, 2003). These methods, however, remain 

computationally intensive.                 

Maximum Likelihood (ML) methods have also been used for parameter estimation in stochastic 

dynamic models (Maybeck, 1982). In the classical ML method, the parameters are selected so 
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that the conditional probability density function of the measured outputs, given the model 

parameters, is maximized (e.g., Kristensen et al., 2004). The density function used in the classical 

ML method is generally hard to obtain because it involves integrating out the unobserved states.  

It is possible to avoid the integration in the classical ML method by using the Expectation 

Maximization (EM) method (Roweis and Ghahramani, 2001). EM is an elegant method; 

however, it requires calculating the expected value of the log-likelihood of the joint density of the 

measured observations and unobserved states conditioned on the parameter values, which is still 

computationally intensive. ML methods are not confined to the classical case; other density 

functions such as the conditional joint density function of the states and measurements, given the 

model parameters, can also be used (Maybeck, 1982). In our previous work (Varziri et al. 2008b, 

2008a), (Chapter 3 and Chapter 4), we developed an Approximate Maximum Likelihood 

Estimation (AMLE) method that minimizes the conditional joint density function of the states and 

measurements, given the parameters, while assuming a piece-wise polynomial discretization 

scheme for the state trajectories of the dynamic model. The minimization criterion in this 

algorithm is sometimes referred to as the Joint MAP-ML criterion since it leads to Maximum A 

Posteriori (MAP) state estimates (Yeredor, 2000). Unlike Kalman-filter-based or classical ML 

methods, AMLE does not require the time-varying state covariance matrix, due to the convenient 

form of its objective function (shown in (5.8)) that arises from the discretization of the state 

trajectories.     

Although AMLE does not require the time-varying state covariance matrix, the intensity of the 

model disturbance and the variance of the measurement noise are required to form the objective 

function. True values or reasonable estimates of some or all of these parameters are generally not 

known a priori by the modeller, and hence these parameters need to be either adjusted by trial 

and error (manual Kalman filter tuning) or estimated along with model parameters. For linear 
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dynamic systems, cross validation has been used to simultaneously estimate the noise parameters 

and model parameters (Gong et al., 1998); however, for nonlinear problems, cross validation can 

be computationally very intensive (Solo, 1996). ML methods have been widely used for 

estimating noise variances; however, the estimation problem is generally a difficult and often ill-

conditioned problem (Solari, 1969; Warnes and Ripley, 1987; Dee, 1995, Dee and Da Silva, 

1998), so that simplifying assumptions about the structure of the noise covariance matrix need to 

be made to make the estimation problem tractable. In engineering problems, it is often reasonable 

to assume that the covariance matrix of the measurement noise is reasonably well known because 

this information is either provided by the manufacturer of the measurement device or can be 

determined from replicate measurements. Disturbance intensity information is typically poorly 

known. 

In this article, we present a modified formulation of the AMLE objective function following an 

approach developed by Heald and Stark (2000), for the case in which measurement-noise 

variance is available but the process-disturbance intensity is not known. We then apply the 

proposed algorithm to estimate the states and parameters of a nonlinear Continuous Stirred Tank 

Reactor (CSTR) in a simulation study, assuming that the measurement noise variances are 

known, but the process disturbance intensities are unknown. We also compare the proposed 

method to an extended Kalman filter-based maximum likelihood method (Kristensen et al., 2004) 

in this case study. The paper is organized as follows. In Section 3.2.1, the AMLE algorithm is 

briefly reviewed. Estimation of process disturbance intensities is discussed in Section 5.4. In 

Section 5.5, the nonlinear CSTR case study is presented, followed by the summary and 

conclusions in Section 5.6.               
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5.3 AMLE Fitting Criterion 

In the following paragraphs we briefly review the AMLE algorithm. To keep the notation simple, 

a Single-Input Single-Output (SISO) model with a known initial condition is used; extension to 

Multi-Input Multi-Output (MIMO) systems with unknown initial conditions is straightforward 

(Varziri et al. 2008b and 2008a) (Chapter 3 and Chapter 4). 

Consider the following continuous-time stochastic dynamic model*: 

)()()(
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)()),(),(()(

00

mjmjmj ttxty

xtx
tηtutxftx

ε+=

=
+= θ&

 (5.1) 

ℜ∈x  is the state variable, ℜ∈u  is the input variable and ℜ∈y  is the output variable. 

pℜ∈θ is the vector of model parameters and f: ℜ→ℜ×ℜ×ℜ p  is a nonlinear function of the 

state variables, the input variables and the model parameters. We assume that f satisfies some 

regularity conditions (Kloeden and Platen, 1992) so that eq. (3.9) has a unique solution. ε  is a 

zero-mean uncorrelated Normal random variable with variance 2
mσ . )(tη  is a continuous zero-

mean stationary white-noise process with covariance matrix { } )()()( τδτ QtηtηE =+ , where Q 

is the corresponding power spectral density and )(.δ  is the Dirac delta function.  The random 

noise trajectory η(t) is a series of random steps with a switching time of ∆t, where ∆t→0.   For 

the corresponding discrete-time white-noise process (Maybeck, 1979): 

                                                      

* This dynamic model can be more rigorously written as: )()),(),(()( tddttutxftdx ω+= θ  where 

)(tdω is the increment of a Wiener process (Maybeck, 1979). 
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where 1j  and 2j are integers and t∆ is the sampling period. We also assume that the process 

disturbance )(tη  and the measurement noise )(tε are not correlated.  

At the discrete time ti, where ttt ii ∆+= −1  and the sampling interval t∆  is small, eq. (5.1) can 

be written using the following Euler approximation. 

tηttutxftxtxttx iiiii ∆+∆+==∆+ −−−− )(t)),(),(()()()( 1-i1111 θ    (5.3) 

Note that the variance of random noise term tη ∆)(t 1-i  is t∆ Q .  We refer to this variance as 2
pσ * 

because it is the variance of the stochastic step disturbances entering the process.  Consider )( itx  

at q+1 uniformly-spaced time points, it , qi L0=  so that Ttq =∆ , where  0ttT q −=  is the 

overall time span for the model predictions. For brevity, we define )( ii txx = and x  as a vector 

containing ix s for qi L0= .  Please note that the set of times at which the measurements are 

available is within the ],[ 0 qtt  interval and is denoted by mjt ( nj L1= ). The measurement times 

mjt  do not need to be uniformly spaced. The vector of outputs at observation times 

)( mjty ( nj L1= ) and its corresponding state vector of true values )( mjtx ( nj L1= ) and 

measurement noise vector )( mjtε ( nj L1= ) are denoted by my , mx , and mε respectively. 

                                                      

* Please note that σp
2 = var(η(ti-1)∆t) in this chapter, is different from σp

2 used in Chapter 3 which was used 

to denote var(η(ti-1)). 



 

  137

We shall now consider several probability density functions whose log-likelihood could be 

maximized to obtain optimal parameter estimates: 

1. )|( θy mp  

2. )|,( mp yθx  

3. ),|( θyx mp  

4. )|,( θyx mp  

The first density function is used in classical ML estimation (Seber and Wild, 1989). As noted in 

the introduction, forming such density functions for SDE models can be very difficult if the 

model is nonlinear. 

The second density function is the posterior joint distribution of x andθ  that leads to optimal 

state and parameter estimates in a Bayesian framework (Seber and Wild, 1989). Using this 

density function, however, requires a reasonable prior distribution for the parameters, which can 

be hard to obtain.  The modeller might also opt to use a non-informative prior.  In this case, 

minimizing density function 2 is equivalent to minimizing density function 4.  

To compare the third and the fourth density functions, we note that, from Bayes’ rule:  

  )|,()|(),|( θyxθyθyx mmm ppp =×  (5.4) 

Using the fourth density function is preferable because )|,( θyx mp  contains information about 

)|( θymp , which, in turn, depends on  θ  (Maybeck, 1982).  

Using eqns. (5.1) and (5.3), the density function )|,( θyx mp  can be written as (Varziri et al., 

2008b) (Chapter 3): 
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If Q and 2
mσ  are known, (5.5) can be simplified to 
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where C1 depends on 2
mσ  and 2

pσ , but not on the model parameters or the states. Note that when 

0→∆t , then ∞→1C . To avoid this problem, the probability density functional (Jazwinski, 

1970) is defined as: 
1

0

)|,(
lim

C
p m

t

θyx
→∆

. It can then be shown that optimal state and parameter 

estimates are obtained by minimizing the negative of the natural logarithm of the probability 

density functional as follows: 

( )∫ −+
−− qt
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 (5.8) 

Since )(tx is an unknown function, minimizing (5.8) over )(tx and θ  is an infinite-dimensional 

problem (a calculus of variations problem) which is generally hard to solve.  

To turn the problem into a finite-dimensional problem, the state variable, )(tx , is assumed to be 

sufficiently accurately approximated by a basis function expansion. B-splines provide convenient 
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basis functions due to their compact support and other favourable properties (Ramsay and 

Silverman, 2005; Poyton et al., 2006; Varziri et al., 2008a & 2008b, Ramsay et al., 2007): 

∑
=

=≈
c

i
iitxtx

1
~ )()( φβ  (5.9) 

where iβ , ci L1=  are B-spline coefficients and )(tiφ ci L1=  are B-spline basis functions (de 

Boor, 2001) Note that eq. (5.9) can be written in matrix form: 

βφ )()(~ ttx T=  (5.10)

 where )(tφ  is a vector containing the c basis functions and β is vector of c spline coefficients. 

The B-spline expansion, )(~ tx , can easily be differentiated: 
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By substituting (5.9)  and (5.11) into (5.8) we have the following finite-dimensional optimization 

problem: 
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 (5.12)

Minimizing (5.12) provides point estimates for the model parameters and the spline coefficients.  

The spline coefficients can then be used to determine the estimated state trajectory )(~ tx .  In 

order to obtain approximate confidence intervals for the model parameters, the inverse of the 

Fisher information matrix can be used as an approximation to the covariance matrix of the 

combined vector of states and parameters (Varziri et al., 2008a) (Chapter 4). The AMLE criterion 

in nonlinear problems may produce inconsistent and biased parameter estimates but it may 

outperform ML in the overall mean squared error especially when a small number of measured 

data is used (Yeredor, 2000). The AMLE criterion is also much easier to formulate. Eq. (5.8) was 
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derived based on the assumption that 2
mσ and Q (the noise parameters) are known. In the next 

section, we consider the more usual case where Q is unknown and must be estimated along with 

the model parameters, θ .  

5.4 Estimation of Disturbance Intensity 

Heald and Stark (2000) developed an iterative algorithm that leads to approximate classical ML 

estimates for measurement noise variance and process disturbance intensity in a discrete-time 

dynamic system. As mentioned in the introduction, using the classical ML criterion is not 

straightforward because the density function to be maximized is: 

∫= xθxyθy dpp pmmpmm ),,|,(),,|( σσσσ  and this integration is generally very difficult or 

not tractable at all. Heald and Stark (2000) used Laplace’s method (described by MacKay, 2004) 

to approximate this integral. Their development leads to the following measurement noise 

estimator: 

m
m n

SSE
γ

σ
−

=2ˆ    (5.13) 

where )()ˆ/1( 12 −= ATracemm σγ  and A is the Hessian matrix of ),,,|(ln pmmp σσθyx−  with 

respect to x evaluated at { }),,,|(lnminarg pmmp σσθyx
x

− .  Substituting mγ in (5.13) and 

solving for 2ˆ mσ we have:  

n
Trace

n
SSE

m
)(ˆ

1
2

−

+=
Aσ    (5.14) 

If we try to obtain an estimate of 2
mσ  by maximizing (5.5) (or by minimizing )|,(ln θyx mp− ) 

we will get nSSEm /ˆ 2 =σ  which lacks the second term in (5.14); this would have been a good 

estimate if the true state trajectory, rather than the estimated state trajectory, x~, was used to 
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calculate SSE.  The term, nTrace /)( 1−A  can therefore be thought of as a compensation for 

deviations of x~ from x; this makes more sense if we consider 1−A  as an approximation to the 

inverse of the Fisher information matrix which is, in turn, an approximation for the covariance 

matrix of x~. Having equation (5.14) at our disposal and assuming that 2
mσ  is known, we can pick 

an initial estimate of Q and solve the minimization problem in (5.12) to get βθ ˆ,ˆ , and therefore 

~x . The estimates obtained can then be used to evaluate 2ˆ mσ  using (5.14). Next, a new estimate 

of Q is obtained to minimize the loss function ( ) .1/ˆ 222 −mm σσ  This two-step optimization scheme 

can be summarized as follows:  

Outer optimization problem: 
2
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where βθ ˆ,ˆ are obtained as the solution of the inner optimization problem 
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The overall minimization problem presented in (5.15) and (5.16) consists of outer and inner 

optimizations. The outer optimization is to minimize the discrepancy between the estimated and 

the known measurement variance, while the inner minimizes the AMLE criterion in (5.12) using 

an estimate of Q obtained from the outer optimization.  The results of this overall optimization 

problem provide the modeller with βθ ˆ,ˆ  and Q̂ .  θ̂  is the desired estimate for the fundamental 

model parameters. The estimated spline coefficients β̂ , can be used to obtain estimated state 
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trajectories x~ and Q̂  provides information about the magnitude of the model uncertainty and 

process disturbance.   

5.5 Simulation Case Study: Nonlinear CSTR 

We consider the same two-state CSTR example as in our previous work (Varziri et al., 2008a). 

The model equations consist of material and energy balances (Marlin, 2000) with additional 

stochastic disturbance terms:   
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where { } )111 jipji ttQtηtηE −(=)()( δ , { } )222 jipji ttQtηtηE −(=)()( δ  ( (.)δ is the Dirac 

delta function), 11 ..1   Njtmj =)(ε  and 22 ..1   Njtmj =)(ε  are white-noise sequences with 

variances 2
1mσ and 2

2mσ  respectively.  We also assume that 1η , 2η , 1ε , and 2ε are independent.  

AC  is the concentration of the reactant A, T is the reactor temperature, V is the volume and Tref = 

350 K is a reference temperature.  This stochastic differential equation model is nonlinear in the 

states ( AC  and T) and in the parameters, and does not have an analytical solution. The true values 

of the parameters to be estimated are: RE / = 8330.1 K, refk  = 0.461 min-1, a =1.678E6, 
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5.0=b . The initial guess for each parameter was randomly drawn from a Normal distribution 

with a mean of 50% of the true value of the corresponding parameter and a variance of roughly 

15% of the true parameter value.   

Parameters a  and b  account for the effect of the coolant flow rate, Fc, on the heat transfer 

coefficient. This nonlinear system has five inputs:  the reactant flow rate F, the inlet reactant 

concentration CA0, the inlet temperature T0, the coolant inlet temperature Tcin, and the coolant flow 

rate Fc. Values for the various other known constants are as follows: 0.1=V  m3, 

1-1Kg cal 1 −=pC , 6E1=ρ  g m-3, 1-1Kg cal 1 −=pcC , -3gm 6E1=cρ , and 6E130=∆− rxnH  

cal kmol-1. The initial steady-state operating point is: 569.1=AsC  kmol m-3
 and 37.341=sT  K.   

In this example, there is no temperature controller, and perturbations are introduced into each of 

the five inputs using the input scheme shown in Figure 5.1 (Poyton, 2005).  
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Figure 5.1. Input scheme for MIMO nonlinear CSTR 
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We assume that concentration and temperature are measured; however, we treat the initial 

concentration and temperature conditions as unknowns that are estimated along with other state 

values. Note that known initial conditions can be forced as constraints in the AMLE minimization 

problem (Varziri et al., 2008b).  Temperature is measured once every 0.3 minutes while 

concentration is measured once per minute. The duration of the simulated experiment is 64 

minutes, so that there are 213 temperature measurements and 64 concentration measurements. 

The noise variance for the concentration and temperature measurements are 

2342
1 )(kmol/m 104 −×=mσ and 212

2 K 104.6 −×=mσ , respectively. The corresponding process 

noise intensities for the stochastic disturbances used in the simulations are 

/min)(kmol/m 104 233
1

−×=pQ  and /minK 4 2
2 =pQ . We assume that measurement noise 

variances are known but the process disturbance intensities are unknown. From eq. (5.15) the 

appropriate outer objective function is ( )TC JJ 11 +  shown below in eq. (5.18), which is 

minimized with respect to 1pQ  and 2pQ , and the inner objective function is ( )TC JJ 22 +  which 

is minimized with respect to model parameters and states, given estimates for 1pQ  and 2pQ : 
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For the temperature and concentration trajectories, 200 equally-spaced B-spline knots were used.  

The minimization was performed using the IPOPT nonlinear programming solver (Wächter and 

Biegler, 2006) with the model implemented using AMPL™ and the lsqnonlin routine in 

MATLAB™.  

In order to investigate the sampling properties of the parameter estimates, empirical sampling 

distributions were formed by repeating this parameter estimation problem using 500 different sets 

of parameter initial guesses and simulated noisy observations. The Monte Carlo histograms and 

scatter plot matrix for the parameter estimates are shown in Figure 5.2, Figure 5.3, and Figure 5.4, 

respectively. The histograms in Figure 5.3 zoom in on the main parts of the distributions for the 

estimated disturbance intensities. Corresponding boxplots that show all of the 500 estimates are 

provided in the Appendix. Note that the distributions of the disturbance intensity estimates are 

broad and somewhat asymmetric. 
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The scatter plot matrix in Figure 5.4 indicates a strong nonlinear co-dependency between 

estimates for parameters a and b. There is noticeable linear co-dependency between estimates for 

a and kref and modest nonlinear co-dependency between estimates for a and E/R. Note also the 

strong nonlinear co-dependency between the estimate for a and Qp1, the estimated disturbance 

intensity for the material balance. There is modest correlation between the estimates of kref and 

E/R. Apart from the strong co-dependency with the estimate for a, estimates for second heat 

transfer coefficient parameter b show relatively little co-dependency with other parameter 

estimates. Overall, the model parameter estimates are good.  

Approximate 100(1-α)% confidence intervals for the model parameters and spline coefficients 

can be obtained as follows (e.g., Varziri et al. 2008a): 

))ˆ((diagz  ˆ 1
/2 θIθθ −×±= α  (5.19)

where I is the Fisher information matrix for the inner objective function ( )TC JJ 22 +  in eq. 

(5.18). Since obtaining the Fisher information matrix involves calculating an expectation, we 

have used an approximation. The approximate confidence intervals are calculated based on the 

estimated process noise intensity and parameters, and therefore do not take into account the 

uncertainty that is introduced due to the variance in the estimated intensity and model parameters.  

Also, inaccuracies due to the Laplace approximation and also due to nonlinearity of the equations 

are reflected in the approximate confidence intervals. However, as shown below, these intervals 

are quite consistent with the empirical sampling distributions. 

The parameter estimation results for one of the 500 simulated data sets are listed in Table 5.1. 

The estimated noise intensities for this run are min/)kmol/m(1043.2ˆ 233
1

−×=pQ and 

)/minK( 87.2ˆ 2
2 =pQ . The approximate theoretical confidence intervals calculated using these 
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intensities along with the estimated parameters agree with the Monte Carlo results. The 

corresponding AMLE estimated trajectories are presented in Figure 5.5. The estimated 

trajectories follow the true trajectories closely. 

For comparison purposes, we used the same simulated data and estimated the parameters using a 

classical ML-based algorithm developed by Kristensen et al. (2004). This algorithm, which is 

based on the extended Kalman filter, estimates parameters in nonlinear stochastic differential 

equations models by maximizing the classical likelihood density function, )|( θy mp . The 

estimation was carried out using the CSTM software developed by Kristensen and Madsen 

(2003).  This software is publicly available and easy to use. The estimated noise intensities 

obtained using the CSTM package in this case are min/)kmol/m(1000.3ˆ 233
1

−×=pQ and 

)/minK( 63.2ˆ 2
2 =pQ . The rest of the results are presented in Table 5.2.  Like the AMLE 

method proposed in this article, the CSTM software can accommodate unknown initial conditions 

for state variables, irregularly sampled data and unknown disturbance intensities. 

The parameter estimation results are quite comparable for the two methods. The AMLE algorithm 

is easier to set up and converges faster than the classical ML-based method of Kristensen et al. for 

this case study, presumably because the proposed method does not require recursive solution of 

Ricatti equations to obtain the Kalman gain and the estimated state covariance matrix.  Parameter 

estimates for the complete set of 500 simulated data sets were not computed using the CSTM 

software because of the long run times. 
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Figure 5.2. Histograms for AMLE parameter estimates with unknown disturbance intensity 
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Figure 5.3. Histograms for AMLE process intensity estimates 

 

Table 5.1. 95% Confidence Intervals for AMLE model parameter estimates from one of the 500 

Monte Carlo simulations 

Parameter True Value Estimate Std. Dev. Lower Bound Upper Bound 

a  1.678 2.0189 0.2823 1.4656 2.5722 

b  0.5 0.4298 0.0508 0.3302 0.5294 

RE /  8.3301 8.4492 0.0989 8.2553 8.6431 

    refk  0.4610 0.4619 0.0062 0.4498 0.4740 

CA0 1.5965 1.5769 0.0139 1.5497 1.6041 

T0 341.38 340.59 0.54 339.54 341.64 
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Table 5.2. 95% Confidence Intervals for classical ML model parameter estimates (obtained using 

CSTM algorithm of Kirstensen et al., (2004)) 

Parameter  True Value Estimate Std. Dev.  Lower Bound Upper Bound 

a  1.678 2.2324 0.5612 1.1324 3.3324 

b  0.5 0.4131 0.0916 0.2336 0.5926 

RE /  8.3301 8.1721 0.1951 7.7897 8.5545 

refk  0.4610 0.4715 0.0112 0.4495 0.4935 

CA0      1.5965 1.5770 0.0323 1.5137 1.6403 

T0 341.38 340.55 0.79 339.00 342.10 
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Figure 5.4. Scatter plot matrix for AMLE estimates 
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Figure 5.5. Estimated B-Spline trajectories of CA and T, for one of the 500 considered samples 

using AMLE ( ___, B-spline fit; • , measured data; ---- response with true parameters and true 

stochastic disturbances) 

 

5.6 Summary and Conclusions  

In this paper, an algorithm is proposed to estimate parameters, states, and process noise intensities 

in nonlinear continuous-time stochastic dynamic systems. The algorithm, which is an extension of 

the AMLE algorithm previously proposed by Varziri et al. (2008b, 2008a), is a two-level 
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nonlinear minimization problem. The outer objective function is minimized with respect to the 

process noise intensity Q so that an estimate of the measurement noise variance is close to a 

known true value. The inner objective function is minimized over the model parameters θ and 

states x by maximizing  )|,( θyx mp  given the disturbance intensity Q. Setting up the proposed 

algorithm is much easier than classical likelihood methods in which )|( θy mp  is maximized. 

Using the likelihood corresponding to )|,( θyx mp , leads to an objective function that is easy to 

derive and compute.   

To generate confidence intervals for the estimated parameters, we have used an approximation of 

the inverse of the Fisher information matrix as the asymptotic covariance matrix for the estimated 

parameters. Even though parameter estimates that are obtained by minimizing the proposed 

objective function will, in general, be biased for nonlinear models, they can be better in the sense 

of mean-square-error, than classical ML estimates, especially when a small number of measured 

data is used.  The proposed AMLE parameter estimates are much easier to compute than the 

corresponding classical ML parameter estimates because it does not require recursive solution of 

Riccati equations to obtain the state covariance matrix. 

We have used a simple nonlinear CSTR with two states in a simulation study to examine the 

effectiveness of the proposed algorithm and the sampling properties of the parameter and 

intensity estimates. The measurement noise variances are assumed to be known, but the process 

noise variances are unknown. Initial state conditions were also assumed to be unknown. Four 

model parameters, along with two process noise intensities and two state trajectories, were 

estimated. Monte Carlo simulations showed that bias in the model parameter estimates is 

negligible. The process disturbance intensity estimates though, were slightly biased.  This bias 

may result from Laplace’s approximation, which is used in the computation of the disturbance 
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intensity estimates. Overall, AMLE did a good job in jointly estimating the model parameters, 

state trajectories and process noise intensities. Theoretical confidence intervals were obtained for 

the model parameter estimates. These approximate confidence intervals are in agreement with the 

Monte Carlo results. We compared our parameter and disturbance intensity estimates with those 

from a classical ML-based method, using the same simulated data. The AMLE algorithm 

converged faster than the classical ML-based algorithm. We believe that AMLE is a potentially 

appealing parameter estimation algorithm that should be further studied and tested for more 

complicated parameter estimation problems. Some of the beneficial features of the proposed 

AMLE method are as follows: simplicity of implementation, recognizing and taking into account 

both process disturbance (model approximations) and measurement noise, handling unknown 

disturbance intensities and non-stationary disturbances, efficiently handling unknown initial state 

conditions using empirical spline functions, handling irregularly-sampled and missing state 

observations, producing good parameter estimates and approximate confidence intervals.     

Industrial-scale problems are more complicated than the simple example presented here. Further 

studies are underway to investigate the performance of AMLE in practical problems with larger 

numbers of inputs, outputs, and parameters, and disturbances.    
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5.8 Appendix 
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Figure 5.6. Boxplots for AMLE parameter estimates 
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Figure 5.7. Boxplots for AMLE process intensity estimates 
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Figure 5.8. Zoomed boxplots for AMLE process intensity estimates 
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5.9 Nomenclature 

a CSTR model parameter relating heat-transfer coefficient to coolant flow 

t

 

b CSTR model exponent relating heat-transfer coefficient to coolant flow 

t

 

ci Number of spline coefficients for state i  

CA Concentration of reactant A  kmol m-3 

CA0 Feed concentration of reactant A kmol m-3 

CAs Concentration of reactant A at steady state kmol m-3 

Cp Reactant heat capacity cal g-1K-1 

Cpc Coolant heat capacity cal g-1K-1 

E{.} Expected value  

E/R Activation energy over the ideal gas constant K 

F Reactant volumetric flow rate m3 min-1 

Fc Coolant volumetric flow rate m3 min-1 

f  Nonlinear function   

I Fisher information matrix  

kref Kinetic rate constant at temperature Tref min-1 

l Likelihood function  

Ni Number of observations of state i  

p(.) Probability density function  

tj j-th measurement time  min 

T Temperature of reactor contents K 

T0 Reactant feed temperature K 

Tcin Inlet temperature of coolant K 

Ts Temperature of reactant at steady state value K 

Tref Reference temperature K 

ui Input to the differential equation for state i  
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V Volume of the reactor m3 

x, x State variables  

x~ B-spline approximation of the state  

y Noisy output measurements   

ym Stacked vector of measured outputs  

zα/2 Normal random deviate corresponding to an upper tail area of α/2  

α Significance level for confidence intervals  

iβ  i-th B-spline coefficient   

β  Vector of B-spline coefficients  

(.)δ  Dirac delta function  

rxnH∆  Enthalpy of reaction cal g-1 K-1 

ιε  Normally distributed measurement noise for state i   

ιη  White Gaussian process disturbance for differential equation of the i-th 

t t

 

θ  Vector of model parameters  

ρ  Density of reactor contents  g m-3 

cρ  Coolant density  g m-3 

2
miσ  Measurement noise variance for the i-th state  

2
piσ  Process noise intensity of stochastic differential equation for state i  

iφ  i-th B-spline basis function  

φ  Matrix containing all iφ s  

AMLE Approximate Maximum Likelihood Estimation  

CSTR Continuous Stirred Tank Reactor  

MAP Maximum A Posteriori  

MIMO Multi-Input Multi-Output  

ML Maximum Likelihood  

ODE Ordinary Differential Equation  
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PEN Model-based penalty  

SISO Single-Input Single-Output  

SSE Sum of Squared Errors  
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Chapter 6 
 
Approximate Maximum Likelihood Parameter Estimation for 
Nonlinear Dynamic Models: Application to a Lab-Scale Nylon 
Reactor Model 
 

6.1 Abstract 

In the previous chapters, AMLE was developed and tested using a simple two-state CSTR 

simulation study. The main objective of this chapter is to evaluate the performance of AMLE by 

applying this algorithm to a practical chemical engineering example.   

First, a lab-scale nylon 612 reactor model, initially developed by Schaffer et al. (2003b) and 

subsequently modified by Zheng et al. (2005) and Campbell (2007), is re-evaluated using 

additional data so that the model structure can be further improved. Then the AMLE algorithm is 

used for parameter and state estimation in the nylon reactor model. The nylon reactor model 

equations are represented by stochastic differential equations (SDEs) to account for any 

modelling errors or unknown process disturbances that enter the reactor system during 

experimental runs. In this chapter, we demonstrate that AMLE can address difficulties that 

frequently arise when estimating parameters in nonlinear continuous-time dynamic models of 

industrial processes. Among these difficulties are: different types of measured responses with 

different levels of measurement noise, measurements taken at irregularly-spaced sampling times, 

unknown initial conditions for some state variables, unmeasured state variables, and unknown 

disturbances that enter the process and influence its future behaviour.     

This chapter was submitted as a journal paper to Industrial Engineering and Chemistry Research. 
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6.2 Introduction 

Parameter estimation in dynamic models that are described by a combination of nonlinear 

algebraic and differential equations is a challenging problem. The complexity of the problem 

increases significantly if it is acknowledged that there are two different types of random errors 

that influence the measurements obtained from dynamic processes: measurement errors and 

process disturbances.  Measurement errors are problematic because they can make it difficult for 

modellers to obtain reliable parameter estimates, but random process disturbances can be even 

more problematic, because they influence the future behaviour of the process and therefore future 

measurements of process outputs. For example, consider an unknown disturbance that influences 

the temperature in a chemical reactor. The change in temperature can alter the rates of chemical 

reactions and can influence several different types of process measurements and how they change 

over time.  Modellers often have knowledge about the quality of the measurements that are 

available for parameter estimation (e.g., good estimates of measurement variance from repeated 

measurements or from sensor suppliers), but they do not have a priori knowledge about the 

quality of their model equations, which are only approximate  representations of the true physical 
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process due to disturbances that are not included in the model equations and to simplifying 

assumptions that are made during model development. 

Approximate Maximum Likelihood parameter Estimation (AMLE) is a novel parameter 

estimation algorithm that we have recently developed to address the problem of parameter 

estimation in continuous-time nonlinear dynamic models, in which model discrepancies are 

significant (Poyton et al., 2006; Varziri et al., 2008a, 2008b, 2008c).  A convenient way to 

account for modelling errors and process disturbances is to include Gaussian noise terms on the 

right-hand side of the state equations, thereby converting ordinary differential equation models to 

stochastic differential equation (SDE) models (as shown in equation (6.1)). Until now, the AMLE 

algorithm has only been tested using simulated data and simple dynamic models of single-phase 

continuous stirred-tank reactors (Poyton et al., 2006; Varziri et al., 2008a, 2008b, and 2008c).  

The purpose of this article is twofold: we examine and demonstrate the application of AMLE to 

parameter and state estimation for a two-phase lab-scale nylon reactor model, and we improve 

and re-evaluate the structure of the nylon reactor model, originally developed by Schaffer et al. 

(2003b), to ensure model adequacy and parsimony.  The nylon reactor model has four states, 

which are described by one algebraic equation and three nonlinear differential equations. Only 

two of the four states are measured, and these measurements were made at irregular sampling 

times that were convenient for the experimenters (Schaffer et al., 2003b; Zheng et al., 2005). 

Parameter estimation in the nylon reactor model has been discussed in several articles (Schaffer et 

al., 2003b; Zheng et al., 2005; Ramsay et al., 2007). Researchers have proposed several different 

versions of the reactor model in an effort to reduce the correlations among parameter estimates 

and to keep the model parsimonious while maintaining model adequacy. Most of these proposed 

changes involve a semi-empirical expression for the apparent polycondensation equilibrium 

constant, Ka (shown in equation (6.18)). A contribution of the current article is to consider several 
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candidate expressions for Ka and study their performance using steady-state data arising from 

several different experiments (Schaffer et al., 2003b; Zheng et al., 2005; Zheng et al. 2007). As a 

result, a more appropriate expression for Ka is selected.  Parameters in the overall dynamic model 

are then estimated using all of the available steady-state and dynamic data. It is shown that the 

AMLE framework readily facilitates the integration of additional steady-state or dynamic 

information that might be available from different sources.   

We show how AMLE can address frequently-encountered parameter-estimation difficulties such 

as working with multi-response models with different levels of measurement accuracy, extracting 

information from multiple experimental runs with non-uniform sampling times, unmeasured 

states, unknown initial conditions and unknown levels of modelling error (due to disturbances and 

structural imperfections). Our objective in developing AMLE was to produce a straightforward 

parameter estimation algorithm that can help modellers to obtain more-reliable parameter 

estimates and model predictions that can be used in nonlinear model-based control and 

optimization schemes.  

In Section 6.3, the AMLE algorithm is briefly reviewed. In Section 6.4, the lab-scale nylon 

reactor model is introduced, followed by a model-selection analysis using steady-state data from 

the literature. AMLE is then used for parameter estimation in the proposed overall dynamic 

model in Section 6.5. Conclusions are presented in Section 6.7.     

6.3 Review of the AMLE Fitting Criterion       

Maximum Likelihood (ML) estimation is a very popular method for parameter estimation in a 

wide variety of model types due to its desirable asymptotic properties (Seber and Wild, 1989; 

Bates and Watts, 1988). Unfortunately, ML estimation in nonlinear Stochastic Differential 

Equations (SDEs) is generally very difficult. This difficulty arises because when the initial state 
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condition with an assumed probability distribution function (PDF) is propagated through a 

nonlinear mapping, calculating the propagated PDF can be very complex and computationally 

intensive (Timmer, 2000). Available parameter estimation algorithms try to approximate the 

mapped PDF using techniques such as local linearization and Extended Kalman filtering, 

deterministic sampling techniques, or ensemble averaging (Jazwinski, 1970; Maybeck, 1982; 

Nielsen et al., 2000; Roweis and Ghahramani, 2001; Evensen, 2003; Julier and Uhlmann, 2004; 

Voss et al., 2004; Kristensen et al., 2004).           

AMLE is an approximate ML-based method that maximizes the conditional joint density function 

of the states and measurements, given the model parameters, while assuming a piece-wise 

polynomial discretization scheme for the time evolution of the states of the dynamic model.  

AMLE transforms the problem of state and parameter estimation in SDEs into a nonlinear 

minimization problem that does not require the time evolution of the PDF of the model states, due 

to the convenient form of its objective function (shown in eq. (6.7)). In the following paragraphs 

we briefly review the AMLE algorithm. We refer the reader to Varziri et al. (2008b & 2008c) 

(Chapter 5 and Chapter 3) for a more detailed description. To keep the notation simple, a Single-

Input Single-Output (SISO) model with a known initial condition is used; extension to Multi-

Input Multi-Output (MIMO) systems with unknown initial conditions is straightforward (Varziri 

et al., 2008c) (Chapter 3). 

Consider the following continuous-time stochastic dynamic model*: 

                                                      

* This dynamic model can be more rigorously written as: )()),(),(()( tddttutxftdx ω+= θ  where 

)(tdω is the increment of a Wiener process (Maybeck, 1979). 



 

  169

)()()(

)(

)()),(),(()(

00

mjmjmj ttxty

xtx

tηtutxf
dt

tdx

ε+=

=

+= θ

 (6.1) 

ℜ∈x  is the state variable, ℜ∈u  is the input variable and ℜ∈y  is the output variable. 

pℜ∈θ is the vector of unknown model parameters and f: ℜ→ℜ×ℜ×ℜ p  is a nonlinear 

function of the state variables, the input variables and the parameters. We assume that f satisfies 

some regularity conditions (Kloeden and Platen, 1992) so that eq. (6.1) has a unique solution. ε  

is a zero-mean uncorrelated Normal random variable with variance 2
mσ . )(tη  is a continuous 

zero-mean stationary white-noise process with covariance matrix { } )()()( τδτ QtηtηE =+ , 

where Q is the corresponding power spectral density and )(.δ  is the Dirac delta function.  The 

random noise trajectory η(t) is a series of random steps with a switching time of ∆t, where ∆t→0.   

For the corresponding discrete-time white-noise process (Maybeck, 1979): 
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tjηtjηE  (6.2) 

where 1j  and 2j are integers and t∆ is the sampling period. We also assume that the process 

disturbance )(tη  and the measurement noise )(tε are not correlated.  

The set of times at which the measurements are available is denoted by mjt ( nj L1= ). The 

measurement times mjt  do not need to be uniformly spaced. The vector of outputs at observation 
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times )( mjty ( nj L1= ) and its corresponding state vector of true values )( mjtx ( nj L1= ) are 

denoted by my  and mx respectively. 

In AMLE, the objective is to find estimates of )(tx and θ  (assuming at this moment that Q and 

2
mσ  are known constants) that minimize the following function: 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −+

−− ft

tm

mm
T

mm dttutxf
dt

tdx
Q

0

2

2 )),(),(()(
2
1

2
)()(

θ
xyxy

σ
 (6.3) 

where [t0,tf] is the time span over which the measurements are taken.  Note that minimizing 

objective function (6.3) corresponds to maximization of a likelihood function, as described by 

Varziri et al. (2008b, 2008c) (Chapter 5 and Chapter 3). The first term in objective function (6.3) 

is a sum of squared errors (SSE) term, arising from the sum of squared deviations of the estimated 

states from their corresponding observations.  The second term is a model-based penalty term, 

which ensures that the estimated state trajectory is an approximate solution of the differential 

equation.  The relative sizes of the measurement noise variance, 2
mσ , and the process disturbance 

intensity, Q, determine whether the optimization focuses more on minimizing the SSE term 

versus minimizing the model-based penalty.   

Since )(tx is an unknown curve, minimizing (6.3) over )(tx and θ  is an infinite-dimensional 

optimization problem (a calculus of variations problem) which is generally hard to solve.  

To turn the problem into a finite-dimensional problem, the state trajectory, )(tx , in AMLE is 

assumed to be sufficiently accurately approximated by a basis function expansion. B-splines 

provide a convenient basis due to their compact support and other favourable properties (Ramsay 

and Silverman, 2005; Poyton et al., 2006; Ramsay et al., 2007): 
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where iβ , ci L1=  are B-spline coefficients and )(tiφ ci L1=  are B-spline basis functions (de 

Boor, 2001).  Note that eq. (6.4) can be written in matrix form: 

βφ )()(~ ttx T=  (6.5) 

 where )(tφ  is a vector containing the c basis functions and β is vector of c spline coefficients. 

The B-spline expansion, )(~ tx , can easily be differentiated: 
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Note that other basis functions could readily be used instead of B-splines (Ramsay and 

Silverman, 2005). 

By substituting (6.5) and (6.6) into (6.3) we have the following finite-dimensional optimization 

problem: 
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 (6.7) 

Minimizing (6.7) provides point estimates for the model parameters and the spline coefficients.  

The spline coefficients can then be used to determine the estimated state trajectory )(~ tx . To 

obtain approximate confidence intervals for the model parameters, the inverse of the Fisher 

information matrix can be used as an approximation to the covariance matrix of the combined 

vector of states and parameters (Seber and Wild, 1989; Varziri et al., 2008a).  In engineering 

applications, reasonable estimates for the measurement noise variance are usually available either 

from repeated experimental observations or from the manufacturer of the measurement device. 

Obtaining a reasonable estimate for the process disturbance intensity, Q, however, is very 
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difficult. Assuming known measurement noise variance, 2
mσ , but unknown process disturbance 

intensity Q, Varziri et al. (2008b) (Chapter 5) used a ML argument (Heald and Stark, 2000) to 

propose a two-step optimization scheme that allows for estimating the process disturbance 

intensities along with model states and parameters. The idea is to select Q to ensure that the 

estimated measurement noise variance 2ˆmσ  is close to the known value of 2
mσ .  The proposed 

two-step optimization scheme can be summarized as follows:   

Outer optimization problem: 
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(6.8) 

 

Inner optimization problem: 
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(6.9) 

The variance estimate, 2ˆmσ , in objective function (6.8) is the approximate ML estimator developed 

by Heald and Stark (2000):   
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where A is the Hessian matrix of objective function (6.9) with respect to the state variables, 

evaluated at βθ ˆ,ˆ , which are obtained as the solution of the inner optimization problem. The outer 

optimization minimizes the discrepancy between the estimated and the known measurement 

variance, while the inner optimization minimizes the criterion in (6.7) using the value of Q 

obtained from the outer optimization.  The converged results of this overall optimization problem 

provide the modeller with βθ ˆ,ˆ  and Q̂ . θ̂  is the desired estimate for the fundamental model 
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parameters. The estimated spline coefficients β̂  can be used to obtain the estimated state 

trajectory x~, while Q̂  provides information about the magnitude of the model uncertainty and 

process disturbances. 

6.4 Case study: Lab-scale Nylon 612 reactor model 

6.4.1 Nylon 612 mathematical model 

Nylons are widely used polymers which are produced according to the following reaction 

between carboxylic acid end-groups (C) and amine end-groups (A) to produce amide linkages (L) 

and water (W): 

 W           L             A    C     ++
+↔+

      
OH  -CONH--NH  COOH- 22   

The forward reaction is a polyamidation reaction in which -COOH and -NH2 are joined to form 

-CONH- and H2O and the reverse reaction is a hydrolysis reaction in which the amide link 

-CONH- is broken.  

The purpose of the experimental study and modelling of nylon reactions conducted by Shaffer et 

al. (2003b) and Zheng et al. (2005) is to gain quantitative knowledge of the kinetics and 

equilibrium of the polycondensation reaction at the high temperatures and low water contents that 

are experienced in the final stages of commercial polyamidation processes. Nylon 612 was 

chosen as the study material because thermal degradation reactions are expected to be negligible 

(Schaffer et al. 2003b) for this particular type of nylon.       

Researchers do not agree unanimously on the kinetic rate order for the above reaction, and both 

second and third-order reaction rates have been reported under different conditions. Based on 

their experimental analyses, Zheng et al. (2005) concluded that the process reaction rate is 
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second-order (first-order with respect to carboxyl ends and first-order with respect to amine 

ends). The following equations describe the dynamic behaviour of the contents of a well-stirred 

melt-phase nylon polymerization reactor. Please refer to Schaffer et al. (2003b) and Zheng et al., 

(2005) for detailed information about the development of the material-balance equations. 

),(1
a

p C,A,L,Wf
K
LWCAk

dt
dC

dt
dA

dt
dL θ=⎟⎟
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is the temperature-dependent polycondensation rate constant and kp0 is the polycondensation rate 

constant at the reference temperature, T0=549.15 K, which is chosen to be in the middle of the 

temperature range over which the experiments were conducted. Ka is the apparent 

polycondensation equilibrium constant, and km is a mass-transfer coefficient that was estimated 

by Schaffer et al. (2003b) to be km=24.3 h-1 for the conditions encountered in the lab-scale reactor. 

Zheng et al. (2005) used this estimated value of km in their work. 

From eq. (6.11) we note that the rates of consumption of amine ends and carboxyl ends are the 

same and hence, their corresponding concentrations A and C differ by a constant only. This 

relationship was confirmed by the experimental data provided by Zheng et al. (2005). 

The equilibrium concentration of water in the polymer melt, Weq, can be approximated using a 

Flory-Huggins-based expression (Schaffer et al., 2003a): 
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where the saturation vapour pressure of the water in the gas phase, sat
wP , can be calculated using 

the Wagner equation: 
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Pc and Tc are the critical pressure and temperature of water, respectively. 

The concentration of amide linkages, L, in the molten Nylon 612 can be obtained from the 

following material balance equation (Schaffer et al., 2003b): 

W.A-.C-.L 02181058151151023.155 6 −=  (6.16)

Note that since the concentration of the amide linkages L can be computed algebraically from eq. 

(6.16), only the differential equations for A, C, and W need to be solved.  

To allow for possible modelling errors and process disturbances, stochastic terms can be added to 

the differential equations:  

Weq

C
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dt
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 (6.17)

 where Aη , Cη , and Wη  are continuous-time Gaussian disturbances with intensities QA QC and 

QW [(mol Mg-1)2/hr], respectively. 



 

  176

Schaffer et al. (2003b) noticed that the apparent polycondensation equilibrium constant Ka 

depends on the water concentration as well as the temperature. The following semi-empirical 

expression was therefore proposed: 
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where the activity coefficient for water in the molten nylon (Schaffer et al., 2003a) is given 

by ⎟
⎠
⎞

⎜
⎝
⎛ −=

TW
3613624.9expγ  and 0Wγ =20.97.  The empirical eqmWb +  term in the numerator 

of Schaffer’s model accounts for the influence of water on the activity coefficients of amine ends, 

carboxyl ends and amide links in the polymer melt. 

Zheng et al. (2005) were concerned that activity coefficients for the end groups and amide links 

might also be influenced by temperature, and therefore modified the Ka equation as follows:  
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Six parameters, THEKk ],,,,,[ 0ap0 ∆= βαθ , were estimated in their model using a Weighted 

Nonlinear Least-Squares (WNLS) approach similar to that of Schaffer et al. (2003b). A weighted 

sum of squared errors was minimized while solving the model differential and algebraic 

equations. Initial values of the states were assumed to be known and were not estimated. The 

initial value, A0, used to solve for the amine end-group concentration trajectory was set at the 

measured value from the first polymer sample taken from the reactor. Because the carboxyl end-

group concentration measurements were very noisy, the initial carboxyl end-group measurement 

was not reliable enough to use as the initial condition, C0.  Instead, the average difference 

between carboxyl and amine end group concentration measurements during each experimental 
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run, AC − , was computed. This average difference was added to A0 to determine the initial 

carboxyl concentration ( ACAC −+≈ 00 ) for each experimental run.  It will be shown that the 

use of empirical spline functions in the AMLE algorithm naturally facilitates estimation of 

unknown initial state conditions, while properly accounting for different measurement variances 

for measured states, so that Zheng’s approach for determining C0 is not required.  Many of the 

parameter values estimated from Zheng’s model and the available data showed very high 

correlations.   

Campbell (2007) and Ramsay et al. (2007) considered parameter estimation in Zheng’s nylon 

reactor model using a generalized smoothing (GS) approach. Like AMLE, the GS approach 

solves a two-step minimization problem. However, there are some important differences that 

distinguish AMLE from GS. The main differences are in the form of the outer optimization 

objective function.  In the GS approach, the outer objective function is a WNLS objective 

function that is minimized over the model parameters θ .  The inner objective function in GS 

contains a tuning parameter that is adjusted manually by the user to account for possible model 

imperfections.  A major advantage of the AMLE algorithm over the GS approach is that AMLE 

eliminates the requirement of manually tuning any weighting factors or process disturbance 

intensities.  In AMLE, the disturbance intensities Q are estimated using the outer optimization so 

that the estimated measurement noise-variance is consistent with prior knowledge about the 

quality of the measurements.   

Because of the high correlations among the parameter estimates, Campbell (2007) modified the 

model proposed by Zheng et al. (2005) to produce a six-parameter model with a slightly different 

expression for Ka. Based on statistical considerations such as analyzing parameter-estimate 

correlations and estimated confidence intervals, Campbell concluded that the six-parameter 
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model was over-parameterized. A revised four-parameter model was proposed by removing the 

temperature dependency from kp (i.e., setting the activation energy E to 0) and modifying the 

apparent polycondensation equilibrium constant Ka model as follows: 
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In the current article, we use additional steady-state data (Zheng et al., 2007) and nonlinear 

regression to select an adequate and parsimonious semi-empirical model for Ka. 

6.4.2 Model selection for Ka 

The proposed strategy for Ka model selection is based on the definition of the apparent 

polycondensaton equilibrium constant (Zheng et al., 2005): 

eqeq

eqeq
a AC

WL
K =  (6.21)

where the subscript “eq” indicates equilibrium concentrations. Steady-state data will be used to 

provide these equilibrium concentrations. From the steady-state data at our disposal, we can 

calculate Ka and treat it as a measured response (
aKy ). The variance 2

aKσ  of the error,
aKε , in this 

response stems not only from the measurement noise, but also the process disturbances that 

introduce variability into the values of Aeq and Ceq. Using repeated measurements of Aeq and Ceq at 

the same water concentration Weq and temperature T, a pooled variance estimate for Ka was 

calculated to be 94.9. This variance estimate accounts for both sources of variability, namely the 

measurement noise and also the process disturbances. Since the steady-state measurements were 

obtained at time points that are sufficiently far apart, it is reasonable to assume that the 

correlation among them is negligible and to treat them as replicates.     
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If we denote any postulated semi-empirical model for Ka by: 

aaaa KeqKKK ε,T,Wfy += )(θ  (6.22)

a nonlinear regression problem can be formulated to estimate the parameters 
aKθ and to study the 

model adequacy. Looking at the semi-empirical Ka models previously studied (eqs. (6.18), (6.19) 

and (6.20)), we note that these models share the common structure of:   
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and that they differ only in the expression for 
LAC

LACΓ
γγγ
γγγ

00

0= , which is an unknown ratio of 

activity coefficients at the current water concentration divided by the same activity coefficients 

when Weq→0.  Using this common structure, we have examined eight different empirical 

expressions for Γ  shown in Table 6.1.   

               

Table 6.1.  Γ  expressions considered for eq. (6.23)  

 Γ expression Sum of Squared Errors 

(1) 
eqbWaΓ +=  4058.13 

(2) ))exp(1( eqWb/TaΓ ++=  3956.58 

(3) 
eqaWΓ += 1  4058.13 

(4) 1=Γ  12955.14 

(5) ))exp(1(1 /bWΓ eq−−+=  5351.68 

(6)       ))exp(1(1 /bWaΓ eq−−+=  3573.92 

(7)       
eqeq bWWaΓ ++= 1  3487.91 

(8) 1+= eqWaΓ  3573.14 
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Expressions (1-3) in Table 6.1 correspond to the models proposed by Schaffer et al., Zheng et al. 

and Campbell, respectively.  Expression (4) assumes that the activity coefficient ratio does not 

depend on the water concentration or the temperature.  Expressions (5-8) were selected because 

steady-state data (plotted in Figure 6.1) indicate that Γ  depends on Weq in a nonlinear fashion. 

For each of these eight expressions, the nonlinear regression problem in (6.22) was solved, using 

the steady-state data in the Appendix 6.9.1. Parameter estimates were obtained using the 

nonlinear least-squares routine “nlscon” (Nowak and Weimann, 1991) in Matlab. Based on the 

sum of squared residuals, qualitative analysis of residual plots and also the approximate 

individual confidence intervals for parameter estimates, we concluded that the eighth expression 

1+= eqWaΓ  is the most suitable. It provides an adequate fit for the steady-state data while 

maintaining model parsimony.  Even though, expression (7) results in a smaller sum of squared 

error, because of high correlation among the parameter estimates and also approximate 

confidence intervals that contained zero, this model was rejected. In this study we used steady-

state information from the original six sets of experimental runs conducted by Schaffer et al. 

(2003b) and Zheng et al. (2005) (Table 6.7 to Table 6.12; the steady-state points are distinguished 

by placing an asterisk sign “*” next to the corresponding measurement times) and also three new 

sets of experimental runs that were conducted to study the effects of Sodium Hypophosphite 

Catalyst (SHP) on the nylon 612 polycondensation kinetics (Zheng et al. 2007) (Table 6.13 to 

Table 6.15, which only contain steady-state data).  Note that the SHP catalyst influences the rate 

of the forward and reverse polycondensation reactions, but it does not affect the reaction 

equilibrium.   
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Figure 6.1. Ka versus Weq for T=290 ºC 

 

For the six experimental runs conducted without a catalyst, the first three were conducted at 

temperatures 263, 271 and 281 ºC, respectively while the last three runs were conducted at 284 

ºC. The three experimental runs with the catalyst were conducted at T = 290 ºC. During each 

experimental run, the concentrations of A and C are measured at several non-uniformly-spaced 

times. The standard deviations of the A and C concentration measurements are known to be 

6.0=Aσ  mol Mg-1, and 4.2=Cσ  -1Mg mol respectively (Schaffer et al., 2003b). Since the 

measured concentration of A is more accurate, more A concentration measurements than C 

concentration measurements were made during some of the runs. The water concentration W was 

not measured; therefore, W is treated as an unmeasured dynamic state. However, Weq, which is a 

steady-state water concentration in the molten nylon can be computed from the input variable, 

WP , using eq. (6.14). 
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Figure 6.2 shows predicted values of Ka along with observed Ka values calculated from steady-

state measurements at different temperatures and water concentrations, using the selected 

expression for Γ.  Note that multiple predicted values are shown for Ka at some of the 

temperatures in Figure 6.2a, because two or three different steady-state water concentrations were 

achieved in some experimental runs.  The values of Ka that were computed from the experimental 

data are close to the corresponding predicted Ka values. Residual plots (using the selected Γ 

model, expression 8 in Table 6.1 ) are presented in Figure 6.3 and Figure 6.4. The predicted Ka 

values appear to be consistent with the Ka calculated from the measurements. The residual plots 

show no particular trend and the residuals are scattered randomly about the zero line.  Based on 

these results, we conclude that the following is a reasonable empirical model for the apparent 

polycondensation equilibrium constant. 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
=

0
0

0

11∆exp
1

TTR
HK

/γγ

Wa
K a

WW

eq
a  (6.24)

Note that all of the other candidate expressions for Ka obtained using the various expressions for 

Γ in Table 6.1, either produced approximate confidence intervals for some of the parameters that 

contained zero, or resulted in a larger sum of squared prediction errors than the selected 

expression for Γ.  The estimated parameter values are presented inTable 6.2. As shown in the 

next section, these estimated values are used as initial parameter guesses for the overall dynamic 

parameter estimation problem, where they are estimated along with kp0 and E. 

Table 6.2. Estimated parameter values for eq. (24) obtained from steady-state nylon 612 

polymerization data 

a = 0.60 Ka0 = 22.01 H∆ =-39.62 
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Figure 6.2. Predicted Ka (+) obtained using eq. (24) and observed Ka (•) calculated from 

experimental data plotted versus the measured reactor temperature T (top plot) and versus the 

calculated water concentration in the molten polymer Weq (bottom plot) using steady-state data 

from all nine experimental runs 

 

6.5 Parameter estimation results 

In this section, we use the objective function of the form given in (6.8) and (6.9) to estimate five 

parameters, THaEKk ],,,,[ 0ap0 ∆=θ , along with three process disturbance intensities 

Q=[QA, QC, QW]T and three state trajectories in the nylon 612 reactor model described by 

equations (6.13) to (6.17) and (6.24).   

 

To form the AMLE objective function, we use B-spline expansions to approximate state 

trajectories. For the i-th experimental run for A, C, and W,  from (6.5): 

i
T

ii ttA AA~ )()( βφ=  (6.25)
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i
T

ii ttC CC~ )()( βφ=  

i
T

ii ttW WW~ )()( βφ=  

Since W is not measured, there is no SSE term associated with this component. The AMLE 

objective function corresponding to the i-th run for this multi-response model with an 

unmeasured state (Varziri et al., 2008a) (Chapter 4) becomes: 
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 (6.26)

NAi and NCi are the numbers of A and C measurements in the i-th experimental run respectively. 
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Figure 6.3. Residuals (observed Ka - predicted Ka  ) versus T for steady-state data from all of the 

nine experimental runs 
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Figure 6.4. Residuals  (observed Ka - predicted Ka  ) versus Weq for steady-state data from all of 

the nine experimental runs 

  

Since initial conditions for A and C are assumed to be unknown, they are included in the 

corresponding SSE terms, and the B-spline expansions are not constrained to the initial conditions 

as they would be if the true initial values were known.  

Since only six experimental runs without the catalyst are used in the overall parameter estimation, 

the inner AMLE objective function for these six runs becomes: 

∑
=

=
6

1i
iinner JJ  (6.27)

Using the objective function in (6.27), the extra steady-state information available from the three 

experimental runs with catalyst, which was used to obtain the initial estimates in Table 6.2, would 
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be disregarded. To include this extra information, objective function (6.27) can be modified as 

follows: 

( )
23

1
2

6

1
),,(

2
1 ∑∑

==

−+=
i

eqKKK
Ki

iinner TWfyJJ
aaa

a

θ
σ

 (6.28)

where ),,( TWf eqKK aa
θ is defined by (6.24). This modification arises naturally from the ML 

development when 
aKy is considered as an additional non-dynamic measured response 

(Appendix 6.9.2).    

To form the objective function for the outer optimization problem, note that the approximate ML 

estimators for the measurement variances for A and C can be expressed as: 
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where 1−
xA is the inverse of the Hessian of the inner objective function Jinner with respect to x~. Eq. 

(6.29) can be rearranged (Heald and Stark, 2000) as 
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where )(ˆ/1 12 −= ATracexx σν . In this article, the known values of the measurement noise 

variance, 2
xσ , is used in place of 2ˆ xσ  to calculate xν . The denominator in (6.30) is the degrees of 

freedom x
i

xix NDOF ν−= ∑
=

6

1
. 

The outer optimization problem can then be written as: 
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Note that the terms in objective function (31) are weighted by ADOF  and CDOF  to properly 

account for the different numbers of available measurements for the amine and carboxyl end 

groups.   

For three of the parameters, namely a, Ka0, and H∆ , that were previously estimated using the 

steady-state data (Section 6.4.2), the values in Table 6.2, were used as initial parameter guesses. 

For the rest of the parameters, estimated values reported by Zheng et al. (2005) were used as 

initial values 0θ  as shown in Table 6.4. 

The initial values for the spline coefficients iAβ and iCβ , (i=1..6) were obtained by fitting a 

smoothing spline (Ramsay and Silverman, 2005) to the measured data.  Since water concentration 

is not measured, the initial guesses for the spline coefficients iWβ , (i=1..6), were obtained by 

fitting a smoothing spline to Weq which was calculated from (6.14). An alternative would be to 

solve the model differential equations and fit a smoothing spline to the solution for W. Based on 

our experience, obtaining good (non-zero) initial guesses for B-spline coefficients is not 

necessary but can reduce the convergence time. The initial values of the process disturbance 

intensities were arbitrarily set to 1. The estimated intensities, Q̂ , are shown in Table 6.3. The 

estimated parameters, θ̂ , are reported in Table 6.4.  The results in Table 6.3 and Table 6.4 were 

obtained using the following stopping conditions:  for the inner problem, the optimizer stopped 

when the objective function changed by less than 1E-8; the outer optimizer stopped when the 

value of the objective function changed by less than 1E-2.  
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Table 6.3. Process disturbance intensity estimates.  All intensities have units of [(mol Mg-1)2/hr] 

Intensity Estimate 

QA 4.37 

QC 15.56 

QW 0.88 

 

The final B-spline fits using the estimated parameters and coefficients are shown in Figure 6.5. 

The numerical solution of the model equations, which does not account for the stochastic process 

disturbances, is shown in Figure 6.6.  Initial values for the output trajectories in Figure 6 were 

determined using the AMLE algorithm.  Note that the B-spline curves pass very close to the A 

measurements, and they smooth out some of the noise associated with the noisier C 

measurements because we prescribed that the standard deviation of the known noise variance 

associated with C is larger than that of A ( 6.0=Aσ  mol Mg-1 and 4.2=Cσ  mol Mg). 

For inferences on the uncertainty associated with the parameter estimates, we approximate the 

Fisher information matrix using the Hessian, (H), of the inner objective function with respect to 

the model parameters θ evaluated at the converged values. Approximate 100(1-α)% confidence 

intervals for the model parameters can be obtained as follows (Chapter 4): 

)) ˆ((diagz  ˆ 1
/2 θHθθ −×±= α  (6.32)

Care should be taken in interpreting the confidence intervals obtained from (4.15); these intervals 

arise from linear approximations and also do not take into account the uncertainty in the estimates 

of the process disturbance intensities. 
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Figure 6.5. Optimal B-spline trajectories of A, C, and W  for six experimental runs 

( ___, B-spline fit; • , measured data) 
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Figure 6.6. Numerical solution of model equations (without stochastic terms) for A, C, and W 

trajectories for six experimental runs using the estimated parameters. ( ___, numerical model 

solution; • , measured data) 
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Approximate 95% confidence intervals for the parameters are presented in Table 6.4 and a 

correlation matrix for the parameter estimates is presented in Table 6.5.  The confidence interval 

corresponding to the activation energy E contains zero. This is consistent with the findings of 

Campbell (2007) and Ramsay et al. (2007). Although this parameter could reasonably be zero 

from a purely statistical point of view, physical insight tells us that the activation energy is a 

positive constant.  Unfortunately, the dynamic data are not rich enough to provide sufficient 

information to estimate E reliably.   Table 6.5 indicates that correlations between the parameter 

estimates are small, except for between Ka0 and a.  These two parameters are nearly perfectly 

negatively correlated. 

 

Table 6.4. Point estimates and approximate 95% confidence intervals for the nylon reactor model 

parameters 

Parameter Initial Guess Estimate Lower 

B d
Upper Bound

kp0 0.019 0.0129 0.0106 0.0152 

Ka0 22.01 36.605 27.247 45.963 

E 45.9 2E-4 -53.434 53.435 

a  0.6 0.286 0.170 0.402 

H∆  -39.62 -51.012 -60.208 -41.815 

 

To examine the robustness of the proposed algorithm to poor initial parameter guesses, the 

AMLE parameter estimation was repeated using the arbitrary value of one as an initial guess for 

the five model parameters: [ ]T1  ,1  ,1  ,1  ,10 =θ . Despite these poor parameter guesses, the 

algorithm converged to point estimates that are nearly identical to those shown in Table 6.3 and 

Table 6.4 (identical up to the second decimal place) for the model parameters and the disturbance 

intensities. 
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Table 6.5. Correlation matrix for AMLE parameter estimates 

 Ka0 kp0 E ∆H a 

Ka0 1 -0.2478 -0.0564 -0.4858 -0.9935 

kp0  1 -0.1309 0.0542 0.2807 

E   1 0.1061 0.0480 

∆H    1 0.4659 

a     1 

 

For comparison, we also used a standard WNLS approach, which does not account for model 

imperfections and process disturbances, to estimate the model parameters. To have a fair 

comparison, we included the additional steady-state data (from the experimental runs with 

catalyst) in our WNLS analysis and we also estimated 18 initial conditions for A, C and W for the 

six experimental runs. First we used the same good initial parameter guesses that were used for 

AMLE. The estimated parameters did not move very far from the initial guesses, producing the 

parameter estimates in Table 6.6.  This result is not surprising, because the parameter estimation 

was started from the optimal WNLS parameter estimates obtained by Zheng et al. (2005).  The 

main differences between the WNLS approach reported here and that of Zheng et al. is that 

Zheng assumed known initial conditions for A, C and W and he did not use steady-state 

information from the experiments performed with catalyst.  In a second trial, when we used the 

poor initial parameter guesses, the WNLS algorithm converged to unrealistic values possibly 

corresponding to a local minimum (Table 6.6).   

The results in Table 6.6 were obtained using a relative tolerance value of 1E-12 for changes in the 

objective function and for changes in the norm of the parameter values.  Attempts to obtain 

confidence intervals for the WNLS parameters were unsuccessful because the Jacobian, evaluated 

at the converged estimates, was very ill-conditioned, indicating severe correlations among the 
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parameter estimates.  Note that Zheng et al.(2005) were able to compute approximate confidence 

intervals for their parameter estimates, presumably because they assumed perfectly known initial 

conditions. 

Table 6.6. Point estimates for the nylon reactor model parameters using WNLS method 

 
Estimation Results using 

Good Initial Guesses 

Estimation Results using 

Poor Initial Guesses 

Parameter Initial Guess Estimate Initial Guess Estimate 

kp0 0.019 0.019 1 1 

Ka0 22.01 22.0104 1 10.62 

E 45.9 45.9 1 1 

a  0.6 0.611 1 1.123 

H∆  -39.62 -39.62 1 17.81 

 

6.6 Implementation considerations 

Choice of the knot sequence 

For three state trajectories and 6 experimental runs, )1863( =×  B-spline expansions are 

required; we used a 4th order B-spine basis (3rd degree). Rich knot sequences are required to 

ensure that the state trajectories are flexible enough to capture all of the features in the dynamic 

response. To set up the bases, 60 knots were uniformly placed along the time horizon of each 

state trajectory for each experimental run. Since the partial pressure of the water in these 

experimental runs was adjusted using step changes, the water concentration in the molten 

polymer undergoes fast changes that are almost perfect steps. To accommodate the sharp 

transitions in the W response, 20 extra knots were uniformly placed in the neighbourhood (within 
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0.5 hours) of the times at which step changes occurred. These extra knots helped remove ripples 

in the final B-spline expansion of the W trajectory (Poyton et al., 2006) that were apparent using 

the initial coarse knot sequence. In addition to the refined knot sequence, coincident knots were 

placed at the times of step changes so that first and higher-order derivatives of the state 

trajectories are not continuous at the times of the step changes. Overall, 108 B-spline coefficients 

were used for each of the 18 B-spline expansions.   

Calculating the integral in the inner minimization 

To calculate the integral in (6.26), a quadrature rule was used; 4 collocation points were placed 

between every two knots. As noted by Campbell (2007) and Ramsay et al. (2007), the step input 

in Weq results in discontinuous derivatives for all three model outputs at the times of step changes. 

As a consequence, a small neighbourhood (within 1E-4 hours) around each of the times at which 

the step changes occur was removed while calculating the integral in (6.26).  

Minimization routines 

As discussed above, overall, the inner objective function in this problem should be optimized 

over 194418108 =× B-spline coefficients as well as five model parametersθ . Every time that 

the variables in the outer minimization problem (i.e., the process disturbance intensities) are 

updated, the inner problem should be solved again. Therefore, it is essential for the AMLE 

algorithm to take advantage of fast and efficient state-of-the-art minimization routines. Based on 

our experience, IPOPT (Wächter and Biegler, 2006), which is a nonlinear solver that can be used 

with AMPL ™ (Fourer et al., 2003), provides an excellent tool for solving nonlinear optimization 

problems. AMPL™ endows IPOPT with automatic differentiation capability, which eliminates 

the requirement of providing the nonlinear solver with an analytical or a numerical Jacobian.  
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Unfortunately, we were not able to implement the complete two-level minimization problem as 

appears in (6.28) and (6.31) using AMPL™, because complicated user-defined functions (such as 

the solution to an optimization problem) are not permitted in AMPL™ in a straightforward 

fashion.  Note that each iteration of the outer optimization problem requires the solution of 

another (inner) minimization problem. Instead, we opted to use nlscon (Nowak and Weimann, 

1991) which is a very efficient nonlinear solver in Matlab ™ to solve the outer optimization 

problem and the combination of AMPL™ and IPOPT to solve the larger inner minimization 

problem by calling AMPL™ from within Matlab™. 

Another issue regarding the inner minimization problem is whether the initial values of the 

parameter guesses 0θ  for each iteration should be set to the converged values from the previous 

iteration or the same initial guesses used in the first iteration. We tested both methods for this 

problem and found that both methods lead to the same point and interval estimates for the model 

parameters and disturbance intensities.        

6.7 Summary and Conclusions  

There are two main contributions in this article. First, we re-evaluated the equilibrium-constant 

expression in the nylon 612 reactor model initially developed and studied by Schaffer et al., 

(2003b) and Zheng et al., (2005). Using nonlinear regression and steady-state data from six 

experimental runs without catalyst and three runs with catalyst, a parsimonious semi-empirical 

model for Ka was selected that adequately fits the data. The main contribution is that the AMLE 

parameter estimation algorithm was applied to the proposed lab-scale nylon 612 reactor model, 

which is a difficult and practical chemical engineering example, to estimate the states, 

parameters, and process disturbance intensities. We showed that using AMLE allows the 
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modeller to take modelling errors into account and to obtain a measure of these discrepancies by 

estimating the corresponding process noise intensities. 

This parameter estimation problem involved several challenges. The first challenge is to exploit 

all the available data which consist of six dynamic experimental runs without a catalyst and also 

steady-state data from three additional experimental runs with a catalyst. It was shown that the 

AMLE objective function can easily be modified to include the additional steady-state 

information.  The nylon reactor is a multi-response model with three outputs. Two of the outputs, 

namely the concentration of carboxylic acid end-groups and also the concentration of amine end-

groups, are measured at different and non-uniform sampling times, with different levels of 

accuracy. The third output, water concentration, was not measured. It was demonstrated that 

AMLE can easily cope with these challenges, since the form of its inner objective function allows 

for incorporating non-uniform observation times and unmeasured states. Another difficulty 

encountered in the nylon reactor parameter estimation problem is that initial state conditions are 

not perfectly known and should be treated as unknowns that need to be estimated. These 

unknown initial conditions were obtained as a by-product of estimating the state trajectories using 

AMLE, which is facilitated by using B-spline expansions to represent the state trajectories.   

AMLE was successfully applied to the nylon reactor problem, and parameters, states and process 

disturbance intensities were estimated. Approximate confidence intervals were obtained for 

model parameters. The interval estimate corresponding to the activation energy parameter, E, 

contained zero, indicating that there was insufficient dynamic information available to obtain a 

reliable estimate.  

To investigate how sensitive the outcome of AMLE is to initial parameter guesses, we repeated 

the parameter estimation algorithm using arbitrary initial parameter guesses that were far from the 
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estimated values. Despite using these poor initial guesses, the algorithm converged to the same 

point estimates as it had for the good initial guesses. A standard weighted nonlinear least squares 

algorithm failed to converge to reasonable parameter estimates using the poor initial guesses, and 

converged to parameter estimates that were very close to the corresponding initial values for the 

good initial guesses. 
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6.9 Appendix  

6.9.1 Experimental data 

In Table 6.7 to Table 6.15 the following units are used: 

t: hours, A: equiv/106g, C: equiv/106g, PW: mm Hg  

Table 6.7. Experimental run conducted at T=271 ºC 

t  A C PW 

0 18.9 90.9 760 

1.03 22.7 93 760 

2 23.3 91.9 760 

2.97 23.8 89.7 760 

3.48* 24.9 91.5 760 

3.9* 24.2 94.9 760 

4.05 25.5 93.4 58 

4.25 17.3 88.3 58 

4.9 10.2 77.9 58 

5.23 6 79.3 58 

5.8 4.1 80.6 58 

6.78 4.1 76.2 58 

7.23 3.9 74.2 58 

7.5 4 75.3 58 

7.8 4.8 81.5 760 

8.17 18.4 83.2 760 

8.7 26.1 87.5 760 

9.18 26.1 89 760 

9.68 27.6 92.2 760 

10.2 25.9 90 760 

10.65 27 93.4 760 

11.05* 27.1 92.4 760 
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Table 6.8. Experimental run conducted at T=281 ºC 

t A C PW 

0 19.6 97.5 760 

0.98 23.7 99.8 760 

1.9 23.5 101.5 760 

2.4 24.4 97.4 760 

3* 24.8 98.1 760 

3.22 24.7 94 205 

3.47 20.2 96.3 205 

3.7 16.5 86.6 205 

3.98 14.4 88 205 

4.23 13.7 89.2 205 

4.8 12.8 90.6 205 

5.3 13 83.1 205 

5.75 12.3 83.8 205 

6.27* 12.3 88.3 205 

6.42 13.3 86.6 760 

6.6 18.9 94.7 760 

6.85 23.7 104.2 760 

7.1 24.8 102.6 760 

7.37 25.9 100.8 760 

7.88 26.4 100.8 760 

8.38 26.4 103.8 760 

8.8 27 107.9 760 

9.2* 26 104.7 760 
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Table 6.9. Experimental run conducted at T=263 ºC 

t A C PW 

0 22.4 83.7 760 

1.03 25.5 87.9 760 

2.08 25.7 85.3 760 

3.03 25.8 88.3 760 

3.53* 26.7 84 760 

4.05* 26.9 90 760 

4.25 24.3 82.4 181 

4.53 20.4 79.2 181 

5.02 16.4 79.5 181 

5.55 14.5 74.8 181 

6.05 13.5 74.5 181 

7.05 11.6 73.7 181 

7.48 11.2 72.8 181 

7.97 10.3 74.8 181 

8.23 13.8 75.6 760 

8.62 21 78 760 

9.15 23.9 84.4 760 

9.63 25 86.3 760 

10.1 25.9 85.8 760 

11.1 23.8 86.8 760 

11.6* 24.1 87.3 760 

12.02* 24.9 84.4 760 
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Table 6.10. Experimental run conducted at T=284 ºC 

t A C PW 

2.5 20.6 131.8 760 

3* 23.1 129.7 760 

3.25 21.2 121.7 152 

3.53 14.8  152 

3.78 11.4 114.5 152 

4.25 10 112.6 152 

5.23 10.8  152 

5.76 10 128 152 

6.27* 10.6 117.2 152 

6.53 14.3 132.7 760 

6.75 23.7   

7 27 147.6 760 

8.08* 25.4 136.3 760 

9* 26 138.2 760 

9.5* 26.5 137.8 760 
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Table 6.11. Experimental run conducted at T=284 ºC 

t A C PW 

3 12.09  760 

3.48* 11.35 202.7 760 

3.98 12.99 206.1 760 

4.2 9.63 206.2 152 

4.52 6.65 203.6 152 

4.83 5.94 201.3 152 

5.25 5.5 204.1 152 

6.98* 4.3 203.2 152 

7.5 4.35  152 

8* 5.4 199.7 152 

8.13 7.7 209.6 152 

8.5 11.2 213.7 760 

8.83 13.2 217 760 

9.5* 14 221.7 760 

10.5* 14.3 218.1 760 

11 15.5 221.9 760 

11.48 15.7  760 

12 15.4 226.5 760 
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Table 6.12. Experimental run conducted at T=284 ºC 

t A C PW 

4.38 45.6  760 

4.88 46.2  760 

5.38 45.6 51.3 760 

5.88 49.6  760 

6.37 50.3 49.8 760 

6.55 42.9 53.4 760 

6.78 40.5  152 

7.03 37.9 46.7 152 

7.28 35.3  152 

7.53 34.3 42.2 152 

8.03 31.1  152 

8.53 30.5 42.8 152 

9.05 30  152 

9.53 28.3 35.1 152 

9.73 32.8 32.3 152 

10 36.5  760 

10.25 41.3 45.8 760 

10.48 41.9  760 

10.75 43.5 50.3 760 

11.25 45.6  760 

11.75 46.3  760 

12.25 47.2 53.5 760 

12.75* 47.3 51.7 760 
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Table 6.13. Experimental run conducted at T=289 ºC with catalyst (SHP = 113 ppm) 

t A C 

2.48 24.40 115.5 

3 24.70 113.6 

5.97 10.10 101.3 

7.53 26.60 122.8 

9.2 21.00 119.5 

11.88 5.6 112.5 

 

Table 6.14. Experimental run conducted at T=289 ºC with catalyst (SHP = 33 ppm) 

t A C 

5.00 8.50 88 

6.02 8.40 96.7 

8.00 23.40 120.2 

8.98 23.60 113.2 

10.98 4.00 91.5 

12 4.10 95.9 

 

Table 6.15. Experimental run conducted at T=289 ºC with catalyst (SHP = 249 ppm) 

t A C 

5.00 10.60 87.4 

5.98 10.60 89.7 

7.98 26.60 104.7 

8.98 27.30 107.5 

11.98 5.30 88.9 
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6.9.2 Incorporating additional information in AMLE objective function 

In Section 6.5, it was discussed that if additional information about the model parameters is 

available, it can easily be incorporated in the AMLE objective function. To show how this is 

possible, we consider the SDE in (6.1). We also assume that additional measurements 

corresponding to the following model are available: 

)()),(()( iadiiad ttugty ε+= θ    i=1..Nad (6.33)

where Nad is the number of additional measurements and )( iad tε is the measurement noise with 

variance 2
adσ , associated with the additional measurement taken at time it . We assume that 

)( iad tε is independent of the other noise sources in (6.1). The vector of additional measurements 

is denoted by ady .  

To understand how this additional information can be incorporated, we consider the development 

in Section 3.3.1 in Chapter 3. Note that ),,,|( 0 θy qm xxp K in eq. (3.13) is the only term that is 

affected by the addition of the extra information. This term can be modified to: 

),,,|(),,,|(),,,|,( 000 θyθyθyy qadqmqadm xxpxxpxxp KKK ×=  (6.34)

because  my and ady are independent. Since ady  does not depend on the state 

variables, )|(),,,|( 0 θyθy adqad pxxp =K . Note that 
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Therefore it can be shown (after taking the natural logarithm and multiplying by a negative sign) 

that the addition of the extra information can be reflected by adding the following term to the 

AMLE objective function:  

2
1

2

2

))),(()((

ad

N

i
iiad

ad

tugty

σ

∑
=

− θ
 (6.36)
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6.10 Nomenclature 

AMLE Approximate Maximum Likelihood parameter Estimation  

DOF Degrees of freedom  

GS Generalized Smoothing  

MIMO Multi-Input Multi-Output  

ML Maximum Likelihood  

NLS Nonlinear Least-Squares  

PDF Probability Density Function  

SDE Stochastic Differential Equation   

SHP Sodium Hypophosphite  

SISO Single-Input Single-Output  

SSE Sum of Squared Errors  

WNLS Weighted Nonlinear Least-Squares  

A Concentration of amine end groups,  mol Mg-1 

A Hessian of the inner objective function with respect to the 
system states 

 

C Concentration of carboxylic acid end groups mol Mg-1 

E Activation energy kJ mol-1 

E{.} Expectation operator  

H Hessian matrix of the inner objective function with respect 
to model parameters 
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H∆  Apparent enthalpy of polycondensation  kJ mol-1 

Ji The i-th component  (i-th experimental run) of the inner 
objective function 

 

Jinner The inner objective function  

L Concentration of amide links  

Ka Apparent polycondensation equilibrium constant  

Ka0 Apparent polycondensation equilibrium constant at T0 and 
low water content 

 

NAi The number of observations for A in the i-th experimental 
run 

 

NCi The number of observations for C in the i-th experimental 
run 

 

Q Process disturbance intensity  

QA Process disturbance intensity for SDE corresponding to A   (mol Mg-1)2/hr 

QC Process disturbance intensity for SDE corresponding to C     (mol Mg-1)2/hr 

QW Process disturbance intensity for SDE corresponding to W      (mol Mg-1)2/hr 

Q Vector containing process disturbance intensities  

Pc Critical pressure of water  kPa 

Pw Partial pressure of water in the gas phase kPa 

sat
wP  Saturation pressure of water in the gas phase kPa 

R Ideal gas law constant, 8.3145E-3  kJ mol-1
 K-1 

T Temperature K 

T0 Reference temperature, 549.15 K   
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Tc Critical temperature of water, K  

W Concentration of water, mol Mg-1  

X Exponent in the kinetic expression for the reaction rate  

a Empirical model parameter (mol Mg-1)0.5 

f Nonlinear function  

fKa Nonlinear function for Ka model  

km Volumetric liquid-phase mass-transfer coefficient for a 
nylon/water system 

h-1 

kp Apparent polycondensation rate constant  Mg mol-1
 h-1 

kp0 Apparent polycondensation rate constant at reference 
temperature 549.15 K 

 

tmj Time of the j-th measurement, hr  

u(t) The input function  

x0 The initial state value  

x(t) The state of the system  

x~(t) The spline approximation of the system state  

xm Vector of state values at measurement times  

y(tmj) The measured value at time tmj  

Kay  Ka calculated from the measurements  

ym Vector of the measurements  

zα/2 Normal random deviate corresponding to an upper tail area 
of α/2 
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α Significance level for confidence intervals  

iβ  i-th B-spline coefficient   

β  Vector of B-spline coefficients  

(.)δ  Dirac delta function  

)( mιtε  Normally distributed measurement noise for state i   

Kaε  Approximate error in Ka calculated using the measurements  

Aη  Gaussian process disturbance for differential equation of 
state A 

mol Mg-1/hr 

Cη  Gaussian process disturbance for differential equation of 
state C 

mol Mg-1/hr 

Wη  Gaussian process disturbance for differential equation of 
state W 

mol Mg-1/hr 

θ  Vector of model parameters  

0θ  Initial value for the vector of model parameters  

Kaθ  Vector of Ka model parameters  

2
mσ  Measurement noise variance  

2
Aσ  Measurement noise variance for A (mol Mg-1)2 

2
Cσ  Measurement noise variance for C (mol Mg-1)2 

2
aKσ  Approximate noise variance for Ka calculated from 

measurements 
 

iφ  i-th B-spline basis function  

φ  Matrix containing all iφ s  
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Chapter 7 
 
Conclusions 

7.1 Summary and contributions 

A novel algorithm has been developed for parameter and state estimation in continuous-time 

nonlinear dynamic models, in which modelling errors and process disturbances are present. This 

proposed parameter estimation approach can help modellers to obtain more-reliable parameter 

estimates and model predictions that can be used in nonlinear model-based control and 

optimization schemes.   

The research work presented in this thesis builds on the work by Poyton et al. (Computers and 

Chemical Engineering 2006, vol. 30, pages 698-708), where iPDA was first developed to address 

the difficulties associated with traditional parameter estimation methods. iPDA was developed 

based on the idea that mathematical models of processes are not exact, therefore, the true state 

trajectories may deviate from the exact solution of the model differential equations. Using this 

idea and engineering intuition, the iPDA objective function (shown in eq. (1.6)) was proposed by 

Poyton et al. The weighting factor, λ, in the objective function determines the extent to which the 

estimated state trajectories are allowed to deviate from the solution of the model differential 

equations. Consequently, performance of the iPDA depends significantly on the value of λ. 

Selecting an optimal weighting factor, however, remained a challenge.  

In Chapter 3 of this thesis, application of the iPDA algorithm was extended to nonlinear models 

with stochastic disturbances. It was demonstrated that in the case of SDE models, minimizing the 

iPDA objective function corresponds to maximizing the joint probability density function of the 

model states and measurements, given the model parameters. In other words, it was shown that if 

continuous Gaussian disturbances are used to represent the modelling errors and process 
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disturbances, then the iPDA objective function is equivalent to an approximate maximum 

likelihood criterion. Based on this development, it was shown that the optimal value of the 

weighting factor λ is proportional to the measurement noise variance, and inversely proportional 

to the process disturbance intensity (eq. (1.8)). The iPDA objective function was then derived for 

MIMO systems. In this case, the objective function includes a sum-of-squared errors term for 

each response, weighted by the reciprocals of its corresponding measurement noise variance, and 

a model-based penalty term for each differential equation, with the reciprocal of the process 

disturbance intensity as a weighting factor.   

Moreover, it was determined that a simultaneous minimization approach, jointly over model 

parameters and spline coefficients, can be used to minimize the iPDA objective function, as an 

alternative to the originally proposed iterative scheme. Note that from Chapter 4 onwards, the 

simultaneous minimization approach was used to solve iPDA problems. Since the modified 

algorithm is no longer iterative; and also because the minimized objective function is an 

approximate maximum likelihood criterion, in Chapters 4, 5, and 6, the proposed algorithm is 

referred to as Approximate Maximum Likelihood Estimation (AMLE). 

The theoretical developments and discussions in Chapter 3 were tested using two examples. In 

the first example, both traditional NLS and iPDA were used to estimate two parameters in a linear 

SISO SDE model. Using Monte Carlo simulations, it was shown that parameter estimates 

obtained from iPDA, using the optimal weighting factor, were less biased and more precise than 

those obtained using traditional NLS. iPDA was very effective in estimating the underlying true 

state trajectories. When the iPDA algorithm was tested using weighting factors that were either 

smaller or larger than the prescribed optimal value, the parameter estimates became more biased 

and less precise. As the value of the weighting factor was increased, the sampling behaviour of 

the iPDA parameter estimates became closer to that of the traditional NLS. This observation was 



 

  217

anticipated since a large weighting factor in iPDA forces the estimated state trajectories to satisfy 

the model differential equations, and hence, any modelling discrepancies are disregarded.  

In the second case study, parameter estimation in a nonlinear stochastic CSTR was considered. 

The outcome of the second example was similar to that in the linear case study. Parameter and 

state trajectory estimates obtained using iPDA were superior to those obtained using the 

traditional NLS.   

In Chapter 4, the simultaneous minimization approach was used for the case studies and, as 

previously mentioned, the modified iPDA algorithm was referred to by AMLE. It was shown that 

AMLE can be applied to parameter estimation in SDE models in which some of the states are not 

measured. It was demonstrated that to accommodate for this problem, the AMLE objective 

function can be modified by removing the sum-of-squared error terms that correspond to the 

unmeasured states. As a consequence, AMLE can also be employed for parameter and state 

estimation in SDE models in which non-stationary disturbances are present; this can be achieved 

by treating the non-stationary disturbances as unmeasured states.  

Theoretical expressions for approximate confidence intervals for model parameters were derived. 

Since, in AMLE, an approximate maximum likelihood criterion is minimized, the inverse of the 

Hessian of the objective function, which is an approximation to the corresponding Fisher 

information matrix, was used as the covariance matrix of the parameter estimates.   

To test our results, four parameters in a MIMO (two-state) nonlinear CSTR with stochastic 

disturbances (same as the nonlinear CSTR used in Chapter 3), were estimated using AMLE and 

also traditional NLS in three different scenarios. In the first study, both of the states were 

assumed to be measured, while in the second scenario one of the two CSTR states was assumed 

to be unmeasured. The AMLE parameter estimates were, on average, less biased and more 
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precise than the traditional NLS parameter estimates because, unlike NLS, AMLE properly takes 

into account possible modelling discrepancies. In the third case, an additive non-stationary 

disturbance was considered as an input to the material-balance differential equation. In this 

example, AMLE resulted in significantly more-precise and less-biased parameter estimates in 

comparison to estimates obtained using the traditional NLS method. The unobserved non-

stationary disturbance was also successfully estimated using AMLE. In all of the studied cases, 

theoretical approximate confidence intervals were obtained and compared to empirical confidence 

intervals generated using Monte Carlo simulations; theoretical and empirical confidence intervals 

were consistent. 

In Chapter 3 an expression for the optimal weighting factor in iPDA and AMLE was obtained. 

Calculating this optimal weighting factor, however, requires knowledge of measurement noise 

variances and also process disturbance intensities that affect the response of the dynamic systems. 

In engineering applications, knowledge about the quality of measurements can usually be 

obtained either from repeated measurements or from sensor suppliers. Nonetheless, information 

about the quality of the model is not easily attainable. In Chapter 5, the AMLE algorithm was 

modified so that it can accommodate parameter estimation in nonlinear SDE models in which 

process disturbance intensities are not known a priori, but information about the measurement 

noise variances is available. The modified AMLE algorithm is a two-level nonlinear 

minimization problem. In this algorithm, appropriate process disturbance intensities are selected, 

such that the discrepancy between the a priori known true value and a maximum likelihood 

estimate of the measurement noise variance is minimized. The outer level of the algorithm is 

concerned with minimizing the deviation of the true measurement noise variance from its 

estimated value by adjusting the process disturbance intensity. In the inner level of the algorithm, 

the regular AMLE objective function is minimized using the process disturbance intensity 
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obtained from the outer level optimization problem to obtain the corresponding parameter and 

state estimates. The updated state and parameter estimates, in turn, are used to evaluate the 

estimate of the measurement noise variance in the outer level. 

To evaluate the performance of the modified AMLE algorithm, a nonlinear MIMO CSTR, similar 

to that used in Chapters 3 and 4, was used. It was assumed that intensities of the process 

disturbances that enter the differential equations were unknown, but measurement noise variances 

were known a priori. Initial state conditions were assumed to be unknown. Four parameters, as 

well as two process disturbance intensities and two state trajectories were estimated using the 

modified AMLE algorithm. From Monte Carlo simulations, it was observed that the bias of the 

parameter estimates was negligible. The process disturbance intensity estimates, however, were 

slightly biased. This bias may be due to approximations involved in calculating the maximum 

likelihood estimate of the measurement noise variance, which can eventually affect the estimates 

of the process disturbance intensities. Theoretical confidence intervals were also calculated that 

were in agreement with the empirical confidence intervals obtained from Monte Carlo 

simulations. For comparison purposes, parameter estimation in the same case study, with 

identical settings, was performed using a classical maximum likelihood parameter estimation 

method. The AMLE algorithm converged faster than the classical maximum likelihood approach. 

The AMLE parameter estimates, based on this case study, seemed to be less biased and more 

precise.  A significant advantage of the AMLE algorithm is that the overall parameter and state 

estimation problem can readily be formulated and implemented as a nonlinear programming 

problem, and recursive solution of Riccati equations to obtain the state covariance matrix is not 

required.  

Theoretical developments in Chapters 3 to 5 were examined merely using simulation case studies. 

It is very important to apply the proposed AMLE algorithm to a practical chemical engineering 
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parameter estimation problem, so that the performance of the algorithm can be evaluated in a 

more realistic scenario. For this reason, in Chapter 6, AMLE was applied to parameter and state 

estimation in a lab-scale reactor model. It was shown that AMLE can address difficulties that 

frequently arise when estimating parameters in nonlinear continuous-time dynamic models of 

industrial processes.  Parameter estimation in the nylon reactor model involved several 

challenges. The first challenge was to exploit all of the available data, which consisted of six 

dynamic experimental runs without a catalyst and also steady-state data from three additional 

experimental runs with a catalyst. It was shown that the AMLE objective function can easily be 

modified to include the additional steady-state information.  The nylon reactor is a multi-response 

model with three outputs. Two of the outputs, namely the concentration of carboxylic acid end-

groups and also the concentration of amine end-groups, are measured at different and non-

uniform sampling times, with different levels of accuracy. The third output, water concentration, 

was not measured. It was demonstrated that AMLE can easily cope with these challenges, since 

the form of its inner objective function allows for incorporating non-uniform observation times 

and unmeasured states. Unknown initial state conditions, another difficulty encountered in the 

nylon-reactor parameter-estimation problem, was also properly handled by AMLE.  

Before proceeding with the parameter estimation procedure, the equilibrium-constant expression 

in the nylon-reactor model was re-evaluated. Using classical nonlinear regression and steady-state 

data from six experimental runs without catalyst and three runs with catalyst, a parsimonious 

semi-empirical model for the apparent equilibrium-constant was selected that adequately fits the 

data.  

After re-evaluating the equilibrium-constant, AMLE was successfully applied to the nylon reactor 

problem, and parameters, states and process disturbance intensities were estimated. Approximate 

confidence intervals were obtained for model parameters. The interval estimate corresponding to 
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the activation energy parameter, E, contained zero, indicating that there was insufficient dynamic 

information available to obtain a reliable estimate.  

The parameter estimation algorithm was repeated using arbitrary initial parameter guesses that 

were far from the estimated values to investigate the robustness of the AMLE parameter estimates 

to initial parameter guesses. The performance of AMLE did not deteriorate despite using these 

poor initial guesses. A standard weighted nonlinear least-squares algorithm failed to converge to 

reasonable parameter estimates using the poor initial guesses.  

The analysis and case studies in this thesis suggest that AMLE is a potentially appealing 

parameter estimation algorithm that should be further studied and tested for more complicated 

problems.   

The contributions from this thesis consist of the following: 

1. Development of an approximate maximum likelihood formulation and algorithm for 

estimating parameters in process models with model uncertainty and process 

disturbances. The technique can be used to estimate parameters in stochastic differential 

equations. 

2. Extension of AMLE to handle unknown initial conditions, unmeasured states, and non-

stationary disturbances, and development of theoretical expressions for approximate 

confidence intervals for model parameters. 

3. Extension of AMLE to estimate process disturbance intensities with prior information 

about the measurement noise variances. 

4. Demonstration of AMLE using simulated CSTR examples. 
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5. Application of AMLE to a practical estimation problem with complicated data (dynamic 

and steady-state), non-uniform measurements, unmeasured states and unknown initial 

conditions. 

 

7.2 Recommendations for future work 

1. The application of AMLE to a lab-scale practical chemical engineering parameter 

estimation problem was successfully demonstrated in Chapter 6. It is important, however, 

to study the performance of the proposed algorithm in other case studies including larger-

scale industrial problems. This will help us to better understand the potential advantages 

and possible disadvantages of the AMLE algorithm in problems. The problems should 

have many states and/or many parameters, and should include unmeasured states, non-

uniform sampling, unknown initial conditions, and possibly non-stationary disturbances. 

2. Obtaining approximate Confidence Intervals (CIs) for model parameters was discussed in 

Chapter 4. It was noted that these confidence intervals may be inaccurate for several 

reasons. For instance: i) the AMLE parameter estimates are not in general Normally 

distributed; ii) only an approximation of the Fisher information matrix is used in 

obtaining the CIs; iii) proof of the asymptotic Normality of maximum likelihood 

parameter estimates involves linearization of the derivative of the likelihood function. 

The accuracy of the approximation will depend on the nonlinearity of the estimation 

problem, including the model formulation and parameterization, as well as the amount of 

data available. It is therefore important to consider alternative inference approaches so 

that a better understanding of the uncertainty in the AMLE parameter estimates can be 
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achieved. Insight into the inference characteristics can be drawn from Bayesian analysis 

(examining the Highest Posterior Density region), profiling, and assessment of curvature. 

3. In this thesis, B-spline functions are used as the basis function for discretizing the state 

trajectories. Nonetheless, the choice of the basis functions is by no means limited to B-

spline functions. Other bases, for instance monomials, can also be used. A comparison of 

AMLE results, when different types of basis functions and knot placement schemes are 

used, can be beneficial in understanding how sensitive the performance of AMLE is to 

the discretization strategy.      

4. In Chapter 5 and Chapter 6, an approximate maximum likelihood estimator for the 

measurement noise variance (Helad and Stark, Physical Review Letters, 2000, vol. 84, 

pages 2366-2369) was employed (eqs. (5.13) and (6.30)). In Chapter 6 it was noted that 

as mentioned by Heald and Stark, the denominator of the measurement noise variance 

estimator can be regarded as the effective number of degrees of freedom (DOF) set by the 

dynamics. Therefore, in Chapter 6, different degrees of freedom are accounted for by 

using additional weightings in the objective function in the outer optimization problem 

(eq. (6.31)). Addition of these weighting factors ensures that more attention is paid to the 

variance estimator that has a larger DOF. However, this modification is an ad hoc 

approach to account for DOFs and it is not clear whether this method is optimal in any 

sense. Further research is required to investigate the optimality of this modification and 

perhaps to propose alternative approaches to account for the DOF.    

5. In Section 4.5.2, a CSTR simulation case study was considered in which a non-stationary 

disturbance enters the right-hand side of the model differential equation. It was 

demonstrated that by treating the non-stationary disturbance as an unmeasured state, and 
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adding the corresponding model-based penalty to the AMLE objective function this 

problem can be addressed. In this simulation study, the existence of the non-stationary 

disturbance was clear. In practical problems however, it is not clear whether extra terms 

corresponding to possible non-stationary disturbances should be added to the AMLE 

objective function or not. Further studies are therefore required to develop an approach to 

examine the necessity of addition of extra terms corresponding to possible non-stationary 

disturbances to the AMLE objective function. Examining the autocorrelation of the 

residuals can perhaps be helpful in this investigation. 

6. In developing the AMLE objective function, it was assumed that in multi-response 

models, there is no correlation between the process noise disturbances and also between 

the measurement noise variances. These assumptions may be violated in industrial-scale 

problems. Therefore, it is useful to modify the AMLE objective function so that 

correlated process disturbances and measurement noise variances can be addressed. It 

will also be important to identify whether there is correlation among process 

disturbances, given the model and the data. Investigating the cross-correlations among 

the residuals may prove helpful in this endeavour.               

     


