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ABSTRACT 

Transition metal-catalyzed C-H bond activation allows direct functionalization of the ubiquitous C-

H bonds in organic molecules to increase the molecular complexity. Since Murai’s pioneering work in 

ruthenium catalyzed regioselective arene-alkene coupling reaction, a number of transition metal catalysts 

have been developed for C-C bond formation via C-H bond activation. However, metal-catalyzed C-H 

functionalization faces a number of long-standing challenges such as the control over regio- and 

stereoselectivity and harsh reaction conditions. Presented herein is our research on the development of 

ruthenium(II)-based catalysts for new and improved methods in C-C bond formations by formal activation 

of sp
2
 C-H bonds and subsequent coupling with alkyne substrates.  

Chapter 1 introduces the background of alkyne hydroarylation initiated by transition metal-

catalyzed C-H bond activation and the significance to develop new strategies to overcome the limitations 

of current methods.  

In Chapter 2 and Chapter 3, ruthenium(II)-N-heterocyclic carbene (NHC) catalyst systems were 

developed for efficient [3+2] carbocyclization between N-H aromatic ketimines or aromatic ketones and 

internal alkynes under very mild conditions. This process incorporates the ortho-directing imine and 

ketone groups for C-H bond activation into the overall transformation in a tandem manner and enables 

efficient access to indenyl amines and alcohols in high yields.  

Chapter 4 describes the development of bis-cyclometalated ruthenium(II) complexes with readily 

available N-H aromatic ketimine and ketone ligands as a new class of catalyst precursors for C-C 

coupling reactions. The catalytic activity of the bis(imine) complex is evaluated in several catalytic 

coupling reactions of alkene and alkyne substrates. The coupling reactions are proposed to proceed by 

Ru(II)/Ru(IV) catalytic cycles involving C-C bond formation by oxidative cyclization. 

Chapter 5 details the development of a decarboxylative alkyne hydroarylation process to 

synthesize arylalkenes with controlled and versatile regiochemistry of aromatic substituents. Following a 

tandem sequence of C-H bond activation and alkyne coupling, the subsequent decarboxylation is 

facilitated by the newly installed ortho-alkenyl moiety and is compatible with various aromatic substituents 

at para-, meta- and ortho-positions.  This new decarboxylation strategy eliminates the prerequisite of 
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substrate activation by ortho-substitution and allows a broad scope of substituted benzoic acids to serve 

as aromatic building blocks for alkyne hydroarylation. 



v 

 

ACKNOWLEDGMENTS 

I express my deepest gratitude to all the people who made my time at NDSU an important and 

memorable experience in my life. 

Firstly, I would like to thank the most influential person, my advisor, Dr. Pinjing Zhao, for his 

excellent guidance through my PhD study. Dr. Zhao, I consider myself very lucky to have an advisor like 

you. You led me into the field of organometallic chemistry, which I deeply love. You taught me how to 

read and write chemistry. You showed me how to approach a problem in different ways and guided me 

when I made mistakes. You gave me a lot of freedom in my research and encouraged me to pursue my 

interests. You taught me how to present chemistry and supported me to go to many conferences. You 

have devoted endless time to me, even though you were extremely busy. You are the perfect mentor 

because you are always there for your students and ready to help. I will forever appreciate everything you 

have done for me. I hope that you will continue to be a significant person in my life and be my role model 

in personality, intelligence, and career. 

I would like to thank my committee members for their support and advice. Dr. Cook, thank you 

very much for giving me some of the most important advice at the very beginning of my graduate study. 

You said, “do not compete with your colleagues; compete with the students in the top institutes”. Your 

advice encouraged me greatly through my graduate study. No matter if I succeeded or failed, it kept me 

calm and focused. I also appreciate all of your help and support during my time at NDSU. Dr. Sibi, I have 

learned a lot in your classes, in WOrMs discussions, and in my committee meetings. I also saw an 

important and valuable character trait in you: dedication—I tried to develop this trait in myself, and I think 

it would benefit me forever. Thank you very much for all your help and insightful comments at different 

stages of my research. Dr, Sun, although we were not in the same department and did not meet 

frequently, every time I met you, I learned something from you. You taught me how to communicate 

effectively, and gave me valuable suggestions on how to organize data and write research summaries. I 

am very grateful to your help. I also thank you for bringing a different perspective to my committee.  

I could not complete the research described in this dissertation without the help from my 

colleagues in our department and my collaborators in other institutes. I want to thank Dr. Zhong-Ming Sun 

for training me to be an organometallic chemist at the beginning of my graduate study and letting me 



vi 

 

participate in his projects and share the credit. I also want to thank Dr. Angel Ugrinov for being a patient 

teacher on mass spectrometry, also thank you for your extensive feedback and for solving crystal 

structures for me. I want to thank Mr. Daniel Wanner and Dr. John Bagu for training me and helping me to 

use NMR. I am very grateful to Dr. Vesela Ugrinova, Dr. Yonghua Yang, Dr. Jun Deng, Dr. Shinya 

Adachi, Dr. Xuguang Liu, Dr. Selvakumar Sermadurai, Dr. Chengkui Pei, and Dr. Nicolas Zimmerman for  

being thought-provoking consultants for helping me to address all of my questions about organic 

chemistry. I also want to thanks Professor John. F. Hartwig and Dr. Ruja Shrestha from UC Berkeley for 

collaborating on the project of decarboxylative hydroarylation. Finally I would like to thank Professor Yong 

Zhang from the Stevens Institute of Technology for his calculations on the project of alkene-alkyne 

coupling.   

I also have been lucky to have very supportive friends in our department. Jing Yi, I am very lucky 

to have met you as the first friend in Fargo. You are so optimistic about life and nice to me. When I first 

came to Fargo and knew nobody, you let me stay in your apartment and made me breakfast for weeks. 

You taught me many things and answered my endless questions about living in the US and working in the 

lab—all of these turned out to be very helpful to me. Thank you very much for always being approachable 

when I needed your help. Gaoyuan, I am so happy that you joined our department after Jing’s departure. I 

knew you would be a good friend after our first conversation because I could see intelligence sparkling in 

your eyes and you felt like an old friend. Indeed, you have been a great friend and helped me out many 

times. You also encouraged me because you worked so hard in your lab that left me no excuse to be 

lazy. Thank you so much for always being around. I also want to thank Xuguang, Zhongjing and 

Chengzhe for all of your help, and for being good friends. 

I am very grateful to Wendy, Linda, Amy, and Tina for addressing my endless administrative 

questions and problems. I also want to thank David for helping me to get my chemicals and reagents, 

washing my lab-coats, and taking care of lots of things, even those I had not noticed. Without your help, I 

could not have completed my graduate study at NDSU so smoothly.   

Last, but not least, I want to thank my family—my parents, my grandparents, my sister, and my 

brother—for your unconditional support and encouragement to pursue my dreams.  



vii 

 

DEDICATION 

This thesis is dedicated to the memory of my grandfather. 

 



viii 
 

TABLE OF CONTENTS 

 
ABSTRACT………………………………………………………………………………..……………..…………iii 
 
ACKNOWLEDGMENTS……………………………………………………………………………………………v 
 
DEDICATION………………………………………………………………………………..………………………vii 
 
LIST OF TABLES……………………………………………………………………………………………………xi 
 
LIST OF FIGURES…………………………………………………………………………………………………xiii 
 
LIST OF SCHEMES………………………………………………………………………………………………..xv 
 
LIST OF ABBREVIATIONS ………………………………………………………………………………………xix 
 
CHAPTER 1. INTRODUCTION……………………………………………………………………………………1 
 

1.1.    References…………………………………………………………………………………….12 
 
CHAPTER 2. RUTHENIUM(II)/N-HETEROCYCLIC CARBENE CATALYZED [3+2] 
CARBOCYCLIZATION WITH AROMATIC N-H KETIMENES AND INTERNAL ALKYNES ………………17 
 

2.1.    Background and Significance………………………………………………………………..17 
 
2.2.    Initial Results…………………………………………………………………………………..26 
 
2.3.    Optimization of Reaction Conditions………………………………………………………..28 
 
2.4.    Substrate Scope………………………………………………………………………………32 
 
2.5.    Proposed Reaction Mechanism……………………………………………………………..36 
 
2.6.    Conclusion……………………………………………………………………………………..36 
 
2.7.    Experimental Procedures…………………………………………………………………….37 

 
2.7.1.    General Information…………………………………………………………………37 

 
2.7.2.    General Procedure for the Preparation of N-H Diaryl Ketimines……………….37 

 
2.7.3.    Preparation of Alkyne Substrates………………………………………………….38 

 
2.7.4.    Preparation and X-Ray Diffraction Analysis of Ruthenium(II) Catalyst    

Precursors……………………………………………………………………………39 
 

2.7.5.    General Procedure for Ruthenium(II)/NHC-Catalyzed [3+2] Annulaton………43 
 

2.7.6.    Spectral Data for Isolated [3+2] Annulaton Products……………………………44 
 

2.8.    References…………………………………………………………………………………….52 
 

CHAPTER 3. RUTHENIUM(II)/N-HETEROCYCLIC CARBENE CATALYZED [3+2] 
CARBOCYCLIZATION WITH ARYL KETONES AND INTERNAL ALKYNES………………………………55 



ix 

 

 
3.1.    Background and Significance………………………………………………………………..55 
 
3.2.    Initial Results…………………………………………………………………………………..60 
 
3.3.    Optimization of Reaction Conditions………………………………………………………..63 
 
3.4.    Substrate Scope………………………………………………………………………………65 
 
3.5.    Conclusion……………………………………………………………………………………..68 
 
3.6.    Experimental Procedures…………………………………………………………………….69 

 
3.6.1.    General Information…………………………………………………………………69 

 
3.6.2.    Preparation and X-Ray Diffraction Analysis of {Ru(cod)[η

2
-OC(C6H5)C6H4]2} 

(3.14) …………………………………………………………………………………69 
 
3.6.3.    General Procedure for Ruthenium(II)/NHC-Catalyzed [3+2] Annulation……...72 
 
3.6.4.    Spectral Data for [3+2] Annulaton Products……………………………………...72 

 
3.7.    References…………………………………………………………………………………….76 

 
CHAPTER 4. EXPLORING BIS(CYCLOMETALATED) RUTHENIUM(II) COMPLEXES AS ACTIVE 
CATALYST PERCURSORS: ROOM-TEMPERATURE ALKENE-ALKYNE COUPLING FOR  
1,3-DIENE SYNTHESIS…………………………………………………………………………………………...79 
 

4.1.    Background and Significance………………………………………………………………..79 
 
4.2.    Initial Results…………………………………………………………………………………..88 
 
4.3.    Optimization of Reaction Conditions………………………………………………………..90 
 
4.4.    Substrate Scope………………………………………………………………………………93 
 
4.5.    Reaction Mechanism Studies and Discussion……………………………………………..95 
 
4.6.    Conclusion……………………………………………………………………………………..98 
 
4.7.    Experimental Procedures…………………………………………………………………….98 

 
4.7.1.    General Information…………………………………………………………………98 
 
4.7.2.    Preparation of Alkyne Substrates………………………………………………….99 
 
4.7.3.    Preparation and X-Ray Diffraction Analysis of Ruthenium(II) Catalyst 

Precursors…………………………………………………………………………..100 
 
4.7.4.    General Procedures for Ruthenium(II) Catalyzed Alkene-Alkyne 

Coupling…………………………………………………………………………….104 
 
4.7.5.    Ruthenium(II) Catalyzed [2+2] Cycloaddition of Diphenylacetylene and 

Norbornene………………………………………………………………………....105 
 



x 

 

4.7.6.    Ruthenium(II) Catalyzed Dimerization of Methyl Acrylate……………………..105 
 
4.7.7.    Spectral Data for Isolated Products……………………………………………...105 

 
4.8.    References…………………………………………………………………………………...115 

 
CHAPTER 5. A DECARBOXYLATIVE APPROACH FOR REGIOSELECTIVE HYDROARYLATION  
OF ALKYNES ……………………………………………………………………………………………………..119 
 

5.1.    Background and Significance………………………………………………………………119 
 
5.2.    Initial Results…………………………………………………………………………………126 
 
5.3.    Optimization of Reaction Conditions………………………………………………………128 
 
5.4.    Substrate Scope……………………………………………………………………………..132 
 
5.5.    Reaction Mechanism Studies and Discussion……………………………………………138 
 
5.6.    Conclusion……………………………………………………………………………………143 
 
5.7.    Experimental Procedure…………………………………………………………………….144 

 
5.7.1.    General Information………………………………………………………………..144 
 
5.7.2.    Preparation of Substrates and Ruthenium(II) Complexes…………………….144 
 
5.7.3.    Evaluation of Reaction Conditions for the Decarboxylative Hydroarylation 

of Alynes…………………………………………………………………………….145 
 
5.7.4.    Preparation and X-Ray Diffraction Analysis of [Ru(p-cymene)(η

4
-

tetraphenylbenzne)] (5.15) ……………………………………………………….145 
 
5.7.5.    Typical Procedure for the Decarboxylative Hydroarylation of Alkynes………147 
 
5.7.6.    Spectral data for Isolated Products………………………………………………148 

 
5.8.    References………………………………………………………………………………………160 
 

 

 

 

 

 

 

 



xi 

 

LIST OF TABLES 

Table                 Page 

 
2.1.   Effects of ligand and catalyst precursor in ruthenium catalyzed [3+2] carbocyclization with 

benzophenone imine and diphenylacetylene at room temperature………………………………29 
 
2.2.   Effects of solvent and ligand in ruthenium catalyzed [3+2] carbocyclization with  

benzophenone imine and diphenylacetylene at room temperature………………………………30 
 

2.3.   Effects of catalyst loading and basic additive in ruthenium catalyzed [3+2] carbocyclization  
with benzophenone imine and diphenylacetylene at room temperature………………………...31 

 
2.4.   Summary of cell parameters, data collection and structural refinements for  

{Ru(cod)[η
2
-HNC(C6H5)C6H4]2} (2.27)………………………………………………………………..40 

 
2.5.   Selected bond lengths [Å] and bond angles [degree] for {Ru(cod)[η

2
-HNC(C6H5)C6H4]2}     

(2.27) …………………………………………………………………………………………………..41 
 
2.6.   Summary of cell parameters, data collection and structural refinements for  

{Ru(cod)[η
2
-HNC(nBu)C6H4]2} (2.28) ………………………………………………………………..42 

 
2.7.   Selected bond lengths [Å] and bond angles [degree] for {Ru(cod)[η

2
-HNC(nBu)C6H4]2}      

(2.28) …………………………………………………………………………………..……………….43 
 
3.1.   Solvent effect in ruthenium(II)/NHC catalyzed carbocyclization with benzophenone and 

diphenylacetylene……………………………………………………………………………………...63 
 
3.2.   Effects of inorganic salt and ligand in ruthenium(II)/NHC catalyzed carbocyclization with 

benzophenone and diphenylacetylene………………………………………………………………64 
 
3.3.   Effects of catalyst precursor, ligand and catalyst loading in ruthenium(II)/NHC catalyzed 

carbocyclization with benzophenone and diphenylacetylene……………………………………..65 
 
3.4.   Summary of cell parameters, data collection and structural refinements for  

{Ru(cod)[η
2
-OC(C6H5)C6H4]2} (3.14)………………………………………………………………….70 

 
3.5.   Selected average bond lengths [Å] and bond angles [degree] for 

{Ru(cod)[η
2
-OC(C6H5)C6H4]2} (3.14) …………………………………………………………………71 

 
4.1.   Ligand effect in ruthenium(II) catalyzed alkene-alkyne coupling…………………………………91 
 
4.2.   Effects of catalyst precursor and solvent in ruthenium(II) catalyzed alkene-alkyne coupling…92 
 
4.3.   Summary of cell parameters, data collection and structural refinements for  

{Ru(pyridine)2[η
2
-HNC(C6H5)C6H4]2} (4.22B) and {Ru(pyridine)2[η

2
-OC(C6H5)C6H4]2}       

(4.22C) ………………………………………………………………………………………………..102 
 
4.4.   Selected average bond lengths [Å] and bond angles [degree] for 

{Ru(pyridine)2[η
2
-HNC(C6H5)C6H4]2} (4.22B) ……………………………………………………...103 

 
4.5.   Selected average bond lengths [Å] and bond angles [degree] for 

{Ru(pyridine)2[η
2
-OC(C6H5)C6H4]2} (4.22C)………………………………………………………...104 

 



xii 

 

 
5.1.   Initial test for effects of substrate ratios, additive, solvent, and temperature in ruthenium(II) 

catalyzed decarboxylative alkyne hydroarylation with arenecarboxylic acids…………………129 
 
5.2.   Effects of ligand and catalyst precursor in ruthenium catalyzed decarboxylative alkyne 

hydroarylation with arenecarboxylic acids……………………………………………….………...130 
 
5.3.   Effects of solvent and catalyst precursor in ruthenium catalyzed decarboxylative alkyne 

hydroarylation with arenecarboxylic acids…………………………………………………………132 
 
5.4.   Summary of cell parameters, data collection and structural refinements for 

[Ru(p-cymene)(η
4
-1,2,3,4-tetraphenylbenzene)] (5.15)………………………………………….146 

 
5.5.   Selected average bond lengths [Å] and bond angles [degree] of  

[Ru(p-cymene)(η
4
-1,2,3,4-tetraphenylbenzene)] (5.15)………………………………………….147 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xiii 

 

LIST OF FIGURES 

Figure                Page 

 
2.1.   ORTEP diagram of {Ru(cod)[η

2
-HNC(C6H5)C6H4]2} (2.27) at 50% thermal ellipsoid…………..28 

 
2.2.   Alkyne substrate scope in ruthenium(II)/NHC catalyzed [3+2] carbocyclization with  

aromatic ketimines and internal alkynes……………………………………………………………33 
 
2.3.   Aromatic ketimine substrate scope in ruthenium(II)/NHC catalyzed [3+2] carbocyclization  

with aromatic ketimines and internal alkynes………………………………………………………34 
 
2.4.   ORTEP diagram of {Ru(cod)[η

2
-HNC(nBu)C6H4]2} (2.28) at 50% thermal ellipsoid……………35 

 
3.1.   ORTEP diagram of {Ru(cod)[η

2
-OC(C6H5)C6H4]2} (3.14) at 50% thermal ellipsoid…………….60 

 
3.2.   Aromatic ketone substrate scope in ruthenium(II)/NHC catalyzed carbocyclization with 

aromatic ketones and internal alkynes………………………………………………………………66 
 
4.1.   ORTEP diagram of {Ru(pyridine)2[η

2
-HNC(C6H5)C6H4]2} (4.22B) and {Ru(pyridine)2[η

2
-

OC(C6H5)C6H4]2} (4.22C) at 50% thermal ellipsoid………………………………………………...89 
 
4.2.   Alkene substrate scope in bis-cyclometalated ruthenium(II) catalyzed alkene-alkyne 

coupling…………………………………………………………………………………………………94 
 
4.3.   Alkyne substrate scope in bis-cyclometalated ruthenium(II) catalyzed alkene-alkyne  

coupling…………………………………………………………………………………………………95 
 
4.4.   DFT-calculated structure of the formation of hydrogen-bond between cyclometalated imine  

NH moieties and carbonyl groups from the acrylate substrates…………………………………97 
 
5.1.   Initial result of ruthenium catalyzed decarboxylative hydroarylation with benzoic acid and 

diphenylacetylene…………………………………………………………………………………….128 
 
5.2.   Substrate scope of para-substituted benzoic acids in ruthenium catalyzed decarboxylative 

alkyne hydroarylation with diphenylacetylene……………………………………………………..134 
 
5.3.   Substrate scope of ortho- and meta-substituted benzoic acids in ruthenium catalyzed 

decarboxylative alkyne hydroarylation with diphenylacetylene………………………………….135 
 
5.4.   Substrate scope of internal alkynes in ruthenium catalyzed decarboxylative alkyne 

hydroarylation with p-anisic acid……………………………………………………………………137 
 
5.5.   Proposed reaction mechanism for ruthenium catalyzed decarboxylative alkyne  

hydroarylation and byproduct formation…………………………………………………………...139 
 
5.6.   Effect of acid additive (PivOH) in ruthenium catalyzed decarboxylative alkyne  

hydroarylation…………………………………………………………………………………………139 
 
5.7.   ORTEP diagram of [Ru(p-cymene)(η

4
-1,2,3,4-tetraphenylbenzene)] (5.15) at 50% thermal 

ellipsoid………………………………………………………………………………………………..141 
 
 



xiv 

 

5.8.   Improved ruthenium catalyzed decarboxylative alkyne hydroarylation with less reactive 
arenecarboxylic acids using steric demanding diaryl alkynes…………………………………..142 

5.9.   Reactions of ruthenium catalyzed decarboxylative alkyne hydroarylation via portionwise  
addition of the alkyne substrate……………………………………………………………………143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

LIST OF SCHEMES 

Scheme                            Page 

1. Chapter 1 
1.1. Transition metal-assisted C-H bond activation………………………………………………………1 

 
1.2. First example of transition metal-mediated C-H bond cleavage……………………………………2 

 
1.3. First example of ruthenium mediated C-H bond cleavage………………………………………….2 

 
1.4. Murai’s ruthenium catalyzed aromatic ketone alkylation with terminal alkenes initiated by 

carbonyl directed C-H bond activation………………………………………………………………..3 
 
1.5. Room temperature aromatic ketone alkylation using Chaudret’s catalyst………………………..4 

 
1.6. Generally accepted reaction mechanism for Murai reaction………………………………………..5 

 
1.7. Ruthenium catalyzed alkyne hydroarylation with cyclic α-tetralone………………………………..6 

 
1.8. Proposed reaction mechanism for alkyne hydroarylation with aromatic ketones initiated  

by C-H bond oxidative addition………………………………………………………………………...7 
 
1.9. Iridium catalyzed alkyne hydroarylation with 1-naphthol……………………………………………8 

 
1.10. Rhodium catalyzed alkyne hydroarylation with 2-phenylpridine……………………………………8 

 
1.11. Cationic iridium catalyzed alkyne hydroarylation with acetophenone……………………………..9 

 
1.12. Rhenium catalyzed alkyne hydroarylation with heteroaryl aldimines………...….......….......…....9 

 
1.13. Ruthenium catalyzed terminal alkyne hydroarylation with 2-phenylpyridines..............................9 

 
1.14. Proposed reaction mechanism for ruthenium catalyzed alkyne hydroarylation with 2-

phenylpyridine initiated by C-H bond concerted metalation-deprotonation……………………...10 
 
1.15. Rhodium catalyzed alkyne hydroarylation with indoles initiated by C-H bond concerted 

metalation-deprotonation……………………………………………………………………………...11 
 
1.16. Selectivity in alkyne hydroarylation initiated by C-H bond concerted  

metalation-deprotonation……………………………………………………………………………...11 
2. Chapter 2 

2.1. The first example of transformation of the directing group initiated by C-H bond 
activation………………………………………………………………………………………………...17 

 
2.2. Proposed reaction mechanism for indole formation initiated by rhodium catalyzed C-H  

bond oxidative addition………………………………………………………………………………..18 
 
2.3. Rhenium catalyzed carbocyclization with aromatic aldimines and internal alkynes…………….19 

 
2.4. Rhodium(III) catalyzed carbocyclization with aromatic aldimines and internal alkynes………...20 
 
2.5. Rhodium(III) catalyzed benzophenone phenylimine alkenylation with diphenylacetylene……..20 

 



xvi 

 

2.6. Rhodium(III) catalyzed oxidative heterocyclization with benzophenone imine and 
diphenylacetylene……………………………………………………………………………………...21 

 
2.7. Envisioned catalytic cycle for transition metal-catalyzed redox-neutral carbocyclization  

initiated by C-H bond activation……………………………………………………………………...22 
 

2.8. Rhodium(I) catalyzed [3+2] carbocyclization with aromatic ketimines and internal alkynes…...23 
 
2.9. Intramolecular competition in rhodium(I) catalyzed [3+2] carbocyclization with diaryl  

ketimines and internal alkynes………………………………………………………………………..23 
 
2.10. Rhodium (l) catalyzed [3+2] carbocyclization with aryl-alkyl ketimines and 

diphenylacetylene………………………………………………………………………………………24 
 
2.11. Ruthenium-hydride complex catalyzed Murai reaction at room temperature……………………25 
 
2.12. Ruthenacycle mediated alkyne insertion at room temperature……………………………………25 
 
2.13. Possible pathways for ruthenium-catalyzed tandem C-H activation/alkyne coupling…………..26 
 
2.14. Attempted cyclometalation with benzophenone imine and rhodium(I) and ruthenium(II) 

complexes……………………………………………………………………………………………….27 
 
2.15. Stoichiometric cyclometalation with valerophenone imine and [Ru(cod)(η

3
-methylallyl)2]……...35 

 
2.16. Ruthenium(II)/NHC catalyzed [3+2] carbocyclization with valerophenone imines and 

diphenylacetylene………………………………………………………………………………………35 
3. Chapter 3 

3.1. Carbocyclization with ortho-manganated acetophenones and alkynes…………………………..55 
 
3.2. Transition metal-catalyzed carbocyclization with o-haloaromatic ketones and internal 

alkynes…………………………………………………………………………………………………..56 
 
3.3. Rhodium catalyzed carbocyclization with o-acetylphenylboronic acid and internal alkynes…...57 
 
3.4. Ruthenium catalyzed alkenylation and carbocyclization with 1-acetylnaphthalene and 

trimethyl(phenylethynyl)silane…………………………………………………………………………57 
 

3.5. Cationic iridium catalyzed carbocyclization with acetophenone and diphenylacetylene to  
form indenol and benzofulvene products…………………………………………………………….58 

 
3.6. Rhodium(III) catalyzed carbocyclization with aromatic ketones and internal alkynes initiated  

by C-H bond activation with the assistance of silver and copper salts……………………………59 
 
3.7. Ruthenium(II) catalyzed carbocyclization with aromatic ketones and internal alkynes  

initiated by C-H bond activation with the assistance of silver and copper salts………………….59 
 
3.8. Stoichiometric cyclometalation with [Ru(cod)(η

3
-methylallyl)2] and benzophenone to form  

bis-cyclometalated ruthenium(II) complex with η
2
-[C,O] ketone ligand…………………………..60 

 
3.9. Attempted catalytic reaction of benzophenone and diphenylacetylene using  

{[Ru(cod)[η
2
-OC(C6H5)C6H4]2} (3.14)/NHC-ligands…………………………………………………61 

 
3.10. In situ generation of cationic ruthenium-arene complex with the assistance of acetate anion  

and solvent molecule…………………………………………………………………………………..62 



xvii 

 

 
3.11. [Ru(p-cymene)Cl2]2/NHC catalyzed carbocyclization with benzophenone and  

diphenylacetylene to form indenol derivative………………………………………………………..62 
 
3.12. Ruthenium(II)/NHC catalyzed carbocyclization with benzophenone and 1-phenyl-1-

propyne………………………………………………………………………………………………….67 
 
3.13. Proposed reaction mechanism for ruthenium(II)/NHC catalyzed carbocyclization with  

aromatic ketones and internal alkynes………………………………………………………………68 
4. Chapter 4 

4.1. Ruthenium catalyzed alkene-alkyne coupling to form 1,3-dienes via oxidative cyclization……80 
 
4.2. Ruthenium catalyzed ethylene-alkyne coupling to form 1,3-dienes via alkyne insertion into  

Ru-H bond………………………………………………………………………………………………81 
 
4.3. Ruthenium catalyzed alkene-alkyne coupling to form 1,3-dienes via directed C-H bond 

activation………………………………………………………………………………………………..82 
 
4.4. Ruthenium catalyzed terminal alkyne-acrylate coupling via alkyne insertion into Ru-H bond…82 
 
4.5. Ruthenium catalyze enyne coupling to form 1,3-dienes via direct C-H bond activation………..83 
 
4.6. Ruthenium catalyzed ynamide-ethylene coupling to form 2-aminobuta-1,3-diene via  

oxidative cyclization…………………………………………………………………………………….84 
 
4.7. Rhodium catalyzed enyne coupling to form conjugated aldehyde via imine directed C-H  

bond activation and hydroxylation……………………………………………………………………84 
 
4.8. Palladium catalyzed enyne coupling to form 1,3-dienes via alkyne insertion into Pd-H bond…85 
 
4.9. Cobalt catalyzed alkyne-styrene coupling to form 1,3-dienes via oxidative cyclization…………85 
 
4.10. Nickel catalyzed enyne coupling to form 1,3-dienes via oxidative addition with the 

assistance of intramolecular hydrogen-bond………………………………………………………..86 
 
4.11. Preparation of bis-cyclometalated ruthenium(II) complexes with η

2
-[C,X] ligands………………87 

 
4.12. Envisioned C-C bond formation via oxidative cyclization with bis-cyclometalated 

ruthenium(II) complexes with η
2
-[C,X] ligands………………………………………………………87 

 
4.13. Test of the hypothesis on ligand exchange with chelating 1,5-cyclooctadiene(cod) of  

{Ru(cod)[η
2
-NHC(C6H5)C6H4]2} (4.21B) and {Ru(cod)[η

2
-OC(C6H5)C6H4]2} (4.21C) ……………88 

 
4.14. Test of the catalytic reactivity of {Ru(cod)[η

2
-NHC(C6H5)C6H4]2} (4.21B) in alkene-alkyne 

coupling………………………………………………………………………………………………….89 
 
4.15. Possible reaction mechanisms for transition metal-catalyzed alkene-alkyne cross-coupling….96 
 
4.16. Methyl acrylate dimerization catalyzed by {Ru(cod)[η

2
-NHC(C6H5)C6H4]2} (4.21B) ……………97 

 
4.17. [2+2] cycloaddition of diphenylacetylene and norbornene catalyzed by 

 {Ru(cod)[η
2
-NHC(C6H5)C6H4]2} (4.21B)……………………………………………………………..98 

5. Chapter 5 
5.1. Transition metal-catalyzed alkyne hydroarylation with aryl halides and arylmetallic 

reagents………………………………………………………………………………………………..119 



xviii 

 

 
5.2. Lewis acid-catalyzed alkyne hydroarylation with electron-rich arenes………………………….120 
 
5.3. Transition metal-catalyzed alkyne hydroarylation via electrophilic C-H bond activation………120 
 
5.4. Transition metal-catalyzed alkyne hydroarylation via directed C-H bond activation…………..121 
 
5.5. Palladium catalyzed template directed meta-C-H bond alkenylation……………………………121 
 
5.6. Transition metal-catalyzed C-H bond functionalization using traceless directing group………122 
 
5.7. Transition metal-mediated protodecarboxylation of arenecarboxylic acids…………………….122 
 
5.8. Rhodium catalyzed decarboxylative Heck-Mizoroki reaction of perfluorobenzoic acids with 

electron-deficient olefins……………………………………………………………………………...123 
 
5.9. Rhodium catalyzed oxidative heterocyclization with arenecarboxylic acid and internal  

alkynes initiated by carboxyl directed C-H bond activation……………………………………….123 
 
5.10. Iridium catalyzed decarboxylative [2+2+2] cyclization with arenecarboxylic acids and  

internal alkynes initiated by carboxyl directed C-H bond activation……………………………..124 
 
5.11. Hypothesis on transition metal-catalyzed decarboxylative alkyne hydroarylation with  

carboxyl group as traceless directing group………………………………………………………..124 
 
5.12. Rhodium catalyzed decarboxylative alkenylation with arenecarboxylic acids and styrenes….125 
 
5.13. Palladium catalyzed decarboxylative arylation with arenecarboxylic acids and aryl iodides…125 
 
5.14. Hypothesis on transition metal-catalyzed decarboxylative alkyne hydroarylation via a  

tandem sequence of “double chelation assistance” ………………………………………………127 
 
5.15. Formation of ruthenium(0) complex via stoichiometric [2+2+2] cyclization…………………….140 

 

 

 

 

 

 

 

 

 

 



xix 

 

LIST OF ABBREVIATIONS  

 
AcOH…………………acetic acid 
 
Ag…………………….silver 
 
Au…………………….gold 
 
BINAP………………..2,2'-bis(diphenylphosphino)-1,1'-binaphthyl 
 
Bn…………………....benzyl 
 
nBu…………………..normal-butyl 
 
tBu…………………...tertiary-butyl 
 
Bz…………………....benzoyl 
 
CDCl3………………..deuterated chloroform 
 
cod…………………..1,5-cyclooctadiene 
 
coe…………………..cyclooctene 
 
cot…………………..1,3,5,7-cyclooctatetraene 
 
Co…………………...cobalt 
 
CO…………………..carbon monooxide 
 
Cp…………………...cyclopentadienyl 
 
Cp*…………………..pentamethylcyclopentadienyl 
 
Cs…………………...cesium 
 
Cu…………………...copper 
 
dba…………………..dibenzylideneacetone 
 
DCE………………….1,2-dichloroethane 
 
DCM………………....dichloromethane  
 
DG…………………...directing group 
 
DIOP…………………2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane 
 
DMA………………….N,N-dimethylacrylamide 
 
DME………………….1,2-dimethoxyethane 
 
DMF………………….N,N-dimethylformamide 
 



xx 

 

DMSO………………..dimethylsulfoxide 
 
DPPP…………………1,3-bis(diphenylphosphino)propane 
 
EDG…………………..electron donating group 
 
Et………………………ethyl 
 
EtOAc…………………ethyl acetate 
 
Et2O…………………...diethyl ether 
 
EWG…………………..electron withdrawing group 
 
FcPCy2……………….. (dicyclohexylphosphinyl)ferrocene 
 
FG……………………..functional group 
 
GC…………………….gas chromatography 
 
GC/MS………………..gas chromatography/mass spectrometry 
 
HRMS………………...high resolution mass spectrometry 
 
IMes…………………..1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene 
 
IPr…………………….1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene 
 
Ir ……………………...iridium 
 
K………………………potassium 
 
L………………………ligand 
 
M……………………..metal 
 
Me……………………methyl 
 
MeO………………….methoxy 
 
Mn……………………manganese 
 
Na……………………sodium 
 
NHC…………………N-heterocyclic carbene 
 
Ni…………………….nickel 
 
NMP…………………N-methyl-2-pyrrolidone 
 
1
H-NMR……………..nuclear magnetic resonance (detecting protons) 

 
13

C-NMR…………….nuclear magnetic resonance (detecting carbon isotope 
13

C) 
 
 



xxi 

 

OAc………………….acetate 
 
OBz………………….benzoate 
 
OPiv………………….pivalate 
 
PCy3………………….tricyclohexylphosphine 
 
Pd…………………….palladium 
 
phen………………….1,10-phenanthroline 
 
Ph…………………….phenyl 
 
PivOH………………..pivalic acid 
 
iPr…………………….isopropyl 
 
iPrOAc……………….isopropyl acetate 
 
PPh3…………………triphenylphosphine 
 
Pt…………………….platinum 
 
PtBu…………………tri-tertiary-butylphosphine 
 
rac……………………racemic 
 
Re……………………rhenium 
 
Rh……………………rhodium 
 
Ru……………………ruthenium 
 
Sb……………………antimony 
 
SIMes……………….1,3-bis(2,6-diisopropylphenyl) -4,5-dihydroimidazole-2-ylidene 
 
SIPr………………….1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazole-2-ylidene 
 
TEA………………….triethylamine 
 
TLC………………….thin-layer chromatography 
 
TMS…………………trimethylsilyl 

Zn……………………zinc 
 



1 

 

CHAPTER 1. INTRODUCTION 

Carbon skeletons are the basis of organic structures. Thus, the investigation of new and versatile 

methods for the construction of C–C bonds is fundamental for the development of organic synthesis and 

materials chemistry. Classic organic reactions for C-C bond formation usually require prefunctionalized 

starting materials, which might be challenging to access. In contrast, unactivated carbon-hydrogen (C-H) 

bonds are ubiquitous in organic molecules. Therefore, direct transformation of these C-H bonds would 

provide atom-and step-economic routes to C-C bonds. 

Transition metal complexes have been used to cleave unactivated C-H bonds to furnish more 

reactive carbon-metal bonds, which is termed C-H bond activation (Scheme 1.1). In 1963, the first 

example of this concept is reported by Kleiman and Dubeck (Scheme 1.2).
1
 An ortho-C-H bond of 

azobenzene (1.01) was cleaved with stoichiometric Cp2Ni (1.02), forming a 5-membered nickellacycle 

(1.03) after heating at 135 
o
C for 4h. The azo functional group works as a coordinating directing group to 

bring the metal in close proximity to the ortho C–H bond to be cleaved, resulting in high levels of 

regioselectivity. Later, the first ruthenium mediated C-H bond cleavage was published in 1965 by Chatt 

and Davidson (Scheme 1.3).
2
 They observed that a ruthenium(0) complex (1.04) with a π-coordinated 

naphthalene was in equilibrium with a naphthyl-ruthenium(ll) hydride complex (1.05) via C-H oxidative 

addition. After these pioneering results, a large amount of studies were reported on unactivated C-H bond 

cleavage using a stoichiometric amount of various transition metal complexes.
3-6

  

 

R H
[M]

R [M]

C-H bond activaton  

Scheme 1.1. Transition metal-assisted C-H bond activation 
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N
N

+ Cp2Ni
135 oC, 4h Ni

N
N27%

1.01 1.02 1.03
 

Scheme 1.2. First example of transition metal-mediated C-H bond cleavage 

 

 

Scheme 1.3. First example of ruthenium mediated C-H bond cleavage 

 

Since the manipulation of unreactive C-H bond was demonstrated in stoichiometric reactions, 

many efforts have been devoted into developing catalytic versions of C-H bond activation.
7-12

 The first 

synthetically useful catalytic C-H activation for carbon-carbon (C-C) bond formation was reported in 1993 

by Murai and co-workers (Scheme 1.4).
13

 This work described a ruthenium catalyzed highly efficient and 

regioselective hydroarylation of terminal olefins (1.07) with aromatic ketones (1.06). The coordination of 

the carbonyl group with ruthenium complex resulted in highly site-selective ortho C-H bond cleavage and 

led to the ruthenacycle intermediate (1.08), which then reacted with the olefin substrates to produce 

alkylated ketones (1.09). This report highlighted the importance of a chelating group in order to achieve 

highly reactive and selective system for C-H activation processes.  
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Scheme 1.4. Murai's ruthenium catalyzed aromatic ketone alkylation with terminal alkenes initiated by 

carbonyl directed C-H bond activation 

 

Following this breakthrough discovery, a variety of functional groups containing oxygen and 

nitrogen atom were identified as suitable directing groups for ruthenium catalyzed C-H bond 

cleavage/olefin insertion process, such as ester,
14

 aldehyde,
15

 aldimine,
16,17

 pyridine,
18

 oxazoline,
19

 and 

nitrile.
20

 This reaction featured high efficiency and regioselectivity without any byproducts, which 

represented one important direction of organic synthesis to develop atom-, step- and redox-economic 

reactions.
21

 

Attempts have been made to develop more reactive catalysts and to understand the reaction 

mechanism.
22-28

 In 1998, Chaudret and coworkers synthesized a ruthenium complex with dihydrogen 

ligand (1.10) and prepared a ruthenacycle (1.11) with η
2
-coordinated acetophenone via C-H bond 

cleavage (Scheme 1.5, Equation 1).
29

 The stoichiometric reaction of 1.11 with triethoxyvinylsilane at room 

temperature gave the mono-insertion product, which was consistent with Murai’s hypothesis. Catalytic 

insertion of ethylene was also achieved at room temperature with acetophenone in the presence of 

catalytic amount of 1.10 or 1.11 (Equation 2). Similar results were reported by Leitner and coworkers.
30-32

 

These results provided very useful information on C-H bond activation reaction mechanism and 
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demonstrated cyclometalated ruthenium complexes as highly promising catalyst precursor for mild C-H 

bond activation.  

 

+

O

Me
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Scheme 1.5. Room temperature aromatic ketone alkylation using Chaudret's catalyst 

 

The generally accepted mechanism for ortho-alkylation via C-H bond activation is depicted in 

Scheme 1.6. First, coordination of transition metal to the chelating oxygen facilitates cleavage of the C-H 

bond in the ortho position and generates a matallacycle intermediate (1.08). Next, olefin coordination and 

subsequent migratory insertion give a metal alkyl intermediate (1.13). Lastly, reductive elimination 

produces the ortho alkylated product (1.09) and regenerates the initial catalyst, completing the catalytic 

cycle. The reductive elimination for C-C bond formation was generally proposed as the rate-determining 

step. 
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Scheme 1.6. Generally accepted reaction mechanism for Murai reaction 

 

In 1995, internal alkynes were used for the first time as the acceptor of the C-H bond to generate 

substituted alkene products.
33

 Highly site-selective hydroarylation of alkynes was achieved ortho to the 

directing carbonyl group by a ruthenium catalyst (Scheme 1.7). In the presence of catalytic amount of 

RuH2(CO)(PPh3)3, α-tetralone (1.06b) reacted with internal alkynes generating the alkenylated arenes 

(1.15). Two possible stereoisomers were obtained in the case of symmetrically substituted internal 

alkynes, such as 4-octyne, in favor of the syn-hydroarylation products. This result indicated a syn-

migratory insertion of alkynes. In comparison, for the unsymmetrically substituted internal alkynes such as 

1-phenyl-1-butyne, all of the four regio- and stereoisomers of the products were observed.  

 

 

 

 



6 

 

 

Scheme 1.7. Ruthenium catalyzed alkyne hydroarylation with cyclic α-tetralone 

 
The regio- and stereochemistry results in catalytic alkyne hydroarylation with aromatic ketones 

were rationalized with a proposed mechanism that is analogous to the hydroarylation of olefins via 

directed C-H bond oxidative addition (Scheme 1.8). Following the formation of metallacycle (1.08), alkyne 

coordination and migratory insertion into the M-H linkage would form alkenyl-metal intermediates 1.17 

and 1.17’ in favor of generating a more electronically stable vinyl-metal intermediate, while the steric 

effects might favor the other regioisomer. Thus, the combined electronic and steric effects of alkyne 

substrates make it relatively difficult to reach high regioselectivity. Besides, there is no strong geometry 

restriction, allowing both E and Z isomers to be formed after reductive elimination.  
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Scheme 1.8. Proposed reaction mechanism for alkyne hydroarylation with aromatic ketones initiated by 

C-H bond oxidative addition 

 

This transformation completes the net insertion of C-C triple bonds into aromatic C-H bonds and 

represents the most straightforward and economic methods to access trisubstituted styrene derivatives, 

which are prevalent structures in biologically active compounds and used extensively as synthetic 

intermediates for fine chemicals and materials. However, unlike alkene hydroarylation, the development 

of transition metal-catalyzed alkyne hydroarylation based on directed C-H bond activation was not as well 

established and there were only a few catalytic systems reported 15 years after the first report.
34-38

 In 

1999, Miura and coworkers disclosed a catalyst system of iridium(I) catalyst precursor and PtBu3 ligand 

for regioselective hydroarylation of dialkyl alkynes with 1-naphthol (1.18) in the presence of a catalytic 

amount of NaCO3 in refluxing toluene (Scheme 1.9).
34 

Alkenylation occurred at the ortho position of the 

hydroxyl group producing only E-isomers, probably due to the presence of bulky phosphine ligand on the 

catalyst. In 2001, a rhodium(I) catalyst was successfully applied in internal alkyne hydroarylation with 2-

phenylpyridines (1.20) in the presence of a catalytic amount of PPh3 in refluxing toluene (Scheme 1.10).
35
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However, double alkenylated products (1.22) would be formed when the other ortho C-H bond is not 

blocked.  

 

OH

R R+

[IrCl(cod)]2 (0.5 mol%)

PtBu3 (1.5 mol%)

Na2CO3 (5 mol%)

toluene, reflux, 2h

OH

R

R

1.18

1.19

R = alkyl

 

Scheme 1.9. Iridium catalyzed alkyne hydroarylation with 1-naphthol 

 

 

Scheme 1.10. Rhodium catalyzed alkyne hydroarylation with 2-phenylpyridine 

 

In 2008, Shibata and coworkers reported a cationic iridium catalyzed alkyne hydroarylation of 

ketones in refluxing DCE (Scheme 1.11).
36

 In the case of aryl ketones with both ortho C-H bonds 

available, over-alkenylation occurred. In the same year, Kuninobu and Takai revealed a rhenium 

catalyzed alkyne hydroarylation with heteroaryl aldimines in DCE at 115 
o
C (Scheme 1.12).

37
 High 

regioselectivity and stereoselectivity for alkyne addition were achieved. Similar reaction mechanisms via 

transition metal-mediated C-H bond oxidative addition were proposed in these reports.  
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Me

O

Ph Ph+

[Ir(cod)2]BF4 (5 mol%)

rac-BINAP (5 mol%)

DCE, reflux, 20h

1.06a

Me

O

Ph

Ph

Me

O

Ph

Ph

Ph

Ph

+

1.14a 1.15a, 67% 1.23, 26%  

Scheme 1.11. Cationic iridium catalyzed alkyne hydroarylation with acetophenone 

 

O

H
N

tBu

R1 R2+

[ReBr(CO)3(thf)]2 (2.5 mol%)

DCE, 115oC, 24h O

H
N

tBu

R2

R1

1.24 1.25
 

Scheme 1.12. Rhenium catalyzed alkyne hydroarylation with heteroaryl aldimines 

  

In 2008, Zhang and coworkers first introduced another C-H bond cleavage mechanism for alkyne 

hydroarylation.
38

 In the presence of catalytic amount of RuCl3, alkenylation of 2-arylpyridines (1.20) at the 

ortho C−H bond proceeded in high regio- and stereoselectivity with the assistance of stoichiometric 

benzoyl peroxide or benzoic acid (Scheme 1.13). Besides arylpyridines, phenylpyrimidine and 

phenylpyridazine also underwent alkenylation under the same reaction conditions.  

 

N + R1
RuCl3 (5 mol%), K2CO3 (2.0 equiv)

NMP, 150 oC, 6h

N
R

R1
benzoyl peroxide or benzoic acid (1.0 equiv)

R

1.20 1.14 1.21  

Scheme 1.13. Ruthenium catalyzed terminal alkyne hydroarylation with 2-phenylpyridines 
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The authors proposed a reaction mechanism involving C-H bond cleavage via concerted 

metalation-deprotonation pathway instead of an oxidative addition pathway (Scheme 1.14). The catalytic 

reaction proceeds via coordination-assisted benzoate-accelerated deprotonation at the ortho C-H position 

of the pyridyl group by ruthenium through the formation of intermediate 1.26, generating a ruthenacycle 

intermediate (1.27). Alkyne coordination and migratory insertion into the Ru-C linkage provide a cyclic 

vinyl-Ru intermediate (1.29). Subsequent protonation gives the alkenylated product (1.21) and 

regenerates the initial active catalyst. Notably, the internal alkynes were inactive under these reaction 

conditions.  

 

 

Scheme 1.14. Proposed reaction mechanism for ruthenium catalyzed alkyne hydroarylation with 2-

phenylpyridine initiated by C-H bond concerted metalation-deprotonation 

 

In 2010, Fagnou and coworkers reported a cationic rhodium complex catalyzed alkyne 

hydroarylation with indole derivatives (1.30) initiated by C-H bond activation via a proposed concerted 
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metalation-deprotonation mechanism for C-H bond activation (Scheme 1.15).
39

 With the aid of PivOH 

additive, 2-alkenylindoles (1.31) were obtained in good yields with high regio- and stereoselectivity in 

iPrOAc under relatively lower reaction temperature. This catalytic system for ortho-C-H alkenylation could 

also be applied to other heterocycles, such as pyrroles, furans, and benzamides.  

 

N

Me2N
O

+ R1 R2

N

Me2N
O

R1

R2
Cp*Rh(MeCN)3(SbF6)2 (5 mol%)

PivOH (5 equiv)

iPrOAc, 90 oC, 15h

R R

1.30

1.14

1.31  

Scheme 1.15. Rhodium catalyzed alkyne hydroarylation with indoles initiated by C-H bond concerted 
metalation-deprotonation 

 

These reactions showed good reactivity towards internal alkynes with high regio- and 

stereoselectivity favoring the E-stereoisomers. Compared with C-H oxidative addition, the metallacycle 

intermediate (1.32) generated via concerted metalation-deprotonation pathway does not possess a 

hydride ligand. Thus, the alkyne insertion is into M-C bond instead of M-H bond. The cationic nature of 

the metal complex promotes metal-carbon σ bonding to the carbon with a substituent that is capable of 

sharing its positive charge through inductive or resonance effect (Scheme 1.16). In addition, the geometry 

requirement for the formation of metallacycle intermediate 1.33 highly prefers the syn-insertion.   

 

 

Scheme 1.16. Selectivity in alkyne hydroarylation initiated by C-H bond concerted metalation-

deprotonation 
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During the development of this thesis, a variety of catalysts have been reported for effective 

alkyne hydroarylation with arenes bearing different directing groups, such as ruthenium, rhodium, iridium 

and cobalt catalysts.
40-45

 Although the directing group allows precise regiocontrol of alkenylation at the 

ortho position, it typically remains intact on the product structure after the reaction and leads to several 

limitations. First, the directing group on the product could cause over-reaction, which leads to a mixture of 

mono-and dialkenylated products. Second, additional synthetic steps would be required to remove these 

directing groups or transform them into more synthetically useful functionalities. Third, the general inability 

of common directing groups to access meta- and para-alkenylated products limits its application. Besides, 

all of the current catalyst systems of functional group-directed alkyne hydroarylation require harsh 

reaction conditions, such as high reaction temperatures and requirement of heavy salt additives, which 

restricts the utility and functional group compatibility. Lastly, the precise control over regio- and 

stereoselectivity is still an unsolved problem. 

All these longstanding challenges have incited us to develop new catalytic methods for C-H 

functionalization that involve rational catalyst design and novel strategy for directing group transformation. 

The following chapters describes our research on the development of ruthenium(II)-based catalysts for 

new and improved methods in C-C bond formations by formal activation of sp
2
 C-H bonds and 

subsequent coupling with alkyne substrates.  Results from the following three major projects are 

summarized: (1) mild [3+2] annulations by involving the ortho-directing group for aromatic C-H activation 

into the overall transformation in a tandem manner; (2) development of new, bis-cyclometalated Ru(II) 

catalysts with internal templates for mild C-C coupling; (3) decarboxylative alkyne hydroarylation by 

utilizing the carboxyl functionality as a traceless-removable directing group. 
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CHAPTER 2. RUTHENIUM(II)/N-HETEROCYCLIC CARBENE CATALYZED [3+2] 

CARBOCYCLIZATION WITH AROMATIC N-H KETIMENES AND INTERNAL 

ALKYNES 

2.1. Background and Significance   

Direct incorporation of the directing groups into transition metal-catalyzed C-H bond 

functionalization in a tandem manner provides an additional utility to the directing group. Thus, it is highly 

desirable to apply this strategy in alkyne hydroarylation to increase the diversity and molecular 

complexity. 

In 1995, Kisch reported the first example of transformation of the directing group initiated by C-H 

bond activation (Scheme 2.1).
1
 Indoles (2.03) were obtained from the reaction between 1,2-diarylazenes 

(2.01) and internal alkynes (2.02) in the presence of catalytic amount of Wilkinson’s catalyst. Strong 

electronic effect was observed in the substituents in the alkynes. Electron-withdrawing substituents 

induced a decrease of the turnover numbers.  

 

 

Scheme 2.1. The first example of transformation of the directing group initiated by C-H bond activation 

 

The mechanism was proposed to be a hydroarylation of an alkyne followed by an acid catalyzed 

rearrangement (Scheme 2.2). Wilkinson’s catalyst promoted C-H cleavage at the ortho-position of the 

diazo group via oxidative addition, generating a rhodacycle (2.05). Alkyne migratory insertion into Rh-H 

bond gave a Rh alkenyl intermediate (2.06). Subsequent C-C reductive elimination afforded alkenylated 
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intermediate (2.07) and regenerated the active rhodium catalyst (2.08) to complete the catalytic cycle. In 

the presence of a Brønsted acid, intermediate (2.07) rearranged to give the final indole product.  

 

  

Scheme 2.2. Proposed reaction mechanism for indole formation initiated by rhodium catalyzed C-H bond 

oxidative addition 

 

However, the concept of involving directing group into transition metal-catalyzed C-H bond 

functionalization did not receive much attention in the next ten years. In 2005, Kuninobu, Takai and 

coworkers disclosed one of the first examples of transition metal-catalyzed carbocyclization in a tandem 

fashion initiated by C-H bond cleavage (Scheme 2.3).
2
 The initial imine directed C-H bond activation via 

oxidative addition catalyzed by rhenium complex generates rhenacycle (2.11). Alkyne coordination and 

subsequent migratory insertion produce alkenyl rhenium complex (2.12). This rhenium species undergoes 

intramolecular addition to the ketimine moiety, forming amido rhenium complex (2.13). Successive 

reductive elimination and double bond isomerization afford indenyl amine products. The reaction yields 

were strongly influenced by the electronic properties of the aromatic ring of aldimine substrate. Electron-
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rich and -neutral aldimines gave higher yields. On the other hand, electron-poor or hindered aldimines 

exhibited no reactivity or very poor reactivities. This [3+2] carbocyclization is highly attractive as the 

directing group participated in a redox-neutral transformation, producing valuable indene derivatives. 

However, the reaction is limited to protected aldimines and aromatic internal alkynes. When ketimine was 

utilized, deamination took place due to the harsh reaction conditions.
3 

 

 

Scheme 2.3. Rhenium catalyzed carbocyclization with aromatic aldimines and internal alkynes 

 

In 2009, Satoh, Miura and coworkers reported an oxidative [3+2] carbocyclization of aldimines 

and internal alkynes using a rhodium catalyst (Scheme 2.4).
4
 Unlike the rhenium mediated C-H bond 

oxidative addition generating M-H complex, this reaction is initiated by C-H bond deprotonation with the 

assistance of acetate giving a rhodacycle (2.15a) without hydride ligand. Alkyne insertion and subsequent 

intramolecular imine addition afford a rhodium amido intermediate (2.17a). Subsequent β-hydride 

elimination yields indenone imines (2.14). Oxidation of the released rhodium(I) by copper(II) salt 

regenerates the initial active rhodium (III) catalyst. The scope of alkynes was limited to diaryl-alkynes. 

When benzophenone phenylimine (2.09c) was used in order to avoid β-hydride elimination, the reaction 

stopped before intramolecular imine addition and produced the ortho-alkenylated product (2.18a) in low 
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yield (Scheme 2.5). When unprotected benzophenone imine (2.09d) was subjected in similar reaction 

conditions, oxidative heterocyclization took place yielding 1,3,4-triphenylisoquinoline (2.19a) in 

quantitative yield via C-H and N-H activation (Scheme 2.6). 

 

 

Scheme 2.4. Rhodium(III) catalyzed carbocyclization with aromatic aldimines and internal alkynes 
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Scheme 2.5. Rhodium(III) catalyzed benzophenone phenylimine alkenylation with diphenylacetylene 
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Scheme 2.6. Rhodium(III) catalyzed oxidative heterocyclization with benzophenone imine and 

diphenylacetylene 

 

Based on these early works, our group envisioned that it would be of high synthetic value to be 

able to intercept the amido-metal intermediate (2.22) prior to β-H elimination, which would give a useful 

amine functional group upon protonation (Scheme 2.7).
5
  Furthermore, to avoid the isomerization and 

elimination as previously observed in rhenium and rhodium catalytic systems, a new catalyst would be 

required.  With a proper catalyst precursor the overall reaction would be a redox-neutral process, which 

would provide a convenient and waste-free complement to current synthetic routes towards tertiary 

carbinamines.
6-12 
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Scheme 2.7. Envisioned catalytic cycle for transition metal-catalyzed redox-neutral carbocyclization 

initiated by C-H bond activation 

 

In the envisioned catalytic cycle, a key step is the generation of a nucleophilic transition metal–

alkenyl intermediate (2.21) with a π-coordinated imine moiety, which is reactive towards intramolecular 

ketimine addition. The corresponding σ-complexation by the nitrogen atom would limit the rotation of the 

electrophile (C=N moiety). This would disturb the orbital interaction that is necessary for the proposed 

intramolecular imine insertion and, as a result, inhibit the formation of the carbocycle. The intermediate 

2.21’ with σ-coordinated nitrogen would prefer reductive elimination for C-N bond formation, giving the 

isoquinoline derivative (2.19). 

With the envisioned catalytic cycle, N-unsubstituted diaryl ketimine substrates were initially 

selected with the following considerations. First, N-unsubstituted diaryl ketimines were less studied 

compare with protected aldimines and ketimines. Second, diaryl ketimines can be prepared conveniently 

by Grignard reactions by using readily available aryl halides and aryl cyanides.
13,14

 This modular synthetic 

approach is convenient for exploration of reactivity dependence on various aromatic substituents. Third, 

[3+2] annulations with N-unsubstituted diaryl ketimines would be operationally simple and without the 
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need for additional deprotection procedures. Lastly, reactions with diaryl ketimines will avoid potential 

interference by imine/enamine tautomerization. 

With these considerations, our group successfully developed a formal [3+2] carbocyclization to 

produce indenyl amines based on the envisioned catalytic cycle described in Scheme 2.7.
5
 In the 

presence of catalytic amounts of [Rh(cod)Cl]2 and DPPP, N-unprotected aromatic ketimines reacted with 

internal alkynes in toluene at 120 C generating carbinamines in high yields with very good 

regioselectivity for alkyne addition (Scheme 2.8). As for the diaryl ketimines, intramolecular competition 

reactions revealed the C-H bond cleavage highly preferred the electron deficient aromatic ring (Scheme 

2.9). Valerophenone imine (2.09f) was not a reactive substrate, which might be due to the ketimine-

enamine isomerization. An electron withdrawing substituent, CF3 group, was required to activate aryl-alkyl 

ketimine (Scheme 2.10). Compared with previously reported rhenium and rhodium catalytic systems, this 

catalytic system incorporated a steering phosphine ligand, which provided a potential synthetic route to 

chiral indenyl amines. Indeed, by using a chiral bisphosphine ligand, (R,R)-DIOP, moderate 

enantioselectivity was achieved. 

 

NH

R1 R2+R R

[[cod)]Rh(OH)]2/DPPP (1-3 mol%)

toluene, 120 oC, 18h

H2N Ar
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2.09
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Scheme 2.8. Rhodium(l) catalyzed [3+2] carbocyclization with aromatic ketimines and internal alkynes 
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Scheme 2.9. Intramolecular competition in rhodium(l) catalyzed [3+2] carbocyclization with diaryl 

ketimines and internal alkynes 
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Scheme 2.10. Rhodium(l) catalyzed [3+2] carbocyclization with aryl-alkyl ketimines and 

diphenylacetylene 

 

During the development of this thesis, Cramer and coworkers developed a chiral version of this 

reaction with diaryl ketimines and internal alkynes.
15

 Good enantioselectivity was achieved for internal 

alkynes with coordinating substituent at α position, such as 1,4-dimethoxyl-2-butyne. Cramer and Takai 

independently applied their catalytic systems to terminal allenes as the C-H bond acceptor.
16,17

 However, 

most of these reactions were performed at 120 °C. By carrying out stoichiometric reactions between Rh(I) 

catalyst precursors and benzophenone imine, we have found that cyclometalation was very slow even at 

elevated temperature, which indicated that C-H bond activation was likely involved in the turnover-limiting 

step. Thus, it is highly desirable to introduce new transition metal complexes, which could efficiently 

mediate C-H bond cleavage under milder conditions, allowing broader functional-group compatibility and 

wider synthetic applications. 

Ruthenium complexes have been demonstrated to be powerful catalyst for directed C-H bond 

alkylation in the last two decades. In Murai’s breakthrough discovery, alkylation of aromatic ketones was 

conducted in refluxing toluene with Ru(H)2(CO)2(PPh3)3 as catalyst precursor (Scheme 1.4).
18

 Later, 

Chaudret and Leitner found that Ru(H)2(H2)2(PCy3)2 could cleave the ortho-C-H bond of aromatic ketones 

at room temperature to give a ruthenacycle intermediate (1.11), which was catalytically active for aryl C-H 

bond ethylation with ethylene under ambient temperature (Scheme 1.5).
19-21

 Recently, Murai and 

coworkers discovered cyclometalated Ru(II) hydride complexes for C-H bond alkylation of aromatic 

ketones at room temperature (Scheme 2.11).
22

 A group of ruthenacycles, generated from the reaction of 

Ru(H)2(CO)2(PPh3)3 and trimethylvinylsilane, exhibited high catalytic efficiency to catalyze Murai reaction 

under room temperature. In reaction mechanism study, ruthenacycle (2.24) was detected by NMR during 
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the reaction and assigned as the key intermediate. In a related study, Davies and coworkers reported a 

room temperature alkyne insertion of a cyclometalated ruthenium complex (2.25), leading to the formation 

of an alkenylruthenium(II) complex (2.26).
23

 In addition, several studies revealed Ru(II)-mediated 

stoichiometric cyclometalation of aromatic imine derivatives and subsequent alkyne insertions under mild 

conditions.
24,25

 These work inspired us to develop a ruthenium catalytic system for formal carbocyclization 

of imines and alkynes under mild reaction conditions. 

 

 

Scheme 2.11. Ruthenium-hydride complex catalyzed Murai reaction at room temperature 

 

 

Scheme 2.12. Ruthenacycle mediated alkyne insertion at room temperature 
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2.2. Initial Results 

To exploit such mild ruthenium catalysis for [3+2] carbocyclizations, we envisioned an important 

distinction between different pathways for ruthenium-mediated C-H activations (Scheme 2.13). In the 

well-established Murai reaction mechanism (Path A), both Ru(0) and Ru(II)-hydride catalyst precursors 

are expected to activate aromatic C-H bonds and form a cyclometalated Ru(II)-hydride intermediate 2.20a 

via C-H oxidative addition or hydride metathesis. Alkyne insertion into the Ru-H linkage is generally much 

more favored over insertion into Ru-C linkage, resulting in the formation of a Ru(II) phenyl alkenyl 

intermediate 2.21a and subsequent C-C reductive elimination to form an acyclic alkenylation product. To 

promote the desired [3+2] carbocyclization product instead, we aimed to eliminate potential involvement 

of ruthenium-hydride species by using alkylruthenium(II) catalyst precursors that would promote 

deprotonation pathway for C-H activation (Path B). Alkyne insertion into Ru-C linkage of non-hydride 

intermediate 2.20b would occur to form 2.21b, which leads to the desired cyclization sequence as 

described in Scheme 2.13. 

 

 

Scheme 2.13. Possible pathways for ruthenium-catalyzed tandem C-H activation/alkyne coupling 
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To explore the key process of C-H activation with N-H ketimines, we first studied stoichiometric 

reactions between benzophenone imine and selected Rh(l) and Ru(II) catalyst precursors (Scheme 2.14). 

[(cod)Rh(OH)]2 and 1,3-bis(diphenylphosphino) propane (dppp) ligand did not react with benzophenone 

imine at 80 
o
C, which is comparable to the high reaction temperatures required for similar Rh(I) catalyzed 

reactions.
5,15,16

 In contrast, the Ru(II)/π-allyl complex [(cod)Ru(η
3
-methallyl)2] reacted with benzophenone 

imine at room temperature quantitatively to form the doubly cyclometalated Ru(II) bis(imine) complex, 

{Ru(cod)[η
2
-HNC(C6H5)C6H4]2} (2.27) (Figure 2.1). The solid-state structure of complex 2.27 was 

determined by single crystal X-ray diffraction, which shows a near-octahedral Ru(II) center with the two N 

atoms of the imine ligands trans to each other, and two Ru-C bonds cis to each other (Figure 2.1). 

 

NH

[(cod)Rh(OH)]2
No Reaction
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PPh2Ph2P

Ru

hexane, 6 h
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HN

N
R

R
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+

2.27

98%

2.09d

 

Scheme 2.14. Attempted cyclometalation with benzophenone imine and rhodium(l) and ruthenium(II) 

complexes 
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Figure 2.1 ORTEP diagram of {Ru(cod)[η
2
-HNC(C6H5)C6H4]2} (2.27) at 50% thermal ellipsoid 

 

2.3. Optimization of Reaction Conditions 

The Ru(II)-mediated room-temperature imine C-H bond activation encouraged us to evaluate 

Ru(II) catalyst precursors for ligand-assisted [3+2] ketimine/alkyne carbocyclization at room temperature. 

In toluene, ruthenacycle 2.27 failed to catalyze coupling between benzophenone imine and 

diphenylacetylene at room temperature (Table 2.1, entry 1). In contrast, we found in the presence of 

catalytic amount of N-heterocyclic carbene (NHC) ligand, 1,3-bis(2,6-diisopropylphenyl)imidazole-2-

ylidene (IPr) and 2.27, [3+2] carbocyclization occurred at room temperature with moderate yield after 24 

hours (entry 2). When 2.27 was replaced with the Ru(II) π–allyl complex, [(cod)Ru(η
3
-methallyl)2], as 

catalyst precursor, similar yield was obtained (entry 3), suggesting that ruthenacycle 2.27 is a catalytically 

active intermediate and can be readily generated in situ from commercially available [(cod)Ru(η
3
-

methallyl)2] and benzophenone imine (entry 3). Thus, [(cod)Ru(η
3
-methallyl)2] was explored as the 

general catalyst precursor with various phosphine and NHC ligands (entries 4-10). None of the tested 

mono- or bis-phosphine ligands could promote the [3+2] annulation effectively (entries 7-10), whereas 

1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene (IMes) showed comparable activity to IPr, yielding 57% 

of the product (2.23a)  (entry 4). Saturated NHC ligands, such as 1,3-bis(2,6-diisopropylphenyl)-4,5-

dihydroimidazole-2-ylidene (SIMes) and 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazole-2-ylidene 

(SIPr), led to significantly reduced yields (entries 5-6). Several other Ru(II) complexes were tested as 
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catalyst precursors with IPr ligand, but none of them exhibited catalytic reactivity to promote the formation 

of the indenyl amine (2.23a) (entries 11-15).  

 

Table 2.1. Effects of ligand and catalyst precursor in ruthenium catalyzed [3+2] carbocyclization with 

benzophenone imine and diphenylacetylene at room temperature
a 

 

 

 

In terms of solvent effect, significantly higher reactivity was observed in non-polar solvents than in 

polar solvents (Table 2.2). Room-temperature coupling between benzophenone imine (1.1 equiv.) and 

diphenylacetylene (1.0 equiv.) was effectively carried out in hexane solvent with 3.0 mol% [(cod)Ru(η
3
-
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methallyl)2] and 3.3 mol% IPr, giving the desired product as the single product in 95% yield (entry 3). In 

comparison, the combination of hexane as solvent and IMes as ligand only slightly improved the yield 

from 57% to 68% (entry 4). Only a trace amount of product was detected from reactions without ligand IPr 

(entry 5). Among ethereal solvents, diethyl ether gave the best yield 64% (entries 8-11). The protic 

solvent, methanol, totally shut off the reaction. Other polar solvents, like DMF, DCE, led to only trace 

amount of the desired product.  

 

Table 2.2. Effects of solvent and ligand in ruthenium catalyzed [3+2] carbocyclization with benzophenone 

imine and diphenylacetylene at room temperature
a
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The ruthenium catalyst precursor, [(cod)Ru(η
3
-methallyl)2], was proved pivotal to the reaction 

(Table 2.3). Decrease in [(cod)Ru(η
3
-methallyl)2] loading to 1 mol% dramatically reduced the yield of 

product (entry 2). In the absence of Ru catalyst precursor there was no reaction (entry 3). The catalytic 

system was very sensitive to air, when the reaction was conducted under an atmosphere of air, the 

starting materials were left unreacted (entry 4). Inorganic salts have been utilized to assist C-H bond 

deprotonation in transition metal-catalyzed C-H bond functionalization. Thus, various bases were tested 

in this ruthenium catalytic system in the presence and absence of NHC ligand. The results showed that 

these salts hindered the reaction (entries 5-17).  

Table 2.3. Effects of catalyst loading and basic additive in ruthenium catalyzed [3+2] carbocyclization with 
benzophenone imine and diphenylacetylene at room temperature

a
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2.4. Substrate Scope 

With the standard reaction conditions established, various internal alkynes and diaryl N-H 

ketimines were studied for Ru(II)-catalyzed room temperature [3+2] annulation. High yields and 

regioselectivity were achieved for reactions between benzophenone imine and nonsymmetrical 

phenylacetylene derivatives having an alkyl, alkenyl, or 2-thiophenyl substituent (Figure 2.2). For aryl-

alkyl acetylenes, the alkyl groups were connected to the carbon attached to position of C-H bond 

cleavage and aryl group connected to the iminyl carbon (2.23b-d). Notably, a cyclopropyl group, which is 

known to undergo ring opening in the presence of transition metal catalysts, was compatible with the 

catalyst system (2.23d). For conjugated enyne substrate, the C-C triple bond participated in 

carbocyclization while leaving the C-C double bond untouched (2.23e). Phenyl-2-thiophyl-acetylene 

showed very good reactivity and regioselectivity (2.23f). The alkyne regioselectivity of these two substrate 

indicated the functional groups (alkene and thiophenyl) might be able stabilize the intermediate 2.21b via 

coordination to the ruthenium center. Reactions between benzophenone imine and aliphatic internal 

alkynes required the use of IMes as ligand and toluene as solvent (2.23g, 2.23h). Heating at 60 
o
C was 

necessary to form the diethyl-substituted product 2.23g in high yield. 
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Figure 2.2. Alkyne substrate scope in ruthenium(II)/NHC catalyzed [3+2] carbocyclization with aromatic 

ketimines and internal alkynes
a,b

 

 

Among ketimine substrates, diaryl ketimines with electron-withdrawing F, Cl, and CF3 groups at 

para- and meta-positions readily reacted with diphenylacetylene to give [3+2] adducts in high yields 

(Figure 2.3, 2.23i-n). In comparison, lower reactivity was observed for imines with a para- or meta-

methoxy group, the reactions of which were carried out at 60 
o
C to achieve high yields (2.23o, 2.23p). A 

temperature of 60 
o
C was also necessary for 3,3’-bis-CF3-substituted benzophenone imine (2.23k). 

Ketimine substrates with ortho-CH3 or -OCH3 groups showed no reactivity under current catalytic 

conditions, presumably owing to steric inhibition of the cyclometalation process. Nonsymmetrical diaryl 

ketimines coupled to diphenylacetylene with moderate regioselectivity (ca. 2:1 to 4:1); C-H activation at 

the more electron-deficient aryl was favored. This electronic influence on regioselective C-H bond 

activation was most pronounced with product 2.23p, which was formed by exclusive reaction at the meta-

CF3 substituted phenyl ring over the meta-methoxy substituted one.
5
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Figure 2.3. Aromatic ketimine substrate scope in ruthenium(II)/NHC catalyzed [3+2] carbocyclization with 

aromatic ketimines and internal alkynes
a,b 

 

With high catalytic efficiency and tunable ancillary ligands, the Ru(II)-NHC catalyst system is 

expected to facilitate mild [3+2] annulations for more challenging substrates. Valerophenone imine, which 

is an inactive substrate in rhodium catalytic system (Scheme 2.10),
5
 reacted with [Ru(cod)(methylallyl)2] 

under room temperature forming the doubly cyclometalated Ru(II) bis(imine) complex [Ru(cod)[η
2
-HNC(n-

C4H9)C6H4)2] (2.28) in 85% yield (Scheme 2.15). The solid-state structure of complex 2.28 was 

determined by single crystal X-ray diffraction, which showed a similar structure as its analogue complex 

2.27 (Figure 2.2). This result indicated a feasible C-H bond activation of aryl-alkyl ketimines in 

stoichiometric cyclometalation with [Ru(cod)(methylallyl)2]. Under catalytic conditions, effective coupling of 

diphenylacetylene with valerophenone imine was promoted by 3 mol% of [Ru(cod)(methylallyl)s] and IMes 

at 60 
o
C (Scheme 2.16). The requirement for elevated reaction temperature also suggested that the C-H 
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bond activation was likely not involved in the rate-determining step, which may occur during subsequent 

alkyne insertion or cyclization steps. This reaction represented a very rare example of mild C-H 

functionalization with unactivated and unprotected aryl-alkyl N-H ketimines.
5
  

 

NH

Ru
hexane, 6 h

Ru

HN

N
nBu

Bun

H

room temperature

+

2.28 (85%)

+

 

Scheme 2.15. Stoichiometric cyclometalation with valerophenone imine and [Ru(cod)(η
3
-methylallyl)2] 

 

 

Figure 2.4. ORTEP diagram of {Ru(cod)[η
2
-HNC(nBu)C6H4]2} (2.28) at 50% thermal ellipsoid 

 

[Ru(cod)(3-methylallyl)2] (3.0 mol% )

IPr (3.3 mol% )

hexane, 60 oC, 24h

NH
Ph

Ph

NH2Bun

Ph Ph

2.23q, R = CF3, 95%
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Scheme 2.16. Ruthenium(II)/NHC catalyzed [3+2] carbocyclization with valerophenone imines and 

diphenylacetylene 

 



36 

 

2.5. Proposed Reaction Mechanism  

Current results on the substrate scope and substituent effects provide significant insights into the 

reaction mechanism. Firstly, high regioselectivity with non-symmetric alkyne substrates supported the 

proposed alkyne insertion into a Ru-aryl rather than Ru-H linkage (Scheme 2.13, Path B). As observed 

with unsymmetrically substituted aryl-alkyl alkynes, alkyne insertion into Ru-aryl linkage placed the Ru 

center preferentially at the more stabilized benzylic position in the alkenylruthenium(II) intermediate 

(2.21b) (Scheme 2.13, R
2
=alkyl, R

1
=aryl). Secondly, the relatively low reactivity with 3-hexyne compared 

to aromatic alkynes was consistent with a rate-limiting alkyne insertion step. Thus, the remarkable 

reactivity enhancement by NHC ligands was likely due to their electron richness and ability to promote 

insertions of organic π systems into metal-carbon linkages. Thirdly, the stoichiometric reaction of 

valerophenone imine with [Ru(cod)(methylallyl)2] under room temperature and catalytic reaction with 

diphenylacetylene under 60 
o
C also indicated that C-H bond activation was not the turnover-limiting step. 

Lastly, regioselective functionalization at the more electron-deficient arenes suggested a C-H activation 

pathway via σ-bond metathesis or nucleophilic deprotonation rather than electrophilic aromatic 

substitution.
26-28

 Therefore, the catalytic cycle proposed for rhodium catalytic system is also applicable to 

this ruthenium catalyzed [3+2] carbocyclization (Scheme 2.7).  

2.6. Conclusion 

In summary, we have developed a Ru(II)-catalyzed [3+2] annulation between N-H ketimines and 

internal alkynes to form indenamines under mild reaction conditions. Room-temperature C-H activation 

and subsequent carbocyclization was achieved by using a Ru(II)/η
3
-methylallyl catalyst precursor, NHC 

ligands, and without strong oxidant or acid/base additives. Future efforts will be focused on gaining a 

better understanding of the reaction mechanism and exploration of NHC ligands for selective 

functionalization of C-H bonds for broader synthetic applications. 
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2.7. Experimental Procedures 

2.7.1. General Information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere using 

standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1 h prior to use. 

THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min and dried with a 

solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, dichloroethane, 

methanol, and ethanol were dried over activated 3 Å molecular sieves and degassed by purging with 

nitrogen. Other reagents and substrates were commercially available used as received, including 

unprotected forms of NHC ligands IPr, IMes, SIPr, and SIMes. TLC plates were visualized by exposure to 

ultraviolet light. Organic solutions were concentrated by rotary evaporation at ~10 torr. Flash column 

chromatography was performed with 32–63 microns silica gel. GC analyses were performed on a 

Shimadzu GC-2010 with n-dodecane as the internal standard. 
1
H NMR spectra were obtained on a 400 

MHz spectrometer, and chemical shifts were recorded relative to residual protiated solvent. 
13

C NMR 

spectra were obtained at 100 MHz, and chemical shifts were recorded to the solvent resonance. Both 
1
H 

and 
13

C NMR chemical shifts were reported in parts per million downfield from tetramethylsilane (δ = 0 

ppm). 
19

F NMR spectra were obtained at 282.4 MHz, and all chemical shifts were reported in parts per 

million upfield of CF3COOH (δ = -78.5 ppm). High-resolution mass spectra were obtained from a Bruker 

Daltronics BioTOF HRMS spectrometer. 

2.7.2. General Procedure for the Preparation of N-H Diaryl Ketimines
5 

Into a 20 mL vial equipped with a magnetic stir bar was added the aryl Grignard reagent (6.0 

mmol) and 2 mL THF inside a N2-filled glovebox. The corresponding arylnitrile (5.4 mmol) in 2 mL THF 

was added dropwise to allow good mixing and controlled heat release. The mixture was stirred at room 

temperature for 30 minutes before being capped with a screw-cap, sealed with electric tape, and 

transferred out of glovebox and put into an 85 °C oil bath. After stirring for 12h, the reaction mixture was 

cooled to room temperature and quenched by slow addition of anhydrous MeOH while stirring at 0 
o
C. 

The resulting mixture was stirred at room temperature for 30 minutes, and the volatile materials were 
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evaporated under vacuum. The residue was further purified by flash-column chromatography, with 1.5 mL 

of triethylamine (TEA) added into every 100 mL of eluent (ethyl acetate/Hexane). The imine products 

were generally acquired with over 95% purity and less than 5% ketone impurities based on GC analysis. 

2.7.3. Preparation of Alkyne Substrates
28,29 

 

(Cyclopropylethynyl)benzene: Into a flame-dried 100 mL flask equipped with a magnetic stir bar 

was added iodobenzene (5.25 mmol), bis(triphenylphosphine)-palladium(II) chloride [Pd(PPh3)2Cl2] (2 

mol%), copper(I) iodide (CuI) (4 mol%) and triethylamine  (30 mL). The corresponding 

ethynylcyclopropane (5 mmol) was dissolved into 3mL TEA and added dropwise. The reaction was 

performed at room temperature under nitrogen overnight. The reaction mixture was then poured into 

water, and the aqueous layer was extracted three times with dichloromethane. After drying the combined 

organic layers over magnesium sulfate, the solution was filtered and the solvent was removed in vacuum. 

The solid residue was further purified by column chromatography using hexane solvent to afford the 

product as a yellow oil (0.54 g, 76%). 

 

(E)-But-1-en-3-yne-1,4-diyldibenzene: into a flame-dried 100 mL flask equipped with a magnetic 

stir bar was added β-bromostyrene (5.25 mmol), bis(triphenylphosphine)-palladium(II) chloride 

[Pd(PPh3)2Cl2] (2 mol%), copper(I) iodide (CuI) (2 mol%), tetrabutylammonium fluoride hydrate (2.0 

equiv.)  and THF (15 mL). The corresponding alkyne phenylacetylene (5 mmol) was dissolved in 3mL 

THF and added dropwise. The reaction was performed at room temperature under nitrogen overnight. 
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The workup procedure was the same as for the synthesis of (cyclopropylethynyl)benzene. The product 

was acquired as a white solid (0.76 g, 73%).  

 

2-(Phenylethynyl)thiophene: a mixture of the 2-iodothiophene (5mmol), phenylacetylene (6 

mmol), [Pd(PPh3)2Cl2]  (2 mol %), PPh3 (1%) and TEA (5 mL) in 20 mL of THF was stirred for 20 min at 

room temperature, and CuI (1 mol %) was then added. The mixture was stirred under room temperature 

for 1.5 hour. The workup procedure is same as synthesis of (cyclopropylethynyl)benzene. The product is 

a white solid (0.88 g, 95%). 

2.7.4. Preparation and X-Ray Diffraction Analysis of Ruthenium(II) Catalyst Precursors 

Ru(cod)[η
2
-HNC(C6H5)C6H4]2 (2.27) and Ru(cod)[η

2
-HNC(nBu)C6H4]2 (2.28): Into a 20 mL 

scintillation vial equipped with a magnetic stir bar was added Ru(cod)(methylallyl)2 (320 mg, 1.0 mmol), 

imine (2.0 mmol) and 10 mL toluene. The mixture was stirred overnight at room temperature. Then, the 

solvent was removed under reduced pressure. The residue was washed with hexane (3X), dried under 

vacuum, and afforded an orange powder (2.27, 513 mg, 90 %; 2.28, 451 mg, 85%).  

Single crystal X-ray diffraction data of Ru(cod)[η
2
-HNC(C6H5)C6H4]2 (2.27) and Ru(cod)[η

2
-

HNC(nBu)C6H4]2 (2.28) were collected on a Bruker Apex Duo diffractometer with a Apex 2 CCD area 

detector at T = 100K. Cu radiation was used for both of these 2 samples. Structures were process with 

Apex 2 v2013.4-1 software package with the most recent SAINT and SHELX software. Multi-scan 

absorption correction (SADABS 2012/1) was applied to 2.27 and 2.28. Direct method was used to solve 

these two structures. Details of data collection and refinement are given in Table 2.4-2.7. 
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Table 2.4. Summary of cell parameters, data collection and structural refinements for {Ru(cod)[
2
-

HNC(C6H5)C6H4]2} (2.27). 
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Table 2.5.  Selected bond lengths [Å] and bond angles [degree] for {Ru(cod)[η
2
-HNC(C6H5)C6H4]2}  

(2.27).  
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Table 2.6. Summary of cell parameters, data collection and structural refinements for {Ru(cod)[
2
-

HNC(nBu)C6H4]2} (2.28). 
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Table 2.7.  Selected bond lengths [Å] and bond angles [degree] for {Ru(cod)[η
2
-HNC(nBu)C6H4]2}  (2.28).  

 

 

 

2.7.5. General Procedure for Ruthenium(II)/NHC-Catalyzed [3+2] Annulation 

Into a 4.0 mL scintillation vial equipped with a magnetic stir bar was placed the alkyne substrate 

2.02 (0.1 mmol, 1.0 equiv.), the ketimine substrate 2.09 (1.1 equiv.) and a stock solution of Ru(II) catalyst 

precursor and carbene ligand in hexane solvent (0.5 mL). The stock solution contains 

[Ru(cod)(methylallyl)2] (0.030 equiv.) and IPr ligand (0.033 equiv.). The vial was sealed with a silicone-

lined screw-cap and stirred at room temperature in glovebox for 24 h. In case heating is needed for 

complete conversion, the vial was transferred out of the glovebox and stirred in a 60 °C or 80 °C oil bath 
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for 24 h. The reaction mixture was then cooled to room temperature, and all volatile materials were 

removed under reduced pressure. Further purification was achieved by flash column chromatography. 

Yields of the isolated products are based on the average of two runs under identical conditions. 

2.7.6. Spectral Data for Isolated [3+2] Annulation Products 

 

1, 2, 3-Triphenyl-1H-inden-1-ylamine (2.23a): Chromatography (1:4 ethyl acetate/hexane, Rf = 

0.35) gave 2.23a as a white solid (32.4 mg, 90 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.58–7.55 (m, 2H), 

7.45–7.00 (m, 15H), 6.90–6.85 (m, 2 H), 1.86 ppm (s, -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 154.2, 

151.2, 143.0, 139.6, 135.2, 134.6, 129.9, 129.8, 129.7, 128.8, 128.8, 128.2, 127.9, 127.8, 127.4, 127.1, 

126.9, 125.8, 123.3, 121.2,  71.8 ppm; HRMS: m/z calcd for C27H19
+
 (loss of -NH2 group): 343.1481; 

found: 343.1476. 

 

3-Methyl-1,2-diphenyl-1H-inden-1-ylamine (2.23b): Chromatography (1:3 ethyl acetate/hexane, Rf 

= 0.40) gave 2.23b as a white solid (29.2 mg, 98  %). 
1
H NMR (400 MHz, CDCl3): δ = 7.40–7.13 (m, 12 

H), 6.98-6.96 (m, 2H), 2.20 (s, 3 H), 1.75 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 153.1, 

150.5, 144.3, 142.9, 135.2, 134.7, 129.4, 128.6, 128.3, 127.9, 127.4, 126.9, 126.7, 125.9, 122.7, 119.7, 

71.9, 12.0; HRMS: m/z calcd for C22H17
+
 (loss of -NH2 group): 281.1325; found: 281.1322. 

Et

Ph

Ph
H2N

2.23c  
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3-Ethyl-1,2-diphenyl-1H-inden-1-ylamine (2.23c): Chromatography (1:3 ethyl acetate/hexane, 

Rf=0.40) gave 2.23c as a white solid (29.9 mg, 96%). 
1
H NMR (400 MHz, CDCl3): δ = 7.36–7.12 (m, 12 

H), 6.94–6.90 (m, 2H), 2.59 (m, 2 H), 1.76 (s, 2H; -NH2), 1.26 ppm (td, J = 7.6, 1.7, 3H); 
13

C NMR (100 

MHz, CDCl3): δ = 153.4, 150.4, 143.3, 142.6, 140.5, 135.3, 129.4, 128.5, 128.3, 127.8, 127.5, 126.9, 

126.5, 126.0, 123.1, 120.1, 71.9, 19.6, 13.9 ppm;  HRMS: m/z calcd for C23H19
+
 (loss of -NH2 group): 

295.1481; found: 295.1476. 

 

3-Cyclopropyl-1,2-diphenyl-1H-inden-1-ylamine (2.23d): Chromatography (1:4 ethyl 

acetate/hexane, Rf=0.30) gave 2.23d as a white solid (30.7 mg, 95%). 
1
H NMR (400 MHz, CDCl3): δ = 

7.50–7.07 (m, 14 H), 1.86 (tt, J = 8.5, 5.5 Hz, 1H), 1.77 (br s, 2H), 0.96 (m, 1H), 0.77 (m, 1 H), 0.64 (m, 

1H), 0.52 ppm (m, 1H); 
13

C NMR (100 MHz, CDCl3): δ = 153.1, 151.0, 143.7, 143.0, 139.5, 135.0, 129.7, 

128.6, 128.5, 128.5, 128.0, 127.8, 127.5, 126.9, 126.6, 125.7, 122.9, 120.6, 71.5,9.0, 7.5, 6.4 ppm;  

HRMS: m/z calcd for C24H19
+
 (loss of -NH2 group): 307.1481; found: 307.1492. 

  

(E)-1,2-Diphenyl-3-styryl-1H-inden-1-ylamine (2.23e): Chromatography (1:4 ethyl acetate/hexane, 

Rf=0.30) gave 2.23e as a white solid (37.4 mg, 97%). 
1
H NMR (400 MHz, CDCl3): δ = 7.60 (m, 7H), 7.49 

(tt, J = 7.2, 1.6 Hz, 1H), 7.33 (td, J = 7.4, 1.3 Hz, 4H), 7.21 (m, 7H), 7.10 (d, J = 16.6, 1H), 6.43 (d, J = 

16.6, 1H), 2.09 ppm (s, 1H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 154.3, 148.3, 143.7, 142.2, 142.1, 

137.8, 134.6, 132.4, 129.9, 129.0, 128.9, 128.7, 128.3, 128.0, 127.8, 127.3, 127.1, 126.7, 125.5, 123.2, 

121.3, 120.6, 69.6 ppm; HRMS: m/z calcd for C29H21
+
 (loss of -NH2 group): 369.1638; found: 369.1634. 
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1,3-Diphenyl-2-(thiophen-2-yl)-1H-inden-1-ylamine (2.23f): Chromatography (1:3 ethyl 

acetate/hexane, Rf=0.30) gave 2.23f as a colorless solid (31.5 mg, 86 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.63 (dt, J = 8.5, 2.4 Hz, 2H), 7.51-7.45 (m, 5H), 7.30 (m, 2H), 7.23 (m, 2H), 7.18 (dd, J = 7.4, 1.3 Hz, 

1H), 7.13 (dd, J = 7.4, 1.2 Hz, 1H), 7.07 (d, J = 7.4 Hz, 1H), 7.04 (dd, J = 5.1, 1.1 Hz, 1H), 6.75 (dd, J = 

5.1, 3.7 Hz, 1H), 6.58 (dd, J = 3.7, 1.1 Hz, 1H), 1.99 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 

152.6, 144.5, 143.1, 142.9, 139.1, 136.6, 135.1, 129.8, 129.3, 128.9, 128.4, 128.1, 127.6, 127.3, 126.9, 

126.8, 126.2, 125.8, 123.2, 121.1, 71.6 ppm; HRMS: m/z calcd for C25H17S
+
 (loss of -NH2 group): 

349.1045; found: 349.1041. 

 

2, 3-Diethyl-1-phenyl-1H-inden-1-ylamine (2.23g): Chromatography (1:2 ethyl acetate/hexane, Rf 

= 0.30) gave 2.23g as a colorless oil (25.3 mg, 96 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.31 (dt, J = 6.8, 

0.8 Hz, 2H), 7.25–7.16 (m, 5H), 7.10–7.05 (m, 2H), 2.61-2.48 (m, 2 H), 2.29–2.09 (m, 2H), 1.70 (br s, 2H; 

-NH2), 1.23 (t, J = 7.2 Hz, 3H), 0.84 ppm (t, J = 7.6 Hz, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 153.9, 

151.7, 144.0, 143.0, 138.3, 128.3, 127.5, 126.8, 126.0, 125.6, 122.3, 119.0, 71.3, 18.9, 18.5, 14.8, 13.7 

ppm; HRMS: m/z calcd for C19H19
+
 (loss of -NH2  group): 247.1481; found: 247.1475. 

 

1-Phenyl-2,3-dipropyl-1H-inden-1-ylamine (2.23h): Chromatography (1:2 ethyl acetate/hexane, Rf 

= 0.35) gave 2.23h as a colorless oil (27.4 mg, 94 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.32 (d, J = 6.8 Hz, 

2H), 7.24–7.15 (m, 5H), 7.05 (m, 2H), 2.50 (t, J = 7.6 Hz, 2H), 2.21 (m, 1H), 2.06 (m, 1H), 1.71 (br s, 2H; -
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NH2), 1.66 (m, 2H), 1.32 (m, 1H), 1.14 (m, 1H), 1.03 (td, J = 7.2, 2.2 Hz, 3H), 0.82 ppm (td, J = 7.2, 2.2 

Hz, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 154.0, 151.0, 144.2, 143.1, 137.2, 128.3, 127.5, 126.8, 126.0, 

125.6, 122.3, 119.1, 71.3, 28.1, 27.9, 23.2, 22.2, 15.0, 14.7 ppm; HRMS: m/z calcd for C21H23
+
 (loss of -

NH2 group): 275.1794; found: 275.1787. 

 

5-Fluoro-1-(4-fluorophenyl)-2,3-diphenyl-1H-inden-1-amine (2.23i): Chromatography (1:3 ethyl 

acetate/hexane, Rf = 0.30) gave 2.23i as a white solid (35.6 mg, 90%). 
1
H NMR (400 MHz, CDCl3): δ = 

7.49 (dd, J = 8.2, 5.5 Hz, 2H), 7.37-7.31 (m, 5H), 7.14-7.05 (m, 4H), 6.98 (t, J = 8.2 Hz, 3H), 6.83 (m, 3H), 

1.81 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 164.0 (d, J = 242.7 Hz), 161.5 (d, J = 244.1 Hz), 

152.9, 148.3, 145.0 (d, J = 8.1 Hz), 138.7, 138.4, 134.5, 134.1, 132.6 (d, J = 8.1 Hz), 129.7, 129.5, 129.0, 

128.3, 128.1, 127.8, 127.4 (d, J = 8.1 Hz), 124.3 (d, J = 9.5 Hz), 115.8, 115.6, 113.5, 113.1, 108.8, 108.6, 

71.0 ppm; 
19

F NMR (282.4 MHz, CDCl3): δ = -114.8 (td, J = 9.0, 5.0 Hz, 1F), -116.3 ppm (m, 1F); HRMS: 

m/z calcd for C27H19NF2Na
+
: 418.1378; found: 418.1387. 

 

5-Chloro-1-(4-chlorophenyl)-2,3-diphenyl-1H-inden-1-ylamine (2.23j): Chromatography (1:3 ethyl 

acetate/hexane, Rf = 0.30) gave 2.23j as a white solid (40.7 mg, 95%). 
1
H NMR (400 MHz, CDCl3): δ = 

7.48 (dt, J = 8.7, 2.3 Hz, 2H), 7.41-7.31 (m, 4H), 7.26 (m, 3H), 7.11-7.05 (m, 6H), 6.86 (m, 2H), 1.86 ppm 

(s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 152.2, 150.9, 144.7, 141.1, 138.9, 134.3, 134.1, 133.9, 

133.1, 129.7, 129.4, 129.1, 129.0, 128.3, 128.2, 127.9, 127.2, 126.8, 124.3, 121.5, 71.1 ppm; HRMS: m/z 

calcd for C27H17Cl2
+
 (loss of -NH2 group): 411.0702; found: 411. 0715. 
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2,3-Diphenyl-6-(trifluoromethyl)-1-(3-(trifluoromethyl)phenyl)-1H-inden-1-ylamine (2.23k): 

Chromatography (1:3 ethyl acetate/hexane, Rf = 0.30) gave 2.23k as a light yellow solid (45.1 mg, 91%). 

1
H NMR (400 MHz, CDCl3): δ = 7.98 (s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.46–7.36 

(m, 8H), 7.15–7.07 (m, 3H), 6.84 (dd, J = 7.2, 1.2 Hz, 2H), 1.91 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, 

CDCl3): δ = 153.3, 152.9, 146.4, 143.3, 139.3, 134.2, 133.6, 131.4 (q, J = 32.4 Hz), 129.6, 129.51, 

129.46, 129.3, 129.1, 128.5, 128.3, 128.1, 125.8 (q, J = 4.1 Hz), 124.5 (q, J = 272.0 Hz), 123.1 (q, J = 

272.7 Hz), 122.6 (q, J = 4.0 Hz), 121.5, 120.2 (q, J = 4.1 Hz), 71.7 ppm; 8, 124.3, 121.5, 71.1 ppm; 
19

F 

NMR (282.4 MHz, CDCl3): d = -62.7, -63.4 ppm; HRMS: m/z calcd for C29H17F6
+
: 479.1229; found: 

479.1228. 

 

5-Fluoro-1,2,3-triphenyl-1H-inden-1-ylamine (2.23l) and 1-(4-fluorophenyl)-2,3-di-phenyl-1H-

inden-1-ylamine (2.23l’): Chromatography (1:4 ethyl acetate/hexane, Rf = 0.30) gave a mixture of 2.23l 

and 2.23l’ as a white solid (35.1 mg, 93%). Compounds 2.23l and 2.23l’  could not be separated by 

chromatography. Based on 
19

F NMR spectroscopy, 2.23l and 2.23l’  have a ratio of 73 to 27%. 
1
H NMR 

(400 MHz, CDCl3): δ = 7.55–6.80 (m, 18H), 1.83 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 

163.9 (d, J = 242.8 Hz), 161.5 (d, J = 244.2 Hz), 153.1, 153.0, 150.9, 148.52, 148.50, 145.1 (d, J = 8.1 

Hz), 142.8, 142.6, 139.6, 138.68, 138.65, 135.1, 134.7, 134.5, 134.3, 129.8, 129.6, 129.5, 128.94, 

128.91, 128.82, 128.2, 128.0, 127.9, 127.6, 127.55, 127.52, 127.5, 127.2, 127.0, 125.6, 124.4 (d, J = 9.5 

Hz), 123.2, 121.3, 115.7, 115.5, 113.3, 113.1, 108.6, 108.4, 71.5, 71.3 ppm; 
19

F NMR (282.4 MHz, 
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CDCl3): δ = -115.7 (t, J = 9.0 Hz), -117.1 ppm (t, J = 9.0 Hz); HRMS: m/z calcd for C27H18F
+ 

(loss of -NH2 

group): 361.1387; found: 361.1392. 

 

1, 2, 3-Triphenyl-5-trifluoromethyl-1H-inden-1-ylamine (2.23m) and 2,3-diphenyl- 1-(4- 

trifluoromethylphenyl)-1H-inden-1-ylamine (2.23m’): Chromatography (1:4 ethyl acetate/hexane, Rf = 

0.40) gave a mixture of 2.23m and 2.23m’ as a white solid (40.6 mg, 95%). Compounds 2.23m and 

2.23m’ could not be separated by chromatography. Based on the analysis by 
19

F NMR spectroscopy, 

2.23m and 2.23m’ have a ratio of 79 to 21%. 
1
H NMR (400 MHz, CDCl3): δ = 7.69 (d, J = 8.0 Hz, 1H), 

7.56–7.51 (m, 3H), 7.43–7.04 (m, 12H), 6.88–6.83 (m, 2H), 1.86 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, 

CDCl3): δ = 156.6, 152.8, 152.5, 150.6, 147.7, 143.7, 142.9, 141.8, 138.7, 134.9, 134.4, 134.2, 134.0, 

130.40 (q, J = 31.8 Hz), 129.8, 129.7, 129.6, 129.5, 129.10, 129.05, 128.4, 128.29, 128.25, 128.20, 

128.0, 127.8, 127.6, 127.1, 126.2, 125.8 (q, J = 3.7 Hz), 125.7, 124.0 (q, J = 3.8 Hz), 123.6, 123.3, 121.5, 

117.9 (q, J = 4.6 Hz), 71.8, 71.7 ppm; 
19

F NMR (282.4 MHz, CDCl3): δ = - 62.7 (s), - 63.0 ppm (s); HRMS: 

m/z calcd for C28H18F3
+
 (loss of -NH2 group): 411.1355; found: 411.1355. 

 

1,2,3-Triphenyl-6-trifluoromethyl-1H-inden-1-ylamine (2.23n) and 2,3-diphenyl-1-(3-

trifluoromethylphenyl)-1H-inden-1-ylamine (2.23n’): Chromatography (1:4 ethyl acetate/hexane, Rf=0.40 

for 3n, Rf=0.30 for 3n’) gave 2.23n (25.7 mg), 2.23n’ (14.2 mg), and 2.23n+2.2 3n’ (40.2 mg) as white 

solids (total yield: 94%, 3n/3n’ = 1.8:1). 2.23n: 
1
H NMR (400 MHz, CDCl3): δ = 7.54–7.22 (m, 13H), 7.12–

7.02 (m, 3H), 6.86 (m, 2H), 1.86 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 153.9, 153.6, 146.5, 

141.7, 138.6, 134.5, 134.0, 129.8, 129.5, 129.1, 129.0, 128.3, 128.1, 127.9, 127.6, 125.7, 125.4 (q, J = 
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3.8,), 121.2, 120.2 (q, J = 3.6 Hz), 71.9 ppm;  
19

F NMR (282.4 MHz, CDCl3): δ = -62.6 ppm (s). 2.23n’: 
1
H 

NMR (400 MHz, CDCl3): δ = 8.00 (s, 1H), 7.63–7.06 (m, 15H), 6.84 (m, 2H), 1.89 ppm (s, 2H; -NH2); 
13

C 

NMR (100 MHz, CDCl3): δ = 152.5, 150.5, 144.6, 142.8, 140.2, 134.9, 134.2, 129.7, 129.6, 129.4, 129.2, 

128.9, 128.3, 128.2, 128.0, 127.6, 127.1, 124.1 (dd, J = 3.5, 7.2 Hz), 123.3, 122.7 (dd, J = 3.1, 6.9 Hz), 

121.5, 71.6 ppm; 
19

F NMR (282.4 MHz, CDCl3): δ = -63.4 ppm (s); HRMS: m/z calcd for C28H18F3
+
 (loss of 

-NH2 group): 411.1355; found:411.1376. 

 

 

5-Methoxy-1,2,3-triphenyl-1H-inden-1-ylamine (2.23o) and 1-(4-methoxyphenyl)-2,3-diphenyl-1H-

inden-1-ylamine (2.23o’): Chromatography (1:1 ethyl acetate /hexane, Rf = 0.35) gave a mixture of 2.23o 

and 2.23o’ as a white solid (36.9 mg, 95 %). Compounds 2.23o and 2.23o’ could not be separated by 

chromatography. Based on the analyses by 
1
H NMR spectroscopy, 2.23o and 2.23o’ have a ratio of 67 to 

33%. 
1
H NMR (400 MHz, CDCl3): δ = 7.54 (m, 2H), 7.47–7.02 (m, 12H), 6.89–6.82 (m, 3H), 6.69 (dd, J = 

8.2, 2.4 Hz, 1H), 3.78, 3.76 (s, 3H), 1.83 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): δ = 160.0, 

158.8, 153.4, 152.6, 151.3, 145.5, 144.5, 143.4, 142.8, 139.3, 135.3, 135.2, 134.8, 134.6, 129.9, 129.8, 

129.6, 128.84, 128.81, 128.2, 127.8, 127.7, 127.4, 127.0, 126.95, 126.90, 125.7, 124.0, 123.2, 121.1, 

114.2, 111.8, 107.6, 71.5, 71.3, 55.7, 55.4 ppm; HRMS: m/z calcd for C28H21O
+
 (loss of -NH2 group): 

373.1587; found: 373.1580. 

 

1-(3-Methoxy-phenyl)-2,3-diphenyl-6-trifluoromethyl-1H-inden-1-ylamine (2.23p): 

Chromatography (1:4 ethyl acetate: hexane, Rf=0.30) gave 2.23p as a white solid (38.9mg, 85%). 
1
H 
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NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 8.0 Hz, 1H), 7.48 (s, 1H), 7.23 (m, 2H), 7.13-7.05 (m, 4H), 6.89 

(m, 2H), 6.82 (dd, J =8.1, 2.6 Hz, 1H), 3.78 (s, 3H), 1.85 ppm (s, 2H; -NH2); 
13

C NMR (100 MHz, CDCl3): 

δ = 160.3, 153.7, 153.4, 146.4, 143.6, 138.7, 134.6, 133.9, 130.1, 129.8, 129.5, 129.0, 128.7 (q, J = 38 

Hz), 128.3, 128.2, 127.9 , 124.7 (q, J = 280 Hz), 125.4 (q, J = 3.8 Hz), 121.2, 120.1 (q, J = 3.8 Hz), 118.0, 

112.6, 111.8, 71.8, 55.4 ppm; 
19

F NMR (282.4 MHz, CDCl3): δ = 62.2 ppm (s); HRMS: m/z calcd for 

C29H20OF3
+
 (loss of -NH2 group): 441.1461; found: 441.1474. 

  

1-Butyl-2,3-diphenyl-6-trifluoromethyl-1H-inden-1-ylamine (2.23q): Chromatography (1:4 ethyl 

acetate/hexane, Rf=0.40) gave 2.23q as a light yellow solid (38.7 mg, 95 %). 
1
H NMR (400 MHz, CDCl3): 

δ  =7.53 (d, J = 1.1 Hz, 2H), 7.48 (s, 1H), 7.33–7.20 (m, 10H), 1.97 (dt, J = 12.0, 4.6 Hz, 1H), 1.85 (dt, J = 

13.1, 3.9Hz, 1H), 1.62 (s, 2H; -NH2), 1.15 (m, 3H), 0.76 ppm (m, 4H); 
13

C NMR (100 MHz, CDCl3): δ = 

154.4, 151.2, 144.1, 138.9, 135.2, 134.3, 130.2 (q, J = 32 Hz), 129.7, 129.5, 128.7, 128.5, 127.8, 127.7 

(q, J = 310 Hz), 127.4, 123.4 (q, J = 3.5 Hz), 122.2, 117.5 (q, J = 3.5 Hz), 69.8, 38.2, 26.0, 23.0, 14.0 

ppm; 
19

F NMR (282.4 MHz, CDCl3): δ = -62.8 ppm (s); HRMS: m/z calcd for C26H22F3
+
 (loss of -NH2 

group): 391.1668; found: 391.1674. 

 

 1-Butyl-2,3-diphenyl-1H-inden-1-ylamine (2.23r): Chromatography (1:4 ethyl acetate/hexane, 

Rf=0.30) gave 2.23r as a light yellow oil (25.5 mg, 75 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.48-7.45(m, 

1H), 7.31-7.23 (m, 13H), 2.01-1.83(m, 2H), 1.68 (s, 2H, -NH2), 1.22-1.13 (m, 3H), 0.87-0.79(m, 1H), 0.76 

ppm (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 150.7, 149.5, 143.4, 139.7, 135.9, 135.1, 129.8, 

129.6, 128.5, 128.4, 127.7, 127.41, 127.39. 126.3, 122.0, 120.8, 69.8, 38.5, 26.1, 23.0, 14.1 ppm; HRMS: 

m/z calcd for C25H23
+
 (loss of -NH2 group): 323.1794; found: 323.1789. 
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CHAPTER 3. RUTHENIUM(II)/N-HETEROCYCLIC CARBENE CATALYZED [3+2] 

CARBOCYCLIZATION WITH ARYL KETONES AND INTERNAL ALKYNES 

3.1. Background and Significance  

The indenol moiety is an important structural unit present in various biologically active 

compounds that showed insecticidal, analgesic, and myorelaxation properties.
1-4

 Despite their high utility, 

only a few synthetic routes are available in the literature.
1-18 

Transition metal-catalyzed carbocyclization is a powerful method for the construction of indenol 

derivatives in organic synthesis.
19-23

 Liebeskind et al. reported a stoichiometric reaction of alkynes with 

ortho-manganated acetophenones (3.02) to give indenols (3.03) (Scheme 3.1).
1
 The reaction exhibited a 

surprisingly high degree of regiochemical control over the range of alkynes studied. Vicente and 

coworkers reported stoichiometric and catalytic synthesis of indenols from mono- and disubstituted 

alkynes and organomercuric compounds using palladium complexes.
5,6
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Scheme 3.1. Carbocyclization with ortho-manganated acetophenones and alkynes 

 

Carbocyclization of ortho-haloaromatic ketones or aldehydes (3.04) with alkynes to give 

substituted indenols utilizing palladium catalyst was reported by Yamamoto and co-workers (Scheme 3.2, 

A).
7,8

 Similar catalytic reactions with nickel catalyst in the presence of stoichiometric amount of zinc as 
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reductant were reported by the Cheng group (Scheme 3.2, B).
9,11

 Notably, cobalt catalytic system 

developed by Cheng and coworkers extended the arene substrate scope to aromatic aldehydes (Scheme 

3.2, C).
10,12

 These reactions proceeded via oxidative addition of the C-X bonds in ortho-haloaromatic 

ketones/aldehydes (3.04), generating the metallacycle intermediate 3.05, followed by alkyne insertion that 

gave the vinyl-metal intermediate 3.06. Subsequent intramolecular addition of M-C linkage to the C=O 

bond affording the alkoxy-metal intermediate 3.07. Successive transmetalation and protonation afforded 

the indenol products. Although stoichiometric amount of organometallic substrates were not required in 

these reactions, regeneration of the catalysts in nickel and cobalt catalytic systems demanded 

stoichiometric amount of zinc as reductant to generate low-valent and active catalysts. 
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Scheme 3.2. Transition metal-catalyzed carbocyclization with o-haloaromatic ketones and internal 
alkynes 

 

Murakami and co-workers described a rhodium-catalyzed regioselective carbocyclization of ortho-

formylphenylboronic acid (3.06) with alkynes to produce substituted indenol derivatives (Scheme 3.3).
13
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The proposed reaction mechanism was similar to the reaction using ortho-haloaromatic ketone/aldehydes 

(3.04) as substrates, except the first step was transmetalation instead of oxidative addition. All of these 

methods described above to synthesize indenols required prefunctionalized arene substrates, such as 

aryl halides and arylboronic acids, as starting materials, which needed extra synthetic steps to prepare 

and would generate stoichiometric amount of salt wastes. 
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Scheme 3.3. Rhodium catalyzed carbocyclization with o-acetylphenylboronic acid and internal alkynes 

 

Over the past two decades, the strategy based on transition metal-catalyzed C-H activation has 

evolved as an atom- and step-economic alternative to access indenols. In 1999, Woodgate reported the 

first example of indenol synthesis based on a carbonyl-directed C-H activation of aryl ketone with the 

assistance of a ruthenium complex (Scheme 3.4).
14

 However, this rhodium catalysis led to a 1:1 mixture 

of alkenylated ketone (3.10a) and indenol (3.03a) with moderate yield in refluxing toluene.  

 

Scheme 3.4. Ruthenium catalyzed alkenylation and carbocyclization with 1-acetylnaphthalene and 

trimethyl(phenylethynyl)silane 
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Recently, based on their previous report on iridium catalyzed alkyne hydroarylation via directed 

ortho-C–H bond activation of aryl ketones,
15

 Shibata and co-workers found an carbocyclization occurred 

when the counter anion of the iridium complex was changed, leading to indenol (3.03b) and benzofulvene 

(3.13a) instead of the ortho-alkenylated aryl ketone as shown in Scheme 3.5.
16

 The iridium complex 

behaved as a catalyst in the ortho-C–H bond alkenylation of aryl ketones with alkynes giving intermediate 

3.11 and as a Lewis acid catalyst in the cyclization of the alkenylated product, generating intermediate 

3.12 and the subsequent dehydration product benzofulvene. 

 

 

Scheme 3.5. Cationic iridium catalyzed carbocyclization with acetophenone and diphenylacetylene to 

form indenol and benzofulvene products 

 

After Shibata’s initial report, Glorius
18

 and Cheng
17 

independently developed a rhodium-catalyzed 

directed C–H activation of aromatic ketones and subsequent carbocyclization with alkynes to form 

indenols (Scheme 3.6). In their reaction systems, AgSbF6 was required as co-catalyst and stoichiometric 

Cu(OAc)2 was essential to facilitate the reaction by transmetalation with Rh–O species to release the 

rhodium catalyst from indenol product. Most recently, Jeganmohan developed a ruthenium catalytic 

system in which Cu(OAc)2 was used in catalytic amount.
24

 In the presence of higher loading of AgSbF6 

additive, benzofulvenes were produced through dehydration (Scheme 3.7).  
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Scheme 3.6. Rhodium(III) catalyzed carbocyclization with aromatic ketones and internal alkynes initiated 

by C-H bond activation with the assistance of silver and copper salts 

 

 

Scheme 3.7. Ruthenium(II) catalyzed carbocyclization with aromatic ketones and internal alkynes 

initiated by C-H bond activation with the assistance of silver and copper salts 

 

These catalytic systems to access indenols were based on transition metal-catalyzed carbonyl 

directed C-H bond activation of aryl ketones and carbocyclization with alkynes, which eliminated the 

prefunctionalization of aryl ketones. However, all of them suffered from either low activity of the catalysts 

or harsh reaction conditions including high temperature and the requirement of heavy metal salt additives.  

Our continuous interest in the development of ruthenium-catalyzed C-H activation and 

carbocylization reactions under mild conditions prompted us to explore the reaction of aryl ketones with 

alkynes to access indenols.
25

 A ruthenium(ll)-NHC catalyzed [3+2] carbocyclization with aryl ketones and 

internal alkynes under much milder conditions will be described in this chapter. 
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3.2. Initial Results 

Based on our experience of Ru-NHC catalyzed carbocyclization of N-H ketimines and internal 

alkynes,
25

 we began our study with stoichiometric cyclometalation with Ru(cod)(methylallyl)2 and 

benzophenone (Scheme 3.8). A bis-cyclometalated Ru-complex with η
2
-benzophenone ligand was 

produced and isolated. A structure that was similar to the imine analogue was confirmed by single crystal 

X-ray diffraction (Figure 3.1). However, the cyclometalation with benzophenone via ketone directed C-H 

bond activation was less efficient compared to N-H imines, and relatively higher reaction temperature (80 

o
C) was required to get satisfactory conversion.  

 

 

Scheme 3.8. Stoichiometric cyclometalation with [Ru(cod)(η
3
-methylallyl)2] and benzophenone to form 

bis-cyclometalated ruthenium(II) complex with η
2
-[C,O] ketone ligand 

 

 

Figure 3.1. ORTEP diagram of {[Ru(cod)[η
2
-OC(C6H5)C6H4]2} (3.14) at 50% thermal ellipsoid. 
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The isolated ruthenacycle was tested as catalytic precursor for the coupling between 

benzophenone (3.09c) and diphenylacetylene (3.01b) (Scheme 3.9). The starting materials were 

recovered and no desired indenol product (3.03c) was detected even under elevated temperatures. N-

heterocyclic carbene ligands (NHCs), including IPr, IMes, SIPr, and SIMes, could not facilitate the 

reaction. Therefore, it seemed that not only C-H bond activation but also alkyne insertion was difficult with 

{[Ru(cod)[η
2
-OC(C6H5)C6H4]2} (3.14).  

 

+
Ph

O

Ph Ph
complex 3.14 (3 mol%)

NHC (3.3 mol%)

HO
Ph

Ph

Ph
toluene, rt to 120 oC



N NAr Ar N NAr Ar

IMes: Ar=2,4,6-trimethylphenyl
IPr: Ar=2,6-diisopropylphenyl

SIMes: Ar=2,4,6-trimethylphenyl
SIPr: Ar=2,6-diisopropylphenyl

3.09c 3.01c
3.03c

 

Scheme 3.9. Attempted catalytic reaction with benzophenone and diphenylacetylene using {[Ru(cod)[η
2
-

OC(C6H5)C6H4]2} (3.14)/NHC-ligands 

 

Compared with N-H imine, ketone is a less effective coordinating directing group based on lower 

Lewis basicity of oxygen vs nitrogen,
26

 which likely induced the less efficient cyclometalation with 

benzophenone. With the weakly coordinating ketone as directing groups, the resulted metallacycle 

probably is not stable enough in the reaction system to enable the alkyne insertion. Therefore, using a 

cationic ruthenium complex was expected to enhance the interaction between the weakly coordinating 

carbonyl oxygen and the ruthenium metal. As a result of the stronger coordination with a more Lewis 

acidic ruthenium center, the cyclization step would be facilitated by a more electrophilic carbonyl group. In 

fact, during our study on this project, there were several transition metal-catalyzed carbocyclization with 

aryl ketone and alkynes reported, where cationic transition metal complexes were employed or generated 

in situ as catalyst precursors.
17,18,24
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It has been reported that Ru(-arene)(carboxylate)2 complexes tended to release a carboxylate 

ligand from the metal center and form a cationic Ru(II) mono-carboxylate complex with a ligated solvent 

molecule. Ru(-arene)(carboxylate)2 have been explored extensively in aromatic C-H bond 

functionalization and could be generated in situ from the readily available [Ru(p-cymene)Cl2]2 precursor 

and carboxylate salts (Scheme 3.10). Therefore, [Ru(p-cymene)Cl2]2 and NaOAc was selected in our first 

test for the coupling between benzophenone and diphenylacetylene in the presence of NHC ligand in 

toluene. We were delighted to find that the carbocyclization product, an indenol derivative (3.03c), was 

obtained in 42 % yield at 60 
o
C after 24h (Scheme 3.11). 

 

 

Scheme 3.10. In situ generation of cationic ruthenium-arene complex with the assistance of acetate 

anion and solvent molecule 

 

 

Scheme 3.11. [Ru(p-cymene)Cl2]2/NHC catalyzed carbocyclization with benzophenone and 

diphenylacetylene to form indenol derivative 
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3.3. Optimization of Reaction Conditions 

Encouraged by the preliminary results, we next started the optimization of reaction conditions by 

evaluation of solvent effects (Table 3.1). Protic solvents such as MeOH, which has been used for 

ruthenium carboxylate catalyzed heterocyclization of arenes with alkynes, totally shut off the reaction 

(entry 11).
33-36

 1,2-Dichloroethane (DCE), which was used by Jeganmohan for the same transformation 

with a Ru-Ag-Cu catalytic system,
18

 turned out to be unsuitable for our catalytic system (entries 6 and 7). 

N,N-Dimethylformamide (DMF), N,N-dimethylacetamide (DMA) and N-Methyl-2-pyrrolidone (NMP) also 

hindered the reaction significantly (entries 8-10). On the other hand, ethereal solvents were found to be 

superior to other solvents with tetrahedrofuran (THF) as the optimal solvent for this reaction (entries 2-5).  

 

Table 3.1. Solvent effect in ruthenium(II)/NHC catalyzed carbocyclization with benzophenone and 

diphenylacetylene
a
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Next, we probed the effect of various carboxylate additives in THF (Table 3.2) and found that 

sodium acetate (NaOAc) gave rise to the most satisfactory results (entries 1−9). Either increase or 

decrease in the loading of NaOAc induced decrease in the yield of the product (entries 9-12), and no 

product was detected without NaOAc (entry 13). Attempts to use other ruthenium complexes as catalyst 

precursors were not successful (Table 3.3, entries 1-6). A control reaction showed that omission of the 

[Ru(p-cymene)Cl2]2 resulted in complete inactivity of this catalytic system (entry 7). It was noteworthy that 

the addition of IPr was also critical for this reaction (entry 8), while other N-heterocyclic carbene ligands 

with similar backbone could not promote the reaction (entries 9-11). Increasing the catalyst loading to 5 

mol% and using a slightly excess amount of aryl ketone led to quantitative yield of the indenol product 

with alkyne as the limiting reagent (entries 12-14).  

 

Table 3.2. Effects of inorganic salt and ligand in ruthenium(II)/NHC catalyzed carbocyclization with 

benzophenone and diphenylacetylene
a
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Table 3.3. Effects of catalyst precursor, ligand and catalyst loading in ruthenium(II)/NHC catalyzed 

carbocyclization with benzophenone and diphenylacetylene
a
 

 

 

 

3.4. Substrate Scope 

With the optimized reaction conditions in hand, we explored the aryl ketone substrate scope of 

Ru-catalyzed carbocyclization of aryl ketones and alkynes to form indenols. As shown in Figure 3.2, a 

variety of aryl ketones (3.09) were converted into the desired indenol products via reaction with 

diphenylacetylene (3.01c) as the alkyne substrate. Compared to diaryl ketones, aryl alkyl ketones gave 

relatively lower yields, which decreased with increasing steric bulkiness of the alkyl group (3.03b-3.03f). 

Acetophenones with both electron donating and electron withdrawing aromatic substituents (methyl, 

methoxy and halides) were suitable substrates in this catalytic system. Electron-deficient acetophenones 

gave higher yields (3.03i-3.03l) than their electron-rich analogues (3.03g, 3.03h). When 2,2,2-
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trifluoroacetopenone (3.09m) was subjected to the standard reaction conditions, quantitative yield of the 

corresponding indenol product (3.03m) was obtained.  

 

 

Figure 3.2. Aromatic ketone substrate scope in ruthenium(II)/NHC catalyzed carbocyclization with 

aromatic ketones and internal alkynes
a,b 

 

Next, the alkyne substrate scope was examined with unsymmetrical arylalkyl acetylenes and 

symmetrical dialkyl acetylenes. However, these alkynes were inactive under the standard reaction 

conditions. Higher catalyst loading and higher reaction temperature was applied to the reaction between 

1-phenyl-1-propyne (3.01b) and benzophenone (3.09c) (Scheme 3.12). Only 17% of the indenol product 

(3.03n) was isolated under elevated temperature of 140 
o
C and in the presence of 10 mol% Ru catalyst, 

which suggested a Ru-mediated stoichiometric transformation rather than catalytic reaction.  
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Ph

[Ru(p-cymene)Cl2]2(10 mol%)

IPr (20 mol%), NaOAc (20 mol%)

m-xylene, 140 oC, 24h

3.03n, 17 %

3.09c 3.01b

 

Scheme 3.12. Ruthenium(II)/NHC catalyzed carbocyclization with benzophenone and 1-phenyl-1-
propyne 

 

In Glorius and Cheng’s Rh(lll) catalyst systems, stoichiometric Cu(OAc)2 was necessary to 

generate satisfactory yields.
17,18

 In contrast, Jeganmohan’s Ru(ll) catalyst system required Cu(OAc)2 as a 

co-catalyst.
24

 Both Cu(OAc)2 and AgSbF6 additives were proposed to undergo transmetalation with Rh(ll)-

O or Ru(ll)-O species to regenerate the catalyst. We hypothesized that the low reactivity with alkyl 

substituted alkyne substrates may be caused by slow transmetalation. However, when we introduced 

stoichiometric or catalytic amount of Cu and/or Ag salts in our catalytic system, no carbocyclization 

product was detected. It was also possible that Ag(I) and Cu(II) species competed against the Ru(II) 

catalyst precursor to coordinate with IPr ligand and deactivated the catalytic system. To test this 

hypothesis, a NHC-ligated Ru(II) complex, Ru(p-cymene)(IPr)Cl2 was prepared
27

 and evaluated as the 

catalyst precursor. However, the reactivity towards carbocyclization with alkyl substituted alkynes was not 

improved.  

Based on these results, we proposed that the catalytic cycle for Ru-catalyzed carbocyclization 

with N-H ketimines and internal alkynes could also be applied to this Ru-catalyzed carbocyclization of aryl 

ketones and diphenylacetylene (Scheme 3.13). The cationic Ru catalyst would effectively coordinate to 

the carbonyl group and activate the ortho-C-H bond to generate a ruthenalcycle intermediate. This 

carbonyl-directed C-H activation likely proceeded by the concerted metalation-deprotonation (CMD) 

pathway in the presence of acetate additives. Next, alkyne insertion into the Ru-aryl bond gave a Ru 

alkenyl intermediate. Subsequent ketone insertion into the Ru-alkenyl linkage resulted in a Ru alkoxide 

intermediate, which released the indenol products upon protonation. The cationic nature of Ru complexes 

would facilitate both the C-H bond activation and cyclization steps. The nature of the rate-determining 
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step and other mechanistic details of this proposed catalytic cycle remain unclear and require a more 

systematic investigation in the future.  

 

 

Scheme 3.13 Proposed reaction mechanism for ruthenium(II)/NHC catalyzed carbocyclization with 
aromatic ketones and internal alkynes 

 

3.5. Conclusion 

In summary, we have developed a Ru(II)-catalyzed [3+2] carbocyclization between aryl ketones 

and alkynes to form indenol derivatives under mild reaction conditions. Ketone-directed C-H bond 

activation and carbocyclization with alkynes was achieved without strong oxidant or heavy metal 

additives. The alkyne substrate scope was currently limited to diaryl-substituted alkynes, and further 

efforts are required to better understand the reaction mechanism and to improve the catalyst system for 

extended alkyne substrate scope.  
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3.6. Experimental Procedures 

3.6.1. General Information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere using 

standard Schlenk-line or glovebox techniques. All glassware was oven-dried for at least 1 h prior to use. 

THF, toluene, ether, and hexane were degassed by purging with nitrogen for 45 min and dried with a 

solvent purification system (MBraun MB-SPS). DMF, dioxane, dimethoxyethane, dichloroethane, 

methanol, and ethanol were dried over activated 3 Å molecular sieves and degassed by purging with 

nitrogen. Other reagents and substrates were commercially available and used as received. TLC plates 

were visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary 

evaporation at ~10 torr. Flash column chromatography was performed with 32–63 microns silica gel.  

GC analyses were performed on a Shimadzu GC-2010 with n-dodecane as the internal standard. 
1
H 

NMR spectra were obtained on a 400 MHz spectrometer, and chemical shifts were recorded relative to 

residual protiated solvent. 
13

C NMR spectra were obtained at 100 MHz, and chemical shifts were 

recorded relative to the solvent resonance. Both 
1
H and 

13
C NMR chemical shifts were reported in parts 

per million downfield from tetramethylsilane (δ = 0 ppm). High-resolution mass spectra were obtained at a 

BrukerDaltronicsBioTOF HRMS spectrometer. 

3.6.2. Preparation and X-Ray Diffraction Analysis of [Ru(cod)[η
2
‐OC(C6H5)C6H4]2} (3.14) 

Into a 20 mL scintillation vial equipped with a magnetic stir bar was added Ru(cod)(methylallyl)2 

(320 mg, 1.0 mmol), benzophenone (364 mg, 2.0 mmol) and 10 mL toluene. The mixture was stirred 

under 80 °C for 5 hours. All volatiles were removed under reduced pressure, and the residue was washed 

with hexane (3X), dried under vacuum, and afforded the desired complex as a brown powder (400 mg, 70 

%). Recrystalization was carried out using a solvent system of toluene/pentane to afford single crystals 

that were suitable for X-ray diffraction analysis. 

Single crystal X-ray diffraction data of Ru(cod)[η
2
-OC(C6H5)C6H4]2 (3.14) was collected on a 

Bruker Apex Duo diffractometer with a Apex 2 CCD area detector at T = 100K and using Cu radiation. 

Structures were processed with Apex 2 v2013.4-1 software package with the latest versions of SAINT 
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and SHELX software. Multi-scan absorption correction (SADABS 2012/1) was applied, and direct method 

was used to solve the structures. Details of data collection and refinement are given in Table 3.5 and 3.6. 

 

Table 3.4. Summary of cell parameters, data collection and structural refinements for 

{Ru(cod)[η
2
‐OC(C6H5)C6H4]2} (3.14) 
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Table 3.5. Selected average bond lengths [Å] and bond angles [degree] for {Ru(cod)[η
2
‐OC(C6H5)C6H4]2} 

(3.14) 
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3.6.3. General Procedure for Ruthenium(II)/NHC-Catalyzed [3+2] Annulation 

Into a 4.0 mL scintillation vial equipped with a magnetic stir bar was placed the alkyne substrate 

3.01 (0.1 mmol, 1.0 equiv.), the ketone substrate 3.09 (1.1 equiv.) and a stock solution of Ru(II) catalyst 

and  carbene ligand in hexane solvent (0.5 mL). The stock solution contains [Ru(cod)(methylallyl)2] (0.03 

equiv.) and IPr-NHC ligand (0.033 equiv.). The vial was sealed with a silicone-lined screw-cap and stirred 

at room temperature in glovebox for 24 h. In case heating is needed for complete conversion, the vial was 

transferred out of the glovebox and stirred in a 60 °C or 80 °C oil bath for 24 h. The reaction mixture was 

then cooled to room temperature, and all volatile materials were removed under reduced pressure. 

Further purification was achieved by flash column chromatography. Yields of the isolated products are 

based on the average of two runs under identical conditions. 

3.6.4 Spectral Data for [3+2] Annulation Products 

 

1-Methyl-2,3-diphenyl-1H-inden-1-ol (3.03b): Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.35) gave 3.03b as a yellow solid (109.0 mg, 73 %). 
1
H NMR (400 MHz, CDCl3):  = 7.53 – 7.51 (m, 1H), 

7.44–7.42 (m, 2H), 7.36–7.20 (m, 11H), 2.03 (s, 1H, -OH), 1.58 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3): 

 = 149.7, 147.2, 142.4, 138.9, 135.0, 134.9, 129.6, 129.5, 128.72, 128.66, 128.2, 127.8, 127.5, 126.8, 

122.1, 121.0, 83.5, 24.2 ppm; HRMS: m/z calcd for C22H18ONa
+
: 321.1250; found: 321.1251. 

 

1-Phenyl-2,3-diphenyl-1H-inden-1-ol (3.03c): Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.40) gave 3.03c as a brown solid (180.2 mg, >98 %). 
1
H NMR (400 MHz, CDCl3):  = 7.59–7.56 (m, 2H), 
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7.48–7.38 (m, 5H), 7.33–7.18 (m, 7H),  7.13–7.05 (m, 5H), 2.51 ppm (s, 1H, -OH); 
13

C NMR (100 MHz, 

CDCl3):  = 151.0, 147.6, 142.9, 140.9, 135.0, 134.0, 129.7, 129.5, 129.0, 128.70, 128.66, 128.1, 127.5, 

127.31, 127.29, 125.3, 123.3, 121.3, 87.2 ppm; HRMS: m/z calcd for C24H22ONa
+
: 383.1406; 

found:383.1416. 

 

1-Ethyl-2,3-diphenyl-1H-inden-1-ol (3.03d): Chromatography (1:6 ethyl acetate/hexane, Rf =0.40) 

gave 3.03d as a brown solid (107.8 mg, 69 %). 
1
H NMR (400 MHz, CDCl3):  = 7.47–7.42 (m, 3H), 7.35–

7.29 (m, 5H), 7.26 – 7.23 (m, 2H), 7.22–7.19 (m, 4H), 2.11 (dq, J = 7.4, 14.9 Hz, 1H), 2.11 (m, 1H, OH), 

1.93 (dq, J = 7.4, 14.9 Hz, 1H), 0.56 ppm (t, J = 7.4 Hz, 3H); 
13

C NMR (100 MHz, CDCl3):  = 148.0, 

145.4, 143.5, 140.6, 135.1, 135.0, 129.6, 129.5, 128.7, 128.6, 128.2, 127.8, 127.5, 126.7, 122.2, 120.8, 

87.2, 30.1, 8.14 ppm; HRMS: m/z calcd for C23H20ONa
+
: 335.1406; found:335.1406. 

 

1-Isoprppyl-2,3-diphenyl-1H-inden-1-ol (3.03e): Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.50) gave 3.03e as a brown solid (65.3 mg, 40 %). 
1
H NMR (400 MHz, CDCl3):  = 7.51 (dq, J = 6.2, 1.4 

Hz, 1H), 7.45-7.42 (m, 2H), 7.34–7.19 (m, 11H), 2.86 ppm (s, 1H, -OH); 
13

C NMR (100 MHz, CDCl3): δ= 

146.8, 146.5, 144.0, 140.5, 135.6, 134.9, 129.8, 129.5, 128.7, 128.5, 128.2, 127.7, 127.4, 126.2, 123.7, 

120.8, 89.3, 34.2, 17.04, 16.98 ppm; HRMS: m/z calcd for C24H22ONa
+
: 349.3163; found:349.3165. 
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1,5-Dimethyl-2,3-diphenyl-1H-inden-1-ol (3.03g): Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.40) gave 3.03g as a yellow solid (117.2 mg, 75 %). 
1
H NMR (400 MHz, CDCl3):  = 7.46–7.44 (m, 2H), 

7.42 (d, J = 7.48 Hz, 1H), 7.38–7.32 (m, 5H), 7.25–7.22 (m, 3H), 7.10 (d, J = 7.47 Hz, 1H), 7.06 (s, 1H), 

2.36 (s, 3H), 2.11 (s, 1H, -OH), 1.59 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3):  = 147.5, 147.0, 142.6, 

138.9, 138.5, 135.03, 135.02, 129.6, 129.5, 128.7,128.1, 127.7, 127.4, 127.3, 121.82, 121.77, 83.33, 

24.3, 21.8  ppm; HRMS: m/z calcd for C23H20ONa
+
: 335.1408; found: 335.1406. 

 

5-Methoxy-1-methyl-2,3-diphenyl-1H-inden-1-ol (3.03h): Chromatography (1:6 ethyl 

acetate/hexane, Rf = 0.25) gave 3.03h as a yellow solid (116.5 mg, 70 %). 
1
H NMR (400 MHz, CDCl3):  

= 7.44–7.40 (m, 3H), 7.35–7.29 (m, 5H), 7.23–7.21 (m, 3H), 6.79–6.75 (m, 2H), 3.76 (s, 3H), 2.18 (bs, 

1H, -OH), 1.56 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3):  = 160.6, 148.5, 144.1, 142.0, 138.5, 135.0, 

134.9, 129.7, 129.5, 128.8, 128.2, 127.8, 127.5, 122.7, 111.3, 107.7, 83.0, 55.8, 24.4 ppm; HRMS: m/z 

calcd for C23H20O2Na
+
: 351.1356; found: 351.1353. 

 

5-Fluoro-1-methyl-2,3-diphenyl-1H-inden-1-ol (3.03i): Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.35) gave 3.03i as a yellow solid (134.5 mg, 85 %). 
1
H NMR (400 MHz, CDCl3): δ= 7.45–7.41 (m, 

3H), 7.36–7.27 (m, 5H), 7.24–7.21 (m, 3H), 6.95–6.89 (m, 2H), 2.21 (bs, 1H, -OH), 1.56 ppm (s, 3H); 
13

C 

NMR (100 MHz, CDCl3):  = 163.7 (d, J = 244.8 Hz), 148.9, 145.1 (d, J = 2.7 Hz), 144.6 (d, J = 8.7 Hz), 

138.0 (d, J = 2.8 Hz), 134.6, 134.3, 129.5, 129.3, 128.8, 128.2, 128.0, 127.8, 123.1 (d, J = 9.0 Hz), 112.9 

(d, J = 22.9 Hz), 108.6 (d, J = 24.2 Hz), 82.9, 24.3 ppm; HRMS: m/z calcd for C22H17OFNa
+
: 339.1156; 

found: 339.1152. 
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5-Chloro-1-methyl-2,3-diphenyl-1H-inden-1-ol (3.03j): Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.50) gave 3.03j as a yellow solid (133.2 mg, 80 %). 
1
H NMR (400 MHz, CDCl3):  = 7.44–7.39 (m, 

3H), 7.37–7.31 (m, 3H), 7.29–7.27 (m, 2H), 7.24–7.22 (m, 4H), 7.20 (d, J = 1.8 Hz, 1H), 2.25 (s, 1 H, -

OH), 1.56 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3):  = 148.6, 148.0, 144.7, 138.1, 134.6, 134.5, 134.2, 

129.53, 129.45, 129.3, 128.9, 128.2, 128.0, 127.8, 124.1, 123.5, 122.6, 83.1, 24.1 ppm; HRMS: m/z calcd 

for C22H17OClNa
+
: 355.0860; found: 355.0853. 

 

5-Bromo-1-methyl-2,3-diphenyl-1H-inden-1-ol (3.03k): Chromatography gave 3.03k as a yellow 

solid (133.2 mg, 80 %). 
1
H NMR(400 MHz, CDCl3):  = 7.42–7.39 (m, 2H), 7.38 (d, J = 1.84 Hz, 1H), 

7.35–7.31 (m, 5H), 7.28–7.26 (m, 2H), 7.23–7.21 (m, 3H), 2.18 (s, 1H, -OH), 1.55 ppm (s, 3H); 
13

C NMR 

(100 MHz, CDCl3): δ = 148.4, 144.5, 138.0, 134.4, 134.2, 134.3, 129.6, 129.4, 128.9, 128.3, 128.1, 127.9, 

126.6, 123.1, 121.3, 83.1, 24.2 ppm; HRMS: m/z calcd for C22H17OBrNa
+
: 399.0355; found: 399.0352. 

 

5-Iodo-1-methyl-2,3-diphenyl-1H-inden-1-ol (3.03l): Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.40) gave 3.03l as a brown solid (106.1 mg, 50 %). 
1
H NMR(400 MHz, CDCl3):  = 7.60 (dd, J = 7.7, 

1.5 Hz, 1H), 7.51 (d, J = 1.5 Hz, 1H), 7.41–7.38 (m, 2H), 7.36–7.30 (m, 3H), 7.27–7.25 (m, 3H), 7.22–

7.20 (m, 3H), 2.01 (s, 1H, -OH), 1.55 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ= 149.2, 148.2, 144.6, 
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138.0, 135.6, 134.4, 134.2, 130.0, 139.6, 129.3, 128.9, 128.3, 128.1, 127.8, 123.9, 94.3, 83.3, 24.1ppm; 

HRMS: m/z calcd for C22H17OINa
+
: 447.0216; found: 447.0208. 

 

1-Trifluoromethyl-2,3-diphenyl-1H-inden-1-ol (3.03m): Chromatography (1:6 ethyl 

acetate/hexane, Rf = 0.40) gave 3.03m as a brown solid (176.1 mg, >98 %). 
1
H NMR (400 MHz, CDCl3):  

= 7.66 (d, J = 7.6 Hz, 1H), 7.39-7.423 (m, 13H), 2.18 (dt, J = 13.7, 6.8 Hz, 1H), 2.13 (bs, 1H, -OH),  1.23 

(d, J = 6.8 Hz, 3H), 0.58 ppm (d, J = 6.8 Hz, 3H) ; 
13

C NMR (100 MHz, CDCl3): δ = 145.3, 144.2, 141.0, 

140.2, 133.8, 133.4, 130.6, 129.8, 129.3, 128.7, 128.1, 127.5, 126.4, 124.4, 123.6, 121.7 ppm; HRMS: 

m/z calcd for C24H22ONa
+
: 375.0967; found:375.0968. 
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CHAPTER 4. EXPLORING BIS(CYCLOMETALATED) RUTHENIUM(II) COMPLEXES 

AS ACTIVE CATALYST PERCURSORS: ROOM-TEMPERATURE ALKENE-ALKYNE 

COUPLING FOR 1,3-DIENE SYNTHESIS 

4.1. Background and Significance  

The addition of aromatic C-H bonds across C-C triple bonds via transition metal-catalyzed 

functional group-directed C–H bond activation, pioneered by Murai (Scheme 1.7), provides a site-

selective and atom-economical method to access alkenylated compounds.
1
 A variety of transition metal 

catalysts have been developed for this transformation.
2-6

  In contrast, the related addition of alkenyl C–H 

bonds across alkynes remains relatively underdeveloped.  

 Cross-coupling of alkynes with acrylate/acylamides was first reported by Mitsudo and Watanabe 

in 1991 to produce conjugated dienes in a highly regio- and stereoselective manner (Scheme 4.1).
7
 In the 

presence of 2 mol% of Ru(cod)(cot), diphenylacetylene (4.01) reacted with acrylates (4.02) in pyridine at 

80 
o
C to give α,β,γ,δ-unsaturated dienoates (4.03 ) in high yields. In comparison, N,N-dimethylacrylamide 

would react only in the absence of pyridine solvent with electron-rich internal alkynes, providing the 

desired products in moderate to good yields. This reaction was proposed to proceed via oxidative 

cyclization to form a ruthenacyclopentene complex (4.04) following coordination of an acetylene and an 

alkene to Ru(0) complex. Subsequent β-hydrogen elimination formed Ru-H complex (4.05) and 

successive C-H reductive elimination afforded the 1,3-diene product and regenerated the Ru(0) catalyst.  
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Scheme 4.1. Ruthenium catalyzed alkene-alkyne coupling to form 1,3-dienes via oxidative cyclization 

 

In 1999, Yi described a cross-coupling of alkynes with ethylene to access conjugated dienes via a 

different reaction mechanism (Scheme 4.2).
8
 A cationic ruthenium complex 4.06 was used as the catalyst 

precursor, which was proposed to generate a Ru-H species 4.07 in situ as the initial active intermediate in 

the catalytic cycle. Alkyne insertion into the Ru-H bond gave a vinyl-Ru intermediate 4.08, followed by 

ethylene insertion in vinyl-Ru linkage to produce an alkyl-Ru intermediate 4.09. Subsequent β-hydrogen 

elimination completed the catalytic cycle and gave the 1,3-diene product (4.10). Further vinylation of the 

product would generate a 1:2 coupling product 4.11. For symmetric diaryl and dialkyl alkynes, high yields 

and stereoselectivity were achieved with trace amount of 4.11. In comparison, terminal alkynes were 

more likely to give 1:2 coupling product 4.11.  
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Scheme 4.2. Ruthenium catalyzed ethylene-alkyne coupling to form 1,3-dienes via alkyne insertion into 

Ru-H bond 

 

In 2002, Murai extended the application of [RuH2(CO)(PPh3)3] catalyzed directed C-H bond 

activation to alkenylation of cyclic conjugate enones (4.12) with internal alkynes (4.01) (Scheme 4.3).
9
 

Cyclic conjugated dienones (4.13) was obtained in high yields in toluene under 135 
o
C, but the E/Z 

selectivity was highly dependent on the structure of the starting materials. The reaction proceeds via 

carbonyl directed C-H bond cleavage generating the ruthenacycle intermediate 4.14, followed by alkyne 

coordination and migratory insertion gave the alkenyl ruthenium intermediate 4.15. Subsequent C-C 

reductive elimination afforded conjugate dienone product (4.13).  
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Scheme 4.3. Ruthenium catalyzed alkene-alkyne coupling to form 1,3-dienes via directed C-H bond 

activation 

 

In these pioneering works, ruthenium complexes are used as catalyst precursors to promote 

alkene-alkyne cross-coupling to form 1,3-dienes via three different reaction pathways, which indicates 

ruthenium as a powerful metal with high potential to catalyze this transformation. Recently, several 

reports have been disclosed on further development of ruthenium catalysts.
10-13

 For example, in 2007, 

Uemura reported cross-coupling of terminal phenylacetylenes (4.01) with acrylates (4.02) catalyzed by 

Ru3(CO)12.
10

 The reaction was proposed to proceed via an alkyne insertion in Ru-H bond which was 

generated in situ from the catalyst precursor [Ru3(CO)12] (2 mol%)  and LiI (10 mol%) (Scheme 4.4). 

However, conjugated dienoates (4.03) were only obtained in moderate yields with low stereoselectivity. 

 

 

Scheme 4.4. Ruthenium catalyzed terminal alkyne-acrylate coupling via alkyne insertion into Ru-H bond 
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In 2009, Plietker reported a ruthenium catalyzed enyne coupling via directed C-H bond activation 

with broader alkene scope.
11

  Highly substituted 1,3-dienes are accessible in good to excellent yields from 

the addition of vinyl C-H bond to internal alkynes using a readily accessible ruthenium hydride complex, 

[RuHCl(CO)(PPh3)3] (Scheme 4.5). However, the regio- and stereoselectivity were low for unsymmetrical 

internal alkynes and olefins with bulky substituents. In a follow-up study, the authors revealed that with 

the assistance of microwave radiance, intermolecular of terminal alkynes with methyl acrylates (4.02a) 

was much faster and gave conjugated olefins in good yield (Scheme 4.6).
12

  However, in order to avoid 

the homocoupling of terminal alkynes, very high loading of methyl acrylate was required.  
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Scheme 4.5. Ruthenium catalyzed enyne coupling to form 1,3-dienes via directed C-H bond activation 

 

 More recently, Saito disclosed a ruthenium catalyzed cross-coupling of ynamides (4.16) with 

ethylene proceeded via oxidative cyclization under room temperature (Scheme 4.6).
13

 In the presence of 

catalytic amount of [Cp*RuCl(cod)], 2-aminobuta-1,3-diene derivatives (4.17) were obtained in a highly 

regioselective manner. Terminal alkynes were not suitable substrates in this reaction. Besides, the olefin 

substrate was limited to ethylene.  
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Scheme 4.6. Ruthenium catalyzed ynamide-ethylene coupling to form 2-aminobuta-1,3-diene via 

oxidative cyclization 

 

Besides ruthenium, other transition metals have also been applied in alkenylation of vinyl C-H 

bonds with alkynes, including rhodium, palladium, cobalt and nickel.
14-20

 Rhodium catalysts enable imine 

(4.18) directed C-H bond alkenylation of α,β-unsaturated imines with alkynes.
14-17

 For example, Ellman, 

Bergman and Colby reported Rh-catalyzed cross-coupling of N-benzyl imines of tiglic aldehyde and t-

butyl acetylene to access the conjugated aldehyde upon hydrolysis with good yield and selectivity 

(Scheme 4.7).
14

 Later, Ellman and Cheng independently applied this transformation to prepare highly 

substituted pyridines.
15,16

 

 

[RhCl(coe)2]2 (2.5 mol%)

toluene, 50 oC, 4h
+N

Bn

FcPCy2 (10 mol%)

1.

2. Chromatography

O

86% (Z:E 20:1)4.18  

Scheme 4.7. Rhodium catalyzed enyne coupling to form conjugated aldehyde via imine directed C-H 

bond activation and hydroxylation 

 

Skrydstrup developed a palladium-phosphine catalyzed enyne coupling via a proposed pathway 

of alkyne insertion into Pd-H bond.
18

 With a catalyst system of Pd(dba)2 and P(tBu)3, disubstituted 

acetylenes reacted with olefins without α-hydrogen (acrylates, acrylamides and styrenes) in DMF under 

50 
o
C to give 1,3-dienes (Scheme 4.8). This catalytic system exhibited not only high reactivity, but also 

good regioselectivity and functional group compatibility. Significant influence of the substituents in both 

alkyne and olefin had been observed on the E/Z ratios of the products. 
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Scheme 4.8. Palladium catalyzed enyne coupling to form 1,3-dienes via alkyne insertion into Pd-H bond 

 

Cheng revealed cobalt catalyzed cross-coupling of internal alkynes with styrenes under room 

temperature to form 1,3-dienes (Scheme 4.9).
20

 Zn and ZnI2 additives were crucial to generate the 

catalytically active Co(I) species, which could selectively coordinate with an alkyne and a styrene to form 

the key cobaltacyclopentene intermediate in the oxidative cyclization pathway. This coupling reaction 

proceeded with high regio- and stereoselectivity and was also compatible with both electron-rich and 

electron-deficient substituents attached to alkynes. However, the coupling reaction was not suitable for 

terminal alkynes, since it promoted a facile homocyclotrimerization of the alkynes.  
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Scheme 4.9. Cobalt catalyzed alkyne-styrene coupling to form 1,3-dienes via oxidative cyclization 

 

A new nickel-catalyzed codimerization of an acrylate and an alkyne was developed to provide 

1,3-diene by Kurahashi (Scheme 4.10).
19

 N-Aryl-2-aminopyridine played an essential role in prompting 

the formation of the 1:1 coupling product. In the proposed reaction mechanism, N-aryl-2-aminopyridine 

coordinated to nickel and chemoselectively formed hydrogen-bond with an acrylate. The resulting 

intermediate 4.19 led to 1,3-diene product via oxidative cyclization pathway. Moreover, N-phenyl-

acrylamide was able to form a pseudodiene complex (4.20) with nickel(0); such a complex allowed 

exclusive intermolecular codimerization of N-phenyl-acrylamide and diphenylacetylene with good yields. 

In the case of N,N-disubstituted acrylamide, the 1:1 coupling product was not observed. These results 



86 

 

indicated the importance of intramolecular interaction of hydrogen-bonding to promote the desired 

reaction in a chemo-, regio- and stereoselective manner.   
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Scheme 4.10. Nickel catalyzed enyne coupling to form 1,3-dienes via oxidative addition with the 
assistance of intramolecular hydrogen-bonding 

 

During our study of the ruthenium catalyzed [3+2] carbocyclization, we have synthesized several 

bis(cyclometalated) octahedral ruthenium(II) complexes (4.21A-C), {Ru(η
4
-cod)[η

2
-X=C(R)C6H4]2} (X = O 

or NH; R = Ph or nBu) (Scheme 4.11).
21,22

 4.21B could be used as catalyst precursor to catalyze [3+2] 

cyclization between N-H ketimines and alkynes using the N-heterocyclic carbene ligand, IPr.
22

 The 

proposed mechanism involves carbon-carbon bond formation by alkyne insertion into the Ru-C bond of a 

ruthenacycle intermediate, presumably facilitated by the IPr ligand that has replaced cod ligand on Ru 

center. Thus, the substrate-derived η
2
-[C,N] imine ligands appear to play the dual role of actor ligand and 

spectator ligand, eventually incorporated into the cyclization product and replaced by incoming ketimine 

substrates via cyclometalation. It is noteworthy that 4.21B did not react with alkyne substrates without 

added IPr ligand, suggesting significant ligand effect on its stability and reactivity.  
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Scheme 4.11. Preparation of bis-cyclometalated ruthenium(ll) complexes with η
2
-[C,X] ligands 

 
 

We envision that these complexes can be explored as ruthenium(II) catalyst precursors (4.21) 

with η
2
-[C,X] ligands solely as spectator ligands which occupy four of the six coordination sites and affect 

reactions occurring at the other two cis coordination sites. In particular, ancillary ligands (L) can be 

replaced by alkene/alkyne substrates through π-complexation, thus setting the stage for C-C bond 

formation by oxidative cyclization (Scheme 4.12). The latter transformation is a key step in a number of 

ruthenium-catalyzed C-C coupling reactions such as alkene–alkyne (enyne) couplings for diene 

synthesis,
23

 [2+2] or [2+2+2] cycloadditions,
24

 and [2+2+1] cycloadditions such as the Pauson–Khand 

reaction.
25,26

 With easily accessible η
2
-[C,X] ligands through C-H activation, bis(cyclometalated) 

ruthenium(II) complexes may serve as an attractive alternative to existing catalysts, allowing modular 

catalyst design and tunable ligands for catalyst efficiency and selectivity.  

 

 

Scheme 4.12. Envisioned C-C bond formation via oxidative cyclization with bis-cyclometalated 

ruthenium(II) complexes with η
2
-[C,X] ligands 
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This chapter will describe the catalytic applications of several bis(cyclometalated) ruthenium(II) 

complexes with η
2
-[C,N] and η

2
-[C,O] ligands besides formal [3+2] carbocyclization. The potential of these 

ruthenacycles as catalyst precursors is demonstrated by a catalytic room-temperature alkene–alkyne 

coupling to synthesize α,β,γ,δ-unsaturated esters and amides. 

4.2. Initial Results 

Our study began with testing the hypothesis that the ancillary ligands (such as cod) can be 

replaced by other molecules through π-complexation in the complex 4.21B and 4.21C with the η
2
-[C,X] 

ligands remained on Ru center as spectator ligands. The chelating cod ligand in both 4.21B and 4.21C 

could be replaced by two pyridine molecules to form the bis(pyridine)-ligated 4.22B and 4.22C, 

respectively (Scheme 4.13). The solid-state structures of 4.22B and 4.22C were determined by single 

crystal X-ray diffraction (Figure 4.1). In both of these bis(cyclometalated) ruthenium(II) complexes, the two 

cis η
2
-[C,X] ligands remained intact and two pyridine replaced the chelating cod ligand, which was 

consistent with our hypothesis.  
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Scheme 4.13. Test of the hypothesis on ligand exchange with chelating 1,5-cyclooctadiene(cod) of 
{Ru(cod) [η

2
-HNC(C6H5)C6H4]2} (4.21B) and {Ru(cod)[η

2
-OC(C6H5)C6H4]2} (4.21C) 
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Figure 4.1 ORTEP diagram of {Ru(pyridine)2[η
2
-HNC(C6H5)C6H4]2} (4.22B) and {Ru(pyridine)2[η

2
-

OC(C6H5)C6H4]2} (4.22C) at 50% thermal ellipsoid 

 

With this stoichiometric observation, we first tested the catalytic reactivity of 4.21B in the coupling 

between diphenylacetylene and methyl acrylate. In the presence of 5 mol% of 4.21B, (2E,4Z)-1,3-

dienoate product (4.03A) was obtained in 98% yield from the starting materials in toluene under 80 
o
C 

after 24h. In addition to enyne coupling, the dimerization of methyl acrylate was also observed. The major 

product is 1,3-dienoate (4.03A), indicating that enyne coupling is favored over acrylate dimerization. 

These results indicated the bis-cyclometalated ruthenium complexes were highly promising catalysts in 

the intermolecular alkene-alkyne cross-coupling reaction.  
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Scheme 4.14. Test of the catalytic reactivity of {Ru(cod)[η
2
-NHC(C6H5)C6H4]2} (4.21B) in alkene-alkyne 

coupling 
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4.3. Optimization of Reaction Conditions 

The promising initial results encouraged us to further evaluate the catalytic activity of bis-

cyclometalated Ru(II) complexes in intermolecular alkene-alkyne coupling between diphenylacetylene 

and methyl acrylate to form (2E,4Z)-1,3-diene products (4.03) (Table 4.1). Using 5 mol% [(cod)Ru(η
3
-

methallyl)2] as catalyst precursor and no added ligands led to only 12% conversion after heating at 80 
o
C 

for 24 hours in toluene (entry 1). By contrast, in situ generated ruthenacycle 4.21B via pre-activation of 

[(cod)Ru(η
3
-methallyl)2] with 2 equivalents of benzophenone imine ligand effectively promoted formation 

of conjugated diene in quantitative yield by GC analysis (entry 2). The structure of the ligands was found 

to be crucial to the effectiveness of the reaction. Compared to benzophenone imine ligand, much lower 

reactivity was observed when catalyst pre-activation was carried out using a number of aromatic 

compounds that are capable of generating bis-cyclometalated Ru(II) complexes (entries 3-14).
27,28

 For 

example, using protected imines and benzophenone ligands gave less than 10% yields. Besides, 1-

phenylethanamine provided moderated yield, which might due to its potential to form ketimine via in situ 

dehydrogenation. Without the pre-activation, benzophenone imine was ineffective in promoting this 

transformation (entry 15), indicating the active catalyst precursor was bis-cyclometalated ruthenium(II) 

complex 4.21B. 
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Table 4.1. Ligand effect in ruthenium(II) catalyzed alkene-alkyne coupling
a
 

 

 

 

Next, the solvent effect on the outcome of the reaction was studied (Table 4.2). THF and DMF 

were proved to be suitable solvent for this reaction, which provided extra choices for substrates with lower 

solubility in toluene (entry 1-5). Under optimized conditions, room-temperature coupling between 

diphenylacetylene (1.0 equiv.) and methyl acrylate (2.0 equiv.) proceeded smoothly in toluene solvent 

with 5.0 mol% 4.21B, giving 1,3-diene product in quantitative yield by GC analysis (entry 1). The pyridine-

ligated bis(imine) complex 4.22B was less stable than 4.21B in solution phase but displayed comparable 
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catalytic activity (entry 2). By contrast, the bis(ketone) analogues 4.21C and 4.22C were virtually 

unreactive as catalyst precursors (entries 6, 7 and 9). Such reactivity distinction is consistent with the 

mechanistic hypothesis that cod or pyridine ligands can be replaced by alkene/alkyne substrates 

(Scheme 4.12), thus having little effect on catalytic activity beyond the initial stage of catalyst 

preactivation. In contrast, the η
2
-[C,X] imine or ketone ligands are expected to stay on the ruthenium 

center throughout catalytic cycles and play a dominant role on catalyst activity.  

 

Table 4.2. Effects of catalyst precursor and solvent in ruthenium(II) catalyzed alkene-alkyne coupling
a 
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4.4. Substrate Scope 

With the standard reaction conditions established, various internal alkynes and acrylic esters or 

amides were studied for Ru-catalyzed room-temperature alkene-alkyne coupling (Figure 4.2). Coupling 

between diphenylacetylene and unsubstituted alkyl acrylates proceeded smoothly to form 1,3-diene 

products in over 90% yields and with exclusive stereoselectivity for the (2E,4Z)-isomers. For phenyl 

acrylate coupling product, the yield was improved from 58% to 87% by replacing 4.21B with bis(pyridine) 

ruthenacycle 4.22B as the catalyst precursor. Such reactivity enhancement is likely due to facile catalyst 

activation by substrate replacement of more labile pyridine ligands compared to the chelating diene ligand 

(Scheme 4.12). When coupling between diphenylacetylene and methyl acrylate was scaled up from 0.2 

mmol to 20 mmol, the loading of 4.21B could be reduced to 1.0 mol% to acquire the product in 90% 

isolated yield (4.8 gram purified product) over 48 hours. Coupling between diphenylacetylene and N,N-

dimethyl acrylamide gave the product in 72% yield, and higher reaction temperature was needed to 

improve the yield of N,N-diethyl product from 50% at room temperature to 85% at 60 ºC. Compared to 

less reactive N,N-dialkylacrylamides, N-isopropyl- and N-t-butylacrylamide reacted with diphenylacetylene 

in good reactivity, although the latter required using 4.22B as catalyst precursor for satisfactory yield.  
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Figure 4.2. Alkene substrate scope in bis-cyclometalated ruthenium(II) catalyzed alkene-alkyne coupling
a
 

 

The scope of alkyne substrates was studied by coupling reactions with methyl acrylate (Figure 

4.3). High reactivity and regioselectivity was observed for phenylacetylene derivatives with alkyl 

substituents, favoring the formation of 4-alkyl-5-aryl regioisomer in >10:1 selectivity. The mild reaction 

conditions allow very good compatibility with functional groups such as acyl, formyl, and Br substituents, 

providing synthetic handles for further functional group transformations. Aliphatic internal alkynes such as 

3-hexyne and 4-octyne displayed lower reactivity than aromatic alkynes, and a 2:1 alkyne/acrylate 

stoichiometry was used to get coupling products in moderate yields. Coupling between methyl acrylate 

and terminal alkynes generally suffered from lower reactivity and gave a complex mixture of products, 

which meant the presence of competing reaction pathways.
29

 Nevertheless, coupling between methyl 

acrylate and phenylacetylene was effectively catalyzed by 4.22B to form product 4.03v with (E,E)-

stereoselectivity in 65% isolated yield. Substrate substitution was supposed to be easier for monodentate 

ligands than for chelating ligands, thus the accelerated coordination of substrate to 18 would account for 

the increased yield.  
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Figure 4.3. Alkyne substrate scope in bis-cyclometalated ruthenium(II) catalyzed alkene-alkyne coupling
a
 

 

We should also mention that the current enyne coupling catalyst system did not work with more 

hindered acrylates (with α- or β-substituents) or less electron-deficient alkenes such as vinylarenes.  

4.5. Reaction Mechanism Studies and Discussion 

Three types of reaction mechanism have been proposed for Ru-catalyzed alkene-alkyne 

couplings to form 1,3-dienes (Scheme 4.15):
7-9

 (1) CC bond formation by alkene-alkyne oxidative 

cyclization, followed by -H elimination and CH reductive elimination (Path 1); (2) alkyne insertion into a 

Ru-hydride bond, followed by alkene insertion into the resulting Ru-alkenyl linkage and subsequent -H 

elimination (Path 2); (3) sp
2
 CH bond activation of alkene, followed by alkyne insertion into Ru alkenyl, 

and CH bond formation by either reductive elimination or protonation of RuC bond (Path 3).  
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 Scheme 4.15. Possible reaction mechanisms for transition metal-catalyzed alkene-alkyne cross-coupling 

 

Although the latter two pathways cannot be completely ruled out, the oxidative cyclization 

mechanism
9
 (Path 1) is most consistent with the observed regio- and stereochemistry in coupling 

products. In particular, high regioselectivity with non-symmetrical alkyne substrates supports C-C bond 

formation by oxidative cyclization (Path 1) or alkyne insertion into Ru-alkenyl linkage (Path 3), not by 

alkyne insertion into Ru-H linkage (Path 2).
18

 The complete lack of (2Z)-stereoisomers in coupling 

products also argues against the proposed alkene C-H activation stereochemistry in Path 3, which should 

favor (2Z)-isomers by ester- or amide-directed C-H activation/cyclometalation.
8
 

The proposed oxidative cyclization pathway has prompted us to extend our study to other 

mechanistically related C-C couplings using the current catalyst system. As mentioned in the initial result, 

the tail-to-tail methyl acrylate dimerization product was also detected in the reaction phenylacetylene and 

methyl acrylate. This inspired us to test whether the bis-cyclometalated ruthenium complexes (4.21B, 

4.21C) could effectively catalyzed the dimerization of alkenes. In the presence of 5 mol% 4.21B, methyl 

acrylate underwent dimerization giving (E)-dimethyl hex-2-enedioate (4.24A) in 70% yield under room 

temperature in toluene (Scheme 4.16).  
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4.21B (5 mol%)OMe

O toluene, rt, 24h CO2Me
MeO2C

4.24A, 70%

2

4.02A  

Scheme 4.16. Methyl acrylate dimerization catalyzed by {Ru(cod)[η
2
-NHC(C6H5)C6H4]2} (4.21B) 

 

Compared with Kurahashi’s nickel catalyst,
19

 the bis-cyclometalated ruthenium complexes 

(4.21B,C and 4.22B, C) possess two η
2
-[C, X] ligands, which have the potential to form hydrogen-bonds 

with two molecules of acrylates. We hypothesized that the formation of hydrogen-bond between ligands 

and substrates would promote substrates coordination, increase the interaction between substrates and 

ruthenium center and facilitate oxidative cyclization, leading to higher efficiency of the catalysis. It is likely 

that the formation of hydrogen-bond could explain the high efficiency and regio- and stereoselectivity of 

our catalyst compared with previously reported works in acrylate dimerization.
29,30

 Preliminary results from 

DFT calculations also suggested involvement of hydrogen-bonding interactions between cyclometalated 

imine NH moieties and carbonyl groups from the acrylate substrates (Figure 4.4).  

 

  

 

Figure 4.4. DFT-calculated structure of the formation of hydrogen-bond between cyclometalated imine 

NH moieties and carbonyl groups from the acrylate substrates  

2.06 Å 
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In addition, when norbornene was used as the alkene substrate, a cyclobutene derivative was 

formed via [2+2] cyclization under elevated temperature as shown in Scheme 4.17, which further supports 

the proposed Ru(II)/Ru(IV) catalytic cycle involving alkene/alkyne oxidative cyclization.
31,32

  

4.21B (5 mol%)

toluene, 120 oC, 24h
+

4.25a, 80%

PhPh

Ph

Ph4.01a
4.02k

 

Scheme 4.17. [2+2] cycloaddition of diphenylacetylene and norbornene catalyzed by {Ru(cod)[η
2
-

NHC(C6H5)C6H4]2} (4.21B) 

 

4.6. Conclusion 

In summary, we have developed a new class of bis(cyclometalated)ruthenium(II) catalyst 

precursors with readily available η
2
-[C,X] ligands derived from aromatic NH ketimines and ketones. The 

catalytic activity of the bis(imine) Ru complex was evaluated in several catalytic C-C coupling reactions 

which are proposed to proceed by Ru(II)/Ru(IV) catalytic cycles involving oxidative cyclization. A room 

temperature alkene–alkyne coupling was promoted to form α,β,γ,δ-unsaturated esters and amides with 

high regio- and stereoselectivity, good functional-group tolerance, and very high catalyst efficiency in a 

representative gram-scale synthesis. The major limitation of the current catalyst system is the limited 

scope of alkene substrates and we aim to improve this scope through a more systematic study on 

structure–reactivity correlations of bis(cyclometalated) ruthenium(II) complexes with various η
2
-[C,X] 

ligands. 

4.7. Experimental Procedures 

4.7.1. General Information 

Unless otherwise noted, all manipulations were carried out under a nitrogen atmosphere using 

standard Schlenk-line or glove box techniques. All glassware was oven-dried for at least 1 h prior to use. 

THF, toluene, and hexane were degassed by purging with nitrogen for 45 min and dried with a solvent 
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purification system (MBraun MB-SPS). DMF, dioxane and dimethoxyethane were dried over activated 3 Å 

molecular sieves and degassed by purging with nitrogen. Other reagents and substrates were purchased 

from TCI-America, VWR, Strem, Aldrich or Alfa-Aesar and were used as received. TLC plates were 

visualized by exposure to ultraviolet light. Organic solutions were concentrated by rotary evaporation at 

~10 torr. Flash column chromatography was performed with 32–63 microns silica gel.  

GC analyses were performed on a Shimadzu GC-2010. 
1
H NMR spectra were obtained on a 400 

MHz spectrometer, and chemical shifts were recorded relative to residual protiated solvent. 
13

C NMR 

spectra were obtained at 100 MHz, and chemical shifts were recorded to the solvent resonance. Both 
1
H 

and 
13

C NMR chemical shifts were reported in parts per million downfield from tetramethylsilane (δ = 0 

ppm). High-resolution mass spectra were obtained at a Bruker Daltronics BioTOF HRMS spectrometer. 

4.7.2. Preparation of Alkyne Substrates 

 

(Cyclopropylethynyl)benzene were synthesized according to Procedure A:
33

 To a solution of the 

iodo- or bromoarene (5.0 mmol) and terminal alkyne (6.0 mmol) in Et3N (20 mL) was added PdCl2(PPh3)2 

(140 mg, 4 mol %). The mixture was then stirred for 5 min, and CuI (20 mg, 2 mol%) was added. The 

resulting mixture was stirred under a nitrogen atmosphere. The reaction was monitored by TLC to 

establish completion. The reaction mixture was then poured into water, and the aqueous layer was 

extracted three times with dichloromethane. After drying the combined organic layers over magnesium 

sulfate, the solvent was removed in vacuum. The residue was purified by flash column chromatography 

on silica gel using hexane/ethyl acetate to afford the pure alkynes. 
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1-(4-(Hex-1-yn-1-yl)phenyl)ethanone , methyl 4-(hex-1-yn-1-yl)benzoate , 4-(hex-1-yn-1-

yl)benzaldehyde  and 1-bromo-4-(hex-1-yn-1-yl)benzene were synthesized according to Procedure B:
34

 A 

mixture of the iodo- or bromoarenes (5.0 mmol), terminal alkyne (6 mmol), Pd(PPh3)2Cl2 (175mg, 5 mol 

%), PPh3 (33 mg, 2.5 %), and Et3N (0.76g, 1.5 eq.) in 20 mL of THF was stirred for 20 min at room 

temperature, and CuI (12 mg, 1.25 mol %) was then added. The reaction was monitored by TLC to 

establish completion. The workup procedure is same as Method A. 

 

(3-Butoxyprop-1-yn-1-yl)benzene  and (3-(benzyloxy)prop-1-yn-1-yl)benzene was synthesized 

according to a known procedure (Procedure C):
35

 To a solution of 3-phenyl-2-propyn-1-ol (0.66g, 5 mmol) 

in THF (20 mL) was added portionwise NaH (0.15g, 12mmol) at 0°C over 2h and the mixture was kept 

under stirring for 2h at 0°C. Upon the end of the H2 formation, Benzyl or butyl bromide (5.5 mmol) and 

TBAI (0.1g, 0.25 mmol) was added. The mixture was then stirred at room temperature overnight. The 

reaction mixture was quenched with a saturated solution of NH4Cl, extracted with ethyl acetate (3x); dried 

over MgSO4 and concentrated under reduced pressure. Purification by flash column chromatography 

afforded the pure alkynes. 

4.7.3. Preparation and X-Ray Diffraction Analysis of Ruthenium(II) Catalyst Precursors 

{Ru(cod)[η
2
-HNC(C6H5)C6H4]2} (4.21B): Into a 20 mL scintillation vial equipped with a magnetic 

stir bar was added Ru(cod)(methylallyl)2 (320 mg, 1.0 mmol), benzophenone imine (362 mg, 2.0mmol) 

and 10 mL toluene. The mixture was stirred overnight at room temperature. Then, the solvent was 

removed under reduced pressure. The residue was washed with hexane (3X), dried under vacuum, and 

afforded an orange powder (513 mg, 90 %).  

{Ru(cod)[η
2
-OC(C6H5)C6H4]2} (4.21C): Into a 20 mL scintillation vial equipped with a magnetic stir 

bar was added Ru(cod)(methylallyl)2 (320 mg, 1.0 mmol), benzophenone (364 mg, 2.0 mmol) and 10 mL 

toluene. The mixture was stirred under 80 °C for 5 hours. Then the solvent was removed under reduced 
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pressure, and the residue was washed with hexane (3X), dried under vacuum, and afforded a brown 

powder (400 mg, 70 %).  

{Ru(pyridine)2[η
2
-HNC(C6H5)C6H4]2} (4.22B): Into a 4 mL scintillation vial equipped with a 

magnetic stir bar was added Ru(cod)(N,C-benzophenone imine)2 (4.21B) (50.0 mg, 0.088 mmol) and 1.5 

mL of pyridine. The mixture was stirred under 60 °C for 3 hours. After cooling to room temperature, 2mL 

of hexane was added and precipitate was generated. The mixture was stored under -30 °C overnight. 

Then mother liquor was removed, and the residue was washed by cool hexane (3X), dried under vacuum, 

and afforded a purple powder (46.4 mg, 85%). 

{Ru(pyridine)2[η
2
-OC(C6H5)C6H4]2} (4.22C) was prepared from 4.21C by the same procedure as 

4.22B and gave a dark green powder (43.8 mg, 80%). 

Single crystal X-ray diffraction data of {Ru(pyridine)2[η
2
-HNC(C6H5)C6H4]2}   (4.22B) and 

{Ru(pyridine)2[
2
-OC(C6H5)C6H4]2} (4.22C) were collected on a Bruker Apex Duo diffractometer with a 

Apex 2 CCD area detector at T = 100K. Cu radiation was used for all 3 samples. Structures were process 

with Apex 2 v2013.4-1 software package with the most recent SAINT and SHELX software. Multi-scan 

absorption correction (SADABS 2012/1) was applied to all 3 data sets. Direct method was used to solve 

the structures of 4.21C, while Intrinsic phasing was used for 4.22C. Details of data collection and 

refinement are given in Table 4.3. 
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Table 4.3. Summary of cell parameters, data collection and structural refinements for {Ru(pyridine)2[η
2
-

HNC(C6H5)C6H4]2} (4.22B) and {Ru(pyridine)2[
2
-OC(C6H5)C6H4]2} (4.22C). 
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Table 4.4.  Selected average bond lengths [Å] and bond angles [degree] for {Ru(pyridine)2[
2
-

HNC(C6H5)C6H4]2} (4.22B) 
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Table 4.5.  Selected average bond lengths [Å] and bond angles [degree] for {Ru(pyridine)2[
2
-

OC(C6H5)C6H4]2} (4.22C) 

 

 

 

4.7.4. General Procedures for Ruthenium(II) Catalyzed Alkene-Alkyne Coupling 

Into a 4.0 mL scintillation vial equipped with a magnetic stir bar was placed the alkyne substrate 

(0.2 mmol, 1.0 eq.), the alkene substrate (0.4 mmol, 2.0 eq.) and 0.5 mL of a stock solution containing 

Ru(ll) catalyst (0.05 eq.). The vial was sealed with a silicone-lined screw-cap, stirred at room temperature 

in glove box for 24 h (room temperature reactions), or transferred out of the glove box and stirred in a 

heated oil bath for 24 h (heated reactions). After the reaction mixture was cooled to room temperature, all 

volatile materials were removed under reduced pressure. Further purification was achieved by flash 

column chromatography. Yields of the isolated products are based on the average of two runs under 

identical conditions.  
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For reactions using in situ generated catalysts, a 4 mL scintillation vial equipped with a magnetic 

stir bar was charged with Ru(cod)(methylallyl)2 (1.0 eq.), ligand (2.0 eq.) and toluene. The vial was sealed 

with a silicone-lined screw-cap, transferred out of the glove box, and heated up to 80 
o
C for 30 min. Then 

the vial was transferred into glove box and the resulted mixture was used as a stock solution of ruthenium 

catalyst precursor.  

4.7.5. Ruthenium(ll) Catalyzed [2+2] Cycloaddition of Diphenylacetylene and Norbornene 

Into a 4.0 mL scintillation vial equipped with a magnetic stir bar was added {Ru(cod)[η
2
-

HNC(C6H5)C6H4]2} (4.21B) (0.1 mmol, 0.05 eq.), diphenylacetylene (0.2 mmol, 1.0 eq.), norbornene (0.4 

mmol, 2.0 eq.) and 0.5 mL of toluene. The vial was sealed with a silicone-lined screw-cap, transferred out 

of the glove box, and heated up and stirred for 24 h. After the reaction mixture was cooled to room 

temperature, all volatile materials were removed under reduced pressure. Further purification by flash 

column chromatography gave 3,4-diphenyltricyclo[4.2.1.02,5]non-3-ene 4.25A (white powder, 43.6 mg, 

80 %).  

4.7.6. Ruthenium(ll) Catalyzed Dimerization of Methyl Acrylate  

Into a 4.0 mL scintillation vial equipped with a magnetic stir bar was added {Ru(cod)[η
2
-

HNC(C6H5)C6H4]2} (4.21B) (0.1 mmol, 0.025 eq.), methyl acrylate (0.4 mm) and 0.5 mL of toluene. The 

vial was sealed with a silicone-lined screw-cap, and stirred under room temperature for 24 h. Then all 

volatile materials were removed under reduced pressure. Further purification by flash column 

chromatography gave compound (E)-dimethyl hex-2-enedioate (yellow oil, 24.1 mg, 70 %). 

4.7.7. Spectral Data for Isolated Products 
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(2E,4Z)-Methyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.45) gave 4.03a as a white solid (52.2 mg, >98 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.68 (dd, J = 15.5, 

0.7 Hz, 1H), 7.42-7.34 (m, 3H),  7.15-7.08 (m, 5H), 6.95-6.93 (m, 2H), 6.91 (s, 1H), 5.50 (dd, J = 15.5, 0.5 

Hz, 1H), 3.71 ppm (s, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 167.9, 150.0, 139.8, 138.9, 137.1, 135.9, 

130.2, 129.41, 129.38, 128.5, 128.4, 128.1, 120.1, 51.7 ppm; HRMS: m/z calcd for C18H16O2Na
+
: 

287.1043; found: 287.1035. 

 

(2E,4Z)-Ethyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.50) gave 4.03b as a white solid (55.0 mg, >98 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.67 (dd, J1 = 15.5, 

0.7 Hz, 1H), 7.40-7.34 (m, 3H),  7.11-7.08 (m, 5H), 6.95-6.91 (m, 2H), 6.90 (s, 1H), 5.48 (d, J = 15.5 Hz, 

1H), 4.17 (q, J = 7.1 Hz, 2H), 1.25 ppm (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 167.5, 149.8, 

139.9, 138.8, 137.2, 135.9, 130.3, 129.46, 129.41, 128.44, 128.40, 128.1, 120.6, 60.5, 14.5 ppm; HRMS: 

m/z calcd for C19H18O2Na
+
: 301.1199; found: 301.1196. 

 

(2E,4Z)-Butyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.50) gave 4.03c as a white solid (60.6 mg, >98 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.65 (dd, J = 15.5, 

0.7 Hz, 1H), 7.40-7.34 (m, 3H),  7.15-7.07 (m, 5H), 6.93-6.91 (m, 2H), 6.90 (s, 1H), 5.47 (d, J = 15.4 Hz, 

1H), 4.17 (t, J = 6.7Hz, 2H), 1.61 (m, 2H), 1.36 (m, 2H), 0.91 ppm (t, J = 7.4 Hz, 3H); 
13

C NMR (100 MHz, 

CDCl3): δ = 167.6, 149.7, 139.9, 138.8, 137.2, 136.0, 130.3, 129.47, 129.41, 128.43, 128.40, 128.1, 

120.6, 64.5, 31.0, 19.4, 14.0 ppm; HRMS: m/z calcd for C21H22O2Na
+
: 329.1512; found: 329.1520. 
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(2E,4Z)-Tert-butyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf 

= 0.57) gave 4.03d as a white solid (55.0 mg, 90 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.58 (dd, J1 = 15.5, 

J2 = 0.8 Hz, 1H), 7.42-7.36 (m, 3H),  7.15-7.08 (m, 5H), 6.93-6.91 (m, 2H), 6.88 (s, 1H), 5.41 (dd, J = 

15.4, 0.5 Hz, 1H), 1.46 ppm (s, 9H); 
13

C NMR (100 MHz, CDCl3): δ = 166.8, 148.8, 139.9, 138.7, 136.0, 

130.2, 129.5, 129.3, 128.33, 128.25, 128.0, 122.5, 80.4, 28.4 ppm; HRMS: m/z calcd for C21H22O2Na
+
: 

329.1512; found: 329.1513. 

 

(2E,4Z)-Phenyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 

0.57) gave 4.03e as a white solid (55.0 mg, 90 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.58 (dd, J = 15.5, 0.8 

Hz, 1H), 7.42-7.36 (m, 3H),  7.15-7.08 (m, 5H), 6.93-6.91 (m, 2H), 6.88 (s, 1H), 5.41 (dd, J = 15.4, 0.5 Hz, 

1H), 1.46 ppm (s, 9H); 
13

C NMR (100 MHz, CDCl3): δ = 166.8, 148.8, 139.9, 138.7, 136.0, 130.2, 129.5, 

129.3, 128.33, 128.25, 128.0, 122.5, 80.4, 28.4 ppm; HRMS: m/z calcd for C21H22O2Na
+
: 329.1512; 

found: 329.1513. 

 

(2E,4Z)-2-Methoxyethyl 4,5-diphenylpenta-2,4-dienoate: Chromatography (1:6 ethyl 

acetate/hexane, Rf = 0.20) gave 4.03f as a white solid (57.4 mg, 93 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.70(dd, J = 15.5, 0.7 Hz, 1H), 7.41-7.35 (m, 3H),  7.14-7.08 (m, 5H), 6.94-6.91 (m, 3H), 5.55 (d, J = 15.4 

Hz, 1H), 4.29-4.26 (m, 12H), 3.59-3.57 (m, 2H), 3.36 ppm (s, 3H);  
13

C NMR (100 MHz, CDCl3): δ = 
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167.4, 150.3, 139.8, 139.0, 137.1, 135.8, 130.2, 129.38, 129.36, 128.4, 128.3, 128.1, 120.1, 70.7, 63.5, 

59.2 ppm; HRMS: m/z calcd for C20H20O3Na
+
: 331.1305; found: 331.1296. 

 

(2E,4Z)-N,N-Dimethyl-4,5-diphenylpenta-2,4-dienamide: Chromatography (1:6 ethyl 

acetate/hexane, Rf = 0.48) gave 4.03g as a white solid (62.0 mg, 95 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.85(dd, J = 15.4, 0.7 Hz, 1H), 7.47-7.34 (m, 5H),  7.20-7.08 (m, 8H), 6.98-6.895 (m, 3H), 5.67 ppm (d, J 

= 15.4 Hz, 2H);  
13

C NMR (100 MHz, CDCl3): δ = 165.9, 151.7, 151.1, 139.9, 139.8, 137.0, 135.8, 130.4, 

129.5, 128.7, 128.5, 128.3, 125.9, 121.9, 119.5 ppm; HRMS: m/z calcd for C23H18O2Na
+
: 349.1199; 

found: 349.1204. 

 

(2E,4Z)-N,N-Diethyl-4,5-diphenylpenta-2,4-dienamide: Chromatography (ethyl acetate/hexane, Rf 

= 0.48) gave 4.03h as a white solid (rt, 36.7 mg, 60%; 60 °C, 52.0 mg, 85 %). 
1
H NMR (400 MHz, CDCl3): 

δ = 7.65 (d, J = 14.9 Hz, 1H), 7.43-7.34 (m, 3H),  7.16-7.14 (m, 2H), 7.09-7.06 (m, 3H), 6.92-6.90 (m, 2H), 

6.86 (s, 1H), 5.83 (d, J = 14.9 Hz, 1H), 3.40 (q, J = 7.0 Hz, 2H), 3.11 (q, J = 7.0 Hz, 2H), 1.10 (t, J = 7.0 

Hz, 3H), 0.98 ppm (t, J = 7.0 Hz, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 166.2, 147.3, 140.3, 138.0, 137.1, 

136.3, 130.0, 129.5, 129.2, 128.3, 128.0, 127.9, 120.6, 42.4, 41.2, 14.9, 13.4 ppm; HRMS: m/z calcd for 

C21H23NONa
+
: 328.1672; found: 328.1672. 
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(2E,4Z)-N-Isopropyl-4,5-diphenylpenta-2,4-dienamide: Chromatography (1:4 ethyl 

acetate/hexane, Rf = 0.23) gave 4.03i as a white solid (52.5 mg, 90 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.59(dd, J = 15.0, 0.6 Hz, 1H), 7.40-7.33 (m, 3H),  7.15-7.05 (m, 5H), 6.91-6.87 (m, 2H), 6.85 (s, 1H), 

5.36 (m, 2H), 4.10 (m, 1H), 1.10 ppm (d, J = 6.6 Hz, 6H);  
13

C NMR (100 MHz, CDCl3): δ = 165.4, 146.0, 

139.7, 137.8, 137.4, 136.1, 130.0, 129.5, 129.3, 128.3, 128.0, 127.8, 123.4, 41.5, 22.9 ppm; HRMS: m/z 

calcd for C20H21NONa
+
: 314.1515; found: 314.1515. 

 

(2E,4Z)-N-tert-Butyl-4,5-diphenylpenta-2,4-dienamide: Chromatography (1:1 ethyl 

acetate/hexane, Rf = 0.50) gave 4.03J as a white solid (27.5 mg, 45 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.56 (d, J = 15.0 Hz, 1H), 7.41-7.36 (m, 3H),  7.15-7.13 (m, 2H), 7.09-7.06 (m, 3H), 6.91-6.88 (m, 2H), 

6.84 (s, 1H), 5.833 (d, J = 15.0 Hz, 1H), 5.25 (bs, 1H), 1.33 ppm (s, 9H); 
13

C NMR (100 MHz, CDCl3): δ = 

165.6, 145.6, 139.7, 138.0, 137.3, 136.2, 130.0, 129.6, 129.3, 128.3, 128.0, 127.8, 124.3, 51.5, 29.0 ppm; 

HRMS: m/z calcd for C21H23NONa
+
: 328.1672; found: 328.1666. 

 

(2E,4E)-Methyl 4-methyl-5-phenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.50) gave 4.03k and 4.03k’ as a colorless oil (4.03k: 4.03k’ = 11:1, 40.0 mg, > 98 %). 
1
H NMR (400 

MHz, CDCl3): δ = 7.49 (dd, J = 15.4, 0.7 Hz, 1H), 7.38-7.23 (m, 5H),  6.82 (s, 1H), 5.96 (d, J = 15.6 Hz, 

1H), 3.76 (s, 3H), 2.02 ppm (d, J = 1.2 Hz, 2H);  
13

C NMR (100 MHz, CDCl3): δ = 167.9, 150.2, 139.2, 
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136.9, 134.3, 129.7, 128.5, 127.9, 117.3, 51.7, 13.9 ppm; HRMS: m/z calcd for C13H14O2Na
+
: 225.0886; 

found: 225.0896. 

 

(2E,4E)-Methyl 4-ethyl-5-phenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.52) gave 4.03l and 4.03l’ as a colorless oil (4.03l:4.03l’ = 15:1, 39.8 mg, 92 %). 
1
H NMR (400 MHz, 

CDCl3): δ = 7.39 (d, J = 15.9 Hz, 1H), 7.37-7.23 (m, 5H),  6.67 (s, 1H), 5.99 (d, J = 15.8 Hz, 1H), 3.76 (s, 

3H), 2.49 (q, J = 7.6 Hz, 2H), 1.17 ppm (t, J = 7.6 Hz, 3H);  
13

C NMR (100 MHz, CDCl3): δ = 168.0, 149.2, 

140.4, 138.7, 136.7, 129.2, 128.7, 128.0, 116.9, 51.7, 20.5, 13.7 ppm; HRMS: m/z calcd for C14H16O2Na
+
: 

239.1043; found: 239.1046. 

 

(2E,4E)-Methyl 4-ethyl-5-phenylpenta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, 

Rf = 0.43) gave 4.03m as a white solid (41.1 mg, 90 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 7.4 

Hz, 2H), 7.38 (d, 15.6 Hz, 1H), 7.32 (t, J = 7.4 Hz, 2H), 7.27-7.24 (m, 1H), 6.81 (s, 1H), 6.33 (d, J = 15.6 

Hz, 1H), 3.76 (s, 3H), 1.61-1.55 (m, 1H), 0.89-0.84 (m, 2H), 0.24-0.20 ppm (m, 2H); 
13

C NMR (100 MHz, 

CDCl3): δ = 168.1, 149.8, 140.4, 138.7, 136.3, 130.3, 128.2, 128.1, 118.1, 51.7, 9.9, 9.1 ppm; HRMS: m/z 

calcd for C15H16O2Na
+
: 251.1043; found: 251.1050. 
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(2E,4Z)-Methyl 4-(benzyloxymethyl)-5-phenylpenta-2,4-dienoate: Chromatography (1:4 ethyl 

acetate/hexane, Rf = 0.43) gave 4.03n and 4.03n’ as a white solid (4.03n: 4.03n’ = 10:1, 53.0 mg, 86 %). 

1
H NMR (400 MHz, CDCl3): δ = 7.54 (d, J = 15.6 Hz), 7.48 (d, J = 15.8 Hz), 7.35-7.29 (m, 10H), 7.09 (d, J 

= 8.2 Hz), 7.04 (s, 1H), 4.57 (s, 2H), 4.41 (s), 4.26 (s, 1H), 3.99 (d, J = 6.5 Hz), 3.77 (s, 3H), 3.70 ppm (s); 

13
C NMR (100 MHz, CDCl3): δ = 167.9, 147.7, 142.6, 137.8, 135.8, 134.5, 129.6, 128.72, 128.70, 128.6, 

128.5, 128.2, 118.5, 73.1, 65.0, 51.8 ppm; HRMS: m/z calcd for C20H20O3Na
+
: 331.1305.37; found: 

331.1312. The minor diastereomer was assigned based on the different coupling constants and the 

spectrum of the known isomer. 

 

(2E,4Z)-Methyl 4-butoxy-5-phenylpenta-2,4-dienoate : Chromatography (1:4 ethyl 

acetate/hexane, Rf = 0.40) gave 4.03o as a white solid (42.0 mg, 80 %).
1
H NMR (CDCl3, 300 MHz): δ = 

7.45 (d, J = 15.8 Hz, 1H), 7.38-7.29 (m, 5H), 7.02 (s, 1H), 6.15 (d, J = 15.8 Hz, 1H), 4.19 (s, 2H), 3.76 (s, 

3H), 3.48 (t, J = 6.5 Hz, 2H), 1.63-1.56 (m, 2H), 1.45-1.36 (m, 2H), 0.92 ppm (t,  J = 7.4 Hz, 3H); 
13

C NMR 

(CDCl3, 75 MHz): δ = 167.9, 147.8, 142.3, 136.0, 134.8, 129.6, 128.7, 128.6, 118.4, 70.83, 65.8, 51.8, 

32.0, 19.7, 14.1 ppm; HRMS: calculated for C16H20Na
+
: m/z = 297.1461; found: m/z = 297.1454. 
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(2E,4E)-Methyl 4-(4-acetylbenzylidene)oct-2-enoate: Chromatography (1:4 ethyl acetate/hexane, 

Rf = 0.32) gave 4.03p as a white solid (48.7 mg, 85 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.93-7.90 (m, 

2H), 7.38-7.33 (m, 3H), 6.75 (s, 1H), 5.99 (d, J = 15.8 Hz, 1H), 3.74 (s, 3H), 2.56 (s, 3H), 2.44-2.40 (m, 

2H), 1.53-1.45 (m, 2H), 1.40-1.31 (m, 2H), 0.88 ppm (t, J = 7.3 Hz, 3H);  
13

C NMR (100 MHz, CDCl3): δ = 

197.6, 167.7, 148.9, 141.5, 141.2, 137.3, 136.1, 129.3, 128.7, 118.1, 51.8, 31.2, 27.4, 26.8, 23.2 ppm; 

HRMS: m/z calcd for C18H22O3Na
+
: 309.1416; found: 309.1455. 

 

Methyl 4-((E)-2-((E)-3-methoxy-3-oxoprop-1-enyl)hex-1-enyl): Chromatography (1:6 ethyl 

acetate/hexane, Rf = 0.32) gave 4.03q as a white solid (39.8 mg, 92 %). 
1
H NMR (400 MHz, CDCl3): d = 

7.85(dd, J = 15.4, 0.7 Hz, 1H), 7.47-7.34 (m, 5H),  7.20-7.08 (m, 8H), 6.98-6.895 (m, 3H), 5.67 ppm (d, J 

= 15.4 Hz, 2H);  
13

C NMR (100 MHz, CDCl3): δ = 165.9, 151.7, 151.1, 139.9, 139.8, 137.0, 135.8, 130.4, 

129.5, 128.7, 128.5, 128.3, 125.9, 121.9, 119.5 ppm; HRMS: m/z calcd for C18H22O4Na
+
: 325.1410; 

found: 325.1401. 

 

(2E,4E)-Methyl 4-(4-formylbenzylidene)oct-2-enoate: Chromatography (1:4 ethyl acetate/hexane, 

Rf = 0.36) gave 4.03r as a white solid (40.9 mg, 75 %). 
1
H NMR (400 MHz, CDCl3): δ = 9.96 (s, 1H), 7.83 

(d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 15.8, 1H), 6.75 (s, 1H), 6.00 (d, J = 15.8 Hz, 1H), 

3.74 (s, 3H), 2.44-2.40 (m, 2H), 1.52-1.44 (m, 2H), 1.39-1.30 (m, 2H), 0.87 ppm (t, J = 7.3 Hz, 3H); 
13

C 

NMR (100 MHz, CDCl3): δ = 191.7, 167.6, 148.7, 142.9, 141.7, 137.0, 135.4, 130.0, 129.7, 118.4, 51.8, 

31.2, 27.4, 23.1, 14.0 ppm; HRMS: m/z calcd for C17H20O3Na
+
: 295.1305; found: 295.1313. 
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(2E,4E)-Methyl 4-(4-cyanobenzylidene)oct-2-enoate: Chromatography (1:10 ethyl 

acetate/hexane, Rf = 0.37) gave 4.03s as a white solid (40.9 mg, 75 %). 
1
H NMR (400 MHz, CDCl3): δ = 

7.44 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 15.8 Hz, 1H), 7.13 (d, J = 8.5 Hz, 2H), 6.65 (s, 1H), 5.96 (d, J = 15.8 

Hz, 1H),  3.74 (s, 3H), 2.38 (t, J = 8.0 Hz, 2H), 1.50-1.43 (m, 2H), 1.34 (m, 2H), 0.89 ppm (t, JJ = 7.24 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3): δ = 167.9, 149.2, 140.0, 137.4, 135.7, 131.9, 130.8, 122.1, 117.5, 51.8, 

31.1, 27.3, 23.2, 14.1 ppm; HRMS: m/z calcd for C17H19NO2Na
+
: 3470442; found: 347.0452. 

 

(2E,4E)-Methyl 4-ethylhepta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 0.50) 

gave 4.03t as yellow oil (15.2 mg, 45 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.20 (d, J = 15.9 Hz, 1H), 5.82-

5.78 (m, 2H), 3.72 (s, 3H), 2.25-2.13 (m, 4H), 1.02-0.96 ppm (m, 6H); 
13

C NMR (100 MHz, CDCl3): δ = 

168.3, 148.9, 143.7, 138.7, 114.8, 51.6, 22.0, 19.8, 13.9, 13.6 ppm; HRMS: m/z calcd for C10H16O2Na
+
: 

191.1043; found: 191.1042. 

 

(2E,4E)-Methyl 4-propylocta-2,4-dienoate: Chromatography (1:6 ethyl acetate/hexane, Rf = 0.52) 

gave 4.03u as a yellow oil (27.5 mg, 70 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.22 (d, J = 15.8 Hz, 1H), 

5.85 (t, J = 7.5 Hz, 1H), 5.77 (d, J = 15.9 Hz, 1H), 3.71 (s, 3H), 2.16 (dt, J1 = 14.7, J2 = 7.6 Hz, 4H), 1.46-

1.34 (m, 4H), 0.92-0.88 ppm (m, 6H); 
13

C NMR (100 MHz, CDCl3): δ = 168.3, 149.4, 142.9, 137.6, 114.8, 

51.6, 31.0, 28.8, 22.6, 22.1, 14.4, 14.1 ppm; HRMS: m/z calcd for C12H20O2Na
+
: 219.1356; found: 

219.1359. 
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(2E,4E)-Methyl 5-phenylpenta-2,4-dienoate: Chromatography (1:10 ethyl acetate/hexane, Rf = 

0.33) gave 4.03v as a white solid (26.7 mg, 71 %). 
1
H NMR (400 MHz, CDCl3): δ = 7.47-7.41 (m, 3H), 

7.37-7.24 (m, 3H), 6.91-6.851 (m, 2H), 5.98 (m, 1H), 3.75 ppm (m, 3H); 
13

C NMR (100 MHz, CDCl3): δ = 

167.8, 145.1, 140.8, 136.3, 129.4, 129.1, 127.5, 126.5, 121.1, 51.9 ppm; HRMS: m/z calcd for 

C12H12O2Na
+
: 211.0730; found:  211.0731. 

 

(E)-Dimethyl hex-2-enedioate: Chromatography (hexane, Rf = 0.36) gave 4.24a as yellow oil 

(24.1 mg, 70 %). 
1
H NMR (400 MHz, CDCl3): δ = 6.93 (dt, J = 15.7, 6.4 Hz, 1H), 5.84 (dt, J = 15.6, 1.5 Hz, 

1H), 3.71 (s, 3H), 3.67 (s, 3H), 2.55-2.42 ppm (m, 4H); 
13

C NMR (100 MHz, CDCl3): δ = 172.8, 166.9, 

147.0, 122.1, 52.0, 51.7, 32.4, 27.4 ppm. HRMS: calcd for C8H12O4Na
+
: m/z = 195.0628; found: m/z = 

195.0622. 

 

3,4-Diphenyltricyclo[4.2.1.02,5]non-3-ene: Chromatography (hexane, Rf = 0.36) gave 4.25a as a 

white solid (43.6 mg, 80 %). 
1
H NMR (CDCl3, 400 MHz): δ = 7.59-7.53 (m, 4H), 7.33-7.29 (m, 4H), 7.26-

7.22 (m, 2H), 2.81 (s, 2H), 2.26-2.25 (m, 2H), 1.68-1.60 (m, 3H), 1.245-1.20 (m, 2H), 1.057-1.04 (m, 1H); 

13
C NMR (CDCl3, 100 MHz): δ = 139.7, 135.8, 128.5, 127.7, 126.6, 47.4, 35.2, 31.0, 28.8. HRMS: calcd 

for C21H20: m/z = 272.1565; found: m/z = 272.1568. 



115 

 

4.8. References 

1. Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Catalytic Addition of Aromatic C-H Bonds to 

Acetylenes. Chem. Lett. 1995, 24, 681-682. 

2. Kakiuchi, F.; Murai, S. Catalytic C−H/Olefin Coupling. Acc. Chem. Res. 2002, 35, 826-834. 

3. Ritleng, V.; Sirlin, C.; Pfeffer, M. Ru-, Rh-, and Pd-Catalyzed C−C Bond Formation Involving C−H 

Activation and Addition on Unsaturated Substrates:  Reactions and Mechanistic Aspects. Chem. Rev. 

2002, 102, 1731-1770. 

4. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-Catalyzed C−C Bond Formation via 

Heteroatom-Directed C−H Bond Activation. Chem. Rev. 2010, 110, 624-655. 

5. Kitamura, T. Transition-Metal-Catalyzed hHdroarylation Reactions of Alkynes through Direct 

Functionalization of C-H Bonds. A Convenient Tool for Organic Synthesis. Eur. J. Org. Chem. 2009, 

1111-1125. 

6. Messaoudi, S.; Brion, J.-D.; Alami, M. Transition-Metal-Catalyzed Direct C–H Alkenylation, 

Alkynylation, Benzylation, and Alkylation of (Hetero)arenes. Eur. J. Org. Chem. 2010, 2010, 6495-6516. 

7. Mitsudo, T.-a.; Zhang, S.-W.; And, M. N.; Watanabe, Y. Ruthenium Complex-Catalysed Highly 

Selective Codimerisation of Acetylenes and Alkenes. J. Chem. Soc., Chem. Commun. 1991, 598-599. 

8. Yi, C. S.; Lee, D. W.; Chen, Y. Hydrovinylation and [2+2] Cycloaddition Reactions of Alkynes and 

Alkenes Catalyzed by a Well-Defined Cationic Ruthenium−Alkylidene Complex. Organometallics 1999, 

18, 2043-2045. 

9. Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S. Ruthenium-Catalyzed Addition of 

Olefinic C–H Bonds in Conjugate Enones to Acetylenes to Give Conjugate Dienones. J. Mol. Catal. A: 

Chem. 2002, 182-183, 511-514. 

10. Nishimura, T.; Washitake, Y.; Uemura, S. Ruthenium/Halide Catalytic System for C-C Bond 

Forming Reaction between Alkynes and Unsaturated Carbonyl Compounds. Adv. Synth. Catal. 2007, 

349, 2563-2571. 



116 

 

11. Neisius, N. M.; Plietker, B. The Ruthenium-Catalyzed Hydrovinylation of Internal Alkynes by 

Acrylates: An Atom Economic Approach to Highly Substituted 1,3-Dienes. Angew. Chem. Int. Ed. 2009, 

48, 5752-5755. 

12. Schabel, T.; Plietker, B. Microwave-Accelerated Ru-Catalyzed Hydrovinylation of Alkynes and 

Enynes: A Straightforward Approach toward 1,3-Dienes and 1,3,5-Trienes. Chem. - Eur. J. 2013, 19, 

6938-6941. 

13. Saito, N.; Saito, K.; Shiro, M.; Sato, Y. Regio- and Stereoselective Synthesis of 2-Amino-1,3-

Diene Derivatives by Ruthenium-Catalyzed Coupling of Ynamides and Ethylene. Org. Lett. 2011, 13, 

2718-2721. 

14. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Stereoselective Alkylation of α,β-Unsaturated Imines 

via C−H Bond Activation. J. Am. Chem. Soc. 2006, 128, 5604-5605. 

15. Colby, D. A.; Bergman, R. G.; Ellman, J. A. Synthesis of Dihydropyridines and Pyridines from 

Imines and Alkynes via C-H Activation. J. Am. Chem. Soc. 2008, 130, 3645-3651. 

16. Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Rhodium-Catalyzed One-Pot Synthesis of 

Substituted Pyridine Derivatives from α,β-Unsaturated Ketoximes and Alkynes. Org. Lett. 2008, 10, 325-

328. 

17. Shibata, Y.; Hirano, M.; Tanaka, K. Rhodium-Catalyzed Regio- and Stereoselective 

Codimerization of Alkenes and Electron-Deficient Internal Alkynes Leading to 1,3-Dienes. Org. Lett. 2008, 

10, 2829-2831. 

18. Lindhardt , A. T.; Mantel, M. L. H.; Skrydstrup, T. Palladium-Catalyzed Intermolecular Ene–Yne 

Coupling: Development of an Atom-Efficient Mizoroki–Heck-Type Reaction. Angew. Chem. Int. Ed. 2008, 

47, 2668-2672. 

19. Horie, H.; Koyama, I.; Kurahashi, T.; Matsubara, S. Nickel-Catalyzed Intermolecular 

Codimerization of Acrylates and Alkynes. Chem. Commun. 2011, 47, 2658-2660. 

20. Mannathan, S.; Cheng, C.-H. Cobalt-Catalyzed Regio- and Stereoselective Intermolecular Enyne 

Coupling: an Efficient Route to 1,3-Diene Derivatives. Chem. Commun. 2010, 46, 1923-1925. 



117 

 

21. Zhang, J.; Ugrinov, A.; Zhao, P. Ruthenium(II)/N-Heterocyclic Carbene Catalyzed [3+2] 

Carbocyclization with Aromatic N-H Ketimines and Internal Alkynes. Angew. Chem. Int. Ed. 2013, 52, 

6681-6684. 

22. Zhang, J.; Ugrinov, A.; Zhang, Y.; Zhao, P. Exploring Bis(cyclometalated) Ruthenium(II) 

Complexes as Active Catalyst Precursors: Room-Temperature Alkene–Alkyne Coupling for 1,3-Diene 

Synthesis. Angew. Chem. Int. Ed. 2014, 53, 8437-8440. 

23. Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Ruthenium-Catalyzed Reactions—A Treasure Trove 

of Atom-Economic Transformations. Angew. Chem. Int. Ed. 2005, 44, 6630-6666. 

24. Vovard-Le Bray, C.; Dérien, S.; Dixneuf, P. H. Cp*RuCl(COD) in Catalysis: a Unique Role in the 

Addition of Diazoalkane Carbene to Alkynes. C. R. Chim. 2010, 13, 292-303. 

25. Morimoto, T.; Chatani, N.; Fukumoto, Y.; Murai, S. Ru3(CO)12-Catalyzed Cyclocarbonylation of 

1,6-Enynes to Bicyclo[3.3.0]octenones. J. Org. Chem. 1997, 62, 3762-3765. 

26. Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T.-a. First Ruthenium-Catalyzed Intramolecular 

Pauson−Khand Reaction. J. Am. Chem. Soc. 1997, 119, 6187-6188. 

27. Flower, K. R.; Howard, V. J.; Pritchard, R. G.; Warren, J. E. Synthesis and Characterization of 

Cycloruthenated 2-(Phenylimino)phenyls:  A Useful Probe for the Elucidation of the Tautomeric Process in 

2-Hydroxyphenyl-Schiff Bases. Organometallics 2002, 21, 1184-1189. 

28. Scherl, P.; Wadepohl, H.; Gade, L. H. Hydrogenation and Silylation of a Double-Cyclometalated 

Ruthenium Complex: Structures and Dynamic Behavior of Hydrido and Hydridosilicate Ruthenium 

Complexes. Organometallics 2013, 32, 4409-4415. 

29. Hirano, M.; Sakate, Y.; Komine, N.; Komiya, S.; Bennett, M. A. Isolation of trans-2,5-

Bis(methoxycarbonyl)ruthenacyclopentane by Oxidative Coupling of Methyl Acrylate on Ruthenium(0) as 

an Active Intermediate for Tail-to-Tail Selective Catalytic Dimerization. Organometallics 2009, 28, 4902-

4905. 

30. Sustmann, R.; Hornung, H. J.; Schupp, T.; Patzke, B. Dimerization of Methyl Acrylate by 

Homogeneous Transition-Metal Catalysis. Part I. Activation of Hydrido (Carbonyl) Chloro-

[Bis(Triisopropylphosphane)] Ruthenium by CF3SO3Ag. J. Mol. Catal. 1993, 85, 149-152. 



118 

 

31. Butenschön, H. Construction of Carbon Frameworks with the Help of Ruthenium Complexes: 1,5-

Cyclooctadiene as a Reagent in Transition Metal Catalyzed Reactions. Angew. Chem. Int. Ed. 1994, 33, 

636-638. 

32. Mitsudo, T.-a.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. [2 + 2] Cycloaddition of 

Norbornenes with Alkynes Catalyzed by Ruthenium Complexes. Angew. Chem. Int. Ed. 1994, 33, 580-

581. 

33. Thorand, S.; Krause, N. Improved Procedures for the Palladium-Catalyzed Coupling of Terminal 

Alkynes with Aryl Bromides (Sonogashira Coupling). J. Org. Chem. 1998, 63, 8551-8553. 

34. Singh, R.; Just, G. Rates and Regioselectivities of the Palladium-Catalyzed Ethynylation of 

Substituted Bromo- and Dibromobenzenes. J. Org. Chem. 1989, 54, 4453-4457. 

35. Bolte, B.; Odabachian, Y.; Gagosz, F. Gold(I)-Catalyzed Rearrangement of Propargyl Benzyl 

Ethers: A Practical Method for the Generation and in Situ Transformation of Substituted Allenes. J. Am. 

Chem. Soc. 2010, 132, 7294-7296. 

 

 



119 

 

CHAPTER 5. A DECARBOXYLATIVE APPROACH FOR REGIOSELECTIVE 

HYDROARYLATION OF ALKYNES 

5.1. Background and Significance  

Aryl-substituted alkenes are prevalent structures in biologically active compounds and used 

extensively as synthetic intermediates for fine chemicals and materials. The addition of an aromatic C-H 

bond to a C-C triple bond allows convenient and modular synthesis of arylalkenes using readily available 

alkyne and arene building blocks.
1-7 

These alkyne hydroarylation processes feature high atom efficiency 

and significantly reduced production of salt wastes in contrast to transition metal-catalyzed alkyne 

coupling with aryl halides and their analogs or main-group metal aryl nucleophiles (Scheme 5.1).
8-12  

 

 

Scheme 5.1. Transition metal-catalyzed alkyne hydroarylation with aryl halides and arylmetallic reagents 

 

A long-standing challenge for practical applications of alkyne hydroarylation is to achieve 

controlled and versatile regioselectivity with unsymmetrically substituted arenes. The classic method of 

alkyne hydroarylation by Lewis acid-catalyzed Friedel-Crafts reactions generally requires electron-

donating aromatic substituents to achieve satisfactory reactivity. The resulting ortho- and para-directing 

effects often lead to a hard-to-separate mixture of ortho- and para-substituted alkenylarene isomers in low 

regioselectivity (Scheme 5.2, EDG = electron-donating group).
13-20 

In addition, Friedel-Crafts alkyne 

hydroarylation often suffers from low stereoselectivity for E/Z isomeric alkene products and byproduct 

formation from over-alkenylation of the arene substrates.  
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Scheme 5.2. Lewis acid-catalyzed alkyne hydroarylation with electron-rich arenes 

 

In recent years, a variety of transition metal-based catalysts have been developed for alkyne 

hydroarylation via formal activation of arene C-H bonds to form nucleophilic metal aryl intermediates. A 

number of these reported catalysts involve an electrophilic aromatic substitution (EAS) pathway for C-H 

activation with Lewis acidic transition metal catalysts, which is mechanistically related to the Friedel-Crafts 

chemistry and leads to similar limitation in regioselectivity (Scheme 5.3).
21,22

 

 

 

Scheme 5.3. Transition metal-catalyzed alkyne hydroarylation via electrophilic C-H bond activation 

 

Another major strategy is to utilize σ-donating functionality as ortho-directing groups for aromatic 

C-H bond activation, which leads to exclusive ortho-selectivity for catalytic alkyne hydroarylation as 

described in Chapter 1 (Scheme 5.4, DG = directing group).
23-30 

However, removal of these ortho-

directing groups from the hydroarylation products usually requires additional chemical transformations 

and is not always achievable.
31 

Thus, the limitation on regiochemistry of alkyne hydroarylation methods is 

highlighted by the difficulty to selectively form meta- or para-substituted alkenylarene products.  
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Scheme 5.4. Transition metal-catalyzed alkyne hydroarylation via directed C-H bond activation 

 

Recently, a handful of strategies for meta-selective C-H activation based C-C bond forming 

reactions have been developed to access meta-substituted arenes.
32-39 

Notably, Yu and coworkers 

elegantly devised a template approach to activate remote meta-C–H bonds, which could be used to 

prepare meta-alkenylarenes (5.03) via oxidative alkenylation (Scheme 5.5).
40

 High regio- and 

stereoseletivity were achieved with various olefins (5.02) in the presence of catalytic amount of Pd(OPiv)2 

and stoichiometric amount of oxidant in DCE at 90 
o
C. It was also proved that the meta-directing group 

concept could also be applied to alkenylation of hydrocinnamic acids, phenols and anilines.
40-42

 However, 

the development of the template would require extensive engineering and extra steps to install and 

remove the template before and after alkenyation. Beside, oxidative alkenylation requires stoichiometric 

amount of silver salt as oxidant. Thus it is highly desirable to develop an alkyne hydroarylation method 

that allows controllable and versatile regiochemistry of aromatic substitution.      

 

 

Scheme 5.5. Palladium catalyzed template directed meta-C-H bond alkenylation 

 

The strategy of traceless directing group allows site-selective C-H bond activation at an ortho-

position of the directing group and meta-/para-selective functionalization depending on the substitution 
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pattern of the substrate. Thus, it provides an attractive tactic to access meta-/para-functionalized arenes 

in a single step (Scheme 5.6).  

 

 

Scheme 5.6. Transition metal-catalyzed C-H bond functionalization using traceless directing group 

 

Given the wide availability and low costs of arenecarboxylic acids, transition metal-catalyzed 

decarboxylative transformations of arenecarboxylic acids have attracted significant attention in the past 

decade.
43-46

 A variety of transition metals have been successfully applied in these transformations via the 

formation of aryl-metal intermediate (Scheme 5.7). Usually an ortho-inductive electron-withdrawing 

aromatic substituent would be required to facilitate these transformations. For example, our group has 

developed a rhodium-catalyzed decarboxylative Heck-Mizoroki reaction of perfluorobenzoic acids (5.04) 

with electron-deficient olefins (5.02) to produce alkenylarenes (5.03) (Scheme 5.8).
33

 

 

 

Scheme 5.7. Transition metal-mediated protodecarboxylation of arenecarboxylic acids 
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Scheme 5.8. Rhodium catalyzed decarboxylative Heck-Mizoroki reaction of perfluorobenzoic acids with 

electron-deficient olefins 

 

On the other hand, carboxylic acid has been used as directing group in transition metal-catalyzed 

C-H bond activation to introduce a C-C bond in its ortho-position.
47-54

 In alkyne hydroarylation with 

arenecarboxylic acids (5.04), isocoumarins (5.06) are usually formed via a tandem reaction of carboxylic 

acid directed C-H bond activation, alkyne insertion and oxidative heterocyclization.
55,56

 For example, 

Miura and coworkers reported a rhodium-catalyzed heterocyclization of arenecarboxylic acids (5.04) and 

internal alkynes (5.05) in the presence of stoichiometric Cu(OAc)2 as oxidant under N2 or catalytic 

Cu(OAc)2 under air (Scheme 5.9).
55

 Besides isocoumarins, the minor products (5.07) from [2+2+2] 

decarboxylative cyclization were also detected for some substrates. The authors found iridium could 

selectively catalyze the decarboxylative cyclization with the assistance of stoichiometric amount of 

Ag2CO3 at higher temperature (Scheme 5.10).
55

 The reaction was proposed to proceed via carboxylic 

acid directed C-H bond activation, followed by alkyne insertion and decarboxylation. Subsequent second 

alkyne insertion and reductive elimination gave the cyclization product. Successive oxidation of Ir(I) back 

to Ir(III) by Ag2CO3 completed the catalytic cycle.  

 

 

Scheme 5.9. Rhodium catalyzed oxidative heterocyclization with arenecarboxylic acid and internal 

alkynes initiated by carboxyl directed C-H bond activation 

 



124 

 

 

Scheme 5.10. Iridium catalyzed decarboxylative [2+2+2] cyclization with arenecarboxylic acids and 

internal alkynes initiated by carboxyl directed C-H bond activation 

 

We hypothesized that a potential solution for the regiochemistry challenge in alkyne 

hydroarylation is to use arenecarboxylic acids (5.04) as arene equivalents, with the carboxylic acid 

functionality as an ortho-directing group that is removed by metal-mediated decarboxylation after C-H 

alkenylation (Scheme 5.11). This decarboxylative approach for alkyne hydroarylation is a redox-neutral 

reaction and has the advantage of using ubiquitous benzoic acids as easily accessible aromatic building 

blocks, with CO2 as the only byproduct and no production of salt waste.  

 

 

Scheme 5.11. Hypothesis on transition metal-catalyzed decarboxylative alkyne hydroarylation with 
carboxyl group as traceless directing group  

 

However, achieving versatile regiochemistry and practical tolerance of functional groups has 

been very difficult for transition metal-catalyzed decarboxylative transformations. For example, Miura 

disclosed a rhodium catalyzed meta-selective decarboxylative alkenylation of arenecarboxylic acids 

(5.04) with styrenes (5.02).
57,58

 The reaction was a two-step, one-pot reaction: first, rhodium catalyzed 

carboxylic acid directed ortho C-H bond alkenylation; second, silver mediated decarboxylation of the 

alkenylated arenecarboxylic acid (Scheme 5.12). Larrosa revealed a one-step palladium catalyzed meta-

selective arylation of ortho-substituted arenecarboxylic acids (5.04) with aryl iodide (5.09). This reaction 

was carried out in acetic acid and with the assistance of stoichiometric Ag2CO3 at 130 
o
C (Scheme 
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5.13).
35

 Notably, in all of these reported examples of using a removable carboxyl directing group, 

substrate activation with an ortho-aromatic substituent to carboxylic acid group is necessary to promote 

the reaction. This pre-requisite for substrate activation limited the scope and regiochemistry of C-H 

functionalization products regarding aromatic substituents. In addition, the requirement of stoichiometric 

sliver salt and high reaction temperature would limit the tolerance of synthetically useful functional groups 

such as the oxidation-sensitive phenol and unprotected aniline functionality. Thus, applying traceless 

directing group strategy to an alkyne hydroarylation with arenecarboxylic acids needs to overcome these 

limitations to achieve controllable and versatile regiochemistry of aromatic substitution. 

 

 

Scheme 5.12. Rhodium catalyzed decarboxylative alkenylation with arenecarboxylic acids and styrenes 

 

 

Scheme 5.13. Palladium catalyzed decarboxylative arylation with arenecarboxylic acids and aryl iodides 

 

This chapter will describe our discovery of a catalyst system for decarboxylative alkyne 

hydroarylation with various benzoic acids that overcomes the limitation on decarboxylation substrate 

scope, providing alkenylarene products with a broad scope of aromatic substituents that feature versatile 

regiochemistry and synthetically useful functional group tolerance.  
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5.2. Initial Results 

Formation of isocoumarins and naphthalenes, in rhodium and ruthenium catalyzed coupling 

between alkynes and benzoic acids was preferred, which required the presence of oxidants, such as 

copper(II) and silver(I) salts.
55,57,59,60

 Thus, oxidants should be avoided in the design of alkyne 

hydroarylation with the same substrates.  

As mentioned above, substrate activation with an ortho aromatic substituent to carboxylic acid 

group is required for decarboxylation after C-C coupling in palladium catalyzed decarboxylative arylation 

and rhodium catalyzed Heck-Mizoroki reaction. However, the formation of naphthalene derivatives via 

[2+2+2] decarboxylative cyclization does not require substrate preactivation. These results indicate that 

there might be an unusual intermediate involved in the process of the formation of naphthalenes. Such an 

intermediate consists of a special structural feature, which could interact with the metal catalyst and 

promote the decarboxylation. If the reaction could be stopped after alkenylation and decarboxylation, we 

would get the desired alkyne hydroarylation product. 

With these consideration, we proposed a tandem sequence of “double chelation assistance” that 

is initiated by a carboxylic acid-directed C-H bond activation and alkyne coupling to form an ortho-

alkenylbenzoic acid intermediate (I) as shown in Scheme 5.14. In the subsequent decarboxylation stage, 

the newly installed alkenyl moiety “returns the favor” of chelation assistance by coordinating to the metal 

center of a carboxylate intermediate and facilitates the C-C bond activation for CO2 release (II in Scheme 

5.14). 
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Scheme 5.14. Hypothesis on transition metal-catalyzed decarboxylative alkyne hydroarylation via a  

tandem sequence of "double chelation assistance" 

 

With this envisioned low-activation energy decarboxylation process via alkene chelation, we 

began our investigation with a model reaction between benzoic acid (5.04a in Figure 5.1) and 

diphenylacetylene (5.05a), targeting 1,1,2-triphenylethylene (5.03a) as the desired product by 

decarboxylative hydroarylation. We have focused our attention on ruthenium(II)-based catalysts, which 

have played an important role both in chelation-assisted C-H activation and in decarboxylative allylation 

reactions.
61,62

 A major challenge for our catalyst development is to achieve high chemoselectivity to 

promote formation of 5.03a over multiple byproducts that can be formed by reported catalytic couplings 

between 5.04a and 5.05a, which include alkyne hydrocarboxylation (5.12a),
63

 oxidative [4+2] 

heterocyclization (5.06a),
59,60

 and oxidative [2+2+2] carbocyclization via decarboxylation (5.07a).
55,57,59

 

We found that in the presence of 5 mol% of [Ru(p-cymene)Cl2]2 and 20 mol% NaOAc, diphenylacetylene 

reacted with 1.5 equivalent of benzoic acid producing 40% of triphenylethene with 13% of all of the three 

byproducts as mentioned above at 100 °C (Figure 5.1). This result confirmed our hypothesis: alkyne 

hydroarylation was favored in the absence of oxidant and decarboxylation occurred under milder reaction 

conditions without silver additives. 
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Figure 5.1. Initial result of ruthenium catalyzed decarboxylative hydroarylation with benzoic acid and 

diphenylacetylene 

 

5.3. Optimization of Reaction Conditions 

With this promising initial result, we started to evaluate the catalytic parameters including the ratio 

of 5.04a:5.05a, additives, solvents and reaction temperature (Table 5.1). With 2 equivalent of benzoic 

acid, the yield of 5.03a was increased to 55% while the yields of the byproducts were reduced (entry 2). 

Increasing the amount of diphenylacetylene would produce less 5.03a and more [2+2+2] cyclization 

product (entries 3 and 4). Because benzoic acid and its substituted analogs are mostly available through 

commercial sources and inexpensive, we conducted the decarboxylative hydroarylation reaction with 2 

equivalents of the benzoic acid substrate to maximize the conversion of the alkyne in all of the following 

reactions. Raising the loading of NaOAc did not affect the yield of 5.03a (entries 5 and 6). Acetates with 

different cations, such as potassium and cesium had negligible influence on the yield of 5.03a (entries 11 

and 12). Acid additives, such as acetic acid, trifluoroacetic acid and pivalic acid, strongly retarded the 

reaction (entries 7-9). Lowering the reaction temperature to 80 
o
C dramatically decreased the yield of 

5.03a (entry 10). Polar solvents such as DCE, DME, 1,4-dioxane, and NMP, were not effective to promote 

the alkyne hydroarylation (entries 13-16).  
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Table 5.1. Initial test for effects of substrate ratios, additive, solvent, and temperature in ruthenium(II) 
catalyzed decarboxylative alkyne hydroarylation with arenecarboxylic acids

a 

 

 

 

 To improve the reaction, different types of ligands, such as N-heterocyclic carbenes (NHCs), 

mono- and bisphosphines, diamines and bipyridine, were tested at 100 
o
C (Table 5.2). However, all of 

these ligands would hinder the reaction (entries 1-11). The combination of [Ru(p-cycmene)Cl2]2 and 

NaOAc was supposed to generate ruthenium complexes with anionic acetate ligand. To increase the 

efficiency of the catalyst, [Ru(p-cymene)(OAc)2] (5.13) was prepared and used as the catalyst precursor, 

generating 66% of 5.03a  with a trace amount of byproducts at 100 
o
C (entry 12). Even at a lower 

temperature 80 
o
C, there was still 25% of 5.03a formed using 5.13 as catalyst precursor (entry 14). 

However, lowing the loading of 5.13 to 5 mol% would reduce the yield significantly (entry 13). Another 

ruthenium(II) carboxylate, [Ru(p-cymene)(OBz)2], turned out to be as effective as 5.13 (entries 15, 16). 
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Ru(cod))(methylallyl)2, which was used as the catalyst precursor for [3+2] carbocyclizations in Chapter 2 

and 3, favored the alkyne hydrocarboxylation reaction (entry 14). All other Ru(0) and Ru(II) complexes 

were ineffective to promote the coupling between benzoic acid and diphenylacetylene (entries 17-22). 

[Ru(p-cymene)(OAc)2] (5.13) was selected as the catalyst precursor to further improve the reaction at 80 

o
C. 

Table 5.2. Effects of ligand and catalyst precursor in ruthenium catalyzed decarboxylative alkyne 

hydroarylation with arenecarboxylic acids
a 
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Arene solvents were found to be the best type of solvent for high chemoselectivity towards 5.03a 

over other byproducts, although the yields were low in the presence of 10 mol% of 5.13 at 80 
o
C. Other 

solvents, such as ethereal solvents, DMF, DCM, acetone, and t-armyl alcohol were less effective in 

promoting this transformation (Table 5.3, entries 1-14). Through high throughput screening on solvent 

conditions, we found an effective solvent system containing 2:2:1 dioxane, mesitylene and heptane. In 

this mixed solvent system, the coupling between 5.04a and 5.05a could be promoted by 10 mol% Ru(p-

cymene)(OAc)2 (5.13) as catalyst at 80 
o
C to selectively form 5.03a in 65% yield over 24 hours. Other 

analogous ruthenium complexes with different carboxylate anions, such as [Ru(p-cymene)(OBz)2] and 

[Ru(p-cymene)(OPiv)2], showed similar catalytic ability under the same reaction conditions. Notably, 

[Ru(p-cymene)(O2CCF3)2] was a much less effective catalyst precursor (entries 17-19).  Ruthenium 

complexes with different π-arene ligand, such as toluene and benzene, led to lower yields of 5.03a 

(entries 20 and 21). The reaction time was found to have substantial impact on the outcome of the 

reaction. Under otherwise identical reaction conditions, 90% of 5.03a was obtained when extending the 

reaction time to 48 hours, whereas less than 5% combined yield of byproducts 5.12a, 5.06a, and 5.07a 

were detected by GC analysis.   
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Table 5.3. Effects of solvent and catalyst precursor in ruthenium catalyzed decarboxylative alkyne 

hydroarylation with arenecarboxylic acids
a 

 

 

 

5.4. Substrate Scope 

With the optimized catalytic procedure in hand, we investigated decarboxylative alkyne 

hydroarylation with a variety of substituted benzoic acids (Figure 5.2). All reactions occurred with high 

stereoselectivity to form syn-hydroarylation products as the dominant stereoisomers. Results on 
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regiochemistry of the products were consistent with the envisioned tandem sequence of ortho-C-H 

alkenylation and subsequent decarboxylation (Scheme 5.14). Thus, para-substituted benzoic acids 

reacted with diphenylacetylene (5.05a) in exclusive regioselectivity to give meta-substituted alkenylarene 

products 5.03ba and 5.03c-l (Figure 5.2). High yields were achieved with electron-donating para-

substituents including methyl, methoxy, and N-protected amino groups (products 5,03ba, 5,03c, 5,03d, 

5,03g). The redox-neutral nature of current catalyst system also allowed tolerance of unprotected phenol 

and aniline functionality, leading to formation of meta-hydroxy- or amino-substituted products 5.03e and 

5.03f in 85% and 63% yield respectively. On the other hand, significantly reduced reactivity was observed 

with electron-withdrawing para-substituents such as halogen atoms and the CF3 group. As a result, 

products 5.03h-l were formed in low yields even at a higher reaction temperature of 100 
o
C. 
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Figure 5.2. Substrate scope of para-substituted benzoic acids in ruthenium catalyzed decarboxylative 

alkyne hydroarylation with diphenylacetylene
a,b 

 

With ortho-substituted benzoic acids, the same meta-substituted alkenylarene products should be 

formed as with the para-substituted analogs. This envisioned regiochemistry was confirmed with 

successful reactions between 5.05a and several benzoic acids with ortho-substituents including methyl, 

methoxy, hydroxy, and phenyl groups (Figure 5.3). The meta-substituted benzoic acids were envisioned 

as a more challenging class of substrates due to competitive functionalization at two unsymmetrical 

aromatic C-H bonds that are both ortho to the carboxyl directing group. Indeed, 3-methoxybenzoic acid 

(3-anisic acid) reacted with 5.05a to give an inseparable mixture of 4 regio- and stereoisomers of 

corresponding hydroarylation products in 50% overall yields and low selectivities (products 5.03n/n’). We 

hypothesized that both electronic and steric properties of meta-substituents should affect the 

regioselectivity, and more sterically demanding meta-substituents should inhibit formation of ortho-
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alkenylation products and promote the corresponding para-alkenylation regioisomers. Gratifyingly, having 

sterically demanding dimethylamino, isopropyl and tert-butyl groups as meta-substituents did lead to 

exclusive formation of para-alkenylation products 5.03o-q in 50-74% yields. The substituent-enabled high 

regioselectivity was also demonstrated with two protocatechuic acid (3,4-dihydroxybenzoic acid) 

derivatives having both meta- and para-substituents. The exclusive formation of ortho-alkenylation 

product 3r suggested a dominant electronic effect and negligible steric effect with formaldehyde acetyl-

protected 3,4-dihydroxy moiety. By contrast, the reaction with vanillic acid led to exclusive formation of 

product 3s via regioselective C-H activation/alkenylation at the aromatic site that is para to methoxy and 

meta to hydroxy. 

 

Figure 5.3. Substrate scope of ortho- and meta-substituted benzoic acids in ruthenium catalyzed 

decarboxylative alkyne hydroarylation with diphenylacetylene
a,b
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The scope of internal alkyne substrates were investigated with 4-methoxybenzoic acid as the 

reaction partner (Figure 5.4). Unsymmetrically substituted alkyl/aryl alkynes reacted with exclusive 

regioselectivity to form 1-alkyl-1-m-anisyl alkene products (5.03bb-5.03bf). However, methyl-, ethyl-, and 

n-butyl-substituted phenylacetylenes showed much lower reactivity than diphenylacetylene (5.05a) and 

required 20 mol% Cu(OAc)2 additive to give products 5.03bb-5.03bd in 60-77% yields. Compared to 

simple alkyl groups, higher reactivity was observed with methoxymethyl-substituted arylacetylenes, and 

no Cu(OAc)2 additive was required to achieve good yields (products 5.03be, 5.03bf). This reactivity 

enhancement by methoxymethyl substituent was also demonstrated with symmetrical dialkylacetylenes 

(products 5.03bg-5.03bi). Results from reactions with several symmetrical diarylacetylenes provided 

additional information on structural effects on alkyne reactivity (products 5.03bj-5.03bo). In particular, 

relatively higher yields were observed with alkynes having ortho-substituted aryl groups (products 5.03bj, 

5.03bm) than meta- and para-substituted analogs. On the other hand, the electronic properties of 

aromatic substituents appeared to have little effects on hydroarylation reactivity. 
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Figure 5.4. Substrate scope of internal alkynes in ruthenium catalyzed decarboxylative alkyne 
hydroarylation with p-anisic acid

a,b
 

 

Notably, most of benzoic acid substrates employed in the current procedure are commercially 

available and relatively inexpensive compared to other aromatic building blocks used in regioselective 

catalytic alkyne hydroarylation. In particular, the current catalyst system provides new opportunities for 

biomass-based phenolic acids as novel, sustainable aromatic building blocks in chemical synthesis 

(products 5.03ba-5.03bo, 5.03e, 5.03n/n’, 5.03r, 5.03s) . As a leading example, 4-hydroxybenzoic acid 

can be separated from a number of biomass sources such as lignin, and is commercially available at ~60 

US$/1kg (8.3 US$/mol) from Sigma-Aldrich. Decarboxylative hydroarylation with 4-hydroxybenzoic acid 

gave meta-alkenylphenol product 5.03e in high yield and dominant stereoselectivity for the (E)-isomer. In 
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comparison, other reported alkyne hydroarylation procedures were either incompatible with unprotected 

phenol functionality, giving inseparable mixtures of ortho/para-alkenylation products with phenol ether 

substrates, or requiring the use of much more expensive halogenated phenol substrates (e.g. 3-

iodophenol at ~780 US$/mol from Sigma-Aldrich) and generating stoichiometric halide salt waste.
64

 

5.5. Reaction Mechanism Studies and Discussion 

Based on the envisioned decarboxylative hydroarylation pathway via “double chelation 

assistance” (Scheme 5.14), we proposed that a cyclometalated alkenylruthenium(II) carboxylate complex 

(Figure 5.5, lV) was formed via carboxylate-directed C-H activation and subsequent alkyne insertion into 

the Ru-aryl linkage. Protonation of the Ru-alkenyl linkage in intermediate IV generated the alkenyl-

chelated Ru(II) carboxylate intermediate III (Path A), which led to desired hydroarylation product 5.03 via 

chelation-assisted decarboxylation and subsequent protonation. Alternatively, C-O bond formation via 

direct reductive elimination with IV would generate an isocoumarin 5.06 as the byproduct of oxidative 

[4+2] annulation (Path B).
59,60

 A third possible reactivity of IV was insertion into the Ru-alkenyl linkage by 

a second equivalent of alkyne substrate 5.05 (Path C), leading to formation of the oxidative [2+2+2] 

byproduct 5.07 via sequential decarboxylation and ring-closure by C-C reductive elimination.
65

 The 

proposed chemoselectivity dependence on divergent reactivity of intermediate IV was supported by a 

number of experimental results and guided our efforts in further catalyst improvement. Firstly, the 

protonation steps in Path A may be facilitated by acid additives and promote formation of hydroarylation 

product 5.03 over other byproducts. This hypothesis was evaluated by a modified decarboxylative 

hydroarylation catalyst system with 50 mol% of added pivalic acid (Figure 5.6), which has been utilized as 

a common acid additive in a number of catalytic systems for C-H bond activation.
64

 Indeed, hydroarylation 

reactivity of para-halogenated benzoic acids towards 5.05a was promoted to give products 5.03h-j in 

decent yields, with the most significant reactivity enhancement observed with 4-fluorobenzoic acid (from 

7% to 42% yield). In addition, reactivity of 4-methoxybenzoic acid was also improved to give product 

5.03be in 91% yield as compared to 77% yield without acid additive. 
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Figure 5.5. Proposed reaction mechanism for ruthenium catalyzed decarboxylative alkyne hydroarylation 

and byproduct formation 

 

  

Figure 5.6. Effect of acid additive (PivOH) in ruthenium catalyzed decarboxylative alkyne hydroarylation 
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Secondly, a 2:1 reaction between diphenylacetylene (5.05a) and a Ru(II) benzoate complex, 

Ru(p-cymene)(OBz)2 (5.14) at room temperature over 48 hours has led to quantitative formation of a 

Ru(0) complex 5.15 (Scheme 5.15). Solid-state structure of complex 5.15 was established by single 

crystal X-ray diffraction (Figure 5.7). Besides the η
6
-p-cymene ligand, complex 5.15 was also stabilized by 

a η
4
-1,2,3,4-tetraphenylnaphthalene ligand that was presumably generated by [2+2+2] annulation in Path 

C.
55,57,65

 Notably, complex 5.14 has displayed comparable catalytic reactivity as Ru(p-cymene)(OAc)2 

(5.13) for decarboxylative alkyne hydroarylation with benzoic acid (5.04a). By contrast, complex 5.15 

showed no catalytic reactivity under similar reaction conditions. The mild temperature for stoichiometric 

formation of complex 5.15 and its lack of catalytic activity suggested that Path C could be highly 

competitive against desired hydroarylation process. In addition, formation of stable Ru(0) complexes by 

Path C could serve as a catalyst sink and significantly lower the overall catalyst efficiency. In fact, 1,2,3,4-

tetrasubstituted naphthalenes (5.07) were generally detected as the major byproducts for electron-poor 

benzoic acids that displayed low reactivity towards decarboxylative hydroarylation (products 5.03h-l in 

Figure 5.2).  

 

Scheme 5.15. Formation of ruthenium(0) complex via stoichiometric [2+2+2] cyclization 
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Figure 5.7. ORTEP diagram of complex [Ru(p-cymene)(
4
-1,2,3,4-tetraphenylnaphthalene)] (5.15) at 

50% thermal ellipsoid  
 

Based on the proposed mechanism (Scheme 5.16), formation of desired product 5.03 could be 

further promoted by slowing down the process of 2nd alkyne insertion in Path C and suppressing 

formation of byproduct 5.07. This hypothesis was consistent with the observation of higher hydroarylation 

product yields with more sterically demanding diarylacetylenes (5.03bi, 5.03bm in Figure 5.4). The yield 

improvement with 1,2-ortho-anisylacetylene (5.05b) was further demonstrated with electron-deficient 

benzoic acid substrates (Figure 5.8). 4-Fluorobenzoic acid and 4-trifluoromethylbenzoic acid both reacted 

with 5.05b to give significantly higher yields (products 5.03t, 5.03u) compared to analogous reactions with 

diphenylacetylene (5.05a) (products 5.03h, 5.03l in Figure 5.2) and without the need of added pivalic acid 

or higher reaction temperature. 4-Cyanobenzoic acid also reacted with 5.05b to achieve 5.03v 73% yield, 

which was virtually unreactive towards 5.05a at 80-100 
o
C. 
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Figure 5.8. Improved ruthenium catalyzed decarboxylative alkyne hydroarylation with less reactive 

arenecarboxylic acids using steric demanding diaryl alkynes 

 

In addition, chemoselectivity for hydroarylation could also be improved with higher ratios of 

benzoic acid vs. alkyne substrates. While keeping the alkyne as limiting reagent with 2 equivalents of 

benzoic acids, we were pleased to find that slow addition of alkyne substrates into the reaction system 

further improved the yields of hydroarylation products. Using Ru(p-cymene)(OAc)2 (5.13) as the catalyst, 

this modified catalytic procedure was successfully scaled up to 4.0 mmol for reactions between 5.05a and 

several substituted benzoic acids in higher percentage yields than the corresponding 0.1 mmol-scale 

reactions (Scheme 5.20) and allowed gram-scale synthesis of hydroarylation products.  

 



143 

 

CO2H

Ph Ph+
Ru(p-cymene)(OAc)2 (10 mol%)

5.04

8.0 mmol

5.05a 

4.0 mmol

5.03 Ph

Ph
dioxane/mesitylene/heptane (2:1:1), 20 

mL total volume, 80 oC, 48 h; -CO2

R R

portionwise addition of 2a over 24 h

Ph

Ph

R

R = F:

R = CF3:

5.03h, 55% (0.61 g)
      E:Z = 55:1
5.03l,  50% (0.65 g)
      E:Z = 20:1

O
O

Ph

Ph

5.03r, 95% (1.15 g)

E:Z = 40:1

Ph

Ph

5.03s, 87% (1.05 g)

E:Z = 12:1

MeO

HOPh

Ph

MeO

5.03b, 96% (1.1 g)
      (E:Z = 60:1)

Piperonylic acid

1$/g

Vanillic acid

0.5$/g

p-Anisic acid

0.5$/g

 

Figure 5.9. Reactions of ruthenium catalyzed decarboxylative alkyne hydroarylation via portionwise 

addition of the alkyne substrate 

 

5.6. Conclusion 

In summary, we have developed a decarboxylative approach for alkyne hydroarylation to 

synthesize arylalkenes with controlled and versatile regiochemistry of aromatic substituents. Following a 

tandem sequence of C-H bond activation and alkyne coupling, the subsequent decarboxylation is 

facilitated by the newly installed ortho-alkenyl moiety and is compatible with various aromatic substituents 

at para-, meta- and ortho-positions. This new decarboxylation strategy eliminates the prerequisite of 

substrate activation by ortho-substitution and allows a broad scope of substituted benzoic acids to serve 

as aromatic building blocks for alkyne hydroarylation. A number of meta- and para-substituted 

alkenylarenes, as well as alkenylarenes with unprotected phenol and aniline functionality can be 

conveniently prepared by this method, which are difficult to synthesize by conventional alkyne 

hydroarylation strategy. We expect that the chelation assistance demonstrated in current study can be 

further explored to facilitate other decarboxylative transformations, although details of this novel 

decarboxylation mechanism remain elusive at this stage. 
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5.7. Experimental Procedures 

5.7.1. General Information 

All decarboxylative hydroarylation reactions were assembled in an N2-filled glovebox using oven-

dried glassware and were stirred with Teflon-coated magnetic stirring bars. Benzene, pentane and 

toluene solvents were degassed by purging with nitrogen and then dried with a solvent purification system 

(MBraun MB-SPS). All other reagents and substrates were purchased from Sigma-Aldrich, VWR, Strem, 

Oakwood Chemical or Ark-Pharm and were used as received. Reaction temperatures above room 

temperature (~23 °C) refer to temperatures of an aluminum heating block or an oil bath, which were either 

controlled by an electronic temperature modulator or controlled manually and monitored using a standard 

alcohol thermometer. TLC plates were visualized by exposure to ultraviolet light using a dual-range UV 

lamp. Organic solutions were concentrated by rotary evaporation at ~10 torr. Flash column 

chromatography was performed with 32–63 microns silica gel. NMR spectra were acquired on a NMR 

spectrometer with 400 MHz for 
1
H NMR and 100 MHz for 

13
C NMR. Chemical shifts (δ) were reported in 

parts per million (ppm) relative to the residual solvent signal. Data for 
1
H NMR spectra are reported as 

follows: chemical shift (multiplicity, coupling constants, and number of hydrogens). Abbreviations are as 

follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). 
19

F NMR spectra were 

obtained at 282.4 MHz in CDCl3, and all chemical shifts were reported in ppm upfield of CF3COOH (δ = -

78.5 ppm). GC analyses were performed on a Shimadzu GC-2010 system. GC-MS data were obtained 

on an Agilent 7890AGC system and an Agilent 5975C mass selective detector. High-resolution mass 

spectra were obtained at a Bruker Daltronics BioTOF HRMS spectrometer. 

5.7.2. Preparation of Substrates and Ruthenium Complexes 

Alkynes: (3-methoxyprop-1-yn-1-yl)benzene,
66

 1-bromo-4-(3-methoxyprop-1-yn-1-yl)benzene,
66

 

1,2-bis(4-methoxyphenyl)ethyne,
67

 1,2-bis(4-methoxyphenyl)ethyne,
67

 1,2-bis(2-methoxyphenyl)ethyne,
66

 

2-bis(2-fluorophenyl)ethyne,
67

 1,2-bis(4-fluorophenyl)ethyne,
67

 and 1,2-bis(4-

(trifluoromethyl)phenyl)ethyne
67

 were prepared according to known procedures. 
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[Ru(benzene)Cl2]2,
68

 [Ru(toluene)Cl2]2,
68

 [Ru(benzen)(OAc)2],
69

 [Ru(toluene)(OAc)2,
69

 [Ru(p-

ymene)(OAc)2],
69

 [Ru(p-cymene)(OBz)2],
69

 [Ru(p-cymene)(O2CCF3)2]
69

 and [Ru(p-cymene)(OPiv)2]
70

 were 

prepared according to reported methods. 

5.7.3. Evaluation of Reaction Conditions for the Decarboxylative Hydroarylation of Alkynes 

Reactions were conducted on a 0.2 mmol scale. In a nitrogen-filled glovebox, the metal complex 

as catalyst precursor, the additives, the solvent (1.0 mL), diphenylacetylene (5.05a, 0.2 mmol, 1.0 equiv.) 

and benzoic acid (5.04a) were combined in a 4-mL scintillation glass vial equipped with a magnetic stirrer. 

The vial was sealed with a Teflon-lined screwcap and electrical tape, transferred out of the glovebox and 

stirred at the indicated temperature for 24 h. The yields were determined by GC analysis with 

hexadecane as internal standard. 

5.7.4. Preparation and X-Ray Diffraction Analysis of [Ru(p-cymene)(
4
-1,2,3,4-tetraphenylnaphthalene)] 

(5.15) 

Into a 4 mL scintillation vial equipped with a magnetic stir bar was added [Ru(p-cymene)(OBz)2] 

(47.8 mg, 0.1 mmol), diphenylacetylene (36.2 mg, 0.2mmol) and 2 mL benzene. The mixture was stirred 

for 48 hours at room temperature. Then, the solvent was removed under reduced pressure. The residue 

was washed with pentane (3X), dried under vacuum, and afforded an orange powder (65mg, 97%).  

Single crystal X-ray diffraction data of 5.15 were collected on a Bruker Apex Duo diffractometer 

with a Apex 2 CCD area detector at T = 100K and using Cu radiation. Structures were processed with 

Apex 2 v2013.4-1 software package using the latest versions of SAINT and SHELX software. Multi-scan 

absorption correction (SADABS 2012/1) was applied, and direct method was used to solve the structures. 

Details of data collection and refinement are given in Table 5.4. 
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Table 5.4 Summary of cell parameters, data collection and structural refinements for [Ru(p-cymene)(
4
-

1,2,3,4-tetraphenylnaphthalene)] (5.15) 
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Table 5.5 Selected bond lengths [Å] and bond angles [degree] of [Ru(p-cymene)(
4
-1,2,3,4-

tetraphenylnaphthalene)] (5.15) 

 

 

 

5.7.5. General Procedure for the Decarboxylative Hydroarylation of Alkynes 

In a nitrogen-atmosphere glovebox, [Ru(p-cymene)(OAc)2] (5.13, 71 mg, 0.2 mmol) and 10.0 mL 

of mixed solvent (4.0 mL dioxane, 4.0 mL mesitylene, and 2.0 mL heptane) were added into a 20-mL 

scintillation vial equipped with a magnetic stir bar. The mixture was stirred for 10 min to be used as a 

homogeneous stock solution of catalyst precursor. Into a 4-mL scintillation vial equipped with a magnetic 

stir bar was charged with the alkyne substrate (0.2 mmol, 1.0 equiv.), arenecarboxylic acid substrate (0.4 

mmol), and 1.0 mL of stock solution for catalyst precursor (containing 0.02 mmol of complex 7). The vial 

was then sealed with a Teflon-lined screwcap and secured with electrical tape, transferred out of the 

glovebox and stirred in a 80 C oil bath for 24 h. After the reaction mixture was cooled to room 
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temperature, all volatile materials were removed under reduced pressure. Further purification was 

achieved by flash column chromatography using dichloromethane, ethyl acetate and hexanes as the 

eluent. The E/Z alkene stereoselectivity and regioselectivity for aromatic substitution was determined by 

1
H NMR of the unpurified reaction mixture. Yields of the isolated products are based on the average of 

two runs under identical conditions.  

5.7.6. Spectral Data of Isolated Products 

Products 5.03a,
71

 5.03b,
72

 5.03c,
71

 5.03l,
72

 (E)-p-5.03n,
71

 (Z)-p-5.03n,
71

 (E)-p-5.03n’,
71

 (Z)-p-

5.03n’,
71

 5.03p,
12

 5.03q,
12

 and 5.03bb
11

 are known compounds and were identified by comparison of their 

NMR spectra with the respective reported data. 

 

(E)-3-(1,2-Diphenylvinyl)-N,N-dimethylaniline (5.03d): Colorless liquid, 46.0 mg, 85% (from 4-

methylbenzoic acid); 34.1 mg, 63% (from 2-methylbenzoic acid). 
1
H NMR (400 MHz, CDCl3):  = 7.41-

7.37 (m, 3H), 7.30-7.27 (m, 4H), 7.21-7.15 (m, 5H), 7.11-7.09 (m, 2H), 7.03 (s, 1H), 2.40 ppm (s, 3H). 
13

C 

NMR (100 MHz, CDCl3):  = 143.8, 143.1, 140.8, 138.0, 137.8, 130.7, 129.9, 128.9, 128.64, 128.58, 

128.42, 128.38, 128.26, 127.7, 127.0, 125.2, 21.8 ppm. HRMS: m/z calcd for C21H19
+
: 271.1487; found: 

271.1485. 

 

(E)-3-(1,2-Diphenylvinyl)phenol (5.03e): Colorless liquid, 46.3 mg, 85% (from 4-Hydroxybenzoic 

acid); 49.0 mg, 90% (from 2-Hydroxybenzoic acid); 
1
H NMR (400 MHz, CDCl3):  = 7.33-7.29 (m, 3H), 

7.23-7.10 (m, 6H), 7.01-6.98 (m, 2H), 6.95-6.92 (m, 2H), 6.75-6.73 (m, 2H), 4.65 ppm (s, 1H). 
13

C NMR 
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(100 MHz, CDCl3):  = 155.5, 145.4, 142.3, 140.4, 137.4, 130.6, 129.8, 129.6, 128.9, 128.6, 128.2, 127.7, 

127.0, 120.4, 114.8, 114.7 ppm. HRMS: m/z calcd for C20H17O
+
: 273.1279; found: 273.1289. 

 

(E)-3-(1,2-Diphenylvinyl)aniline (5.03f): Colorless liquid, 34.2 mg, 63%. 
1
H NMR (400 MHz, 

CDCl3):  = 7.39-7.35 (m, 3H), 7.29-7.25 (m, 2H), 7.20-7.14 (m, 4H), 7.08-7.05 (m, 2H), 7.01 (s, 1H), 

6.83-6.81 (m, 1H), 6.67-6.65 (m, 2H), 3.65 ppm (s, 2H). 
13

C NMR (100 MHz, CDCl3):  = 146.3, 144.6, 

142.7, 140.5, 137.5, 130.4, 129.6, 129.1, 128.6, 127.974, 127.967, 127.4, 126.7, 118.2, 114.51, 114.45 

ppm. HRMS: m/z calcd for C20H17NH
+
: 272.1434; found: 272.1434. 

 

(E)-N-(3-(1,2-diphenylvinyl)phenyl)acetamide (5.03g): White solid, 53.3 mg, 85%. 
1
H NMR 

(CDCl3, 300 MHz):  = 7.64 (d, J = 8.0 Hz, 1H), 7.37-7.21 (m, 8H), 7.16-7.14 (m, 4H), 7.03 (dd, J = 7.5, 

1.9 Hz, 2H), 6.99 (s, 1H), 2.16 ppm (s, 3H). 
13

C NMR (CDCl3, 75 MHz):  = 168.4, 144.3, 142.0, 140.2, 

137.9, 137.2, 130.4, 129.6, 128.9, 128.71, 128.67, 128.0, 127.5, 126.9, 123.6, 119.3, 119.0, 24.6 ppm. 

HRMS: calculated for C21H19NONa
+
: m/z = 336.1359; found: m/z = 336.1359. 

 

(E)-(1-(3-Fluorophenyl)ethene-1,2-diyl)dibenzene (5.03h): White solid, 23.1 mg, 42%. 
1
H NMR 

(CDCl3, 300 MHz):  = 7.36-7.33 (m, 3H), 7.27 (td, J = 8.0, 6.0 Hz, 1H), 7.22-7.20 (m, 2H), 7.15-7.11 (m, 
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4H), 7.05-7.02 (m, 3H), 7.00-6.95 ppm (m, 2H). 
13

C NMR (CDCl3, 75 MHz):  = 163.1 (d, J = 145.2 Hz), 

146.0 (d, J = 7.3 Hz), 141.7 (d, J = 2.3 Hz), 140.0, 137.2, 130.5, 129.9. 129.8 (d, J = 8.3 Hz), 129.3, 

129.0, 128.3, 127.9, 127.3, 123.4 (d, J = 2.7 Hz), 114.6 (d, J = 22.2 Hz), 114.5 ppm (d, J = 21.4 Hz); 
19

F 

NMR (282.4 MHz):  = -113.42 ppm. HRMS: calculated for C20H16F
+
: m/z = 275.1236; found: m/z = 

275.1236. 

 

(E)-(1-(3-Chlorophenyl)ethene-1,2-diyl)dibenzene (5.03i): White solid, 33.2 mg, 57%. 
1
H NMR 

(400 MHz, CDCl3):  = 7.35-7.32 (m, 4H), 7.27-7.22 (m, 2H), 7.21-7.17 (m, 3H), 7.15-7.11 (m, 3H), 7.03-

7.01 (m, 2H), 6.96 ppm (s, 1H). 
13

C NMR (100 MHz, CDCl3):  = 145.7, 141.6, 140.0, 137.3, 134.6, 130.6, 

129.9, 129.7, 129.6, 129.1, 128.4, 128.0, 127.9, 127.8, 127.4, 126.1 ppm. HRMS: m/z calcd for C20H16Cl
+
: 

291.0941; found: 291.0956. 

 

(E)-(1-(3-Bromophenyl)ethene-1,2-diyl)dibenzene (5.03j): White solid, 30.2 mg, 45%. 
1
H NMR 

(CDCl3, 300 MHz):  = 7.50 (t, J = 1.9 Hz, 1H), 7.42-7.39 (m, 1H), 7.36-7.31 (m, 3H), 7.24-7.11 (m, 7H), 

7.04-7.01 (m, 2H), 6.95 ppm (s, 1H). 
13

C NMR (CDCl3, 75 MHz):  = 146.0, 141.5, 140.0, 137.2, 130.8, 

130.7, 130.6, 130.0, 129.9, 129.6, 129.1, 128.4, 128.0, 127.4, 126.6, 122.8 ppm. HRMS: m/z calcd for 

C20H16Br
+
: m/z = 335.0435; found: m/z = 335.0436. 
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(E)-(1-(3-Iodophenyl)ethene-1,2-diyl)dibenzene (5.03k): White solid, 32.1 mg, 42%. 
1
H NMR (400 

MHz, CDCl3):  = 7.71 (t, J = 1.8 Hz, 1H), 7.60 (ddd, J = 7.8, 1.6, 1.1 Hz, 1H), 7.35-7.31 (m, 3H), 7.25-

7.22 (m, 1H), 7.19-7.11 (m, 5H), 7.04-7.00 (m, 3H), 6.92 ppm (s, 1H). 
13

C NMR (100 MHz, CDCl3):  = 

145.8, 141.2, 139.6, 136.9, 136.4, 130.3, 129.9, 129.7, 129.3, 128.8, 128.0, 127.7, 127.1, 127.0, 94.5 

ppm. HRMS: m/z calcd for C20H15INa
+
: 383.0297; found: 383.0297.  

 

(E)-3-(1,2-Diphenylvinyl)-1,1'-biphenyl (5.03m): Colorless liquid, 46.6mg, 70%. 
1
H NMR (CDCl3, 

300 MHz):  = 7.50 (t, J = 1.9 Hz, 1H), 7.42-7.39 (m, 1H), 7.36-7.31 (m, 3H), 7.24-7.11 (m, 7H), 7.04-7.01 

(m, 2H), 6.95 ppm (s, 1H). 
13

C NMR (CDCl3, 75 MHz):  = 144.3. 142.8. 141.5, 141.4, 140.5, 137.6, 

130.7, 129.8, 129.0, 128.91, 128.85, 128.7, 128.2, 127.7, 127.6, 127.5, 127.1, 127.0, 126.69, 126.65 

ppm. HRMS: calculated for C26H20Na
+
: m/z = 333.1643; found: m/z = 333.1650. 

 

4-(1,2-Diphenylvinyl)-N,N-dimethylaniline ((E/Z)- 5.03o): Colorless oil, 30 mg, 50% (E:Z = 2:1). 
1
H 

NMR (400 MHz, CDCl3):  = 7.37-6.98 (m, 12H), 6.88 (s, 0.67H), 6.83 (s, 0.33H), 6.69-6.66 (m, 2H), 2,98 

(s, 2H), 2.96 ppm (s, 4H); 
13

C NMR (100 MHz, CDCl3):  = 150.3, 150.0, 144.7, 143.1, 142.7, 141.1, 

138.4, 138.2, 131.7, 131.6, 130.7, 129.7, 129.6, 128.7, 128.61, 128.56,  128.26, 128.18, 128.14, 128.08, 

127.5, 127.4, 127.2, 126.5, 126.3, 125.0, 112.5, 112.2, 40.70, 44.66 ppm. HRMS: m/z calcd for 

C22H21NNa
+
: 322.1566; found: 322.1558. 
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(E)-5-(1,2-Diphenylvinyl)benzo[d][1,3]dioxolee (5.03r): Colorless liquid, 45.1 mg, 75 %. 
1
H NMR 

(400 MHz, CDCl3):  = 7.85 (dd, J = 15.4, 0.7 Hz, 1H), 7.47-7.34 (m, 5H), 7.20-7.08 (m, 8H), 6.98-6.895 

(m, 3H), 5.67 ppm (d, J = 15.4 Hz, 2H). 
13

C NMR (100 MHz, CDCl3):  = 165.9, 151.7, 151.1, 139.9, 

139.8, 137.0, 135.8, 130.4, 129.5, 128.7, 128.5, 128.3, 125.9, 121.9, 119.5 ppm. HRMS: m/z calcd for 

C23H18O2Na
+
: 349.1199; found: 349.1204. 

 

(E)-5-(1,2-Diphenylvinyl)-2-methoxyphenol (5.03s): White solid, 39.9 mg, 66%. 
1
H NMR (CDCl3, 

300 MHz):  = 7.34-7.30 (m, 3H), 7.22-7.20 (m, 2H), 7.13-7.08 (m, 3H), 7.02-6.99 (m, 2), 6.98 (dd, J = 

2.0, 0.4 Hz, 1H), 6.92 (s, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.79 (s, 1H) 5.58 (s, 1H), 3. 88 ppm (s, 3H). 
13

C 

NMR (CDCl3, 75 MHz):  = 146.5, 145.5, 142.3, 140.6, 137.73, 137.30, 130.6, 129.7, 128.8, 128.2, 127.6, 

127.1, 126.7, 119.9, 114.0, 110.5, 56.2 ppm. HRMS: calculated for C21H18O2Na
+
: m/z = 325.1199; found: 

m/z = 325.1207. 

 

(E)-1-Methoxy-3-(1-phenylbut-1-en-2-yl)benzene (5.03bc): Colorless liquid, 34.8 mg, 73%. 
1
H 

NMR (400 MHz, CDCl3):  = 7.38-7.23 (m, 6H), 7.07 (ddd, J = 7.6, 1.6, 0.9 Hz, 1H), 7.02-7.01 (m, 1H), 

6.85 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.70 (s, 1H), 3.84 (s, 3H), 2.73 (q, J = 7.5 Hz, 2H), 1.07 ppm (t, J = 
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7.5 Hz, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.9, 144.59, 144.55, 138.5, 129.5, 128.9, 128.5, 127.9, 

126.8, 119.4, 112.8, 112.6, 55.5, 23.6, 13.7 ppm. HRMS: m/z calcd for C17H19O
+
: 239.1436; found: 

239.1434. 

 

(E)-1-Methoxy-3-(1-phenylhex-1-en-2-yl)benzene (5.03bd): Colorless liquid, 41.0 mg, 77%. 
1
H 

NMR (400 MHz, CDCl3):  = 7.43-7.29 (m, 6H), 7.11 (ddd, J = 7.7, 1.6, 1.0 Hz, 1H), 7.07-7.06 (m, 1H), 

6.89 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.76 (s, 1H), 3.87 (s, 3H), 2.76-2.72 (m, 2H), 1.52-1.33(m, 4H), 0.91 

ppm (t, J = 7.2, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.9, 145.1, 143.5, 138.5, 129.5, 129.0, 128.5, 

128.4, 126.8, 119.4, 112.9, 112.6, 55.5, 31.2, 30.1, 23.1, 14.2 ppm. HRMS: m/z calcd for C19H22ONa
+
: 

267.1749; found: 267.1749. 

 

(Z)-1-Methoxy-3-(3-methoxy-1-phenylprop-1-en-2-yl)benzene (5.03be): Colorless liquid, 39.2 mg, 

77%. 
1
H NMR (400 MHz, CDCl3):  = 7.44-7.36 (m, 4H), 7.32-7.28 (m, 2H), 7.18 (ddd, J = 7.7, 1.6, 1.0 

Hz, 1H), 7.14-7.13 (m, 1H), 7.06 (s, 1H), 6.86 (ddd, J = 8.2, 2.5, 0.9 Hz, 1H), 4.36 (s, 2H), 3.84 (s, 3H), 

3.38 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.9, 143.3, 138.0, 137.3, 132.9, 129.6, 129.2, 128.5, 

127.6, 119.1, 113.0, 112.5, 70.0, 58.4, 55.5 ppm. HRMS: m/z calcd for C17H19O2
+
: 277.1204; found: 

277.1212. 
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(Z)-1-(1-(4-Bromophenyl)-3-methoxyprop-1-en-2-yl)-3-methoxybenzene (5.03bf): White solid, 

44.0 mg, 66%. 
1
H NMR (400 MHz, CDCl3):  = 7.52-7.48 (m, 2H), 7.31-7.27 (m, 3H), 7.14 (ddd, J = 7.7, 

1.7, 1.0 Hz, 1H), 7.11-7.10 (m, 1H), 6.96 (s, 1H), 6.85 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 4.29 (s, 2H), 3.83 (s, 

3H), 3.38 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.9, 143.1, 138.7, 136.1, 131.70, 131.66, 

130.9, 129.7, 121.7, 119.0, 113.1, 112.5, 70.4, 58.5, 55.5 ppm. HRMS: m/z calcd for C16H14BrO
+
 (-OMe): 

301.0220; found: 301.0228 

 

(E)-1-(Dec-5-en-5-yl)-3-methoxybenzene (5.03bg): Colorless liquid, 27.2 mg, 55%. 
1
H NMR (400 

MHz, CDCl3):  = 7.20 (t, J = 7.9 Hz, 1H), 6.93 (ddd, J = 7.7, 1.7, 1.0 Hz, 1H), 6.87 (dd, J = 2.5, 1.7 Hz, 

1H), 6.76 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 5.64 (t, J = 7.3 Hz, 1H), 3.80 (s, 3H), 2.48-2.44 (m, 2H), 2.18 (q, 

J = 7.24 Hz, 2H), 1.46-1.25 (m, 8H), 0.94-0.85 ppm (m, 6H). 
13

C NMR (100 MHz, CDCl3):  = 159.7, 

145.4, 140.2, 129.4, 129.2, 119.1, 112.6, 111.6, 55.4, 32.3, 31.2, 29.7, 28.4, 22.9, 22.7, 14.24, 14.18 

ppm. HRMS: m/z calcd for C17H27O
+
: 247.2062; found: 247.2062. 

 

(E)-1-Methoxy-3-(oct-4-en-4-yl)benzene (5.03bh): Colorless liquid, 28.4 mg, 65%. 
1
H NMR (400 

MHz, CDCl3):  = 7.27 (t, J = 7.8 Hz, 1H), 7.00 (ddd, J = 7.7, 1.7, 0.9 Hz, 1H), 6.95 (dd, J = 2.6, 1.7 Hz, 
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1H), 6.82 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 5.73 (t, J = 7.3 Hz, 1H), 3.86 (s, 3H), 2.53-2.50 (m, 2H), 2.26-

2.20 (m, 2H), 1.52 (h, J = 7.4 Hz, 2H), 1.43 (h, J = 7.3 Hz, 2H), 1.02 (t, 7.4 Hz, 3H), 0.94 ppm (t, J = 7.4 

Hz, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.5, 145.2, 140.0, 129.3, 129.0, 119.0, 112.5, 111.5, 55.2, 

31.8, 30.7, 23.1, 21.9, 14.02, 13.99 ppm. HRMS: m/z calcd for C15H23O
+
: 219.1749; found: 219.1753. 

 

(Z)-1-(1,4-Dimethoxybut-2-en-2-yl)-3-methoxybenzene (5.03bi); Colorless liquid, 35.6 mg, 80%. 

1
H NMR (400 MHz, CDCl3):  = 7.23 (t, J = 8.0 Hz, 1H), 7.23 (ddd, J = 7.7, 1.56, 0.9 Hz, 1H), 6.97-6.96 

(m, 1H), 6.80 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 6.07 (t, J = 6.4 Hz, 1H), 4.30 (s, 2H), 4.19 (d, J = 6.4 Hz, 

2H), 3.79 (s, 3H), 3.38 (s, 3H), 3.32 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.9, 142.6, 139.3, 

130.0, 129.6, 119.2, 113.2, 112.5, 69.8, 69.3, 58.6, 58.3, 55.5 ppm. HRMS: m/z calcd for C13H18O3Na
+
: 

245.1154; found: 245.1160. 

 

(Z)-2,2'-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis(methoxybenzene) (5.03bj): Colorless liquid, 64.5 

mg, 93%. 
1
H NMR (400 MHz, CDCl3):  = 7.34 (s, 1H),  7.29 (td, J = 7.7, 1.5 Hz, 1H), 7.20 (t, J = 8.0 Hz, 

1H), 7.11-7.07 (m, 3H), 6.97-6.95 (m, 2H), 6.91-6.87 (m, 2H), 6.83-6.79 (m, 3H), 6.59 (t, J = 7.5 Hz, 1H), 

3.83 (s, 3H), 3.78 (s, 3H), 3.57 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.7, 158.0, 157.9, 145.0, 

139.0, 132.1, 129.8, 129.5, 129.2, 129.1, 128.3, 127.2, 124.4, 121.2, 120.1, 119.8, 112.8, 112.7, 111.8, 

110.5, 55.84, 55.76, 55.5 ppm. HRMS: m/z calcd for C23H22O3Na
+
: 369.1461; found: 369.1468. 
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3,3',3''-(Ethene-1,1,2-triyl)tris(methoxybenzene) (5.03bk): Colorless liquid, 56.2 mg, 81%. 
1
H 

NMR (400 MHz, CDCl3):  = 7.27 (t, J =  7.3 Hz, 1H), 7.23 (t, J = 7.3 Hz, 1H), 7.08 (t, J = 7.9 Hz, 1H), 

6.97-6.83 (m, 6H), 6.78 (s, 1H), 6.71 (dd, J = 8.2, 1.1 Hz, 1H), 6.71 (dd, J = 8.7, 3.0 Hz, 1H), 6.58 (s, 1H), 

3.78 (s, 3H), 3.72 (s, 3H), 3.54 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 160.3, 159.8, 159.4, 144.8, 

142.7, 142.0, 138.8, 130.1, 129.4, 129.2, 128.5, 123.0, 122.8, 120.4, 115.7, 114.1, 113.9, 113.70, 113.68, 

113.15, 55.6, 55.1 ppm. HRMS: m/z calcd for C23H22O3Na
+
: 369.1461; found: 369.1459. 

 

(E)-4,4'-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis(methoxybenzene) (5.03bl): White solid, 43.7 

mg, 63 %. 
1
H NMR (400 MHz, CDCl3):  = 7.21 (t, J = 7.9 Hz, 1H), 7.16-7.12 (m, 2H), 7.02-6.98 (m, 2H), 

6.93-6.90 (m, 1H), 6.89-6.85 (m, 4H), 6.82 (ddd, J = 8.2, 2.6, 0.8 Hz, 1H), 6.71-6.68 (m, 2H), 3.83 (s, 3H), 

3.78 (s, 3H), 3.75 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.7, 159.1, 158.6, 145.8, 140.4, 132.9, 

131.8, 131.0, 130.5, 129.3, 127.8, 120.4, 114.3, 113.7, 113.6, 112.8, 55.44, 55.42, 55.37 ppm; HRMS: 

m/z calcd for C23H22O3Na
+
: 369.1461; found: 369.1465. 
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(Z)-2,2'-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis(fluorobenzene) (5.03bm): White solid, 54.2 mg, 

84%. 
1
H NMR (400 MHz, CDCl3):  = 7.35-7.31 (m, 1H), 7.29-7.24 (m, 2H), 7.18 (td, J = 7.4, 1.9 Hz, 1H), 

7.15-6.96 (m, 5H), 6.94-6.93 (m, 1H), 6.89-6.86 (m, 1H), 6.84-6.78 (m, 2H), 3.79 ppm (s, 3H). 
13

C NMR 

(100 MHz, CDCl3):  = 161.18 (d, J = 247.0 Hz), 160.65 (d, J = 246.4 Hz), 160.0, 143.6, 138.4, 132.5 (d, J 

= 3.5 Hz), 130.1 (d, J = 8.0 Hz), 129.8 (d, J = 2.8 Hz), 129.6, 129.1 (d, J = 8.3 Hz), 127.7 (d, J = 16.0 Hz), 

125.4 (d, J = 12.8 Hz), 124.6 (d, J = 3.6 Hz), 123.8 (d, J = 3.6 Hz), 122.8 (d, J = 4.9 Hz), 119.9, 116.3 (d, 

J = 21.8 Hz), 115.5 (d, J = 22.2 Hz), 113.5, 113.2, 55.5 ppm. 
19

F NMR (282.4 MHz):  = -113.26, -115.43 

ppm. HRMS: m/z calcd for C21H16F23Na
+
: 345.1061; found: 345.1064. 

 

(E)-4,4'-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis(fluorobenzene) (5.03bn): Yellow solid, 45.8 mg, 

71 %. 
1
H NMR (400 MHz, CDCl3):  = 7.26-7.21 (m, 1H), 7.17-7.14 (m, 2H), 7.05-6.97 (m, 4H), 6.93 (s, 

1H), 6.90-6.88 (m, 1H), 6.86-6.82 (m, 4H), 3.78 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 162.5 (d, J 

= 246.9 Hz), 161.8 (d, J = 247.5 Hz), 159.8, 144.8, 141.5 (d, J = 2.0 Hz), 136.1 (d, J = 3.6 Hz), 133.5 (d, J 

= 3.4 Hz), 132.3 (d, J = 7.9 Hz), 131.3 (d, J = 7.8 Hz), 129.5, 127.6, 120.4, 116.0 (d, J = 21.3 Hz), 115.2 

(d, J = 21.4 Hz), 113.7, 113.2, 55.4 ppm. 
19

F NMR (282.4 MHz):  = -114.27, -114, 45 ppm. HRMS: m/z 

calcd for C21H16F2ONa
+
: 345.1061; found: 345.1066. 

 



158 

 

 

(E)-4,4'-(1-(3-Methoxyphenyl)ethene-1,2-diyl)bis((trifluoromethyl)benzene) (5.03bo): White solid, 

55.8 mg, 66%. 
1
H NMR (400 MHz, CDCl3):  = 7.59 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.30 (d, 

J = 8.0 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 7.04 (s, 1H), 6.87 (tdd, J = 7.7, 2.1, 0.81 

Hz, 2H), 6.82 (t, J = 2.1 Hz, 1H), 3.78 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 159.7, 143.6, 143.46 

(q, J = 1.3 Hz), 143.43, 140.3 (q, J = 1.6 Hz), 130.7, 130.0 (q, J = 32.3 Hz), 129.7, 129.5, 128.9 (q, J = 

32.3 Hz), 127.9, 125.7 (q, J = 3.7 Hz), 125.1 (q, J = 3.8 Hz), 124.1 (q, J = 270.4 Hz), 124.0 (q, J = 270.3 

Hz), 120.3, 113.8, 113.5, 55.3 ppm. 
19

F NMR (282.4 MHz):  = -62.60, -62.70 ppm. HRMS m/z calcd for 

C23H17F6O+: 423.1183; found: 423.1186. 

 

(Z)-2,2'-(1-(3-Fluorophenyl)ethene-1,2-diyl)bis(methoxybenzene) (5.03t) :Yellow liquid, 62 mg, 

92% (from p-fluorobenzoic acid); 48 mg, 72% (from o-fluorobenzoic acid). 
1
H NMR (400 MHz, CDCl3):  = 

7.32 (s, 1H),  7.28 (ddd, J = 8.3, 7.4, 1.8 Hz, 1H), 7.24-7.19 (m, 1H), 7.14-7.01 (m, 4H), 6.93-6.86 (m, 

3H), 6.81 (dd, J = 8.3, 0.9 Hz, 1H), 6.76 (dd, J = 7.7, 1.7 Hz, 1H), 6.57 (t, J = 7.5 Hz, 1H), 3.82 (s, 3H), 

3.96 ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 162.9 (d, J = 244.1 Hz), 157.67, 157.65, 145.6 (d, J = 

7.5 Hz), 137.9 (d, J = 2.5 Hz), 131.8, 129.31 (d, J = 8.4 Hz), 129.30, 129.1, 129.0, 128.3, 126.6, 124.9, 

122.4 (d, J = 2.6 Hz), 121.0, 119.9, 113.7 (d, J = 22 Hz), 113.5 (d, J = 22 Hz), 111.6, 110.3, 55.5 ppm. 
19

F 

NMR (282.4 MHz):  = -114.40 ppm. HRMS: m/z calcd for C22H20FO2
+
: 335.1447; found: 335.1451. 
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(Z)-2,2'-(1-(3-(Trifluoromethyl)phenyl)ethene-1,2-diyl)bis(methoxybenzene) (5.03u): Yellow solid, 

53.8 mg, 70%. 
1
H NMR (400 MHz, CDCl3):  = 7.57 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 7.15 Hz, 2H), 7.40 (s, 

1H), 7.35 (ddd, J = 8.3, 7.4, 1.8 Hz, 1H), 7.18-7.14 (m, 1H), 7.10 (dd, J = 7.4, 1.7 Hz, 1H), 6.97-6.92 (m, 

2H), 6.88 (dd, J = 8.3, 0.8 Hz, 1H), 6.83 (dd, J = 7.7, 1.6 Hz, 1H), 6.66-6.62 (m, 1H), 3.87 (s, 3H), 3.60 

ppm (s, 3H). 
13

C NMR (100 MHz, CDCl3):  = 157.7,157.6, 146.8 (q, J = 1.5 Hz), 137.8, 131.8, 129.3, 

129.2, 128.76 (q, J = 32.2 Hz), 128.81, 128.5, 126.9, 126.4, 125.9, 125.0 (q, J = 3.8 Hz), 124.46 (q, J = 

270 Hz), 121.0, 119.9, 111.5, 110.3, 55.49, 55.48 ppm. 
19

F NMR (282.4 MHz):  = -62.54 ppm. HRMS: 

m/z calcd for C23H20F3O2
+
: 385.1415; found: 385.1414. 

 

(Z)-3-(1,2-Bis(2-methoxyphenyl)vinyl)benzonitrile (5.03v): Colorless liquid, 49.9 mg, 73%. 
1
H 

NMR (400 MHz, CDCl3):  = 7.64-7.60 (m, 2H),  7.53 (dt, J = 7.7, 1.4 Hz, 1H), 7.40 (dt, J = 7.7, 0.8 Hz, 

1H), 7.17-7.13 (m, 1H), 7.07 (dd, J = 7.4, 1.8 Hz, 1H), 6.96-6.91 (m, 2H), 6.87 (dd, J = 8.3, 0.9 Hz, 1H), 

6.80 (dd, J = 7.7, 1.6 Hz, 1H), 6.63 (t, J = 7.6 Hz, 1H), 3.87 (s, 3H), 3.60 ppm (s, 3H). 
13

C NMR (100 MHz, 

CDCl3):  = 157.7, 157.5, 144.5, 137.0, 131.7, 130.9, 130.3, 130.2, 129.5, 129.3, 128.8, 128.7, 128.2, 

126.1, 126.0, 121.1, 119.9, 119.2, 112.2, 111.5, 110.3, 55.5, 55.4 ppm; HRMS: m/z calcd for C23H20NO2: 

342.1494; found: 342.1483. 
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(Z)-2,2'-(1-(4-(Trifluoromethyl)phenyl)ethene-1,2-diyl)bis(methoxybenzene) (5.03w) :Yellow solid, 

63.8 mg, 83%. 
1
H NMR (400 MHz, CDCl3):  = 7.62 (s, 1H), 7.48-7.46 (m, 2H), 7.38-7.36 (m, 1H), 7.31-

7.27 (m, 2H), 7.12-7.08 (m, 1H), 7.05 (dd, J = 7.4, 1.8 Hz, 1H), 6.91-6.86 (m, 2H), 6.82 (dd, J = 8.3, 0.9 

Hz, 1H), 6.77 (dd, J = 7.7, 1.7 Hz, 1H), 6.59 (td, J = 7.5, 0.7 Hz, 1H), 3.82 (s, 3H), 3.53 ppm (s, 3H). 
13

C 

NMR (100 MHz, CDCl3):  = 157.81, 157.78, 144.2, 138.0, 132.0, 130.6 (q, J = 31.7 Hz), 130.21, 129.5, 

129.4, 128.8, 128.62, 128.60, 126.6, 125. 7, 124.6 (q, J = 270.8 Hz), 123.7 (q, J = 3.9 Hz), 123.5 (q, J = 

3.8 Hz), 121.2, 120.0, 111.7, 110.4, 55.67, 55.62 ppm. 
19

F NMR (282.4 MHz):  = -62.31 ppm. HRMS: 

m/z calcd for C23H20F3O2
+
: 385.1415; found: 385.1425. 

 

(Z)-4-(1,2-Bis(2-methoxyphenyl)vinyl)-N,N-dimethylaniline (5.03x): White solid, 44.6 mg, 62%. 
1
H 

NMR (400 MHz, CDCl3):  = 7.33-7.26 (m, 4H), 7.12-7.06 (m, 2H), 6.94-6.90 (m, 2H), 6.84 (dd, J = 8.3, 

0.8 Hz, 1H), 6.79 (dd, J = 7.7, 1.5 Hz, 1H), 6.71-6.67 (m, 2H), 6.60 (t, J = 7.3 Hz, 1H), 3.86 (s, 3H), 3.61 

(s, 3H), 2.98 ppm (s, 6H). 
13

C NMR (100 MHz, CDCl3):  = 157.7, 157.4, 149.8, 138.6, 131.9, 131.4, 

130.1, 129.0, 128.5, 127.58, 127.54, 127.3, 120.9, 120.4, 119.9, 112.2, 111.5, 110.2, 55.7, 55.6 ppm. 

HRMS: m/z calcd for C24H25NO2
+
: 360.1964; found: 360.1976. 
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