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ABSTRACT 

The vasoactive intestinal peptide (VIP) signaling axis constitutes VIP and its two G 

protein coupled receptors (GPCR) termed vasoactive intestinal/pituitary adenylate cyclase 

activating polypeptide (VPAC) 1 and 2. This signaling axis regulates numerous biological 

actions within the endocrine system, the nervous system and the immune system. Working as a 

gut hormone, VIP can increase cAMP signaling within beta-islet cells of the pancreas to impact 

insulin production. As a neurotransmitter, it acts as a master circadian regulator controlling light 

and dark cycling. Lastly, VIP regulates immune processes such as activation, chemotaxis, 

development and cytokine secretion. The focus of my doctoral research was to delineate VIP 

signaling mechanisms controlling immunity. We aimed at understanding: 1.) the molecular 

mechanism of VIP-induced T cell trafficking 2.) ability for VPAC2 signaling to regulate immune 

homeostasis and 3.) a phenotype of a B cell subset during asthma, an immune pathology devoid 

of VIP protein due to excessive protease activity. Methods employed utilized isolated primary 

mouse immune cells to measure a VIP-induced signaling pathway centered on the epidermal 

growth factor receptor (EGFR), a tyrosine kinase receptor, by qPCR and chemotaxis assays. 

Flow cytometry to enumerate immune cell numbers in VPAC2 deficient mice was done to 

accomplish aim 2. Lastly, using a published in vivo allergic asthma mouse model, we used 

qPCR, immunoblotting and flow cytometry analyses to measure expression of Hyaluronic acid 

binding proteins on B cells. Results from these studies revealed that VIP signaling in T cells is 

regulated by EGFR as inhibitors against its enzymatic activity abolished T cell movement 

towards VIP. Immune cell numbers were lowered as a consequence of VPAC2 deficiency, 

suggesting its involvement in homeostasis. Lastly, a unique B cell population homing to 

asthmatic lung secretes an anti-inflammatory mediator, TGF-beta, through the HA binding 



iv 
 

protein called RHAMM. Collectively, these data emphasize the importance of VIP signaling in 

the immune system controlling cell migration and homeostasis.  
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CHAPTER ONE: GENERAL INTRODUCTION 

Overview of the immune system 

Two important goals of the immune system are eradication and limitation of infections to 

the host. These goals are illustrated in immune-compromised people who are pre-disposed to 

opportunistic pathogenic infections, as seen in those with genetic immune disorders like X-

linked severe combined immunodeficiency (SCID) 
1-3

, and immune-compromised infections like 

acquired immunodeficiency syndrome (AIDS) 
4, 5

. The importance of the immune system can is 

also demonstrated in expecting mothers, who are also more susceptible to microbes that normally 

do not infect healthy individuals
6-8

. For the eradication and limitation of infections, normal, 

healthy cells and unhealthy cells are distinguished by the immune system by recognition of 

“danger” signals called damage-associated molecular patterns (DAMPs) that are expressed on 

unhealthy cells
9
. Infections of the cells by pathogens or cellular damage caused by non-infectious 

agents like sunburn or cancer, trigger the infected and damaged cells to express DAMPs on their 

surfaces that mark them for destruction by immune cells
10

. Cells that are infected by microbes 

such as viruses and bacteria trigger a different “danger” signal called pathogen-associated 

molecular patterns (PAMPs)
11

, also marking them for destruction. Hence, failure by the immune 

system to respond accordingly to DAMPs and PAMPs when there is sufficient need, can lead to 

problems like infections or cancer. Conversely, over-reaction by the immune system without any 

real threat or the inability to be turned off after clearance of a threat is detrimental as seen in 

allergic reactions, chronic inflammation and autoimmune disease, when the immune system 

attacks the host 
12-14

. Therefore, the responses of the immune system are tightly regulated. 
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Organs and tissues of the immune system 

The immune system is made up of primary lymphoid organs (e.g., bone marrow and 

thymus) and secondary/peripheral lymphoid organs (e.g., lymph nodes and spleen) (Figure 1-1). 

In the bone marrow, precursor cells called hematopoietic stem cells (HSCs) can differentiate into 

three major lineages of blood cells. The first is called the lymphoid lineage, which constitutes T 

and B lymphocytes. These cells make up the adaptive immune system. B lymphocytes mature in 

the bone marrow, while thymocyte precursors are generated in the bone marrow and migrate to 

the thymus to develop into mature T lymphocytes
15, 16

. The second is called the myeloid lineage 

that represents eosinophils, neutrophils, basophils, mast cells, dendritic cells, monocytes and 

macrophages. These cells make up the innate immune system
15

.  The last lineage represents 

erythroid progenitor cells, which generate red blood cells and platelets
15, 17

. Innate immune cells 

are important are  first-line responders to infection
10

. The innate immune cells lack the diversity 

to recognize microbes as compared to the adaptive immune system. Whereas, our innate immune 

cells have only evolved the ability to sense and recognize approximately one thousand different 

PAMPs, the adaptive immune system can recognize antigens in the order of billions
18

.  

Thymus, which is a small organ located in the thoracic cavity near the heart, and 

functions to produce mature naïve T cells
19, 20

. Lymphoid progenitors egress from the bone 

marrow and migrate into the thymus
19, 20

. Through a thymic education process called negative 

and positive selection, mature naïve T cells are produced. During the final stages of T cell 

development, those cells that fail to recognize self-tissue did by neglect (negative selection), 

while  those T cells that might attack “self” are eliminated. Selected mature T cells that bind 

tissue with moderate affinity only are then released into the bloodstream to migrate to peripheral 

lymphoid organs such as spleen and lymph nodes
21, 22
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Lymph nodes are immune compartments that can be thought of as immunological 

conference centers or communication hubs where antigen presenting cells (APCs) concentrate 

information from the body to be sampled by T and B lymphocytes
23

. If the T or B lymphocytes 

in the lymph nodes recognize pieces of a microbe (antigen) brought in from an area of infection 

and presented by APCs, they respond by clonally expanding (proliferating) and migrating to the 

infected area in an attempt to clear the invading microbe
24, 25

. Thus, an active immune response 

can be assessed by both visual and physical examinations for swollen lymph nodes in the neck, 

armpit or inner thighs.  

Another peripheral immune organ is the spleen which is located behind the stomach and 

acts as an immunological filter of the blood. The Spleens contain APCs that interrogate blood 

plasma for PAMPs from invading pathogens that enter the blood. Such infection route could be 

due to blood-feeding insects
26, 27

. It can also be thought of as an immunological conference 

center like the lymph nodes even though it is not directly connected to the lymphatic system
26

. It 

consists of circulating B cells, macrophages, dendritic cells, natural killer cells and red blood 

cells
28

. These immune cells are enriched in specific regions of the spleen, and upon recognizing 

blood-borne pathogens, they activate and respond accordingly
29

. In addition, damaged or 

senescent red blood cells get removed by the spleen
27

. 

The mucosal tissue is made up of mucosal surfaces known as mucosal associated 

lymphoid tissues (MALT). Since mucosal surfaces, like the respiratory tract and the gut are 

vulnerable entry points for pathogens, specialized immune hubs or “rest areas” are strategically 

located in the MALT
30

. For instance, in the small intestines, specialized lymphoid organs called 

Peyer's patches and mesenteric lymph nodes are responsible for organizing immune cells access 

to sampling from the MALT of the gastrointestinal tissue (GALT) and  pulmonary tissue 
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(PALT)
31

. Due to the sheer numbers of potentially life-threatening bacteria in the vertebrate gut, 

more than 70% of immune cells line this tissue
31

. 

The vascular is a plasma “highway” that enables constant circulation of immune cells that 

assists in  their surveillance of protein antigens originating from pathogenic microbes
32

.  Immune 

cells or white blood cells are designated as leukocytes. Overabundance or scarcity of (an) 

immune cell type(s) in the blood may reflect a dysregulation with respect to homeostasis
32, 33

 and 

is a major goal of my doctoral research (chapter 3). 

 The last component of the immune system is the lymphatic system. The lymphatic 

system consists of a network of vessels and tissues containing an extracellular fluid known as 

lymph and organs, such as lymph nodes. It is an elaborate system for immune cells to traffic 

between tissues and the bloodstream. Immune cells traffic through the lymphatic system and 

converge in lymph nodes found throughout the body
34

.  

 

Figure 1-1.  Organs and tissues of the immune system. The immune system is made up of 

primary lymphoid organs (bone marrow and thymus) and secondary lymphatic tissues (spleen, 

tonsils, lymph vessels, lymph nodes, adenoids, and skin). The right panel shows organs and 

tissues of the human immune system, whereas the left panel shows those of the mouse. 

Experiments used in our research utilized mouse immune cells. https://www.aids.gov/hiv-aids-

basics/just-diagnosed-with-hiv-aids/hiv-in-your-body/immune-system-101/  

http://ctrgenpath.net/static/atlas/mousehistology/Windows/lymphatic/pictures/lymphdiagram.gif 

https://www.aids.gov/hiv-aids-basics/just-diagnosed-with-hiv-aids/hiv-in-your-body/immune-system-101/
https://www.aids.gov/hiv-aids-basics/just-diagnosed-with-hiv-aids/hiv-in-your-body/immune-system-101/
http://ctrgenpath.net/static/atlas/mousehistology/Windows/lymphatic/pictures/lymphdiagram.gif
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Immune cells  

Studies presented in this dissertation characterized different types of immune cells and 

therefore, general background of the cells are provided. The immune system is made up of 

numerous types of cells that either reside in particular tissues or traffic throughout the body. 

Each cell type plays a unique function due to distinct abilities to differentially recognize host 

microbial infection and/or host damaged cells (e.g. dying or cancerous cells) through PAMPs 

and DAMPs (innate immune cells) or through the lymphocyte receptors (T and B cell receptor 

complexes). Such communication requires cell/cell contact called juxtacrine signaling and via 

cytokine and chemokine soluble mediators. Immune cells are divided into two major categories 

called innate and adaptive immunity.  

Innate immune cells 

Innate immune cells are made up of cells that provide the first-line of defense against 

infections. These include granulocytes (basophils, eosinophils, and neutrophils), mast cells, 

monocytes, macrophages, and dendritic cells.  

Granulocytes are also known as polymorphonuclear (PMN) leukocytes. Neutrophils are 

the most numerous of the granulocytes in the blood and patrol for pathogens by constantly 

circulating the bloodstream. They protect against infections by ingesting (phagocytosis) 

pathogens such as bacteria, and degrading them inside special vesicles that contain a battery of 

degradative enzymes and toxic substances that degrade the engulfed pathogen
35, 36

. Neutrophils 

have a greater range of particulate that they engulf as compared to macrophages, which also clear 

infection by phagocytosis
35

. Basophils and eosinophils are key to host defense against parasites 

through the extracellular release of toxic molecules contained in their granules
37

.  Eosinophils 

also play a key role in allergic inflammation such as during asthma
38

. Since mature granulocytes 
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cannot replenish their granule contents, they undergo apoptosis when these organelles are 

depleted
39, 40

.  

Mast cells are resident in all connective tissues
41

. They have granules like the basophils 

and play an important role in allergic reactions by secreting pro-inflammatory chemicals like 

histamine, which causes blood capillaries to become more permeable to leukocytes and other 

proteins leading to inflammation to affected areas 
42, 43

. They are also important for defense 

against parasites through their release of toxic granular contents such as mast cell protease-1 
41, 

44, 45
.  

Monocytes are the mobile progenitors of macrophages, which are sedentary tissue cells, 

and can also differentiate into dendritic cells
46

. Monocytes travel from blood to tissues where 

they mature into macrophages and take up residence
47, 48

.  Macrophages ingest and degrade 

bacteria
49

. When activated, monocytes and macrophages educate other immune cells against the 

foreign pathogens. Macrophages also have non-immune functions that are “housekeeping” roles 

where they phagocytose dead and dying cells in the tissues such as bone marrow, the spleen and 

the thymus
50

. This is important since the dead cells can become necrotic, promoting 

inflammation and autoimmunity
51

. 

Dendritic cells (DCs) are professional antigen presenting cells that develop from the bone 

marrow and monocytes
46, 52

. They are considered as both innate and adaptive immune cells that 

process large molecules into recognizable fragments (antigens) since unprocessed antigens alone 

cannot be recognized by B and T cells
53

. DCs present antigens to T cells with the appropriate 

major histocompatibility complex (MHC) expressed on them providing checkpoints to help 

immune cells distinguish between host and foreign cells
52, 53

. 
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Adaptive immune cells 

B and T cells make up the adaptive arm of the immune system. B and T cells are 

commonly known as lymphocytes. B cells produce antibodies to neutralize infectious microbes 

and present antigens to T cells. Antibodies are the secreted forms of activated B cell receptors 

(BCR). Membrane bound and secreted BCRs are collectively called immunoglobulins (Ig). This 

dual expression is important since surface bound BCR is used for recognition of pathogen 

antigens leading to activation of B cells. Upon activation, the B cell responds by secreting 

antibodies. This ensures that the response is specific against a particular antigen. Antibodies are 

produced by plasma cells that differentiate from B cells. Every antibody is unique and encoded 

by heavy and light chain immunoglobulin (Ig) genes
54

. Even though every antibody is unique, 

they fall under five general categories differentiated by the heavy chain constant regions 

possessed: IgM, IgD, IgG, IgA, and IgE
55

. Antibodies serve three major roles: neutralization, 

opsonization, and complement activation. Pathogens are neutralized when antibodies cover 

pathogens making them unable to bind and infect host cells
56

. Opsonization serves as “red flags” 

on antibody-bound pathogens to alert phagocytes (neutrophils and macrophages) to engulf and 

digest the pathogen
57

. Complement is a series of reactions resulting in lysing of extracellular 

pathogens like bacteria
58

. While they have overlapping roles, IgM generally is important for 

complement activation
59

, IgD is involved in activating basophils
60

, IgG is important for 

neutralization, opsonization, and complement activation, IgA is essential for neutralization in the 

gastrointestinal tract and IgE is necessary for activating mast cells in parasitic and allergic 

responses
54, 61

.  

B cells play a central role in adaptive immunity through antigen presentation to CD4 T 

cells
62

, production of cytokines
63

, provision of co stimulatory signals
64

, and activating naïve CD4 
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T cell differentiation into T helper 1 (Th1) or Th2 subsets
63

.  More recently, a subset called 

regulatory B cells was identified. This subset functions in the suppression of immune response 

by secreting suppressive cytokines, IL-10 and TGF-β1 once an infection has been cleared
65, 66

. 

Deficiency of B cells or the inefficient regulatory B cell function result in autoimmunity and 

chronic inflammatory diseases
66, 67

. 

T cells are divided into two major subsets based on the T cell receptor (TCR) co-receptor 

expressed on their surfaces. These subsets are CD4 and CD8 (CD, cluster of differentiation) 
68

. 

TCRs bind to unique non-polymorphic regions presented on major histocompatibility complexes 

(MHCs) by APCs. Antigen processing and presentation is the process by which APCs express 

antigen on their cell surface in a form recognizable by lymphocytes. It consists of protein 

fragmentation through proteolysis, association of fragments with MHC and expression of 

peptide-MHC complex at the cell surface where they can be recognized by T cell receptors 

(TCRs).The co-receptors, CD4 or CD8, on the surface of T cells aid in stabilizing the interaction 

between the MHC and TCR.  CD8 T cells only respond to antigen peptides presented by class I 

MHC (MHCI), while CD4 T cells only recognize peptide presented by class II MHC (MHCII).  

The antigen peptide processing differs for presentation by MHCI and MHCII 
69

. For antigen 

presentation by MHCI, cytosolic antigen proteins are degraded through the proteasome 

mechanism and resulting peptides are transported to the endoplasmic reticulum (ER) by TAP 

(transporter associated with antigen processing).  The MHCI molecules are secreted to the ER, 

associate with the peptide, and are transported to the plasma membrane in vesicles.  

MHCII antigen presentation process entails exogenous proteins being endocytosed and 

degraded by acidic proteases within endosomes and lysosomes
70, 71

. By enzymatic cleavage of 

disulfide bonds, gamma-interferon-inducible lysosomal thiol reductase, IP-30, then facilitates 
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unfolding of the endocytosed antigens in MHCII-containing compartments
72

. The MHCII is then 

secreted in the ER and transported in a vesicle to the peptide phagolysosome
73

, where the MHCII 

binds to a peptide and gets transported to the plasma membrane for presentation 
69, 74

.   

Upon MHCII interaction with the TCR, CD4 T cells differentiate into T helper (Th) cells 

that are subdivided into four main types - Th1, Th2, Th17, and regulatory T cells (Tregs) - based 

on their distinct cytokine-secretion phenotype and functional characteristics
75

.  There are several 

factors that are involved in directing this differentiation, which include the nature and affinity of 

the antigen, the type of TCR and co-receptor signaling, and, most importantly, the cytokine 

environment 
76

.  Cytokines are signaling proteins and glycoproteins that can act like hormones or 

neurotransmitters secreted by innate, adaptive, and nonimmune cells
77

.  They are a means of 

cellular communication, and they function to provide signals for survival, proliferation, and 

differentiation
78

.   

Th1 cells participate in both cell-mediated immunity and antibody-mediated immunity. 

They provide protection against intracellular bacteria, protozoa and viruses. They are triggered 

by presence and increase in IL-12, IL-2 in the serum. These cells then secrete IFN-γ as their 

effector cytokine to activate macrophages, CD8 T cells, IgG B cells and other CD4 effector 

cells
79

. The secreted IFN-γ directly inhibits differentiation to the Th2 pathway and polarizes 

other Th cells to develop into Th1 cells
80

.   

In contrast, Th2 helper cells provide host immunity against extracellular parasites such as 

helminths
81

. They are triggered by increase in IL-4. In response, Th2 cells secrete cytokines IL-4, 

IL-5, IL-9, IL-10 and IL-13 which activate basophils, mast cells and eosinophils as well as B 

cells
81

. Th2 secreted IL-4 stimulates B-cells to produce IgE antibodies, which stimulates mast 

cells to release histamine, serotonin, and leukotriene
81, 82

. The secreted histamine, serotonin and 
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leukotriene induces broncho-constriction, intestinal peristalsis and gastric fluid acidification that 

help expel helminths
83

. IL-5 from CD4 T cells activate eosinophils to attack helminths
84

. Th2 

secreted IL-10 suppresses Th1 cells differentiation and dendritic cells function
80

. Th2 over-

activation against autoantigens such as aspergillus fumigatus results in IgE-mediated allergy and 

hypersensitivity. Allergic rhinitis, atopic dermatitis, and asthma belong to this category of 

autoimmunity
79, 80, 85

.   

The third Th subset, Th17, was discovered just over the last 5-10 years.  Cytokines IL-6, 

IL-23, and TGF-β are essential for the development of Th17 cells
86

. Th17 cells are 

developmentally distinct Th1/2 and secrete IL-17
86

.  In addition, they also secrete IL-6, IL-22, 

and TNF-α and function in inflammation of tissues, neutrophil activation to combat extracellular 

bacteria, and in autoimmune diseases
87-89

.   

The fourth Th. subset, Treg, has also recently been discovered and function in 

suppressing T cell responses through secretion of IL-10 and TGF-β.  These cells are important in 

regulating self-tolerance and may also function in interfering with immunity to tumor
90, 91

.   

Upon stimulation from MHCI, CD8 T cells differentiate into cytotoxic T lymphocytes 

(CTLs) that respond to infections against viruses, intracellular bacteria, and protozoan pathogens.  

IL-2 is important for the induction and elimination of CTLs at the start and end of an infection, 

respectively.  Also, the IL-15 cytokine has been shown to be needed for the maintenance of CD8 

memory T cells.  Once fully activated, CTLs enter circulation and home to the site of infection 

and directly destroy pathogens and infected cells.  The methods by which CTLs kill targeted 

infected cells and pathogens are through the use of perforins, granzymes and the secretion of the 

apoptotic protein, Fas ligand (FasL).  Perforins form pores in the plasma membrane of the 

targeted pathogen or infected cell causing disruption of ion balance.  Granzymes act as cytotoxic 
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granules to mediate cell death.  The secreted FasL will bind to the Fas receptor on the targeted 

pathogen or on Th cells that are no longer needed for the immune response so that the cells will 

be initiated to undergo apoptosis 
92

.  

Vasoactive Intestinal Peptide (VIP) and the immune system 

VIP is a 28 amino acid neuropeptide that was first isolated by Said and Mutt in swine 

small intestines
93

.  It belongs to the glucagon/secretin super family and exhibits structural 

similarities with other gastrointestinal hormones such as secretin, glucagon, gastric inhibitory 

peptide, and growth hormone releasing hormone
93-95

. In fact, VIP is the most abundant hormone 

in the gut
93

. It evokes its biological activities by binding two structurally similar receptors called 

vasoactive intestinal peptide receptor 1 (VPAC1) and vasoactive intestinal peptide receptor 2 

(VPAC2)
96

.  A second super family peptide, pituitary adenylate cyclase activating peptide 

(PACAP), also binds VPAC1 and VPAC2. VIP and PACAP share a remarkable sequence 

homology. Their amino acid sequences have remained nearly unchanged for over 700 million 

years of evolution
96

.  Through exon duplication, VIP is thought to have evolved from PACAP, 

which is believed to have been associated with evolution of the adaptive immune system. It is 

synthesized from a 170-amino acid preproVIP precursor molecule into a series of intermediate 

products to eventually yield a final 28-amino acid VIP product
96

.  

VIP is one of the most abundant cytokines of the immune system and is found in spleen, 

thymus, mesenteric lymph nodes, and mucosa-associated lymphoid tissues (MALT) of the 

pulmonary and gastrointestinal tissues
97

.  It gets delivered to the body by VIPergic nerve fibers 

innervating both primary and secondary immune organs
98

. Some immune cells such as mast 

cells
99, 100

 and CD4 Th2 cells also act as sources of VIP
101, 102

.  
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VIP and its receptors are believed to have co-evolved with establishment of the adaptive 

immune system
103

, which may explain why VIP modulates numerous functions important to the 

immune response, such as proliferation
104

, cytokine expression, inhibition of apoptosis
105

, 

chemotaxis
106

 and differentiation
107

. Many studies have since verified that VIP’s biological 

effects or functions have been generally associated with increased adenylate cyclase activity and 

cAMP concentrations through binding to the VPAC receptors
108

.   

The VIP/PACAP receptors, VPAC1 and 2, belong to class B of the seven-transmembrane 

(7TM) G-protein coupled receptor (GPCR) superfamily
109

. They are encoded by separate genes, 

and share 50% amino acid sequence identity
109

. VIP binds at the receptor’s N-terminal 

extracellular domain through a Venus flytrap mechanism
110

. The N-terminus of VIP then docks 

to the transmembrane regions and intervening loops, causing a conformational change in the 

receptor
111

.  This enables the intracellular loops to trigger at least three major signaling 

pathways, including Gαs/cAMP/PKA, and Gq/PLC/Ca
2+

 and Gαi/PLC/Ca
2+

 activation
 125-128, 123-

126
. 

The VPAC receptors are expressed by numerous types of immune cells, which is 

consistent with the immunomodulatory activities of VIP/PACAP. VIP/PACAP receptors are 

present on T lymphocytes, macrophages, dendritic cells, eosinophils, with expression on B cells 

still being controversial
92

. Mouse B cells are thought not to express any binding sites whereas 

human B cells have been shown to express the receptors. VPAC1 is most highly expressed in 

macrophages and T lymphocytes
112

, while VPAC2 is expressed lowly in resting lymphocytes 

and macrophages until after TCR or lipopolysaccharide (LPS) stimulation when VPAC2 

expressions are seen to increase
113

. VPAC2 has therefore been termed the inducible VIP 

receptor. 
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Figure 1-2. Mechanisms of VIP signaling. VPAC receptors are preferentially coupled to Gαs 

leading to activation of adenylate cyclase (AC) and subsequent cAMP production and activation 

of protein kinase A (PKA). The VPAC receptors can activate phospholipase C (PLC) pathway 

after coupling to Gαi, Gαq, or Gα16 and stimulate calcium levels and protein kinase C (PKC). 

Gαi-dependent activation of PLC by VPAC2 relies on the availability of free Gβγ and on Ca
2+

 

entry through receptor-operated Ca
2+

 channels while Gαi-dependent activation of PLC by 

VPAC1 is not affected by chelating of extracellular calcium. 

 

Thymocytes (immature T cells) and epithelial cells in the thymus predominantly express 

VPAC2 with a more restricted expression of VPAC1
114

. VIP affects numerous aspects of thymus 

biology such as cytokine production, apoptosis, differentiation, and mobility through the direct 

effects on T cells
115

. Therefore functions therefore predispose VIP and its receptors as candidates 

for molecules that can regulate immune cells homeostasis.  

Currently, molecular mechanisms regulating VIP-induced immune cell migration are not 

well understood. In this dissertation, we used VIP as a chemoattractant to naïve mouse CD4 T 

cells in order to investigate the molecular mechanisms regulating this process. In addition, little 

data on the role of VIP/PACAP signaling in regulation of immune cell homeostasis are available. 

To investigate the role of VIP/PACAP signaling through VPAC2 receptor utilized a VPAC2 
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knockout mouse strain to collect data investigating the homeostatic regulation of immune cells 

by VPAC2 activity. 

Asthma 

 Asthma is a lung disease characterized by a reversible airway obstruction, airway 

inflammation and increased airway responsiveness to a different stimuli
12, 116

. Currently, it is one 

of the most common chronic diseases, affecting over 300 million people worldwide and nearly 

20 million in the US
117

. Even though the death rate due to asthma has been decreasing as a result 

of improved health care in the US, annual costs associated with it have continued to increase 

over the years to around 30 million per year. Coupled to missed school and work days, financial 

losses from asthma attacks are staggering
117, 118

. In most cases, genetic predispositions towards 

development of hypersensitivity reactions against environmental allergens lead to a dysregulated 

cellular and humoral responses
119, 120

. Environmental factors such as lifestyle, infections and 

pollution can also cause asthma
118, 120

. 

 Asthma can either be intrinsic or extrinsic
121

. However, symptoms associated with both 

cases are similar
122

. These may include wheezing, coughing, shortness of breath and chest pains 

amongst others
117, 123

. Intrinsic asthma, also known as non-allergic asthma, may be initiated by 

factors such as viruses, stress, anxiety, cold air, dry air, exercise, hyperventilation or other 

irritants
124

. Extrinsic asthma, also known as allergic asthma, occurs in response to allergen 

inhalations. It is the most common form of asthma. It can be caused by inhalation of house dust 

mites, molds, cockroach antigens and animal dander
123, 125

.  

 Inflammation of several different immune cells in the lungs characterize asthma
126

. These 

cells play key roles in pathogenesis and persistence of asthma. Immune cells that have been 

shown to play key roles in asthma include mast cells, basophils, eosinophils, macrophages, 
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neutrophils, dendritic cells, T and B lymphocytes
127

. Eosinophil inflammation is considered a 

hallmark of allergic asthma
38, 128

. In addition, secreted cytokines also help orchestrate the chronic 

inflammation and structural changes of the respiratory tract in allergic asthma by recruiting, 

activating and promoting survival of various inflammatory cells
129

. For example, IL-5 

involvement in differentiation and recruitment of eosinophils to allergic lungs from the bone 

marrow is well documented
130-132

. On the other hand, the role of B lymphocytes in asthma is not 

completely understood. While some studies shown that B lymphocytes exacerbate asthma 

through antibody secretion
133, 134

, others have also shown that mice lacking B lymphocytes and 

antibodies exhibit a more severe form of asthma
135

. In this dissertation, data are collected to 

characterize the phenotype of B lymphocytes in a murine model of fungus-induced allergic 

asthma. This is critical in better understanding functions of B cells during asthma. 

Purpose of my doctoral research  

The vertebrate immune system entails a physiological mechanism to defend against 

invasion by foreign microbes or pathogens. Normally, when confronted with foreign antigens, 

specific and appropriate responses are initiated to clear the threat without harming “self.”  This is 

followed by restoration to the pre-infection state of the immune system, also known as the 

homeostatic state, which is necessary for a balanced and effective immune system.  However, 

under certain circumstances, restoration to homeostasis is not achieved, resulting in an imbalance 

to the immune system
136-139

. Primary immune deficiency diseases (PIDD) 
140, 141

 and 

autoimmunity are examples of pathologies associated with either unresponsive or over-reactive 

immune reactions. Often, such conditions can be due to inherited genetic defects
142

. Some causes 

of inefficient immune responses are decreased numbers and/or absence of particular type(s) of 

immune cell population(s) as in the case of T cell deficiency 
143-145

. Conversely, when the 
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immune response over-reacts, it can result in conditions that harm “self” such as in 

autoimmunity
146, 147

, or as seen in allergic conditions like asthma
116

. Thus, identifying molecular 

signaling cues governing immune balance or homeostasis, including recruitment of immune cells 

and immune homeostasis is vital for understanding how the immune system works. 

The recruitment and migration of immune cells are critical for immune responses
33, 148, 

149
. For effective clearance of infections, immune cells developed in germinal centers of the body 

(e.g., bone marrow and thymus) must be rapidly mobilized and expanded to eliminate pathogenic 

microbes while limiting host cell damage
150-152

. To accomplish such a important task, vertebrates 

(e.g., mammals) have evolved a lymphatic system that assists in immune cell movement 

throughout the body
153

. The adaptive arm of the immune system is comprised of T and B 

lymphocytes. T lymphocyte populations are made of two major subsets called CD4 T cells and 

CD8 T cells
153

. Lymphocytes migrate through a lymphatic system “highway” in search of 

foreign antigens
154

. The “rest areas” that reside along this “highway”, are called lymph nodes and 

are where T and B lymphocytes can interrogate foreign antigens presented by antigen presenting 

cells (APCs) 
23, 154-157

. APCs concentrate foreign antigens into nearby lymph nodes in an attempt 

to accelerate their recognition by lymphocytes
158-160

.  

Chemokines, the chemical substances secreted by target cells, enable immune cells to 

navigate the lymphatic system and arrive at predetermined lymphoid compartments
156, 161

. 

Vasoactive intestinal peptide (VIP) is one such chemokine secreted by neurons and some 

immune cells
162

. VIP binds two major receptors known as vasoactive intestinal/pituitary 

adenylate cyclase activating polypeptide receptor 1 and 2 (VPAC1/2) with equal affinity
92, 163

. 

VIP signaling is required for maximal recruitment of naïve CD4 T lymphocytes to the gut, 

specifically to Peyer’s patches and mesenteric lymph nodes
164

. This was first recognized when 
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naïve CD4 T lymphocytes with reduced VIP binding sites failed to traffic through the gut as 

compared to other lymphoid compartments after reintroduction into mice
164, 165

. Several other 

studies since have also shown that VIP is a potent chemoattractant to different immune cells such 

as macrophages, eosinophils and B lymphocytes 
106, 166-169

. Despite knowing that VIP is a potent 

chemoattractant to immune cells, molecular mechanisms controlling VIP-induced chemotaxis are 

not well defined almost 30 years after the earliest report in 1984
164

.  

The overall goal of this research was to understand mechanisms involved in immune cell 

migration and homeostasis.  We investigated how VIP affects immune cell biology in non-

disease conditions and characterized an allergic asthma induced recruited B cell population to the 

lung microenvironment. The purpose of the first project was to investigate the molecular 

mechanisms governing VIP-induced migration of immune cells. The second project investigated 

the role of VIP/VPAC2 receptor signaling in immune cell homeostasis. Lastly, the third project 

characterized effects of pulmonary hyaluronic acid (HA) on B lymphocytes during asthma. From 

these three projects, we present findings that are statistically significant to understanding the 

following: 1) molecular mechanisms guiding lymphocyte trafficking to the gut, 2) regulation of 

immune cell homeostasis, and 3) the response of B cells to HA during asthma.  

Egfr signaling is required for VIP-induced naïve mouse CD4 T cell migration. 

We previously discovered that VIP upregulated mRNA levels genes in an epidermal 

growth factor receptor (EGFR) chemotactic pathway in mouse primary resting CD4 T cells 

(subsequently referred to as resting CD4 T cells). The working hypothesis was that EGFR-

signaling is required for VIP-induced chemotaxis of resting CD4 T cells. Using resting CD4 T 

cells, time and concentration curves were carried out to determine optimal parameters (time and 

ligand concentration) for VIP-induced EGFR-pathway mRNA upregulation over a 24 hour 
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period. Once established, we tested our hypothesis whether the putative chemotactic EGFR-

pathway mediated VIP’s chemotactic activities by utilizing sensitive EGFR inhibitors and 

measured gene expression and cell migration by RT-qPCR and Boyden Chamber assays.  

VPAC2 deficiency results in impaired immune cell homeostasis 

Currently, only a few molecules have been identified that control steady-state 

(homeostatic) conditions of the immune system. For this reason, identification of additional 

molecules controlling homeostatic steady-state levels of the immune system is an area of intense 

research. Improper homeostatic conditions of the immune system can lead to decreased numbers 

in some or all immune cell populations resulting in attenuated immune responses leading to 

immunodeficiency or autoimmunity
145, 170, 171

. While utilizing a VPAC2 knockout mouse we 

discovered that their spleens were smaller compared to age-and sex-matched wild type 

counterparts. The difference in spleen sizes could not be explained by weight of the mice. This 

startling discovery led us to hypothesize that VPAC2 signaling plays a crucial role in immune 

cell homeostasis. The evidence presented in this dissertation shows for the first time the 

importance of VIP/VPAC2 signaling in immune cell homeostasis. Using flow cytometry, we 

compared immune cell population numbers and cellular percentages in different immune organs. 

Rate of survival and proliferation of immune cells were also investigated to understand potential 

reasons for differences in total cell numbers. Therefore, from these discoveries, we expect that 

our findings will firmly establish the role of VIP signaling in regulating immune homeostasis.  

Phenotypical characterization of B lymphocytes in response to hyaluronan in a murine 

fungal allergic asthma model 

The last part of this dissertation was performed to characterize B cells in asthma. Asthma 

is a reversible obstructive lung disease that affects more than 300 million people worldwide. 
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Asthma is caused by increased hypersensitivity of the airways to various stimuli. It is a chronic 

inflammatory condition with acute exacerbations and can be life-threatening if not properly 

managed. B cells get expanded and recruited to the lungs of chronically asthmatic mice. This 

recruitment of B cells to the lungs was hypothesized to be due to components of the lung 

extracellular matrix called low molecular mass hyaluronic acid (LMM HA). Upon binding LMM 

HA, B cells secret immunosuppressive chemicals (IL-10 and TGF-β1). These cytokines are 

needed to resolve inflammation and remodel asthmatic lungs. CD44 was shown to be important 

for B cell LMM HA recruitment and IL-10 production. However, the identity of the HA binding 

receptor needed for production of TGF-β1 and whether LMM HA induces differentiation and/or 

expansion of a suppressive subset of B cells during allergic asthma are unknown. We 

hypothesized that an HA binding receptor, other than CD44, was required for HA-induced TGF-

β1 production by B cells. We also hypothesized that B cells from allergic asthmatic mice 

differentiate into an inflammatory suppressive subset of B lymphocytes known as regulatory B 

cells (CD19
+
CD5

+
CD1d

hi
 B cells) upon binding LMM HA. Using a mouse model that closely 

mimics human asthma developed by the Schuh research group here at NDSU, we characterized 

the expression of HA binding receptors on B cells during allergic asthma and induction of 

regulatory B cells in response to HA treatment. Evidence collected will help in understanding the 

role of B cells in the microenvironment of asthmatic lung in response to increase LMM HA, with 

the goal of developing new therapeutic targets against asthma in the future. 

Organization of the dissertation 

 This dissertation has been organized to provide the reader with background information 

to understand the rationale motivating the collection of the presented research. It starts by 

providing literature review intended to provide a sufficient overview of the immune system, 
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including the immune cells, and their responses. The reader is also introduced to a focused 

description of the immunoregulatory role of VIP and its receptors. The subsequent chapters after 

that provide an account of the research successfully accomplished in each individual research 

project. In conclusion, a general discussion will follow each result section complete with an 

integration of how our reported discoveries match the literature as well as and future directions 

intended to expand on these results. 
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CHAPTER TWO: EGFR SIGNALING IS REQUIRED FOR VIP-INDUCED NAÏVE 

MOUSE CD4 T CELL MIGRATION 

Introduction 

Over half a century ago Gowans and colleagues 
1-5

 made pioneering observations 

regarding the central contributions of immune cell migration to the regulation of mammalian 

immunity. Gowans and colleagues showed that T lymphocytes recirculated from blood to lymph 

by migrating across specialized high endothelial venules of lymph organs. Hence, by showing 

that lymphocytes recirculated from blood to lymph, they solved the mystery of the “disappearing 

lymphocytes”
2
. These authors showed that lymphocytes did not disappear at all, but rather 

trafficked into secondary lymphatic organs only to re-enter the blood. Contrary to Gowan’s 

studies on immune cell movement, there was little evidence in early 1960s implicating 

lymphocytes as possessing immunological function
1, 6

. Distinct migratory paths for naïve T cells, 

and other immune cells, such as B cells and antigen-presenting cells (APCs) to secondary 

lymphoid organs and non-immune tissues such as mucosal tissues and lungs have been 

elucidated
7-14

. Naïve T cells are quiescent and non-dividing since they have never encountered 

foreign antigens. The movement of lymphocytes between various lymphoid organs and the blood 

is called lymphocyte recirculation, whereas the process by which particular subsets of 

lymphocytes selectively enter some tissues but not others is called lymphocyte homing
15

. 

Immune cell migration from their sites of development through the blood stream into the 

appropriate secondary lymphoid organs (SLOs) such as lymph nodes and Peyer’s patches require 

specialized endothelial interfaces known as high endothelial venules (HEVs). HEVs are found at 

the entrance of all secondary lymph organs except the spleen. The primary step in leukocyte 

migration is the establishment of weak and transient adhesive interactions between leukocytes 
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(white blood cells) and the endothelial cells of post capillary venular walls in close proximity to 

secondary lymphoid organs or inflamed tissues
16

. Leukocytes are very sensitive and can sense as 

little as a 1% difference in chemoattractants or chemorepellants concentration across their 

diameter, resulting in a steady movement towards or away from their sources
17

 

Establishment of weak and transient adhesive interactions mediated by selectins, is 

facilitated by stimulation of leukocytes when chemoattractants (e.g., VIP) are displayed on the 

luminal side of blood vessels and bind to its receptors on the leukocyte (e.g., T cell). This alters 

integrin from low- binding affinity to high-binding affinity resulting in firm adhesion to 

endothelium at highest chemoattractant concentration and subsequent transmigration of cells 

through the high endothelial venules out of the blood vascular
18

 as depicted in Figure 2-1. 

 

Figure 2-1. Depiction of steps of leukocyte transmigration in response to chemoattractant. 

Leukocytes migration towards a chemoattractant involves 5 major steps (1) cells come to a slow 

stop and (2-3) start rolling upon binding of cell adhesion molecules expressed by endothelial 

cells of the high endothelial venules. (3) At this point, the chemoattractant released activate the 

integrins on the rolling leukocytes to switch convert from a low-affinity to a high-affinity state. 

(4) This causes firm adhesion to the high endothelial venules followed by (5) transmigration out 

of the blood.  
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Migration of immune cells into SLOs is needed for the formation and maintenance of an 

organized secondary lymphoid tissue compartment
19-21

. Once there, lymphocytes receive soluble 

signals such as cytokines for long-term survival and homeostatic proliferation
22, 23

.  The net flux 

of lymphocytes through lymph nodes is very high, and it has been estimated that approximately 

2.5 x 10
10

 cells pass through lymph nodes each day (i.e. each lymphocyte goes through a node 

once a day on average)
24, 25

. Antigens are concentrated in the lymph nodes and spleen, where 

they are presented by mature dendritic cells, the APCs that are best able to initiate responses to 

naïve T cells. Thus, movement of naïve T cells through the lymph nodes and spleen ensures that 

maximum stochastic probabilities of productive recognition of an antigen which would result in 

an efficient peripheral immune response is achieved
26

. Furthermore, during tissue injury and 

infection, the circulating blood leukocytes are required to migrate to immune foci with the aim of 

eliminating the primary pathogen and to help in tissue repair
27

. Therefore, the encounter of 

antigen-loaded APC by naïve T cells in lymph tissue is arguably the central event leading to a 

successful adaptive immune response. Failure of T cell/APC encounter would jeopardize the 

ability for a host to clear infecting microbes. Hence, determination and characterization of 

molecular mechanisms that guide APCs and T cells to the appropriate microenvironments to 

interact is critical for understanding how the immune system initiates activation.    

 In the past few years, experimental evidence has accumulated demonstrating that 

chemokines and their receptors are key elements that direct lymphocytes and APCs to distinct 

anatomical areas in the secondary lymphoid organs
16

. These ligands, for example CCL21 (also 

known as secondary lymphoid-tissue chemokine or SLC) act upon their GPCRs such as the C-C 

chemokine receptor 7 (CCR7) to achieve the regulated homing and retention of lymphocytes in 

their respective anatomical areas of lymph nodes 
28

. By doing so, chemokines and their cognate 
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GPCRs have emerged as major molecular regulators of naïve T cell entry into lymph nodes from 

the blood stream. Chemokines acting as chemo-attractants or chemo-repellants through their 

GPCRs also act as key mediators of leukocyte chemotaxis to inflammatory sites during 

infectious diseases
29

, asthma
30, 31

, rheumatoid arthritis
32, 33

, and inflammatory bowel disease
34

. In 

fact, GPCRs comprise the largest (~50%) group of cell-surface receptors in the human/mouse 

genome
35

.  

 GPCRs are made up of seven transmembrane domains with an extracellular amino 

terminus and an intracellular carboxy terminus
36

. They lack intrinsic enzymatic activity therefore 

differ from tyrosine kinase receptors like epidermal growth factor receptor. Instead, they are 

coupled to heterotrimeric G proteins that propagate ligand functions. Upon binding their ligands 

at their N-terminus, GPCRs undergo conformational changes in their transmembrane alpha 

helices which results in dissociation of GTP-bound α subunit (Gα) from the βγ complex (Gβγ) 
37

. 

Subsequently, the active form, GTP-bound α subunit (Gα) and the βγ complex (Gβγ) initiate 

intracellular signaling responses by modulating the activity of specific effectors including 

adenylate cyclase (AC), phospholipase Cβ and a number of other chemotactic pathway kinases 

resulting in generation of intracellular second messengers that enable cross-talk between 

different signaling pathways that control cellular functions such as motility
37

.  

Cross-talk between different signaling systems plays a key role to coordinate the plethora 

of extracellular stimuli to which a cell is subjected to under physiological conditions. For 

example, GPCRs can utilize receptor tyrosine kinases (RTKs) to mediate important cellular 

responses such as proliferation, differentiation, survival and motility
38

.  RTKs are primary 

mediators of physiological cell responses such as differentiation, survival, proliferation and 

motility
39-41

. A classic example of the RTK family is epidermal growth factor receptor (EGFR). 
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EGFR is one of the most studied tyrosine kinase receptors involved in the regulation of cell 

proliferation, differentiation and migration both in normal and cancer cells
42-44

. When EGFR 

ligands bind to its extracellular domain they induce dimerization of the receptor. This leads to 

autophosphorylation of tyrosine residues within the cytosolic domain of EGFR resulting in the 

formation of phosphor-tyrosine binding (PTB) domains
45, 46

 for docking of adaptor proteins that 

contain SH2 domains capable of recognizing PTB domains. This then initiates downstream 

signaling responses; for example, cell migration
47, 48

 and angiogenesis
49

. Autophosphorylation of 

tyrosine residues within the cytosolic domains of EGFR is called transactivation
50

. EGFR 

activation was determined to be required for the influx of a subset of T cells (CD4 T cells) to the 

lungs of asthmatic mice, illustrating a role of EGFR signaling in T cell migration during asthma
51

 

and in cancerous cell metastasis to the colon
40

. Whether GPCR-induced EGFR signaling is 

required for T cell recruitment in non-inflammatory conditions or during inflammatory 

conditions to the gut is still not known. 

Transactivation of EGFR by GPCR signaling can occur through two mechanisms. In 

ligand-dependent triple-membrane-passing-signal (TMPS) mechanism, GPCR-mediated EGFR 

transactivation depends on activation of membrane-bound metalloproteases (MMPs), like A 

Disintegrin And Metalloprotease (ADAM) family members
50, 52, 53

. The activated MMPs then 

cleave off the inactive membrane-bound pro-EGFR ligand(s) which then binds and transactivate 

EGFR (Figure 2-2)
50

.  

The second mechanism is a ligand-independent mechanism. This mechanism requires 

GPCR signaling, including the src kinase pathway, phosphorylates tyrosines within the cytosolic 

region of the EGFR initiating its activation and downstream signaling responses
54, 55

. 
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Figure 2-2. Ligand-dependent EGFR transactivation. Agonist (A) activation of GPCR 

triggers different intracellular signaling mediators via activation of Gα and/or Gβγ subunits. 

Intracellular signaling mediators then activate metalloprotease-mediated proteolytic cleavage of 

a pro-EGFR ligand to generate an EGFR ligand which binds and transactivate EGFR. 

 

VIP is a 28-amino acid peptide with structural similarities to other gastrointestinal 

hormones such as; secretin, gastric inhibitory peptide, glucagon, glucagon-like peptide 1, 

calcitonin peptide histidine methionine, growth hormone releasing hormone, helodermin and 

PACAP
56-59

.The biological functions of VIP are mediated mainly by two structurally similar 

receptors called VPAC-1 and VPAC-2
60, 61

. The VIP receptors belong to the class II of GPCRs 

known as the secretin receptor super family. VPAC1 and VPAC2 bind VIP with equal affinity 

and are encoded by separate genes containing 13 and 16 exons respectively
60

. VIP binding to its 

receptors evokes three major signaling pathways: Gαs/cyclic AMP/Protein Kinase A, 

Gq/Phospholipase C/Ca
2+

 and Phospholipase D activation, which can lead to RTK 

transactivation
62-64

.  
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The mammalian gut harbors almost 100 trillion microorganisms composed of more than 

1000 different bacterial species as determined by high-throughput microbial 16S ribosomal RNA 

gene characterization
65

. It is therefore very important that immune cells traffic to the gut to 

establish an immune balance with commensal gut bacteria that are essential for nutrient 

absorption by the host while keeping any potentially harmful pathogens at bay. During intestinal 

inflammation as seen in inflammatory bowel disease (IBD) or in experimental colitis , this 

selective tolerance is lost
66

. Currently, an area of intense research is to understand the molecular 

mechanisms that control the homing of immune cells such as CD4 T cells to the gut in hope of 

developing drugs to fight gastrointestinal inflammatory diseases, immunodeficiency disorders 

and to understand gut immunity better.  

In the adaptive immunity, T cells are a major target for VIP regulation. T cells 

predominantly express VPAC1 with low levels of VPAC2 expression (100-1000X less at mRNA 

level) 
67, 68

. Hence, VPAC1 is probably the main mediator of VIP’s biological effects on naïve 

CD4 T cells. VIP inhibits CD4 T cell activation and proliferation, enhances naïve CD4 T cell 

differentiation to Th2 effectors, favors Th2 cytokines secretion and is a potent chemoattractant to 

resting CD4 T cells
57, 69, 70

. 

In the gastrointestinal tract VIP is secreted by a dense network of VIPergic nerves in a 

subset of innervating myenteric neurons with nerve endings in close proximity to smooth 

muscles
71, 72

. VIPergic nerve fibers are also present in both central (thymus/bone marrow) and 

peripheral lymphoid organs
73

 . VIP is an important chemokine that is involved in recruitment of 

resting CD4 T cells to the gut
70

. Nearly 30 years ago, Cliff Ottaway showed that VIP has a 

striking capacity to recruit T cells to Peyer’s patches and mesenteric lymph nodes (MLN) within 

the gastrointestinal tissue, but not to the spleen and other lymph tissues. Preincubation of T cells 
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in the presence of VIP resulted in a decrease in available VIP binding sites without altering 

binding affinity for VIP
70

. VIP pretreated resting CD4 T cells were radio-labelled with 
51

Cr and 

injected into recipient mice. Results from this study clearly showed a failure of resting T cells to 

migrate to the PP and MLN, but did not affect their trafficking to the spleen and other lymphoid 

tissues
70

. This was attributed to lack of VIP receptors presented on their plasma membranes, 

which hindered their ability to bind to HEV and subsequent homing to PP and MLN. Since then, 

several additional studies implicate VIP as a potent chemoattractant for many immune cells 
69, 74-

78
. Despite the numerous studies in support of VIP as a potent chemoattractant to immune cells 

including T cells, the molecular mechanism of VIP-induced T cell migration remains elusive. 

This is critical in identifying the potential molecular mechanism that regulates VIP-induced 

recruitment of resting T cells to the PP and MLN in the gut where they can be presented with 

foreign antigens by APCs. This would also further our understanding of how the immune system 

works. 

The VIP-induced chemotaxis of immune cells is sensitive to tyrosine kinase inhibition 
78

 

and through VPAC1, VIP rapidly autophosphorylates EGFR and human epidermal growth factor 

2 (HER2) and slowly upregulates EGFR protein expression in human breast cancer cells
79

 to 

provide precedence for a connection between VIP and EGFR signaling. Interestingly, both VIP 

receptors and the epidermal growth factor receptor are known to enhance cell proliferation, 

survival, migration, adhesion and differentiation in cancer cell lines 
40, 57

. 

Our group has published a mouse VIP-induced transcriptome in resting CD4 T cells 

which revealed that VIP treatment of resting CD4+ T cells results in differential mRNA 

upregulation of genes whose translational products are involved in biological pathways such as 

lipid metabolism, molecular transport, cell cycle regulation and cellular movement
68

. This latter 
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cellular affect supports the fact that VIP is a potent chemoattractant to T cells. To further expand 

this study, we set to understand the role of EGFR in VIP-induced chemotaxis of resting murine 

CD4 T cells. Since both VIP and EGFR signaling can induce cell movement, we hypothesized 

that VIP signaling through its G protein coupled receptor, VPAC1, requires EGFR signaling to 

induce resting CD4 T cell migration. To test this hypothesis, our first goal was to determine the 

effect of EGFR kinase activity inhibition on VIP-induced chemoattraction of resting CD4 T cells 

by pharmacological inhibitor studies. Using a modified Boyden-chamber / transwell chemotaxis 

assay, we investigated the effect of a potent and highly specific EGFR kinase activity inhibitor 

(AG-1478) on VIP chemoattraction of resting CD4 T cells. Secondly, since we had previously 

shown that VIP upregulated EGFR mRNA, we set to characterize the VIP-induced mRNA 

upregulation of putative chemotactic EGFR pathway genes comprised of genes encoding EGFR, 

App, Adam15, Grb7, Pak1 and Snail. We next asked whether EGFR kinase activity was also 

needed for gene regulation of the putative chemotactic EGFR pathway genes. To answer these 

questions, murine CD4 T cells were isolated and used to investigate whether the putative 

chemotactic EGFR pathway genes were expressed prior to encountering VIP. In addition, a 24 

hour kinetic study of VIP-induced EGFR chemotactic pathway genes was completed using 

SYBR green qRT-PCR assay to determine the speed, co-ordination and longevity of mRNA 

regulation by VIP. Finally, the necessity of EGFR signaling for VIP-induced transcriptionally 

upregulation of the putative chemotactic EGFR genes was also done by way of SYBR green 

qRT-PCR assay. 

This analysis revealed that inhibition of EGFR kinase activity abolished VIP 

chemoattraction of CD4 T cells suggesting the necessity for EGFR signaling in VIP-induced 

CD4 T cell chemotaxis. CD4 T cells express mRNA of genes encoding proteins in the putative 
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chemotactic EGFR pathway prior to VIP treatment. We showed that VIP rapidly, coordinately 

and transiently upregulated six genes encoding a putative chemotactic EGFR pathway in resting 

CD4 T cells. This upregulation of the putative chemotactic EGFR pathway genes was also 

sensitive to a potent and specific EGFR kinase inhibitor (AG-1478). Thus, these findings offer a 

potential molecular mechanism for VIP-induced resting CD4 T cell chemoattraction in vivo.  

Materials and methods 

Mice 

Wild-type C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME) 

and bred in a mouse facility (ANPC) at North Dakota State University. Mice were housed in 

ventilated cages. Mouse cages, water bottles and lids were purchased from Jackson labs.  Mice 

food was purchased from animal supply and the mice were fed the Purina mouse chow (ckrs-

5015) (Animal Supply Company; MN). Mice had food and water ad lib. They were bred at no 

more than 4 males or 5 females per cage. All mouse protocols were approved by the NDSU 

IACUC board and met all federal guidelines. 

Splenocytes isolation 

 For all studies we used male or female mice between 8- to-15 weeks old. Mice were 

euthanized by CO2 narcotization followed by rapid cervical dislocation. The following steps 

were performed under a clean UV irradiated PCR quality hood (VWR; Radnor, PA): Scissors 

and forceps were sterilized with 70% ethanol. The mouse in a supine position was rinsed 

thoroughly with 70% ethanol on a dissecting tray as a first line of disinfection. An incision of the 

abdomen was made by a transversal cut of the skin while avoiding opening of the peritoneal 

cavity. The peritoneal sac was completely exposed by pulling the skin in opposite directions 

using gloved hands or forceps. At this point, the spleen became visible on the left side of the 
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mouse. A second cut was made to open the peritoneal sac and the spleen was collected with 

sterile forceps avoiding contact with the skin to preserve sterility. Any visible residual debris or 

fat tissue was removed from the spleens which were then placed in 30 ml of RPMI supplemented 

with 10% characterized fetal bovine serum. Spleens were transferred into a 10 cm Petri dish 

containing 20 ml of RPMI growth media. The spleens were minced on a metal mesh and passed 

through a 40 µm sieve to disperse splenocytes into single cells using 50 ml centrifuge tube for 

collection. A homogenous cell suspension was obtained by inverting the tube 5 times. Cells were 

centrifuged at 300xg for 10 min at 4 °C in order to pellet them. Red blood cells (RBCs) were 

lysed by resuspending cell pellets in 5 ml of RBC lysis buffer at RT for 3 minutes. Immediately 

afterwards, cells were diluted with 47 ml of 1X PBS to neutralize the RBC lysis buffer. Cells 

were centrifuged at 400xg for 10 min at 4 °C to and resuspended in 10 ml of RPMI growth 

media. The successful lysis of red cells was inspected by the appearance of a whitish cell pellet. 

Splenocytes were counted by a hemocytometer by pipetting 10 µl of 0.4% trypan blue stained 

cell suspension between the chamber and the cover glass slide. All the cells contained in the four 

outer quadrants of the counting grid printed on the hemocytometer surface were counted using 

light microscopy. The number obtained was divided by 4 to determine the average number of 

cells per quadrant. Total cells were then calculated by following the formula below.  

Total cells/ml = Total cells per quadrant x (dilution factor) x 10,000 cells/ml 

Primary mouse splenic CD4 T cell isolation and enrichment 

To remove adherent splenocytes such as macrophages and dendritic cells, single cell 

suspensions of splenocytes were cultured in complete RPMI growth media and incubated for 45 

minutes at 37°C, 5% CO2 /95% air in a humidified incubator. Non-adherent splenocytes were 

collected and passed through a 40 µm sieve, washed with 1 X PBS, centrifuged as above and 
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resuspended in 90 µl of PBS/0.5% BSA (bovine serum albumin) with 10 µl of anti-mouse CD4 

magnetic beads / 10
7
 nonadherent cells and refrigerated at 4°C for 20 min. Mouse splenic CD4 T 

cells were positively purified to a minimum purity of ≥95% by passing cells through a metallic 

micro bead column bearing anti-CD4 monoclonal antibodies using an AutoMacs cell isolation 

instrument. For some studies, mouse CD4 T cells were negatively isolated using EasySep™ 

Mouse Naïve CD4+ T Cell Isolation Kit. Briefly, total splenocytes including RBCs were 

prepared at a concentration of 1 x 10
8
 cells/mL in phosphate-buffered saline (PBS) or Hank’s 

balanced salt solution (HBSS) plus 2% fetal bovine serum (FBS). Cells were placed in a 5 mL 

(12 x 75 mm) polystyrene tube to properly fit into the EasySep™ Magnet. Normal Rat Serum 

and EasySep™ Mouse CD4+ T Cell Isolation Cocktail were added at 50 μl /mL of cell 

suspension, mixed well then incubated at room temperature (15 - 25 °C) for 15 minutes. 

EasySep™ Streptavidin RapidSpheres™ 50001 were vortexed for 30 seconds and added at 75 

μL/mL of cell suspension. Thoroughly mixed cells were incubated at room temperature (15 - 

25°C) for 3 min. Cells were diluted up to 2.5 mL total volume with suspension medium and 

gently mixed by pipetting up and down 2 - 3 times. Tubes were placed into the EasySep™ 

magnet , incubated at room temperature (15 - 25°C) for 3 minutes and inverted to pour off 

supanatant (CD4 T cells) into a polystyrene tube. The magnetically labeled, unwanted cells 

remained bound inside the original tube held by the magnetic field of the EasySep™ Magnet. 

CD4 T cell yield was determined as described previously using a hemocytometer.  

Determination of percent CD4 T cell enrichment by flow cytometry 

To determine percent purity, 1.0 x 10
6
 post-enrichment CD4 T cells were suspended in 

200 µL 1 X PBS/0.5% BSA and incubated with 1:200 (0.25 µg) FITC conjugated rat anti-mouse 

CD4 antibody for 30 min at 4°C in the dark. Cells were washed twice with 4 ml PBS/ 0.5% 
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BSA, centrifuged for 10 min at 300xg, 4°C and resuspended in 200 µl PBS/0.5% BSA. Flow 

cytometry analysis was performed by analyzing for percentage of CD4 positive cells on an 

Accuri 6 flow cytometer. Both positive (Miltenyi) and negative (EasySep) CD4 T cell 

purification techniques consistently yielded ≥95% splenic mouse CD4 T cells. 

Primary mouse splenic CD4 T cell in vitro culture with VIP  

Highly purified resting CD4 T cells were cultured at 2 X 10
6 

cells/mL of RPMI complete 

growth media for 1 hour under 5% CO2, 85% humidity air-controlled atmosphere at 37°C to 

allow them to “equilibrate” to the media conditions. After that, the following studies were 

performed; a) Kinetics: In order to understand the kinetics and peak time of VIP induced EGFR 

pathway genes CD4 T cells were treated with either water or 10
-7

M VIP for indicated times in 6 

well plates. b) Optimal VIP concentration determination: To determine the optimal VIP 

concentration that would induce highest steady state mRNA upregulation, cells were exposed to 

various VIP concentrations ranging from 10
-11

 to 10
-6

M or water control for 1.5 hours. c) Effects 

of AG1478: To determine effects of AG 1478 on VIP-induced steady state mRNA upregulation, 

VIP [10
-7

] was exogenously added with or without AG-1478 EGFR kinase inhibitor [30 nM]. 

After appropriate incubation times, cells were harvested, washed twice with ice cold 1X PBS, pH 

7.0 and centrifuged at 300xg at 4°C for 5 minutes. Cell pellets were immediately lysed and 

applied to Qiashredder (Qiagen) to shear genomic DNA. Total RNA was either immediately 

isolated (see below) or lysates stored immediately at -80°C processed when needed. 

Total RNA isolation, first strand cDNA synthesis and quantitative RT-PCR (qRT-

PCR) analysis 

Cells were washed twice with PBS, centrifuged at 300xg at 4°C for 5 minutes and total 

RNA isolated using SurePrep™ TrueTotal™ RNA Purification Kit purification columns as 
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described by the manufacturer but with a few modifications. RNA was eluted in 150 µl elution 

buffer at 42°C instead of 50 µl at room temperature. On-column DNase I treatment was done 

using DNase I protocol (Qiagen, Valencia, CA) followed by a second off-column DNase I 

treatment at 37 °C for 45 minutes. Briefly, to each total RNA elution, 1 µl of DNAse I, 6 µl of 

10X DNAse I buffer (Promega, Madison, WI) and 3 µl of nuclease free water was added and 

incubated for 45 minutes at 37 °C. RNA samples were concentrated by ethanol precipitation by 

the addition of 2.5 volumes of 100% ethanol and a 1/10 dilution of 3 M sodium acetate solution, 

pH 5.2. Samples were stored at -80°C for at least 2 hours, centrifuged at 16,000xg at 4°C for 15 

min. Samples were washed with 1 ml nuclease free 70% ethanol, centrifuged as before and air 

dried for 10 minutes at room temperature and reconstituted in 20 µl nuclease-free water at 70°C. 

Total RNA concentration was determined by ultraviolet spectroscopy and using 260 nm as the 

absorbing wavelength for RNA and 280 nm for protein contamination. RNA purity was 

determined spectrophotometrically by calculating absorbance ratio (A260/280) where a value of 

1.8-2.0 was deemed suitable for cDNA synthesis. 

First-strand cDNA was synthesized by reverse transcription of 1 µg total RNA with either 

superscript II reverse transcriptase (Life technologies, Grand Island, NY) or M-MLV Reverse 

Transcriptase RNase H- (New England Biosciences, Ipswich, MA) with a mixture of random 

hexamers and oligodT primer mixes according to the manufacturer’s protocol. Amplifications by 

qRT-PCR contained 2.5 µl of cDNA template with 5 µl of master mix containing 5X HOT 

FIREPol EvaGreen qPCR supermix (Solis Biodyne, Tartu, Estonia), 250 nM of respective sense 

and antisense primer sets (table 1) and nuclease free water to bring to 20 µl total volume. 

Reactions for all primer sets were conducted with nuclease-free water alone, and in the absence 

of reverse transcriptase (RT-) to ensure ≥ 6 cycle thresholds between RT+ and RT- reactions. 
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This would verify ≤1.6% genomic DNA contamination in reactions as described by Applied 

Biosystems (ABI, Carlsbad, CA). The qRT-PCR reaction was conducted using a 7500 ABI 

instrument with the following parameters: 15 min at 95°C to activate the Taq polymerase, 

followed by 40 cycles of 15 s at 95° C and 30 s at 60° C ( data collected at this stage) followed 

by a dissociation curve option to monitor the melting curve of each amplicon. Cycle thresholds 

(ΔCT) were used for relative steady-state quantification of gene transcription normalized to β-

actin. Fold changes of mRNA levels in VIP or VIP and AG-1478 treated cells relative to 

respective water/ DMSO controls were calculated using the 2
-ΔΔCt

 method. Data are averages 

from at least three independent experiments fold changes ± SEM. 
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Table 2-1: Oligonucleotide primers used in SYBR Green qRT-PCR analysis  

mRNA PRIMER Ref Seq. # 

app Sense CAA GCA CCG AGA GAG AAT GTC NM_001198825 

 antisense CTT CCT GTT CCA GAG ATT CCA C NM_001198825 

    adam15 Sense GCC GCT GCC AAA TAT AGG A NM_001037722 

 antisense CCT CAG GTA AAC CAG TCT GAA G NM_001037722 

egfr Sense CCT TCA CAT CCT GCC AGT G NM_207655 

 antisense CAG TCC AGT TAT CAG GCC AAG NM_207655 

grb7 Sense CCT GGT GGA TGG TGT GTT NM_010346 

 antisense GCA ACC TTC ATC TTC GCT TG NM_010346 

pak1 Sense GAG ATG GAT GTG GAG AAG AGA G NM_011035 

 antisense AAT CAG TGG AGT CAG GCT AGA NM_011035 

snail Sense GTCAGCAAAAGCACGGTTG NM_011427 

 antisense CTTGTGTCTGCACGACCT NM_011427 

β-actin Sense TGTCCACCTTCCAGCAGATGT  NM_007393 

 antisense AGCTCAGTAACAGTCCGCCTAGA  NM_007393 

 

Chemotaxis assay  

A Transwell chemotaxis system (Corning, NY, USA) was used to evaluate cell 

migration. The upper and lower chambers were separated by a polycarbonate membrane with 

pores of 5 μm diameter and were coated with collagen IV (Tocris, Minneapolis, MN, USA). 

Approximately 5×10
4
 purified CD4 T cells suspended in 100 μl serum-free medium (RPMI-

1640) were seeded onto the upper chamber, and 600 μL of serum free RPMI-1640 medium with 



47 
 

either water, water and DMSO, VIP [10
8
M], VIP [10

-8
M] plus 30 nM AG1478 or 30 nM 

AG1478 only was added to the lower chamber. After 4 hours of incubation at 37°C with 5% 

CO2, the medium was aspirated from the upper chamber. The non-migrated cells on the upper 

side of the chamber were gently scraped off with a cotton swab and washed twice with 1 X PBS. 

Cells on the underside of the membrane were fixed with glutaldehyde, stained with crystal violet 

and counted by light microscopy. The migration activity of CD4 T cells was determined by 

counting number of cells per high powered field from five random fields at x 200 magnification. 

Fold increase of migrating cells was calculated by dividing average total number of cells from 

each unknown by total number of cells migrating towards water control. Each assay was 

repeated two times with each experiment having 3 replicates per treatment. Results plotted are 

average fold changes ± SEM. 

Statistical analysis 

Data are presented as the average plus or minus standard error of the mean (SEM). 

Differences between two groups were compared by student t test and considered significant at a 

P value of less than 0.05 or as stated. Differences between multiple groups were evaluated by 

ANOVA.   

Results 

VIP chemoattractant activity on resting murine splenic CD4 T cells is sensitive to 

EGFR kinase inhibitors 

Several reports have demonstrated that VIP is a potent chemoattractant to numerous 

immune cells
57, 69, 70

 including resting CD4 T cells homing into PP and MLN
70

. However, a 

critical gap in the knowledge base exists regarding the molecular mechanism controlling VIP-

induced CD4 T cell migration. We have presented evidence indicating that VIP upregulates 
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mRNA levels of genes encoding proteins that make up a putative chemotactic EGFR pathway in 

resting CD4 T cells 
68

. In addition, VIP has the capability of impinging on EGFR signaling by 

rapidly transactivating EGFR, but slowly increasing its protein expression in human breast 

cancer cells
79

. Here, we set to determine the molecular mechanism governing the VIP-induced T 

cell migration. We hypothesized that EGFR signaling is required for resting CD4 T cell 

migration towards VIP.  

As this study aimed to determine the significance of EGFR signaling in primary resting 

CD4 T cells, isolated these cells from harvested spleens from 8-15 weeks old mice and 

performed magnetic bead chromatography to obtain highly purified (≥ 95%) T cells as 

determined by flow cytometry (Figure 2-3A). Because strong adherence of naïve T cells to a 

surface such as high endothelial venules is a required first step during T cell migration 
16, 80

, we 

postulated that it was reasonable to assume that the optimal VIP concentration that induced the 

highest percentage of adherence would theoretically induce the highest rate of CD4 T cell 

migration towards VIP. Using a collagen IV coated transwell assay, different VIP concentrations 

(10
-11

 through 10
-6

 M) or water control were used to treat highly purified CD4 T cells. Percent 

adhesion to collagen IV was measured in comparison to water control which was arbitrarily set 

to 1 % (Figures. 2-3 A and B). All concentrations tested in this experiment induced significant 

induction of CD4 T cell adhesion to collagen IV with VIP 10
-8 

M resulting in the highest amount 

of CD4 T cell adhesion. 

To evaluate the importance of EGFR signaling in VIP-induced T cell migration, optimal 

VIP concentration that induced the maximum adhesion to collagen IV (10
-8

M) was used in a 

modified Boyden Chamber / transwell assay. We tested whether an EGFR kinase inhibitor, AG-

1478, affected the extent of chemotaxis of CD4 T cells to VIP. Inhibition of EGFR kinase 
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activity led to a significant decrease in VIP-induced CD4 T cell migration (Figure 2-3B). These 

data strongly support that EGFR kinase activity was necessary for VIP-induced migration of 

CD4 T cells.  From this, we further concluded that VIP’s chemotactic activity is upstream from 

EGFR signaling, which for the first time sheds important light on this molecular mechanism.   

Resting mouse splenic CD4 T cells endogenously express EGFR pathway mRNA at 

varying levels prior to VIP treatment.                

As VIP appears to require EGFR kinase activity to enable resting CD4 T cells to migrate 

towards the source of VIP, we tested whether VIP treatment of resting CD4 T cells upregulates 

the mRNA of genes involved in a known putative chemotactic pathway initiated by EGFR 

signaling. To bolster the role of EGFR signaling in VIP-induced CD4 T cells migration, we first 

investigated whether or not resting CD4 T cells prior to VIP treatment at the mRNA level 

endogenously expressed genes involved in the EGFR pathway known to affect survival, 

proliferation and chemotaxis
81

. The mRNA expression of a subset of 6 genes including EGFR 

highlighted as a putative chemotactic pathway hypothesized to explain the molecular mechanism 

of the chemo attractive activity of VIP on T cells was determined. Using magnetic bead 

technology highly pure (≥95%) resting mouse CD4 T cells were enriched. Basal expression 

levels of the subset of 6 genes were then measured by qRT-PCR assay normalized to β-Actin 

(materials and methods). Our comparison showed that resting mouse CD4 T cells endogenously 

express all the predicted genes involved in the putative EGFR-centered chemotactic pathway at 

different levels. The relative expression range was over 96-fold with 

app>pak1>snail1>grb7>egfr≥adam15 (Figure. 2-4). These results demonstrated that resting 

primary mouse splenic CD4 T cells differentially express all measured EGFR pathway genes 

known to code for proteins involved in chemotaxis 
51, 82-84

 at varying levels prior to VIP 
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treatment suggestive of a pathway already genetically imprinted in these cells ready to be turned 

on given the right signaling cues. 

 

 

Figure 2-3. VIP induced CD4 T cell chemotaxis is dependent on Epidermal growth factor 

receptor signaling. A) Highly purified mouse splenic CD4 T cells were purified by magnetic 

bead technology; used for (B) adhesion assay and (C) chemotaxis analyses. Purified CD4 T cells 

were incubated on collagen IV coated plates and exposed to various VIP concentrations as 

indicated for 2 hours at 37°C. The extent of adhesion was assessed as the mean fluorescence 

emitted by Calcein AM stained cells and percentages compared to water control. (C) CD4 T cells 

were placed on transwell with either VIP [100nM] ± AG1478 [30nM] or relevant controls as 

indicated. Number of migrating cells was determined microscopically by counting 10 random 

fields (x20) of stained cells and fold-change over controls determined by dividing average 

number of cells per high powered field by that of water control. Results show average fold 

changes ± SEM from 2 independent experiments (p-value< 0.01).  
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Figure 2-4. Chemotactically relevant genes within an EGFR pathway are detectable, but 

differentially expressed in resting primary CD4 T cells. (A) Non-adherent splenocytes were 

stained with rat anti-mouse CD4 FITC antibody (materials and methods) prior to and post 

magnetic anti-CD4 bead chromatography technology. Side/forward scatter was initially used to 

gate splenocyte population for CD4 purification determination. (B) qRT-PCR analysis of EGFR, 

Adam15, App, Grb7, Pak1 and Snail1 normalized to β-Actin mRNA was carried out with total 

RNA isolated from freshly purified CD4 T cells. (C) Proposed model of EGFR pathway.  Data is 

graphed by means ± SEM from 5 independent experiments.  
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VIP rapidly, coordinately, but transiently upregulates a putative chemotactic EGFR 

pathway in resting primary murine CD4 T cells 

Coordinate upregulation by a soluble factor or environmental stimuli of a signaling 

pathway bolsters its biological relevance as illustrated in the coordinate upregulation of 

glycolytic enzymes and glucose transporters by hypoxia-induced factor-1 (HIF-1) transcription 

in response to hypoxia in rat brain cancer cells
85

. In addition, it is crucial that the mRNA of most 

or all of the genes follow similar kinetics as evidenced in the carotenoid biosynthesis pathway. 

Based on these biological precedents, we measured the expression levels of all six EGFR 

pathway genes at various times throughout 24 hours to test whether VIP coordinately 

upregulated them. Also, in order to substantiate this gene expression change by VIP in 

chemoattraction of T cells, we need to show that they are upregulated prior to when chemotaxis 

occurs. To collect this data, resting CD4 T cells were culture plus or minus VIP as indicated, 

cells lysed and total RNA isolated followed by first strand cDNA synthesis. Measurement of 

relative expression normalized to β-actin was performed by SYBR-green qRT-PCR. Analysis by 

quantitative RT-PCR (qRT-PCR) showed a rapid and coordinate upregulation of all genes as 

early as after 1.5 hours post-VIP additions. These changes were transient as their levels 

uniformly were back down to basal levels by 24 hours post VIP treatment (Figure 2-5). 
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Figure 2-5. VIP rapidly, coordinately but transiently upregulates steady state mRNA levels 

of all putative chemotactic EGFR pathway genes. Purified splenic CD4 T cells (>95%) were 

treated with or without VIP [10
-7

M] over a 24 hour period. Total RNA was extracted and gene 

expression measured by qRT-PCR SYBR green analysis. Data is presented as mean ± SEM 

normalized to β-actin from 3 independent experiments (*p-value ≤0.05).  

 

Grouping of the VIP-induced putative chemotactic EGFR pathway genes and 

determination of optimal VIP concentration. 

Upon further analysis of the kinetics of VIP transcriptional regulation of the EGFR 

pathway genes, we grouped the putative chemotactic EGFR genes into three groups according to 

their kinetic fold-changes over a 24 hour VIP exposure.  Group 1 was made up of genes that all 

were rapidly and coordinately upregulated after 1.5 hours with a quick return to basal levels 

immediately thereafter. These genes were EGFR, App and Grb7. The second group only had the 

snail1 gene. In this group, snail was also coordinately upregulated as the other genes after 1.5 

hours upon VIP treatment of the CD4 T cells, but its levels persisted longer than group 1 genes 
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before returning to basal levels. The third group, made up of Adam15 and Pak1, involved genes 

that had the highest fold-induction after VIP treatment. They were also coordinately upregulated 

with all the other genes in the EGFR pathway after 1.5 hours, declined after 5 hours, but peaked 

after 10 hours post VIP treatment. All the genes in the groups returned to basal levels after 24 

hours post VIP treatment (Figure 2-6). 

The effect of different VIP concentrations  was tested to determine one that would illicit 

the highest fold increase in mRNA of the EGFR pathway genes at their earliest peak time of 1.5 

hours. Primary resting CD4 T cells were subjected to varying VIP concentrations and fold 

changes over water control of two representative EGFR pathway genes (pak1 and grb7) was 

conducted similarly to above. The fold changes by 10
-7

 M VIP resulted in the highest steady state 

mRNA levels of the representative genes assessed (Figure 2-6B). Importantly, this response 

showed a unimodal response pattern typical of GPCRs where higher concentrations of ligands 

result in homologous desensitization of ligand receptors, hence decrease in ligand signaling 

responses. From this, we concluded that resting primary murine CD4 T cells coordinately 

upregulate EGFR pathway genes upon VIP treatment. Furthermore, the profile of the mRNA 

levels mirrored each other over the different VIP concentration curve study, supporting a 

coordinate regulatory control with a maximum effect with 10
-7

 M VIP (100x its Kd). 
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Figure 2-6. Kinetic VIP response grouping of the EGFR pathway genes and determination 

of optimal VIP concentration. Purified mouse spleen CD4 T cells (>95%) were treated with or 

without VIP [10
-7

M] for indicated time intervals or (B) for 1.5 hours with indicated VIP 

concentrations. Total RNA was extracted and gene expression measured by qRT-PCR analysis. 

(A) The EGFR pathway genes were grouped according to expression patterns over a 24 hour 

period. Group 1 peaked after 1.5 hours and returned to basal levels afterward, group 2 went up 

after 1.5 hours and persisted until after 5 hours before returning to basal levels and group 3 did 

not return to basal levels until after 10 hours.  

 

EGFR kinase inhibitor abolishes VIP-induced coordinate upregulation of a putative 

chemotactic EGFR pathway.  

Activation of receptor tyrosine kinases such as EGFR require the enhancement of 

intrinsic catalytic activity that provide new binding surfaces for the recruitment of downstream 

signaling proteins. Both of these processes are accomplished by auto-phosphorylation/ 

transactivation on tyrosine residues by ligand binding or transactivation
52

. VIP signaling through 

VPAC1 can transactivate EGFR proteins in human breast cancer cells within minutes 
79

.  To gain 

support for the putative EGFR pathway as the molecular mechanism by which VIP is 

chemotactic in resting CD4 T cells, we hypothesized that EGFR kinase activity was required for 

the VIP-induced EGFR pathway gene suite upregulation. Gene expression studies were repeated 

(materials and methods) with a highly specific and potent EGFR kinase inhibitor,  tyrphostin 
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AG-1478 
86

 Inhibition of EGFR kinase activity by tyrphostin AG-1478 resulted in complete 

abolishment of VIP mRNA upregulation using four representative EGFR pathway genes. For 

reasons we currently do not understand, tyrphostin AG-1478 inhibition of VIP-induced Snail 

mRNA upregulation resulted in a drastic reduction of Snail1 mRNA compared to basal levels 

(Figure 2-7). Overall, these results suggest that EGFR kinase activity is vital and upstream of 

VIP-induced coordinate gene regulation of the EGFR pathway gene-suite; and potentially other 

gene targets.  

 

Figure 2-7. Coordinate transcriptional upregulation of an EGFR-pathway mRNA is 

sensitive to EGFR kinase inhibitors in resting CD4 T cells. Highly purified resting splenic 

mouse CD4 T cells were isolated and cultured with either vehicle control or 10
-7

M VIP -/+ 30nM 

AG1478 for 1.5 hours (Materials and Methods). Relative steady-state mRNA levels for four of 

six EGFR-pathway genes were measured by qRT-PCR analysis and normalized to β-actin. 

Values are shown as means ± SEM from 3 independent experiments with statistical differences 

determined by student t-test (* p< 0.05). 

 

Discussion 

Constant migration of naïve immune cells throughout the lymphatic system to patrol 

concentrated foreign antigens is crucial for an effective immunity. Previous studies have 

demonstrated that VIP can alter murine T cell homing to the gut
87, 88

 and induces directional 
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migration of resting  human T cells towards it in a study that was done in vitro
69

. In this research 

study, we present the first potential molecular mechanism involved in VIP-induced resting 

murine CD4 T cell migration. The chemotaxis assay analysis used in this study allowed us to 

determine that inhibition of EGFR kinase activity completely abolished VIP-induced CD4 T cell 

migration. Therefore, for the first time, EGFR signaling has been implicated in VIP’s 

chemoattractant activity. More importantly, we discovered that a putative chemotactic EGFR-

pathway made of egfr, app, adam15, grb7, pak1 and snail1 genes was rapidly, coordinately, but 

transiently upregulated at the mRNA level upon VIP treatment. The upregulation of 

representative EGFR pathway genes by VIP was also abolished upon pretreatment of the cells 

with a potent EGFR kinase inhibitor CD4 T cells.  We found that resting CD4 T cells 

endogenously express all the six EGFR pathway genes prior to VIP treatment. 

The fact that VIP is a potent chemoattractant to resting T cells has been known for nearly 

30 years, but how it achieves this at the molecular level has been elusive. Currently, there is no 

known molecular mechanism that has been proposed to explain how VIP induces chemotaxis in 

T cells. Our results agree with previous studies of VIP induced T cell adhesion and migration
69

. 

Here, we have expanded the previous studies by showing that EGFR signaling is required for 

CD4 T cells to migrate towards a source of VIP. These results are in agreement with a 

chemotactic study done in human cells that found that VIP chemoattraction of these cells was 

sensitive to tyrosine kinase inhibition
69

. Using non-specific tyrosine inhibitors, it is possible that 

these authors inhibited EGFR signaling, which blocked cell migration towards VIP. Our results 

also demonstrated that CD4 T cell adhesion to collagen IV can be induced by VIP at a wide 

range of concentrations, and this was most likely homologously desensitized at higher 

concentrations, reminiscent of GPCR signaling. Coming to a stop before starting to migrate 
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towards a chemoattractant is a critical step in T cell migration, further illustrating how potent 

VIP is in inducing T cell migration. 

There are no previous quantitative analyses of the putative chemotactic EGFR pathway 

gene expression in CD4 T cells of any species. Our quantitative gene expression analysis results 

are the first to show that resting murine CD4 T cells endogenously and differentially express all 

the six genes involved in an EGFR pathway important for chemotaxis in epithelial cells. 

However, the importance of EGFR signaling in migration of CD4 T cells to the lungs in an 

asthma model has been shown previously
51

. Here we are extending this observation illustrating 

the importance of EGFR signaling in resting T cell homing by demonstrating that all the key 

players in a putative EGFR chemotactic pathway are present at the mRNA level in resting CD4 T 

cells prior to activation of the pathway.  

For coordinate upregulation of a signaling pathway that results in sustained biological 

response to occur, it is crucial that the mRNA of most or all of the genes in that pathway follow 

similar kinetics 
85, 89

. In this work, the mRNA of all the molecules involved in a putative 

chemotactic EGFR pathway that could explain the molecular mechanism of VIP induced T cell 

chemotaxis were rapidly, coordinately, but transiently upregulated. It was enticing to propose 

that the upregulated mRNA was being translated to their respective proteins involved in CD4 T 

cell chemotaxis. However, further analysis indicated that the kinetics of the mRNA formation 

was slower than the time needed for VIP induced CD4 T cell adhesion to collagen IV. Because 

of this, we can conclude that VIP induced CD4 T cell chemotaxis involves two phases. The first 

is the rapid transactivation of the already present EGFR protein to initiate the chemotactic 

machinery. The second phase involves the replenishment of the proteins in the pathway through 

de novo synthesis as a result of the mRNA upregulation. This second phase is slower and may be 
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important to sustain the ongoing chemotactic machinery by increasing the protein expression of 

all molecules involved in the pathway. Interestingly, VIP can also significantly increase protein 

expression of EGFR in human breast cancer cells 
79

 which gives biological precedent for this 

proposal.  

Activation of EGFR by metalloproteases after their activation by GPCRs has been 

shown.  The activated metalloproteases can cleave off and activate the inactive membrane-bound 

pro-EGFR ligand(s) which would bind and transactivate EGFR
53

 Present results demonstrate that 

VIP upregulates Adam15, a member of the ADAM family. The upregulated Adam15 can further 

enhance EGFR transactivation by cleaving and releasing any CD4 T cell membrane bound 

ligands such as epidermal growth factor (EGF) or amphiregulin. Interestingly, during DSS-

induced colitis in mice, VIP downregulates the activity of MMP-9
90

, a different kind of 

metalloprotease. This differences might be due to the immune state in that during inactivation 

conditions, VIP activates metalloproteases which would facilitate T cell migration, but during 

inflammatory conditions, the opposite occurs to limit inflammation. Our future goal is to 

measure the levels of EGFR ligands in VIP treated CD4 T cell media as compared to their 

controls. It is also our aim to measure the ligands serum ligand levels in VIP knockout mice that 

we recently secured. We hypothesize that VIP knockout mice will have lower levels of EGFR 

ligands in the serum as compared to their wild type controls. We also plan to determine whether 

homing of CD4 T cells isolated from wild type mice to PP and MLNs is affected when 

adoptively transferred into VIP knockout and VPAC2 knockout mice. 

In conclusion, we propose a potential EGFR-mediated mechanism that could contribute 

to the VIP-induced resting CD4 T cell homing to the gut. Although VIP is well established as a 

potent chemoattractant to immune cells for many years, the molecular mechanism mediating its 
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chemotactic effects were still largely unknown. We described the importance of EGFR signaling 

in mediating VIP-induced CD4 T cell migration and propose a model by which this pathway is 

required for T cell chemotaxis towards VIP. In our proposed hypothetical model (Figure 2-8) 

there is a quick EGFR transactivation by VIP/VPAC1 signaling that primes and initiates CD4 T 

cell chemotaxis towards a VIP source. At the same time, a slower (hours) and coordinated 

induction of mRNA expression of all the putative chemotactic EGFR pathway genes represents a 

cellular response to VIP resulting in elevation of EGFR signaling. It is therefore reasonable to 

envision that when the VIPergic nerves in the gut secrete this chemokine near HEV lining the 

vasculature, it could attract circulating resting CD4 T cells to the gut lymph tissue by activating 

EGFR signaling.  

 

 

Figure 2-8. Hypothetical model of a putative chemotactic EGFR pathway mediating VIP-

induced CD4 T cell movement. Binding of VIP to its receptor (VPAC1) on resting CD4 T cell 

leads to rapid transactivation of EGFR within minutes to initiate cell migration towards a 

gradient source of VIP. Transactivation of EGFR induces a putative chemotactic EGFR pathway 

resulting in CD4 T cell movement towards source of VIP such as the gut. At the same time a 

rapid increase in mRNA expression of EGFR pathway genes is induced. This increased mRNA 

expression leads to replenishment of proteins involved in the EGFR pathway that facilitates 

sustainment of the chemotactic response towards source of VIP.  
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CHAPTER THREE: VPAC2 DEFICIENCY RESULTS IN IMPAIRED IMMUNE 

CELL HOMEOSTASIS 

Introduction 

Mammals possess control mechanisms capable of maintaining an internal equilibrium of 

biochemical, phenotypical and physiological features. Well characterized examples of internal 

equilibriums, in spite of changes in their environments, include near constant body temperature, 

blood pH, size of organs, levels of nutrients and waste products. Deviation from this internal 

equilibrium can have adverse effects as illustrated in the cases of metabolic acidosis which may 

result in cardiac arrest and/or mental disorders
220, 221

.  This property of a system in which 

variables are regulated so that internal conditions remain stable and relatively constant is known 

as homeostasis
222

.  

The immune system is no exception to this control. When a foreign antigen is recognized, 

the immune system becomes activated resulting in immune cell activation, proliferation, 

differentiation into effector cells and cytokine secretion; all of which in turn lead to increased 

immune cell numbers and antigen clearance. Once the foreign antigen is removed, the immune 

system returns to its preactivation state, to maintain a constant number of immune cells and to 

prevent uncontrolled inflammatory responses despite frequent stimulations by antigens. This 

homeostatic regulation of maintaining a constant number and ration of more than ten different 

immune cell phenotypes ensures that once antigens are cleared, elevated levels of activated 

immune cells are killed off to restore pre-infection cell numbers and to limit inflammatory 

diseases such as autoimmunity or immunodeficiency
223

.  

Immune homeostasis plays a role in shaping immune cell repertoires. For instant, as the 

number of T and B lymphocytes is kept constant, any newly produced cell can only survive if 
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another resident cell dies
224, 225

. Because each lymphocyte does have a different antigen binding 

receptor, homeostatic mechanisms cellular survival and death are crucial it is crucial for a 

balanced immune system. Thus, homeostatic control of immune cell numbers provides a 

fundamental mechanism that shapes the immune repertoire and bolsters its capacity to respond to 

foreign. Immune homeostasis also enables the reestablishment of the immune system following 

its disruption due to irradiation and/or chemotherapy
226-228

. During the process of restoration, the 

immune system can be reset at a new equilibrium overcoming any of its previous malfunctions. 

This capacity of homeostatic regulation may therefore be used in potential therapeutic strategies 

to radically modify lymphocyte repertoires, immune responses, autoimmune diseases, allergy 

and cancer treatments
10

. 

In adult mouse, despite continuous production of new cells in the bone marrow, thymus, 

and peripheral cell division, the number and diversity of B and T lymphocytes remains relatively 

constant. Homeostasis of the immune system is well established although molecules controlling 

it are not fully understood
8, 229-231

. Factors that affect immune cell homeostasis are those involved 

in their production, differentiation, activation or death (Figure 3-1).  

 

Figure 3-1. Basic mechanisms regulating immune cell homeostasis. As immune cells are 

continuously generated, the stationary distribution of immune cells is a steady-state of 

generation, differentiation, survival, and death. 
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VIP and its receptors may be candidates for immune homeostatic regulators based on 

over two decades of research. Anatomical connections and factors released and recognized by 

the neuroendocrine and the immune systems enable bi-directional interactions between them. 

There are extensive peptidergic innervations in both primary and secondary lymphoid organs that 

delivery neuroendocrines to immune cells in these microenvironments
112, 113, 232

.  Vasoactive 

intestinal peptide (VIP) and the structurally related pituitary adenylate cyclase activating 

polypeptide (PACAP), are secreted by the peripheral nervous system and are soluble 

neuropeptides present in the immune microenvironment. VIP/PACAP elicit a broad spectrum of 

biological functions, including actions on innate and acquired immunity such as differentiation 

and development
233

. VIP and PACAP bind to their GPCRs, VPAC1 and VPAC2, expressed on 

several immune cells with equal affinity. VIP and PACAP signaling through these receptors 

inhibit the production of proinflammatory cytokines such as IL-2, TNFα, IL-12, and IL-6 in 

activated T cells and macrophages
234, 235

. They can also inhibit activation induced apoptosis in T 

cells through reduction in FasL expression, resulting in increased survival rates
236, 237

. In 

addition, VIP inhibits the proliferation of bone marrow progenitors implicating it in immune cell 

homeostasis
119

. The fact that VIP promotes a positive Th2/Th1 balance, and is capable of 

stimulating regulatory T-cell production through VPAC2 signaling axis suggests that 

endogenous VIP might play a role in immune cells homeostasis
238

. Curiously, in a recent study 

investigating the role of VIP in experimental autoimmune encephalomyelitis, spleens of control 

animals appeared smaller than their age and sex matched littermates
239

. However, the role of VIP 

in immune cell homeostasis was not investigated in this study. 

VPAC2 is prominently expressed in immune cells such as lymphocytes, macrophages, 

thymocytes
111, 240

 and immune microenvironments such as in the thymus, gut, and bone 
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marrow
128, 237

. Upon ligand binding, VPAC2 can engage at least three G proteins, including Gαs, 

Gαi and Gαq that regulate signaling molecules as diverse as adenylate cyclase, PKA, PKC, PLC, 

PLD and EPAC, and elevate the intracellular secondary messengers, cAMP, IP3, DAG and Ca
2+

, 

(Figure 3-2)
241

. 

  

 

       

  

 

 

 

 

 Figure 3-2: VPAC2 signaling upon ligand binding
24 

Previous studies, using VPAC2 transgenic mice showed increased serum IgE antibody 

levels, with heightened cutaneous allergic reactions and depressed delayed-type 

hypersensitivity
242

. On the other hand, mice deficient in VPAC2 expression presented an 

increased basal metabolic
243

 rate and decreased serum interleukin (IL) - 5
242

. VPAC2 signaling 

stimulates IL-5 secretions from type 2 innate lymphoid cells
143

.   VPAC2 stimulation by VIP 

increases IL-4 secretion by T lymphocytes
244

. During the first 4 months, mice deficient in 

VPAC2 show no difference in growth and weight gain
243

. However, the role and mechanism of 

signal transduction of VPAC2 in immune cell homeostatic regulation has not been reported in 

detail. In the present studies, we characterized the immune cell homeostatic regulation by 

VPAC2 by utilizing knockout mice. We characterized these mice as having a global decrease in 
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immune cell numbers and diminished T cell activation responses. In contrast, VPAC2-deficient 

cells showed less potential for apoptosis. 

Materials and methods 

Mice 

C57BL/6 were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). VPAC2 

knockout mice were a kind gift from Dr. Jane Schuh at NDSU. Male or female mice were 

weighed, age- and sex-matched for all experiments. The mice used in these studies were between 

ages 8 to 12 weeks old. All animal procedures were performed according to National Institutes of 

Health guidelines and approved by the North Dakota State University Institutional Animal Care 

and Use Committee (Fargo, ND, USA). Experimental groups consisted of at least three mice, and 

each experiment was repeated a minimum of two times. 

VPAC2 knockout mouse strain genotyping 

A 2-4 mm tail clip was collected per mouse and placed in a microfuge tube on ice. 

Tweezers and scissors were sterilized in between mice tail clip collection with an alcohol swab 

to prevent contamination between samples. For DNA extraction, the SYBR
®
 Green Extract-N-

Amp
™

 Tissue PCR Kit (Sigma Aldrich, Catalog # XNATG-1KT) was used. Briefly, we added 

100 µl extraction solution to each tail sample followed by 25 µl of tissue prep solution. The tubes 

were then incubated at room temperature for 10 minutes followed by 95 ºC for 3 minutes. 

Neutralization solution b (100 µl) was added and samples vortexed for 30 seconds. Samples were 

now ready for PCR reaction. PCR was performed with Expand Long Template PCR system (Cat. 

#. 11681834001, Roche diagnostics, Mannheim, Germany).  Two sets primer pairs were utilized; 

one to test for WT gene and one for the mutant gene.  
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Primers P1 (5'-TTCAGAGGGAAGTAGGGGTGGAAGGAGGGACG-3') from the 5' region of 

exon 1 and P2 (5'-TACCTCTCTGATTCTCCGTTTGGCTGC TTAGC-3'), spanning the 

junction of exon 2 and intron 2, to giving rise to a 2.5 kb product from the unmodified Vipr2 

allele and a 7.2 kb product from the disrupted allele. Primers P3 (5'-

GCTTCCTCGTGCTTTACGGTATCGCCGCTCC-3') from the 3' end of the Neor gene and P4 

(5'-TCCCCACTGTCACAAGGCTACATTAGTTTTGC-3') in intron 2 giving rise to a 2.5 kb 

product from the targeted allele but no product from the wild type allele or from a randomly 

integrated event. PCR was performed under the following conditions: 94°C (2 min) for one 

cycle; 94°C (10 s), 65°C (30 s), and 68°C (12 min) for 10 cycles; 94°C (10 s), 65°C (30 s), and 

68°C (12 min) with 20 s extension/cycle for 20 cycles, and finally 68°C for 7 min. Products were 

then resolved in a 1% agarose gel electrophoreses and imaged by Gene Genius Bio imaging 

system (Syngene, Frederick, MD)  after ethidium gel staining-distaining using 254 wavelength 

UV transmission.  

 

 

Figure 3-3. Schematic of VPAC2 knockout generation and genotyping procedure
242

. 

Schematic diagram of (A) wild-type allele, (B) targeting vector, and (C) targeted allele showing 

restriction sites for EcoRI (E), EheI (Eh) ScaI (Sc), SacII (Sa), and XbaI (X) and positions of 

probes A and B and primers P1, P2, P3, and P4. EcoRI digests of genomic DNA from ES cells 

hybridized with probe A (D) and probe B (E). 
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Euthanasia of mouse: carbon dioxide asphyxiation 

Mice were placed in a CO2 chamber that was filled with CO2 over a 4 minute 24 seconds 

timed program as mandated by the NDSU IACUC.  This was followed by cervical dislocation to 

ensure humane death. 

Removal of mouse lymphoid organs 

 After sacrificing the animal in a humane manner, they were placed on their backs on 

clean, dry, dissection board. The fur was wetted with 70% ethanol to sterilize the area and reduce 

the possibility of contamination. A midline incision was made with sterilized iris scissors. The 

skin was then retracted above the head and below the thighs. 

To harvest the spleen, a 1-inch incision was made at the left of the peritoneal wall with surgical 

scissors and using sterile forceps the connective tissue was grasped around the spleen to expose 

it. Gently the spleen was cut off from the connective tissue into a clean 50 ml tube with complete 

RPMI growth medium (recipe listed in previous chapter). Single cell suspensions were prepared 

and counted as described in previous chapter. 

For thymus removal, an incision in the chest was made, beginning at the xiphoid and extended to 

the neck with surgical scissors. Ribs were retracted with curved forceps. At this point, the 

thymus was located as a yellowish-white bi-lobed organ found just under the ribs, attached above 

the heart in the midline. Thymus was gently grasped with curved forceps for removal from the 

connective tissues. Harvested thymus was placed in 15 ml of complete culture media. Single cell 

suspensions were prepared by collagenase digestion by incubating the thymus tissue at 37
o
C for 

45 minutes with 50 mg/ml Collagenase D (Roche, Indianapolis, IN), 50 µg/ml DNase I (Qiagen, 

Germantown, MD). After that, 5 mM EDTA was added to each dish and incubated for an 

additional 5 minutes. Each dish was pipetted vigorously to break up tissue aggregates and 
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strained through a 70 µm strainer. Remaining tissue on the strainer was mashed further with the 

back of syringe, followed by a wash with 5 mM EDTA in PBS until a volume of 30 ml was 

reached. Cells were centrifuged at 300xg for 10 minutes at 4
o
C.  Red blood cells were lysed, 

cells washed with ice cold PBS and centrifuged as above. Cell suspensions were the prepared in 

complete culture media.  

Bone marrow cells isolation  

Mice were doused with 75% ethanol to reduce the possibility of contamination and 

placed onto a dissecting table. The abdominal skin was cut open to expose thigh muscles. To 

remove the femur and tibia, all the muscles and tendons around them were scrapped off using a 

sterile pair of scissors and a scalpel. Once all bones were scrapped clean, they were placed in a 

petri dish with isolation media (PBS, 2% FBS and 1mM EDTA. The epiphysis region of the 

bone was cut off each end of bone and marrow flashed with 3-4 ml of fresh isolation media using 

a 26 gauge needle. The cell suspension recovered was passed through a 70 µm cell strainer into a 

50 ml centrifuge tube and centrifuged at 300xg at 4
o
C for 10 minutes. Media was aspirated and 

red blood cells lysed with 3 ml of eBiosciences 1X RBC lysis buffer solution (Cat# 00-4333-57; 

200 ml) with 10 seconds of vortexing and incubated at room temperature for 3 minutes. After 3 

minutes, RBC lysis buffer was diluted to 50 ml by addition of 1X PBS, centrifuged as above and 

passed through a 70 µm cell sieve. Cells were resuspended in 2.5 ml of complete media (RPMI, 

20 FBS (Atlanta Biological), 1% P/S, 1% Glutamine, 25 mM Hepes, 1X NEAA, 1 mM sodium 

pyruvate, 50 µM beta-ME) for every two mouse equivalents of bone marrow. Triturated ten 

times or until cell suspension was homogeneous and serial dilutions (1/10, 1/20, 1/40, 1/80 and 

1/160) prepared for cell counting. The high and low cell counts were removed and counts 

calculated using the mean of the middle two cell counts. 
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Ex vivo culture of mouse bone marrow-derived eosinophils (bm-Eos) 

Bone marrow cells were collected from the femurs and tibiae of mice by flushing the 

opened bones with Iscove's Modified Dulbecco's Medium (IMDM; Invitrogen). Red blood cells 

were lysed in RBC lysis buffer, followed by the addition of 1 X PBS. After centrifugation, the 

cells were washed once in PBS containing 0.1% BSA and cultured at 5 X 10
6
/mL in media 

containing RPMI 1640 (Invitrogen) with 20% FBS (Atlanta biologicals), 100 IU/mL penicillin 

and 10 μg/mL streptomycin (Cellgro), 2 mM glutamine (Invitrogen), 25 mM HEPES and 1x 

non-essential amino acids and 1 mM sodium pyruvate (Gibco) and 50 μM β-mercaptoethanol 

(Sigma) and supplemented with 100 ng/mL stem-cell factor (SCF; PeproTech) and 100 ng/mL 

FLT3-Ligand (FLT3-L; PeproTech) from day 0 to day 4. On day 4, the media containing SCF 

and FLT3-L was replaced with media containing 10 ng/mL recombinant mouse interleukin-5 

(rmIL-5; R&D Systems) only. Cells were cultured for another 4 days. On day 8, the cells were 

moved to new flasks and maintained in fresh media supplemented with rmIL-5. Every other day 

from this point forward (days 10 and 12), one-half of the media was replaced with fresh media 

containing rmIL-5. Cells were enumerated at day 0 and on days indicated thereafter in a 

hemocytometer.  

Isolation of peritoneal cavity cells 

Mice were euthanized as described above, sprayed with 70% ethanol and mounted on a 

Styrofoam block on its back. Using a scissors and forceps outer skin of the peritoneum was cut 

and gently pulled back to expose the inner skin lining the peritoneal cavity. Ice cold 1X PBS 

(with 3% characterized fetal calf serum, 5 ml) was injected into the peritoneal cavity using a 27g 

needle by pushing the needle slowly in the peritoneum being careful not to puncture any organs. 

After injection, the peritoneum was gently massaged to dislodge any attached cells into the PBS 
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solution. A 25 g needle was inserted into the peritoneum and the fluid collected being careful 

with the needle to avoid clogging with fat tissue. About 3 ml of fluid was collected and cell 

suspensions kept on ice. An incision in the inner skin of the peritoneum was made and while 

holding up the skin with forceps, the remaining fluid from the cavity was collected using a 

plastic Pasteur pipette. At this point, if visible blood contamination was detected then the 

contaminated sample was discarded. Samples were centrifuged at 600xg at 4°C for 8 minutes. 

Cell pellets were then resuspended in complete RPMI culture media. Cell concentrations were 

determined by counting serially diluted samples with trypan blue on a hemocytometer.  

Flow cytometry analysis 

Single-cell suspensions from spleens, thymus, blood, lymph nodes and peritoneal cavity 

were prepared as described above. For cell surface markers, cells were stained with 0.25 µg 

antibodies per 1 x 10
6
 cells (all antibodies used were of rat anti-mouse, clone RM4-4, Biolegend) 

in PBS with 2% BSA for at least 30 minutes at 4°C in the dark. After washing twice with 3 ml 

ice cold 1X PBS, immunolabeled cells were analyzed on an Accuri 6 flow cytometer (BD 

Biosciences). Data analysis was performed using the Accuri 6 software.  

5-(and 6)-Carboxyfluorescein diacetate succinimidyl ester (CFSE) CD4 T cell 

proliferation assay 

Single cell splenocyte suspension from wild type and VPAC2KO mice were washed 

twice with 1 X PBS to remove serum and resuspended at 10 X 10
6
 cells/mL using room 

temperature 1X PBS. CFSE [5 μM] was added to the cell suspension, mixed immediately and 

incubated for 10 minutes at 37°C in the dark. After which, CFSE labeling was stopped by adding 

4-5 volumes of cold complete media and incubated on ice for 5 minutes. Cells were washed three 

times with complete media and activated using 5 µg/ml anti-mouse CD3e functional grade 
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antibody coated plates plus 2 µg/ml anti-mouse CD28 functional grade antibody (both from 

eBiosciences) in complete RPMI culture media at 37°C, 5% CO2. Control samples (inactivated) 

were plated without either antibodies. Cells were cultured for 72 hours before analysis of CFSE 

degradation by flow cytometry.  

Cell apoptosis analysis 

Freshly isolated splenocytes and thymocytes were incubated with 0.25 µg per 1x106 cells 

anti-annexin V-APC (eBiosciences) for 30 minutes at 4°C. Cells were washed twice with ice-

cold 1X PBS and resuspended in 200 µl of 1XPBS plus 2% BSA buffer. Immediately before 

flow cytometry analysis, 1 µg/ml propidium iodine dye was added to cell suspension for 5 

minutes. Percent apoptotic cells were calculated by determining percent PI
+
 and annexin V

+
 

cells. 

Statistical analysis 

Data are graphed with means ± SEM from independent experiments. Unpaired two-tailed 

Student t-tests were used for statistical analysis to compare VPAC2 knockouts and wild type 

samples. A value of p≤ 0.05 was considered statistically significant. 

Results 

VPAC2 deficiency causes decrease in total splenocytes 

Maintenance of lymphocyte homeostasis is crucial to allow rapid protective response 

against foreign pathogens while simultaneously preventing diseases of the immune system, such 

as autoimmunity or immunodeficiency. One mechanism to maintain immune homeostasis is the 

maintenance of an adequate number of immune cells. When the number of immune cells 

decreases, a state of immunodeficiency can result with inability to clear pathogens as quickly as 

needed. To elucidate the roles of VPAC2 in immune cell homeostasis, we used a VPAC2 
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deficient mouse strain. Mice homozygous for VPAC2 gene mutation developed normally and 

were born with the expected Mendelian ratio. However, we observed that these mice consistently 

had smaller spleens as compared to their age-and-sex matched wild type counterparts. To 

elucidate the importance of homeostatic regulation of immune cells by VPAC2 in vivo, we 

characterized the immunophenotype of the mutants as compared to wild type. In order to confirm 

the above observation was not due to weight differences, we measured weights of mutants and 

compared them to those wild types mice. There was no significant difference in the average 

weights between VPAC2 homozygous mutants and wild type mice used in all the experiments 

(Figure 3-4A). Some of the VPAC2 knockout mice were housed in Dr. Schuh research groups 

mouse room here at NDSU. Our analysis also revealed that VPAC2-deficient mice consistently 

had smaller spleens, which was associated with a marked decrease in the number of splenocytes 

by homozygous mutants as compared to age-and sex-matched wild types (Figures 3-4B and C).  

VPAC2-deficiency resulted in approximately 50% fewer total splenocytes after red blood cells 

lysis. These results demonstrate that VPAC2 plays a critical role in maintaining immune 

homeostasis since lack of VPAC2 resulted in fewer splenocytes as compared to wild types. 
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Figure 3-4. VPAC2 deficiency leads to smaller spleens and fewer total splenocytes. (A) 

Average weights of 15 age matched WT and VPAC2 deficient mice between 8-12 weeks old 

were determined. Mice were weighed prior to sacrificing (B) Photograph of representative WT 

and VPAC2
-/-

 spleens. Each measurement is 0.5 cm apart (C) Single cell suspensions were 

prepared from spleens and WT vs. VPAC2
-/- 

total splenocytes numbers compared after RBC lysis 

(materials and methods n=8, Mean± SEM, **p<0.05 was considered significant). 

 

VPAC2 deficiency causes a defect in immune cells homeostasis 

Given the reduction in total splenocyte numbers in VPAC2
-/-

, we next investigated the 

homeostatic role of VPAC2 signaling. Using flow cytometry analysis, we calculated percent 

composition and numbers of lymphocytes (B and T cells) in different immune tissues of WT and 

VPAC2 deficient mice. Flow cytometry analysis was done to determine percentages of B cells 

(CD19
+
) and T cells (CD3

+
 or CD4

+
 or CD8

+
) in spleen, thymus and blood from WT or VPAC2 

deficient mice. Average total cell numbers were calculated by multiplying total cell number by 

the percentage of each cell population. Our analysis revealed that VPAC2 ablation did not have a 

significant effect on the percent composition of lymphocytes in the immune compartments 

investigated. However, there was a reduction in absolute cell counts in all compartments 

investigated (Figure 3-5A). And since there was a reduction in peripheral T cells, we 
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investigated if this could have arisen from defects in thymic differentiation. Analysis of 

proportions of double-negative (CD4-, CD8-), double-positive (CD4+, CD8+) and single-

positive (CD4+ or CD8+) thymic subsets did not reveal any differences between wild type and 

VPAC2 deficient mice (Figure 11A). But, analysis of naïve and effector/memory revealed a 

significant reduction in naïve CD4 T cells (CD4
+
/CD44

low
/CD62L

hi
) balanced by a slight 

increase in central memory CD4 T cells (CD4
+
/CD44

hi
/CD62L

low
) in VPAC2 deficient mice as 

compared to wild type age and sex matched counterparts. There was no significant difference in 

effector memory cells percentages in the spleen (Figure 3-5B). From this, we concluded that 

VPAC2 plays a significant role in maintaining immune cell homeostasis and that the reduction in 

number of CD4 T cells in peripheral lymphoid tissues is caused in part by a specific reduction in 

the number of naïve CD4 T cells in VPAC2 deficient mutants.  
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Figure 3-5. VPAC2 deficiency causes loss of lymphocytes. (A-E) Single cell suspensions from 

spleen, thymus, and blood were immunostained with anti-CD19, anti-CD3, anti-CD4 and anti-

CD8 antibodies, and analyzed by FACS. Percent composition and numbers are graphed as means 

± SEM. (B) Splenocytes were stained for naïve, effector and central memory CD4 T cells with a 

cocktail of anti-CD4, anti-CD44 and ant-CD62L antibodies. Numbers of naïve, effector, and 

central memory CD4 T cells are shown. Data are graphed as means ± SEM, *p value≤ 0.05 for 3 

independent experiments. 

 

Deletion of VPAC2 results in heightened apoptosis resistance by T cells 

Survival regulation is crucial for immune cell homeostasis. Heighted rate of survival can 

result in increased number of immune cells if their output is maintained. Given that VPAC2 

deficient mice have a lower number of peripheral T cells, we hypothesized that VPAC2 deletion 

would result in defective survival of immune cells leading to decreased total cells. To test this 

hypothesis, single cell suspensions of thymocytes were prepared, and subjected to Annexin-V 



82 
 

and propidium iodide staining analysis. Surprisingly, we found that VPAC2 deficient T cells 

were more resistant to apoptosis than their WT counterparts (Figure 3-6A). We then cultured 

total non-adherent splenocytes for 24 hours in complete growth media (RPMI-1640, 10% 

characterized FBS, and 1% Penn-strep) and tested for percent apoptosis. Consistent with 

thymocytes assayed immediately after isolation, cultured splenocytes lacking VPAC2 were 

significantly (3 fold) more resistant to cell death after 24 hours in culture as compared to WT 

(Figure 3-6B). 

Interleukin-7 (IL-7) is a nonredundant cytokine required for the survival of both naïve 

and memory T cells
40

. IL-7 receptor alpha (IL7Rα/CD127), which regulates IL-7 signaling is 

expressed on T cells at almost all stages of development, from early CD4-CD8- progenitors in 

the thymus to mature T cells in the peripheral lymphoid tissues
40

. In an attempt to explain the 

difference in survival of T cells between VPAC2 deficient T cells and their wild type 

counterparts, we used flow cytometry analysis to measure IL7Rα protein and qRT-PCR to 

measure relative mRNA expression. We found that compared to wild type, VPAC2 deficient T 

cells had higher relative mRNA expression levels of IL7Rα (Figure 3-6C). This was consistent 

with a greater percentage of cells expressing comparable amounts of IL-7Rα protein. These data 

revealed that VPAC2 deficiency is associated with increased resistance to apoptosis. This could 

be due to increased IL7Rα signaling which have prosurvival influences on T cells.  
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Figure 3-6. VPAC2 deficient T cells display increased resistance to apoptosis and higher 

IL7R alpha expression. Single cells suspensions of non-adherent WT or VPAC2 deficient 

splenocytes were used immediately (A) or cultured for 24 hours (B) and late stage apoptotic 

analysis conducted using annexin V and PI staining method. Representative flow cytometry 

result of 3 independent experiments are shown (left panel) with means ± SEM bar graph 

combined data (right panels). (C) CD4 T cells were isolated and IL-7Rα expression determined 

by flow cytometry and qRT-PCR analysis. Far left is a representative flow analysis of IL-7Rα 

expression on total splenocytes,  middle right panel bar graph shows means ± SEM of percent 

IL7Rα expression on CD4 and CD8 T cells and far right shows relative mRNA levels of total 

splenocytes (n=3, p-value ≤ 0.05). 

 

VPAC2 deficiency leads to impaired activation induced T cell proliferation 

Since lack of VPAC2 endowed thymocytes and T cells with increased survival capacity, 

and previous studies have demonstrated that VPAC2 expression is increased during T cell 

activation
234

 and lymphopoiesis
128

 
116

, we next examined TCR signaling in VPAC2 deficient T 

cells as compared to their wild type counter parts. Highly purified splenic CD4 T cells were 
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labeled with proliferative dye CFSE and stimulated with plate bound functional grade anti-CD3e 

and anti-CD28 antibodies in complete growth media. After 72 hours cells were analyzed for 

CFSE dilution. The more a cell divides, the lower the fluorescent intensity of CFSE from which 

percent division rate can be calculated (materials and methods). Compared with WT controls, 

VPAC2-deficient CD4 T cells displayed diminished TCR-induced proliferation activity showing 

only 25% of cells undergoing proliferation verses 80% for wild type cells (Figure 3-7) 

suggesting that VPAC2 deletion impairs T cell activation and proliferation.     

 

 

Figure 3-7. VPAC2 deficiency leads to impaired activation induced T cell proliferation. 

Purified splenic CD4 T cells were labeled with CFSE and cultured with or without 10 µg/mL 

plate bound anti-CD3 antibody together with 2 µg/mL anti-CD28 antibody for 72 hours and 

assessed for percent proliferation by CFSE fluorescent intensity assay ( materials and methods). 

Bar graphs show means ± SEM of 2 independent experiments with 3 replicates per experiment, 

p-value ≤ 0.05. 
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VPAC2 deficiency is associated with delayed production of bone marrow eosinophils 

and decreased peripheral eosinophil counts 

During an infection, innate immunity provides a first line of defense which allows for a 

nonspecific, but rapid response before adaptive immunity takes over if needed. Eosinophils are a 

type of granulocyte that plays a key role in innate immunity to defend against parasitic 

infections
245

. IL-5 is a homeostatic cytokine required for production and proliferation of 

eosinophils
143

. VPAC2 signaling induced secretion of IL-5 by type 2 innate lymphoid cells 

(ILC2) maintains homeostatic levels of eosinophils
143

. To study the potential role of VPAC2 in 

innate immune homeostasis, we compared the homeostatic levels of eosinophils in VPAC2 

deficient mice to that of WT counterparts. To do so, we isolated single cell suspensions of 

splenocytes and identified eosinophils as high side scatter, siglec F
+
, and CD11c

-
 cells by flow 

cytometry analysis. VPAC2 deficiency resulted in drastically fewer splenic eosinophils (Figure 

3-8A). Based on these results, we hypothesized that production of eosinophils was diminished in 

the bone marrow of VPAC2 deficient mice
246

. We tested this hypothesis by conducting a bone 

marrow (BM) eosinophil differentiation. Total BM cells were isolated and eosinophil 

differentiation performed as described in materials and methods. Lack of VPAC2 resulted in 

delayed production of differentiated eosinophils with no effect on the ability for differentiation 

towards eosinophils lineage (Figure 3-8B); as we were able to consistently get ≥ 92% high side 

scatter and siglec F+ cells (eosinophils) after 14 days.  Therefore, lack of VPAC2 results in 

decreased eosinophil production in the bone marrow which could in part explain the decreased 

peripheral eosinophil numbers under homeostatic conditions.   
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Figure 3-8. Lack of VPAC2 results in fewer peripheral eosinophils and delayed ex vivo 

bone marrow eosinophil differentiation. (A) Total splenocytes were isolated, stained and 

analyzed for percent eosinophils (right) and absolute numbers (left) calculated based on total 

splenocytes numbers (materials and methods). Bar graphs are for 2 independent experiments 

with means ± SEM. (B) Eosinophils were differentiated from total bone marrow cells for 14 days 

(materials and methods). On days 0 and 14 of differentiation, high side scatter and siglecF+ cell 

percentages were determined to identify eosinophils in cell population. Right: Graph of average 

total nonadherent cell counts for WT and VPAC2
-/-

 through day 14. Left: Percent high side 

scatter and siglecF+ cells on days 0 and 14 for WT and VPAC2-/- cells. Data is for means ± SD 

for 2 independent experiments for spleen analysis and 1 independent experiment for ex vivo 

bone marrow eosinophils analysis. 

 

Discussion 

The results presented in this study reveal that VPAC2 deficiency results in impaired 

immune cells homeostasis. VPAC2 deficient mice are born with the expected Mendelian ratio 
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and grow normally as compared to WT mice with relatively equal gain in weight within the first 

fifteen weeks which was consistent with literature
243

. However, lack of VPAC2 results in 

decreased numbers of both innate and adaptive immune cells. In addition, we show that VPAC2 

knockout is associated with increased splenocyte and thymocyte resistance to apoptosis as 

compared to their wild type counterparts. In agreement with other studies, we also found that 

ablation of VPAC2 led to diminished peripheral eosinophils
143, 246

 which could be due to slower 

production in the bone marrow. Interestingly, VPAC2 deficiency did not affect thymopoiesis or 

induce T cell activation as was the case for cdc42 deficient mice
247

, but resulted in approximately 

50% decrease in naïve CD4 T lymphocytes in the spleen which was similar to the cdc42 

deficient mutants. When stimulated with a mitogenic signal in culture, VPAC2-deficient CD4 T 

cells had diminished proliferative response as shown with proliferation studies. 

Maintenance of an adequate number of immune cells is crucial to having an efficient 

protection against foreign antigens without adverse effects against self. To date, no study has 

identified the role of VPAC2 in immune cell homeostasis. In this study, we examined the role of 

VPAC2 in immune cell homeostasis by using a VPAC2 knock out mouse strain. We provide 

evidence showing that VPAC2 signaling activity is likely required in order to maintain normal 

homeostatic conditions in the immune system. Mice lacking VPAC2 have fewer total immune 

cells representing both the innate and adaptive arms of the immune system. Total splenocytes, 

thymocytes and blood T cell numbers were reduced as compared to wild type counterparts. This 

reduction in total immune cells could not be explained by the size of mice as VPAC2-deficient 

mice used in these experiments grew normally to wild type within the first 15 weeks. Analysis of 

percent composition of lymphocytes in the spleen indicated that there are no defects in 

development and lineage commitment. This lack of development could explain why previous 
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studies done on these mice concluded that there was no homeostatic difference due to lack of 

VPAC2 as they only looked at the percentages of lymphocytes instead of total cell numbers as 

well
246

. To support our results, VIP knock out mouse strain have smaller spleens as compared to 

their age and sex matched counterparts
239

, illustrating a potential signaling axis involving 

VIPVPAC2 to maintain normal homeostasis of immune cells. 

Thymus is the primary site of T lymphopoiesis. VPAC2 is predominantly the VIP 

receptor expressed in thymocytes
248

 and supports the generation of CD4+CD8- thymocytes
249

. 

Once differentiated to CD4+CD8- thymocytes, these cells migrate to the peripheral immune 

organs. The findings that VPAC2 supports production of naïve CD4 T cells in the thymus which 

would migrate to the periphery is in agreement with our results demonstrating that VPAC2 

deficient mice have decreased number of peripheral naïve CD4+ T cells as lack of VPAC2 

would lead to diminished output of naïve CD4 T cells from the thymus. However, in contrast to 

an in vitro mouse thymocyte cell line study
248

, we did not find a decrease in percentage of 

CD4+CD8- thymocytes in our in vivo studies of VPAC2 deficient mice as compared to the wild 

type.  

A surprising result of these studies was the finding that VPAC2-deficient splenocytes and 

thymocytes are more resistant to apoptosis. Survival/apoptosis regulation in T and B 

lymphocytes is a major element controlling immune homeostasis. Increased survival can result in 

increased numbers of immune cells if production is maintained. We previously reported a 

microarray study where we found that VIP treatment of naïve CD4 T cells resulted in differential 

regulation of 68 cell death genes as compared to control
205

. These results provided evidence 

showing that VIP signaling through either VPAC1 or VPAC2 can affect the rate of T cell death. 

VPAC2 signaling protects Th2 cells from apoptosis by inhibiting gramzyme B and therefore is a 
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survival factor and promoter of Th2 memory cells
250, 251

. Here, we found that CD4 T cells lacking 

VPAC2 expression survive longer than wild type controls. Our analysis of IL7Rα expression 

revealed that VPAC2-deficient CD4 T cells also have higher IL7Rα expression as compared to 

wild type. IL7 signaling through IL7Rα is central to mediating T cell survival and maintaining 

peripheral T cells
229

. Since VPAC2-deficient CD4 T cells express higher levels of IL7Rα one 

would expect them to have higher resistance to apoptosis as we found. Our future goal is to 

investigate the potential differences in IL-7 induced survival between VPAC2-deficient CD4 T 

cells as compared to wild types given the higher expression of IL7Rα in VPAC2-deficient mice. 

These results were surprising because we expected to find that VPAC2 deficiency would have 

resulted in increased apoptosis to explain the lower total immune cell numbers.  

VPAC2 deficiency led to a hypo-responsiveness of T cells to TCR ligation illustrated by 

diminished TCR-induced proliferation. We attributed this to the lack of VPAC2 signaling. 

During T cell activation, VPAC2 expression consistently increases while that of VPAC1 

decreases
242

 suggestive of a requirement of VPAC2 in T cell activation. Whereas VPAC2 

deficient mice have been shown to have an immune system that is skewed towards a Th1 

response, the rate of proliferation of T cells following TCR activation has not yet been 

investigated. Also, whether down regulation of VPAC1 in VPAC2 deficient CD4 T cells occurs 

during T cell activation is yet to be determined. We have collected evidence to indicate that the 

upregulation of VPAC2 during CD4 T cell activation might actually be more important than 

previously appreciated. VPAC2 deficient T cells do not proliferate as much as wild type 

counterparts which might suggest that induction of VPAC2 during TCR activation is be needed 

for CD4 T cell activation-induced proliferation. To further this study, our future goal is to use 

highly selective VPAC2 antagonist to inhibit VPAC2 signaling to shed light into importance of 
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VPAC2 in CD4 T cell activation responses. It would also be informative to confirm this 

observation of diminished T cell hyporesponsiveness to TCR activation in vivo.  

Consistent with previous observations
143, 246

, VPAC2 deficient mice have decreased basal 

eosinophil numbers. These mice have been reported to be skewed towards a Th1/Th2 cytokine 

phenotype
244

 which also supports our observations as Th2 cytokines, such as IL-5 play a 

significant role in maintaining eosinophil homeostatic levels. Here, we further establish that the 

decreased levels of eosinophils could be explained by a defective production of eosinophils in 

the bone marrow. Our bone marrow cytokine-stimulated eosinophil differentiation studies 

revealed that VPAC2-deficient bone marrow progenitor cells lagged in total cells production as 

compared to wild type. However, there was no defect in the ability of the VPAC2-deficient bone 

marrow progenitor cells to differentiate into mature eosinophils as analyzed by flow cytometry.  

Collectively, here we demonstrated a homeostatic role of VPAC2 in immune cell 

production that was revealed through utilization of a VPAC2-deficient mouse strain. Mice 

lacking VPAC2 have fewer total immune cell numbers as compared to wild type counterparts. 

We identified VPAC2 as important for CD4 T cell TCR activation proliferative responses and 

maintenance of peripheral naïve T cell pool. Loss of VPAC2 results in decreased bone marrow 

production of eosinophils. Finally, it is important to point out that the results observed might 

have been contributed to by heightened VPAC1 signaling. We intend to repeat these experiments 

using VIP knockout and VPAC1 knockout mouse strains as well to determine the signaling axis 

involved. 
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CHAPTER FOUR: CHARACTERIZATION OF B LYMPHOCYTES IN RESPONSE 

TO HYALURONIC ACID IN A MURINE FUNGAL ALLERGIC ASTHMA MODEL 

 

Introduction 

According to world health organization, asthma is a prevalent disease of the lung that 

affects over 300 million people in the world
1
. It is characterized by a complex interplay of 

environmental factors, airway obstruction, bronchial hyperresponsiveness, inflammation, 

cytokines and chemokines, which results in narrowing of the airways
2-4

. Airway inflammation in 

asthma is often triggered by exposure to environmental allergens such as molds and arthropods
5, 

6
. Repeated exposures to allergens can result in asthma attacks which can be fatal

5
. Classical 

hallmarks of chronic airway inflammation of patients with severe or persistent asthma; include 

accumulation of activated eosinophils, neutrophils, lymphocytes, and extracellular matrix (ECM) 

components in the airways
7-9

. 

 Hyaluronan (HA) is a major component of ECM
10

. It is a negatively charged non-sulfated 

glycosaminoglycan (GAG) polymer consisting of repeating disaccharide subunits of N-acetyl 

glucosamine and glucuronic acid
10, 11

. Fibroblasts produce the vast majority of HA with smooth 

muscles producing HA to a lesser extent
12

.Under normal physiological conditions HA exists as a 

high-molecular-weight polymer (HMM HA), but can undergo a dynamic breakdown into several 

lower-molecular-weight (LMM HA) forms which are prevalent during inflammation
10, 13-15

. 

HMM HA has a molecular mass > 1X10
6
 Da and plays homeostatic roles in normal healthy 

tissues
14

, whereas LMM HA masses range from 0.8 to < 500 Da and accumulate during 

inflammatory responses
12, 16

. HMM HA can be broken down to LMM HA fragments by the 

activity of hyaluronidases and reactive oxygen species (ROS) 
10, 15, 17, 18

. Differences between 

HMM HA and LMM HA can be detected by immune cells through multiple receptors
19-22

. LMM 
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HA fragments possess the ability to activate inflammatory gene expression in epithelial cells, 

endothelial cells, fibroblasts, dendritic cells and macrophages
4, 23-27

 and therefore considered to 

be proinflammatory. LMM HA is associated with active inflammation and lack of its clearance 

leads to enhanced inflammation-induced pathology further highlighting the importance of HA in 

regulating inflammatory responses
7, 14, 15

. 

Conditions that result in tissue damage such as lung ozone damage
28

,  and chronic 

obstructive pulmonary diseases like chronic obstructive pulmonary disease (COPD)
29

, idiopathic 

arterial pulmonary hypertension
28, 30

, acute respiratory distress syndrome (ARDS)
16

 and allergic 

asthma
31-33

 are accompanied by increase in HA production
13

. In the lungs, HA can exist in a 

soluble form which can covalently bind to a variety of protein receptors to influence their 

functions
10

. HA-binding proteins are known as Hyaladherins 
34

. Hyaladherins include receptors 

for hyaluronan mediated motility (RHAMM), CD44, tumor necrosis factor-α-stimulated 

glycoprotein-6 (TSG-6), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), and toll-

like receptors (TLR)-2 and -4. Binding of HA to its receptors can result in proinflammatory or 

suppressive/pro-remodeling responses depending on the size of HA
7
. 

The role of T lymphocytes in asthma has been intensively investigated. T helper 2 (Th2) 

lymphocytes and Th2 cytokines are thought to drive the formation of allergic reactions such as 

activation of inflammatory cells including eosinophilia, mast cell accumulation/activation and 

airway remodeling in asthma
2, 35, 36

. Through co-stimulatory molecules, Th2 lymphocytes have 

been shown to engage allergen-specific B cells
37-40

. Activated Th2 secretion of IL-4 and IL-13 

promotes antibody class switching B cells to synthesize IgE antibodies
40

, a classical hallmark of 

asthma. However, less is known about the biology of B cells in allergic asthma, including the 

role, phenotype and mechanisms that govern this pathology. The functional roles of B 



96 
 

lymphocytes in allergic asthma are still controversial, with some studies showing that B 

lymphocytes play a minimum role
41, 42

, if any, in the development of asthma; while others have 

shown that IgE production by B lymphocytes is needed for the development of asthma
43-45

. 

These controversial results were recently attributed to differences in types of allergens used in 

murine asthma models, which resulted in non-identical inflammatory responses
40, 46

. By using a 

cocktail of commonly used allergens to induce asthma, mice lacking B lymphocytes had 

attenuated eosinophilic airway inflammation, decreased levels of Th2 cytokines and chemokines, 

which were accompanied by decreased airway hyperresponsiveness. Lack of B cells also led to 

decreased allergen-induced CD4
+
 T lymphocytes expansion in asthmatic lungs

40
, suggesting that 

B lymphocytes could be playing a key role in resolving eosinophilic airway inflammation and 

expansion of CD4
+
 T lymphocytes during asthma. 

TGF-β1 and IL 10 are important immunosuppressive cytokines that help resolve 

inflammation and promote tissue remodeling
47

 . These immunosuppressive cytokines were 

shown to be elevated in aspergillus fumigatus induced asthma
31

. Likewise, low molecular mass 

hyaluronic acid (LMM HA) levels are increased during aspergillus fumigatus induced asthma
31

. 

B lymphocytes express at least four HA-binding proteins; CD44, TLR-2, TLR-4 and RHAMM. 

During aspergillus fumigatus induced asthma, B lymphocytes from asthmatic lungs undergo a 

CD44-dependent chemotaxis and interleukin-10 (IL-10) secretion
48

. LMM HA elicited a CD44-

independent production of TGF-β1 by B lymphocytes from asthmatic lungs and spleens
48

. 

However, the authors of that study did not identify which HA receptor was required for HA-

induced B lymphocytes’ TGF-β1 production. Therefore, an HA receptor other than CD44, 

expressed on the surface of B lymphocytes must regulate TGF-β1 production.  
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The first aim of this study was to characterize which functional B lymphocyte LMM HA 

receptor mediated TGF-β1 production during asthma. We isolated lung and spleen B 

lymphocytes from non-asthmatic and asthmatic mice and compared the expression of TLR-2,-4 

and RHAMM on them. We found that B cells upregulate RHAMM during asthma, while both 

non-asthmatic and asthmatic spleen and lung B lymphocytes had no detectable expression of 

TLR2 and 4.  These results revealed a previously unknown characteristic of B lymphocytes in 

aspergillus fumigatus induced allergic asthma. From these results we concluded that RHAMM is 

most likely the required receptor for production of TGF-β1 in response to LMM HA binding by 

B lymphocytes during asthmatic.  

The second aim of this study was to determine if LMM HA treatment of resting or 

activated B cells can induce a regulatory B lymphocyte phenotype. We treated resting or LPS 

treated splenic B cells with LMM HA and compared the percentage of CD19
+
, CD5

+ 
and CD1d

hi
 

cells as compared to relevant controls. Our results indicated that LMM HA expands the 

percentage of regulatory B cell phenotype when cells were activated, but had no effect without 

activation. Together with RHAMM protein upregulation, it is enticing to speculate that activated 

B lymphocytes homing to the allergic lung via LMM HA is an anti-inflammatory suppressive 

response. These results provide a critical step towards characterizing the phenotype of B cells in 

allergic asthma.  

Materials and methods 

Ethics statement 

All experiments were performed in accordance with the Office of Laboratory Animal 

Welfare guidelines and were approved by the North Dakota State University Institutional Animal 

Care and Use Committee, Fargo, ND, USA. 
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Experimental animals 

C57BL/6 male and female mice (6–9 weeks of age) were purchased from the Jackson 

Laboratory (Bar Harbor, ME, USA) and bred in house. Animals were housed on Alpha-dri™ 

paper bedding (Shepherd Specialty Papers, Watertown, TN, USA) in micro filter-topped cages 

(Ancare, Bell-more, NY, USA) in a specific pathogen-free facility with ad libitum access to food 

and water.  

Antigen preparation and conidia culture 

Soluble A. fumigatus extract was purchased from Greer Laboratories (Lenoir, NC, USA) 

and fungal culture stock (strain NIH 5233) was purchased from American Type Culture 

Collection (Manassas, VA, USA). The A. fumigatus was reconstituted in 5 ml PBS, and 60 µl 

aliquots were stored at 4 °C until use. A single aliquot of A. fumigatus was grown on sabouraud 

dextrose agar (SDA) in a 25 cm
2
 cell culture flask for 8 days at 37 °C. All experiments that 

utilized A. fumigatus were conducted with prior approval of the institutional biological safety 

committee of North Dakota State University. 

Allergen sensitization and challenge by nose only inhalational model 

Animals were sensitized per Hogaboam’s published protocol
49

, with the exception that 

alum was used as the adjuvant. To elicit allergen sensitization, mice were sensitized globally 

with 10 µg of A. fumigatus antigen (Greer laboratories) in 0.1 ml normal saline (NS) mixed with 

0.1 ml of Imject Alum (Pierce, Rockford, IL, USA) and injected subcutaneously (0.1 ml) and 

intraperitoneally (0.1 ml). After two weeks, mice were given a series of three, weekly 20 µg 

doses of A. fumigatus antigen in 20 µl of normal saline intranasally (IN).  One week after the 

final IN inoculation, mice were exposed to A. fumigatus by inhalation of mature, airborne 

conidia. To do this, mice were anesthetized using a cocktail of ketamine (75 mg/kg) and xylazine 
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(25 mg/kg), and their noses were placed in the inoculation chamber where they inhaled mature A. 

fumigatus conidia for 10 minutes. The sensitization and challenge model is illustrated in Figure 

4-1. After 5 days of allergen challenge, animals were anesthetized with pentobarbital (150 

mg/kg) and tracheostomized for sample collection.   

 

Figure 4-1. Sensitization, challenge, and analysis schedule for the A. fumigatus murine 

model of allergic asthma. Naïve mice (N) groups received neither sensitization nor conidia 

challenges. Mice were sensitized to A. fumigatus extract via a series of injections and intranasal 

inoculations, after which they were exposed to 2, nose-only inhalation doses of live conidia 2 

weeks apart. Groups of animals were assessed 5 days after allergen challenge (2A3K)D5.  

 

Preparation of lung and spleen cell suspensions 

Mice were anesthetized using sodium pentobarbital (Butler, Columbus OH; 100 mg/kg of 

mouse body weight). Each experiment consisted of 5 mice per group. Lungs and spleens were 

removed from five animals to from which single cell suspensions were derived. For lung 

preparations, lungs were minced and subjected to collagenase IV (Sigma–Aldrich) digestion in 

DMEM at 37 °C for 1 hour with gentle agitation. Cells were then dispersed through a 10 ml 

syringe and passed through a 40 µm cell strainer (BD Biosciences, San Jose, CA, USA). The 

cells were washed with sterile PBS twice before they were subjected to ammonium chloride cell 

lysis buffer (ACLB) to remove red blood cells (RBCs). To prepare a single cell suspension of 
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splenocytes, spleens were perfused with DMEM. Spleen cells were washed with sterile PBS and 

treated with ACLB to lyse red blood cells. Lung and spleen cell preparations were counted and 

resuspended in PBS with 1% BSA (Sigma Aldrich) to a final concentration of 1 × 10
7
cells/ml. 

Negative isolation of highly purified B lymphocytes 

For the purification of B lymphocytes, spleen and pooled total lung cells were negatively 

isolated using EasySep™ Mouse B Cell Isolation Kit (Stem Cell technologies, Vancouver, CA). 

Total splenocytes including RBCs were prepared at a concentration of 1 x 10
8
 cells/mL in 

phosphate-buffered saline (PBS) or Hank’s balanced salt solution (HBSS) plus 2% fetal bovine 

serum (FBS). Cells were placed in a 5 mL (12 x 75 mm) polystyrene tube to properly fit into the 

EasySep™ Magnet. Normal Rat Serum and EasySep™ Mouse B lymphocytes Isolation Cocktail 

were added at 50 μl /mL of cell suspension, mixed well then incubated at room temperature (15 - 

25 °C) for 15 minutes. Vortexed EasySep™ Streptavidin RapidSpheres™ 50001 were added at 

75 μL/mL of cell suspension. Thoroughly mixed cells were then incubated at room temperature 

(15 - 25°C) for 3 minutes and diluted up to 2.5 mL total volume with more suspension medium. 

Cells were gently pipetted up and down 2 - 3 times and placed (without cap) into the magnet. 

Samples were incubated at room temperature (15 - 25°C) for 3 minutes and inverted to pour off 

supanatant (B lymphocytes) into a polystyrene tube. The magnetically labeled, unwanted cells 

remained bound inside the original tube held by the magnetic field of the EasySep™ Magnet.  To 

determine percent purity, 1.0 x10
6
 post-enrichment B lymphocytes cells were suspended in 200 

µL 1XPBS/0.5% BSA and incubated with 1:200 (0.25 µg) FITC conjugated rabbit anti-mouse 

CD19 (clone MB19-1) or APC conjugated rabbit anti-mouse B220 (clone RA3-6B2)  antibodies 

(eBioscience, San Diego, CA) for 30 min at 4
◦
C in the dark. Cells were washed twice with 4 ml 

PBS/ 0.5% BSA, centrifuged for 10 min at 300xg at 4 
◦
C and resuspended in 200 µl PBS/0.5% 
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BSA. Flow Cytometry was performed on an Accuri 6 flow cytometer (Ann Arbor, MI) and 

percent purity determined. CD19 lymphocyte purification consistently yielded ≥95% mouse 

CD19+ cells. B lymphocytes yield was determined as described previously using a 

hemocytometer.  

Determination of Toll-Like Receptor (TLR)-2 and TLR-4 receptor expression on B 

lymphocytes 

Individual mouse total spleen and lung single cell suspensions from either naïve or 

challenged groups’ surface Fc receptors were blocked with 1 µg of anti-mouse CD16/CD32 

antibodies per 10
6
 cells (eBioscience, San Diego, CA, USA) for 10 min on ice. The following 

Abs were used for phenotypic characterization of B lymphocytes using flow cytometry: FITC-

anti-TLR-2 (clone: 6C2), PE-anti-TLR-4 (clone: UT41), and APC conjugated anti-CD19 

monoclonal antibodies (eBioscience). Samples were stained with labeled Abs (0.5 µg/million 

cells) for 30 minutes in the dark at 4°C and then washed twice with 1X PBS 1% BSA before 

analyzing using an Accuri C6 flow cytometer (Accuri Cytometers, Ann Arbor, MI, USA). 

TLR2/4 expression was determined by first gating on CD19+ cells, followed by TLR2/4 cell 

surface expression compared between naïve and challenged groups. The data was analyzed using 

the Accuri 6 software.  

Determination of RHAMM expression level  

RHAMM expression between naïve and challenged splenic and lung B lymphocytes was 

determined at the mRNA and protein levels. The steady-state mRNA levels of RHAMM was 

compared between highly purified B lymphocytes from naïve and challenged mice lungs or 

spleens by SYBR-green qRT-PCR. Briefly, total RNA was isolated, first strand cDNA 

synthesized and relative steady-state mRNA levels for Rhamm determined using sense: 5’-GCG 
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TCA GAA TGT CCT TTC CTA-3’ and antisense: 5-GAC ACT GGT CCT TTA GTT GCT-3’ 

primers normalized to β-actin. For RHAMM protein expression determination, highly purified (≥ 

95%) splenic or lung CD19+ cells (B lymphocytes) were isolated and 1.0 X 10
7
 cells were lysed 

in 250 µl  of radio-immuno precipitation assay (RIPA: 20 mM Tris pH 7.5, 150 mM NaCl, 1% 

nonidet P-40, 0.5% sodium deoxycholate, 1 mM EDTA, 0.1% SDS) containing 1:100 diluted 

Halt protease and phosphatase inhibitor cocktail (100X), catalog #78440 (life technologies, 

Grand Island, NY, USA). Protein concentration was determined by Bradford assay kit catalog # 

500-0001 (BIO-RAD, Hercules, CA, USA) following the manufacturer’s instructions. After 

which, 10 µg of protein was resolved over a 12% SDS-PAGE gel followed by protein transfer to 

a nitrocellulose membrane. Nitrocellulose membranes were incubated at room temperature for at 

least 4 hours in 5% skim milk/Tris-buffered saline/0.1% NP-40 to block nonspecific protein 

binding sites. Membranes were then incubated overnight at 4°C with Tris-buffered saline/1% 

skim milk/ 0.1% NP-40 containing 1:2000 diluted anti-RHAMM goat polyclonal antibodies (E-

19) (Santa Cruz, Dallas, Texas, USA).  Membranes were washed four times with Tris-buffered 

saline/0.1% NP-40 for 15 minutes each at room temperature followed by a 2 hour incubation 

with 1:5000 diluted horseradish peroxidase–coupled anti-rabbit secondary Ab. Next, membranes 

were washed six times with Tris-buffered saline/0.1% NP-40 at room temperature for 15 minutes 

each followed by protein detection with ECL Plus kit (Amersham/GE Healthcare) according to 

the manufacturer’s instructions. Membranes were developed using an X-ray developer and signal 

intensity determined using chemigenius2 imager (Syngene, Frederick, MD, USA). 
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CD19
+
CD5

+
CD1D

hi
 induction by low molecular mass hyaluronic acid (LMM HA) on 

resting or LPS activated mouse splenic B lymphocytes. 

To assess the capacity of LMM HA to induce a regulatory B cell phenotype, total 

splenocytes were either treated with or without 10 µg/ml lipopolysaccharide (LPS) plus or minus 

LMM HA as indicated for 48 hours. They were then cultured for 48 hours before being analyzed 

by flow cytometry for regulatory B cell markers. Briefly, surface Fc receptors were blocked with 

1 µg of anti-mouse CD16/CD32 antibodies per 10
6
 cells (eBioscience, San Diego, CA, USA) for 

10 min on ice. Cells were washed twice with ice cold 1X PBS and then incubated with FITC-

anti-CD1d, PE-anti-CD5 and APC-anti-CD19 (clone MB19-1) monoclonal antibodies or with 

their respective isotype controls (all from eBioscience). Samples were stained with labeled Abs 

(0.5 µg/million cells) for 30 minutes in the dark at 4°C and then washed twice with 1X PBS 1% 

BSA before analyzing using an Accuri C6 flow cytometer (Accuri Cytometers, Ann Arbor, MI, 

USA). For analysis, cells were first gated on lymphocyte gates based on forward and side scatter. 

CD19+ cells were gated for CD5+CD1d
hi

 identification. 

Statistical analysis 

Allergic C57BL/6 wild type animals were compared to their respective naïve controls 

after 5 days post challenge.  B cells cultured in the presence of LPS and LMM HA were 

compared to control B cells. Results were expressed as mean ± SEM. Data were evaluated using 

an unpaired, two-tailed student t test to determine significance differences. P-value of < 0.05 was 

considered significant when treatments were compared to their respective controls.  
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Results 

Determination of TLR-2 and TLR-4 expression on naïve and allergic mice spleen and 

lung B lymphocytes 

We previously discovered that during A. fumigatus conidia induced allergy, IL-10 and 

TGF-β1 serum levels are increased. In vitro studies also showed that B lymphocytes isolated 

from the spleens and lungs of allergic mice secreted IL-10 and TGF-β1 in response to LMM HA. 

IL-10 production was CD44-dependent whereas the hyaluronic acid binding receptor responsible 

for TGF-β1 secretion in the A. fumigatus conidia-induced allergic mouse B lymphocytes was 

unknown
48

. To identify HA binding receptor(s) needed for TGF-β1 secretion by B lymphocytes 

in response to LMM HA binding, we compared the expression of TLR-2 and TLR-4 on B 

lymphocytes on naïve and allergic mice spleens and lungs. To determine the changes in the TLR-

2/4 expression in the lung and spleen B lymphocytes population after A. fumigatus conidia 

challenge, we prepared single cell suspensions of lung and spleen cells from naïve and allergic 

mice. We found that CD19
+
cells increased at day 5 after two conidia challenges as compared to 

non-asthmatic naïve controls in both the lungs and spleens (Figure 4-2). We then analyzed the B 

lymphocyte population (CD19
+
) for TLR2 and TLR4 expression by flow cytometry. We did not 

detect any TLR-2 or TLR-4 expressing CD19
+
 spleen and lung B cells from naïve or allergic 

mice as determined by flow cytometry (Figure 4-2). This data suggests that TLR-2 or TLR-4 

receptors are not expressed on B lymphocytes during non-asthmatic or A. fumigatus-induced 

mouse allergic asthma.  
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Figure 4-2. Effect of inhalation of A. fumigatus conidia on inflammatory CD19+TLR-

2+TLR-4
+
 B cells in the allergic lung and spleen. Single cell suspensions of lung and spleen of 

naïve and allergic animals were analyzed by flow cytometer for percentage of total CD19
+
TLR2

+
 

and CD19
+
TLR4

+
 B cells. Lymphocytes were gated based on forward and side scatter. Naïve and 

allergic mice spleen and lung CD19
+
TLR2

+
 and CD19

+
TLR4

+
 expression in the lymphocyte gate 

was then determined using flow cytometry. Dot plot data are a representative of 3 independent 

experiments with 4-5 mice per group. 

 

RHAMM expression is upregulated in splenic and lung B lymphocytes isolated from 

allergic mice. 

Due to lack of TLR 2/4 expression and upregulation in asthmatic B lymphocytes, we next 

focused on RHAMM expression to identify the HA receptor needed for HA-induced B 

lymphocyte TGF-β1 secretion. Expression of RHAMM mRNA and protein in highly purified 

allergic mice spleen and lung B lymphocytes was compared to non-asthmatic counterparts. 

Highly pure spleen and lung B lymphocytes were purified (materials and methods) and total 
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RNA isolated followed by first strand cDNA synthesis. Relative steady-state mRNA levels were 

then determined by SYBR green qRT-PCR assay normalized to β-Actin (materials and methods). 

Comparison between naïve and allergic B cells showed that during A. fumigatus-induced allergic 

asthma, there was approximately 8-and 6-fold increase of RHAMM relative steady-state mRNA 

in lung and splenic B cells as compared to controls respectively (Figure 4-3A and B). RHAMM 

protein level was also increased in splenic B cells from allergic compared to control mice 

(Figure 4-3C). From these results, we concluded that B lymphocytes express RHAMM 

endogenously, and RHAMM expression is elevated at both the mRNA and protein levels during 

asthma as compared to non-asthmatic conditions.  

 

 

Figure 4-3. Upregulation of RHAMM mRNA and protein in A. fumigatus conidia-induced 

allergic mouse B lymphocytes. (A-C) Purified lung and spleen B lymphocytes from naïve and 

allergic animals were analyzed for (A-B) RHAMM mRNA and (C) protein expression levels 

(M&M). Representative analysis for RHAMM protein expression is shown in (C). Data is 

presented as means ± SEM for mRNA and protein normalized to β-actin from 3 independent 

experiments comprising of 4-5 mice per group. **P≤0.05 
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LMM HA induces a regulatory B lymphocyte phenotype in activated, but not naive 

splenic B lymphocytes 

IL-10 and TGF-β1 are immunosuppressive cytokines. A subset of B cells known as 

regulatory B cells can produce IL-10
50

. In our A. fumigatus-induced allergic asthma murine 

model, both IL-10 and TGF-β1 levels were elevated, which coincided with peak recruitment of B 

cells in the lungs and spleens of allergic mice
48

. In parallel in vitro studies, we further discovered 

that LMM HA treatment of splenic B cells from allergic mice and not their naïve control 

counterparts resulted in secretion of both IL-10 and TGF-β1
48

 suggesting an induction of a 

regulatory B cell phenotype. A phenotypically unique CD19
+
CD5

+
Cd1d

hi
 subset of regulatory B 

cells are capable of producing both IL-10 and TGF-β1 cytokines in response to inflammatory 

conditions
2, 51-53

. In this study, we investigated whether LMM HA can induce the expansion of a 

phenotypically unique CD19
+
CD5

+
Cd1d

hi
 subset of regulatory B cells in resting and LPS 

activated splenic B cells. Highly purified splenic B cells were stimulated with or without 

10ng/ml LPS subsequently with different concentrations of LMM HA. As shown in Figure 4-4, 

LMM HA stimulated the expansion of CD19
+
CD5

+
CD1d

hi
 B cells in LPS activated (Figure 4-

4B), but not resting (Figure 4-4A) splenic B cells. This data suggests that LMM HA and B 

lymphocyte interactions may be involved in induction of IL-10 and TGF-β1 production by a 

subset of regulatory B lymphocytes during chronic allergic asthma.  
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Figure 4-4. Effects of LMM HA treatment on resting and activated splenic regulatory B 

cell phenotype.  Highly purified B lymphocytes were analysed by flow cytometry after 

treatments (A) Percentage of CD5+Cd1d
hi

 cells within resting CD19+ B cells after treatment 

with or without LMM HA. Highly purified splenic CD19+ B cells (resting) were cultured with or 

without LMM HA for 24 hours. (B) Effects of LMM HA on expansion of CD19+CD5+CD1dhi 

LPS activated total splenocytes. Total splenocytes were cultured with or without LPS, plus or 

minus LMM HA for 24 hours and percent CD5+Cd1d
hi

 cells within CD19+ cells analyzed by 

flow cytometry. Figures for representative of 2 independent experiments with 3 replicates each. 

Means ± SEM values are graphed for each study. *p-value ≤0.05 was considered significant 

when compared to the respective controls. NS means not statistically significant. 
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Discussion  

In the current study, we aimed to determine which HA binding receptor mediated TGF-

β1 upregulation and secretion that might be contributing to a pro-fibrotic remodeling of lung 

environment following a chronic allergic asthma. CD44 receptor is expressed on B lymphocytes 

and bind LMM HA to induce chemotaxis and IL-10 secretion by these cells. However, the LMM 

HA receptor required for TGF-β1 upregulation and secretion by B lymphocytes in the A. 

fumigatus-induced allergic asthma lungs was unknown
54

. We analyzed RHAMM, TLR2 and 

TLR4 expression on B lymphocytes during A. fumigatus-induced chronic murine allergic 

asthma. We showed that RHAMM mRNA expression was increased in both splenic and lung B 

lymphocytes from chronically A. fumigatus-induced allergic mice as compared to their naïve 

controls. RHAMM protein was elevated in splenic B cells as well supporting the mRNA changes 

observed. There was no detectable toll-like receptors 2 and 4 expression on splenic and lung B 

lymphocytes from either allergic or non-allergic mice, but lung RHAMM protein was not 

measured due to low cell yields. In addition, we showed that treatment of activated, but not 

resting splenic B lymphocytes with LMM HA results in an expansion of a subset of B 

lymphocytes (CD19
+
CD5

+
CD1d

hi
) known to be immunosuppressive

55
. From these data, we 

concluded that RHAMM is the most likely HA binding receptor mediating LMM HA induced 

TGF-β1 elevation and secretion in B lymphocytes during allergic asthma.  

 B lymphocytes are important inflammatory cells associated with asthma that exacerbate 

granulocytic inflammation during asthma
54

. In agreement with other studies
56, 57

, we found that B 

lymphocyte production and recruitment to allergic lung increases during asthma. Allergic lung 

recruited B cells are important for IgE secretion and airway hyperreactivity during asthma
58

. 

However, local inflammatory environment and the extracellular matrix in particular are 
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underappreciated partners of the adaptive immune response
13

. During allergic asthma, the 

production of Hyaluronic acid increases
32

. HMM HA gets broken down into its pro-

inflammatory smaller size fragments, LMM HA. LMM HA recruits and activates macrophages 

at sites of tissue damage
10, 59

.  LMM HA, and not HMM HA is chemotactic to B lymphocytes 

from allergic asthma mice in a CD44-dependent mechanism
48

.  The increase in B lymphocytes to 

the lungs has been correlated to serum LMM HA increase during asthma. In addition, these cells 

respond to LMM HA by producing TGF-β1 through an unknown receptor that is not CD44. 

Because RHAMM, TLR2 and 4 are the remaining major HA-binding receptors currently known 

to be expressed on B cells
17, 60

, we compared their expression on naïve and allergic mice B 

lymphocytes. Analysis of TLR2 and 4 indicated that they were not modulated on B lymphocytes 

at the conditions we investigated. Our study was the first to show that lung and spleen B cells do 

not express TLR2 and 4 in normal or asthmatic mice. In contrast to B lymphocytes, alveolar 

macrophages express both TLR 2 and 4 in allergen-induced asthma
61

.  

Analysis of RHAMM expressed on naïve and allergic mice B lymphocytes indicated an 

increase in a 90-95-KDa protein species comparable to that described on malignant B cells
62

 

during allergic asthma. Since this is the only other HA binding protein other than CD44 

expressed on B lymphocytes during A. fumigatus-induced allergic asthma, these results suggests 

that RHAMM is the required HA binding receptor for production of TGF-β1 by B lymphocytes 

upon binding LMM HA in our allergic asthma model. Hence, our results suggest a “division of 

labor” for the HA-binding receptors during asthma. CD44 is needed for B lymphocyte 

recruitment and IL-10 production, whereas RHAMM is important in HA-induced TGF-β1 

secretion. Interestingly, in fibroblasts, TGF-β stimulates RHAMM and hyaluronic acid 

synthesis
63

. However, whether this is true for B lymphocytes also was not studied here. More 
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importantly, RHAMM can compensate for the loss of CD44 in binding hyaluronic acid, 

increasing leukocyte migration, up-regulating genes involved with inflammation and 

exacerbating collagen-induced arthritis, a condition similar to asthma in terms of immune cell 

inflammation
64

. Understanding whether this compensation is possible in B lymphocytes in 

asthmatic patients will advance our understanding of the role of B cells during asthma.  

 Once stimulated, immune responses need to be regulated to prevent the responding 

effector cells from causing detrimental effects. IL-10 and TGF-β1 are key immunoregulatory 

cytokines produced during allergic asthma
48

. The secreted IL-10 and TGF-β1 during allergic 

asthma can regulate Th2 mediated inflammatory responses and promote tissue repair
52, 55, 65

. A 

very rare subset of splenic B lymphocytes characterized by CD19
+
CD5

+
CD1d

hi
 (B10)

  
surface 

markers make up only about 1-2% of splenic B cells and have been shown to produce large 

amounts of IL-10 and TGF-β1
55

. Toll-like receptor ligation by LPS can induce regulatory B 

cells
66

 to induce tolerance and downregulate inflammatory reactions in conditions such as asthma 

and arthritis. In agreement with this study, we showed that TLR ligation by LPS induced a 

regulatory B cell phenotype. Importantly, a major contribution of this research study was the 

discovery that LMM HA treatment of LPS activated B lymphocytes increased the expansion of 

these rare B10 cells. This expansion required that the B lymphocytes be in an activated state such 

as that seen during allergic asthma conditions and was LMM HA concentration independent. 

This data suggested that LMM HA and B lymphocytes interactions may be involved in secretion 

of IL-10 and TGF-β1 secretion by regulatory B lymphocytes during chronic asthma. Regulatory 

B lymphocytes are important in resolving inflammation as mice lacking B lymphocytes have 

exacerbated inflammation and tissue damage in autoimmune conditions
50

. Identifying regulatory 

B lymphocytes in our murine allergic asthma model could explain the cell source of IL-10 and 
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TGF-β1. Whether RHAMM signaling is required for regulatory B lymphocytes induction and 

expansion is still unknown.  

 In conclusion, the roles of B lymphocytes in allergic asthma other than antibodies 

production are starting to be appreciation. Mice lacking B lymphocytes have exacerbated 

inflammatory responses
50

. Therefore, our identification of RHAMM as the only non-CD44 

receptor expressed by B lymphocytes during allergic asthma provides an opportunity for 

development of drug therapies that target B lymphocytes during asthma. TGF-β1 production is 

important for immunosuppression and tissue remodeling; and is secreted by regulatory B cells. 

Even though LMM HA is generally regarded as a pro-inflammatory ECM, our results suggest 

that it could also be playing a key role in resolving inflammation by inducing the expansion and 

activity of a regulatory B cell subsets. Increase in soluble LMM HA in asthmatic lungs and 

serum could provide a “danger signal” hence expanding and promoting anti-inflammatory 

phenotypes to resolve inflammation and promote tissue repair. 
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CHAPTER FIVE: OVERALL DISCUSSION, FUTURE STUDIES AND 

CONCLUSIONS 

Effective immune surveillance by lymphocytes requires that they be able to continuously 

circulate from lymphoid organs back into the blood stream. Peripheral lymphoid organs provide 

regions where close interactions between antigen presenting cells and lymphocytes are 

maximized. Multiple ligand-receptor interactions are employed by the immune system to 

regulate migration into lymphoid tissues under homeostatic conditions or in response to 

infections and inflammation. VIP is a potent chemoattractant to naïve CD4 T cells to the gut. 

Ottaway discovered that VIP signaling was required for efficient migration of these cells into the 

GALT.  This research expanded the knowledgebase regarding molecular mechanisms required 

for VIP-induced chemotaxis of CD4 T cells. There were three main findings from the first study 

presented here: 1) VIP upregulated the mRNA levels of a known chemotactic pathway, centering 

on EGFR signaling. This upregulation was found to be rapid, transient and coordinated. 2) We 

found that VIP-induced upregulation of all the six putative-chemotactic EGFR pathway genes 

was sensitive to a potent EGFR kinase inhibitor, Tyrphostin AG-1478. 3) VIP-induced CD4 T 

cell chemotaxis was sensitive to Tyrphostin AG-1478 as well.  

 The determination of the molecular mechanism of VIP-induced chemotactic activity is 

significant because VIP is the highest secreted neuropeptide in the gut. 70% of immune cells 

reside in the mucosal tissues of the GALT and continued understanding of factors orchestrating 

their migration there is required to understand their biology. These studies have implications in 

potential therapeutic developments for the treatment of intestinal diseases such as intestinal 

bowel disease and colitis. Other elements that will help elucidating the molecular basis of VIP-

induced CD4 T cell movement is the investigation of EGFR signaling requirement  in expression 
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of adhesion molecules after VIP treatments. However, many unanswered questions still remain 

regarding the signaling mechanism orchestrating VIP-induced CD4 T cell recruitment. The 

studies done here were in vitro, which have a chance of not being replicated in vivo. To 

investigate this, our lab has secured, a VIP knockout mouse strain to begin investigating the 

levels of recruited CD4 T cells to the GALT. It would also be interesting to investigate the same 

studies in vitro and in vivo using EGFR knockout mice. If our findings are accurate, we would 

expect to find that VIP and EGFR knockouts have fewer CD4 T cells in the GALT and prone to 

intestinal infections. Understanding which VIP receptor is responsible for VIP-induced T cell 

migration is also one of our lab’s future goals.   

 The immune system is under homeostatic control. It responds to changes in the 

environment to maintain homeostasis. In doing so, the immune system tends to maintain a steady 

near constant number of immune cells throughout the adult life of an individual. The concept of 

homeostasis implies that the production and elimination of cells through death remains relatively 

equal. In case of a perturbation, the number of lymphocytes may change, but once the 

perturbation is eliminated, cell numbers return to re-establish immune homeostasis. However, it 

is noteworthy to mention that comparing two similar animals with different number of a subset 

of immune cells doesn’t necessarily mean that one of them has a perturbed homeostasis
1, 2

. The 

molecular mechanisms regulating immune system homeostasis are not well known. VIP 

receptor, VPAC2 is widely expressed by immune cells
3, 4

 and has been reported to be involved in 

a wide array of immunological functions including, immune and inflammatory responses
3-5

, 

neuromuscular transmission, metabolic rhythmic activities
6
 as well as cognition and behavior

7
. 

However, VPAC2 signaling functions in immune homeostasis has never been reported. Using a 

VPAC2 knockout mouse strain, we demonstrated that VPAC2 is required to maintain immune 
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homeostasis. Mice deficient in VPAC2 had fewer total splenocytes, thymocytes and leukocytes 

as compared to their wild type age, sex and weighed matched counterparts. However, the 

expected ratios of B and T cell splenocytes were not affected. This indicates that VPAC2 

signaling is required to maintain normal production of immune cells. But, because the ratios 

were not affected, lineage commitment immune cell generation in the bone marrow is not 

affected by lack of VPAC2.  

Since immune homeostasis is a product of production minus cell death, we determined 

the rate of survival. We showed that VPAC2 cells survived longer than wild type cells. This 

observation disproved our hypothesis that VPAC2 deficient immune cells would die faster 

resulting in fewer peripheral cell numbers, thus explaining the lower numbers seen in mutants as 

compared to wild types. 

The VPAC2 knockouts exhibited lower levels of eosinophils, which could possibly be 

due to dysregulated eosinophil generation in the bone marrow. We would like to investigate this 

further by comparing IL-5 levels in VPAC2 knockouts. IL-5 is key to inducing eosinophil 

generation. Furthermore, VPAC2 agonists have been shown to stimulate an potent IL-5 secreting 

cell type called type 2 innate-like lymphoid cells (ILC2), which in turn regulated eosinophil 

homeostasis
5
. By comparing percent ILC2 cells and IL-5 levels in VPAC2 knockouts to wild 

types, we will be able to better understand why the mutants have lower levels of eosinophils. We 

hypothesize that VPAC2 knockouts have lower levels of ILC2 cells resulting in lower IL-5 

levels. Further research is necessary to investigate homeostatic regulation by VIP and VPAC1 as 

well. We will be repeating these studies and expanding on them to determine the VIP signaling 

axis controlling immune cell homeostasis. 
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 We expanded our investigation of VPAC2 immune homeostatic role into hematopoiesis. 

We found that differentiation of VPAC2 deficient bone marrow cells into eosinophil lineage 

lagged the pace of wild type age, weight and sex-matched counterparts. VIP is secreted in the 

bone marrow where it’s been shown to inhibit VPAC2 is also expressed
8
. We hypothesize that 

the late proliferative burst seen at the end of eosinophil differentiation in the knockouts is related 

to late down regulation of VPAC1 expression in VPAC2 knockout mice as compared to wild 

types. This would be reminiscent of the down regulation of VPAC1 in the thymus where a 

switch is seen in VPAC1:VPAC2 ratio expression in DN thymocytes
9
.  Therefore, our data 

suggests that VPAC2 signaling is needed for normal bone marrow cell differentiation. One 

weakness to this research is the drawbacks associated with using knockout strains. Knockout 

strains generally do not have all the components of normal development. VPAC2 knockout mice 

have abnormal reproduction. Male VPAC2 knockouts have been shown to have fewer numbers 

of sperms as they get older
6
 and in our hands produced very few litters. These mice also do not 

gain as much weight as the wild types after around 15 weeks
10

. We utilized mice below the age 

of 15 weeks for our studies. We also limited any variables by age and sex matching all the mice 

we used. All mice were also weighed prior to studies carried out and therefore difference in 

results presented could not be explained by either age, sex or weights of the mice. Our future 

studies will be to compare basal cytokine levels between VPAC2 knockouts and wild type mice. 

Cytokines such as IL-7
11, 12

, IL-2
13

 and IL-15
12, 14

 have been shown to control immune cell 

homeostasis. We predict that VPAC2 knockout mice will have lower levels of one or all of these 

homeostatic cytokines.  

 Using experimental animal systems disease models offers the benefit of the ability to 

recreate similar human disease environment like during asthma. Using a fungus-induced asthma 
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model developed by the Schuh research group, we were able to study the expression profile of 

hyaluronic acid receptors on B cells from allergic asthma as compared to those from naïve mice. 

We found that B cells from allergic mice increased their expression of RHAMM as compared to 

non-asthmatic mice B cells. RHAMM is a HA-binding protein whose role in B cells is not well 

understood. We hypothesize that RHAMM activity is required for LMM HA induced TGF-β1 

secretion.  

 Another important finding from our research was the discovery that LMM HA induced a 

regulatory B (B10) cell phenotype when B cells were in activated state. Discovery of existence 

of regulatory B cells is very recent and factors that are responsible for their expansion and 

induction are not well known. In sum, our data support the conclusion that B lymphocytes 

express CD44 and RHAMM as the only major HA-binding proteins. RHAMM expression is 

increased in B lymphocytes during chronic allergic asthma. RHAMM is potentially the receptor 

required for TGF-B1 secretion by B lymphocytes in asthmatic patients. Cross-linking of HA-

receptors by LMM HA and potentially other ECM components promote regulatory B 

lymphocyte expansion and persistence. We propose a two-step model, in which the initial 

activation of regulatory B (B10) cells through the LPS-TLR signaling is sufficient to induce a 

B10 phenotype, followed by a requirement for a costimulatory signal to support the regulatory B 

lymphocyte phenotype expansion and persistence. This latter step can be achieved by presence of 

LMM HA, such that in the absence of LMM HA there is no expansion of regulatory B 

lymphocytes. This pathway can contribute to the support of peripheral immune tolerance as mice 

lacking regulatory B cells develop autoimmune disorders. This mechanism may be one way in 

which viable regulatory B10 populations expand and persist in injured tissues like asthmatic 

lungs to resolve inflammatory responses and maintain peripheral tissue tolerance. Even though 
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LMM HA is generally regarded as a pro-inflammatory ECM, our results suggest that it could 

also be playing a key role in resolving inflammation by inducing the expansion and activity of a 

regulatory B cell subset. We propose that the presence of soluble LMM HA in asthmatic lungs 

conveys an inflammatory and tissue damage signal which functions as a danger signal to expand 

and promote the responses of regulatory B cells promoting immune homeostasis and tissue 

repair. Therefore, showing that LMM HA expands this subset of B cells is very excited to the 

asthma community as a potential advancement towards development of immunotherapeutic 

strategies against asthma and other autoimmune diseases. LMM HA expression is increased in 

allergic mice lungs. Our next goal is to identify the correlation between LMM HA levels and 

expansion of regulatory B cells during asthma. Therefore, our findings further illustrate the role 

of B cells in allergic asthma. 

In sum, our main aim for the studies carried out here were to further our understanding of 

immune cell biology and responses in normal and asthmatic conditions. We revealed that VIP 

beckons T cells by igniting a known chemotactic pathway centered on EGFR signaling. We have 

also identified a previously unknown role VPAC2 in immune cells homeostasis. We showed that 

VPAC2 signaling is necessary to have a normal immune homeostasis. Mice lacking VPAC2 

appear to be lymphopenic and have less eosinophils. Even though most in the VIP/VPAC2 field 

have generally regarded its biological functions as being generally limited to modulating 

activated immune cells, our data suggest otherwise.  We show that play important biological 

roles in quiescent immune cells by controlling chemotaxis and homeostasis. In conclusion, by 

characterizing B cell RHAMM expression during asthma and collecting data indicating that 

LMM HA expands/induces regulatory B cells, we have provided a platform that can be expanded 
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on to better understand the roles of B cells during asthma with the goal of developing of 

therapeutic interventions against asthma in the future.  
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