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Abstract

This dissertation considers the problem of approximate dissipative potentials construction

and their use in smooth feedback stabilization of nonlinear control systems. For mechanical

systems, dissipative potentials, usually a generalized Hamiltonian function, can be derived

from physical intuition. When a dissipative Hamiltonian is not available, one can rely on

dissipative Hamiltonian realization techniques, as proposed recently by Cheng and cowork-

ers. Extensive results are available in the literature for (robust) stabilization based on the

obtained potential.

For systems of interest in chemical engineering, especially systems with mass action kinetics,

energy is often ill-defined. Moreover, realization techniques are difficult to apply, due to

the nonlinearities associated with the reaction terms. Approximate dissipative realization

techniques have been considered by many researchers for analysis and feedback design of

controllers in the context of chemical processes. The objective of this thesis is to study

the construction of local dissipative potentials and their application to solve stabilization

problems.

The present work employs the geometric stabilization approach proposed by Jurdjevic and

Quinn, refined by Faubourg and Pomet, and by Malisoff and Mazenc, for the design of

stabilizing feedback laws. This thesis seeks to extend and apply the Jurdjevic–Quinn sta-

bilization method to nonlinear stabilization problems, assuming no a priori knowledge of a

Lyapunov function.

A homotopy-based local decomposition method is first employed to study the dissipative
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Hamiltonian realization problem, leading to the construction of locally defined dissipative

potentials. If the obtained potential satisfies locally the weak Jurdjevic–Quinn conditions,

it is then shown how to construct feedback controllers using that potential, and under what

conditions a Lyapunov function can be constructed locally for time-independent control

affine systems. The proposed technique is then used for the construction of state feedback

regulators and for the stabilization of periodic orbits based on a construction proposed

by Bacciotti and Mazzi. In the last chapter of the thesis, stabilization of time-dependent

control affine systems is considered, and the main result is used for the stabilization of

periodic solutions using asymptotic feedback tracking.

Low-dimensional examples are used throughout the thesis to illustrate the proposed tech-

niques and results.

iii



Acknowledgements

I would like to thank first and foremost my advisor, Professor Martin Guay. He was certainly

the reason why I came to Queen’s, and his influence on my research and my understanding

of the field of (process) control is inestimable. He was always supportive and gave me

the freedom to work out on my own problems and collaborations. More importantly, he

assembled a strong and very diversified group of students. I cannot thank him enough for

his availability and all the discussions we had during my stay in Kingston, covering a range

of topics way too large to be detailed here.

I would also like to thank Professor Michel Perrier at the École Polytechnique de Montréal
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Chapter 1

Introduction

This thesis studies the local construction of smooth damping stabilizers for continuous-time

control affine nonlinear systems. The proposed approach decomposes locally the drift vec-

tor field to obtain a dissipative potential. Under some conditions, the obtained potential is

used for feedback stabilization. The proposed problem is motivated by recent constructions

that appeared in the literature for passivity-based control of mechanical systems (or more

generally, for systems that can be expressed as dissipative Hamiltonian systems). Recent ap-

plications of this approach to chemical engineering systems, and in particular mass-balance

systems, illustrated the fact that representation of non-mechanical systems in terms of gen-

eralized Hamiltonian systems is still a challenging task (Bao and Lee, 2007; Hangos et al.,

2004). Moreover, representing a given nonlinear system in terms of a dissipative Hamilto-

nian system, even if it leads to strong results on stability, gives very little insight in practice

for feedback stabilization when one needs to rely on an approximate Hamiltonian realiza-

tion. In the present thesis, a locally-defined homotopy-based decomposition approach for

approximate realization of (dissipative) Hamiltonian systems is proposed. The design of

feedback stabilizing controllers based on this decomposition is then considered.

This introductory chapter is divided as follows. General background and motivating ex-

amples for the research presented here are summarized in Section 1.1. Specific research

1



CHAPTER 1. INTRODUCTION 2

objectives are given in Section 1.2. A summary of the contributions of the research pre-

sented here is provided in Section 1.3. Finally, the thesis organization is outlined in Section

1.4.

1.1 Context and Motivations

The theory of generalized Hamiltonian systems is a central approach for stability stud-

ies and controller design for nonlinear control systems (van der Schaft, 2000) and several

physical problems were studied using this special class of control systems. However, one

limitation associated with the study of non-mechanical nonlinear systems using dissipative

Hamiltonian systems is to derive a suitable Hamiltonian function for the problem (Hangos

et al., 2004). As discussed in (Johnsen and Allgöwer, 2007) and (Ortega et al., 1999), appli-

cations of Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC)

techniques prove to be difficult in practice for process control applications where the concept

of “energy” is ill-defined, for example when mass balances are considered. One example in

the context of chemical engineering was given recently in Otero-Muras et al. (2008, Section

4.2.1) where the stability of a reaction network was studied using its dissipative Hamiltonian

representation. They considered the reaction network

P1 + P2

k1
GGGGGGBF GGGGGG

k2
P3

P2 + P3

k3
GGGGGGBF GGGGGG

k4
2P3,

where Pi are chemical complexes and ki denote reaction rates. Carrying the mass balances,

with x1(t), x2(t), and x3(t) denoting the concentration of chemical complexes P1, P2 and
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P3, respectively, one obtains

ẋ1 = −k1x1x2 + k2x3

ẋ2 = −k1x1x2 + k2x3 − k3x2x3 + k4x
2
3

ẋ3 = k1x1x2 − k2x3 + k3x2x3 − k4x
2
3.

For xi > 0, it was shown, using a logarithmic state transformation based on thermody-

namical arguments, that the system can be expressed, in new coordinates, as a dissipative

Hamiltonian system of the form

ż = (J(z)−R(z))∇H(z) (1.1)

where J(z) is skew-symmetric, R(z) is positive-definite, and ∇H(z) is the gradient of a

Hamiltonian function. Moreover, stability of an equilibrium x∗ was demonstrated, follow-

ing the argument given, for example, in (Ortega et al., 2002). It should be noted that

the transformation considered in (Otero-Muras et al., 2008) is typical of the transforma-

tions given in the literature for a wide variety of mass-action systems, in particular the

Lotka–Volterra system considered throughout this thesis as an application example. Hamil-

tonian representation of Lotka–Volterra dynamics was presented for example in (Evans and

Findley, 1999) and (Szederkényi and Hangos, 2004).

In some applications, computing a coordinate transformation can be difficult. An example
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is the HIV-1 nonlinear dynamics presented in (Chang and Astolfi, 2008),

ẋ = λ− dx− ηβxy

ẏ = ηβxy − ay − p1z1y − p2z2y

ż1 = c1z1y − b1z1y − b1z1

ẇ = c2xyw − c2qyw − b2w

ż2 = c2qyw − hz2,

where x, y, z1, w, z2 denote the uninfected CD4 T-cell, the infected CD4 T-cell, the helper-

independent Cytotoxic T Lymphocyte (CTL), the CTL precursor, and the helper-dependent

CTL, respectively. The drug effect is denoted by η, with η = 1 − η∗u, and u the injected

drug concentration.

In practice, designing a passivity-based controller for this class of systems could be of

interest, especially if robustness properties, such as those developed in (van der Schaft,

2000), are desired. Clearly, the concept of an ”energy function” in the context of the last

example has no physical meaning.

In (Cheng et al., 2005), it was shown that a nonlinear system of the form

ẋ = f(x) + g(x)u, (1.2)

where x ∈ R
n, u ∈ R

m, and g(x) full rank, is transformable to a stable Port-Controlled

Hamiltonian (PCH) system

ẋ = F (x)∇H(x), F (x) = [J(x)−R(x)] (1.3)
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if there exists a feedback β : Rn → R
m such that the matching equation

f(x) + g(x)β(x) = F (x)∇H(x) (1.4)

holds. In particular, for a fixed structure matrix F (x) and a free Hamiltonian function

H(x), the problem leads to a set of Partial Differential Equations (PDEs) parameterized

by the structure matrix and the feedback controller β(x). The key advantage of this rep-

resentation is that the closed-loop system inherits the ”Universal stabilizing property of

IDA-PBC” (Ortega et al., 2002). For Lotka–Volterra systems, it was shown in (Ortega

et al., 1999) that solutions to the matching equations can be computed. However, for the

HIV-1 control system, even if the reaction terms are represented by polynomials, the extra

couplings between the species render the computation of the function β(x) difficult. More-

over, the ”Universal stabilizing property of IDA-PBC” relies on convexity properties at the

equilibrium point, assumed to be the maximal invariant set, which can be of limited usage

in applications such as drug infusion dynamics, where periodic behavior might be of interest

from a therapeutical point of view.

A non-exact matching IDA-PBC approach was recently developed and applied to chemical

reactor process stabilization (Ramı́rez et al., 2009). However, the authors showed subse-

quently in (Batlle et al., 2009) that their original derivations were wrong and that in the

best scenario, one has to rely on a linearized stability argument at the desired equilibrium.

The problem of approximate matching could then be solved using Linear Matrix Inequalities

(LMIs).

Another way to look at the matching is to consider an approximate dissipative Hamiltonian

realization instead of solving the matching equations. In (Cheng et al., 2000), conditions

for approximate Hamiltonian realizations were given in terms of a normal form. Sufficient

conditions and a constructive algorithm for a generalized Hamiltonian realization for time-

invariant nonlinear systems were presented in (Wang et al., 2003). In particular, the method
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proposed in (Wang et al., 2003) relied on a vector field decomposition along the gradient

direction ∇H(x) and the tangential direction on constant energy surfaces of H(x), for a

regular positive-definite function H(x). Following the work in (Maschke et al., 2000) which

related port-controlled Hamiltonian systems to the construction of Lyapunov functions,

it was shown in (Wang et al., 2007) how k-th degree approximate dissipative Hamilto-

nian systems can be used to solve the realization problem and how associated k-th degree

approximate Lyapunov functions can be used to study the stability of such systems. In

Chapter 3, this approach to decomposition is reviewed and then, the approximate Hamil-

tonian decomposition problem is studied using a differential one-form associated with the

drift vector field. In particular, the problem of computing a local dissipative potential is

studied following the original contribution of Edelen (1973). Using a coordinate transfor-

mation between the exact part of the dynamics and a pre-defined Hamiltonian dissipative

realization, viewed as a reference system, stability of the original system can be assessed.

Building on this result, the design of smooth stabilizing feedback controllers is considered

in Chapters 4 and 5. In essence, the knowledge of an approximate dissipative function en-

ables one to derive conditions for which this potential can be used to construct a damping

feedback controller, as proposed originally by Jurdjevic and Quinn (1978), and to compute

a Lyapunov function to show stability of the closed-loop dynamics. This approach to feed-

back stabilization was originally given by (Faubourg and Pomet, 2000) (see also Faubourg

(2001)) for homogeneous systems. More recently, Malisoff and Mazenc (2009) presented

numerous applications of this design method for different classes of nonlinear systems. A

review of Jurdjevic–Quinn damping controllers is given in Section 2.4. Applications of this

approach are presented in Chapter 4 for time-independent systems and in Chapter 5 for

time-dependent nonlinear systems. Regulator design is considered in 4.1 by using the tech-

nique for an extended time-independent system. Asymptotic stabilization (Section 4.3) and

asymptotic tracking (Section 5.2) of periodic solutions are also considered.
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1.2 Problem Statement and Objectives

In this thesis, and as advocated recently in (Johnsen and Allgöwer, 2007) and (Favache and

Dochain, 2009), it is desired to apply the theory of generalized Hamiltonian systems for the

analysis of stability and for feedback stabilization of chemical process control problems. In

particular, the representation of systems where the notion of ”energy” is ill-defined from a

physical point of view is of interest. At term, the ability to apply the theory of dissipative

systems to the control of chemical processes could eventually lead to more robust control

design, especially if one considers the results on control of dissipative and passive systems

presented for example in (Willems, 1972), (Byrnes et al., 1991), (Sepulchre et al., 1997),

and (van der Schaft, 2000).

However, the matching problem associated to IDA-PBC techniques are difficult to apply in

practice, since it leads typically to the solution of nonlinear partial differential equations.

The knowledge of a desired dissipative potential is required in practice, which is not a

straightforward task, even for the relatively simple systems studied in (Hangos et al., 2004).

On the other hand, approximate matching conditions, as presented in (Ramı́rez et al., 2009),

might lead to erroneous stability conclusions (Batlle et al., 2009). Finally, one should note

that, as given in (Ortega et al., 2002), the ”Universal stabilization property” of IDA-PBC

is limited to analysis around an isolated equilibrium, and does not admit extensions, in its

actual form, to cycle stabilization.

The focus of the present thesis is to study stabilization problems, based on an approximate

decomposition of the nonlinear system. The first objective of the thesis is to present a de-

composition approach of the drift dynamics, and illustrate how the locally-defined potential

can be used to study the representation of the drift dynamics as a dissipative Hamiltonian

system. Then, the objective is to show that under some conditions, the obtained dissipative

potential can be used as a basis for smooth damping feedback design for different classes

of stabilization problems. Finally, the approach is extended to time-dependent feedback
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stabilization problems. In terms of potential applications, this last extension is desirable

since, for the drug infusion dynamics example presented in Section 1.2, parameters might

vary with respect to time, as drug tolerance develops over the course of treatment, or simply

vary periodically over some fixed period.

To summarize, the three principal objectives of this dissertation are:

Objective 1 Construct a decomposition-based approach to approximate dissipative real-

ization problems.

Objective 2 Derive conditions for closed-loop stability of the control-affine system in

closed-loop with a damping state feedback controller using the obtained dissipative

potential.

Objective 3 Extend the approach to the stabilization of time-dependent control affine

systems.

1.3 Summary of Contributions

The contributions of this thesis are now summarized, with the original publication or sub-

mission reference noted, when applicable.

Contribution 1 Computation of approximate dissipative Hamiltonian realization using a

homotopy-based decomposition (Chapter 3). Originally published in (Hudon et al.,

2008).

Contribution 2 Construction of Lyapunov functions for time-independent control affine

systems based on a dissipative potential (Section 4.1). Originally published in (Hudon

and Guay, 2009b).

Contribution 3 Construction of feedback regulator using Jurdjevic–Quinn techniques in

an extended space (Section 4.2). Submitted for publication in (Hudon and Guay,
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2010d).

Contribution 4 Computation of first integral for stabilization of time-independent control-

affine systems to a desired cycle (Section 4.3).

Contribution 5 Construction of time-dependent damping feedback law for the stabiliza-

tion of control affine time-dependent systems (Section 5.1). Accepted for publication

in (Hudon and Guay, 2010a).

Contribution 6 Construction of smooth tracking feedback controller to periodic trajecto-

ries (5.2). Submitted for publication in (Hudon and Guay, 2010c).

All contributions were written with the author as the principal investigator. Collaboration

of Prof. Martin Guay for Contributions 2–6, and of K. Höffner and Prof. Martin Guay for

Contribution 1 is acknowledged.

1.4 Thesis Organization

This dissertation is organized as follows. A review of stability, stabilizability and stabi-

lization is presented in Chapter 2, following (Bacciotti, 1992), with elements from (Khalil,

2002), (Coron, 2007, Chapters 11 & 12), (Bullo and Lewis, 2005, Chapter 6), and (Nijmeijer

and van der Schaft, 1990, Chapter 10).

The dissipative Hamiltonian realization problem is covered in Chapter 3. The approach

that is proposed here relies on the construction of a radial homotopy operator, used in

the context of feedback linearization by Banaszuk (1995) (see also Banaszuk and Hauser

(1996)). Presentation of this operator follows the treatment from (Edelen, 2005, Chapter

5). Similar decomposition approaches (Sira-Ramı́rez and Angulo-Núñez, 1997) and the

dissipative Hamiltonian realization technique from (Wang et al., 2007) are also reviewed.

Chapter 4 presents the main contribution of the present thesis, i .e., the application of the

above decomposition for the design of feedback damping controllers of Jurdjevic–Quinn
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type. The construction of Lyapunov functions for control-affine systems based on the dissi-

pative potential obtained by application of the homotopy decomposition is given in Section

4.1. This result is used in Section 4.2 for the design of state feedback regulator by com-

puting a potential in an extended space. Section 4.3 presents the stabilization of periodic

orbits in R
n, following the construction originally proposed by Bacciotti and Mazzi (1995).

Potential extensions are discussed in Section 4.4.

Chapter 5 presents an extension of Jurdjevic–Quinn method for the stabilization of time-

dependent control affine systems, based on the computation of an integrating factor for the

non-exact one-form associated to the system (Section 5.1). This result is applied to periodic

trajectory tracking in Section 5.2. Potential areas for future investigation are illustrated in

Section 5.3.

Conclusions and some future areas of studies are discussed in Chapter 6.

Throughout Chapters 3, 4, and 5, low-dimensional examples are presented to illustrate the

application of the proposed constructions. In particular, a two dimensional Lotka–Volterra

system is used as an illustration of the motivating examples discussed in Section 1.2. The

application of some elements presented in the present thesis were considered for higher

dimensional systems and systems with non-polynomial nonlinearities. An example is the

feedback stabilization of a wastewater plant of dimension n = 4 with Monod and Haldane

kinetics given in (Hudon and Guay, 2010e). The results presented here can be extended

in that sense, with additional computational burden, which is expected for the particular

choice of feedback controller design technique favored here.



Chapter 2

Review of State Feedback

Stabilization

This chapter reviews elements of nonlinear control systems stability and stabilization in R
n

to be used in the sequel. The presentation follows the presentation given by Bacciotti (1992)

and by Coron (2007, Chapters 11 and 12), with some elements adapted from (Khalil, 2002),

(Nijmeijer and van der Schaft, 1990, Chapter 10), and (Bullo and Lewis, 2005, Chapter 6

and Section 10.1).

Generalities on nonlinear control systems and control problems considered in this thesis are

given in Section 2.1. Definitions and classical results related to stability, time-dependent

stability, and orbital stability are reviewed in Section 2.2. In Section 2.3, elements related to

the problem of state feedback stabilization, including necessary conditions for stabilization

are summarized. In Section 2.4, damping feedback stabilization, that is used in the present

thesis, is reviewed.

11
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2.1 Introduction

Stabilization problems are central in control theory and control applications. A review of

the main problems and contributions to the development of modern nonlinear stabilization

techniques were presented in (Bacciotti, 1992). An interesting expository review was also

given by Kokotović and Arcak (2001).

In this section, the class of systems and stabilization problems covered in the present thesis

are presented. Consider a time-independent control system

S : ẋ = F (x, u), x ∈ X (2.1)

where X is an open connected region of Rn. In the present thesis, the controls u are taken

as elements in R
m. Let the equilibrium of S be denoted by (x∗, u∗) ∈ X × R

m.

The general problem of state feedback stabilizability is concerned with finding conditions

for the existence of a state feedback control u = u(x) defined in a neighborhood of x∗ such

that the closed loop system

ẋ = F (x, u(x)) = FCL(x) (2.2)

has a stable equilibrium position at x = x∗. The function u(x) is called a static stabilizing

feedback law or a stabilizer. More generally, S is said to be dynamically stabilizable

at x0 if there exists an integer ν, a point ξ0 ∈ R
ν and a function φ : X ×R

ν → R
ν such that

ẋ = F (x, u) (2.3)

ξ̇ = φ(x, ξ) (2.4)

is stabilizable at (x∗, ξ∗) by means of a feedback of the form u = u(x, ξ). The system

ξ̇ = φ(x, ξ) is called a compensator for S. The compensator together with the feedback
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u = u(x, ξ) is called a dynamic stabilizer.

In particular, the present thesis is, except for some discussions on potential generalizations,

concerned with control affine systems

ẋ = X0(x) +

m
∑

i=1

ui(x)Xi(x) (2.5)

where X0,X1, . . . ,Xm are smooth vector fields on R
n. In the sequel, X0 is called the drift

vector field. The design of stabilizing static feedback law is considered in Section 4.1. An

extension for stabilizer design for time-dependent control affine systems of the form

ẋ(t) = X0(t, x) +

m
∑

i=1

ui(t, x)Xi(t, x) (2.6)

is presented in Section 5.1. The compensator design problem is considered in Section 4.2.

In the sequel, the Lie derivative of Xj along Xi is denoted by

LXi
Xj(x) :=

(

∂Xj

∂x
Xi

)

(x). (2.7)

The Lie bracket [Xi, Xj ](x) is given in coordinates as

[Xi, Xj ](x) =
∂Xj

∂x
Xi(x)−

∂Xi

∂x
Xj(x). (2.8)

Finally, adkX0
Xi ∈ C∞ is defined by induction for k ∈ N as

ad0Xi
Xj = Xj (2.9)

adkXi
Xj = [Xi, ad

k−1
Xi

Xj ]. (2.10)
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2.2 Stability

This section reviews elements of stability for dynamical systems of the form

ẋ = X0(x), x(0) = x0, (2.11)

with x ∈ R
n. Lyapunov stability is reviewed in Section 2.2.1. Lasalle’s Invariance Principle

is reviewed in Section 2.2.2. Section 2.2.3 gives a review of stability of time-varying systems

of the form

ẋ = X0(t, x), (2.12)

where x ∈ R
n, t ∈ I ⊂ R+, and with initial condition x(0) = x0, equilibrium x∗(t, 0).

Lasalle’s Invariance Principle for time-varying systems is also given, following the discussion

in (Sastry, 1999). Finally, the notion of orbital stability is reviewed in Section 2.2.4 following

the presentation of (Bacciotti and Mazzi, 1995).

2.2.1 Lyapunov Stability

This section reviews elements of Lyapunov stability theory for systems of the form (2.11).

First consider the following definition from (Khalil, 2002).

Definition 2.2.1 (Lyapunov Stability). The equilibrium point x∗ = 0 of (2.11) is

• stable if, for each ǫ > 0, there is δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0. (2.13)

• unstable if it is not stable.
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• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0. (2.14)

Following (Khalil, 2002), let V : O → R be a continuously differentiable function defined

in a domain O ⊂ R
n that contains the origin. The derivative of V along the trajectories of

(2.11), denoted V̇ (x), is given by

V̇ (x) = LX0
V. (2.15)

The following theorem is proved in (Khalil, 2002, Chapter 4).

Theorem 2.2.2 (Lyapunov Stability Theorem). Let x∗ = 0 be an equilibrium point of

(2.11) and O ⊂ R
n be a domain containing the origin. Let V : O → R be a continuously

differentiable function such that

• V (0) = 0,

• V (x) > 0 for x ∈ O \ {0},

• V̇ ≤ 0 for x ∈ O.

Then x∗ = 0 is stable. Moreover if

• V̇ (x) < 0 for x ∈ O \ {0},

then x∗ = 0 is asymptotically stable.

In the sequel, a function V such that the conditions of the above theorem hold will be called

a Lyapunov function.
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2.2.2 Lasalle’s Invariance Principle

The discussion on Lasalle’s Invariance Principle follows (Khalil, 2002, section 4.2). Let x(t)

denote a solution of (2.11). A point p is said to be a positive limit point of x(t) if there

is a sequence {tn}, with tn → ∞ as n → ∞ such that x(tn) → p as n → ∞. The set of all

limit points of x(t) is called the positive limit set of x(t).

A set M is said to be an invariant set with respect to (2.11) if

x(0) ∈M ⇒ x(t) ∈M, ∀t ∈ R.

A set M is said to be a positively invariant set if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0.

A solution of (2.11) is said to approach a set M as t approaches infinity, if for ǫ > 0, there

is a T > 0 such that

dist(x(t),M) < ǫ, ∀t > T, (2.16)

where dist(p,M) denotes the smallest distance from a point p to any point in the set M ,

i .e.,

dist(p,M) = inf
x∈M

‖p − x‖. (2.17)

First consider the following property of limit sets, proved in (Khalil, 2002).

Lemma 2.2.3. If a solution x(t) of (2.11) is bounded and belongs to O for t ≥ 0, then its

positive limit set L+ is a nonempty, compact, invariant set. Moreover, x(t) approaches L+

as t→ ∞.
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The following statement of the Lasalle’s Invariance Principle is given in (Khalil, 2002).

Theorem 2.2.4. Let Γ ⊂ O be a compact set that is positively invariant with respect to

(2.11). Let V : O → R be a continuously differentiable function such that V̇ (x) ≤ 0 in Γ.

Let E be the set of all points in Γ where V̇ = 0. Let M be the largest invariant set in E.

Then every solution starting in Γ approaches M as t→ ∞.

The following corollary to Lasalle’s Invariance Principle is used in Chapters 4 and 5.

Corollary 2.2.5 (Barbashin and Krasovskĭı). Let x∗ = 0 be an equilibrium for (2.11). Let

V : O → R be a continuously differentiable function on a domain O containing the origin,

such that V̇ (x) ≤ 0 in O. Let S = {x ∈ O|V̇ (x) = 0} and suppose that no solution can stay

identically in S, other than the trivial solution x(t) ≡ 0. Then, the origin is asymptotically

stable.

2.2.3 Stability of Time-Varying Systems

This section presents elements of stability theory for time-dependent (also referred to time-

varying systems). Consider the following time-dependent system

ẋ(t) = X0(t, x), (2.18)

whereX0(t, x) is assumed to be smooth in x, continuous and bounded over bounded intervals

I in R+. Assume that X0(t, 0) = 0. The following definitions of stability for time-dependent

systems are taken from (Khalil, 2002, Section 4.5).

Definition 2.2.6. The equilibrium point x∗ = 0 of (2.18) is

• stable if, for each ǫ > 0, there is δ(ǫ, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0 ≥ 0;
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• uniformly stable if, for each ǫ > 0, there is δ(ǫ) > 0, independent of t0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0 ≥ 0

is satisfied;

• asymptotically stable if it is stable and there is a c = c(t0) > 0 such that x(t) → 0

as t → ∞, for all ‖x(t0)‖ < c;

• uniformly asymptotically stable if it is uniformly stable and there is a c > 0,

independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0 as t → ∞, uniformly in t0;

that is for each ǫ > 0, there is T (ǫ) > 0 such that

‖x(t)‖ < ǫ, ∀t ≥ t0 + T (ǫ), ∀‖x(t0)‖ < c;

• globally uniformly asymptotically stable if it is uniformly stable and, for each

pair of positive numbers ǫ and c, there is T (ǫ, c) > 0 such that

‖x(t)‖ < ǫ, ∀t ≥ t0 + T (ǫ, c), ∀‖x(t0)‖ < c.

The next theorems, proved in (Khalil, 2002), summarizes the extension of Lyapunov Sta-

bility Theorem to the time-dependent case.

Theorem 2.2.7. Let x∗ = 0 be an equilibrium point for (2.18) and O ⊂ R
n be a domain

containing the origin. Let V : [0,∞)×O → R be a continuously differentiable function such

that

W1(x) ≤ V (t, x) ≤W2(x) (2.19)

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
X0(t, x) ≤ 0 (2.20)
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for t ≥ 0 and for all x ∈ O, where W1(x) and W2(x) are continuous positive functions on

O. Then x∗ = 0 is uniformly stable.

Theorem 2.2.8. Suppose the assumptions of theorem 2.2.7 are satisfied with inequality

(2.20) strengthened to

∂V

∂t
+
∂V

∂x
X0(t, x) ≤ −W3(x) (2.21)

for t ≥ 0 and for all x ∈ O, where W3(x) is a continuous positive definite function on O.

Then x∗ = 0 is uniformly asymptotically stable.

The following presents Lasalle’s Invariance Principle for periodic time-dependent system

(2.18), following the exposition in (Sastry, 1999).

Theorem 2.2.9 (Lasalle’s Invariance Principle for Periodic Systems). Assume that the

system ẋ = X0(t, x), with x(0) = x0 is periodic, i .e.,

X0(t, x) = f(t+ T, x), ∀t ∈ R+, ∀x ∈ R
n. (2.22)

Further, let V (t, x) be a positive definite function which is periodic in t also with period T .

Define

S = {x ∈ R
n|V̇ (t, x) = 0, ∀t ≥ 0}. (2.23)

Then if V̇ (t, x) ≤ 0, for all t ≥ 0, ∀x ∈ O and the largest invariant set in S is the origin,

then the origin is uniformly stable.
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2.2.4 Orbital Stability

Stabilization of periodic orbits is considered in Section (4.3), based on a construction pro-

posed in (Bacciotti and Mazzi, 1995). To complete the discussion, orbital stability is con-

sidered here. The following definition of orbital stability is adapted from (Bacciotti and

Mazzi, 1995).

Definition 2.2.10. Let x(t) denote a solution of (2.11). Let M ⊂ R
n be a compact

nonempty set. M is said to be:

• orbitally attractive with respect to (2.11) if there exists a neighborhood O0 of M

such that for each x ∈ U0,

lim
t→∞

dist(x(t),M) = 0.

• orbitally stable with respect to (2.11) if, for each neighborhood O0 of M , there exists

a neighborhood O of M such that for each t ≥ 0,

x(t) ∈ O0.

• orbitally asymptotically attractive if it is orbitally stable and orbitally attractive.

2.3 Feedback Stabilization

This section presents basic definitions on the topic of feedback stabilization. In Section

2.3.1, the concepts of closed-loop stability are reviewed while Section 2.3.2 reviews some

results on obstructions to smooth feedback stabilization.
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2.3.1 Closed-Loop Stability

Consider the C∞ control affine system

ẋ = X0(x) +

m
∑

i=1

uiXi(x) (2.24)

The main elements of feedback and stabilization are given in the following definition from

(Bullo and Lewis, 2005), adapted to the context of this thesis, i .e., for stabilization on

X ⊂ R
n with controls on U ⊂ R

m.

Definition 2.3.1 (Feedback and Stabilization). (i) A controlled equilibrium point for

(2.24) is a pair (x∗, u∗) ∈ X × U with the property that

X0(x
∗) +

m
∑

i=1

u∗iXi(x
∗) = 0. (2.25)

(ii) A state feedback (resp. time-dependent state feedback) for (2.24) is a map

u : X → U (resp. u : R̄+ × X → U).

(iii) Given a state feedback (resp. time-dependent state feedback) u for (2.24), the

closed-loop system, is the vector field (resp. time-dependent vector field) defined by

x 7→ X0(x) +
m
∑

i=1

ui(x)Xi(x)

(

resp. (t, x) 7→ X0(x) +
m
∑

i=1

ui(t, x)Xi(x)

)

. (2.26)

(iv) For r ∈ Z+ ∪ {∞} ∪ {ω}, a state feedback (resp. time-dependent state feedback) is Cr

if the corresponding closed-loop system is of class Cr.

(v) For r ∈ Z+ ∪ {∞} ∪ {ω} and x∗ ∈ R
n, a state feedback is almost Cr about x∗ if there

exists a neighborhood O of x∗ such that the corresponding closed-loop system is Cr on

O \ {x∗}.
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(vi) A controlled equilibrium point (x∗, u∗) is stabilizable by state feedback (resp. sta-

bilizable by time-dependent state feedback) if there exists a state feedback (resp.

time-dependant state feedback) u for (2.24) with the property that the closed-loop sys-

tem has x∗ as a a stable equilibrium point.

(vii) A controlled equilibrium point (x∗, u∗) is locally asymptotically stabilizable by

state feedback (resp. by time-dependent state feedback) if there exists a state feedback

(resp. time-dependent state feedback) and a neighborhood O of x∗ with the properties

that

– (a) the closed-loop system leaves O invariant, and

– (b) the restriction of the closed-loop system to O possesses x∗ as an asymptotically

stable equilibrium point.

(viii) A controlled equilibrium point (x∗, u∗) is globally asymptotically stabilizable by state

feedback (resp. by time-dependent state feedback) if in part (vii) one can take O = R
n.

An important concept for feedback stabilization is the concept of control Lyapunov function.

Definition 2.3.2 (Control Lyapunov Function). Consider the C∞ control affine system for

which (x∗, 0) is a controlled equilibrium point.

• A control Lyapunov triple for (2.24) at x∗ is a triple (V, φ,O), where

– (a) O is a neighborhood of x∗,

– (b) V : O → R̄+ is continuous, proper, and locally positive-definite about x∗,

– (c) φ : O → R̄+ is continuous and positive-definite about x∗,

– (d) for each compact subset K ⊂ O, there exists a compact subset U ∈ R
m such

that, for all x ∈ K, there exists u(x) ∈ U such that

dV (x) ·
(

X0(x) +
m
∑

i=1

uiXi(x)

)

≤ −φ(x). (2.27)
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• A control Lyapunov function for (2.24) at x∗ is a continuous function V :M → R for

which there exists a neighborhood O and a continuous function φ : O → R̄+ for which

(ψ|O, φ,O) is a control Lyapunov triple.

Theorem 2.3.3 (Artstein’s Theorem). For a controlled equilibrium point (x∗, 0) for the

C∞ control affine system (2.24), the following statements are equivalent:

• (i) x∗ is locally asymptotically stabilizable using almost C∞ state feedback;

• (ii) there exists a C1 control Lyapunov function for (2.24) at x∗.

The stabilization problem for time-varying systems

ẋ(t) = X0(t, x) +

m
∑

i=1

uiXi(t, x) (2.28)

can be summarized in the following definition from Moulay and Perruquetti (2005).

Definition 2.3.4. System (2.28) is almost stabilizable (resp. almost Ck-stabilizable) if there

exists a feedback control law u : R×X → U continuous (resp. Ck) on I ×X \ {0} such that

(i) u(t, 0) = 0 for all t ∈ I,

(ii) the origin is a uniformly asymptotically stable equilibrium of the closed-loop system.

Moreover, if u is continuous (resp. Ck) on R × X , then the system (2.28) is stabilizable

(resp. Ck-stabilizable). If the system (2.28) is globally defined, it is globally stabilizable if

there exists a continuous control law u : I ×R
n → U satisfying the two previous conditions

for all I = R+ and X = R
n.

Finally, orbital stabilization of a periodic orbit can be defined following (Bacciotti and

Mazzi, 1995):

Definition 2.3.5. Suppose that Γ is an isolated periodic orbit of the unforced dynamics

ẋ = X0. Let the state space X be a neighborhood of Γ. A feedback control law of the
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form u = α(x) is said to locally asymptotically orbitally stabilizes the nonlinear system

ẋ = F (x, u) if Γ is also a periodic orbit of the closed-loop system

ẋ = F (x, α(x)), (2.29)

and is orbitally asymptotically stable.

2.3.2 Obstructions to Stationary Feedback Stabilization

The important result of Brockett (Brockett, 1983) is reviewed here. First, local asymptotic

controllability is defined.

Definition 2.3.6. A control affine system (2.24) is locally asymptotically controllable

to x∗ ∈ R
n if there exists a neighborhood O of x∗ with the property that, for each x ∈ O,

there exists a map u : R̄+ → R
m for which the solution to the initial value problem

γ′(t) = X0(γ(t)) +

m
∑

i=1

ui(t, x)Xi(γ(t)), γ(0) = x, (2.30)

has the property that limt→∞ γ(t) = x∗.

The following expression of Brockett’s necessary condition is taken from (Sontag, 1998).

Theorem 2.3.7 (Brockett’s Necessary Condition). Assume that the C1 continuous time

system

ẋ = X(x, u) (2.31)

is locally C1 stabilizable with respect to x∗. Then the image of the map

f : X × U → R
n (2.32)

contains some neighborhood of x∗.
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Theorem 2.3.8. Let (x∗, 0) be a controlled equilibrium point for the (2.24). Then (x∗, 0)

is locally asymptotically stabilizable by state feedback if and only if (2.24) is locally asymp-

totically controllable at x0.

This last theorem is illustrated with the following classical example. Consider X = R
3 and

U = R
2 with the dynamics given by

ẋ1 = u1 (2.33)

ẋ2 = u2 (2.34)

ẋ3 = x2u1 − x1u2 (2.35)

and equilibrium state at the origin. No point of the form

[

0 0 ǫ

]

, (ǫ 6= 0) (2.36)

is in the image of f , so there is no C1 feedback stabilizing the system even if it is controllable.

A related result in the context of dynamic feedback law design was presented in (Pomet,

1992).

Theorem 2.3.9. Consider a control system of the form

ẋ =

m
∑

k=1

ukXk, x ∈ R
n, uk ∈ R. (2.37)

In m < n and

rank{X1(0), . . . ,Xm(0)} = m (2.38)

then there exists no continuous feedback law

u1(x), . . . , xm(x) (2.39)
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making the origin a locally asymptotically stable equilibrium point of the closed-loop system.

There does not exist either any continuous dynamic feedback law u1(x, ξ), . . . , xm(x, ξ), and

ξ̇ = g(x, ξ), (2.40)

such that (x, ξ) = 0 ∈ R
2n is a locally asymptotically stable equilibrium point of the closed-

loop system.

2.4 Damping Feedback Stabilization

This section reviews some elements of the damping feedback stabilization, that will be used

throughout the thesis. The discussion here follows (Nijmeijer and van der Schaft, 1990,

Chapter 10). The approach is also presented in (Coron, 2007, Section 12.2), in (Malisoff

and Mazenc, 2009, Chapter 4), and in (Bacciotti, 1992, Section 10).

Given a control affine system

ẋ = X0 +

m
∑

k=1

Xkuk, (2.41)

with Xi smooth, i = 0, . . . , k, with x ∈ X ⊂ R
n, u ∈ U ⊂ R

m, an equilibrium point x∗ for

X0 and a Lyapunov function V : X → R for X0 at x∗, define the functions uk,diss : R
n → R

by

uk,diss(x) = −(LXk
V )(x), k ∈ {1, . . . ,m}. (2.42)

The control functions (u1,diss, . . . , um,diss) are called dissipative feedbacks. An immediate

computation shows that

L(X0+
∑m

k=1
uk,diss·Xk)V (x) = LX0

V (x)−
m
∑

k=1

((LXk
V )(x))2 ≤ 0, (2.43)
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for all x in the neighborhood of x∗, since with V a Lyapunov function, (LX0
V )(x) is locally

negative semi-definite. Sufficient conditions for stabilization are given by the following

result.

Theorem 2.4.1 (Dissipative Control). Let the control affine system (2.41) be a C∞ control

affine system. Let x∗ be an equilibrium point for X0, and let V : Rn → R be a class C∞

Lyapunov function for X0 at x∗ for which x∗ is an isolated local minimum. Also define

W = {x ∈ O|LX0
V (x) = 0,LXk

V (x) = 0, k = 1, . . . ,m}, (2.44)

and suppose that {x∗} is the largest X0-invariant subset of W. Then the equilibrium point

x∗ is locally asymptotically stable for the closed-loop control system with dissipative feedback

control

uk,diss(x) = −(LXk
V )(x), k ∈ {1, . . . ,m}. (2.45)

Proof: Because the Lie derivative of V along the closed-loop system is

LX0
V (x)−

m
∑

k=1

((LXk
ψ)(x))2 ≤ 0, (2.46)

then V is a Lyapunov function for the closed-loop system at x∗. Note that, since LXk
V (x) =

0 for all x ∈ W and k ∈ {1, . . . ,m}, any subset of W that is invariant under the closed-

loop system will also be invariant under X0. The largest subset of W invariant under the

closed-loop system is contained in the largest subset of W invariant under X0. From this

observation, the result follows from Lasalle’s invariance principle.

As mentioned in (Nijmeijer and van der Schaft, 1990), the condition that the largest X0 in-

variant subset of W is often impractical to verify for the last theorem. Therefore, one would

like to have stronger, but checkable, conditions from which this hypothesis follows. One
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such condition was given by the following result, given originally by (Lee and Arapostathis,

1988).

Lemma 2.4.2. Let (2.41), x∗, V , O, and W be as in the last theorem. If

span{X0, ad
k
X0
Xi|i ∈ {1, . . . ,m}, k ∈ Z+} = R

n, (2.47)

Then {x∗} is the largest X0-invariant subset of W.

Proof: Note that the hypotheses ensures that

span{adkX0
Xi|i ∈ {1, . . . ,m}, k ∈ Z+} = R

n (2.48)

for x in a neighborhood of x∗. Since V is a Lyapunov function for X0, it follows that, if

x ∈ W, then x is a maximum for X′V . Therefore, d(LX0
V )(x) = 0 for x ∈ W. Let γ be the

integral curve of X0 through x ∈ W. Note that γ(t) ∈ W for all t, since V is a Lyapunov

function for X0 and since V −1(0) ⊂ W. For i ∈ {1, . . . ,m}, define Vi(t) = LXi
V (γ(t)),

noting that Vi(t) is necessarily zero for all t. Therefore,

dk

dtk
|t=0Vi(t) = LkX0

LXi
V (x) = 0, (2.49)

for k ∈ Z+. Since d(LX0
V )(x) = 0, it follows that LkX0

LXi
V (x) = LadkX0

Xi
V (x) k ∈ Z+.

By hypothesis, the only way that Ladk
X0
Xa
ψ(x) = 0, k ∈ Z+, a ∈ {1, . . . ,m}, is that

dV (x) = 0 ∈ U implies that x = x∗.

In particular, the smooth feedback laws

uk(x) = −(∇TV ·Xk)(x), (2.50)

k = 1, . . . ,m, locally stabilizes the system to the invariant x∗.

The knowledge of a Lyapunov function V (x) to design the damping feedback can be relaxed,
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as presented in (Malisoff and Mazenc, 2009, Section 2.2.3), where the (global) stabilization

problem is considered using weak Jurdjevic–Quinn conditions, defined in the following.

Definition 2.4.3. The control affine system (2.41) is said to satisfy the (weak) Jurdjevic-

Quinn conditions provided there exists a smooth function ψ : Rn → R satisfying:

(i) ψ is positive definite and radially unbounded;

(ii) for all x ∈ R
n, LX0

ψ(x) ≤ 0;

(iii) there exists an integer l such that the set

W (ψ) = {x ∈ R
n|LX0

ψ(x) = L
ad

i
X0
Xk
ψ(x) = 0, k = 1, . . . ,m, i ∈ {0, 1, . . . , l}}(2.51)

is {0}.

If (2.41) satisfies the weak Jurdjevic-Quinn conditions, then it is globally asymptotically

stabilized by any feedback

u = −ξ(x)(LXk
ψ)(x), (2.52)

where ξ(x) is any everywhere positive function of class C1. This result will be used in the

sequel, dropping the radially unbounded assumption, hence limiting the analysis to local

stabilization using damping feedback controls.

Before considering some stabilization problems in Chapters 4 and 5, the next chapter con-

siders the problem of computing a dissipative function for nonlinear systems, where the

problem is first considered from the point of view of dissipative Hamiltonian realization.



Chapter 3

Decomposition and Dissipative

Realization

This chapter considers the problem of deriving a generalized Hamiltonian potential for au-

tonomous dynamical systems. For a given vector field, the objective is to construct a locally

defined dissipative generating function for the system. The proposed approach consists in

studying the deviation of the given vector field from a canonically defined Hamiltonian

vector field. First, a one-form is obtained by taking the interior product of an arbitrary

non-vanishing two-form with respect to the vector field. A radial homotopy operator is then

constructed on a star-shaped region to decompose the system into an exact part and an

anti-exact one. A coordinate transformation between the exact part and an exact one-form

generated from a known dissipative Hamiltonian system is used to compute a locally-defined

dissipative potential for the original system. Examples are presented to illustrate the pro-

posed method.

After a brief introduction to the problem considered in this chapter, dissipation-based de-

composition and control is reviewed in Section 3.2, with an emphasis on dissipative Hamilto-

nian realization. In Section 3.3, the locally defined radial homotopy operator is introduced,

30
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following the presentation in (Edelen, 2005). In the context of feedback linearization, this

operator was introduced in Banaszuk and Hauser (1996) (see also Banaszuk and Hauser

(1994)). In Section 3.4, it is shown how a dissipative potential can be obtained from the

exact part of a certain one-form associated with the dynamics. Examples illustrating the

approach are presented in Section 3.5. Summary and related extensions of the material

from this chapter are outlined in Section 3.6.

3.1 Introduction

The general problem of deriving a generalized Hamiltonian realization for a known sys-

tem was considered from a feedback equivalence point of view in (Tabuada and Pappas,

2003) for control-affine systems. Feedback equivalence conditions to port-controlled Hamil-

tonian systems was presented by Cheng et al. (2005). In (Cheng et al., 2000), conditions

for approximate Hamiltonian realizations were given in terms of a normal form. Suffi-

cient conditions and a constructive algorithm for a generalized Hamiltonian realization for

time-invariant nonlinear systems were presented in (Wang et al., 2003). In particular, the

method proposed in (Wang et al., 2003) which is reviewed briefly in Section 3.2, seeks to

decompose the vector field along the gradient direction ∇H(x) and the tangential direction

of the equivalue surfaces of H(x), for a regular positive-definite function H(x). Exten-

sions to port-controlled time-varying systems were carried out in (Fujimoto et al., 2003)

using an error dynamic system and in (Wang et al., 2005) using Poisson structures. The

relationship between the concepts of Lyapunov stability and Hamiltonian with dissipation

was discussed in (McLachlan et al., 1998) using Morse theory. Recently, following the

work in (Maschke et al., 2000) which related port-controlled Hamiltonian systems to the

construction of Lyapunov functions, it was shown in (Wang et al., 2007) how k-th degree

approximate dissipative Hamiltonian systems can be used to solve the realization problem

and how associated k-th degree approximate Lyapunov functions can be used to study the
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stability of such systems.

In this chapter, a different approach, used originally in the context of non-equilibrium

thermodynamics, is proposed to approximate dissipative realization, following the work of

Edelen (1973). A dissipative potential is computed locally using a differential one-form as-

sociated to the vector field and a homotopy operator. The approach to compute a potential

presented here differs slightly from the approach given recently in (Yap, 2009), where only

closed one-forms are considered together with the Poincaré lemma and where the solution

to partial differential equations are required. However, the contribution found in (Yap,

2009) is close in spirit to an early controller design procedure published in (Hudon and

Guay, 2009a), where the anti-exact part obtained by application of the homotopy operator

is canceled by feedback. This approach is briefly discussed in Section 3.6. Finally, it should

be noted that a related approach to decomposition was developed and applied to Liénard

systems in (Demongeot et al., 2007a,b; Glade et al., 2007; Forest et al., 2007).

3.2 Dissipative Hamiltonian Realization

The problem of dissipative Hamiltonian realization is reviewed in the present section, based

on the contributions from Wang et al. (2003, 2005, 2007) and Cheng et al. (2002). However,

to illustrate the idea of decomposing the drift dynamics in terms of a dissipative and a

non-dissipative part, a passivity-based approach to drift dynamics decomposition proposed

by Sira-Ramı́rez and Angulo-Núñez (1997) is reviewed. This last paper is inspired by the

original paper from Willems (1972) and the contribution from Byrnes et al. (1991).
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3.2.1 Passivity-Based Decomposition

Consider the single-input single-output control affine system

ẋ = f(x) + g(x)u (3.1)

y = h(x) (3.2)

where x ∈ X ⊂ R
n is the state vector, u ∈ U ⊂ R is the control input and the scalar

function y ∈ Y ⊂ R is the output function of the system. The vector fields f(x) and g(x)

are assumed to be smooth vector fields on X and such that there exists an isolated non-zero

state of interest x = xe ∈ X , s.t. f(xe) + g(xe)ū = 0. In the following, the term (LφV )

denotes the Lie derivative of a function V in the direction of a smooth vector field φ(x). In

local coordinates, it is given as LφV (x) = ∂V
∂x

· φ(x).

In (Sira-Ramı́rez and Angulo-Núñez, 1997), the case where the drift vector field f(x) has

a natural decomposition with respect to the known storage function V was considered.

The key idea was to express the drift part of system, f(x), as the sum of three components:

f(x) = fd(x) + fnd(x) + fI(x) (3.3)

such that

LfdV (x) ≤ 0, ∀x ∈ X (3.4)

LfndV (x)















is either sign-undefined in X

or else it is non-negative in X
(3.5)

LfIV (x) = 0, ∀x ∈ X . (3.6)

Following (Sira-Ramı́rez and Angulo-Núñez, 1997), fd(x) is called the dissipative com-

ponent of f(x). Similarly, fnd(x) is the non-dissipative component of f(x), and fI(x)
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is the invariant component of f(x). The vector fields (fd(x), fnd(x), fI(x)) are called the

natural components of f(x) with respect to V (x).

The main contribution from (Sira-Ramı́rez and Angulo-Núñez, 1997) was to use this de-

composition for the design of feedback passifiable controllers. Consider the system (f, g, h)

with V being, locally in X , a strict relative degree one function, i .e., LgV (x) 6= 0, ∀x ∈ X .

Then,

V̇ (x) =
∂V

∂x
f(x) +

(

∂V

∂x
g(x)

)

u = LfV (x) + LgV (x)u. (3.7)

Suppose that the vector field f(x) has natural components fd(x), fnd(x), fI(x) with respect

to the storage function V (x). Then, the time-derivative of the storage function can be

re-written as

V̇ = LfdV (x) + LfndV (x) + LgV (x)u (3.8)

= LfdV (x) + LgV (x)

(LfndV (x)

LgV (x)
+ u

)

. (3.9)

One can define the following state dependent input coordinate transformation:

u(x) =
1

LgV (x)

(

h(x)v − LfndV (x)− γh2(x)
)

(3.10)

with γ an arbitrary strictly positive scalar, and as a result

V̇ = LfdV (x) + h(x)v − γh2(x) ≤ yv − γy2 ≤ yv. (3.11)

The main result from (Sira-Ramı́rez and Angulo-Núñez, 1997) is the following.

Proposition 3.2.1. The system (f, g, h) is locally strictly output passifiable with respect to

the storage function V (x), by means of affine feedback of the form u = α(x) + β(x)v if and
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only if

LgV (x) 6= 0, ∀x ∈ X . (3.12)

The affine feedback law, or state dependent input coordinate transformation, which achieves

strict output passivation, is given by

u =
1

LgV (x)

(

h(x)v − LfndV (x)− γh2(x)
)

. (3.13)

The proof relies essentially on the classical construction from Byrnes et al. (1991), making

use of the following definition.

Definition 3.2.2. A system (f, g, h) has the Kalman-Yacubovich-Popov (KYP) property if

there exists a continuously differentiable non-negative function V : X → R with V (0) = 0

such that

LfV (x) ≤ 0 (3.14)

LgV (x) = h(x) (3.15)

for all x ∈ X .

Then the following statement from (Byrnes et al., 1991) is used to prove Proposition 3.2.1.

Proposition 3.2.3. A system which has the KYP property is passive with storage function

V (x). Conversely, a passive system having a continuously differentiable storage function

has the KYP property.

With respect to the topics covered in the present thesis, the following geometric interpreta-

tion of this decomposition, provided by Sira-Ramı́rez and Angulo-Núñez (1997), has to be
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considered. In the transformed input coordinates the system is given by:

ẋ = fd(x) + fI +

(

I − g(x)
∂V (x)

∂x

1

LgV (x)

)

fnd +
h

LgV (x)
g(x)v − γ

h2(X)

LgV (x)
g(x) (3.16)

where the terms of the right hand side are interpreted as follows: first term: fd(x) is

naturally dissipative, fI is the invariant term,
(

I − g(x)∂V (x)
∂x

1
LgV (x)

)

fnd is the workless

term, h(x)
LgV (x)g(x)v is the supply rate, and γ h2(x)

LgV (x)g(x) is the artificially induced dissipation

term making use of nonlinear (quadratic) output feedback.

Note that the matrix:

M(x) =

(

I − g(x)
∂V (x)

∂x

1

LgV (x)

)

(3.17)

is a projection operator onto the tangent space of the level surface V (x) = c along the

distribution span{g}. This projection operator “hides” all destabilizing components of

fnd(x) by making the vector M(x)fnd tangent to the level surfaces of constant stored energy

{x : V (x) = c}. Thus, any unstable behavior contained in fnd does not increment, nor

diminish, the value of the energy function V (x) along the controlled trajectories of the

transformed system.

This decomposition approach for control affine systems is similar to the one used throughout

this thesis. However, three differences should be pointed out. In the proposed approach,

the components equivalent to fnd(x) and fI(x) are not distinguished. However, as noted

in (Sira-Ramı́rez and Angulo-Núñez, 1997), those two components might not be easily

distinguishable and therefore, can be lumped together in practice. Also, the approach taken

by Sira-Ramı́rez and Angulo-Núñez (1997) for feedback passivation is based on an inversion

of LgV (x) for the controller computation. This inversion is avoided in the constructions

of Chapters 4 and 5. Finally, the decomposition approach considered in the present thesis

does not assume a priori knowledge of a potential (or of a Lyapunov function).
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The decomposition technique proposed in the present chapter is oriented toward dissipative

Hamiltonian realization. Elements of generalized Hamiltonian systems are reviewed in the

next section. Connections between the approach from (Sira-Ramı́rez and Angulo-Núñez,

1997) and the material that follows are given in (van der Schaft, 2000, Chapter 4).

3.2.2 Generalized Hamiltonian Decomposition

This section reviews the contributions from (Wang et al., 2003, 2005, 2007), beginning with

the following definitions, given originally in (Cheng et al., 2000).

Definition 3.2.4. A dynamic system

ẋ = f(x), x ∈ R
n (3.18)

is said to have a generalized Hamiltonian realization (GHR) if there exists a suitable

coordinate chart and a Hamiltonian function H(x) such that (3.18) can be expressed as

ẋ = T (x)∇H(x), (3.19)

where T (x) is a n × n matrix called the structure matrix and ∇H(x) = ∂H
∂x

is a n × 1

vector. If the structure matrix can be expressed as T (x) = J(x) − R(x), with a skew-

symmetric J(x) and a symmetric positive semi-definite R(x), then system (3.18) is called

a dissipative Hamiltonian realization. Furthermore, if R(x) > 0, (3.18) is called a

strict dissipative Hamiltonian realization.

This definition is extended to control affine systems in the following definition.

Definition 3.2.5. A controlled dynamic system

ẋ = f(x) + g(x)u (3.20)
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is said to have a state feedback Hamiltonian realization if there exists a suitable state

feedback u(x) = α(x) + v such that the closed-loop system can be expressed as

ẋ = T (x)∇H(x) + g(x)v. (3.21)

If T (x) can be expressed as T (x) = J(x) − R(x), with a skew-symmetric J(x) and R(x) ≥

0, (> 0), then system (3.20) is called a feedback (strict) dissipative Hamiltonian

realization. Furthermore, if R(x) > 0, (3.20) is called a strict dissipative Hamiltonian

realization.

The realization problem was tackled in the following way by Wang et al. (2003). First, let

Jf denote the Jacobian matrix. The approach proposed in (Wang et al., 2003) is based on

the following proposition (see also Cheng et al. (2002)):

Proposition 3.2.6. If the Jacobian matrix Jf is invertible, then

ẋ = J−T
f

∂H

∂x
, H =

1

2

n
∑

i=1

f2i (3.22)

is a GHR of system (3.18).

The decomposition technique is summarized in the following result:

Theorem 3.2.7. If JTf + Jf is negative definite, then system (3.18) has a strict dissipative

Hamiltonian realization as follows:

ẋ = (J(x) −R(x))∇H (3.23)

where J(x) is some n×n skew-symmetric matrix R(x) is some n×n positive definite matrix

and H(x) = 1
2

∑n
i=1 f

2
i (x).

To keep the exposition complete, it is noted that the proof of this theorem given in (Wang

et al., 2003), makes use of the following lemma.
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Lemma 3.2.8. Assume J(x) is an n × n skew-symmetric matrix and R(x) is an n × n

positive (semi)-definite matrix. If J(x) − R(x) is non-singular, then there exists a skew-

symmetric matrix J1(x) and a positive (semi)-definite matrix R1(x) such that

(J(x) −R(x))−1 = J1(x)−R1(x). (3.24)

Remark 3.2.9. In the case where J(x) is singular, a regularization technique is presented

in (Wang et al., 2003).

In (Wang et al., 2005), the generalized Hamiltonian realization concept was generalized to

time-varying systems in the following way.

Definition 3.2.10. A time-varying dynamical system

ẋ = f(t, x), x ∈ R
n, t ∈ R

+ (3.25)

is said to have a generalized Hamiltonian realization (GHR) if there exists a suitable

coordinate chart and a Hamiltonian function H(t, x) such that (3.25) can be expressed as

ẋ = T (t, x)∇H(t, x), (3.26)

where T (t, x) is the structure matrix. Furthermore, if T (t, x) can be decomposed asM(t, x) =

J(t, x) − R(t, x), with J(t, x) skew-symmetric and R(t, x) ≥ 0, then (3.26) is called a dis-

sipative Hamiltonian realization.

The extension to control affine systems is given in the following definition.

Definition 3.2.11. A controlled dynamical system

ẋ = f(t, x) +

m
∑

i=1

gi(t, x)ui (3.27)
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is said to have a feedback generalized Hamiltonian realization if there exists a feedback

law u(t, x) = α(t, x) + v such that the closed-loop system can be expressed as

ẋ = T (t, x)∇H(t, x) + g(t, x)v, (3.28)

where g(t, x) = (g1(t, x), . . . , gm(t, x)) and u = (u1, . . . , um)
T

The following results were presented in (Wang et al., 2005).

Proposition 3.2.12. Consider the following time-varying nonlinear system

ẋ = f(t, x) + g(t, x)u, f(t, 0) = 0 (3.29)

where x ∈ R
n, t ∈ R

+, u ∈ R
m. For arbitrary positive definite function H(x), (3.29) can be

expressed as

ẋ = (J(t, x) + P (t, x))
∂H

∂x
(x) + g(t, x)u, (3.30)

where

P (t, x) =















〈f(t,x),∇TH(x)〉
‖∇H‖2

I, x 6= 0

0, x = 0

(3.31)

is symmetric,

J(t, x) =















1
‖∇H‖2

[

ftd(t, x)
∂HT

∂x
(x)− ∂H

∂x
(x)ftd(t, x)

]

, x 6= 0

0, x = 0

(3.32)
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is skew-symmetric, 〈·, ·〉 denotes the inner product and

ftd(t, x) = f(t, x)− fgd(t, x) (3.33)

fgd(t, x) =
〈f(t, x),∇TH(x)〉

‖∇H‖2 ∇H, x 6= 0. (3.34)

The connection between generalized Hamiltonian realization and the stability (and stabi-

lization) of nonlinear control affine systems was established, from a less restrictive point of

view, in (Wang et al., 2007), where the concepts of approximate dissipative Hamiltonian

realization and stability were introduced.

Definition 3.2.13. System (3.18) is said to have a k-th degree approximate DHR

(k ≥ 1) if there exists a suitable coordinate chart and a Hamiltonian function H(x) such

that (3.18) can be expressed as

ẋ = (J(x)−R(x))∇H(x) +O(‖x‖k+1), (3.35)

with a skew-symmetric J(x) and a symmetric positive semi-definite R(x).

Definition 3.2.14. System (3.20) is said to have a state feedback k-th degree approxi-

mate DHR (k ≥ 1) if there exists a feedback law u(x) = α(x)+ v such that the closed-loop

system can be expressed as

ẋ = (J(x)−R(x))∇H +O(‖x‖k+1) + g(x)v, (3.36)

with a skew-symmetric J(x) and a symmetric positive semi-definite R(x).

The stability arguments are given in the following.

Proposition 3.2.15. If the Hamiltonian function H(x) has a local minimum at the origin

and if R(x)∇H ∼ O(‖x‖l) as x→ 0, 0 ≤ l ≤ k, then (3.35) is locally stable.
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Proof: Choose H(x) as the Lyapunov function, then

Ḣ = −dHR(x)∇H + dH ·O(‖x‖k+1), dH = ∇TH. (3.37)

it follows that Ḣ ≤ 0 in some neighborhood of the origin.

Definition 3.2.16. A scalar function V (x) is called a k-th degree approximate Lya-

punov function for (3.18) if

(1) V (x) is positive definite,

(2) V̇ + O(‖x‖k+1) = δk(x) ≤ 0 holds along the trajectory of the system, where δk(x) ∼

O(‖x‖l), as x→ 0, 0 ≤ l ≤ k.

Finally, from definition 3.2.16, one obtains (Wang et al., 2007):

Proposition 3.2.17. If V (x) is a k-th degree approximate Lyapunov function for the system

above, then V (x) is a local Lyapunov function for the system.

The approximate dissipative realization approach presented in the remainder of the present

chapter relies on differential one-forms, reviewed in Appendix A. The essential element of

the approach proposed here is to use a radial homotopy operator. It is used to achieve

a decomposition similar to the ones presented in Section 3.2.1 and the approach of Wang

et al. (2005) without an a priori knowledge of a Hamiltonian function or a storage function.

The homotopy operator is used to compute a local dissipative potential. The construction

of this operator is given in the next section.
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3.3 Homotopy Decomposition

This section presents the construction of a homotopy operator H, i.e., a linear operator on

elements of Λ(Rn) that satisfies the identity

ω = d(Hω) +Hdω, (3.38)

for a given differential form ω ∈ Λ(Rn). The review presented here follows (Edelen, 2005,

Chapter 5). The first step in the construction of a homotopy operator is to define a star-

shaped domain on R
n.

An open subset S of Rn is said to be star-shaped with respect to a point p0 = (x01, . . . , x
0
n) ∈

S if the following conditions hold:

• S is contained in a coordinate neighborhood U of p0.

• The coordinate functions of U assign coordinates (x01, . . . , x
0
n) to p

0.

• If p is any point in S with coordinates (x1, . . . , xn) assigned by functions of U , then

the set of points (x+ λ(x− x0)) belongs to S, ∀λ ∈ [0, 1].

A star-shaped region S has a natural associated vector field X, defined in local coordinates

by

X(x) = (xi − x0i )∂xi , ∀x ∈ S. (3.39)

Without loss of generality, except when noted, the star-shaped domain is centered at the

origin, hence X(x) = xi∂xi .

For a differential form ω of degree k on a star-shaped region S centered at the origin, the

homotopy operator is defined, in coordinates, as

(Hω)(x) =

∫ 1

0
X(x)yω(λx)λk−1dλ, (3.40)
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where ω(λx) denotes the differential form evaluated on the star-shaped domain in the local

coordinates defined above.

The important properties of the homotopy operator that are used in the sequel are the

following:

1. H maps Λk(S) into Λk−1(S) for k ≥ 1 and maps Λ0(S) identically to zero.

2. dH+Hd = identity for k ≥ 1 and (Hdf)(x) = f(x)− f(x0) for k = 0.

3. (HHω)(xi) = 0, (Hω)(x0i ) = 0.

4. XyH = 0, HXy = 0.

The first part of the right hand side of (3.38), d(Hω), is a closed form, since d ◦ d(Hω) = 0.

Since by property (1) of the homotopy operator, for ω ∈ Λk(S), we have (Hω) ∈ Λk−1(S),

d(Hω) is also exact on S. We denote the exact part of ω by ωe = d(Hω) and the anti-exact

part by ωa = Hdω. It is possible to show that ω vanishes on R
n if and only if ωe and ωa

vanish together (Edelen, 2005).

In the sequel, the homotopy operator is applied on one-forms. Since ωe is an exact one-

form, (Hωe) computed by homotopy is a dissipative potential for the system (Edelen, 1973).

A non-dissipative potential is associated with the anti-exact part, but on the star-shaped

domain S, ωa does not contribute to the dissipative part of the system. In other words, ωa

belongs to the kernel of H, which can be seen by applying property (3) from above to the

definition of ωa = ω − ωe.

A one-form for the system (3.18) is constructed in the following way. Let X =
∑n

i=1 fi∂xi

denote the vector field associated with (3.18). Define a non-vanishing closed two-form Ω on

R
n as

Ω =
∑

1≤i<j≤n

dxi ∧ dxj . (3.41)
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Here, the non-vanishing two-form Ω is not necessarily defined in a canonical way, since the

objective is ultimately to compute an admissible potential (and not a minimal one). For

example, if n = 3, Ω could be given as

Ω = dx1 ∧ dx2 + dx1 ∧ dx3 + dx2 ∧ dx3. (3.42)

The orientation of the two-form will be fixed, if necessary, by checking the sign of the

obtained dissipative function. Then, a (possibly non-closed) one-form for the system is

computed by taking the interior product of Ω with respect to X, i .e.,

ω = XyΩ. (3.43)

Different approaches to compute a characteristic one-form were explored in (Banaszuk,

1995) and presented in (Edelen, 2005), however those approaches are not considered in this

thesis. The one-form ω defined above will serve as the basis for the computations presented

below. The choice of Ω is arbitrary, and gives some degree of freedom for the constructions

given in this thesis, to ensure that the desired properties on the obtained one-form and

the dissipative potential. This certainly limits the conclusions given below, but from a

constructive point of view, it gives to the user some freedom in applications, as presented

in Chapters 4 and 5. In the present chapter, ωe obtained from

ωe = d(Hω) (3.44)

will be used to compute a coordinate transformation and to study the dissipative Hamilto-

nian realization problem.



CHAPTER 3. DECOMPOSITION AND DISSIPATIVE REALIZATION 46

3.4 Approximate Representation

The objective of this section is to show how to compute a change of coordinates to ex-

press the exact one-form ωe obtained by application of the homotopy operator on ω(x) =

(XyΩ)(x) in new coordinates. To set the problem, let the vector field X(x) =
∑n

i=1 fi(x)∂xi

be known, i = 1, . . . , n. Assume that X is of class Ck with k ≥ 2. It is also assumed that

X has an equilibrium point at the origin. First, define a non vanishing closed two-form

Ω =
∑

1≤i<j≤n dxi ∧ dxj on R
n.

Remark 3.4.1. The choice of a two-form is arbitrary. Depending on the problem and the

structure of the vector field X(x), a better choice for Ω than the one considered here might

be possible. As an example, for the four-tanks system considered in (Hudon and Guay,

2009a) and mentioned in Section 3.6, an educated guess, based on the tanks coupling was

used. A different approach to obtain a characteristic one-form for the system was used in

(Banaszuk and Hauser, 1996).

Taking the interior product of Ω with respect to the vector field X, the desired one-form

ω(x) is computed as follows

ω = XyΩ (3.45)

=
∑

1≤i<j≤n

(fidxj − fjdxi) . (3.46)

Given a star-shaped region centered at the origin, with associated vector field X(x) = xi∂xi ,

(Hω)(x) =

∫ 1

0
(Xyω(λx)) dλ. (3.47)

Letting f̃i denote the values of the components of f after integration with respect to λ, the
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dissipative potential is given as

(Hω)(x) =
∑

1≤i<j≤n

(

f̃i · xj − f̃j · xi
)

:= F̃ (x). (3.48)

Taking the exterior derivative, the exact one-form ωe is as follows

ωe(x) =

n
∑

i=1

∂F̃

∂xi
dxi. (3.49)

As a result, the anti-exact form ωa is then given by

ωa = ω − ωe

=
∑

1≤i<j≤n

(

fi −
∂F̃

∂xj

)

dxj −
(

fj +
∂F̃

∂xi

)

dxi. (3.50)

Remark 3.4.2. As a special case, if one defines Ω to be the canonical symplectic two-form,

i .e.,

Ω =
n
∑

i=1

dxi ∧ dpi, (3.51)

and the vector field XH as the vector field generated by a known Hamiltonian H,

ẋi =
∂H

∂xi
(3.52)

ṗi = −∂H
∂pi

, (3.53)

for i = 1, . . . , n, then the one-form ω obtained by taking the interior product XHyΩ is closed,

hence ω = ωe = −dH (see Farber (2004, Chapter 2)).

To study the approximate dissipative Hamiltonian realization problem, a particular target
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system is now defined1. Consider the following dissipative Hamiltonian system

ż = (J(z)−R(z))∇H(z) (3.54)

with z ∈ R
n and H, the dissipative Hamiltonian. Following the argument given in (Cheng

et al., 2002), it can be shown that if f(0) = 0, the Hamiltonian function

H(z) =
1

2

n
∑

i=1

z2i (3.55)

is a suitable locally defined dissipative potential for the system. Assuming for simplicity

that n is even, the simplest form for J = −JT in suitable dimensions is

J =







0 −In
2
×n

2

In
2
×n

2
0






(3.56)

where I denotes the identity matrix. In the case where n is odd, J can be complemented

with an extra column and an extra row of 0. The dissipative component in the targeted

system is set as R = In×n. In this particular case, it can be shown that (Hω)(z) = −H(z)

and the closed one-form obtained by the procedure depicted in the last section is given by

ω̄e =
n
∑

i=1

−zidzi. (3.57)

It can be observed that the obtained anti-exact part is

ω̄a = (J∇H)dz (3.58)

which corresponds to the tangential component from (Wang et al., 2003).

The problem of expressing the original system in the form of the reference dissipative

1The construction presented here obviously relies on the particular choice of dissipative Hamiltonian
realization described here. This choice could be different, depending on the system to be considered.
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Hamiltonian system is now considered. The idea exploited here consists in finding conditions

under which there exists a diffeomorphism preserving the exact form, i .e., a diffeomorphism

between the reference exact one-form ω̄e(z) defined in (3.57) and the exact one-form for the

system of interest ωe(x) given in (3.57). To guarantee that the closed one-form is preserved,

the following condition has to be fulfilled:

ω̄e = Φ(ωe) (3.59)

−
n
∑

i=1

zidzi = Φ

(

n
∑

i=1

∂F̃

∂xi
dxi

)

. (3.60)

First, the terms −zi can be identified directly with ∂F̃
∂xi

. Then to identify dzi and dxi, the

problem is to ensure that

dΦ = In×n. (3.61)

Hence, the transformation considered here is such that dΦ = dz ·
(

d
(

∂F̃
∂xi

)

)−1
= In×n. Since

ωe is closed, i .e.,

∂2F̃

∂xi∂xj
=

∂2F̃

∂xj∂xi
, (3.62)

the particular coordinate transformation is such that

dΦ =

(

n
∑

i=1

∂2F̃

∂x2i

)−1

. (3.63)

The transformation is hence given by

zi = −∂F̃
∂xi

(

n
∑

i=1

∂2F̃

∂x2i

)−1

. (3.64)

Hence, for this particular choice of coordinate transformation to be admissible, the following
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condition of the potential F̃ has to be fulfilled

n
∑

i=1

∂2F̃

∂x2i
6= 0. (3.65)

The transformation between closed one-forms can be related to the Poincaré lemma, as

discussed in (Yap, 2009). This particular form of transformation could also be related to

the computations involved in the realization of Brayton–Moser equations and the existence

of a dissipative potential in the context of power shaping where the Poincaré lemma is used,

as presented in (Garćıa-Canseco et al., 2010).

The examples in the next section will show the application of this particular transformation

is the context of approximate dissipative Hamiltonian realization.

3.5 Applications

3.5.1 Two Simple Examples

In this section, two simple examples are considered to illustrate the proposed construction.

First, consider the system given by

ẋ1 = x21x2 − x31 := f1(x) (3.66)

ẋ2 = −x1x22 − x32 := f2(x). (3.67)

The vector field associated with this system is expressed as X|x = f1(x)∂x1 + f2(x)∂x2 . Let

the two-form Ω be given by

Ω = dx1 ∧ dx2. (3.68)
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Computing ω = XyΩ gives

ω = −f2dx1 + f1dx1. (3.69)

One can check that ω is not closed (i.e., dω 6= 0 since ∂f1
∂x1

+ ∂f2
∂x2

6= 0).

A homotopy operator H centered at the origin is constructed by letting

X(x) = x1∂x1 + x2∂x2 (3.70)

and by evaluating the one-form ω on the star-shaped domain. The potential is given by

(Hω)(x) =

∫

1

0

(

−λ3x1x22(−λx1 − λx2) + λ3x3
1
(λx2 − λx1)

)

dλ (3.71)

F̃ =
1

4
(−x3

1
x2 + 2x2

1
x2
2
+ x1x

3

2
). (3.72)

The exact part ωe of the one-form ω is given by

ωe(x) = d(Hω)(x)

= x2

(

1

4
x22 + x1x2 −

3

4
x21

)

dx1 + x1

(

−1

4
x21 + x1x2 +

3

4
x22

)

dx2. (3.73)

The anti-exact part is given by

ωa = x2(x2 −
3

2
x1)dx1 + x1(x1 +

3

2
x2)dx2. (3.74)

One locally admissible dissipative potential for the system is given by F̃ , as noted in Section

3.3. However, the interest here is to use a change of coordinates to define a potential that

is easier to use, such as the one of Section 3.4. Using the state transformation proposed in
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the last section, the new coordinates are given by

z1 = −x2
−3

4x
2
1 + x1x2 +

x2
2

4

x21 + x22
(3.75)

z2 = −x1
−1

4x
2
1 + x1x2 +

3x2
2

4

x21 + x22
. (3.76)

The transformation maps the origin of (x1, x2) to the origin of (z1, z2). As noted above, a

suitable dissipative potential for the system is given by

H(z) =
1

2
(z21 + z22). (3.77)

In the neighborhood of the origin, a regular positive function that can be used as a dissipative

potential for the system is obtained, as depicted in Figure 3.1a.
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Figure 3.1: Dissipative potential — first example

In the new coordinates,

ω̄e(z) =
1

2
(−z1dz1 − z2dz2), (3.78)
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Figure 3.2: Time-derivative of the dissipative potential — first example

from which a Lyapunov function can be computed using X̄(z) = (−z1−z2)∂z1+(z1−z2)∂z2 ,

as

V (z) = X̄yω̄e (3.79)

=
1

2
(z21 + z22). (3.80)

Taking the derivative with respect to time, we have

V̇ = −(z21 + z22). (3.81)

The original system is therefore locally dissipative in the z-coordinates. Moreover, a suitable

dissipative potential for the system is given by

H(x) =
1

2
(z21(x) + z22(x)). (3.82)

Since the nonsingular transformation is mapping the origin in x-coordinates to the origin
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of the z-coordinates, the origin is asymptotically locally stable by Lyapunov theory.

Consider, as a second example, a spring-mass system with damping, given by

ẋ1 = x2 := f1(x) (3.83)

ẋ2 = −g
l
sin(x1)−

k

m
x2 := f2(x) (3.84)

with positive parameters g, l, m and k. The vector field associated with this system is

expressed as X(x) = f1(x)∂x1 + f2(x)∂x2 . Let the two-form Ω be given by

Ω = dx1 ∧ dx2. (3.85)

Computing ω(x) = XyΩ leads to

ω = −f2dx1 + f1dx1. (3.86)

One can check that ω(x) is not closed.

Constructing the homotopy operator H centered at the origin by letting

X(x) = x1∂x1 + x2∂x2 (3.87)

and evaluating the one-form ω(x) on the star-shaped domain, leads to the potential

F̃ = (Hω)(x) =
1

2

2gm(1− cos(x1) + klx1x2 + lmx2
2

lm
. (3.88)

The exact part ωe(x) of the one-form ω(x) is given by

ωe(x) = d(Hω)|x

=
1

2lm
((2gm sin(x1) + klx2)dx1 + (klx1 + 2lmx2)dx2) . (3.89)
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The anti-exact part is given as

ωa(x) =
1

2km
(x2dx1 − x1dx2) . (3.90)

Using the construction proposed in the last section, the transformation (3.64) is applied

using F̃ and leads to:

z1 = −g sin(x1) +
x2
2

g cos(x1) + 1
(3.91)

z2 = −
x1
2 + x2

g cos(x1) + 1
. (3.92)

The transformation maps the origin of (x1, x2) to the origin of (z1, z2). As noted above, a

suitable dissipative potential for the system is given by

H(z) =
1

2
(z21 + z22). (3.93)

Fixing the parameters to be g = 9.8, l = 1, m = k = 10, a regular positive function

is obtained in a neighborhood of the origin, as presented in Figure 3.3b, with negative

derivative V̇ (z) in a neighborhood of the origin (Figure 3.4b). However, expressing the

potential in the x-coordinates, see Figures 3.3a and 3.4a, it is clear that the obtained

potential function is not strictly convex at the origin.

As discussed in (Khalil, 2002) and (Coron, 2007), stability analysis for that particular case

relies on the Lasalle’s invariance principle, or more precisely on the corollary result of

Barbashin and Krasovskĭı (see for example Khalil (2002, Chapter3)). What is important to

realize at this point is that the maximal invariant set of the computed dissipative potential

is the origin, since ω = ωe + ωa vanishes at the origin and only there, i .e., the anti-exact

part vanishes only at the origin. This observation will be used in the next chapter.
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Figure 3.3: Dissipative potential — mass-spring system

-1.0

-0.5
x2

0.0

0.5

1.0
-1.0

-0.5

0.0
x10.5

1.0-1.0

-0.75

-0.5

-0.25

0.0

(a) x-coordinates

-1.0

-0.5
z2

0.0

0.5

1.0
-1.0

-0.5

0.0
z10.5

1.0-4

-3

-2

-1

0

(b) z-coordinates

Figure 3.4: Time derivative of the dissipative potential — mass-spring system
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3.5.2 Representation of a Lotka–Volterra System

The construction presented in this chapter is here applied to a special class of predator-

prey systems, the Lotka–Volterra dynamics, that will be used throughout Chapters 4 and

5. Representation of Lotka–Volterra as Hamiltonian systems was presented in (Hernández-

Bermejo and Fairén, 1998) and (Szederkényi and Hangos, 2004) in the context of control,

see also (Evans and Findley, 1999) and references therein for a historical account and some

special solutions. Results on stability and global behavior of Lotka–Volterra systems are

summarized in (Gouzé, 1993), whereas multi-stability was considered recently in (Efimov,

2009).

The general form of a Lotka–Volterra ecology (Ortega et al., 1999) is given as

ẋi = xi



ki +
∑

j 6=i

aijxj



 , i = 1, . . . , n− 1

ẋn = xn



kn +
∑

j 6=n

anjxj





with ki, the net birth/mortality rate coefficients, aij = −aji, ∀i 6= j, the predation coeffi-

cients, x ∈ R
n
+. Following (Ortega et al., 1999), consider a two-dimensional Lotka–Volterra

system:

ẋ1 = ax1 − bx1x2 (3.94)

ẋ2 = −cx2 + bx1x2, (3.95)

with x1 ≥ 0 and x2 ≥ 0 and where a, b, c are known positive constants. The uncontrolled

case has 2 equilibria, a saddle equilibrium at the origin and a center equilibrium surrounded

by stable periodic orbits at x∗ := [x∗1, x
∗
2]
T = [ c

b
, a
b
]T .
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Using the above discussion, it follows that the system (3.94)-(3.95) has a dissipative repre-

sentation as in the previous section, with the local change of coordinates given by

z1 =
1

4

x1(−2bx1 − 4bx2 + 3c+ 3a

b(x1 + x2)
(3.96)

z2 =
1

4

x2(−4bx1 − 2bx2 + 3c+ 3a

b(x1 + x2)
(3.97)

in a neighborhood of the equilibrium at (x∗1, x
∗
2)
T = ( c

b
, a
b
)T .

3.6 Summary and Extensions

In this chapter, a procedure to study autonomous systems using local dissipative Hamil-

tonian realization for nonlinear dynamical systems has been derived. Taking the interior

product of a non-vanishing two-form with respect to the vector field defining the system, a

(possibly non-closed) one-form was obtained. Constructing a locally defined homotopy op-

erator on a star-shaped domain, it was shown how to locally decompose the obtained form

into an exact and an anti-exact one-form. A coordinate transformation between the dissi-

pative potential and a known potential was defined using the exact form. The coordinate

transformation enables one to explicitly write the dissipative potential for the original sys-

tem as an approximate dissipative Hamiltonian realization. The obtained anti-exact form

is associated to a non-dissipative potential that do not contribute locally to the value of the

dissipative potential on the star-shaped domain. Since the approach is local, an interesting

study would be to compute the domain of application of the decomposition outlined here.

From the discussion in Chapters 4 and 5, this could lead to an approach to compute the

domain of attraction of an equilibrium, see for example (Genesio et al., 1985) for a summary

of the existing techniques for this problem.

One aspect not addressed in this thesis is the potential use of the proposed decomposition to

energy shaping analysis. An example of application in chemical engineering for application



CHAPTER 3. DECOMPOSITION AND DISSIPATIVE REALIZATION 59

of energy shaping methods is the four-tank process considered by Johnsen and Allgöwer

(2007). The dynamic model for the four-tank system is given as a control affine nonlinear

system of the form

ẋ = f(x) + g(x)u (3.98)

where x ∈ R
4 are the levels in the respective tanks and u ∈ R

2 are the manipulated flows.

Using the model proposed in (Johnsen and Allgöwer, 2007), f(x) and g(x) are given by

f(x) =
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, (3.99)

g(x) =



















γ1
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0

0 γ2
A2

0 1−γ2
A3

1−γ1
A4

0



















. (3.100)

The parameters Ai represent the cross sections of the respective tanks i = 1, . . . , 4, such that

the volumes are given by Vi = Aixi. The parameters ai are the cross section of the outlet

flows. The gravitational acceleration is denoted by g. The parameters γ1, γ2 ∈ [0, 1] are

the valve parameters that determined how much of the flows ui are re-directed in bottom

tanks i = 1, 2. If the levels of tanks 1 and 2 are the only measured states, it was shown in

(Johansson, 2000) that the condition for stable zero dynamics is that γ1 + γ2 6= 1.

The problem of stabilizing the quadruple-tank process using an approximate dissipative
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Hamiltonian realization was considered in (Hudon and Guay, 2009a). To stabilize the

system at a desired admissible steady-state, (x∗, u∗), a controller of the form

u1(t) = k11(x) · x1(t) + k12(x) · x2(t) (3.101)

u2(t) = k21(x) · x1(t) + k22(x) · x2(t), (3.102)

was proposed, assuming that all tanks levels are measured. The idea in (Hudon and Guay,

2009a) was to cancel the deviation of the system from a Hamiltonian system using feedback.

The stabilizing feedback controller was designed by canceling the anti-exact part of the one-

form obtained by the procedure outlined in this chapter. For this example, it was shown

that the restriction ωa ≡ 0, using the controller given above, led to a set of algebraic

equations to be solved for kij(x), i, j = 1, 2. One advantage of this approach, as suggested

in (Ramı́rez et al., 2009), is that inversion of the dynamics is avoided, i .e., the approach is

applicable even for cases where γ1 + γ2 = 1.

However, this approach to stabilization of nonlinear systems is limited. For example, apply-

ing the method to non-isothermal reactors, such as the example considered in Ramı́rez et al.

(2009), it appears that the anti-exact form might not contain any information on the desired

controller. For this reason, the classical approach of Jurdjevic and Quinn for stabilization

by damping is considered in Chapters 4 and 5, using the dissipative potential computed in

the present Chapter as a basis for construction of stabilizing feedback controllers.



Chapter 4

Stabilization of Time-Independent

Systems

This chapter presents the main result of the thesis. It is shown that the locally-defined

potential obtained from application of the homotopy operator, as demonstrated in Chapter

3, can be used to design smooth feedback stabilizers for time-independent control affine

systems following the procedure proposed originally in (Jurdjevic and Quinn, 1978). Under

some restrictions on the anti-exact part, it is shown that the dissipative potential can

be shaped locally to compute a Lyapunov function for the closed-loop system, a problem

studied by Faubourg and Pomet (2000) and Mazenc and Malisoff (2006).

The construction of a Lyapunov function based on the dissipative potential is demonstrated

in Section 4.1. In Section 4.2, this result is used for the design of dynamic state feedback

controllers, where a dissipative potential is used to stabilize the origin in an extended space.

Finally, as an extension of Jurdjevic–Quinn technique, it is shown in Section 4.3, following

(Bacciotti and Mazzi, 1995), that the homotopy-based decomposition approach can be used

for the stabilization of closed orbits. The summary in Section 4.4 presents some possible

extensions of the proposed approach.

61
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4.1 Control Affine Systems Stabilization

4.1.1 Introduction

Consider control affine systems of the form

ẋ = X0(x) +

m
∑

k=1

ukXk(x) (4.1)

with states x ∈ Rn, and control u = (u1, . . . , um) ∈ R
m. It is assumed that the vector fields

Xk are of class C∞ and that Xk(0) = 0, for k = 0, 1, . . . ,m. The original works of Jacobson

(1977) and Jurdjevic and Quinn (1978) showed, under certain conditions and assuming the

knowledge of a Lyapunov function V (x), that a feedback law

uk = −(Xk · ∇TV )(x), k = 1, . . . ,m (4.2)

asymptotically stabilizes system (4.1) (see for example Bacciotti (1992), Sontag (1998),

Coron (2007), Malisoff and Mazenc (2009) and references therein). A well-known limitation

of this approach is that there is no systematic way to build the required Lyapunov function

a priori.

A connection between mechanical systems and the construction of Lyapunov functions for

this damping feedback approach was pointed out in Mazenc and Malisoff (2006) using a

Hamiltonian function (see also Malisoff and Mazenc (2009)). As illustrated in Ortega et al.

(2002), the determination of an admissible Hamiltonian function for a general nonlinear

system remains an open problem. In Wang et al. (2007), approximate dissipative Hamilto-

nian realization techniques were developed with connections to stabilization. It was shown

how k-th degree approximate dissipative Hamiltonian systems can be used to solve the

realization problem, and how an associated k-th degree approximate Lyapunov function

can be used to study the stability of such systems. Part of their argument, presented in
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Section 3.2, was based on a decomposition of the dynamics into a gradient part (generated

by a potential) and a tangential part. This observation motivates the approach considered

in the present chapter to construct a local dissipative function ψ(x) to stabilize control

affine nonlinear systems of the form (4.1) using a damping feedback controller of the form

uk = −Xk · ∇Tψ(x), k = 1, . . . ,m.

In Chapter 3, it was shown that a radial homotopy operator can be used to decompose the

drift dynamics into a dissipative (exact) part and a non-dissipative (anti-exact) one. More

precisely, a one-form for the system was obtained by taking the interior product of a non

vanishing two-form with respect to the drift vector field1. Then, a radial homotopy operator

centered at the desired equilibrium point for the system was designed. Applying this linear

operator on the aforementioned one-form for the system, an exact one form generated by the

desired potential function and an anti-exact form that generates the tangential dynamics

were obtained. In this chapter, it is shown how this procedure, using the interior product of

a non-vanishing two-form with the drift vector field X0(x) of (4.1), leads to the construction

of a first function ψ(x) (an auxiliary scalar field following the nomenclature proposed in

Malisoff and Mazenc (2009) and Faubourg and Pomet (2000)) that can be used locally by a

second application of the decomposition method to obtain a Lyapunov function for stability

characterization of the closed-loop system.

The idea of using an auxiliary scalar function ψ(x), with the property that (∇Tψ · X0 <

0)(x), to obtain a Lyapunov function for the control affine system (4.1) under damping

feedback control was studied in Faubourg and Pomet (2000) for homogeneous system (see

for example Hermes (1991)) using the flow of a vector field constructed using a linear

combination of elements of {adjX0
Xk, j ∈ N, k = 1, . . . ,m}. Another solution to the

problem was presented in Mazenc and Malisoff (2006).

1The choice of the two-form is arbitrary, however in the construction that follows, the choice of the
two-form will be such that the obtained potential has the desired properties.
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4.1.2 Problem Formulation

Consider the control affine system (4.1) in a neighborhood O of the origin in R
n.

Definition 4.1.1 (Assignable Lyapunov Functions). Let ψ(x) be a positive definite and

radially unbounded function. A continuous u : R
n → R

m is said to assign ψ(x) to be

a Lyapunov function for the closed loop system (4.1) if the derivative of ψ(x) along the

trajectories of the closed loop system is negative definite, i .e., that if for all x ∈ R
n \ {0},

(

LX0
· ψ +

m
∑

k=1

ukLXk
· ψ
)

(x) < 0. (4.3)

Following (Coron, 2007), the statement of Artstein’s theorem Artstein (1983) is first recalled.

Theorem 4.1.2. Let ψ(x) be a positive radially unbounded function. There exists a contin-

uous feedback that assigns ψ(x) to be a Lyapunov function for the closed loop system (4.1)

if and only if

(a) It is a control Lyapunov function, i .e., for all x ∈ R
n \ {0},

(LXk
)ψ(x) = 0 ⇒ (LX0

ψ)(x) < 0, k = 1, . . . ,m. (4.4)

(b) It satisfies the small control property, i .e., for any ǫ > 0, there is a δ > 0 such that

for all x ∈ R
n \ {0},

‖x‖ < δ ⇒ ∃u















‖u‖ < ǫ

LX0
+
∑m

k=1 ukLXk
ψ(x) < 0.

(4.5)

In the sequel, stabilization by damping feedback is considered, i .e., feedback law u =

(u1, . . . , um)
T defined by

uk = −Xk(x) · ∇ψ(x), ∀ k ∈ 1, . . . ,m. (4.6)
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In that sense, the ultimate objective is to compute assignable Lyapunov functions for

Jurdjevic–Quinn feedback controllers built using the dissipative potential constructed as

above.

With this choice of damping feedback, one has for all x ∈ R
n \ {0}

dψ

dt
= X0(x) · ∇ψ(x)−

m
∑

k=1

(Xk(x) · ∇ψ(x))2 < 0. (4.7)

Therefore, 0 ∈ R
n is a stable point for the closed-loop system ẋ = X(x, u(x)). By Lasalle’s

invariance principle, 0 ∈ R
n is globally asymptotically stable if for every x(t) ∈ C∞(R;Rn),

for all t ∈ R,

ẋ(t) = X0(x(t)), (4.8)

Xk(x(t)) · ∇V0(x(t)) = 0, ∀k ∈ 0, . . . ,m, (4.9)

one obtains x(t) = 0. In the present thesis, the result is limited to a neighborhood of the

equilibrium, denoted O ⊂ R
n.

An alternate formulation of this result is given by the following theorem (a proof of this

statement can be found in Coron (2007)).

Theorem 4.1.3. Given the smooth control affine system (4.1) and a function ψ(x) such

that LX0
ψ < 0 for every x ∈ R \ {0}. Suppose moreover that

span{X0(x), ad
k
X0
Xi(x) : i = 1, . . . ,m, k ∈ N} = R

n (4.10)

on R
n \ {0}. Then the feedback law

ui(x) = −(LXi
ψ)(x),∀i ∈ 1, . . . ,m (4.11)

globally asymptotically stabilizes the control affine system (4.1).
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As noted in (Coron, 2007), the function ψ(x) is not a control Lyapunov function in general.

Other Lyapunov functions construction methods based on the prior knowledge of a function

ψ(x) satisfying the weak Jurdjevic–Quinn conditions were given in (Faubourg and Pomet,

2000) and (Mazenc and Malisoff, 2006). In the next section, it is shown under which

conditions a Lyapunov function for the closed-loop system can be computed using dissipative

potentials obtained as in Chapter 3.

4.1.3 Damping Feedback and Deformation using Homotopy Operator

Define a non-vanishing closed two-form Ω on R
n as2

Ω =
∑

1≤i<j≤n

dxi ∧ dxj . (4.12)

A first one-form associated to the system is obtained by contracting this two-form with

respect to the drift vector field,

ω0 = X0yΩ. (4.13)

From Section 3.3, it is known that a locally defined homotopy operator on R
n can be

constructed such that ω0 = ω0,e + ω0,a. Since ω0,e is exact, it is given as the exterior

derivative of a potential function ψ and ω0 is re-written as

ω0 = −dψ + ω0,a. (4.14)

Remark 4.1.4. The negative sign for −dψ is set to comply with the notation introduced

in (Byrnes and Brockett, 2010), where a known closed positive one-form ω0 (i .e., ω0,a ≡ 0)

2As discussed in Chapter 3, the choice for Ω is not unique and might be simplified by inspecting the
dynamics of the system. Moreover, the two-form proposed here is not a minimal one. The interested reader
is referred to (Roels, 1974) for a related discussion on the choice of a two-form in the particular case where
n is even.
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was used for stability arguments. The positive closed one-forms, i .e., 〈ω0,X0〉 > 0, was

generated as ω0 = −dV . In the present case, it will be clear when the negative sign should

be used, depending on the orientation of the basis for (4.12).

Assume that ψ(x), obtained after application of the locally-defined homotopy operator, i .e.,

ψ(x) = (Hω0,e)(x), (4.15)

is such that (LX0
ψ)(x) < 0 for x ∈ O ⊂ R

n \ {0}. If it is not the case (for dissipative

systems), it is always possible to apply a change of coordinates (see for example Bacciotti

(1992)) to ensure that the above contraction with respect to the drift vector field generates

a one-form with the desired properties. The damping feedback controller is designed as

uk(x) = −κk(LXk
ψ)(x). (4.16)

By the first property of the Lie derivative from Appendix (A), LXk
ψ = Xkydψ, which is

given as Xkyω0,a − Xkyω0 by the homotopy decomposition. Consider the affine system

under the feedback law, i .e., the system

X0 −
m
∑

k=1

κkLXk
ψ ·Xk. (4.17)

Taking the interior product of this closed-loop vector field with respect to the non-vanishing

two-form Ω, one obtains the one-form

ω =

(

X0 −
m
∑

k=1

κk(Xkyω0,a −Xkyω0)Xk

)

yΩ, (4.18)

which is, following above, a one-form for the closed loop system, i .e., ω = −dV +ωa. Since

(Xkyω0,a − Xkyω0) ∈ Γ∞(Rn) and by the property (4) of the interior product given in
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Appendix A, this one-form is re-written as

ω = X0yΩ−
m
∑

k=1

κk(Xkyω0,a −Xkyω0) · (XkyΩ) (4.19)

= ω0 +
m
∑

k=1

κk(Xkyω0,e)(XkyΩ) (4.20)

= ω0 −
k
∑

k=1

ξk(XkyΩ), (4.21)

where the functions ξk account for the deformation of the potential function with respect

to the controlled vectors. The one-form ω will serve as the basis for the computation of a

local Lyapunov function using the homotopy operator defined in Section 3.3. To simplify the

computations and to follow the construction from Byrnes and Brockett (2010), it is assumed

in the sequel that the dissipative potential ψ(x) computed above is such that ω0,a ≡ 0. This

is equivalent to assume that ψ(x) is a first integral for the system. If this assumption is

not met, one can try to compute an integrating factor γ(x) such that (H(d(γω0))) (x) ≡ 0.

Such a computation was carried out in the context of feedback linearization in (Banaszuk,

1995). A local form of the result from Section 4.1.2 is now restated in terms of differential

forms, using the dissipative potential constructed as above.

Theorem 4.1.5. Assume that for all x ∈ O ⊂ R
n \ {0}, one can construct ψ(x) such that

ω0 is exact, i .e., ω0 = −dψ 6= 0 and that dψ vanishes at the origin, an isolated equilibrium

for the system (4.1). Then, the damping feedback uk = −κkXkydψ locally asymptotically

stabilizes (4.1) at the origin. Moreover, a local Lyapunov function for the closed-loop system

can be computed using V = (Hω), with ω given by (4.21), if the anti-exact part ωa = Hdω

vanishes only at the origin.

Proof: The first part of the theorem is a re-statement of the original result. Consider the
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closed loop system under damping feedback control with ψ as required:

X0 −
m
∑

k=1

κkLXk
ψ ·Xk. (4.22)

Then

ψ̇ = X0 · ∇ψ −
m
∑

k=1

κk(Xk · ∇ψ)2. (4.23)

In terms of differential forms, the last expression is re-written as

ψ̇ = X0ydψ −
m
∑

k=1

κk (Xkydψ)
2 . (4.24)

The second term of the right hand side is obviously negative definite for κk > 0. Since

X0ydψ = X0y(ω0,a−ω0), which can be decomposed by the properties of the interior product

as

X0ydψ = X0yω0,a −X0yω0 (4.25)

= X0yω0,a −X0yX0yΩ (4.26)

= X0yω0,a. (4.27)

By assumption, ω0,a ≡ 0, and hence

ψ̇ = −
m
∑

k=1

κk (Xkydψ)
2 < 0, ∀ x ∈ R

n \ {0}, (4.28)

under the assumption that dψ 6= 0, ∀ x ∈ R
n \ {0}. It is now to be shown that the origin

is the only invariant for the closed-loop system.

Consider the deformation of ψ to compute a Lyapunov function using the homotopy operator
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on a one-form ω. The one-form ω is given by

ω = ω0 −
k
∑

k=1

κk(Xkyω0,a −Xkyω0) · (XkyΩ). (4.29)

By assumption ω0,a ≡ 0 and the second term of the right hand side is re-written as

(−Xkyω0), which is given, for all k = 1, . . . ,m, as

−Xkyω0 = −XkyX0yΩ (4.30)

= X0yXkyΩ. (4.31)

Hence, we have

ω = ω0 −
k
∑

k=1

κk(X0yXkyΩ) · (XkyΩ). (4.32)

Applying the homotopy operator on ω, one obtains ω = ωe + ωa. From Section 3.3, it

is known that ω = 0 if and only if ωa and ωe vanish at the same point. By assumption,

ωa vanishes only at the origin, at least on the star-shaped domain where the homotopy

operator is defined. Hence, it is to be shown that the exact part of ω, i .e., dV vanishes at

the origin, which is given, using the expression (4.21), as the requirement

ωe(0) = −dV (0) = ω0(0) −
m
∑

k=1

ξk(0)(Xk(0)yΩ) = 0, x = 0 (4.33)

= ω0(0) −
m
∑

k=1

(Xk(0)yω0(0)) · (Xk(0)yΩ). (4.34)

Since ω0(0) = X0(0)yΩ, and X0(0) is assumed to be an isolated equilibrium, it can be

concluded that X0(0) = 0, implying ω0(0) = 0 and that ωe(0) = 0, as required. Hence,

under the assumption that dV0 6= 0, ∀ x ∈ R
n \{0} and that ωa vanishes only at the origin,

the maximal invariant set is {0}. By the usual Lasalle’s arguments, damping feedback
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stabilizes asymptotically the origin of the system.

Remark 4.1.6. The exactness condition on ω0 could be relaxed, provided some convexity

conditions on (Hω0), which is possible to compute only if a structure is assumed for the drift

vector field. The same remark on “classical” Jurdjevic–Quinn conditions were discussed in

(Faubourg and Pomet, 2000).

Remark 4.1.7. The domain where the the obtained V (x) is assignable by Jurdjevic–Quinn

damping feedback can be computed in the following way. Restating condition (4.4), V (x) is

an assignable Lyapunov function provided that ∀ x ∈ O ⊂ R
n \ {0},

XkydV = 0 ⇒ X0ydV < 0, k = 1, . . . ,m. (4.35)

Consider

dV = ωa − ω (4.36)

= −ω0 +
m
∑

k=1

(ξk · (XkyΩ)) + ωa. (4.37)

The restriction XkydV = 0 leads to

XkydV = −Xkyω0 +
m
∑

k=1

ξk (XkyXkyΩ) +Xkyωa = 0. (4.38)

By definition, XkyXk ≡ 0, hence the condition is restated as

Xkyω0 = Xkyωa. (4.39)

Computing

X0ydV = −X0yω0 +

m
∑

k=1

ξk · (X0yXkyΩ) +X0yωa, (4.40)
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and using the definition ω0 = X0yΩ leads to

X0ydV = −
m
∑

k=1

ξk · (XkyX0yΩ) +X0yωa (4.41)

X0ydV = −
m
∑

k=1

ξk · (Xkyω0) +X0yωa, (4.42)

and with the relation Xkyω0 = Xkyωa computed above

X0ydV = −
m
∑

k=1

ξk · (Xkyωa) +X0yωa (4.43)

=

(

X0 −
m
∑

k=1

ξk ·Xk

)

yωa < 0, x ∈ O \ {0}, (4.44)

where ξk = κk(Xkyω0,e).

As mentioned earlier, restating the results from Section 4.1.2 using differential forms is

practical in the sense that locally, one can obtained a Lyapunov function by application

of the homotopy operator on the one-form constructed using the closed-loop system. An

application of this construction is presented in the next Section to illustrate these observa-

tions.

4.1.4 Simple Mechanical System Example

The above construction is applied to a controlled pendulum example, taken from (Sontag,

1998). Consider the control affine system

ẋ1 = x2 (4.45)

ẋ2 = − sin(x1) + u. (4.46)
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Setting Ω = dx1 ∧ dx2, a first dissipative potential is obtained using ω0 = X0yΩ, given as

ω0 = sin(x1)dx1 + x2dx2. (4.47)

Applying the radial homotopy operator defined in Section 3.3, the potential

ψ = (Hω) =
1

2
x22 + (1− cos(x1)), (4.48)

is obtained with the desired properties locally. In this particular case ω0 is already exact,

hence ωa = ω0−ωe = 0. The obtained function ψ is positive definite, but it is not a control

Lyapunov function (it is in fact a first integral, i .e., LX0
ψ ≡ 0). The damping feedback

controller u(x) is given as −κX1ydψ = −κX1yωe = −κx2. Applying the radial homotopy

operator on the new one-form, one has

ω = −(κx2 + sin(x1))dx1 + x2dx2 (4.49)

which results after integration, to the local Lyapunov function

V = 1− cos(x1) +
1

2
(κx1x2 + x22). (4.50)

Computing ∇TV ·X(x, u(x)), one has

V̇ = −κ
2

(

x22 + κx1x2 + x1 sin(x1)
)

< 0, (4.51)

which, for small values of x1 such that sin(x1) ≈ x1, is true for ‖x‖ < κ. Figures 4.1a and

4.1b present the locally obtained V (x) and V̇ (x) in a neighborhood of the origin for κ = 1.

One important aspect to note here is that the one-form ω is not exact. In fact, after the



CHAPTER 4. STABILIZATION OF TIME-INDEPENDENT SYSTEMS 74

-1.0

-0.5
x2

0.0

0.5

1.0
-1.0

-0.5

0.0
x10.5

1.00.0

0.25

0.5

0.75

1.0

1.25

(a) V (x)

-1.0

-0.5
x2

0.0

0.5

1.0
-1.0

-0.5

0.0
x10.5

1.0-1.4

-1.15

-0.9

-0.65

-0.4

-0.15

(b) V̇ (x)

Figure 4.1: Simple mechanical example

second application of the homotopy operator, the anti-exact part is given as

ωa =
κ

2
(x2dx1 − x1dx2) . (4.52)

This non-exact part vanishes only at the origin, hence the largest invariant set for the

dynamics, as outlined by the non-exact one-form is the origin {0}.

4.1.5 Stabilization of a Lotka–Volterra System

The stabilization of Lotka–Volterra dynamics, introduced in Chapter 3, is now considered,

using the potential derived above. From a stabilization perspective, accessibility properties

of this class of systems was studied in (De Leenheer and Aeyels, 2000), stabilization by

positive control was presented in (Grognard and Gouzé, 2005) and recently by (Mazenc

and Malisoff, 2009). Lyapunov stabilization for a larger class of population dynamics was

presented in (Fall et al., 2007).
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Consider the following controlled Lotka–Volterra ecology:

ẋi = xi



ki +
∑

j 6=i

aijxj



 , i = 1, . . . , n− 1

ẋn = xn



kn +
∑

j 6=n

anjxj



+ u

with ki, the net birth/mortality rate coefficients, aij = −aji, ∀i 6= j, the predation coeffi-

cients, and u, a “feeding rate” of specie xn, u(t) > 0, ∀t and x ∈ R
n
+. Stabilization of this

system was studied using Port-Controlled Hamiltonian techniques in (Ortega et al., 1999,

2000).

Consider the 2-dimensional Lotka–Volterra system presented in Section 3.5.2:

ẋ1 = ax1 − bx1x2 + u

ẋ2 = −cx2 + bx1x2

with a, b, c > 0. The linearization of the uncontrolled part is given by

Df =







a− bx2 −bx1
bx2 bx1 − c







Two equilibria exist for the uncontrolled case: A saddle point at [0, 0]T and a center

equilibrium at [ c
b
, a
b
]T , surrounded by stable orbits, for example as presented in Figures

4.2a and 4.2b where a = c = 0.5, b = 1, hence x∗ = [0.5, 0.5]T , and initial conditions

x(0) = [1, 1]T .

The objective here is to stabilize the center equilibrium using damping feedback. Setting
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Figure 4.2: Lotka–Volterra system in open loop

Ω = dx1 ∧ dx2, the following dissipative potential is obtained:

ψ(x) = b
x1x

∗
1
(x∗

2
− x2) + x2x

∗
2
(x∗

1
− x1)− x1(x

∗
2
)2 − (x∗

1
)2x2 + x2

1
x∗
2

6

+ b
(x1 + x∗

1
)x2

2
− x∗

1
(x∗

2
)2 + x2

1
x2 − (x∗

1
)2x∗

2

3

+
(c− a)(x∗

1
x2 − x1x

∗
2
) + (a+ c)(x∗

1
x∗
2
− x1x2)

2
. (4.53)

The plot of this function for the values given above is depicted in Figure 4.3.

Figure 4.3: Potential function for Lotka–Volterra center stabilization

One can check that ωa is zero only at the desired equilibrium x∗. The damping controller
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is given as

u(x) = κ

(

b
x∗
1
(x2 − x∗

2
) + x2x

∗
2
+ (x∗

2
)2

6
+

−a(x2 − x∗
2
) + c(x2 + x∗

2
)

2
− b

x1(x
∗
2
+ x2) + x2

2

3

)

.(4.54)

Numerical simulations are given in Figures 4.4a and 4.4b.
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Figure 4.4: Lotka–Volterra system in closed loop

By increasing the gain κ, one can accelerate the convergence to the desired equilibrium, as

depicted in Figures 4.5a and 4.5b.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

x 1

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x 2

t

(a) State trajectories

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x 2

x
1

(b) Phase diagram

Figure 4.5: Lotka–Volterra system in closed loop — higher gain
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4.2 Dynamic Feedback Stabilization

4.2.1 Introduction

In this section, the problem of dynamic feedback stabilization is considered. Departing from

the usual approaches to the design of dynamic regulator, the exogeneous reference dynamic

is generated by a dissipative Hamiltonian system with an isolated equilibrium located at

a desired isolated equilibrium of the system to be stabilized. The objective is to design

damping feedback such that a control affine system tracks a reference trajectory generated

by a desired dissipative Hamiltonian system and stabilizes the system at the origin.3

A similar idea was recently presented in Acosta and Astolfi (2009), where the PDEs arising

from the IDA-PBC construction were replaced by algebraic inequalities by using an integral

approximation construction and a dynamic extension of the control affine system. Stabi-

lization to the origin of an extended system (x, e), where e = x̂ − x, was studied using a

map H(x, x̂) : Rn → R
n, computed as

H(x, x̂) =

n
∑

i=1

∫ xi

0
hi(x̂)|x̂i=sds (4.55)

where h(x) = ∇T
xH(x, e)|e=0. Moreover, it was shown that stabilization can be achieved

even when the mapping H(x, x̂)|x̂=x is not a solution of the matching PDEs. An alternative

approach to the dynamic regulator problem is given in (Astolfi et al., 2008) for application

in adaptive controller design. In the present section, a different but related approach to

stabilize a control affine system using generalized Hamiltonian systems is proposed. In par-

ticular, the matching problem will be considered from a feedback regulator design perspec-

tive, where the reference signal to track is given by an admissible dissipative Hamiltonian

realization. The problem of dynamic feedback stabilization is usually presented as follows

3Following the ideas of Chapter 3, the reference dynamic was chosen to be generated by a known Hamil-
tonian dissipative system. For general exogeneous systems, the reader is referred to (Marino and Tomei,
1995).
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(Bacciotti, 1992; Marino and Tomei, 1995). Consider the system

ẋ = f(x) + g(x)u(x,w) (4.56)

where w is generated by the exogeneous system

ẇ = S(w). (4.57)

Solutions to this problem are reviewed extensively in (Byrnes et al., 1997). The approach

considered here departs from the usual point of view, i .e., instead of designing the dynamics

of w as neutral, the reference system is given as a dissipative Hamiltonian system, of the

form defined in Chapter 3.

4.2.2 Problem Formulation

Consider the control affine system (4.1) with x ∈ O ⊂ R
n, u ∈ R

m and X0(x) and Xi(x),

i = 1, . . . ,m, of class C∞ and where O is a neighborhood of a desired equilibrium. Full state

feedback u(x) is considered, and the error is given as e = x−w where w ∈ R
n is generated

by the dissipative Hamiltonian realization given by

ẇ = (J(w) −R(w))∇wH(w) (4.58)

with J(w) skew-symmetric and R(w) symmetric positive semi-definite. The function H(w)

is chosen such that the target system is asymptotically stable at the isolated desired equi-

librium w∗. The objective is to compute a potential of the form ψ(x,w) such that system

(4.1) in closed-loop with the the damping feedback

up(x,w) = −κ∇T
xψ(x,w) ·Xp(x) (4.59)



CHAPTER 4. STABILIZATION OF TIME-INDEPENDENT SYSTEMS 80

tracks the desired dissipative dynamics and asymptotically stabilizes a desired equilibrium

(x, e)T = (x∗, 0)T in the extended space. In other words, the objective is to stabilize the

extended system (x,w) to a local isolated minimum (x∗, w∗), where w∗ coincides with x∗.

In the present section, the reference dynamics is fixed as a n-dimensional dissipative Hamil-

tonian system. The only restriction is that the isolated asymptotically stable equilibrium of

the w-subsystem must coincide with the desired x-subsystem equilibrium. In the example

considered in Section 4.2.4, the origin is not the desired admissible equilibrium.

The next section presents the construction of a damping feedback regulator based on a

potential derived from the extended dynamics (w, e) ∈ R
2n.

4.2.3 Construction of a Feedback Regulator

A dynamic feedback regulator is now constructed for the problem presented in Section 4.2.2.

As outlined above, the reference system is of the form

ẇ = F (w)∇H(w) (4.60)

with known structure F (w) and Hamiltonian function H(w), locally asymptotically stable

at an isolated desired equilibrium w∗ = x∗. Discussion on stability properties of these

systems can be found, for example in Ortega et al. (2002). By definition, x = w − e, hence

(4.1) is re-expressed in terms of w and e to obtain the extended drift system as

ẇ = F (w)∇wH(w) (4.61)

ė = F (w)∇wH(w)− f(w, e). (4.62)

The vector field of the augmented system is given by

X0(w, e) = (F (w)∇wH(w)) ∂w + (F (w)∇wH(w)− f(w, e)) ∂e. (4.63)
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We define a non-vanishing closed two-form Ω(w, e) on R
2n as

Ω =
∑

1≤i<j≤n

(dwi ∧ dwj + dei ∧ dej) . (4.64)

The orientation of the two-form will be fixed, if necessary, by checking the sign of the

obtained dissipative function, ψ(w, e), in a neighborhood of the origin.

As in the previous section, a one-form associated to the system is obtained by contracting

the above two-form with respect to the extended vector fields:

ω0 = (F (w)∇wH(w)) ∂wyΩ+ (F (w)∇wH(w)− f(w, e)) ∂eyΩ. (4.65)

Then, applying a homotopy centered at e = 0 and w = w∗ = x∗, such that

X(w, e) =

n
∑

i=1

λei∂ei + (x∗ + λ(w − x∗)) ∂wi
, (4.66)

one obtains

ψ(w, e) = Hω0 =

∫

1

0

ω0,w(λ(w − x∗))λ(w − x∗)dλ+

∫

1

0

ω0,e(λ(w − x∗), λei)λeidλ (4.67)

where

ω0,w = (F (w)∇wH(w)) ∂wydwi ∧ dwj (4.68)

ω0,e = (F (w)∇wH(w)− f(w, e)) ∂eydei ∧ dej (4.69)

evaluated on X.

The dissipative potential ψ(w, e) centered at e = 0 and w = x∗ will be the basis of the

stabilization design that is presented in the following section. The main result of this

section is now given.
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Theorem 4.2.1. The extended system (w, e) is locally asymptotically stable in a neighbor-

hood of (w∗, 0) provided that

(i) The dissipative Hamiltonian reference dynamic is chosen such that w∗ is an isolated

asymptotically stable equilibrium of

ẇ = F (w)∇wH(w),

(ii) The dissipative potential ψ(w, e) is such that

n
∑

i=1

∂2ψ

∂e2i
6= 0 (4.70)

for fixed w in a neighborhood of the origin O ⊂ R
n \ {0} of the error dynamics.

Proof: Both conditions are consequences of the construction presented in Chapter 3. Since

the choice of the reference dynamics is arbitrary, it can be shown, for a suitable choice of

dynamics, that

ψw(w) =

∫ 1

0
ω0,w(λ(w − x∗))λ(w − x∗)dλ (4.71)

is a dissipative potential centered at w∗. Asymptotic stability in a neighborhood of (w∗, ·)

follows from Ortega et al. (2002). For part (ii), note that the cross-terms in e and w from

ψe(w, e) = +

∫ 1

0
ω0,e(λ(w − x∗), λei)λeidλ (4.72)

are convex in ei. Hence, for fixed w, if
∂2ψ

∂e2i
6= 0, it is possible to apply, following Chapter 3,

a coordinate change defined by

zi = −1

2

(

∂ψ

∂ei

)

(

n
∑

i=1

∂2ψ

∂e2i

)−1

(4.73)
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that transforms the drift system to a dissipative Hamiltonian realization defined by

ż = (J(z) −R(z))∇H(z), (4.74)

with H(z) defined by H(z) = 1
2

∑n
i=1 z

2
i . The transformation maps the origin of (e1, . . . , en)

to the origin of (z1, . . . , zn). In the new coordinates,

ω̄e = −1

2

n
∑

i=1

zidzi, (4.75)

from which a Lyapunov function can be computed, using X̄(z) = (J(z) − R(z))∇H(z)∂z ,

as

V = X̄yω̄e (4.76)

=
1

2

n
∑

i=1

z2i . (4.77)

Taking the derivative with respect to time,

V̇ = −
n
∑

i=1

z2i . (4.78)

The origin of the error sub-system is therefore locally asymptotically stable for any fixed

w.

The next section presents the construction of the dynamic feedback regulator using ψ in a

Jurdevic–Quinn controller of the form u(x,w) = −κ∇xψ(x,w) · g(x).

The locally-defined dissipative potential function computed in the last section to stabilize

the system in the extended space. The development follows the standard Jurdjevic–Quinn

arguments (Malisoff and Mazenc, 2009, Chapter 4), summarized in Chapter 2. In the

extended space, the Jurdjevic–Quinn controller design approach can be summarized as

follows. Re-writing ψ using the definition e = x−w, it is assumed that ψ(x,w) is locally a
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weak Jurdjevic–Quinn function , i .e., such that ψ(x,w) > 0 and (∇Tψ ·X0)(x,w) < 0 for

all (x,w) in a neighborhood O ⊂ R
2n \ {(x∗, w∗)}, ψ(0) = 0 and (∇Tψ · Xk)(x

∗) = 0. In

practice, one may use an integrating factor γ(x,w) to guarantee that

ψ(x,w) = − (H(γω0)) (x,w) (4.79)

has the desired properties. The anti-exact part ωa = ω0 − dψ does not contribute locally

to the dissipative dynamics and as a result it is not taken into account for the design

presented in the present section. In practice, a feedback gain κ could be used to dominate

the tangential dynamics, i .e., it is possible to construct the damping feedback controller as

uk(x) = −κ(∇Tψ · g)(x). (4.80)

The approach for the regulator construction can be summarized as follows. Assume that

for every x ∈ R
n \ {x∗},

span{X0(x), ad
k
X0
Xp(x), k ∈ N} = R

n.

Let w be generated by the dissipative Hamiltonian reference system,

ẇ = F (w)∇wH(w)

with isolated asymptotically stable equilibrium at w∗ = x∗. Then, the nonlinear system

ẋ = X0(x) +

p
∑

i=1

Xi(x)ui(x,w)

is locally stabilized to a desired isolated equilibrium x∗ by damping feedback u = −κ∇T
xψ(x,w)·

g(x), where ψ(x,w) is a weak Jurdjevic–Quinn function computed above.
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The next section illustrates the application of this construction for predator-prey systems.

4.2.4 Application to Predator-Prey Systems

The application of the dynamic feedback regulator is applied to the Lotka–Volterra system

presented in Chapter 3 and in Section 4.1. First, consider a two-dimensional Lotka–Volterra

system:

ẋ1 = ax1 − bx1x2 + u (4.81)

ẋ2 = −cx2 + bx1x2, (4.82)

with x1 ≥ 0 and x2 ≥ 0 and where a, b, c are known positive constants. It is desired to

stabilize the system to the center equilibrium x∗ := [x∗1, x
∗
2]
T = [ c

b
, a
b
]T by tracking the

dissipative Hamiltonian reference system centered at the desired equilibrium

ẇ1 = −(w1 − x∗1)− (w2 − x∗2) (4.83)

ẇ2 = (w1 − x∗1)− (w2 − x∗2). (4.84)

Letting zi = (wi − x∗i ), the reference system is of the form

z =













0 −1

1 0






−







1 0

0 1












∇H̄. (4.85)

with H̄ = 1
2 (z

2
1 + z22). Stability of the origin of this reference signal can be shown using H̄

as a Lyapunov function, as discussed previously in Chapter 3.

Set ei = xi − wi, i = 1, 2, and re-express the drift dynamic of (4.81)-(4.82) in terms of e
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and w, and one obtains

f(w, e) =







a(e1 + w1)− b(e1 + w1)(e2 + w2)

−c(e2 + w2) + b(e1 + w1)






. (4.86)

With Ω = dw1 ∧ dw2 + de1 ∧ de2 and the reference dynamic (4.83)-(4.84), one can compute

ω0(w, e) following (4.65) and a potential, ψ(w, e), by application of the homotopy operator.

Here, we omit the expression of ψ(w, e), however it is possible to show that the obtained

potential is convex with respect to the error (e1, e2) for x1 > 0 and x2 > 0, since

∂2ψ

∂e21
= b(e2 + w2) = bx2 (4.87)

∂2ψ

∂e22
= b(e1 + w1) = bx1, (4.88)

and hence following the argument from Section 4.2.3, (e, w) = (0, w∗) ∈ R
2n is an asymp-

totically stable point for the extended dynamics. Hence, as long as the initial conditions are

different than zero, i .e., x1(0) 6= 0 and x2(0) 6= 0, the dynamic regulator steers the system

to the desired equilibrium x∗.

Re-expressing the obtained potential in terms of x and w using the definition of the error, one

has that ψ(x,w) > 0 in the positive orthant and satisfies the Jurdjevic–Quinn conditions.

The damping regulator u(x,w) = −∇xψ
T (x,w) · g(x) is given by

u(x,w) =
bx2(w1 + w2)

2
− w2 − bx2

2

2
+
cx2
2

+
a(x2 − w2)

2
+

(w1 − x∗
1
+ x∗

2
)

2
− bx1x2.(4.89)

For numerical simulations, the parameters are set to a = c = 0.5, b = 1, leading to the

desired equilibrium at x∗ = [0.5, 0.5]. Closed-loop simulations using the above regulator

with initial conditions x(0) = [2.5, 2.5]T and w(0) = [2, 2]T are presented in Figures 4.6a,

4.6b and 4.6c.
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Figure 4.6: Stabilization of Lotka–Volterra system by dynamic feedback

The potential of the present extension is now illustrated by considering a predator-prey

model with a higher order coupling function, keeping the same dissipative Hamiltonian

reference system as before. Consider

ẋ1 = ax1 − bx51x
3
2 + u (4.90)

ẋ2 = −cx2 + bx51x
3
2. (4.91)

The new desired equilibrium is located at x∗ = [0.9, 0.9]T .

The performance of the regulator obtained from the application of the construction from

Section 4.2.3, with initial conditions x(0) = w(0) = [2, 2]T , is illustrated in Figures 4.7a

and 4.7b.

4.3 Stabilization to a Periodic Orbit by Damping

4.3.1 Introduction

This section briefly illustrates the stabilization of admissible periodic orbits of the drift

dynamics using state feedback damping control. The approach follows the extension of the
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Figure 4.6: Stabilization of Lotka–Volterra system by dynamic feedback

Jurdjevic–Quinn approach suggested originally in (Bacciotti and Mazzi, 1995) and used in

(Bombrun, 2007, Chapter 3) in the context of smooth orbital stabilization of satellite tra-

jectories. A related approach, using a speed-gradient algorithm, was exploited in (Shiriaev

and Fradkov, 2001), where periodic orbits of mechanical systems were stabilized using the

Chetaev’s method for Lyapunov function construction based on first integrals. Application

of stabilization using first integrals of mass-action systems (and more generally positive

systems) was presented in (De Leenheer and Aeyels, 2002). Stabilization of periodic orbits

was also considered in (Aracil et al., 2005) using backstepping.

The result in (Bacciotti and Mazzi, 1995) simplifies the classical construction of Chetaev

used in (Shiriaev and Fradkov, 2001) by showing that if a first integral I0 is known for

the system, then a suitable potential to apply the Jurdjevic–Quinn approach to stabilize

existing periodic orbits Γ of the drift dynamics indexed by their ”energy” level K is given

by

ψ(x) =
1

2
(I0 −K)2. (4.92)

The approach favored here is to compute a first integral for the system by finding suitable
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Figure 4.7: Stabilization of predator-prey model with higher coupling by dynamic feedback

integrating factors such that the one-form obtained by taking the interior product of a

two-form with respect to a scaled vector field is closed (and hence, exact).

The section is divided as follows. The result from (Bacciotti and Mazzi, 1995) is summarized

in Section 4.3.2. The construction of a damping feedback controller to a periodic orbit using

this result is illustrated through an example in Section 4.3.3.

4.3.2 Construction of a Damping Feedback

A constructive result extending the Jurdjevic–Quinn approach to stabilize periodic orbits

is given in (Bacciotti and Mazzi, 1995) and is presented here. The reader is referred to

Section 2.2.4 for the background on orbital stability.

Theorem 4.3.1. Let (4.1) be as above and assume it satisfies the following conditions:

(i) There exists a cycle Γ for the drift system X0(x),

(ii) there exists a neighborhood U0 of Γ and a function V (x) ∈ C2 such that V |Γ ≡ 0,

V (x) > 0, ∀x 6∈ Γ, ∇V 6= 0, ∀x 6∈ Γ, and V̇ (x) = (∇V ·X0)(x) ≤ 0,
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(iii) there exists a neighborhood of Γ, U1 ⊂ U0, such that, for each x ∈ U1 \ Γ,

span{X0(x), ad
k
X0
Xi(x); i = 1, . . . ,m; k ≥ 0} = R

n. (4.93)

Then there exists m functions u1(x), . . . , um(x) defined on U1, of class C1 such that Γ is an

orbitally asymptotically stable limit cycle for the system (4.1).

To construct a function V to stabilize the desired periodic orbit, (Bacciotti and Mazzi, 1995)

proposed an approach using a first integral of the drift system. Given the uncontrolled part

of the dynamics ẋ = X0(x), a scalar function I0(x) is a first integral for the system if I0 is

constant on an orbit, i.e., ∇I0 ·X0(x) ≡ 0 on an orbit.

An admissible potential function to stabilize an admissible energy level, K, is

ψ(x) =
1

2
(I0 −K)2.

The proposed construction for this problem, using the construction from above, is presented

using an example in the following.

4.3.3 Application to a Lotka–Volterra System

The stabilization of the 2-dimensional Lotka–Volterra system presented above to a periodic

orbit with ”energy” level K surrounding the center equilibrium x∗ = [0.5, 0.5]T is given.

In this particular case, it is known that the center equilibrium is surrounded by stable

periodic orbits. The control task is therefore to transfer the system from one level of

periodic evolution to another. The proposed approach consists in finding integrating factors

α(x1, x2) and β(x1, x2) such that the one-form

ω = α(x1, x2)f2dx1 − β(x1, x2)f1dx2 (4.94)
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is closed. A first integral for the system can be computed solving the condition dω ≡ 0 for

α(x1, x2) and β(x1, x2), i .e., computing integrating factors such that the one-form is closed.

The problem results in the solution of the following partial differential equations :

∂α

∂x2
(x1, x2)f2(x1, x2) + α(x1, x2)

∂f2
∂x2

(x1, x2) = 0

∂β

∂x1
(x1, x2)f1(x1, x2) + β(x1, x2)

∂f1
∂x1

(x1, x2) = 0.

This set of partial differential equations can be related to the ones used in the context

of port-controlled Hamiltonian passivity-based control given for Lotka–Volterra systems in

(Ortega et al., 2000, 1999). A particular solution of the system of nonlinear PDEs is

α(x1, x2) =
1

x2
exp(−x1) (4.95)

β(x1, x2) =
1

x1
exp(−x2) (4.96)

and the one-form to be used for the computation of the desired potential is

ω = (−c+ bx1) exp(−x1)dx1 + (−a+ bx2) exp(−x2)dx2. (4.97)

Using I0 = (Hω) as the first integral in a neighborhood of the center equilibrium x∗, one

obtains

I0 = (b(1 + x∗1)− c) (exp(−x∗1)− exp(−x1))

+ (b(1 + x∗2)− a) (exp(−x∗2)− exp(−x2)) . (4.98)
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Following (Bacciotti and Mazzi, 1995), the desired damping controller is given as u =

−κ · ∇(I0 −K)2, for a given K:

u = κφ(x2)

(

(b(1 + x∗
1
)− c) (exp(−x∗

1
)− exp(−x1))

+ (b(1 + x∗
2
)− a) (exp(−x∗

2
)− exp(−x2))−K

)

, (4.99)

with φ(x2) = (bx2)(bx2 − a) exp(−x2). Numerical simulations for a = c = 0.5 and b = 1

are presented in Figures 4.8a and 4.8b.
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Figure 4.8: Lotka–Volterra cycle stabilization

As noted above, the solution presented here for the computation of the integrating factors

using the set of partial differential equations is not systematic. The objective here was

to show that the proposed approach could be applied to recover the original stabilization

result presented in (Ortega et al., 1999). The same idea is exploited in Section 5.3.2. It is

clear that further research on this problem requires a careful study of the partial differential

equations involved.
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4.4 Summary and Extensions

In this chapter, the problem of Lyapunov function construction was first considered for the

stabilization of nonlinear control affine systems satisfying Jurdjevic–Quinn conditions, fol-

lowing the original contributions from (Faubourg and Pomet, 2000) and (Mazenc and Mal-

isoff, 2006). Provided that a positive definite function (a dissipative potential) is obtained

by taking the interior product of a non-vanishing two-form with respect to the drift vector

field, as presented in Chapter 3, it was shown that a Lyapunov function can be computed

for the closed-loop vector field subject to damping feedback control under some conditions

on the anti-exact part of a one-form obtained for the system. The choice of the two-form

must be made such that the potential function fulfills locally the Jurdjevic–Quinn weak

conditions. The proposed method is local since the approach relies on a homotopy operator

centered at a desired equilibrium point. The construction was extended to the construction

of locally defined static feedback regulators for control affine systems to track trajectories

generated by dissipative Hamiltonian reference systems, by applying the method in an ex-

tended space [e, w]T . Under a convexity condition of the obtained potential with respect to

the error and for a suitable choice of dissipative Hamiltonian reference dynamics, a damping

feedback stabilizing controller was designed using the Jurdjevic–Quinn approach. Finally,

following the ideas of Bacciotti and Mazzi (1995), the technique was used to construct

damping feedback controllers stabilizing desired existing periodic orbits, by computing a

first integral for the drift system using integrating factors.

Further research on time-independent systems will focus on systematic computation of the

domain of attraction, and to develop an approach to extend this domain of attraction,

by rendering the obtained dissipative potential convex, following the ideas presented in

(Rantzer and Parrilo, 2000; Rantzer, 2001). Another possible investigation is the character-

ization of the non-exact part, ωa, when it is not vanishing only at the origin. Cancelation

techniques, such as the one discussed in Section 3.6 could be of interest in that case.
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Some problems related to the Jurdjevic–Quinn technique not addressed in the present thesis

are discussed in the following.

4.4.1 Multiple Time Scale Systems Stabilization

The stabilization problem and the construction of Lyapunov functions on multiple time

scales was considered extensively in the literature, for example in (Chow and Kokotović,

1978), (Saberi and Khalil, 1984), (Saberi and Khalil, 1985), (Sharkey and O’Reilly, 1988),

Sharkey (1988) (see the classical reference (Kokotović et al., 1999, Chapter 7) for an exten-

sive review of the problem). A Lyapunov-based sequential design procedure for the design

of fast and slow controls is given in (Saberi and Khalil, 1985). In (Marino and Kokotović,

1988), geometric properties of singularly perturbed systems are investigated, leading to a

coordinate-free characterization of time-scales around an invariant manifold. This geomet-

ric approach was employed for composite control design in (Sharkey and O’Reilly, 1988)

and (Sharkey, 1988). The problem of strict Lyapunov function construction was addressed

recently in Malisoff and Mazenc (2009) (see especially Chapters 10 and 11 and references

therein) in a different context than the one considered above.

The interest for singularly perturbed systems was revived in the last few years in the con-

text of drug delivery applications. Many biological systems evolve at two or more time

scales, especially when drug infusion dynamics is considered. For example the analysis of a

simplified model of HIV controlled dynamics given in (Brandt and Chen, 2001; Barão and

Lemos, 2007; Ge et al., 2005). The model is given as

ẋ1 = (s− dx1 − βx1x3) + (βx1x3)u1

ẋ2 = (βx1x3 − µx2)− (βx1x3)u1

ẋ3 = (kx2 − cx3)− (kx2)u2

where x1 denotes the concentration of healthy cells, x2 is the concentration of infected cells
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and x3 is the concentration of virions. Following (Barão and Lemos, 2007), and with the

parameters provided therein, one can see that the equation for x3 converges quickly to the

equilibrium x∗3 = (1 − u2)
k
c
x2. Assuming only one control (i .e., setting u2 ≡ 0), the study

in (Barão and Lemos, 2007) lead to the stabilization of the slow dynamics

˙̃x1 =

(

s− dx̃1 −
βk

c
x̃1x̃2

)

+

(

βk

c
x̃1x̃2

)

u1 (4.100)

˙̃x2 =

(

βk

c
x̃1x̃2 − µx̃2

)

−
(

βk

c
x̃1x̃2

)

u1 (4.101)

The idea that could be considered in future research is as follows. One could seek to

construct two local functions ψslow(x, y) and ψfast(x, y) using a locally defined homotopy

operator for f0,slow(x, y) and f0,fast(x, y). The stabilization problem would be, on two-time

scale singularly perturbed control affine systems, to study the construction of a Lyapunov

function for closed-loop dynamics of the form

ẋ = f0,slow(x, y, ǫ) +

p1
∑

i=1

gi,slow(x, y, ǫ)us (4.102)

ǫẏ = f0,fast(x, y, ǫ) +

p2
∑

j=1

gi,fast(x, y, ǫ)uf , (4.103)

with x ∈ R
n is the slow part of the state dynamics , y ∈ R

m is the fast part of the dynamics,

us ∈ R
p1 is the slow control, uf ∈ R

p2 is the fast control, and ǫ is a scalar constant parameter.

Assuming that fi, i = 0, 1, . . . , p1, and gi, j = 0, 1, . . . , p2 are smooth, one would seek to

obtain a potential

ψ(x, y, ǫ) = ψslow(x, y, ǫ) + ǫψfast(x, y). (4.104)

The problem of designing stabilizing control u(·) would then follow the approach of Saberi

and Khalil (1985). Application of this approach to the stabilization of the reduced HIV

model, without Lyapunov function construction, are given in Figures 4.9a and 4.9b for the
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slow dynamics and 4.10a and 4.10b for the fast dynamics.
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Figure 4.9: Reduced HIV model control on two-time scales — slow dynamics
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Figure 4.10: Reduced HIV model control on two-time scales — fast dynamics

4.4.2 Nonaffine Systems Stabilization

The problem of stabilizing nonlinear systems of the form

ẋ = F (x, u) (4.105)
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with x ∈ R
n and u ∈ R

m and with F assumed to be smooth and F (0, 0) = 0, was not

considered in the present thesis. However, the construction of smooth damping feedback

controllers for this general case was considered in (Lin, 1994, 1995a,b) and in (Malisoff and

Mazenc, 2009, Section 4.3) using Jurdjevic–Quinn feedback design. Precisely, in (Malisoff

and Mazenc, 2009), the system is first re-written as

F (x, u) = f(x) + g(x)u + h(x, u)u, (4.106)

where f(x) = F (x, 0), g(x) = ∂F
∂u

(x, 0) and

h(x, u) =

∫ 1

0

[

∂F

∂u
(x, λu)− ∂F

∂u
(x, 0)

]

dλ. (4.107)

The following assumption is used in (Malisoff and Mazenc, 2009).

Assumption 4.4.1. There is a storage function V : Rn → [0,∞) such that LfV (x) ≤ 0

everywhere. Moreover, there is a smooth scalar function ψ such that if x 6= 0 is such that

LfV (x) = 0 and LgV (x) = 0 both hold, then Lfψ(x) < 0.

Then, Malisoff and Mazenc (2009, Theorem 4.2) showed how to construct a Lyapunov

function for this class of systems using a deformation of the form

V(x) = λ(V (x))ψ(x) + Γ(V (x)), (4.108)

and a corresponding Jurdjevic–Quinn controller

u(x) = −ξ(x)LgV (x)T (4.109)

that globally asymptotically stabilizes the equilibrium (origin) of (4.105).

The control of nonlinear systems of that form is of importance in practice, for example for

the control of tumors, using for example the model suggested in (de Pillis and Radunskaya,
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2003) for the tumor control chemotherapy. In that case, the killing rate differs for each cells

and is expressed as a response curve of the form

F (u) = a(1− exp(−ku)). (4.110)

The model to consider (de Pillis and Radunskaya, 2003) is, in that particular case, given by

Ṅ = r2N(1− b2N)− c4TN − a3(1− exp(−u))N

Ṫ = r1T (1− b1T )− c2IT − a2(1− exp(−u))T

İ = s+
ρIT

α+ T
− c1IT −−d1I − a1(1− exp(−u))I,

with N denoting the number of hosts, T the number of tumor cells and I the number of

immune cells.

The problem of damping stabilization of a desired equilibrium point for this problem could

be considered in the future.

4.4.3 Bilinear Systems Stabilization

As mentioned usually in the literature, the Jurdjevic–Quinn approach is often related, from a

historical point of view, to a construction of Lyapunov-based stabilizers presented originally

by (Jacobson, 1977) for the bilinear system







ẋ1

ẋ2






=







0 1

1 0













x1

x2






u1 +







−1 0

0 1













x1

x2






u2. (4.111)

Stabilization of bilinear systems was also considered in (Bacciotti and Boieri, 1991), (Chabour

et al., 1993), (Gauthier and Kuptka, 1992), (Gutman, 1981), (Quinn, 1980) and (Ryan and

Buckingham, 1983). As noted in (Bacciotti, 1992), the Jurdjevic–Quinn approach for the
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construction of damping feedback controllers is suited for systems where dissipation is al-

ready present. This observation follows, to some extent, the original definitions given in

(Willems, 1972). In practice, this ”natural dissipation” is found by inspecting the driftless

term. However, in the bilinear case from (Jacobson, 1977) there are no drift dynamics,

hence one could ask if the construction presented in this thesis can be modified. For the

particular example from (Jacobson, 1977), a function V (x) is to be designed such that

LX1
V ·X1 + LX2

V ·X2 < 0 (4.112)

on R
2 \ {0}. This can be re-expressed as

(X1ydV ) ·X1 + (X1ydV ) ·X2 < 0 (4.113)

(X1yωe) ·X1 + (X1yωe) ·X2 < 0. (4.114)

Let ω = [X1,X2]yΩ. By relation (A.11), one obtains

ω = [X1,X2]yΩ (4.115)

= X1yd(X2yΩ)−X2yd(X1yΩ)−X2yX1ydΩ+ d(X1yX2yΩ). (4.116)

Using the fact that XkyXkyΩ = 0, the above stabilization condition is re-written using

ωe = ω − ωa as

(

−X1yX2yd(X1yΩ) +X1yd(X1yX2yΩ)−X1yωa

)

·X1

+
(

X2yX1yd(X2yΩ) +X2yd(X1yX2yΩ)−X2yωa

)

·X2 < 0. (4.117)

By changing the ordering and applying Cartan’s identity formula (A.12), one obtains

−X1yX2y(LX1
Ω ·X1 − LX2

Ω ·X2)− (X1yωa ·X1 +X2yωa ·X2) < 0. (4.118)
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Depending on the orientation of the two-form, one can show that the condition for stabi-

lization is indeed satisfied, in this particular case using the fact that ωa = 0. Applying the

homotopy operator to the one-form ω, one obtains V = −(Hω) = x21 + x22, leading to the

damping controller (up to a scaling factor of 1/2)

u1 = −x1x2 (4.119)

u2 = x21 − x22, (4.120)

as obtained originally in Jacobson (1977).

Obviously, this result in not general in any sense, and the choice of the particular vector

field [X1,X2](x) is ad hoc. However, further studies could be considered in that particular

directions, i .e., when the Brockett’s conditions are satisfied, or, using a regulator controller

where n = m, following the result from (Pomet, 1992), given in Section 2.3.2.

In cases where these conditions are not satisfied, it was shown, for example in (Pomet, 1992)

and (Moreau and Aeyels, 1999a) how to construct time-dependent feedback controllers. This

point is discussed as a future area for research in Section 5.3.2, after presenting results on the

stabilization of control-affine time dependent systems using the Jurdjevic–Quinn approach

throughout Chapter 5.



Chapter 5

Stabilization of Time-Dependent

Systems

This chapter extends the Jurdjevic–Quinn approach to stabilization presented in Chapter

4 to time-varying control affine systems. Comments on the application of this particular

stabilization approach to time-varying systems were given in (Outbib and Vivalda, 1999).

An extension to time-dependent control affine systems was originally presented in (Aeyels

and Sepulchre, 1995). More recently, Mazenc and Malisoff (2009) (see also Malisoff and

Mazenc (2009, Chapter 8)) obtained results in this direction. Stabilization of time-varying

control affine nonlinear systems is presented in Section 5.1. Provided that a time-varying

Jurdjevic–Quinn potential is obtained using the approach presented in Chapters 3 and

4, the proposed approach consists in computing a time-varying function that cancels the

time dependence of the potential to compute a semi-definite Lyapunov function and ensure

stability of the closed-loop dynamics. The stability argument follows a contribution by

Aeyels (1995). In Section 5.2, the result is used for asymptotic stabilization of periodic

orbits using a tracking controller, i .e., by stabilizing the origin of the time-varying error

dynamics. Section 5.3 discusses potential extensions to synchronization and driftless systems

101
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stabilization using time-varying feedback following the approach outlined here.

5.1 Time-Dependent Systems Stabilization

5.1.1 Introduction

This section considers the stabilization of time-dependent affine nonlinear control systems

ẋ(t) = X0(t, x) +

m
∑

i=1

Xi(t, x)ui(t, x), (5.1)

where Xi(t, x), i = 0, 1, . . . ,m are assumed smooth in x, continuous and bounded over

bounded intervals I in R+. Furthermore, it is assumed that X0(t, 0) = 0. The objective is

to construct a function ψ(t, x) such that the time-dependent feedback controls

up(t, x) = − ∂ψ

∂xp
(t, x) ·Xp(t, x), p = 1, . . . ,m (5.2)

stabilize the origin of the closed-loop system over t ∈ I ⊂ R+.

A summary of Lyapunov stability results for time-dependent systems are presented in

(Khalil, 2002). Early results on the topic can also be found in (Rouche et al., 1977). Stabil-

ity results using semi-definite Lyapunov functions were given in (Aeyels, 1995) and (Iggidr

and Sallet, 2003). Construction of strict Lyapunov functions for time-varying systems ap-

peared in (Mazenc, 2003) and (Malisoff and Mazenc, 2005) (see (Malisoff and Mazenc, 2009,

Part III) for a complete review of strict time-varying Lyapunov function methods).

General results on stabilization of time-dependent nonlinear control systems also appeared

in the literature. For example, an existence result for time-varying CLF was given in (Al-

bertini and Sontag, 1999). Building on that result, a generalization of Sontag’s formula

was presented in (Moulay and Perruquetti, 2005). Here, following the approach presented

in (Aeyels, 1995), a method to construct semi-definite (non-strict) Lyapunov functions for
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time-varying closed-loop systems using the damping control feedback approach presented

in Chapter 4 is given. The extension of the Jurdjevic–Quinn stabilization approach to

time-varying control systems was presented originally in (Aeyels and Sepulchre, 1995). The

challenge in applying the construction from (Aeyels and Sepulchre, 1995) is to find a suitable

auxiliary function ψ(·) to construct the damping feedback controller (5.2) and a suitable

Lyapunov function V (·) to show the stability of the closed-loop system. Finally, an exten-

sion of the Jurdjevic–Quinn method for time-varying systems using strict time-dependent

Lyapunov functions is given in (Malisoff and Mazenc, 2009, Section 8.6).

In this section, elements related to stability and stabilization of time-dependent nonlinear

systems are recalled, following Aeyels (1995) and Aeyels and Sepulchre (1995).

In the following, the objective is to construct a potential ψ(t, x) such that the feedback

uk(t, x) = −(∇Tψ ·Xk)(t, x) stabilizes the system (5.1). In Aeyels and Sepulchre (1995), it

was shown that this construction extends to time-varying affine systems provided that

∂ψ

∂t
(t, x) +∇T

xψ(t, x) ·X0(t, x) (5.3)

is negative semi-definite. In Aeyels and Sepulchre (1995), the existence of a time-varying

Lyapunov function V (t, x) was assumed to prove asymptotic stability. In the present Sec-

tion, it is shown that the existence of a potential function ψ(t, x) and the knowledge of a

function γ(t, x) such that d
dt
(γ(t, x)ψ(t, x)) = 0 is enough to show the stability of the affine

time-varying system in closed-loop with controls of the form uk(t, x) = −∇Tψ(t, x)·Xk(t, x),

using V (x) = (γ(t, x)ψ(t, x))(x) as a Lyapunov function. In this particular case, the follow-

ing result from Aeyels (1995) will be used.

Theorem 5.1.1. Consider

ẋ = f(t, x) (5.4)
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and assume existence and uniqueness of solutions over bounded interval I ⊂ R+. Let

V : Rn ⊃ X → R be a continuously differentiable map, for which there is some neighborhood

O of the origin such that the following hold:

(i) V (0) = 0 and V (x) > 0 for x ∈ O, x 6= 0;

(ii) V̇ (t, x) := ∇V (x) · f(t, x) ≤ 0, for all x ∈ O, t ∈ I;

(iii) For all p ∈ O, p 6= 0, there is a finite r(p) > 0 such that

lim sup
t→∞

V (x(t+ r(p); p, t)) < V (p),

where x(t+ r(p); p, t) denotes the state at time t+ r(p) corresponding to the solution

of (5.4) with initial condition p at time t.

Then (5.4) is asymptotically stable at the origin.

5.1.2 Construction of a Damping Feedback

Following the approach from Chapter 4, define a non-vanishing closed two-form Ω on R
n as

Ω =
∑

1≤i<j≤n

dxi ∧ dxj . (5.5)

As above, the choice of this two-form is arbitrary, and it is set such that the potential

satisfies Jurdjevic–Quinn conditions are fulfilled. A one-form associated to the system is

obtained by contracting this two-form with respect to the drift vector field,

ω0(t, x) = X0(t, x)yΩ. (5.6)

From Section 3.2, a homotopy operator can be constructed locally on R
n such that ω0(t, x) =

ω0,e(t, x) + ω0,a(t, x). Since ω0,e(t, x) is exact on R
n, it is given as the exterior derivative of
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a potential function and it is denoted in the following way for the sequel

ω0(t, x) = −dψ(t, x) + ω0,a(t, x). (5.7)

It is assumed that the dissipative potential ψ(t, x), obtained after application of the homo-

topy operator (i .e., ψ(t, x) = (Hω0,e)(t, x)), is such that LX0(t,x)ψ(t, x) < 0 for x ∈ O ⊂

R
n \ {0} for all t ∈ I. As given in Chapters 4, a damping feedback controller is constructed

as

uk(t, x) = −∇Tψ(t, x) ·Xk(t, x). (5.8)

In the next section, it is showed that by computing a function such that ω0(t, x) is invariant

with respect to time, it is possible to transform ψ(t, x) to obtain a Lyapunov function V (x)

and prove asymptotic stability of the origin for the closed-loop system.

5.1.3 Construction of a Lyapunov Function

A Lyapunov function V (x) for the closed-loop system based on the dissipative potential

computed by the homotopy above is now constructed. In order to do so, a function γ(t, x)

such that

∂

∂t
(γ(t, x)ψ(t, x)) = 0 (5.9)

is computed. From the last expression, a particular solution is

γ(t, x) = exp

(
∫ t

0

ψ′(τ, x)

ψ(τ, x)
dτ

)

> 0 (5.10)

where F ′(t, x) denotes the time derivative ∂
∂t
F (t, x). This expression will be used in Section

5.1.4 for explicit computations. This particular choice of time-varying canceling factor
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can be related to time-scale transformation used in feedback linearization (see for example

Guay (2002) and references therein). It is also similar to the construction given in (Mazenc,

2003) for construction of strict Lyapunov functions. The main advantage of this particular

construction guarantees in the present context is that γ(t, x) is positive.

In the sequel, it will be shown that V (x) = (γψ)(x) is a Lyapunov function for the closed-

loop system under damping feedback ψ(t, x) provided, as noted above, that LX0(t,x)ψ(t, x) <

0 for x ∈ O ⊂ R
n \ {0} for all t ∈ I.

Consider the time-dependent affine system under the damping feedback law constructed

above, i .e., the system

X0 −
m
∑

k=1

LXk
ψ ·Xk. (5.11)

The main result of this section is now stated and proven.

Theorem 5.1.2. Assume that for all x ∈ O ⊂ R
n \ {0} and all t ∈ I ⊂ R+, one can

construct ψ(t, x) such that ω0 is exact, i .e., ω0(t, x) = −dψ(t, x) 6= 0 and that dψ van-

ishes at the origin, an isolated equilibrium for the system. Then, the damping feedback

uk(t, x) = −(LXk
ψ)(t, x) locally asymptotically stabilizes the system at the origin. More-

over, a Lyapunov function for the closed-loop system can be computed using V (x) = (γψ)(x)

where γ(t, x) is given by (5.10) and renders ω(t, x) invariant with respect to time, i .e.,

ω(x) = γ(t, x)ω0(t, x), for all t ∈ I.

Proof: Consider the closed loop system under damping feedback control with ψ(t, x) as

required. By definition, the closed-loop system is written as

X0 −
m
∑

k=1

LXk
ψ ·Xk = X0 −

m
∑

k=1

(Xkydψ) ·Xk. (5.12)
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Let V (x) be given by (γψ)(x). Then

V̇ =
∂

∂t
(γψ) +X0 · ∇(γψ)−

m
∑

k=1

(Xkydψ) ·Xk · ∇(γψ). (5.13)

By construction of the integrating factor γ(t, x), the term ∂
∂t
(γψ) = 0, and by the product

rule, ∇(γψ)(x) is given as

∇(γψ)(x) = ψ∇γ + γ∇ψ. (5.14)

Since it was assumed that ψ(t, x) is a first integral of X0(t, x) in x (ω0,a ≡ 0). It can

be shown using the closed one-form ω0 that X0∇(γψ) = 0. By definition of the interior

product,

X0 · ∇V = X0ydV. (5.15)

Moreover, the exterior derivative of V can be expressed as

dV = γdψ + ψdγ (5.16)

= γω0 + ψdγ. (5.17)

The exterior derivative of γ(t, x) on R
n is given by

dγ = d

(

exp(

∫ t

0

ψ′
ψ
dτ)

)

(5.18)

=
∂

∂t
γ(t, x)dψ(t, x) (5.19)

=
∂

∂t
γ(t, x)ω0. (5.20)
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From these relations, and from the construction of ω0 = X0yΩ, (5.15) becomes

X0ydV =

(

γ + ψ
∂

∂t
γ

)

X0yω0 (5.21)

=

(

γ + ψ
∂

∂t
γ

)

X0yX0yΩ (5.22)

= 0 (5.23)

from the fact that the interior product of a vector field with itself XiyXi ≡ 0 (see Edelen

(2005)). Hence, (5.13) can be re-written as

V̇ = −
m
∑

k=1

(Xkydψ) ·Xk · ∇(γψ). (5.24)

As above, Xk · ∇(γψ) = Xky (ψdγ + γdψ), and

V̇ = −
m
∑

k=1

(Xkydψ) ·
(

Xky(γ + ψ
∂

∂t
γ)dψ

)

(5.25)

= −
(

γ + ψ
∂

∂t
γ

) m
∑

k=1

(Xkydψ)
2 (5.26)

which is negative definite.

Following Aeyels (1995), we now have to show that the origin is the largest invariant set of

the dynamics, i .e., that

W = {x : dV = 0} (5.27)

is {0}, at least in a neighborhood O of the origin. Since ω0 = −dψ and ψ vanish only at

the origin by assumption, and that by construction, dγ = ∂
∂t
γdψ, we have that W is the

largest invariant set if the integral over [0, t] of ψ′
ψ

is finite for some t ∈ I, which is ensured

by the regularity assumption on X0(t, x) with respect to t.

Remark 5.1.3. The domain of attraction for which a stabilizing control can be constructed
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or for which stability can be proven relies on the properness of ψ(·, x) obtained by application

of the radial homotopy operator. The reader is referred to (Faubourg, 2001, Chapter 2) for a

discussion on deformation of weak Jurdjevic–Quinn functions to obtain Lyapunov function

in the case of time-varying homogeneous vector fields.

5.1.4 Example

In this section, an application of the above construction is presented to illustrate the con-

struction from the last section. The following example was originally given in (Malisoff and

Mazenc, 2009, Chapter 8). Consider the system

ẋ1 = cos2(t)x2 (5.28)

ẋ2 = − cos2(t)x1 + cos4(t)u(t, x). (5.29)

Denote X0,1(x, t) = cos2(t)x2, X0,2(x, t) = − cos2(t)x1, X1,1(x, t) = 0, and X1,2(x, t) =

cos4(t). Applying the approach depicted above with Ω = dx1 ∧ dx2, the obtained one-form

is given as

ω0 = −X0,2(t, x)dx1 +X0,1(t, x)dx2, ∀t ∈ R+, (5.30)

which is a closed one-form since

∂

∂x2
(−X0,2) =

∂

∂x1
(X0,1) = 0. (5.31)

Applying the homotopy operator

(Hω) =

∫

1

0

(−X0,2(t, λx) · λx1 +X0,1(t, λx) · λx2) dλ (5.32)
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results in the time-varying Jurdjevic–Quinn potential ψ(t, x) = cos2(t)(x21 + x22). The

control u(t, x) is thus given by

u(t, x) = −∇Tψ(t, x) ·X1,2(t, x) = − cos6(t)x2. (5.33)

Figures 5.1a and 5.1b present the simulation of the closed-loop system with initial state

(x1(0), x2(0)) = (1, 1). The controller value trajectory is given in Figure 5.2.
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Figure 5.1: Time-varying stabilization example
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Stability of the origin of the closed-loop system is now analyzed using the expression of

ψ(t, x) given above. Note that ω0(t, x) = cos2(t)(−x1dx1 + x2dx2). The integrating factor

γ(t, x) is obtained by taking the time derivative of

∂

∂t
(γ(t, x)ψ(t, x)) = 0 (5.34)

which in this case leads to the condition (independent of the state x)

γ′(t) cos2(t)− 2γ(t) sin(t) cos(t) = 0. (5.35)

The integrating factor is hence γ(t) = exp(2
∫ t

0 tan(τ)dτ) = exp(−2 ln | cos(t)|) = sec2(t).

The desired Lyapunov function is thus given by V (x) = x21 + x22. The time derivative with

respect to the system under damping feedback is

V̇ (t, x) = − cos10(t)x22 < 0, ∀x \ {0},∀t ∈ I. (5.36)

In this case, the closed-loop one-form is exact, and trivially ωa ≡ 0. The largest invariant set

for the closed-loop is hence the origin. By the arguments from Aeyels (1995) (Barbashin–

Krasovsk̆i), the origin of the system under damping feedback is therefore asymptotically

stable. Moreover, since V (x) is proper, the origin is globally asymptotically stable.

5.2 Stabilization of a Trajectory

This section considers the problem of stabilizing the time-independent control affine non-

linear systems

ẋ = X(x) +

m
∑

i=1

Xi(x)ui (5.37)
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to periodic reference trajectories ηr(t) using time-varying damping feedback controls of the

form

up(t, x) = − ∂ψ

∂xp
(t, x) ·Xp(t, x), p = 1, . . . ,m. (5.38)

It is assumed that Xi(x), i = 0, . . . ,m are locally smooth in x. Stability and stabilization

of periodic trajectories was considered recently in (Mazenc et al., 2006) and (Mazenc et al.,

2008) for bioreactors where two species coexist. In this section, stabilization of periodic

orbits of predator-prey dynamics is considered.

The problem of periodic stabilization is here considered from an asymptotic tracking point

of view, see for example the general discussion in (Marino and Tomei, 1995). More precisely,

a reference trajectory ηr(t), solution of the drift dynamics

η̇r(t) = X0(ηr(t)) (5.39)

is assumed to be known. Stabilization of the origin of the error dynamics defined by

ė = ẋ− η̇r(t) (5.40)

is then considered to ensure convergence of x to ηr. Following the approach used in this

thesis, the design of static state feedback tracking controllers u = u(x, ηr, t) are considered

using the Jurdjevic–Quinn approach for time-varying affine systems. The reader is referred

to (Andrieu et al., 2007) for the related problem of output feedback tracking of periodic

bounded solutions.

A potential function ψ(t, e) is constructed such that the time-dependent feedback controls

(5.38) stabilize the origin of the closed-loop system over t ∈ I ⊂ R+. The challenge in

applying the method is to find a suitable auxiliary function ψ(·) to construct the damping

feedback controller (5.38) and a suitable Lyapunov function V (·) to show the stability
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of the closed-loop system. The proposed approach relies on a locally defined homotopy-

based decomposition technique proposed above to construct a dissipative potential ψ(t, e)

for the time-dependent error dynamics. In the present section, it is shown how a locally-

defined potential function for the time-dependent error dynamics, ψ(t, e), and the knowledge

of a time-varying function γ(t, e) such that d
dt
(γ(t, e)ψ(t, e)) = 0 is enough to show the

stability of the affine error time-varying system in closed-loop with controls of the form

uk(t, e) = −∇Tψ(t, e) · gk(t, e), using V (e) = (γ(t, e)ψ(t, e)) as a Lyapunov function. In

particular, the construction from Section 5.1 is used.

5.2.1 Construction of a Damping Feedback

Following the discussion from above, the objective is to design a state feedback damping

controller u(x, ηr, t) such that the dynamics of (5.49)-(5.50) stabilizes asymptotically to the

periodic orbit (5.55)-(5.56), i .e., such that

lim
t→∞

(x(t)− ηr(t)) = 0. (5.41)

In order to do so, consider the error, defined as ei(t, x) = xi − ηr,i for i = 1, 2. The error

dynamics are given by

ė = ẋ− η̇r(t). (5.42)

In the sequel, the resulting time-varying vector field is denoted as X0(t, e) = ẋ − η̇r(t)

obtained after replacing x = e+ ηr(t) in the drift vector field of (5.37). The idea exploited

here is to design a damping feedback tracking controller such that the origin of the error

dynamics is asymptotically stable for initial conditions in a neighborhood of the origin

(since the approach is local). The asymptotic tracking problem is therefore expressed as a

time-varying stabilization problem.
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First define a non-vanishing closed two-form Ω on R
n as

Ω =
∑

1≤i<j≤n

dei ∧ dej . (5.43)

A one-form associated to the system is obtained by contracting this two-form with respect

to the drift vector field,

ω0(t, e) = X0(t, e)yΩ, (5.44)

with X0(t, e) defined above as X0(t, e) = ẋ− η̇r(t). Since ω0,e(t, e) is exact on R
n, it is given

as the exterior derivative of a potential function and it is denoted as

ω0(t, e) = −dψ(t, e) + ω0,a(t, e). (5.45)

Assume that the dissipative potential ψ(t, e), obtained after application of the homotopy

operator (i .e., ψ(t, e) = (Hω0,e)(t, e)), is such that LX(t,e)ψ(t, e) < 0 for x ∈ O ⊂ R
n \ {0}

for all t ∈ I. The damping feedback controller is constructed as

uk(t, e) = −∇Tψ(t, e) · gk(t, e). (5.46)

In the particular case of the Lotka–Volterra considered in the sequel, g(t, e) is simply [1, 0]T .

In the next section, the result from Section 5.1 is specialized to obtain a Lyapunov function

V (e) and to prove asymptotic stability of the closed-loop using a time-varying function to

render ω0(t, e) independent of time.
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5.2.2 Stability of the Time-Varying Error Dynamics

A Lyapunov function V (e) is constructed for the closed-loop error dynamics system based

on the dissipative potential computed by the homotopy above. As in Section 5.1, a time-

varying function γ(t, e) is computed such that

∂

∂t
(γ(t, e)ψ(t, e)) = 0. (5.47)

It is now shown that V (e) = (γψ)(e) is a Lyapunov function for the closed-loop system

under damping feedback ψ(t, e) provided, as noted above, that LX0(t,e)ψ(t, e) < 0 for x ∈

O ⊂ R
n \ {0} for all t ∈ I.

Consider the time-dependent affine error dynamic system under the damping feedback law

constructed above, i .e., the system

X0(t, e) −
m
∑

k=1

(LXk
ψ ·Xk)(t, e). (5.48)

The following result is given without proof, as a specialization of the result from Section

5.1.

Theorem 5.2.1. Assume that for all e ∈ O ⊂ R
n \ {0} and all t ∈ I ⊂ R+, one can

construct ψ(t, e) such that ω0 is exact, i .e., ω0(t, e) = −dψ(t, e) 6= 0 and that dψ vanishes

at the origin. Then, the damping feedback uk(t, e) = −(LXk
ψ)(t, e) locally asymptotically

stabilizes the origin of the error system. Moreover, a Lyapunov function for the closed-loop

system can be computed using V (e) = (γψ)(e) where γ(t, e) is given by (5.10) and renders

ω(t, e) invariant with respect to time, i .e., ω(e) = γ(t, e)ω0(t, e), for all t ∈ I.

The next section illustrates the application of this result to a Lotka–Volterra system.
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5.2.3 Asymptotic Tracking of a Lokta–Volterra Periodic Solution

The construction presented in Section 5.2.2 is now applied to the Lotka–Volterra system

introduced in the previous chapters. Consider

ẋ1 = ax1 − bx1x2 + u (5.49)

ẋ2 = −cx2 + bx1x2, (5.50)

with x1 ≥ 0 and x2 ≥ 0 and where a, b, c are known positive constants. The first step is to

give explicit periodic solutions for the drift system.

The periodic invariant solution to be tracked is given following the original construction

given in (Evans and Findley, 1999). Define the invariant for the system as

Λ = bx1 + bx2 − c ln x1 − a lnx2. (5.51)

Then, defining the auxiliary signal

w =
Λ

2(a+ c)
(1− cos 2φ), (5.52)

it was shown that the periodic invariant of the uncontrolled part of the Lotka–Volterra

system can be expressed as

x1(t) =
1

b
(cw + ẇ) (5.53)

x2(t) =
1

b
(aw − ẇ). (5.54)

In the sequel, those expressions will be used as the periodic reference trajectories, i .e.,

ηr,1(t) =
1

b
(cw + ẇ) (5.55)

ηr,2(t) =
1

b
(aw − ẇ), (5.56)
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where w and ẇ are generated by the expressions above or, as solutions of the second order

differential equation

ẅ − ẇ2 − (c− a)(w − 1)ẇ + acw(w − 1) = 0. (5.57)

The open-loop dynamics and reference trajectories are depicted in Figures 5.3a and 5.3b.
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Figure 5.3: Uncontrolled dynamics and reference trajectories

The error dynamics is given as

ėi = ẋi − η̇r,i(t)

with i = 1, 2. The time-varying control affine system to be stabilized is obtained by replacing

xi = ei + ηi(t) in the drift dynamics of (5.49)-(5.50):

ė1 = −b(e1 + ηr,1)(e2 + ηr,2) + a(e1 + ηr,1)− η̇r,1 (5.58)

ė2 = b(e1 + ηr,1)(e2 + ηr,2)− c(e2 + ηr,2)− η̇r,2. (5.59)
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Denoting this dynamics as the vector field

X0 = f̃1(t, e)∂e1 + f̃2(t, e)∂e2 (5.60)

and setting Ω = de1 ∧ de2, the desired one-form is obtained by taking the interior product

X0yΩ:

ω0 = −f̃2de1 + f̃1de2. (5.61)

Applying the homotopy operator centered at the origin on X = λei∂ei , the dissipative

potential is given by

ψ(t, e) = f̃2e1 − f̃1e2. (5.62)

For the choice of parameters a = c = 0.5 and b = 1, and using the definition of ηr,i in terms

of w, one can show that for xi = ei+ ηr,i ≥ 0, ψ(t, e) ≥ 0 in the neighborhood of the center

equilibrium (0.5, 0.5)T . Moreover, one can show that in this particular case, the anti exact

part of the dynamics vanishes only for f̃i = 0, and hence ω0 is exact. The function

γ(t, e) = exp

(
∫ t

0

ψ′(τ, e)
ψ(τ, e)

dτ

)

(5.63)

is not explicitly written. However, the regularity assumptions required for such a function to

exist are met for the bounded reference trajectories (5.55)-(5.56). Hence, following (Aeyels,

1995) and Section 5.1, there exists a Lyapunov function V (e) = (γψ)(e) for the closed-loop

system.

Replacing e = x− ηr(t) in (5.62), the asymptotic tracking controller u(t, x) is computed as

u(t, x) = −∇T
xψ(t, x) · g(x). (5.64)
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With g(x) = [1, 0]T , it is given as

u(t, x) = a
x2 − ηr,2

2
+ b

(

x2(ηr,1 + ηr,2)− x22
2

− x1x2

)

+ c
x2
2

+
ηr,2
2
. (5.65)

Closed-loop simulations using the above damping controller with initial conditions x(0) =

ηr(0) = [2, 2]T are presented in Figures 5.4a and 5.4b. The time evolution of the tracking

error [e1(t), e2(t)]
T is shown in Figure 5.4c.
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Figure 5.4: Asymptotic tracking of periodic solutions for a Lotka–Volterra system
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Figure 5.4: Asymptotic tracking of periodic solutions for a Lotka–Volterra system
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5.3 Summary and Extensions

This chapter considered the problem of Lyapunov functions construction for the stabiliza-

tion of time-dependent affine nonlinear control systems satisfying the weak Jurdjevic–Quinn

conditions. Provided that a positive definite function (a dissipative potential) can be ob-

tained by taking the interior product of a non-vanishing two-form with respect to the drift

vector field, a damping feedback controlled was constructed. As discussed above, there is a

certain freedom in the choice of the two-form to ensure that the potential has the desired

properties. It was shown how a function cancelling the time-dependence of the dissipative

potential can be used to deform the time-varying dissipative potential to obtain a non-strict

Lyapunov function for the closed-loop vector field subject to time-varying damping feedback

control. The proposed method is local since the approach relies on a homotopy operator

centered at the origin. One problem under investigation is the extension for systems where

the non-exact part is not trivial. In that case, the proposed construction could lead to

stabilization of time-varying complex patterns, for example limit cycles.

The problem of asymptotic tracking of periodic orbits using smooth damping feedback

tracking controllers was then considered. The proposed approach consists in stabilizing

the origin of the time-varying error dynamics system, building on the result from Section

5.1. Application of the approach was illustrated on a Lotka–Volterra periodic stabilization

example.

Future research of this approach to synchronization is discussed next.

5.3.1 Synchronization

In (Hudon and Guay, 2010b), a problem inspired by (Stan et al., 2007) was considered. The

approach presented in Chapter 4 was applied to cyclic interconnection structure (Arcak and



CHAPTER 5. STABILIZATION OF TIME-DEPENDENT SYSTEMS 121

Sontag, 2006) of the form

ẋ1 = −a1(x1) + bn(xn) (5.66)

ẋ2 = −a1(x2)− b1(x1) (5.67)

... (5.68)

ẋn = −an(xn) + bn−1(xn−1), (5.69)

where ai(·) and bi(·), i = 1, . . . , n, are continuous functions satisfying xiai(xi) > 0 and

xibi(xi) > 0 for xi 6= 0. The situation considered here is the case where ai(·), i = 1, . . . , n

and bi(·), i = 1, . . . , n − 1 are increasing functions and bn(·) is a decreasing function. This

is a special case of the metabolic network with feedback inhibition considered in (Grognard

et al., 2004).

An interesting example of such a system was given by Arcak and Sontag (2008),

ẋ1 = −a1x1 + φ(x3) (5.70)

ẋ2 = −a2x2 + b1x1 (5.71)

ẋ3 = −a3x3 + b2x2. (5.72)

In the case where φ(x3) is given as a function of the form 1
1+xp

3

, the above cyclic intercon-

nection is known as the Goodwin oscillator for which, depending on the value of p, a stable

periodic orbit exists (see for example Stan et al. (2007) and references therein).

This section considers the special case from (Arcak and Sontag, 2008) where a1 = a2 =

a3 = 1 and b1 = b2 = 1. In particular, Arcak and Sontag (2008) showed, for φ(x3) =

exp(−10(x3 − 1)) + 0.1 sat(25(x3 − 1)), that the equilibrium x∗ = [1, 1, 1]T coexists with

a periodic orbit. As a first approximation, φ(x3) is considered to be

φ(x3) = exp(−10(x3 − 1)). (5.73)
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The open-loop cycle surrounding the desired equilibrium x∗ = [1, 1, 1]T , with initial con-

ditions x0 = [1.2, 1.2, 1.2]T is presented in Figures 5.5a and 5.5b.
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Figure 5.5: Oscillator from (Arcak and Sontag, 2008) — open-loop

The synchronization of two cyclic systems originally on different time scales was considered

in (Hudon and Guay, 2010e):

ẋ1,1 = −a1(x1,1) + bn(xn,1) + u1 (5.74)

ẋ2,1 = −a1(x2,1)− b1(x1,1) + u2 (5.75)

... (5.76)

ẋn,1 = −an(xn,1) + bn−1,1(xn−1,1) + un, (5.77)
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and

τ ẋ1,2 = −a1(x1,2) + bn(xn,2) (5.78)

τ ẋ2,2 = −a1(x2,2)− b1(x1,2) (5.79)

... (5.80)

τ ẋn,2 = −an(xn,2) + bn−1,2(xn−1,2), (5.81)

with ai,j and bi,j as above. Consider two differential one-forms obtained using f1(xi,1) and

f2(xi,2), the drift vector fields from the two systems:

η1 = f1(xi,1)yΩ1 (5.82)

η2 = f2(xi,2)yΩ2. (5.83)

Since both systems have the same drift structure, Ω2 = δΩ1, where δ = τ2. Define a closed

one-form for the error as

ω0 = (f1(xi,1)− δf2(xi,2))yΩ1. (5.84)

Then, applying a homotopy centered at the origin for this dynamics, the dissipative potential

ψ(xi,1, xi,2) = Hω0 =

∫

1

0

ω0(λ(xi,1 − xi,2))λ(xi,1 − xi,2)dλ (5.85)

is obtained.

Assuming that all the reference trajectories xi,2(t) are available, the damping controllers

for the system are given by

uk = −kk∇T
xi,1

ψ · gk. (5.86)
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By the usual arguments of the damping method, stabilization of the slave system to the

reference trajectories follows. The simulations with σ = 2 are presented in Figure 5.6,

the control ui(x) = −ki ∂ψ∂xi are set to zero for t < 20. Both systems are initialized at

x0 = [1.2, 1.2, 1.2]T .
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Figure 5.6: Synchronization simulations

The results show that the original system synchronizes with the reference dynamics, fol-

lowing essentially the discussion of Section 4.2. Current studies around that approach to

synchronization seek to extend the procedure to the (output) feedback tracking problem.

One promising approach was given in (Nijmeijer and Mareels, 1997). However, it should

be noted that for larger problems, i .e., when the number of subsystems to synchronize or

coordinate is large, a time-dependent reference trajectory can be used. This is the case, for

example, for the synchronization of network of circadian oscillators, presented for example

in (Doyle III et al., 2006) and (Bagheri et al., 2007). From that perspective, synchronization

problems are potential extensions of the stabilization problems presented in this chapter.
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5.3.2 Driftless Systems

Following the discussion of Sections 4.4.3 on bilinear systems stabilization, the control of

driftless system

ẋ =
m
∑

j=1

ukXk (5.87)

where X = (X1, . . . ,Xm) bem vector fields of class C∞ are now discussed. It is known from

the classical result of Brockett (1983), that local controllability on R
n \ {0} does not imply

asymptotic stabilizability by means of a continuous feedback law u = u(x). However, some

systems of the form (5.87) can be stabilized by periodic time-varying feedback laws (Coron,

1990). In particular, constructive methods were presented in (Pomet, 1992) and (Moreau

and Aeyels, 1999b). Jurdjevic–Quinn stabilization approach for this class of systems was

briefly discussed in (Aeyels and Sepulchre, 1995), assuming a Jurdjevic–Quinn function

constructed as proposed in (Pomet, 1992). For the special case where the system (5.87) is

such that x ∈ R
3 and u ∈ R

2, under the assumptions that X1(x), X2(x) and [X1, X2](x)

span R
3 and that X1(x) and X2(x) are homogeneous, Moreau and Aeyels (1999b) proposed

a feedback of the form

u1(t, x) = l1(x) + cos(t)l3(x) (5.88)

u2(t, x) = l2(x) + sin(t)l4(x) (5.89)

with li(x) smooth on R
3 \ {0} and homogeneous, and showed local asymptotic stability of

the origin under that feedback.

An approach to consider following the construction proposed in this chapter and the pre-

liminary result in Section 4.4.3 would be to compute time-varying functions such that

ω = (α1(t, x)X1 + α2(t, x)X2 + α3(t, x)[X1, X2](x))yΩ (5.90)
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is exact and use the associated dissipative potential for time-dependent feedback design.

The main difficulty for that approach would be to solve the partial differential equations

associated with the condition ωa ≡ 0.

Consider for example the example presented in (Pomet, 1992):

ẋ1 = u1 (5.91)

ẋ2 = x1u2 (5.92)

ẋ3 = u2. (5.93)

This system does not satisfy Brockett’s necessary conditions, hence it is not stabilizable

at the origin by smooth state feedback. The problem of stabilizing the origin of this

system using a time-dependent feedback law, as presented in (Pomet, 1992), is now dis-

cussed. Following the idea in (Moreau and Aeyels, 1999b) and as in Section 4.3, it is

proposed to use the one-form obtained from (5.90). First note that [X1, X2] = ∂x2 , and

span{X1,X2, [X1, X2]} = R
3. The scaled vector field is as follows

X = α1∂x1 + α2(x1 + 1)∂x2 + α3∂x3 . (5.94)

Letting

Ω = dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1, (5.95)

and taking the interior product XyΩ, the one-form computed from (5.90) is

ω = (−α2(x1 + 1)) + α3) dx1 + (α1 − α3)dx2 + (α2(x1 + 1)− α1) dx3. (5.96)

Following (Pomet, 1992), it is assumed that the desired time-varying solutions are of the
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form

α1(t, x1, x2, x3) = x1 + φ(t, x2, x3) (5.97)

α2(t, x1, x3) = φ(t, x1, x3) (5.98)

α3(t, x1, x2) = φ(t, x1, x2). (5.99)

With this particular choice, the condition ωa ≡ 0 leads to the following set of partial

differential equations

∂

∂x1
φ3(t, x1, x2) +

∂

∂x2
φ3(t, x1, x2)− 1 = 0 (5.100)

(x1 + 1)

(

∂

∂x1
φ2(t, x1, x3)−

∂

∂x3
φ2(t, x1, x3)

)

− φ2(t, x1, x3) + 1 = 0 (5.101)

∂

∂x2
φ1(t, x2, x3) +

∂

∂x3
φ1(t, x2, x3) = 0. (5.102)

A particular solution for this system is given as

φ1(t, x2, x3) = F1(t,−x2 + x3) (5.103)

φ2(t, x1, x3) =
x1 + F3(t,−x1 + x3)

x1 + 1
(5.104)

φ3(t, x1, x2) = x1 + F2(t,−x1 + x2). (5.105)

Following the arguments given in (Pomet, 1992), the unknown functions Fi are fixed as

F1(t,−x2 + x3) = cos(t)(−x2 − x3) (5.106)

F2(t,−x1 + x2) = sin(t)(−x1 + x2) (5.107)

F3(t,−x1 + x3) = exp(−t)(−x1 + x3). (5.108)
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Using the modified one-form ω to construct a dissipative potential and applying the Jurdevic–

Quinn control approach, the system is stabilized to a neighborhood of the origin. Simula-

tions for the system are given in Figures 5.7a and 5.7b and the periodic smooth control in

Figure 5.7c, using the initial conditions x(0) = [0.5, 0.5, 0.5]T .
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Figure 5.7: Time-dependent stabilization of a driftless system
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Figure 5.7: Time-dependent stabilization of a driftless system

The approach taken here is obviously not systematic. However, an extensive study of this

approach could be considered in the future. The first element to be considered would be to

study carefully the existence and uniqueness of solutions for the partial differential equations
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obtained by imposing that ω is closed.



Chapter 6

Conclusions

As discussed in the previous chapters, the results presented in this thesis suggest some

potential extensions in the field of feedback stabilization design. Some of those potential

extensions are discussed in the following. First, the contributions given in this thesis are

summarized in Section 6.1. Some application problems to be addressed and possible areas

for research are discussed in Section 6.2.

6.1 Summary

The objective of the thesis was to study how the decomposition of a one-form associated

with a given nonlinear drift vector field can be used to design smooth feedback damping

controllers. Originally motivated by the problem of dissipative Hamiltonian realization,

following the decomposition approach given in (Cheng et al., 2000) and (Cheng et al.,

2002), a homotopy-based approach dating back to (Edelen, 1973) and used in (Edelen,

2005) in the context of non-equilibrium thermodynamics was applied to compute a locally

defined dissipative potential. A similar construction, using the Poincaré lemma, was recently

presented in (Yap, 2009). This last approach to compute a potential using an exact one-

form is related to the result presented in (Hudon and Guay, 2009a), summarized briefly in

130
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Section 3.6, where feedback controller design was achieved by canceling the anti-exact part

of the dynamics using feedback.

Since stabilization problems encountered in chemical engineering that can be solved by the

existing IDA-PBC design method are limited, the aforementioned dissipative potential was

exploited to construct smooth damping feedback controllers of the Jurdjevic–Quinn type,

as described in (Malisoff and Mazenc, 2009), specializing here to control affine systems.

Building on this result, the design of feedback regulator by computing a potential and

use it for stabilization of the origin in an extended space was presented. To complete

the discussion, it was shown that the same potential computation procedure can be used

to obtain a first integral of the uncontrolled part of the dynamics and to stabilize closed

orbits using the result from Bacciotti and Mazzi (1995) and (Bombrun, 2007). As noted in

(Bacciotti, 1992), the Jurdjevic–Quinn approach works well when the drift system possesses

some dissipative property. By extension, most control applications using Jurdjevic–Quinn

controllers are built using the drift dynamics as a starting point. However, in some particular

cases, such as the bilinear example presented originally by Jacobson (1977), it is possible to

recover the idea of a potential using the proposed technique, as noted briefly in Section 4.4.

This observation paved the way for further extensions of the techniques presented here.

Following the original result from Aeyels and Sepulchre (1995) and the recent construction

by Malisoff and Mazenc (2009, Chapter 8), an extension of the Jurdjevic–Quinn approach

to the stabilization of time-dependent control affine systems was considered in Chapter 5. It

was shown that by computing a time-varying factor that makes the potential time-invariant,

it is possible to find a semi-definite Lyapunov function proving stability of the system in

closed-loop with a time-dependent Jurdjevic–Quinn control law. This result was then used

to construct a controller for the asymptotic tracking of periodic orbits, following the problem

studied by Mazenc et al. (2006). The construction of time-dependent feedback laws for the

stabilization of driftless systems was then explored in Section 5.3.2 as a potential area for

future research.
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Some applications, not presented in the present thesis, should be mentioned. Damping

feedback stabilization of a wastewater plant model (dimension n = 4) with mixed Monod

and Haldane kinetics was given in (Hudon and Guay, 2010e). Application of the stabilization

approach on cyclic interconnections, as treated by Arcak and Sontag (2006) and Arcak and

Sontag (2008) and mentioned in Section 5.3.1 is presented in (Hudon and Guay, 2010b).

This last class of extensions suggests many opportunities for theoretical as well as application-

motivated problems that are discussed in the next section.

6.2 Future Research Problems

Potential research extensions based on the results presented in this thesis are now discussed.

First, potential extensions of the damping approach to output feedback nonlinear control

design and robust design are discussed. Then, motivated by application to drug delivery

systems, long-term research areas are described.

6.2.1 Theoretical Extensions

The results of Sections 4.2 and 5.2 assumed full state feedback stabilization. As noted

in Section 4.4, a natural extension of this research would be to consider output feedback

stabilization. One approach to re-derive the results of Chapter 4 would be to use the

construction of output feedback control Lyapunov functions, as proposed in (Tsinias and

Kalouptsidis, 1990) and (Tsinias, 1991). An interesting starting point for the application

presented in Section 4.2 would be to consider the design of Lyapunov-based observers as

presented in (Nijmeijer and Berghuis, 1995). Geometric elements mirroring the contribution

of Banaszuk and Hauser (1996) for observer design was presented in (Lynch and Bortoff,

1997). From that point of view, the research presented in this thesis could be related to

approximate (output) feedback linearization. Moreover, synchronization problems, such as

the problem discussed in Section 5.3.1 could be considered from an output feedback point
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of view, as originally proposed in (Stan et al., 2007).

Following the discussion from (Sepulchre et al., 1997) and (Malisoff and Mazenc, 2009), and

more recently by Karafyllis and Tsinias (2009), the robustness issue of the proposed design

could also be addressed in the future. Building on the idea from (Haddad and Chellaboina,

2009, Chapter 12), where Lyapunov functions of the form V (x) = V0+V∆ were proposed to

achieve robust stabilization with respect to parametric uncertainty, one could consider the

idea of domination design based on the damping feedback stabilization technique proposed

here, as briefly mentioned in the context of singular perturbation in Section 4.4.

In the present thesis, the structure of the system was rarely considered to simplify the

proposed design approach. The work given in (De Leenheer and Aeyels, 2002) on positive

systems and in (Angeli and Sontag, 2003) on monotone systems could be considered as

potential case studies. The preliminary analysis carried on cyclic system proposed origi-

nally in (Arcak and Sontag, 2006; Stan et al., 2007) were given in 5.3.1. Representation

results for this class of systems could lead to extensions of the technique presented here to

general network stability and stabilization problems (Arcak and Sontag, 2008). From that

perspective, considering network stabilization using connections of elements with known

dissipative potential could lead to some practical results, following some results obtained

using PCH-PBC.

6.2.2 Potential Applications

If one considers drug infusion stabilization problems, such as the example from (Chang

and Astolfi, 2008) presented in Chapter 1, many theoretical extensions of the present work

need to be addressed before application. First, since parameter uncertainty is inherent to

drug infusion dynamics, elements on the time-dependent stabilization approach presented in

Section 5.2 could be considered as a basis for adaptive control design, for example following

the work presented in (Astolfi et al., 2008). The wide variety of drug infusion models also

suggests some potential areas of future research. For example, age-structured models can be
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considered using state-delayed systems. An application of the Jurdjevic–Quinn method was

recently proposed for discrete systems with delays by Aggoune (2007). Continuous models

with delays of infection dynamics are emerging in the literature, for example the model

of HIV dynamics proposed in (Nelson and Perelson, 2002). From a control point of view,

work on stabilization of nonlinear delayed systems were extensively covered by Jankovic,

using the ”LgV ” technique, for example in (Jankovic, 2003). Extensions of the potential

construction technique contained in the present thesis from the point of view considered in

(Jankovic, 2003) is possible, if one considers the homotopy approach on more general spaces

than R
n where all the results in the present thesis are built.
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J. Johnsen and F. Allgöwer. Interconnection and Damping Assignment Passivity-Based

Control of a Four-Tank System. In F. Bullo and K. Fujimoto, editors, Lagrangian and

Hamiltonian Methods for Nonlinear Control 2006, volume 366 of Lecture Notes in Control

and Information Sciences, pages 111–122, Berlin, 2007. Springer-Verlag.

V. Jurdjevic and J.P. Quinn. Controllability and Stability. Journal of Differential Equations,

28(3):381–389, 1978.

I. Karafyllis and J. Tsinias. Control Lyapunov Functions and Stabilization by Means of

Continuous Time-Varying Feedback. ESAIM. Control, Optimisation and Calculus of

Variations, 15:599–625, 2009.



BIBLIOGRAPHY 144

H.K. Khalil. Nonlinear Systems. Prentice Hall, New York, NY, 3rd edition, 2002.
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Appendix A

Elements of Exterior Calculus in

R
n

Basic elements of exterior calculus on R
n are reviewed. Of interest are the properties of

the exterior derivative, the interior product, Lie derivative of exterior forms, and Cartan’s

formula. A complete account of exterior calculus can be found in (Edelen, 2005), (Flanders,

1963), and (Lee, 2006, Chapter 12).

We denote a smooth vector field X ∈ Γ∞(Rn) as a smooth map

X : Rn → TRn, X(x) =

n
∑

i=1

vi(x)∂xi , (A.1)

i.e., a map taking a point x ∈ R
n and assigning a tangent vector X(x) ∈ TxR

n. The

cotangent (dual) space T ∗
xR

n is the set of all linear functionals on TxR
n,

T ∗
xR

n = {ω(x) : TxRn → R} (A.2)
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where each ω(x) is linear, i.e.,

(aω1(x) + bω2(x))(X(x)) = aω1|x(X(x)) + bω2|x(X(x)). (A.3)

The standard basis of T ∗
xR

n is given by {dx1, . . . , dxn}, where dxi(∂xj ) = δij , δ
i
j being the

Kronecker delta. An element ω(x) in the cotangent space T ∗
xR

n can be written as

ω(x) =

n
∑

i=1

ωi(x)dxi, ωi ∈ R. (A.4)

Differential one-forms are generated the following way. A differential one-form ω on R
n is

a smooth map taking a point x ∈ R
n and assigning an element of its dual space T ∗

xR
n. We

write

ω(x) =
n
∑

i=1

ωi(x)dxi, (A.5)

where ωi(x) are smooth functions on R
n. The exterior (wedge) product ∧ is defined on

Λ1(Rn)× Λ1(Rn) by the requirements

dxi ∧ dxj = −dxj ∧ dxi

dxi ∧ f(x)dxj = f(x)dxi ∧ dxj

for all smooth functions f(x) and by

α ∧ (β + γ) = α ∧ β + α ∧ γ, (A.6)

for all α, β, γ ∈ T ∗
R
n. If α ∈ Λk(Rn), then we write degα = k. We note that Λ1(Rn) =

T ∗
R
n and Λ0(Rn) = C∞(Rn).
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The exterior derivative d is the unique operator on Λ(Rn) =
⊕n

k=0Λ
k(Rn),

d : Λk(Rn) → Λk+1(Rn), 0 ≤ k ≤ n− 1, (A.7)

with the following properties:

1. d(α + β) = dα+ dβ.

2. d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ.

3. df =
∑n

i=1(
∂f
∂xi

)dxi, ∀f(x) ∈ Λ0(Rn).

4. d ◦ dα = 0.

A k-form α is said to be closed if dα = 0. It is said to be exact if there exists a (k− 1)-form

β such that dβ = α.

The interior product y is a map

y : Γ∞(Rn)× Λk(Rn) → Λk−1(Rn), 0 ≤ k ≤ n, (A.8)

with the following properties ∀α, β ∈ Λk(Rn), ∀X,X1,X2 ∈ Γ∞(Rn) and ∀f, g ∈ Λ0(Rn):

1. Xyf = 0.

2. Xyω = ω(X),∀ω ∈ Λ1(Rn).

3. Xy(α + β) = Xyα +Xyβ.

4. (fX1 + gX2)yα = f · (X1yα) + g · (X2yα).

5. Xy(α ∧ β) = (Xyα) ∧ β + (−1)deg(α)α ∧ (Xyβ).

6. X1y(X2yα) = −X2y(X1yα).
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The last property leads to the following composition rule for interior product: Xy(Xyα) = 0.

The Lie derivative L is a map

L : Λk(Rn) → Λk(Rn), 0 ≤ k ≤ n, (A.9)

with the following properties:

1. LXf = Xydf .

2. LX(α+ β) = LXα+ LXβ.

3. LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ).

4. LXdα = d(LXα).

5. Lf ·Xα = f · LXα+ df ∧ (Xyα).

6. LX1+X2
α = LX1

α+ LX2
α.

7. LX1
(X2yα) = LX1

(X2yα)−X2y(LX1
α).

The action of the Lie derivative for X1,X2 ∈ Γ∞(Rn) is given by the Lie bracket LX1
X2 =

[X1,X2] and satisfies

L[X1,X2]α = (LX1
LX2

− LX2
LX1

)α. (A.10)

We also define ad0X1
X2 = X2 and the k iterates for k = 1, 2, . . . by adk+1

X1
X2 = [X1, ad

k
X1
X2].

The definitions above yield to the following relation that is used in Section 4.4:

[X1,X2]yα = X1yd(X2yα) −X2yd(X1yα) −X2yX1ydα+ d(X1yX2yα). (A.11)
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We complete this review with Cartan’s identity, which relate the Lie derivative of a differ-

ential form to exterior differentiation:

LXω = Xydω + d(Xyω). (A.12)


