# EVIDENCE OF CLIMATE NICHE CREATION IN THE NORTHERN GREAT PLAINS: 

THE HISTORY OF INVASION, POPULATION GENETICS, COMPETITIVE EFFECT, AND

LONG-TERM TRENDS OF POA PRATENSIS L.

A Dissertation<br>Submitted to the Graduate Faculty of the<br>North Dakota State University<br>of Agriculture and Applied Science

By
Lauren Alexsandra Dennhardt

In Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

Major Department:
Biological Sciences

February 2016

Fargo, North Dakota

# North Dakota State University Graduate School 

Title
Evidence of climate niche creation in the northern Great Plains: The history of invasion, population genetics, competitive effect, and long-term trends of Poa pratensis L.
$\qquad$
By
Lauren Alexsandra Dennhardt

The Supervisory Committee certifies that this disquisition complies with North Dakota State University's regulations and meets the accepted standards for the degree of

## DOCTOR OF PHILOSOPHY

## SUPERVISORY COMMITTEE:

Dr. Steven Travers
Chair
Dr. Gary Clambey
Dr. Julia Bowsher
Dr. Edward DeKeyser

Approved:
$\frac{2 / 23 / 16}{\text { Date }} \quad$ Dr. Wendy Reed


#### Abstract

Understanding the mechanisms of invasion is critical in order to control an invasive species. Poa pratensis L. (Kentucky bluegrass) is an invasive species that has been present in the northern Great Plains (NGP) for over 100 years, but has become a dominant species in the mixed grass region recently. My dissertation seeks to answer one critical question-why has $P$. pratensis become such a successful invasive species in the NGP?

I first asked if the invasion was caused by adaptation and/or propagule pressure. I screened the genetic fingerprint of invasive $P$. pratensis in the NGP along with measuring the genomic content of wild plants and compared them to common cultivars. I found virtually no overlap between lawn cultivars and invasive $P$. pratensis populations. This was further supported by a narrow range of genomic content in wild individuals compared to the lawn cultivars. I also found no evidence of geographical patterning which is consistent with the hypothesis that local adaptation is not pervasive in $P$. pratensis.

I then asked whether $P$. pratensis was a strong competitor compared to dominant plant species native to the tallgrass prairie. I studied competitive effect between Poa pratensis, Nassella viridula, Pascopyrum smithii, and Bouteloua gracilis through a species-pair competition experiment. Based on the relative interaction indices, $P$. smithii and $P$. pratensis were competitive against B. gracilis, and $P$. smithii was competitive against $N$. viridula.

Additionally, P. pratensis was facilitated by all three species in the experiment. This study indicates that $P$. pratensis may be somewhat competitive.

Finally, I asked whether the increase in the frequency of $P$. pratensis in the NGP may be attributed to environmental factors. In order to understand long-term correlations between $P$. pratensis invasion and environmental variables, I resampled plots that were previously sampled


for species composition in 1978, 1979, and 1999. I found that $P$. pratensis levels did increase across plots and was corrrelated with higher levels of precipitation. My research indicates that increased precipitation in the NGP as a result of climate change is correlated with $P$. pratensis invasion in the NGP.

## ACKNOWLEDGEMENTS

A special thank you to my wonderful adviser Steven Travers for guiding me through the research process and taking me on as his first PhD student. He has been a patient, knowledgeable, and caring mentor. His mentoring has been an extremely positive influence on my life and career. I cannot thank him enough.

Thank you to my committee members. Thank you to Shawn DeKeyser who helped write the grant that funded me through graduate school, provided encouragement along the way, and co-authored two manuscripts with me. Thank you to Gary Clambey for always pointing out the historical record and teaching me the beautiful and remarkable aspects of ecology. Thank you to Julia Bowsher for her big picture thinking, joyous laugh, and advising my husband for the last five years.

Thank you to my colleagues who kept this whole process fun. Thank you to Shane Braegleman and Karina Montero for the help with statistics and advice on writing. Thank you to the rest of writing club-Katie Preston, Tara Slominski, Kimi Booth, and Raph Rouyate. Thank you to Madeline Haas, Sarah Tennefos, Andrew Montgomery, Gaya Shivega, and Katie Black for assistance with greenhouse, field, and lab work.

Thank you to my friends and colleagues from the Kentucky bluegrass working group and the United States Fish and Wildlife Service (FWS-R6-POAPRATENSISGENETICS). They have helped with funding, knowledge, and enthusiasm for Kentucky bluegrass research. A special thank you to Cami Dixon and John Hendrickson for their financial and technical support. Thank you to the Department of Biological Sciences for the summer financial support and teaching opportunities, the College of Natural Resource Management for summer funding, the

Graduate School for the Doctoral Dissertation Fellowship, and the Cross Ranch Fellowship for the research funds.

Finally, I would like to thank my Grandma Rapheal and Uncle Rob for pushing me to get my PhD and knowing I would do it before I knew (somehow). My Grandma Rapheal sparked my love and curiosity of the natural world and science by taking me camping, bringing me to the science museum, and signing me up for science classes. Thank you to my Mom, Michelle Trayer, for teaching me to be tough and my Dad, Denny Dennhardt, for teaching me to be kind. Thank you to my husband Dacotah Melicher who met me my first day of graduate school and married me four years later. He has been a constant source of humor, love, and support. I could not imagine a better partner.

I would not have been able to complete this project without all these wonderful people. Thank you.

## DEDICATION

This Dissertation is dedicated to My husband, Dacotah Melicher, My Grandma, Janice Rapheal,

And
My parents, Michelle Trayer and Walter Dennhardt

## TABLE OF CONTENTS

ABSTRACT ..... iii
ACKNOWLEDGEMENTS ..... v
DEDICATION ..... vii
LIST OF TABLES ..... xii
LIST OF FIGURES ..... xiv
LIST OF ABBREVIATIONS ..... xvii
LIST OF APPENDIX TABLES ..... xviii
LIST OF APPENDIX FIGURES ..... xxii
CHAPTER 1. GENERAL INTRODUCTION ..... 1
The importance of Poa pratensis for conservation and management ..... 1
Organization of dissertation ..... 6
Literature Cited ..... 7
CHAPTER 2. KENTUCKY BLUEGRASS (POA PRATENSIS) INVASION IN THE PRAIRIE POTHOLE REGION: A STORY OF RAPID DOMINANCE IN AN ENDANGERED ECOSYSTEM. ..... 10
Abstract ..... 10
Introduction ..... 10
An ecological threat? ..... 13
Potential explanations for the invasion ..... 19
Ecosystem impacts ..... 21
The need for understanding ..... 23
Literature Cited ..... 23
CHAPTER 3. THERE IS NO EVIDENCE OF GEOGRAPHICAL PATTERNING AMONG INVASIVE POA PRATENSIS L. POPULATIONS IN THE NORTHERN GREAT PLAINS ..... 29
Abstract ..... 29
Introduction ..... 30
Methods ..... 32
Microsatellite analysis ..... 32
Flow cytometry ..... 41
Results ..... 43
Genetic diversity ..... 43
Genetic divergence among populations ..... 44
Discussion ..... 52
Literature Cited ..... 55
CHAPTER 4. POA PRATENSIS IS FACILIATED BY THREE NATIVE GRASSES IN SPECIES PAIR COMPETITION EXPERIMENTS ..... 62
Abstract ..... 62
Introduction ..... 62
Methods ..... 64
Results ..... 67
Discussion ..... 76
Literature Cited ..... 79
CHAPTER 5. HIGHER PERCENT COVER OF POA PRATENSIS L. AND OTHER GRASSES IS CORRELATED WITH CLIMACTIC CHANGES IN THE TALLGRASS PRAIRIE OF THE NORTHERN GREAT PLAINS. ..... 84
Abstract ..... 84
Introduction ..... 84
Methods ..... 86
Data Collection ..... 86
Data analysis ..... 90
Results ..... 94
Spatial and temporal changes in plant communities and soil moisture levels ..... 94
Environment and cover correlations ..... 99
Discussion ..... 104
Literature Cited ..... 107
CHAPTER 6. CONCLUSIONS ..... 112
Literature Cited ..... 115
APPENDIX A. COPYRIGHT PERMISSION TO USE CHAPTER TWO IN THIS DISSERTATION ..... 117
APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 ..... 118
The methodology and calculation used for calculating a mantel test on wind direction ..... 118
APPENDIX C. PERMIT FOR COLLECTING PLANT SAMPLES FOR THE GENETIC DIVERSITY AND FLOW CYTOMETRY STUDY IN 2012 AND 2013 ..... 190
APPENDIX D. PERMIT FOR COLLECTING PLANT SAMPLES FROM BLUESTEM PRAIRIE IN 2013. SAMPLES WERE USED FOR FLOW CYTOMETERY PROJECT ..... 191
APPENDIX E. MINNESOTA DEPARTMENT OF NATURAL RESOURCES SCIENTIFIC AND NATURAL AREAS PERMIT FOR 2013. THIS PERMIT ALLOWS FOR THE COLLECTION OF PLANTS FOR THE FLOW CYTOMETRY STUDY IN 2013 ..... 192
APPENDIX F. COPYRIGHT FORM TO USE CHAPTER THREE IN THE DISSERTATION ..... 194
APPENDIX G. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 ..... 195
APPENDIX H. SUPPLEMENTARY MATERIAL FOR CHAPTER 5 ..... 215
APPENDIX I. RESEARCH PERMIT FOR CHAPTER FIVE OF THE DISSERTATION. PERMIT WAS ISSUED BY THE NATURE CONSERVANCY259
APPENDIX J. RESEARCH PERMIT FOR CHAPTER FIVE OF THE DISSERTATION. THE PERMIT WAS ISSUED BY THE DEPARTMENT OF THE NATURAL RESOURCES FOR THE SCIENTIFIC AND NATURAL AREA.260

## LIST OF TABLES

Table Page
3.1. Location of the 19 sites where P. pratensis was sampled in 2012 and 2013. Codes are used to refer to sites in other table and figures. Data provided by the United States Fish and Wildlife Service (USFWS). Other acronyms in the table are National Wildlife Refuge (NWR), Wildlife Management District (WMD), and Waterfowl Production Area (WPA). ..... 35
3.2. Primers used in analysis. Repeat motif represents the repetitive sequence, size range is the allele size range in base pairs, and the range is the range in polymorphism information content values for alleles (Honig et al. 2010b). ..... 38
3.3. Genetic diversity of all populations. Average number of alleles (Num.), effective number of alleles (Eff. Num.), observed heterozygosity ( $\mathrm{H}_{0}$ ), heterozygosity within populations $\left(\mathrm{H}_{\mathrm{S}}\right)$, inbreeding coefficient ( $\mathrm{G}_{\mathrm{IS}}$ ), and the one sided p -value of the GIS value calculated in Genodive and corrected for unknown allele dosage. ..... 43
3.4. Flow cytometry results showing mean estimated DNA content in picograms per uL. Samples are listed from highest to lowest latitude. Each sample was run three times using three different leaf tissues. ..... 46
3.5. Pairwise RhoST values based on 5000 permutations calculated in SpageDi. These values show whether populations have significantly diverged from one another. RhoST was used because it uses the step-wise mutation model. ..... 49
3.6. The genotypic diversity of all wild populations. The $\mathrm{G} / \mathrm{N}$ value is uncorrected while the diversity observed and expected were calculated in Genodive by randomizing alleles over individuals within populations using Nei's diversity index (Nei 1978; Meirmans \& Van Tienderen 2004). ..... 50
4.1. Experimental design of competition experiment. Each treatment was replicated 14 times. There were two plants in each pot. The control (Bo) was a plant grown with another individual of the same species and the treatment ( Bw ) was a plant grown with a plant of a different species. ..... 67
4.2. The average biomass for plants including dead plants and not including dead plants along with the percentage of plants that were alive or dead. The table includes standard deviation (SD), sample size (N), and standard error (SE) ..... 69
4.3. The four RII statistic values including an average of the four and the median of the four RII statistics ..... 74
5.1. Description of soil type, parent material, dominant plant species for each plot. The dominant plant species were determined in 1978 and 1979 (Dziadyk 1981).
5.2. Environmental variables included in full model of dbRDA. Variables were removed from the final analysis if they did not contribute to the eigenvalues.93
5.3. ANOVA in basal percent cover by each plant category by year and plot. Year was included as a random variable and plot was a fixed variable. Spartina pectinata was not significant for year or plot so it was not included in further analysis. Although sedges were not significant for the below categories, they were across plots for 2014 (Table H.5).
5.4. The ANOVAs for model including all environmental variables. The data includes the overall model, explanatory variables, and individual axes. Each ANOVA was permuted 999 times within the 'vegan' package.

## LIST OF FIGURES

Figure Page
1.1. A private rangeland in North Dakota that is heavily invaded with Kentucky bluegrass. Photo credit: Carl Piper. ..... 2
1.2. A heavily invaded native prairie at Arrowwood National Wildlife refuge in 2011. The yellow flowering heads are P. pratensis. Photo credit: Lauren Dennhardt. ..... 3
1.3. Image of a number of native species' root systems next to Poa pratensis on the far left, indicated by an arrow. Photo credit to Heidi Natura (http://www.shootingstarnativeseed.com/documents/native-roots.pdf). Image from: http://www.eatcology.com/wp-content/uploads/2011/11/ prairie-root-systems_large.jpg ..... 4
2.1. Change in Kentucky bluegrass frequency at 28 native prairie sites in North Dakota. Data from the 2007 and 1984 field collections have been subtracted to show the overall increase in Kentucky bluegrass invasion. ..... 16
2.2. Production at an old mine site in Stanton, ND form 1979-2009 monitored by Kelly Krabbenhoft and Dave Neilson of Glenharold mine. Plant codes: Bouteloua gracilis (BOGR), Pascopyrum smithii (PASM), Nassella viridula (NAVI), Poa pratensis (POPR), and the total production (TOTAL). ..... 17
2.3. Relative foliar cover of individual species in an exclosure, moderately grazed, and heavily grazed pastures at the ARS USDA research center in Mandan, ND. $\mathrm{BG}=$ Bouteloua gracilis, Carex=Carex species, $\mathrm{NT}=$ Hesperostipa comata, $\mathrm{GN}=$ Nassella viridula, WW=Pascopyron smithii, $\mathrm{PJ}=$ Koeleria macrantha, $\mathrm{KB}=$ Poa pratensis. Exclosure data for 1964, 1984, and 2004 were not available ..... 18
3.1. Location of sampling sites in North Dakota, South Dakota, and Minnesota. In 2012 we collected samples for the microsatellite analysis and in 2013 we collected samples for flow cytometry analysis ..... 34
3.2. Principal coordinate analysis using Bruvo distance matrix. Each symbol represents an individual plant ..... 47
3.3. Boxplot depicting the mean picogram DNA content (picograms/uL) for both wild samples and commercial varieties. ..... 48
3.4. Histogram of clonal assignment and frequency of each clone. Clones were determined in Genodive using a step-wise mutation model. Clones 2 and 4 make up the majority of the individuals sampled. ..... 51
4.1. The percentage of plants alive at the end of the experiment. Black stars indicate conspecific pairings. The graph was represented in ggplot2 (Wickham 2009).
4.2. The average biomass for each plant competition pair including dead plants
(measurements of zero). The bars represent $\pm 1$ standard error. The graph was
produced in ggplot2 (Wickham 2009).......................................................................... 72
4.3. The average biomass of measured plants in all treatments not including dead plants (measurements of zero). The bars represent $\pm 1$ standard error. The graph was produced in ggplot2 (Wickham 2009).
4.4. Mean RII organized by species paired ( $\pm 1 \mathrm{SE}$ ). A positive RII value implies that the measured species is facilitated by the competitor species and a negative RII indicates the paired species is competitive against the measured species.
5.1. Plot location in Glyndon, Minnesota. The six locations were all on land managed by the Nature Conservancy. Each plot was $25 \times 25$ meters. The pie charts represent percent soil moisture in 1978, 1979, and 2014. We collected data twice from each plot in the summer of 2014............................................................................................... 88
5.2. Percent cover of three plant categories over time. Estimates are based on the number of intercepts divided by the total number per plot per year. The graph was created in ggplot2 (Wickham 2009).
5.3. Grass percent basal cover at each plot including POPR, Cyperace, and BRIN. Estimates are based on the number of intercepts divided by the total number per plot per year. The graph was created in ggplot2 (Wickham 2009). 98
5.4. Average spring temperature and average annual precipitation by year from multiple weather stations in west-central Minnesota. Data was collected from NOAA. Precipitation $\mathrm{r}^{2}=0.072, \mathrm{~F}_{1,36}=2.80, \mathrm{p}=0.10$ and annual spring time temperature $\mathrm{r}^{2}=0.001, \mathrm{~F}_{1,39}=0.468, \mathrm{p}=0.498$. (http://www.ncdc.noaa.gov/cag/time-series/us/21/4/pcp/12/12/1975-2015?base_prd=true\&firstbaseyear=1901\& lastbaseyear=2000\&trend=true\&trend_base=10\&firsttrendyear=1975\& lasttrendyear=2015)
5.5. Distance based redundancy analysis (dbRDA) on selected for environmental and plant data using a Bray-Curtis dissimilarity matrix. CAP1 and CAP2 were both statistically significant and account for $73.1 \%$ of the total variance.
5.6. Percent basal cover of sedges and grasses as a function of soil moisture at 30-60 cm . Best fit regression lines and $95 \%$ confidence intervals are indicated. Significant linear regressions on $30-60 \mathrm{~cm}$ in all plots and all years. Percent soil moisture and plant cover for sedges ( $\mathrm{r}^{2}=0.5418$, $\mathrm{SE}=9.074, \mathrm{~F}_{1,16}=18.92$, $\mathrm{p}<0.001$ ) and grasses $\left(\mathrm{r}^{2}=0.32, \mathrm{SE}=27.65, \mathrm{~F}_{1,16}=12.89, \mathrm{p}=0.01\right)$.
6.1. The annual precipitation for the state of North Dakota plotted from 1895-2015 with an 1895-2015 trend line (blue line), a LOESS (locally weighted scatterplot smoothing; red line), and the average between 1901-2014 (flat gray line). The percentages on this figure are estimated percentages at which P. pratensis was found in each study: the percentages in the blue circle are from chapter five of this dissertation, the two percentages in the rounded square are from chapter two, and the four percentages in the square are from O'Brien 2014.

## LIST OF ABBREVIATIONS

BOGR................Bouteloua gracilis
dbRDA...............Distance based redundancy analysis
DNA................ Deoxyribonucleic acid
NASM................Nassella viridula
NRCS.................Natural Resource Conservation Services
NDSU................North Dakota State University
NGP...................Northern Great Plains
PASM................Pascopyrum smithii
POPR.................Poa pratensis
PPR..................Prairie pothole region
USFWS..............United States Fish and Wildlife Service
USDA...............United States Department of Agriculture

## LIST OF APPENDIX TABLES

Table Page
B.1. Paired FST values based on 5000 permutations calculated in SpageDi. Highlighted values with asterisk indicate a p-value of $>0.05$, thus non-significant values. P -values are listed below black bars ..... 121
B.2. Paired Gst values based on 5000 permutations calculated in SpageDi. Highlightedvalues with asterisk indicate a p-value of $>0.05$, thus non-significant values.P -values are listed below black bars.122
B.3. Allele lengths for each locus for each sample. A "-9" indicates missing data in which a peak was detected but unreadable. Many samples were sent in more than once for consistency tests. Site Code meanings are available in Table 3.1. Samples were named based upon site, transect number, and location on transect.123
G.1. Two-way ANOVA on the log transformed data without the dead plants for both the measured and competitor plants. Analysis was conducted in R (R Core Team 2012)... 196
G.2. Tukey's HSD on all measured plants without the dead plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).196
G.3. Tukey's HSD on all competitor plants without the dead plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).196
G.4. Overall one-way ANOVA on Poa pratensis competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012). ..... 197
G.5. Tukey's HSD on all competitors without the dead plants against Poa pratensis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).197
G.6. Overall one-way ANOVA on Bouteloua gracilis competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012).
G.7. Tukey's HSD on all competitors without the dead plants against Bouteloua gracilis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).
G.8. Overall one-way ANOVA on Pascopyrum smithii competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012). ..... 199
G.9. Tukey's HSD on all competitors without the dead plants against Pascopyrum smithii after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015) ..... 199
G.10. Overall one-way ANOVA on Nassella viridula competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012). ..... 200
G.11. Tukey's HSD on all competitors without the dead plants against Nassella viridula after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015) ..... 200
G.12. Two-way ANOVA on the log transformed data for both the measured and competitor plants. Analysis was conducted in R (R Core Team 2012). ..... 201
G.13. Tukey's HSD on all measured plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015). ..... 201
G.14. Tukey's HSD on all competitor plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015). ..... 201
G.15. Overall one-way ANOVA on Poa pratensis competitors using log transformed data. Analysis was conducted in R (R Core Team 2012) ..... 202
G.16. Tukey's HSD on all competitors against Poa pratensis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015). ..... 202
G.17. Overall one-way ANOVA on Bouteloua gracilis competitors using log transformed data. Analysis was conducted in R (R Core Team 2012) ..... 203
G.18. Tukey's HSD on all competitors against Bouteloua gracilis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015) ..... 203
G.19. Overall one-way ANOVA on Pascopyrum smithii competitors using log transformed data. Analysis was conducted in R (R Core Team 2012). ..... 204
G.20. Tukey's HSD on all competitors against Pascopyrum smithii after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).204

G.21. Overall one-way ANOVA on Nassella viridula competitors using log transformed
data. Analysis was conducted in R (R Core Team 2012). ..... 205
G.22. Tukey's HSD on all competitors against Nassella viridula after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015)205

G.23. ANOVA on linear regression for percent survival against average biomass
without dead plants. ..... 205
G.24. Two way ANOVA on the median RII values between the measured plants and
competitors. Analysis was conducted in R (R Core Team 2012)............................... 206
G.25. Tukey's HSD on all measured plants using the median RII values. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).206
G.26. The biomass data for the end of the competition experiment after the plants were washed then dried for 48 hours. Roots were measured as well, but I was not able to remove all the soil so it was not included in the analysis.207
H.1. Summary ANOVAs for Poa pratensis across years, plots across years, plots for 2014, and early and late sampling in 2014. Poa pratensis significantly changed in 2014, although not spatially or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015)
H.2. Summary ANOVAs for Bromus inermis across years, plots across years, plots for 2014, and early and late sampling in 2014. Bromus inermis significantly changed over the years, but was not detected in the Tukey's HSD test. Bromus inermis did not change spatially or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).
H.3. Summary ANOVAs for grasses across years, plots across years, plots for 2014, and early and late sampling in 2014. Grasses significantly changed across years, specifically 2014 contained a larger percent cover than other years. Grasses did not change spatially over the years, spatially in 2014, or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).
H.4. Summary ANOVAs for percent soil moisture across years. Differences in soil moisture were found between years for depths of $30-60 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$ and spatially for depths of $0-30 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$. For the depth of $30-60 \mathrm{~cm}, 2014$ was significantly different. Tukey's honest significant difference test was executed in the R package Agricolae for each depth when ANOVA was significant (Felip de Mendiburu 2015).218
H.5. Summary ANOVAs for sedges across years, plots across years, plots for 2014, and early and late sampling in 2014. Sedges significantly changed across the plots in 2014, specifically plot 5 contained a larger percent cover than other plots. Sedges did not change spatially over the years, across time, or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).
H.6. Summary ANOVAs for forbs across years, plots across years, plots for 2014, and early and late sampling in 2014. Forbs significantly changed across years and spatially in 2014, specifically 2014 contained a lower percent cover than other years. Forbs did not change spatially over the years or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).
H.7. Summary ANOVAs on the 2014 percent soil data moisture data. Differences in soil moisture were found between early and late summer for depths of 30-60 cm and $60-90 \mathrm{~cm}$. Tukey's honest significant difference test was executed in the R package Agricolae for each depth (Felip de Mendiburu 2015).222
H.8. Six separate ANOVAs on the two dbRDAs performed on plant and percent soil moisture data. The dbRDA was performed in vegan using the CAPSCALE argument and a Bray-Curtis dissimilarity matrix and ANOVAs were done using 200 permutations and a seed set of 44 . Only the first axis of both dbRDAs was significant so we concluded a linear regression should be completed to visualize the interaction. 224
H.9. Data collected in 2014 for long-term climate change study. There were six plots at Bluestem prairie. We dropped 10 pins at 100 quadrats per plot.
We collected data twice that summer. POPR=Poa pratensis, Sedge=Sedge family, SPPE=Spartina pectinata, BRIN=Bromus inermis, GR=Other grasses, $\mathrm{FO}=$ Forbs, and $\mathrm{BR}=\mathrm{Bare}$ ground. 225

## LIST OF APPENDIX FIGURES

Figure Page
B.1. The histogram showing the cutoff point for what a clone is considered to be using Genodive. The red line is the chosen threshold between the two bimodal peaks. 120
G.1. Histograms of the raw (top) and transformed (bottom) biomass data for the data which did not included undetectable biomass (less than 0.00 ). 195

## CHAPTER 1. GENERAL INTRODUCTION

## The importance of Poa pratensis for conservation and management

The tallgrass and mixed grass prairies of the northern Great Plains (NGP) are increasingly endangered ecosystems due in part to invasive species (Samson \& Knopf 1994a). Invasive species impact ecosystems by driving biodiversity loss and threatening global conservation efforts (Pimentel et al. 2001). The prairies of the NGP are often inundated by invasive grass species which can turn a healthy, diverse prairie into nearly a monoculture. This transition of the land affects plant cover and forage for cattle grazing, small mammals, and grassland birds, along with food resources for pollinating insects. The cause of invasion is often unknown, although many reasons (e.g. lack of grazing (nonuse), too few fires, human transport, disturbance, and climate change) have been suggested. Considering less than $1 \%$ of the tallgrass and $20 \%$ of the mixed grass prairie remain in the NGP, the biology of these invasive grasses needs to be better understood for conservation efforts to be successful.

Poa pratensis L. (Kentucky bluegrass) is a major noxious species in the NGP (Murphy \& Grant 2005a; Larson \& Larson 2010a; Bahm et al. 2011a; DeKeyser et al. 2015). The recent evidence on the extent of distribution raises concerns about the effectiveness of past prairie management techniques in controlling this particular species (Cully et al. 2003; Bahm et al. 2011a; DeKeyser et al. 2013a). In one study, P. pratensis accounted for half of all non-native plant cover in the tallgrass prairie (Cully et al. 2003). A survey from 2014 revealed that in North and South Dakota 20-35\% of rangelands consisted of more than $50 \%$ soil surface cover of "invasive bluegrasses", which includes both Poa pratensis and Poa compressa L. (Canada bluegrass) (United States Department of Agriculture Natural Resources Conservation Service
2014). Poa compressa is also a species that is introduced in the northern Great Plains and has been reported to hybridize with $P$. pratensis (Uchytil 1993).

While $P$. pratensis has been an invasive grass in the tallgrass prairie over the past 100 years, in the past 20 years Poa pratensis has also become an invasive species in the mixed grass regions of the NGP. In many of the prairies of the NGP Kentucky bluegrass can form nearly monotypic stands which reduces the abundance of native plant species (Fig. 1.1, 1.2). The loss of native plant diversity can have major ramifications for soil health, wildlife habitat, ecosystem services, grazing nutrition, and water resources. In order to preserve the diversity of the northern tall and mixed grass prairie land managers need a better understanding of the reasons for this expansion and work on controlling Kentucky bluegrass invasion in the NGP.


Figure 1.1. A private rangeland in North Dakota that is heavily invaded with Kentucky bluegrass. Photo credit: Carl Piper.


Figure 1.2. A heavily invaded native prairie at Arrowwood National Wildlife refuge in 2011. The yellow flowering heads are $P$. pratensis. Photo credit: Lauren Dennhardt.

Poa pratensis' root system is different from most native tallgrass prairie plants (Fig. 1.3).
Poa pratensis only occupies the first few inches of soil, whereas many native species occupy several feet of soil. Root systems and soil interact with each other. Roots harbor microorganisms, decompose (which renews the nutrients in the soil), and stabilize soil. A prairie dominated by $P$. pratensis may jeopardize all these specialized root services by outcompeting and replacing native species. Additionally, P. pratensis is known to develop a thick thatch (dead plant material) in only a few years after invasion. This thick thatch may choke out many native plant species by preventing seedlings access to light resources. Once $P$. pratensis has invaded a prairie it can change the availability of habitat for a number of bird, mammal, and insect species, and thus be a threat to biodiversity.


Figure 1.3. Image of a number of native species' root systems next to Poa pratensis on the far left, indicated by an arrow. Photo credit to Heidi Natura (http://www.shootingstarnativeseed.com/documents/native-roots.pdf). Image from: http://www.eatcology.com/wp-content/uploads/2011/11/prairie-root-systems_large.jpg

Poa pratensis is a C3 grass native to Eurasia. It has been in the United States for over 250 years (DeKeyser et al. 2015). An early introduction of $P$. pratensis was initiated by European settlers in the 1700s (Huff 2003a). From there, P. pratensis is thought to have moved west from its original establishment on the East coast via settlers using it as a packaging material. There
has been some debate about whether $P$. pratensis was native in some regions of the United States, but now it is believed the United States is occupied predominantly by the invasive $P$. pratensis (Huff 2003a). This subject will be discussed in greater detail in Chapter 2.

Before the 1950s, P. pratensis was distributed using a "stripping" procedure (collecting seeds using flailing method) from already established stands in Wisconsin, Minnesota, North Dakota, and Kentucky to eastern Kansas. This practice was used for 75 years (Huff 2003a; Honig et al. 2010a). The current method of growth and distribution relies on intensive agriculture and development focused in the Midwest and the Pacific Northwest (90\% of U.S. production comes from Washington) in which fields are planted using some combination of burning, irrigation, fertilization, herbicide, and insecticide (Huff 2003a; Holman \& Thill 2005). Modern biotechnology advances have led to cultivars that are highly competitive and now, genetically engineered to withstand glyphosate (Huff 2003a; Kaplan 2011a).

Invasive grasses are particularly difficult to manage because they are often reintroduced by Department of Transportation personnel for erosion control, ranchers for forage production, and managers of turf and lawn grasses, creating a continual propagule pressure, which inhibits and complicates control. Invasive grasses are not as conspicuous to humans, as some flashy invasive dicots (e.g. purple loosestrife (Lythrum salicaria L.), spotted knapweed (Centaurea stoebe L. subsp. Micranthos (Gugler) Hayek), and crownvetch (Securigera varia (L.) Lassen). Many invasive species, such as Canada thistle are easy to identify and can be targeted individually with herbicide treatment resulting in effective management strategies at a reasonable cost. Invasive grasses require a broad management technique such as grazing, burning, mowing, and in extreme cases, entire herbicidal wipeout for a clean start (United States Fish and Wildlife

Service 2009). Such efforts often require a lot of money, time, and are not always feasible in a land manager's annual budget (Hartnett et al. 1996).

Poa pratensis' current distribution in the United States is a broad one. It grows in a wide range of habitats, in every state and province within the United States and Canada (United States Department of Agriculture \& Natural Resource Conservation Service 2014). It has been categorized as an understory dominant in aspen communities, riparian and wetland sites, meadow sites, mountainous sites, grassland range, and forested sites (Uchytil 1993), which illustrates the wide range of ecosystems it can inhabit. Planting of $P$. pratensis has been widely done as a turf grass, forage grass, and lawn grass. Quality of $P$. pratensis as a forage grass varies depending on the precipitation regime of the area. In the Dakotas, forage quality of $P$. pratensis is low compared to other grasses (Uchytil 1993), making it an interest of ranchers to replace $P$. pratensis with higher quality forage.

## Organization of dissertation

My research project will promote understanding of an invasive commercial species from an ecological perspective. Through the use of tools developed in the turf grass industry, molecular biology, long-term data, and greenhouse experimentation, I have examined the evolutionary mechanisms (or lack thereof) behind the invasion of $P$. pratensis in the NGP. My main research question is how has Poa pratensis become a dominant species of grasslands in the tallgrass and mixed grass prairies of the NGP. I attempt to answer this question with four chapters.

The second chapter focuses on the history of $P$. pratensis in the NGP. My coauthors and I assembled a variety of sources to disentangle the introduction and later invasion of the species.

Our goal was to understand whether $P$. pratensis was truly introduced or not and whether there are any historical documents on invasion in the past 100 years.

The third chapter asks two major questions: Is $P$. pratensis invasion partially due to propagule pressure and has adaptation occurred? We answer this question by using neutral genetic markers and flow cytometry across populations in North Dakota, South Dakota, and Minnesota.

The fourth chapter addresses the competitive ability of $P$. pratensis through paired competition experiments. I chose three grass species that have been documented to be in decline when $P$. pratensis invades. I quantified both competitive and facilitative ability of each species paired with one another.

The fifth chapter disentangles the environmental and management effects on $P$. pratensis and a few other notable plant categories. We resampled a tallgrass prairie with plant community data from 1978, 1979, and 1999. We found correlations between our sampled plant categories and our environmental variables.

The sixth and final chapter concludes the original question proposed by this dissertation-why is Poa pratensis invading in the NGP?

## Literature Cited

Allendorf FW, Lundquist LL (2003) Introduction: Population Biology, Evolution, and Control of Invasive Species. Conservation Biology, 17, 24-30.

Bahm MA, Barnes TG, Jensen KC (2011) Herbicide and Fire Effects on Smooth Brome (Bromus inermis) and Kentucky Bluegrass (Poa pratensis) in Invaded Prairie Remnants. Invasive Plant Science and Management, 4, 189-197.

Cully AC, Cully JF, Hiebert RD (2003) Invasion of Exotic Plant Species in Tallgrass Prairie Fragments. Conservation Biology, 17, 990-998.

DeKeyser ES, Dennhardt LA, Hendrickson J (2015) Kentucky bluegrass ( Poa pratensis )
Invasion in the Northern Great Plains: A Story of Rapid Dominance in an Endangered Ecosystem. Invasive Plant Science and Management, 8, 255-261.

DeKeyser ES, Meehan M, Clambey G, Krabbenhoft K (2013) Cool Season Invasive Grasses in Northern Great Plains Natural Areas. Natural Areas Journal, 33, 81-90.

Hartnett DC, Hickman KR, Walter LEF (1996) Effects of Bison Grazing, Fire, and Topography on Floristic Diversity in Tallgrass Prairie. Journal of Range Management, 49, 413.

Holman J, Thill D (2005) Kentucky bluegrass growth, development and seed production. University of Idaho Extension Bulletin 843. http://www.cals.uidaho.edu/edcomm/pdf/bul/bul0843.pdf.

Honig J, Bonos S, Meyer W (2010) Isolation and Characterization of 88 Polymorphic Microsatellite Markers in Kentucky Bluegrass (Poa pratensis L.). HortScience, 45, 17591763.

Huff D (2003) Kentucky bluegrass. In: Turfgrass, Biology, Genetics, and Breeding, p. 367. John Wiley \& Sons.

Kaplan D (2011) Review of Petition to Add Genetically Engineered Glyphosate-tolerant Kentucky bluegrass to the Federal Noxious Weed Regulations. Animal and Plant Health Inspection Services.

Larson DL, Larson JL (2010) Control of One Invasive Plant Species Allows Exotic Grasses to Become Dominant in Northern Great Plains Grasslands. Biological Conservation, 143, 1901-1910.

Murphy R, Grant T (2005) Land Management History and Floristics in Mixed-Grass Prairie, North Dakota, USA. Natural Areas Journal, 25, 351-358.

Pimentel D, McNair S, Janecka J et al. (2001) Economic and Environmental Threats of Alien Plant, Animal, and Microbe Invasions. Agriculture, Ecosystems, and Environment, 84, 120.

Samson F, Knopf F (1994) Prairie Conservation in North America. BioScience, 44, 418-421. Uchytil R (1993) Poa pratensis. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis/plants/graminoid/poapra/all.html

United States Department of Agriculture, Natural Resource Conservation Service (Eds.) (2014) The PLANTS Database: Poa pratensis L. Kentucky bluegrass: Plants Profile.

United States Department of Agriculture Natural Resources Conservation Service (2014) National Resources Inventory Rangeland Resource Assessment.

United States Fish and Wildlife Service (2009) Managing Invasive Plants: Concepts, Principles, and Practices. http://www.fws.gov/invasives/staffTrainingModule/index.html.

# CHAPTER 2. KENTUCKY BLUEGRASS (POA PRATENSIS) INVASION IN THE PRAIRIE POTHOLE REGION: A STORY OF RAPID DOMINANCE IN AN ENDANGERED ECOSYSTEM ${ }^{1}$ 

DeKeyser ES, Dennhardt LA, Hendrickson J (2015) Kentucky bluegrass (Poa pratensis ) Invasion in the Northern Great Plains: A Story of Rapid Dominance in an Endangered Ecosystem. Invasive Plant Science and Management, 8, 255-261.


#### Abstract

Kentucky bluegrass was introduced into the present day United States in the 1600s. Since that time, Kentucky bluegrass has spread throughout the United States and Canada becoming prolific in some areas. In the last century, Kentucky bluegrass has been a presence and oftentimes a dominant species in some prairies in the Prairie Pothole Region (PPR). Sometime within the last few decades, Kentucky bluegrass has become the most common species on the untilled, native prairie sites of the PPR of North and South Dakota. In this paper we hypothesize how Kentucky bluegrass has come to dominate one of the most endangered ecosystems in North America-the prairie through a historical, climatological, and ecological lens. We urge others to start addressing the invasion of Kentucky bluegrass with both new research and management strategies.

\section*{Introduction}

Kentucky bluegrass (Poa pratensis L.) is arguably one of the most recognized and widespread perennial grasses in North America, occurring in all 50 states and all Canadian


[^0]provinces (Uchytil 1993; United States Department of Agriculture \& Natural Resource Conservation Service 2014). This grass, which is a native to the more temperate and northern latitudes of Eurasia, has been established in favorable climates worldwide because of its strongly rhizomatous mat forming characteristics (Uchytil 1993). Recently, the increased abundance of Kentucky bluegrass in many natural areas, especially in the Prairie Pothole Region (PPR) and other eastern areas of the Northern Great Plains has resulted in heightened attention to potential negative attributes (Grant et al. 2009a; Larson \& Larson 2010b; DeKeyser et al. 2013a). While the extent of the invasion is becoming clearer, what is not understood is 1 ) the history and causes of widespread invasion into natural areas, 2) where the contributing sources of propagules supplying the invasion originate from, and 3) the potential impacts to the ecosystem. In this paper, we address these questions using historical documentation concerning Kentucky bluegrass and long term data sets obtained within the region, and discuss potential mechanisms for the unanticipated spread of this species.

Kentucky bluegrass was widespread and well known in Europe before receiving the scientific name Poa pratensis in the 1700s (Schery 1959). Linnaeus appropriately gave the epithet pratensis meaning meadow because of the general proclivity of the grass (Lowe 1858; Wedin \& Huff 1996). High palatability and yield made Kentucky bluegrass an important pasture grass for hundreds of years in the British Isles (Lowe 1858; Plues 1867). With proper maintenance, Kentucky bluegrass was reported to produce hay for cattle in June and provide an attractive lawn grass (Lowe 1858; Plues 1867).

Because of the popularity and widespread use in Europe and parts of Asia, it has been convincingly speculated that initial introduction into the United States happened during Western European colonization (mid to late 1600s) through seed mixtures, hay, and bedding (Lowe 1858;

Plues 1867; Carrier \& Bort 1916; Bashaw \& Funk 1987a; Casler \& Duncan 2003). In fact, the grass was common in Kentucky prior to extensive European settlement and rapidly spread from that point (Bashaw \& Funk 1987a; Dunn 2004). Kentucky bluegrass often was unintentionally spread by people because of use as a packaging material and bedding, but was also a sought after grass for utilitarian reasons (Bashaw \& Funk 1987a; Dunn 2004). Henry Clay (1838) pointed out the popularity as a lawn grass in the southeast and noted a lack of Kentucky bluegrass in Virginia, New York, and Maryland, indicating a limited range at the time (Dunbar 1977). Clay offered to send a friend in New York Kentucky bluegrass because of a demand in New York for the grass (Dunbar 1977). There are reports of Thomas Jefferson having Kentucky bluegrass planted in his lawn at Monticello (Dunn 2004). By 1847, bluegrass was a widely used pasture grass as far as western New York, suggesting the popularity of the grass aided in the distribution into more northern states (Dunbar 1977; S.B. Buckley 1847). Piper (1916) reported, up to $90 \%$ of Kentucky bluegrass pastures were "spontaneous" events generally resulting from disturbance and colonization (Piper 1916). By the early 1900s, Kentucky bluegrass was recognized as the "most important pasture grass in North America" (Piper 1916).

Kentucky bluegrass most likely first occurred in the PPR during the mid to late 1800s. By 1896, Kentucky bluegrass was considered "common southward to the central United States" (Wright \& Upham 1896). In Iowa, along the Missouri river, bluegrass was classified as a weed by 1909 and was "everywhere" and "common" (Shimek 1909). There were already reports in 1884 of Kentucky bluegrass taking over prairies in southwestern Minnesota and moving westward into Nebraska (Upham 1884). During a survey of western Minnesota and eastern North Dakota, Warren Upham (1890) predicted that bluegrass would spread into the region and become a predominant grass based on what was being experienced by others in the east. In 1891,
herbarium specimens were collected in the eastern municipalities of Fargo and Wahpeton, ND along the Red River by L.R. Waldron (Williams 1891). The North Dakota State University (NDSU) herbarium has other specimens collected along railways as far west as Medora, ND within the first decade of the 1900s (Williams 1891), although bluegrass wasn't noted at all in a botanical survey of two townships of southeastern ND in 1917 (Shunk 1917). In the publication "The Flora of North Dakota," Bergman (1918) called P. pratensis "a very common species, general throughout the state in all kinds of situations." By 1933, bluegrass was listed as a common plant in western ND (Edwards \& Ableiter 1942). O.A. Stevens noted in his first publication of the "Handbook of North Dakota Plants" that $P$. pratensis "has spread so rapidly that it appears like a native plant" (Stevens 1950).

## An ecological threat?

These same sources illustrate several attributes of Kentucky bluegrass which shed light on possible plant community and ecosystem impacts. Henry Clay (1838) pointed out that bluegrass would invade disturbed areas (e.g. salt licks) and would then quickly spread to dominate (Dunbar 1977). Clay also discussed competitive ability, noting Kentucky bluegrass would rapidly outcompete timothy (Phleum pratense L.) and clover (Trifolium spp.) when seeded together (Dunbar 1977). Lowe (1858) discouraged agriculturalists from using Kentucky bluegrass (Lowe 1858) because some thought the bluegrass root system would impoverish the soil. Others commented on the ability of Kentucky bluegrass to maintain growth early in the spring and late in the fall, and produce a lot of long foliage (up to 60 centimeters) (Buckley 1847). Stevens (1950) stated in the PPR "It invades and practically takes possession of moist prairie."

After the natural and the anthropogenic spread, there was a need among turf managers for a Kentucky bluegrass that was not as susceptible to drought or leafspot. In the 75 years prior to the 1950s, Kentucky bluegrass was distributed using a "stripping" procedure (collecting seeds using a flailing method) from already established stands in Wisconsin, Minnesota, North Dakota, and Kentucky to eastern Kansas (Casler \& Duncan 2003; Huff 2003b). In the mid-1930s, the first Kentucky bluegrass cultivar, 'Merion' was discovered in a golf course in Pennsylvania and became available in 1947 (Dunn 2004; Stang et al. 2004). The 'Merion' cultivar was widely used until cool-season, turfgrass genetic improvement programs, initially started in 1962 at Rutgers University, began to provide a wider variety of cultivars. The emergence of turfgrass breeding programs at universities throughout the United States has resulted in hundreds of varieties of Kentucky bluegrass being developed. The current method of growth and distribution relies on intensive agriculture and development focused in the Midwest and the Pacific Northwest ( $90 \%$ of U.S. production comes from Washington) in which fields are planted using some combination of burning, irrigation, fertilization, herbicide, and insecticide use (Casler \& Duncan 2003; Holman \& Thill 2005). Modern biotechnology has made cultivars that are highly competitive and now, genetically engineered to withstand glyphosate (Casler \& Duncan 2003; Kaplan 2011b).

More recently the invasion of Kentucky bluegrass has gained a great deal of attention throughout the PPR (Murphy \& Grant 2005b; Grant et al. 2009a; Larson \& Larson 2010b; Bahm et al. 2011b; DeKeyser et al. 2013a; White et al. 2013). Over the last two to three decades, a major shift seems to have occurred in the PPR, resulting in large changes in the frequency of Kentucky bluegrass in the prairie (Fig. 2.1). Demonstrating this increase are 28 native prairie sites sampled in central North Dakota both in 1984 and 2007. Out of the 28, Kentucky bluegrass
increased in frequency at 22 sites. Often, this increase is more pronounced than the decreases seen at the six other sites (Fig. 2.1). The overall frequency of Kentucky bluegrass in the 23 year period increased by $35 \%$ across all sites. Anecdotal evidence amongst many land managers indicates Kentucky bluegrass has increased in frequency over the last 20 years. A rangeland site monitored by North Dakota State University and Glenharold Mine in central North Dakota provides a detailed look into the expansion of Kentucky bluegrass (Fig. 2.2). In a decade, bluegrass rose from not present in 1988 to the most abundant species in 2009 (Fig. 2.2) demonstrating the ability to quickly establish in a site. Increases in Kentucky bluegrass appear to be at the expense of native species. Unpublished data from the United States Department of Agriculture's Agricultural Services (USDA ARS) in Mandan, ND indicate increases in Kentucky bluegrass often coincide with decreases in blue grama grass (Bouteloua gracilis), a grazing tolerant short statured native grass (Fig. 2.3). Finally, a recent study by DeKeyser of US Fish and Wildlife Service native prairie sites in the PPR, showed Kentucky bluegrass was the most abundant species across 37 sampled sites (unpublished).


Figure 2.1. Change in Kentucky bluegrass frequency at 28 native prairie sites in North Dakota. Data from the 2007 and 1984 field collections have been subtracted to show the overall increase in Kentucky bluegrass invasion.

Thirty year production for a native prairie site in central North Dakota


Figure 2.2. Production at an old mine site in Stanton, ND form 1979-2009 monitored by Kelly Krabbenhoft and Dave Neilson of Glenharold mine. Plant codes: Bouteloua gracilis (BOGR), Pascopyrum smithii (PASM), Nassella viridula (NAVI), Poa pratensis (POPR), and the total production (TOTAL).


Figure 2.3. Relative foliar cover of individual species in an exclosure, moderately grazed, and heavily grazed pastures at the ARS USDA research center in Mandan, ND. BG=Bouteloua gracilis, Carex=Carex species, NT=Hesperostipa comata, GN=Nassella viridula, WW=Pascopyron smithii, $\mathrm{PJ}=$ Koeleria macrantha, KB=Poa pratensis. Exclosure data for 1964, 1984, and 2004 were not available.

The authors of this paper are mostly concerned with invasion in the PPR, an area stretching from Western Minnesota to Montana and north into Canada. In this highly fragmented, endangered ecosystem, major changes in species community composition are cause for concern and Kentucky bluegrass exemplifies that major ecosystem shift (Samson \& Knopf 1994b; Murphy \& Grant 2005b; Grant et al. 2009a). The control of cool-season invasive grasses such as Kentucky bluegrass, smooth brome grass (Bromus inermis), and reed canary grass (Phalaris arundinacea) (DeKeyser et al. 2013a) is the goal of many parties interested in prairie preservation in the PPR. Daehler (2003) suggested most introduced plants are not 'super invaders' so to speak but rather their performance is enhanced under certain human disturbance regimes (Daehler 2003; González-Moreno et al. 2014). Considering the popularity of Kentucky bluegrass amongst homeowners, cities, ranchers, and turfgrass managers, the changing climatic conditions, and the highly disturbed and fragmented prairie that remains, it seems very likely anthropogenic behavior has enhanced the invasion of Kentucky bluegrass.

## Potential explanations for the invasion

Successful invasions need propagules. This is not an issue with Kentucky bluegrass because of the increased propagule pressure from the popularity of Kentucky bluegrass as a lawn and turf grass. Currently, Kentucky bluegrass is the most popular lawngrass in the United States and is especially popular in temperate regions such as the PPR (Uchytil 1993; Dunn 2004; Haydu et al. 2006). There are over 247 individual Kentucky bluegrass cultivars planted in the United States (Honig et al. 2010b). Kentucky bluegrass is the largest contributor to the $\$ 57.9$ billion turfgrass industry meaning the likelihood for continual escape in the United States is high (Haydu et al. 2006).

Another potential contributor may be changing climate patterns in the PPR. The growing season has increased by 12 days over the last 120 years in parts of North Dakota (Badh et al. 2009). The increase in season length can potentially provide an opening for Kentucky bluegrass to invade in the early spring or late fall when bluegrass is photosynthetically active (Uchytil 1993). The additional growing days occur in the spring and fall, cool season months, with the fall gaining more days than the spring. Kentucky bluegrass produces the most rhizomes in the fall, which may provide reproductive advantages to long cool falls (Etter 1951). Kentucky bluegrass begins photosynthesizing earlier than many native species in the spring and an earlier spring may aid in rapid invasion.

Atmospheric $\mathrm{CO}_{2}$ levels have increased greatly in the last 100 years (Etheridge et al. 1996; Global Greenhouse Gas Reference Network: National Oceanic and Atmospheric Administration 2014) and Kentucky bluegrass, a $C_{3}$ species, may perform more efficiently under these higher $\mathrm{CO}_{2}$ concentrations. A study of the family Poaceae growing in higher concentrations of $\mathrm{CO}_{2}$ indicated that while both $\mathrm{C}_{4}$ and $\mathrm{C}_{3}$ grass species increased in overall biomass production, $\mathrm{C}_{3}$ grasses produced approximately $10 \%$ more biomass overall (Wand et al. 1999). Additionally, $\mathrm{C}_{3}$ Poaceae species increased production of tillers by $27 \%$ in the higher $\mathrm{CO}_{2}$ environment (Wand et al. 1999). From a broader perspective, across the plant kingdom, the literature supports herbaceous, fast growing, C3 species increasing their biomass more than slow growing C3 plants or C 4 plants under increased $\mathrm{CO}_{2}$ conditions (Poorter \& Navas 2003). Because Kentucky bluegrass is a fast growing $\mathrm{C}_{3}$ grass known for producing many tillers through rhizomatous growth, the increased levels of $\mathrm{CO}_{2}$ in the atmosphere are likely facilitating productivity.

Finally, historic data from central North Dakota has indicated an increase in precipitation over the last 130 years. In the last 20 years, 15 years had above average precipitation levels (National Climate Data Center - National Oceanic and Atmospheric Administration 2014; National Oceanic and Atmospheric Administration 2014). In particular precipitation data from Mandan, ND indicate the 10 year average annual precipitation for the 1990s and 2000s are 25 and $15 \%$ greater than average annual precipitation for the previous 75 years (Regional Climate Centers et al. 2014). This time period corresponds with the previously mentioned increase in Kentucky bluegrass observed in the PPR. Stevens (1950) observed Kentucky bluegrass invading moist prairie and other historical records indicate Kentucky bluegrass is a hydrophilic, drought intolerant grass (Lowe 1858; Stevens 1950; Uchytil 1993; Jackson et al. 2002; Huff 2003b).

A host of other contributors may be changing these communities as well, such as plantsoil positive feedback cycles (Callaway 2000). Kentucky bluegrass has been shown to have significantly higher aboveground N production over native warm season grasses (Wedin \& Tilman 1990). The decaying plant matter for other cool-season invasive grasses has been shown to facilitate invasion (Vinton \& Goergen 2006).

## Ecosystem impacts

As noted in figure 2.1 there was a $35 \%$ increase in Kentucky bluegrass frequency over 23 years. The same sites in figure 2.1 had an overall drop in species richness from an average of 25 in 1984 to 17 in 2007, and a drop in Shannon's diversity from 2.5 in 1984 to 1.6 in 2007. Species of graminoids and forbs decreased or were eliminated from the native prairie sites. For example, the native grass blue grama (Bouteloua gracilis) was found at 25 sites in 1984 and only 13 in 2007, prairie Junegrass (Koeleria macrantha) was at 24 sites in 1984 and 9 in 2007, threadleaf sedge (Carex filifolia) was at 20 sites in 1984 and 11 sites in 2007, and sun
sedge (Carex inops) was at 21 sites in 1984 and only 9 by 2007. Figure 2.2 further supports the fact that Kentucky bluegrass is replacing native graminoids, where before 1990 bluegrass wasn't even found at the site and by 2009 made up $84 \%$ of the annual production. The same native species showed clear reductions in total biomass post invasion versus prior to invasion. Before 1990 blue grama averaged $384 \mathrm{~kg} / \mathrm{ha}$ and by 2009 was only $24 \mathrm{~kg} / \mathrm{ha}$, prairie Junegrass averaged $252 \mathrm{~kg} / \mathrm{ha}$ prior to 1990 and was $6 \mathrm{~kg} / \mathrm{ha}$ by 1990, and sedge species combined were $166 \mathrm{~kg} / \mathrm{ha}$ prior to 1990 and only $4 \mathrm{~kg} /$ ha by 2009. The loss of these species in the plant community is also a loss of valuable functional forms important to ecosystem processes. For example, blue grama is one of the few common warm season grasses of the cool season dominated Northern Great Plains. Heitschmidt and Vermeire (2006) showed that blue grama can more than make up for losses of production due to spring drought, if precipitation returns during the blue grama's active growing period in July and August. The loss of this species due to Kentucky bluegrass invasion, may negatively impact the prairie's ability to maintain steady production due to variable weather patterns.

There is little argument that Kentucky bluegrass is probably the predominant grass of the Prairie Pothole Region today (Murphy \& Grant 2005b; Grant et al. 2009a; United States Department of Agriculture Natural Resources Conservation Service 2014). Alarmingly, the USDA (2014) noted that Kentucky bluegrass along with Canada bluegrass (Poa compressa) has spread throughout the Northern Great Plains including occupying the majority of private rangelands in North Dakota (82\%) and South Dakota (61\%). Setter and Lym (2013) showed over a $250 \%$ increase in Kentucky bluegrass in the seedbank of certain soils on federal lands in western North Dakota over a ten year period (Setter \& Lym 2013). This rate of increase shown by all of the aforementioned research arguably surpasses other invasive species within the region
including leafy spurge (Dunn 1979) and spotted knapweed (Sheley et al. 1998). The potential loss of species richness and species diversity becomes shocking. There is still a great deal unknown about the effects of this Kentucky bluegrass invasion, beyond the loss of species it is suspected that bluegrass may affect nitrogen cycling, pollinator diversity, and hydrology (Toledo et al. 2014b).

## The need for understanding

More attention must be focused by the ecological community on the invasion of Kentucky bluegrass in the PPR. Even though Kentucky bluegrass's presence has been increasing in the PPR, the mechanism of the invasion is not known since Kentucky bluegrass is usually not classified as an invasive species because of its economic value (Kaplan 2011b; United States Department of Agriculture \& Natural Resource Conservation Service 2014), therefore little research has been focused on this important aspect. The long lasting ecological impacts of Kentucky bluegrass invasion are also uncertain and need to be identified. The effect this invasion has on soil and community biology of the grasslands will be important information needed for future preservation of this important and endangered ecosystem (Samson \& Knopf 1994b). Kentucky bluegrass is now a major component of the PPR and what that means for biodiversity and community composition will be a key area of research in the upcoming decades.

## Literature Cited

Badh A, Akyuz A, Vocke G, Mullins B (2009) Impact of Climate Change on the Growing Seasons in Select Cities of North Dakota, United States of America. The International Journal of Climate Change: Impacts and Responses, 1, 105-117.

Bahm MA, Barnes TG, Jensen KC (2011) Herbicide and Fire Effects on Smooth Brome (Bromus inermis) and Kentucky Bluegrass (Poa pratensis) in Invaded Prairie Remnants. Invasive Plant Science and Management, 4, 189-197.

Bashaw EC, Funk RC (1987) Apomictic grasses. in Principles of Cultivar Development. Macmillan.

Buckley SB (1847) On the Grasses. American Journal of Agricultural Sciences, 1, 43-44.
Callaway RM (2000) Invasive Plants Versus Their New and Old Neighbors: A Mechanism for Exotic Invasion. Science, 290, 521-523.

Carrier L, Bort KS (1916) The History of Kentucky Bluegrass and White Clover in the United States. Journal of the American Society of Agronomy, 8, 256.

Casler MD, Duncan RR (2003) Kentucky bluegrass. in Turfgrass, Biology, Genetics, and Breeding. John Wiley \& Sons.

Daehler CC (2003) Performance Comparisons of Co-Occurring Native and Alien Invasive Plants: Implications for Conservation and Restoration. Annual Review of Ecology, Evolution, and Systematics, 34, 183-211.

DeKeyser ES, Meehan M, Clambey G, Krabbenhoft K (2013) Cool Season Invasive Grasses in Northern Great Plains Natural Areas. Natural Areas Journal, 33, 81-90.

Dunbar GS (1977) Henry Clay on Kentucky bluegrass, 1838. Agricultural History, 51, 520-523.
Dunn JH (2004) Turfgrass management in the transition zone. Hoboken, N.J: Wiley. 280 p
Edwards MJ, Ableiter JK (1942) Soil survey of McKenzie County, North Dakota (1933). Soil Survey Division, Bureau of Chemistry and Soils, United States Department of Agriculture.

Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and Anthropogenic Changes in Atmospheric $\mathrm{CO}_{2}$ Over the Last 1000 Years from Air in Antarctic Ice and Firn. Journal of Geophysical Research, 101, 4115-4128.

Etter AG (1951) How Kentucky Bluegrass Grows. Annals of the Missouri Botanical Garden, 38, 293.

Global Greenhouse Gas Reference Network: National Oceanic and Atmospheric Administration, ed. (2014) Trends in Atmospheric Carbon Dioxide. Global Greenhouse Gas Reference Network: NOAA

González-Moreno, P, Diez JM, Ibáñez I, Font X, Vilà M (2014) Plant Invasions are ContextDependent: Multiscale Effects of Climate, Human Activity and Habitat. Diversity and Distributions: A Journal of Conservation Biogeography, 20, 720-731.

Grant TA, Flanders-Wanner B, Shaffer TL, Murphy RK, Knutsen GA (2009) An Emerging Crisis across Northern Prairie Refuges: Prevalence of Invasive Plants and a Plan for Adaptive Management. Ecological Restorations, 27, 58-65.

Haydu J, Hodges A, Hall C (2006) Economic Impacts of the Turfgrass and Lawncare Industry in the United States. University of Florida IFAS Extension.

Holman J, Thill D (2005) Kentucky Bluegrass Growth, Development and Seed Production. University of Idaho Extension Bulletin 843. http://www.cals.uidaho.edu/edcomm/pdf/bul/bul0843.pdf.

Honig J, Bonos, Meyer SW (2010) Isolation and Characterization of 88 Polymorphic Microsatellite Markers in Kentucky Bluegrass (Poa pratensis L.). HortScience, 45, 17591763.

Huff D (2003) Kentucky bluegrass. Page 367 in Turfgrass, Biology, Genetics, and Breeding. John Wiley \& Sons.

Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem Carbon Loss with Woody Plant Invasion of Grasslands. Nature, 418, 623-626.

Kaplan D (2011) Review of Petition to Add Genetically Engineered Glyphosate-tolerant Kentucky bluegrass to the Federal Noxious Weed Regulations. United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine. https://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/ Kentucky-BG/KY-BG-FNW-PetitionReview.pdf.

Larson DL, Larson JL (2010) Control of One Invasive Plant Species Allows Exotic Grasses to Become Dominant in Northern Great Plains Grasslands. Biological Conservation, 143, 1901-1910.

Lowe E (1858) A Natural History of British Grasses. Groombridge. Pg. 245.
Murphy R, Grant T (2005) Land Management History and Floristics in Mixed-Grass Prairie, North Dakota, USA. Natural Areas Journal, 25, 351-358.

National Climate Data Center - National Oceanic and Atmospheric Administration (2014) Climate at a Glance - Time Series. National Climate Data Center - National Oceanic and Atmospheric Administration

National Oceanic and Atmospheric Administration (2014) Climate at a Glance: North Dakota. http://www.ncdc.noaa.gov/cag/time-series/us/32/00/pcp/ytd/12/18952014?base_prd=true\&firstbaseyear=1901\&lastbaseyear=2000\&trend=true\&trend_base=1 0\&firsttrendyear=1895\&lasttrendyear=2013

Piper C (1916) Forage Plants and Their Culture. Macmillan Company

Plues M (1867) British Grasses: An Introduction to the Study of the Gramineae of Great Britain and Ireland. L. Reeve. Pg. 307.

Poorter H, Navas ML (2003) Plant Growth and Competition at Elevated $\mathrm{CO}_{2}$ : On Winners, Losers and Functional Groups: Tansley review. New Phytologist, 157, 175-198.

Regional Climate Centers, National Oceanic and Atmospheric Administration, University of Nebraska Lincoln, eds. (2014) High Plains Regional Climate Center.

Buckley SB (1847) On the Grasses. American Journal of Agricultural Science, 43-44.
Samson F, Knopf F (1994) Prairie Conservation in North America. BioScience, 44, 418-421.
Schery R (1959) Bluegrass' Grassroots Empire. Economic Botany, 13, 75-84.
Shimek B (1909) Geology of Harrison and Monona Counties. Iowa Geology Survey v. 20
Shunk RA (1917) Plant Associations of Shenford and Owego Townships, Ransom County, ND. M.S. Thesis. University of North Dakota. Grand Forks.

Stang J, Dickson S, Turgeon J, Smith J, Weidner K (2004) Penn State Turf History. http://plantscience.psu.edu/research/centers/turf/about/history

Stevens OA (1950) Handbook of North Dakota Plants. Fargo, North Dakota Agricultural College. Pg. 324.

Toledo D, Sanderson M, Spaeth K, Hendrickson J, Printz J (2014) Extent of Kentucky Bluegrass and Its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the United States. Invasive Plant Science and Management, 7, 543-552.

Uchytil R (1993) Poa pratensis. In: Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.

United States Department of Agriculture, Natural Resource Conservation Service, eds. (2014) The PLANTS Database: Poa pratensis L. Kentucky bluegrass: Plants Profile.

Upham W (1884) Catalogue of the Flora of Minnesota : Including its Phaenogamous and Vascular Cryptogamous Plants, Indigenous, Naturalized, and Adventive. Minneapolis, Minnesota, Johnson, Smith \& Harrison.

Vinton MA, Goergen EM (2006) Plant-Soil Feedbacks Contribute to the Persistence of Bromus inermis in Tallgrass Prairie. Ecosystems, 9, 967-976.

Wand S, Midgley G, Jones M, Curtis P (1999) Responses of Wild C4 and C ${ }_{3}$ Grass (Poaceae) Species to Elevated Atmospheric $\mathrm{CO}_{2}$ Concentration: A Meta-Analytic Test of Current Theories and Perceptions. Global Change Biology, 723-741.

Wedin D, Tilman D (1990) Species Effects on Nitrogen Cycling: A Test with Perennial Grasses. Oecologia, 84, 433-441.

Wedin WF, Huff D (1996) Bluegrasses. in Cool-Season Forage Grasses. Agronomy
White SR, Tannas S, Bao T, Bennett JA, Bork EW, Cahill JF (2013) Using Structural Equation Modelling to Test the Passenger, Driver and Opportunist Concepts in a Poa pratensis Invasion. Oikos, 122, 377-384.

Williams R (1891) Poa pratensis Herbarium Specimen. North Dakota State University Herbarium.

Wright F, Upham W (1896) Greenland Icefields and Life in the North Atlantic: With a New Discussion of the Causes of the Ice Age. New York D. Appleton and Company.

# CHAPTER 3. THERE IS NO EVIDENCE OF GEOGRAPHICAL PATTERNING AMONG INVASIVE POA PRATENSIS L. POPULATIONS IN THE NORTHERN GREAT PLAINS ${ }^{\mathbf{2}}$ 

Dennhardt, LA, Tennefos, S, DeKeyser, ES, Travers, SE (2016) There is No Evidence of Geographical Patterning among Invasive Poa pratensis L. Populations in the Northern Great Plains. Weed Science, in press.


#### Abstract

The study of colonizing and dominant grass species is essential for prairie conservation efforts. We sought to answer how naturalized Poa pratensis L. in the northern Great Plains has become successful in the last twenty years despite its long history in the northern Great Plains. We tested for evidence of geographical differentiation using flow cytometry and microsatellite markers to ascertain the population genetics of Poa pratensis. Across all tested wild populations, high levels of genetic diversity $\left(\mathrm{H}_{\mathrm{S}}=0.823-0.906\right)$ were detected along with moderate levels of structure (Rhost=0.1263; p-value <0.001). Mantel tests of geographical patterns were not significant. Using clonal assignment we found two major clones which made up the majority of the tested wild populations. When we compared the wild individuals to pedigree cultivars, we found virtually no genetic overlap across all tests, which did not support our hypothesis of developed cultivars contributing to high genetic diversity in natural populations. Furthermore, DNA content tests indicated a narrow range in ploidy in wild populations compared to lawn cultivars further supporting a hypothesis of divergence between wild and pedigree cultivars.


[^1]These results indicate the recent invasion of Poa pratensis in the northern Great Plains was not because of adaptation or propagule pressure but rather an environmental shift has created an advantageous opening for Poa pratensis.

## Introduction

In the prairies of the northern Great Plains Poa pratensis L. (Kentucky bluegrass) cover is currently reported as dominant in many fragments of remaining prairie, which is a recent change having occurred in the last 20 years (Toledo et al. 2014a; United States Department of Agriculture Natural Resources Conservation Service 2014). Poa pratensis is a clonal, apomicitic, highly polyploid $\mathrm{C}_{3}$ grass from Europe, which most likely first arrived in the northern Great Plains (NGP) in the late 1800s (DeKeyser et al. 2015; Upham 1890; Uchytil 1993). It often forms nearly homogenous stands and replaces diverse plant communities (DeKeyser et al. 2009, 2013a; Toledo et al. 2014a). The recent evidence on the extent of distribution raises concerns about the future of prairie management (Cully et al. 2003; Bahm et al. 2011a; DeKeyser et al. 2013a). In one study, P. pratensis accounted for half of all non-native plant cover in the tallgrass prairie (Cully et al. 2003). A survey from 2014 revealed that in North and South Dakota 20-35\% of rangelands consisted of more than $50 \%$ soil surface cover of "invasive bluegrasses", which includes both Poa pratensis and Poa compressa L. (Canada bluegrass) (United States Department of Agriculture Natural Resources Conservation Service 2014). P. compressa is also a species that is introduced in the northern Great Plains and has been reported to hybridize with P. pratensis (Uchytil 1993).

It has long been thought that $P$. pratensis abundance is largely due to high levels of propagule pressure, or the cumulative release of a non-native species into an area where it did not originate, because of its commercial popularity (Uchytil 1993). Poa pratensis is frequently
seeded across lawns, golf courses, and grazing fields in temperate regions of North America and is preferred by managers because of its relatively low maintenance requirements, high forage value, and aesthetics (Uchytil 1993). The assumption that propagule pressure from the great variety of $P$. pratensis cultivars has accounted for the rise of $P$. pratensis in the NGP has never been tested in the NGP (Sakai et al. 2001). If recruitment of new individuals to wild populations is occurring through seed dispersal from planted populations, then a high level of genetic diversity is likely in wild populations of $P$. pratensis, since there are over 247 unique commercially available cultivars (Honig et al. 2010b). Additionally, we would expect evidence of geographical differentiation in the more heavily invaded regions of North Dakota. However, we know nearly nothing about the levels of genetic diversity in wild populations or whether the propagules are escaping frequently.

In addition to $P$. pratensis ' importance for conservation, it is also an advantageous invasive species to study because it is clonal and a polyploid. Polyploidy has long been assumed to be a feature of many colonizing species through events such as a genome duplication which may provide a fast lane for adaptation in some individuals through changes in gene interaction and transcription levels (Stebbins 1947; Soltis \& Soltis 1999; Beest et al. 2012). However, natural, internal barriers to gene flow may occur via incompatible ploidy levels for species that vary widely in chromosomal loads (Beest et al. 2012). It is possible that species circumvent this problem using clonal, asexual modes of reproduction, allopolyploidy, and/or apomixis (Stebbins 1941, 1947; Soltis \& Soltis 1999). All these mechanisms of reproduction can create a complicated population genetic structure, but one that is potentially advantageous to colonizing species (Baker 1965). The population genetics of apomictic, clonal, highly polyploid species are
important to understand so as to identify potentially noxious species before introduction and control their spread (Pappert et al. 2000; Lavergne \& Molofsky 2007; Merrill et al. 2012).

It is critical to understand the rapid dominance of $P$. pratensis because of the habitat destruction of prairies in the United States over the past century (Samson \& Knopf 1994b). In this paper, we attempt to answer three critical questions about the recent spread of $P$. pratensis in the NGP using molecular tools: (1) Is there evidence of adaptation or a different population in the more heavily invaded region of North Dakota? (2) Do we see evidence of lawn cultivars of $P$. pratensis escaping to wild populations? and (3) What is the genotypic and genetic diversity of P. pratensis? Our goal is to understand the gene flow of the invasive $P$. pratensis and to discern if the wild genotype has any genetic overlap with $P$. pratensis cultivars by using microsatellite markers and flow cytometry.

## Methods

## Microsatellite analysis

We collected samples during the summer of 2012 at eight National Wildlife Refuges (NWR; managed habitat for wildlife) in North and South Dakota (Table 3.1, Fig. 3.1). All eight of our sites are remnant prairie managed by the United States Fish and Wildlife Service (Table 3.1). At each NWR, we collected from two managed units. We randomly generated seven points in ArcGIS version 10 at each managed unit, laid out a 2.5 meter line at each point, and collected five samples along the line. If the point did not contain $P$. pratensis, that point was omitted and one of the additional sampling points generated by ArcGIS was used. If no $P$. pratensis was available at the predefined transects, $P$. pratensis was collected haphazardly at the site as near to the point as possible. Each sample was an $8-12 \mathrm{~cm}$ blade of grass and each sample used in the final analysis was at least 8 m apart from any other sample. Managed units were from 70 to 7 km
away from each other. We did not treat these as a form of subsampling since we were trying to detect clonal character across a NWR. We stored samples in a 1.5 mL microcentrifuge tube filled halfway with silica gel for desiccation. After isolating DNA we chose the samples with the highest quality DNA for the analysis. Ten samples were used in the final analysis for each NWR.


Figure 3.1. Location of sampling sites in North Dakota, South Dakota, and Minnesota. In 2012 we collected samples for the microsatellite analysis and in 2013 we collected samples for flow cytometry analysis.

Table 3.1. Location of the 19 sites where P. pratensis was sampled in 2012 and 2013. Codes are used to refer to sites in other table and figures. Data provided by the United States Fish and Wildlife Service (USFWS). Other acronyms in the table are National Wildlife Refuge (NWR), Wildlife Management District (WMD), and Waterfowl Production Area (WPA).

| Code | Site | Year(s) sampled | Prairie type | Latitude | Longitude |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 | Souris River Basin Complex: J. Clark Salyer NWR: GLT Plot A | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 48.773 | -100.879 |
| LW3 | Lostwood Complex: Mountrail County WPA: Coteau Prairie - G2 West half | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 48.685 | -102.651 |
| LW2 | Lostwood Complex: Burke County WPA: Swanson | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 48.583 | -103.627 |
| SR1 | Souris River Basin Complex: Upper Souris NWR: HB-24 Ekert Ranch South | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 48.464 | -101.566 |
| DL | Devils Lake WMD: Grand Forks County WPA: Mekinock | 2013 | Tallgrass | 47.971 | -97.335 |
| McH | Camp Grafton South: McHenry ND | 2013 | Tallgrass | 47.703 | -98.666 |
| AW1 | Arrowwood Complex: Arrowwood NWR: G14 Pasture $1 \& 2$ | 2012 | Mixed | 47.214 | -98.864 |
| AW2 | Arrowwood Complex: Arrowwood NWR: G26 Paddocks 1, 2, 3 \& 4 | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 47.187 | -98.788 |
| BL | Bluestem Prairie Scientific and Natural Area | 2013 | Tallgrass | 46.85 | -96.48 |
| TW2 | Tewaukon WMD: Sargent Country WPA: Gainor Unit B | 2012 | Tallgrass | 46.231 | -97.385 |
| TW1 | Tewaukon WMD: Sargent Country WPA: Krause | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Tallgrass | 46.019 | -97.347 |
| SL1 | Sand Lake Complex: Campbell County WPA: Cooper North | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 45.706 | -99.839 |
| SL2 | Sand Lake Complex: Mcpherson County WPA: Charley-Harley | 2012 | Mixed | 45.682 | -99.173 |
| HY3 | Huron WMD: Hyde County WPA: Cowan Unit 4 | 2012 | Mixed | 44.426 | -99.486 |
| HY1 | Huron WMD: Hyde County WPA: Cowan Unit 6 | 2012 | Mixed | 44.409 | -99.518 |
| MD2 | Madison WMD: Miner County WPA: Hepner WPA | 2012 | Tallgrass | 44.015 | -97.624 |
| MD1 | Madison WMD: Minnehaha County WPA: Buffalo Lake 80 | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Tallgrass | 43.824 | -97.066 |
| LA1 | Lake Andes NWR: Douglas County WPA: Denning | $\begin{gathered} 2012 \& \\ 2013 \end{gathered}$ | Mixed | 43.346 | -98.534 |
| LA2 | Lake Andes NWR: Charles Mix County WPA: Trout | 2012 | Mixed | 43.321 | -98.553 |

In order to compare wild populations of $P$. pratensis with pedigree cultivars, we analyzed the genetic fingerprints of wild and greenhouse grown cultivars of $P$. pratensis. We planted
common cultivars of lawn $P$. pratensis, obtained from the Seed Superstore
(https://www.seedsuperstore.com/, Buffalo, New York), in a greenhouse in $8 \times 8 \mathrm{~cm}$ pots using standard potting soil (Miracle-Gro © Moisture Control ® Potting Mix). Our cultivars represent the "Compact," "Compact-America," and "Midnight" clades out of the seven possible $P$. pratensis phylogenetic groups (Honig et al. 2012; Brett Young 2014). The Midnight clade contains "Award," and "Nuglade," the Compact clade contains, "Bewitched," and the CompactAmerica clade contains "Bedazzled." These three groups are commonly used as lawn grasses, but not as pasture grasses. We were attempting to detect a cultivar stock in naturalized populations, which is why we chose three pedigree phylogenetic groups.

Leaf samples were crushed in their microcentrifuge tubes with a grinding stick after adding a small volume of liquid nitrogen. We isolated the nuclear DNA using a DNeasy Plant Mini Kit (Qiagen©) extending the last incubation time in the protocol to 15 minutes to increase DNA yield (Qiagen 2012). The ten microsatellite primer pairs we used were identified for $P$. pratensis by Honig et al. 2010. In order to label amplified fragments we used the three primer CAG-tag of Oetting et al., 1995 whereby a CAG-specific tag is added to the $5^{\prime}$ end of the forward primer rather than the M13 label (Oetting et al. 1995; Ross et al. 2013). Before initial primer screening, we entered the 88 primer pairs from Honigh et al., 2010 with the CAG-tag in OligoCalc (http://www.basic.northwestern.edu/biotools/oligocalc.html) in order to choose candidates that did not form hairpins (Kibbe 2007). The screening narrowed the potential primers to 26 pairs. We used six cultivars of $P$. pratensis and 10 wild samples from McHenry, ND collected in the fall of 2011 to further screen primers. The Plant-Microbe Genomics Facility at Ohio State University ran the 26 primer pairs on the 16 P. pratensis individuals using a 3730 DNA Analyzer (Applied Biosystems, Inc.) and recommended 10 primer pairs that consistently
amplified on the DNA Analyzer (Table 3.2). In order to test whether the markers were truly neutral, we conducted a BLAST search for primer sequences against records from all known life forms. All hits except for HM136764 produced no significant results. HM136764 produced hits on a number of grass species for the acetyltransferase protein feature, which is unlikely to be under selection.

Table 3.2 Primers used in analysis. Repeat motif represents the repetitive sequence, size range is the allele size range in base pairs, and the range is the range in polymorphism information content values for alleles (Honig et al. 2010b).

| Poa pratensis primers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| GenBank | Primer Sequence ( $5^{\prime}$ - 3') | Repeat motif | Size Range | Range |
| HM136689 | F: GCCGTAAATAGTGGAGAAGAC | (CT)21 | 142-275 | 0.01-0.50 |
|  | R: AAAATCCTGACTGTTGGAGAC |  |  |  |
| HM136697 | F: CCAGCACATCTACGAGCAC | (CT) 13 | 272-322 | 0.01-.48 |
|  | R: TTCGGAAGAACTTGATTTGG |  |  |  |
| HM136706 | F: GCACCGTGGACAAAGTTATT | (CT) 17 | 244-335 | 0.01-0.41 |
|  | R: AGGGAAGGATGACATCAACA |  |  |  |
| HM136712 | F: ATCGTCACGGGGAGAATC | (CT) 37 | 187-317 | 0.01-0.50 |
|  | R: AACTCCTGTCGCTGCGTA |  |  |  |
| HM136723 | F: CACTAAAAGCCAAACCACGA | (GA) $13 \mathrm{AA}(\mathrm{GA}) 5$ | 179-365 | 0.01-0.50 |
|  | R: AAATGGTAGCAGGAGATGGA |  |  |  |
| HM136729 | F: CCCCAAATCCCTACTCAAAT | (GA)19 | 274-353 | 0.01-0.50 |
|  | R: GATATGGACAACCACCATGC |  |  |  |
| HM136764 | F: GTTCTTGGGTAGTGTGCTGTAT | CAGA(CA) 13 | 164-246 | 0.01-0.46 |
|  | R: CGTGTGAATCATTGCCTAAC |  |  |  |
| HM136746 | F: GAGACCCAAAAATCGTCCTC | (CT) 18 | 285-342 | 0.01-0.50 |
|  | R: CGTCTCTTCGTTTGAGATGG |  |  |  |
| HM136769 | F: GCCGCTCTCTTGTGTCATT | (GT)29 | 132-241 | 0.01-0.50 |
|  | R: CGGGTAAGGTTTCTGCTTG |  |  |  |
| HM136748 | F: TGAGGAGTTGCTCGTCTAGG | (GA)26 | 240-365 | 0.01-0.42 |
|  | R: TCTGATGCAGACTTGGAACA |  |  |  |

All DNA was diluted to a concentration level of $5 \mathrm{ng} / \mathrm{uL}$ and 4 uL were added to each PCR reaction. Amplifications were performed in 26uL quantities containing 1 X Taq PCR buffer, $2.2 \mathrm{mM} \mathrm{MgCl} 2,0.3 \mathrm{mM}$ each dNTP, 1 U Taq DNA polymerase, 5 pmol forward primer with CAG addition, 10 pmol reverse primer, and 10 pmol forward florescent dye-labeled CAG primer (PET). Our thermacycler parameters were $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 30 sec using step down by $0.5^{\circ} \mathrm{C}$, and $72^{\circ} \mathrm{C}$ for 30 s for 16 cycles, then $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ for 30 s for 24 cycles. We used the GoTaq® Flexi DNA Polymerase kit for PCR reactions and ordered our primers from Life Technologie®s. Only PCR products with high sizing quality (SQ) levels of
1.0 determined by GeneMapper were not sent in multiple times (192 of the 900), the rest were sent in twice for insurance of proper allele calls which is one way to handle ambiguous alleles and stutter. Many techniques for assessing polyploid alleles have been recommended in recent years (Pfeiffer et al. 2011; Narayan et al. 2015). We chose to send in ambiguous PCR products twice on difficult calls so as not to lose the resolution that microsatellite markers provide by using binary matrices (Pfeiffer et al. 2011).

Initial fragment analysis was conducted by the Plant-Microbe Genomics Facility at Ohio State University (http://pmgf.osu.edu/). Inconsistent peaks between the same sample at a single locus were judged by two criteria (1) consistency between other allele peaks amongst other samples at that locus and (2) an electropherogram peak height of at least 1000. If one or both of the criteria were met then the allele peak was accepted. Across all samples sent in twice there were 1363 instances of an allele matching and 561 instances of a new peak read detected. Out of the 1879 PCR products sent in, 144 returned no results.

We tested genetic differentiation amongst sample sites by calculating pairwise Rhost values using 5000 permutations with the program SPAGeDi v. 1.3a (Ronfort et al. 1998; Hardy \& Vekemans 2002). We chose to use Rhost because it calculates population differentiation with a correlation approach independent of ploidy level, selfing rate, and type of inheritance instead of the infinite allele model of $\mathrm{F}_{\text {ST }}$ (Dufresne et al. 2014). The ambiguous chromosome copy numbers in our data would violate the assumptions of $\mathrm{F}_{\mathrm{ST}}$ and $\mathrm{G}_{\mathrm{ST}}$ values (Ronfort et al. 1998; Dufresne et al. 2014). Computation of inbreeding coefficients were corrected for allele dosage and executed in Genodive by jackknifing over loci (Nei 1978; Meirmans \& Van Tienderen 2004). The observed heterozygosity $\left(\mathrm{H}_{\mathrm{O}}\right)$ value was modified to reflect the "gametic heterozygosity" or the likelihood of randomly drawing a different allele from within an
individual as is typical with polyploids (Moody et al. 1993; Meirmans \& Van Tienderen 2004). We created a principal coordinate analysis (PCoA) to visualize sample genetic structuring using Bruvo's distance model in Polysat, which is a distance matrix acceptable for individuals with unknown allele dosages (Bruvo et al. 2004; Clark \& Jasieniuk 2011). Bruvo's distance matrix takes into account mutational distance between alleles at a locus by calculating the probability of mutation from one allele to another. The matrix also creates virtual alleles for those genotypes with unequal allele copy numbers at a single locus, thus bypassing the need to know copy number (Bruvo et al. 2004; Clark \& Jasieniuk 2011). In order to test spatial and population correlations we conducted a Mantel test in Genodive using 1000 permutations and Mantel's r . Additonally, we tested whether predominant wind direction in June (when P. pratensis) is in flower could account for gene flow by running a separate mantel test on wind direction and bearing (Appendix B).

Because polyploid clones may have a slightly different PCR product because of scoring errors, we used the adapted method of Douhovikoff and Dodd (2003) and Meirmans and Tienderen (2004) described in Zhang et al., 2010. We estimated genotypic diversity using Genodive (Meirmans \& Van Tienderen 2004). We first assigned clones using a stepwise mutation model where the absence of data was counted as one mutation step. We chose a threshold representing the maximum distance among samples from the same genet and the minimum distance among samples from different related genets (Douhovnikoff \& Dodd 2003; Zhang et al. 2010). This is executed by using a bimodal selection method where the point between the two peaks is chosen for a threshold (supplementary material, (Arnaud-Haond et al. 2007)). We then tested for the probability of finding the observed clonal diversity using the corrected Nei's diversity index, 999 permutations, and randomized alleles over individuals
within the population. We manually calculated $\mathrm{G} / \mathrm{N}$, where $\mathrm{G}=$ number of genotypes and $\mathrm{N}=$ population size. We displayed the clonal diversity using a histogram in ggplot2 (Wickham 2009).

## Flow cytometry

Plant samples for flow cytometry analysis were collected in the summer of 2013 (Fig.
3.1). We visited 12 sites across Minnesota, North Dakota, and South Dakota (Fig. 3.1 and Table 3.1). At each site, ten plant samples, at least ten meters apart, were randomly collected. We harvested $4 \times 4 \mathrm{~cm}$ patches of $P$. pratensis and placed them in equally sized pots. Collections were brought back to NDSU and planted in 10 cm diameter pots filled with Miracle-Gro ${ }^{\circledR}$ Moisture Control ® Potting Soil. Plants were maintained for two months in the greenhouse at the NDSU campus prior to flow cytometry analysis. We analyzed 20 of the 120 plants, because many died off following a greenhouse malfunction. A month before analysis, we planted seeds of Glycine max (L.) Merr. with known DNA content as a standard (Doležel et al. 2007).

Two weeks prior to analysis, propidium iodine (Sigma-Aldrich®), RNase (SigmaAdlrich ${ }^{\circledR}$ ), and Galbraith's buffer were prepared, vacuum-filtered through a $0.22-\mu \mathrm{m}$ mesh to remove any contaminants, and stored at $-20^{\circ} \mathrm{C}$. Approximately 60 mg of plant material per sample was measured into separate $50 \times 15 \mathrm{~mm}$ petri dishes. In order to break open cells and reveal chromosomes for analysis, one mL of ice-cold Galbraith's buffer ( $45 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ (SigmaAlrich ${ }^{\circledR}$ ), 20 mM of MOPS (Sigma-Aldrich ${ }^{\circledR}$ ), 30 mM sodium citrate (sodium citrate tribasic dihydrate Sigma-Aldrich®), $0.1 \%$ Triton X-100 (Sigma Aldrich®, adjusted to the pH to 7.0 ) was added to the material and chopped quickly using an autoclaved razor blade for two minutes. The resulting solution was pipetted slowly two times and squeezed through a $40 \mu \mathrm{~m}$ nylon mesh cell strainer into a 50 mL conical tube (Doležel et al. 2007). Within an hour, we stained the DNA
using $500 \mu \mathrm{~L}$ of the $1 \mathrm{mg} \mathrm{ml}^{-1}$ propidium iodine and dissipated RNA with $500 \mu \mathrm{~L}$ of the 1 mg $\mathrm{ml}^{-1}$ RNase solutions (Doležel et al. 2007). The solutions were incubated on ice for at least a half hour, aliquoted into microcentrifuge tubes, and stored on ice for no longer than two hours, until all samples were ready for analysis (Doležel et al. 2007). Half of the analyses were done on one day and the other half on the following.

Samples were run on a BD Accuri C6 Flow Cytometer (BD biosciences ${ }^{\mathrm{TM}}$ ) according to the manufacturer's instruction ("BD Accuri C6 Flow Cytometer Instrument Manual" 2012). Measurements at both FL2-A and FL3-A fluorescence were taken for 50,000 iterations and were only accepted if the coefficient of variation was at or below 5\%. At the beginning of each run, at least two standards were run independently, followed by the $P$. pratensis samples. Although plants did not have an internal standardization, three ramets from each genotype were run independently three times. Estimations of DNA content were calculated using the soybean standardization and the 2C DNA content measurement provided with the sample (Doležel et al. 2007). We were able to estimate genome content from Eaton et al. 2004, in which they ran flow cytometry and conducted chromosomal counts on Poa pratensis (Eaton et al. 2004). Our methodology aligned with other P. pratensis flow cytometry protocols (Eaton et al. 2004; Raggi et al. 2015). Cultivar comparisons were done using previously published flow cytometry data (Eaton et al. 2004). Flow cytometry data were analyzed in R using the Agricolae package (Felip de Mendiburu 2015). An F-test on variance was used to compare the lawn varieties and wild plant samples.

## Results

## Genetic diversity

Wild populations of $P$. pratensis exhibited high levels of genetic diversity, but were heterozygote deficient at most populations. Our adjusted total expected heterozygosity was 0.898 , indicating that expected heterozygosity within subpopulations ( $\mathrm{H}_{s}$ ) was only higher at Sandlake and Arrowwood (Table 3.3). The Ho values (0.763-0.870) across populations were lower than the $\mathrm{H}_{\mathrm{S}}$ values (0.823-0.906) at all but one wild site (Table 3.3) (Nei 1978). The two populations with the highest average number of alleles (13) were Arrowwood and Sandlake, which also had high $H_{O}$ values of 0.8 and 0.78 respectively (Table 3.3 ). The wild populations' inbreeding coefficients ( $\mathrm{G}_{\text {IS }}$ ) were positive, except for Hyde (Table 3.3). The effective number of alleles (Eff. Num.) was lowest for the lawn cultivars and the Hyde populations (Table 3.3).

Table 3.3. Genetic diversity of all populations. Average number of alleles (Num.), effective number of alleles (Eff. Num.), observed heterozygosity (Ho), heterozygosity within populations $\left(\mathrm{H}_{S}\right)$, inbreeding coefficient $\left(\mathrm{G}_{\text {IS }}\right)$, and the one sided p -value of the GIS value calculated in Genodive and corrected for unknown allele dosage.

| Population | Num | Eff. Num | HO | HS | Ht | Gis | p-value |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lostwood, ND | 10.8 | 7.053 | 0.763 | 0.879 | 0.879 | 0.133 | 0.991 |
| Souris, ND | 11.6 | 7.614 | 0.78 | 0.882 | 0.882 | 0.116 | 0.995 |
| Arrowwood, ND | 11.9 | 9.051 | 0.8 | 0.906 | 0.906 | 0.117 | 0.994 |
| Tewaukon, ND | 9.4 | 6.171 | 0.78 | 0.838 | 0.838 | 0.069 | 1.001 |
| Sandlake SD | 12 | 8.908 | 0.78 | 0.9 | 0.9 | 0.134 | 0.96 |
| Hyde, SD | 7.8 | 5.079 | 0.81 | 0.807 | 0.807 | -0.003 | 0.001 |
| Madison, SD | 11.4 | 7.645 | 0.708 | 0.883 | 0.883 | 0.198 | 0.535 |
| Lake Andes, SD | 8.6 | 6.062 | 0.77 | 0.825 | 0.825 | 0.067 | 1.001 |
| Commercial varieties | 7.2 | 5.257 | 0.87 | 0.823 | 0.823 | -0.057 | 0.001 |

## Genetic divergence among populations

Our results suggest some divergence among wild populations. The overall Rhost value along with the $\mathrm{F}_{S T}$ and $\mathrm{G}_{\text {ST }}$ values were significant $\left(\operatorname{RhosT}=0.1263 ; \mathrm{F}_{\text {ST }}=0.0723\right.$; p-value $<0.001 \mathrm{p}$ value $<0.001 ; \mathrm{G}_{\text {ST }}=0.0696$ p-value $<0.001$ ). A majority of pairwise comparisons between populations (27 of 36) yielded significant differences (Table 3.4). The Mantel test for isolation by distance was not significant ( $\mathrm{r}=-0.036, \mathrm{p}=0.435$ ). Additionally, there was no significant correlation between the wind direction and bearing coefficient matrix on both tests. Respectively, the pairwise RhoST values in both Mantel tests were not significant (r=-0.215, $\mathrm{p}=0.136$; controlling for distance $\mathrm{r}=-0.216, \mathrm{p}=0.591$ ).

Among the wild populations there is little discernible differentiation in the PCoA plot, with some clustering between Hyde and Lake Andes, which are both South Dakota populations (Fig. 3.2). The wild samples were significantly different from each other in DNA content ( $\mathrm{F}=17.61$, p -value $<0.001$ ), although, compared to commercial varieties, wild populations have a narrow range of DNA content (Table 3.4; Fig. 3.3).

Lawn cultivars were distinct from the wild populations in the PCoA plot, pairwise Rhost values, and DNA content analyses (Figs. 3.2 \& 3.3; Table 3.5). In the PCoA plot, the cultivars were the only group that clearly separated from all other samples (Fig. 3.2). The pairwise Rhost values were all significantly different from each sampled site (Table 3.5). DNA content of wild P. pratensis, had a narrower range than DNA content of cultivars (Fig. 3.3). Our flow cytometry results yielded ranges from $6.52 \pm 0.127$ to $10.47 \pm 0.188$ 2C DNA content (Table 3.4), which is much more constricted compared to commercial varieties (Huff \& Bara 1993; Barcaccia et al. 1997; Eaton et al. 2004). An Analysis of Variance of DNA content revealed significant differences between the wild and commercial groups $\left(\mathrm{F}=9.347\right.$, p -value $\left.=8.314 \times 10^{-6}\right)$.

The threshold chosen for our clone assignment was a genetic distance of 55 out of 323 based on the bimodal histogram (Arnaud-Haond et al. 2007) Figure 3.1). Overall, the wild individuals were not significantly clonal (diversity observed $=0.889$, diversity expected $=0.942$, $\mathrm{p}=0.132$ ) and consisted of 39 genotypes out of our 80 wild individuals (Fig. 3.4). We found three populations that were significantly clonal—Hyde, Souris, and Madison. Two of the genotypes (genotype one and four) represented nearly half the samples (Fig. 3.4). Genotype one represented $17(21 \%)$ of the wild samples and genotype 4 represented $21(26 \%)$ of the wild samples. Our overall uncorrected $\mathrm{G} / \mathrm{N}$ value was 0.49 and populations ranged from 0.50-0.90 (Table 3.6).

Table 3.4 Flow cytometry results showing mean estimated DNA content in picograms per uL. Samples are listed from highest to lowest latitude. Each sample was run three times using three different leaf tissues.

| Sample | Mean pictograms per uL | Standard error |
| :---: | :---: | :---: |
| SR2, ND | 7.27 | 0.12 |
| LW3, ND | 8.31 | 0.04 |
| SR1, ND \#1 | 7.88 | 0.09 |
| SR1, ND \#2 | 7.81 | 0.08 |
| DL, ND | 7.58 | 0.13 |
| McH, ND | 7.20 | 0.33 |
| AW2, ND \#1 | 7.66 | 0.08 |
| AW2, ND \#2 | 10.47 | 0.11 |
| BL, MN \#1 | 8.65 | 0.06 |
| BL, MN \#2 | 7.45 | 0.04 |
| BL, MN \#3 | 7.25 | 0.42 |
| TW1, ND \#1 | 7.45 | 0.22 |
| TW1, ND \#2 | 8.16 | 0.26 |
| SL1, SD \#1 | 7.59 | 0.23 |
| SL1, SD \#2 | 7.55 | 0.09 |
| MD1, SD \#1 | 6.35 | 0.07 |
| MD1, SD \#2 | 7.12 | 0.51 |
| MD1, SD \#3 | 9.08 | 0.05 |
| LA2, SD \#1 | 7.68 | 0.09 |
| LA2, SD \#2 | 7.55 | 0.14 |



Figure 3.2. Principal coordinate analysis using Bruvo distance matrix. Each symbol represents an individual plant.

Mean plant 2C DNA Content Values between commercial and wild plants


Average plant DNA content values
Figure 3.3. Boxplot depicting the mean picogram DNA content (picograms/uL) for both wild samples and commercial varieties.

Table 3．5．Pairwise RhoST values based on 5000 permutations calculated in SpageDi．These values show whether populations have significantly diverged from one another．RhoST was used because it uses the step－wise mutation model．

| Rho and p－values |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Populations | $\begin{aligned} & \hat{Z} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hat{z} \\ & \text { in } \\ & \text { in } \\ & 0 \end{aligned}$ |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & \text { 寺 } \\ & \text { 寺 } \end{aligned}$ |  | 0 0 0 0 0 0 0 $=0$ | $\begin{aligned} & \text { 品 } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Lostwood，ND |  | 0．067＊ | 0.030 | 0．128＊ | 0．068＊ | 0．131＊ | 0.051 | 0．089＊ | 0．247＊ |
| Souris，ND | 0.008 |  | 0.023 | 0．083＊ | 0.029 | 0．145＊ | 0.038 | 0．086＊ | 0．243＊ |
| Arrowwood，ND | 0.229 | 0.312 |  | 0．072＊ | 0.026 | 0．101＊ | 0.031 | 0．074＊ | 0．203＊ |
| Tewaukon，ND | 0.000 | 0.006 | 0.009 |  | 0．091＊ | 0．224＊ | 0．061＊ | 0．168＊ | 0．263＊ |
| Sandlake，SD | 0.011 | 0.188 | 0.249 | 0.001 |  | 0．142＊ | 0.037 | 0．079＊ | 0．240＊ |
| Hyde，SD | 0.014 | 0.005 | 0.036 | 0.001 | 0.003 |  | 0．152＊ | 0.030 | 0．354＊ |
| Madison，SD | 0.053 | 0.138 | 0.215 | 0.043 | 0.135 | 0.003 |  | 0．144＊ | 0．210＊ |
| Lake Andes，SD | 0.033 | 0.019 | 0.041 | 0.001 | 0.030 | 0.392 | 0.002 |  | 0．326＊ |
| Common Cultivars | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |

＊A p－value of＜0．05．P－values are listed below black bars．

Table 3.6. The genotypic diversity of all wild populations. The $\mathrm{G} / \mathrm{N}$ value is uncorrected while the diversity observed and expected were calculated in Genodive by randomizing alleles over individuals within populations using Nei's diversity index (Nei 1978; Meirmans \& Van Tienderen 2004).

| Population | $\mathrm{G} / \mathrm{N}$ | Observed <br> diversity | Expected <br> diversity | p -value |
| :--- | :---: | :---: | :---: | :---: |
| Lostwood, ND | 0.80 | 0.933 | 0.947 | 0.397 |
| Souris, ND | 0.70 | 0.911 | 0.98 | 0.034 |
| Arrowwood, ND | 0.90 | 0.978 | 0.939 | 0.693 |
| Tewaukon, ND | 0.50 | 0.667 | 0.874 | 0.123 |
| Sandlake, SD | 0.90 | 0.978 | 0.96 | 0.506 |
| Hyde, SD | 0.50 | 0.756 | 0.931 | 0.045 |
| Madison, SD | 0.50 | 0.8 | 0.986 | 0.008 |
| Lake Andes, SD | 0.60 | 0.667 | 0.893 | 0.094 |
| Overall | 0.49 | 0.889 | 0.942 | 0.132 |



Figure 3.4. Histogram of clonal assignment and frequency of each clone. Clones were determined in Genodive using a step-wise mutation model. Clones 2 and 4 make up the majority of the individuals sampled.

## Discussion

We found no evidence of local adaptation as evidenced by our lack of geographic distinctiveness. Although some populations of $P$. pratensis were genetically distinguishable, Mantel tests of both inter-individual distance and wind direction produced no significant patterns. One possible explanation is that populations that were not significantly different from one another are from similar source populations rather than connected by gene flow.

Our clonal assignment provided evidence that some populations were clonal (three of eight) (Table 3.6). Our histogram of clones indicated that there were two predominant clones throughout the region, both of which were distributed throughout the sampled area (Fig. 3.4). A possible explanation for the detection of two clones is that from either a subspecies and/or two separate founder populations. For example, one subspecies present in the NGP is Poa pratensis subspp. pratensis and is defined by the USDA as a noxious subspecies (United States Department of Agriculture \& Natural Resource Conservation Service 2014). We also know that there are many sources of $P$. pratensis in the NGP and it is possible that at least one of the clones of $P$. pratensis came from planted $P$. pratensis used for pasture grass. Although recently $P$. pratensis is rarely planted for pasture grass in the Dakotas. Individuals falling outside of clones 2 and 4 could be the result of random mutations, escaped untested cultivars, or hybridization with other species of Poa such as P. compressa (Uchytill). Our G/N numbers were high, which is likely a combined result of small population size and distance between samples in each population (Table 3.6). Again, the $\mathrm{G} / \mathrm{N}$ value was not corrected, but our Nei's genotypic diversity was adjusted making it a more reliable indicator (Meirmans \& Van Tienderen 2004).

In contrast to many studies where clonal species are detected along with a negative inbreeding coefficient and low genotypic diversity, we found positive inbreeding coefficients in
all but one population (Pappert et al. 2000; Balloux et al. 2003; Stoeckel et al. 2006; Prugnolle \& De Meeûs 2008). There are two explanations for these positive inbreeding coefficients. The first is the common challenge of proper allele calls in polyploids (Pfeiffer et al. 2011; Dufresne et al. 2014; Narayan et al. 2015). We may have overestimated genetic and genotypic diversity because of the ambiguous copies of each allele present in an individual. A second possible explanation for positive inbreeding coefficients is that a small sample size can lead to estimates of heterozygote deficiency. It is likely that our 10 samples per NWR where each sample was a great distance from each other lead to positive GIS values in most population. It should be noted that we did detect a negative $\mathrm{G}_{\text {IS }}$ value in the Hyde population, which was also found to be clonal by our clonal assignment analysis.

The genetic (allelic) diversity was high compared to diploid plant species but typical for other polyploid plants with similar chromosome copy number (Ashley et al. 2003; Little 2005) Table 3.3). Poa pratensis has been present in the NGP since 1890, which is a long history for an introduced species. Additionally it has likely been introduced many times. In clonal kudzu, the authors found positive inbreeding coefficients and more genotypic diversity than most other clonal species (Pappert et al. 2000). It is possible that the starting genetic bank of $P$. pratensis lent a higher level of genotypic and genetic diversity than most clonal species because of multiple introductions and/or its long history in the NGP. As mentioned earlier, this may be why we detected two major clones. Finally, the fact that $P$. pratensis has seven copies of its chromosomes, means that genetic diversity should be higher to begin with which is why our $\mathrm{H}_{\mathrm{O}}$ and $\mathrm{H}_{\mathrm{S}}$ values are so high (Kirk et al. 2011). The genotypic diversity is comparable to that found in other polyploid invasive studies (Andreakis et al. 2009).

Despite the common use of $P$. pratensis in urban settings, we conclude that populations within regional natural areas are divergent from the tested lawn cultivars. In the PCoA, cultivars were distinct - the PCoA completely separated cultivated from naturalized individuals. From the PCoA, it is apparent that the level of genetic diversity is very limited among the tested lawn cultivars compared to the wild individuals. The limited overall genetic variation could be a result of the more selective needs of commercial breeders for desirable traits (Bashaw \& Funk 1987b); Fig. 3.3). Another indication of differentiation between naturalized and lawn cultivars is derived from the cellular DNA content data. Naturalized $P$. pratensis had a narrow range of DNA content among samples (6.35-10.47 2C DNA content) compared to commercial varieties (5.39-17.69 2C DNA content; Fig. 3.3; Table 3.4). Other researchers reached the same conclusion. In one study, researchers found that $\operatorname{trn}-L$, a chloroplast intron, contained mostly allele C in cultivated accessions while allele A was predominant in wild accessions of $P$. pratensis (Raggi et al. 2015). Additionally, our results align with other $P$. pratensis studies where clones and high levels of allelic diversity were detected along with wild individuals being different from the planted variety (Johnson et al. 2002; Honig et al. 2012; Bushman et al. 2014; Raggi et al. 2015).

Since we found no evidence of geographical patterning or escaped cultivars, it is unlikely the recent invasion of $P$. pratensis in the NGP is a result of adaptation. Even though there were high levels of genetic diversity, we conclude that the genetic diversity is likely attributed to $P$. pratensis being polyploid rather than propagule pressure. The invasive populations are most likely a result of an earlier introduction, which means the recent invasion is likely caused by an environmental shift opening a niche for $P$. pratensis. In conclusion, more research will be
needed to identify an environmental change that could have facilitated the propagation of Poa pratensis in the northern Great Plains.

## Literature Cited

Andreakis N, Kooistra WHCF, Procaccini G (2009) High Genetic Diversity and Connectivity in the Polyploid Invasive Seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, Explored with Microsatellite Alleles and Multilocus Genotypes. Molecular Ecology, 18, 212-226.

Arnaud-Haond S, Duarte CM, Alberto F, SerrãO EA (2007) Standardizing Methods to Address Clonality in Population Studies. Molecular Ecology, 16, 5115-5139.

Ashley MV, Wilk JA, Styan SMN et al. (2003) High Variability and Disomic Segregation of Microsatellites in the Octoploid Fragaria virginiana Mill. (Rosaceae). TAG Theoretical and Applied Genetics, 107, 1201-1207.

Bahm MA, Barnes TG, Jensen KC (2011) Herbicide and Fire Effects on Smooth Brome (Bromus inermis) and Kentucky Bluegrass (Poa pratensis) in Invaded Prairie Remnants. Invasive Plant Science and Management, 4, 189-197.

Baker HG (1965) Characteristics and Mode of Origin of Weeds. In: The genetics of colonizing species, pp. 147-172. Academic Press, New York, New York.

Balloux F, Lehmann L, Meeus T (2003) The Population Genetics of Clonal and Partially Clonal Diploids. Genetics, 164, 1635-1644.

Barcaccia G, Mazzucato A, Belardinelli A et al. (1997) Inheritance of Parental Genomes in Progenies of Poa pratensis L. from Sexual and Apomictic Genotypes as Assessed by RAPD Markers and Flow Cytometry. TAG Theoretical and Applied Genetics, 95, 516524.

Bashaw EC, Funk RC (1987) Apomictic Grasses. In: Principles of Cultivar Development. Macmillan.

BD Accuri C6 Flow Cytometer Instrument Manual (2012) BD Biosciences. https://www.bdbiosciences.com/documents/BD_Accuri_C6Flow_Cyto_Instrument_Man ual.pdf.

Beest M, Le Roux JJ, Richardson DM et al. (2012) The More the Better? The Role of Polyploidy in Facilitating Plant Invasions. Annals of Botany, 109, 19-45.

Brett Young (2014) 2014 Turfseed Reference Guide. http://www.brettyoung.ca/images/file/PTR-webfiles/turf-cat-sections/08\ BY\ 2014\ Turf\ Seed.pdf

Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A Simple Method for the Calculation of Microsatellite Genotype Distances Irrespective of Ploidy Level. Molecular ecology, 13, 2101-2106.

Bushman BS, Warnke SE, Amundsen KL, Combs KM, Johnson PG (2014) Molecular Markers Highlight Variation within and among Kentucky Bluegrass Varieties and Accessions. Crop Science, 0, 0.

Clark LV, Jasieniuk M (2011) POLYSAT: an R package for Polyploid Microsatellite Analysis: Computer Program Note. Molecular Ecology Resources, 11, 562-566.

Cully AC, Cully JF, Hiebert RD (2003) Invasion of Exotic Plant Species in Tallgrass Prairie Fragments. Conservation Biology, 17, 990-998.

DeKeyser S, Clambey G, Krabbenhoft K, Ostendorf J (2009) Are Changes in Species Composition on Central North Dakota Rangelands Due to Non-Use Management? Rangelands, 31, 16-19.

DeKeyser E, Dennhardt L, Hendrickson JR (In press) Kentucky bluegrass (Poa pratensis L.) Invasion in the Prairie Pothole Region: A Story of Rapid Dominance in an Endangered Ecosystem. Invasive Plant Science and Management.

DeKeyser ES, Meehan M, Clambey G, Krabbenhoft K (2013) Cool Season Invasive Grasses in Northern Great Plains Natural Areas. Natural Areas Journal, 33, 81-90.

Doležel J, Greilhuber J, Suda J (2007) Estimation of Nuclear DNA Content in Plants using Flow Cytometry. Nature Protocols, 2, 2233-2244.

Douhovnikoff V, Dodd RS (2003) Intra-Clonal Variation and a Similarity Threshold for Identification of Clones: Application to Salix exigua using AFLP Molecular Markers. Theoretical and applied genetics. Theoretische und angewandte Genetik, 106, 13071315.

Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent Progress and Challenges in Population Genetics of Polyploid Organisms: An Overview of Current State-of-the-Art Molecular and Statistical Tools. Molecular Ecology, 23, 40-69.

Eaton TD, Curley J, Williamson RC, Jung G (2004) Determination of the Level of Variation in Polyploidy among Kentucky Bluegrass Cultivars by Means of Flow Cytometry. Crop Science, 44, 2168.

Felip de Mendiburu (2015) Agricolae v. 1.2-2. http://tarwi.lamolina.edu.pe/~fmendiburu.
Hardy O, Vekemans X (2002) SPAGeDi: A Versatile Computer Program to Analyze Spatial Genetic Structure at the Individual or Population Levels. , 2, 618-620.

Honig J, Averello V, Bonos S, Meyer W (2012) Classification of Kentucky Bluegrass (Poa pratensis L.) Cultivars and Accessions Based on Microsatellite (Simple Sequence Repeat) Markers. HortScience, 47, 1356-1366.

Honig J, Bonos S, Meyer W (2010) Isolation and Characterization of 88 Polymorphic Microsatellite Markers in Kentucky Bluegrass (Poa pratensis L.). HortScience, 45, 17591763.

Huff D, Bara J (1993) Determining Genetic Origins of Aberrant Progeny from Facultative Apomictic Kentucky Bluegrass using a Combination of Flow Cytometry and SilverStained RAPD Markers. Theoretical and Applied Genetics, 87.

Johnson RC, Johnston WJ, Golob CT, Nelson MC, Soreng RJ (2002) Characterization of the USDA Poa pratensis Collection using RAPD Markers and Agronomic Descriptors. Genetic Resources and Crop Evolution, 49, 349-361.

Kibbe WA (2007) OligoCalc: An Online Oligonucleotide Properties Calculator. Nucleic acids research, 35, W43-46.

Kirk H, Paul J, Straka J, Freeland JR (2011) Long-Distance Dispersal and High Genetic Diversity are Implicated in the Invasive Spread of the Common Reed, Phragmites australis (Poaceae), in Northeastern North America. American Journal of Botany.

Lavergne S, Molofsky J (2007) Increased Genetic Variation and Evolutionary Potential Drive the Success of an Invasive Grass. Proceedings of the National Academy of Sciences, 104, 3883-3888.

Little TJ (2005) Genetic Diversity and Polyploidy in the Cosmopolitan Asexual Ostracod Cypris pubera. Journal of Plankton Research, 27, 1287-1293.

Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: Two Programs for the Analysis of Genetic Diversity of Asexual Organisms. Molecular Ecology Notes, 4, 792794.

Merrill KR, Meyer SE, Coleman CE (2012) Population Genetic Analysis of Bromus tectorum (Poaceae) Indicates Recent Range Expansion may be Facilitated by Specialist Genotypes. American Journal of Botany, 99, 529-537.

Moody ME, Mueller LD, Soltis DE (1993) Genetic Variation and Random Drift in Autotetraploid Populations. Genetics, 134, 649-657.

Narayan L, Dodd RS, O’Hara KL (2015) A Genotyping Protocol for Multiple Tissue Types from the Polyploid Tree Species Sequoia sempervirens (Cupressaceae). Applications in Plant Sciences, 3, 1400110.

Nei M (1978) Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics, 89, 583-590.

Oetting WS, Lee HK, Flanders DJ et al. (1995) Linkage Analysis with Multiplexed Short Tandem Repeat Polymorphisms using Infrared Fluorescence and M13 Tailed Primers. Genomics, 30, 450-458.

Pappert R, Hamrick JL, Donovan L (2000) Genetic Variation in Pueraria lobata (Fabaceae), an Introduced, Clonal, Invasive Plant of the Southeastern United States. American Journal of Botany, 87, 1240-1245.

Pfeiffer T, Roschanski AM, Pannell JR, Korbecka G, Schnittler M (2011) Characterization of Microsatellite Loci and Reliable Genotyping in a Polyploid Plant, Mercurialis perennis (Euphorbiaceae). Journal of Heredity, 102, 479-488.

Prugnolle F, De Meeûs T (2008) The Impact of Clonality on Parasite Population Genetic Structure. Parasite, 15, 455-457.

Qiagen (2012) DNeasy Plant Mini Kit Manual. http://www.qiagen.com/products/catalog/sample-technologies/dna-sample-technologies/genomic-dna/dneasy-plant-mini-kit\#resources

Raggi L, Bitocchi E, Russi Let al. (2015) Understanding Genetic Diversity and Population Structure of a Poa pratensis Worldwide Collection through Morphological, Nuclear and Chloroplast Diversity Analysis (M Prasad, Ed,). PLOS ONE, 10, e0124709.

Ronfort J, Jenczewski E, Bataillon T, Rousset F (1998) Analysis of Population Structure in Autotetraploid Species. Genetics, 150, 921-930.

Ross AA, Aldrich-Wolfe L, Lance S, Glenn T, Travers SE (2013) Microsatellite Markers in the Western Prairie Fringed Orchid, Platanthera praeclara (Orchidaceae). Applications in Plant Sciences, 1, 1200413.

Sakai AK, Allendorf FW, Holt JS et al. (2001) The Population Biology of Invasive Species. Annual Review of Ecology and Systematics, 32, 305-332.

Samson F, Knopf F (1994) Prairie Conservation in North America. BioScience, 44, 418-421.
Soltis DE, Soltis PS (1999) Polyploidy: Recurrent Formation and Genome Evolution. Trends in Ecology \& Evolution, 14, 348-352.

Stebbins GL (1941) Apomixis in the Angiosperms. Botanical Review, 7, 507-542.

Stebbins GL (1947) Types of Polyploids: Their Classification and Significance. In: Advances in Genetics, pp. 403-429. Elsevier.

Stoeckel S, Grange J, FernáNdez-Manjarres JF et al. (2006) Heterozygote Excess in a SelfIncompatible and Partially Clonal Forest Tree Species Prunus avium L: Negative FIS in Prunus avium L. Molecular Ecology, 15, 2109-2118.

Toledo D, Sanderson M, Spaeth K, Hendrickson J, Printz J (2014) Extent of Kentucky bluegrass and its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the USA. Invasive Plant Science and Management.

Uchytil R (1993) Poa pratensis. In: Fire Effects Information System.

United States Department of Agriculture, Natural Resource Conservation Service (Eds.) (2014) The PLANTS Database: Poa pratensis L. Kentucky bluegrass: Plants Profile.

United States Department of Agriculture Natural Resources Conservation Service (2014) National Resources Inventory Rangeland Resource Assessment.

Upham W (1890) Geographic Limits of Species of Plants in the Basin of the Red River of the North. Proceedings of the Boston Society of Natural History, XXV, 140-172.

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer New York. Zhang Y-Y, Zhang D-Y, Barrett SCH (2010) Genetic Uniformity Characterizes the Invasive Spread of Water Hyacinth (Eichhornia crassipes), a Clonal Aquatic Plant. Molecular Ecology, 19, 1774-1786.

## CHAPTER 4. POA PRATENSIS IS FACILIATED BY THREE NATIVE GRASSES IN SPECIES PAIR COMPETITION EXPERIMENTS


#### Abstract

Poa pratensis is an invasive cool-season grass in the eastern tallgrass and mixed grass portion of the Northern Great Plains. Although it has been well documented as an invasive species, why it has become so prolific in recent decades is unknown. I hypothesize that the competitive ability of $P$. pratensis facilitated the invasion. I tested this by pairing $P$. pratensis with three native species reported to be in decline after $P$. pratensis invades. I tested whether $P$. pratensis was competitive against Nassella viridula, Pascopyrum smithii, and Bouteloua gracilis in paired competition experiments using loamy soil in a greenhouse and an early foliage trim. I found that the three competitors facilitated Poa pratensis, but Poa pratensis was only slightly competitive against $N$. viridula. It is possible cutting back $P$. pratensis at the beginning of the experiment helped facilitate $P$. pratensis because it is an increaser under grazing conditions. Additionally, $N$. viridula was outcompeted by all species in the experiment and $P$. smithii was competitive against $N$. viridula and B. gracilis. This study indicates that one potential factor facilitating the invasion of $P$. pratensis in the Northern Great Plains may be improper grazing management and facilitation by other grass species.

\section*{Introduction}

Poa pratensis L. (Kentucky bluegrass) is a prolific invasive species that threatens conservation efforts in the tallgrass and mixed grass portion of the Northern Great Plains (United States Department of Agriculture Natural Resources Conservation Service 2014). There is evidence that Poa pratensis is negatively associated with grass biodiversity in those regions (Larson \& Larson 2010). Once P. pratensis becomes established and spreads, it can become a


major fraction of the prairie, sometimes to the point of a monoculture (O'Brien 2014). Many have suggested and inferred from this evidence that $P$. pratensis is a strong competitor (DeKeyser et al. 2013; Toledo et al. 2014), but there is limited research investigating its competitive ability.

An important aspect of learning how species invade, is studying the mechanisms of invasion. As part of the invasion process, after introduction, species need to become established (Elton 1952). Establishment is an essential step of the invasion process and can only be overcome through successful competition with other species (Vasquez et al. 2010). Indeed, it is well known that many invasive species experience competition either directly or indirectly. Invasions exerting a competitive force on a native plant take many forms such as an invasive species attracting a herbivore away from a native plant, reducing pollinators by attracting them to itself, reducing the availability of nitrogen for other species, or performing better under increased nitrogen (D'Antonio \& Mahall 1991; Brown et al. 2002; Vinton \& Goergen 2006; Dangremond et al. 2010; Mangla et al. 2011). In one review, 17 out of 20 peer-reviewed studies found that competition played a role in invasion, which solidifies the importance of studying competition in invasion biology (Levine et al., 2003).

Typically, the limiting resources in the grasslands of the NGP are nitrogen and reliable precipitation (Weaver 1991; Wight 1976). In recent decades, precipitation and nitrogen levels in the eastern NGP have been increasing due to climactic changes that are altering the historical competitive landscape (Kochy \& Wilson 2001; Morgan et al. 2008; Millett et al. 2009; Werner et al. 2013). Changing the nutrient availability and/or precipitation in a region can alter plant communities (Clark et al. 2002; Vinton \& Goergen 2006; Adler \& Levine 2007). Thus, it is
important to observe how plants compete when these resources are present in the proportions observable in a natural setting.

A recent study of $P$. pratensis competition found varied results. In the study, $P$. pratensis outcompeted Elymus canadensis L. when given priority, but was not competitive against Bromus inermis Leyss. (Ulrich \& Perkins 2014). Priority in this case is logical since $P$. pratensis is one of the first species to emerge on the prairie in spring (Weaver 1991). This study tested species that were increasing in the region. My goal was to study $P$. pratensis competition with three species that have been observed to decline when $P$. pratensis increases in a region (Chapter 2-Fig 2.2).

In order to examine how competition may play a role in invasion by $P$. pratensis, I determined if Poa pratensis is competitive (reduces the biomass of the paired species compared to intraspecific growth) in a controlled, environment with three native plant species. My goal was to quantify the differences between Poa pratensis and native species growth when competing in paired greenhouse trials against species that may be in decline because of $P$. pratensis invasion. In this study I sought to examine whether competition between Bouteloua gracilis (Willd. ex Kunth) Lag. Ex Griffiths (blue grama), Pascopyrum smithii (Rydb.) Á. Löve (western wheatgrass), Nassella viridula (Trin.) Barkworth (green needlegrass), and Poa pratensis produced any competitive or facilitative effects when grown in conditions mimicking the current climate.

## Methods

I chose three native grass species to use in this study--Bouteloua gracilis (BOGR), Nassella viridula (NAVI), and Pascopyrum smithii (PASM), which are all codominant species in the northern Great Plains and often co-occur with Poa pratensis (POPR) (Taylor 2001). Plants
were separately planted 14-21 days before the competition experiment began in pots with loamy soil. After germination, plants were transplanted to a separate $4 \times 4 \mathrm{~cm}$ pot filled with loamy soil. Two plants were grown in each pot and each was trimmed to a height of eight cm to induce stress and begin the competition experiment at a similar level since germination times can vary. For example, POPR is documented to start germination between 14 and 21 days after sown in wet soil (Scotts Turfseed 2014). There were 10 treatments, replicated 14 times pairing the four species with each other (interspecific) and themselves (intraspecific) (Fig. 4.1). The growing medium was top soil collected from a site in Richland County 80 kilometers south of Fargo North Dakota (46.553834, -97.133522). The soil was classified as a prairie loam. Competitive pairings were grown on a greenhouse bench for two months under a 12 hour supplemental light cycle and were watered as necessary. Nitrogen was not added to the experiment.

At the end of the experiment, I measured above ground biomass by first cutting and washing the plant, drying the plants for 48 hours in an oven at $38^{\circ} \mathrm{C}$, and weighing them. Plants were counted as dead in the experiment if more than $50 \%$ of plant material was desiccated at the end of the experiment. Thus, for each experimental treatment I calculated the percentage of plants that died as a dependent variable. In addition, the biomass of individual plants was a dependent variable for each replicate.

The normality of each dependent variable was tested using the Shapiro-Wilk test and visual confirmation of a unimodal distribution using R (Shapiro \& Wilk 1965; R Core Team 2012). I log transformed the biomass data and created two datasets--samples including dead plants (any plants with no detectable biomass) and samples excluding dead plants. I executed a two-way ANOVA on the transformed data to test both the main effects and interactions of competitor and measured plant biomass. In order to see the effect of each interspecific
competition pair, I executed a one-way ANOVA comparing each competitor for each treatment. Finally, I conducted a Tukey's Highly Significant Difference (Tukey's HSD) test on each group using the Agricolae package in R (Felip de Mendiburu 2015). All of the ANOVAs were executed in R (R Core Team 2012).

In order to test if there were differences in survivorship between our treatments, I conducted a Pearson's $X^{2}$ heterogeneity test (Pearson 1900). I executed the test in $R$ by testing the heterogeneity of all measured plants, all competitor plants, and the competitors against each species (R Core Team 2012). Additionally, I tested the relationship between percent survival and biomass without the dead plants to see whether both metrics were correlated. I ran a linear regression between the two variables in R ( R Core Team 2012).

I measured competition effect and facilitation with the relative interaction index (RII) $=(\mathrm{Bw}-\mathrm{Bo}) /(\mathrm{Bw}+\mathrm{Bo})$, which is a robust index (Armas et al. 2004), where the treatment was the biomass of the plant of interest paired with a competitor (Bw) and the control (Bo) was the biomass of a plant paired against an individual of the same species. I measured the RII using four methods: with 50 pairwise measurements including dead plants, 50 pairwise measurements without dead plants, the pooled average plants including dead plants, and the pooled average without dead plants. For the pairwise index I used 50 random non-repeating pairwise comparisons between Bw and Bo.

I tested whether RII indices were significantly different from one another by comparing the median value of all four RII indices using a two-way ANOVA in R where the two main effects were competitors and measured plants (R Core Team 2012). I was only able to compare measured and competitor plants since each experimental category contained only one value.

Table 4.1. Experimental design of competition experiment. Each treatment was replicated 14 times. There were two plants in each pot. The control (Bo) was a plant grown with another individual of the same species and the treatment ( Bw ) was a plant grown with a plant of a different species.

| Competitor 1 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | POPR | NAVI | BOGR | PASM |
| $\sim$ | POPR | $\mathrm{Bo}=28$ | $B w=14$ | $\mathrm{B} w=14$ | Bw=14 |
| \% | NAVI |  | $\mathrm{Bo}=28$ | $B w=14$ | $B w=14$ |
| $\stackrel{\rightharpoonup}{\mathrm{O}}$ | BOGR |  |  | $\mathrm{Bo}=28$ | $B \mathrm{w}=14$ |
| U | PASM |  |  |  | $\mathrm{Bo}=28$ |

## Results

Overall, $43.44 \%$ of plants were alive at the end of the experiment. BOGR had the highest overall survival rate (53.78\%), while POPR had the lowest (32.14\%). PASM had an overall survival rate of $37.96 \%$ and NAVI had $49.88 \%$. When comparing survival against paired competitors, POPR had the highest survival rate when paired with BOGR and the lowest against itself; NAVI had the highest survival rate when paired with NAVI and the lowest against POPR; PASM had the highest survival rate when paired with PASM and the lowest against POPR; BOGR had the highest survival rate when paired with BOGR and the lowest against PASM (Fig. 4.1; Table 4.2).

The overall $\mathrm{X}^{2}$ heterogeneity test was significant for competitor plants $\left(\mathrm{X}^{2}=10.48 \mathrm{df}=3\right.$, p-value $=0.01499)$, but not significant for focal plants $\left(X^{2}=5.80, d f=3\right.$, $p$-value $\left.=0.1218\right)$. Meaning, the biomass of the focal plant when placed under competition with certain species is not random, but when the biomass of a focal plant is taken without consideration of the competitor it is random. On a finer scale, the $\mathrm{X}^{2}$ heterogeneity tests within measured plant
categories were all not significant (Table 4.2). Finally there was no relationship between the percent survival and biomass without dead plants $\left(\mathrm{R}^{2}=.0000472, \mathrm{~F}_{1,14}=0.00066 \mathrm{p}=0.9799\right)$.

The overall average biomass of the plants (without the dead plants) was 0.253 grams. In order from highest to lowest biomass was BOGR ( 0.30 g ), NAVI ( 0.28 g ), PASM ( 0.24 g ), and POPR ( 0.19 g ). POPR had the highest biomass when paired with PASM and the lowest with itself; NAVI had the highest biomass when paired with BOGR and the lowest with PASM; PASM had the highest biomass when paired with BOGR and NAVI and the lowest with POPR; and BOGR had the highest biomass when paired with NAVI and lowest with PASM (Fig. 4.3; Table 4.2).

The overall average biomass of the plants (including the dead plants) was 0.189 grams. From highest to lowest the average biomass for each plant species was BOGR and NAVI ( 0.23 g), PASM ( 0.16 g ), and POPR ( 0.13 g ). When comparing the paired plants, POPR had the highest biomass when paired with BOGR and the lowest with itself; NAVI had the highest biomass when paired with BOGR and the lowest with PASM; PASM had the highest biomass when paired with BOGR and NAVI and the lowest with POPR; and BOGR had the highest biomass when paired with NAVI and lowest with PASM (Fig. 4.2; Table 4.2).

Table 4．2．The average biomass for plants including dead plants and not including dead plants along with the percentage of plants that were alive or dead．The table includes standard deviation（SD），sample size（ N ），and standard error（SE）．

| L0＇0 | E0＇0 | E0＇0 | E0＇0 | as | 200 | 10\％ | 100 | t0 0 | as |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00＇zI | $00 \%$ | 00 ZI | 00\％${ }^{\text {I }}$ | N | $00^{\circ} \mathrm{zz}$ | 00＇zI | $00^{\circ} \mathrm{II}$ | 00＇II | N |
| ャで0 | $00^{\circ}$ | ［100 | 210 | as | L0．0 | ¢0\％ | S000 | tio | aS |
| － | e | e | в | јuәuиถิ！¢sse s，イəyn | － | 9 | qe | e |  |
| † ${ }^{\circ} 0$ | LOO | LI．0 | 02＊0 | регр／ом ие！рә才 | $91^{\circ} 0$ | $80^{\circ} 0$ | $60^{\circ} 0$ | LI＇0 | реәр／ом ие！рә才 |
| ャで0 | $\mathrm{IL}^{\circ} \mathrm{O}$ | $91^{\circ} 0$ | で｀0 | регр／ом ssewo！g | LI．0 | $80^{\circ} 0$ | $00^{\circ} 0$ | $00^{\circ} 0$ | ргэр／om ssruo！g |
| $90^{\circ} 0$ | E0\％ | E0\％ | E0＇0 | as | 200 | 100 | 200 | t00 | ES |
| $00 \downarrow$ I | $00 \cdot \downarrow$ | 00 ¢ | 00.82 | N | $00^{\circ} \downarrow$ 亿 | $00{ }^{\circ} \mathrm{SI}$ | $00 \cdot \mathrm{t}$ | $00^{\circ} \varepsilon$ I | N |
| ャで0 | $00^{\circ} 0$ | 2100 | SI．0 | as | $80^{\circ} 0$ | S0．0 | $90^{\circ} 0$ | カ・0 | aS |
| e | ${ }^{\text {e }}$ | e | ¢ |  | － | q | qe | qe |  |
| tio | ＋0．0 | ゅ．0 | $\mathrm{SI}^{\circ} \mathrm{O}$ | рвәр／м че！рәл | ${ }^{1} \cdot 0$ | ¢0\％ | $80^{\circ} 0$ | 210 | реәр／м ие！рәл |
| Iて＇0 | LOO | ゅ．0 | $\mathrm{SI}^{\circ} \mathrm{O}$ | регр／м ssruotg | $91^{\circ} 0$ | $90^{\circ} 0$ | $80^{\circ} 0$ | LI＇0 | реәр／M sscuo！g |
|  |  |  |  |  |  |  |  |  | ${ }_{1 s 27}{ }_{2} \mathrm{X}$ s，uosired |
| 00\％${ }^{\circ}$ | LS＇8Z | $98.2 t$ | LS＇ES |  | L9＇99 | 00．0t | IL＇s ${ }^{\text {c }}$ | tS＇19 |  |
| INVN | WSVd | ydod | yכOq | Ioḷ！̣duō | INVN | WSVd | ydOd | とĐOG | ．olỵduos |
| sll？ p .18 pmolamog |  |  |  | Hueid pamsezan |  |  |  |  | purid pa．nseza |
| L0＇0 | ¢0＇0 | ＋0＇0 | $90^{\circ} 0$ | aS | L0＇0 | $0{ }^{\circ} 0$ | ع0＇0 | S0＇0 | AS |
| 00＇II | $00^{\circ} \mathrm{Iz}$ | $00^{\circ} 6$ | $00^{\circ} \mathrm{O}$ | N | 00＇II | $00^{\circ} 8$ | 00\％6I | 00 zI | N |
| － | в | － | e |  | в | e | e | e |  |
| でく 0 | LE＊ 0 | でて | $6 \varepsilon^{\circ} 0$ | регр／ом ие！рәл | $6 \chi^{\circ} 0$ | $8 \varepsilon^{\circ} 0$ | $91^{\circ} 0$ | $\mathcal{E}+{ }^{\circ} 0$ | реәр／ом ие！рә才 |
| 0t＊0 | $9 \varepsilon^{\circ} 0$ | Lで0 | $0 \downarrow^{\circ} 0$ | регр／ом ssruo！g | $\tau \varepsilon^{\circ} 0$ | $\mathcal{E}^{+} \cdot 0$ | で0 | $8 \varepsilon^{\circ} 0$ | реэр／om ssewo！g |
| L0．0 | S0\％ | S0\％ | L0．0 | as | $90^{\circ} 0$ | $80^{\circ} 0$ | E0＇0 | $90^{\circ} 0$ | ES |
| $00 \% \mathrm{sI}$ | $00^{\circ} \mathrm{LZ}$ | $00^{\circ} \mathrm{t}$ | $00^{\circ} \mathrm{tI}$ | N | 00＇tI | $00 \cdot \downarrow I$ | 00．82 | $00 \cdot t \mathrm{l}$ | N |
| e | － | e | e |  | － | e | ¢ | e |  |
| LI．0 | 2¢0 | $9{ }^{\circ} 0$ | $2 \varepsilon^{\circ} 0$ | рвәр／м че！рәл | 2で0 | カ10 | $\mathcal{E} 1^{\circ} 0$ | LE：0 | реәр／м ие！рәл |
| 62．0 | $87^{\circ} 0$ | LI．0 | 6で0 | регр／м ssruolg | ¢で0 | ャで0 | ¢1．0 | てع＇0 | регр／4 sscuo！g |
|  |  |  |  |  |  |  |  |  | ${ }^{1827}{ }^{2} \mathrm{X}$ s，uosired |
| 000t | S8 ${ }^{\circ} \mathrm{IS}$ | LS＇8Z | 00．0S |  | 98＇てt | LS：8Z | $\mathcal{E}+$ İ | 00．0s |  |
| INVN | WSVd | YdOd | yכOq |  | INVN | WSVd | ydOd | yDOq | Ioplyaduoつ |
|  |  |  |  | pueid pamsean | S！suzp．id no ${ }_{\text {d }}$ |  |  |  | puedd parnsean |

The raw biomass of all plants including dead plants was not normal according to the Shapiro-Wilk normality test $\left(\mathrm{w}=0.8589, \mathrm{p}=3.79^{-15}\right) . \log$ transformation of the data improved normality ( $\mathrm{w}=0.92168, \mathrm{p}=7.81^{-11}$ ). The raw biomass of all plants without dead plants was more normal than the raw biomass of plants including dead plants $\left(\mathrm{w}=0.8889, \mathrm{p}=2.835^{-11}\right)$. When I plotted the histogram it did appear unimodal albeit skewed to the right (Figure G.1). Log transformation again improved normality ( $\mathrm{w}=0.97083$, $\mathrm{p}=0.00026$ ) and the histogram appeared unimodal without skew (Figure G.1). Although ANOVA can still be fairly robust even when data is not normal (Glass et al. 1972; Harwell et al. 1992; Lix et al. 1996), I used the log transformed data without the dead plants for all reported ANOVAs (Table G.1-G.11). The results of ANOVAs on log transformed data with the dead plants are included in the appendix (Table G.12-G.22).

The two-way ANOVA of measured and competitor plants was significant for each main effect, but the interaction term was not significant (Table G.1). Tukey's tests indicated significant differences only between BOGR and both POPR and PASM as well as between NAVI and POPR and PASM. According to the one-way ANOVA on the competitors against each plant group, only NAVI was significant (Table G.10). PASM and POPR negatively affected NAVI's growth based on the two-way ANOVA (Table G.11).

Between the four RII measurements there were no significant differences $\left(\mathrm{F}_{3,44}=0.003\right.$, $\mathrm{p}=0.999$ ). The two-way ANOVA indicated that measured plant identity was a significant effect, but competitor and the interaction between the two was not (Table G.24). Out of the measured plants, NAVI was significantly negatively affected by the presence of other plants and POPR was significantly facilitated by the presence of other plants (Table G.25). According to the RII numbers, overall, PASM and POPR are competitive with one another and POPR is facilitated by
many species (Fig. 4; Table 3). POPR was most greatly facilitated by BOGR. NAVI was negatively affected by POPR and PASM, but was not effected by BOGR. PASM was negatively affected by POPR, but was not affected by NAVI and BOGR. BOGR was negatively affected by PASM, but not NAVI or POPR.


Figure 4.1. The percentage of plants alive at the end of the experiment. Black stars indicate conspecific pairings. The graph was represented in ggplot2 (Wickham 2009).


Figure 4.2. The average biomass for each plant competition pair including dead plants (measurements of zero). The bars represent $\pm 1$ standard error. The graph was produced in ggplot2 (Wickham 2009).


Figure 4.3. The average biomass of measured plants in all treatments not including dead plants (measurements of zero). The bars represent $\pm 1$ standard error. The graph was produced in ggplot2 (Wickham 2009).

Table 4.3. The four RII statistic values including an average of the four and the median of the four RII statistics.

| Measured plant | Poa pratensis |  | Poa pratensis |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 4.3. The four RII statistic values including an average of the four and the median of the four RII statistics (continued).

| Measured plant | Pascopyrum smithii |  |  | Pascopyrum smithii |  |  | Pascopyrum smithii |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Competitor | POPR RII | SD | SE | $\begin{aligned} & \text { NAVI } \\ & \text { RII } \end{aligned}$ | SD | SE | $\begin{aligned} & \text { BOGR } \\ & \text { RII } \end{aligned}$ | SD | SE |
| Including dead pairwise RII | -0.19 | 0.74 | 0.10 | -0.02 | 0.69 | 0.10 | -0.01 | 0.72 | 0.10 |
| Not including dead pairwise RII | -0.08 | 0.40 | 0.06 | 0.03 | 0.48 | 0.07 | 0.07 | 0.41 | 0.06 |
| Including dead pooled RII | -0.24 | 0.23 | 0.04 | 0.02 | 0.26 | 0.04 | 0.01 | 0.24 | 0.04 |
| Not including dead pooled RII | -0.15 | 0.20 | 0.04 | 0.05 | 0.23 | 0.04 | 0.05 | 0.21 | 0.04 |
| Average | -0.16 | 0.39 | 0.06 | 0.02 | 0.41 | 0.06 | 0.03 | 0.39 | 0.06 |
| Median | -0.17 | 0.31 | 0.05 | 0.02 | 0.37 | 0.05 | 0.03 | 0.33 | 0.05 |
| Measured plant | Bouteloua gracilis |  |  | Bouteloua gracilis |  |  | Bouteloua gracilis |  |  |
| Competitor | POPR <br> RII | SD | SE | $\begin{aligned} & \text { NAVI } \\ & \text { RII } \end{aligned}$ | SD | SE | $\begin{aligned} & \text { PASM } \\ & \text { RII } \end{aligned}$ | SD | SE |
| Including dead pairwise RII | 0.10 | 0.65 | 0.09 | 0.11 | 0.70 | 0.10 | -0.23 | 0.79 | 0.11 |
| Not including dead pairwise RII | -0.17 | 0.38 | 0.05 | -0.03 | 0.49 | 0.07 | -0.35 | 0.43 | 0.06 |
| Including dead pooled RII | -0.03 | 0.14 | 0.02 | 0.16 | 0.18 | 0.03 | -0.36 | 0.14 | 0.02 |
| Not including dead pooled RII | -0.15 | 0.12 | 0.02 | 0.05 | 0.17 | 0.03 | -0.33 | 0.13 | 0.02 |
| Average | -0.06 | 0.32 | 0.05 | 0.07 | 0.39 | 0.06 | -0.32 | 0.37 | 0.05 |
| Median | -0.09 | 0.26 | 0.04 | 0.08 | 0.33 | 0.05 | -0.34 | 0.28 | 0.04 |



Figure 4.4. Mean RII organized by species paired ( $\pm 1 \mathrm{SE}$ ). A positive RII value implies that the measured species is facilitated by the competitor species and a negative RII indicates the paired species is competitive against the measured species.

## Discussion

In this study, I sought to objectively measure whether POPR was competitive against three native plant species using aboveground biomass. BOGR and NAVI were not competitive against any other species and were not facilitated by their interaction with any other species based on the biomass ANOVA and RII; although, BOGR did have the highest survival rate compared to the other tested species. The high survival rate may be because the species were often grown in dry conditions because of the loamy soil and BOGR is a $\mathrm{C}_{4}$ species. One study found that BOGR is twice as water efficient in dry conditions than PASM (a $\mathrm{C}_{3}$ species), which
may be why BOGR had the highest survival rate of all four species (Monson et al. 1986). In our study, PASM only had a survival rate of $38 \%$ compared to BOGR's $54 \%$. But when it came to PASM competition with BOGR, PASM successfully outcompeted BOGR. This result is consistent with a similar study in which BOGR and PASM were grown in competition with each other and both BOGR and PASM reduced each other's biomass (Samuel \& Hart, 1992). There were differences in biomass for PASM when paired with BOGR, but RII of these interactions in my experiment indicated no real competition (Samuel \& Hart 1992). Samuel and Hart did not calculate an interaction index and only reported biomass. In another study, BOGR growth was reduced by $60 \%$ in a natural prairie and by $50 \%$ in a PASM seeded prairie, while PASM was reduced by $30 \%$ by BOGR and by $50 \%$ in the PASM seeded community (Bakker \& Wilson 2001).

Not as much is known about competition in NAVI. I found that NAVI was negatively affected by POPR and PASM. Counter to my results, a study found that NAVI frequency was positively associated with frequency in annual bromes and PASM, which suggests that PASM may not be competitive against NAVI in natural areas (Ogle \& Reiner 2002). One possible disadvantage for NAVI may be the cutting at the beginning of the experiment. NAVI has been documented to perform poorly under heavy grazing (Reed 1961).

PASM successfully outcompeted BOGR and NAVI. This is expected since PASM is known to be a fairly competitive species (Samuel \& Hart 1992; Bakker \& Wilson 2001). My study may be a conservative measure of PASM competitiveness because, although I watered the plants as needed, the soil was often dry. The dry soil may have reduced the number of successful PASM individuals in our study since PASM is a $\mathrm{C}_{3}$ species (Monson et al. 1986). PASM was
negatively affected by POPR in my study. Similarly, a study of plants grown in fertilized soil found that POPR was facilitated by PASM (Kanaan \& Butler 2012).

My study found that POPR was facilitated by the three native species and competitive against NAVI. The relative facilitation of growth in POPR when it was paired with other species may be because POPR did not perform as well when it was grown with itself. One study found that Poa pratensis did not have much of a competitive effect on Elymus canadensis or Bromus inermis except when it was started before species (priority effect against Elymus canadensis; Ulrich \& Perkins 2014). Other studies have indicate that POPR's competitive effect increases with the biomass of other species, supporting our finding that other species facilitate POPR invasion (Reader et al., 1994). POPR is considered invasive and thought to be competitive against other species but the mixed results on competition suggest something more complicated is occurring. It is possible that POPR is more competitive only when there are high levels of nitrogen as demonstrated by previous studies (Wilson \& Tilman, 1991).

In conclusion, it does appear that POPR is somewhat competitive, but not as competitive as PASM, while NAVI and BOGR appear to be negatively affected by the presence of competitors (Fig. 4.4). Our results may be partially driven by the clipping at the beginning of the experiment. The clipping may have stimulated POPR and PASM growth since they are classified increasers under grazing conditions (Weaver 1991). However, BOGR is also classified as an increaser (Weaver 1991) and did not perform well in this experiment under competition. This seemingly contradictive result may be caused by the early clipping in the experiment. BOGR is a C4 grass while POPR and PASM are C3 grasses, thus early clipping may have stimulated the cool-season grasses while stunting the C 4 grasses. There has been some research that early intensive grazing can reduce POPR, but light or season long grazing may increase

POPR (Patton et al. 2013). Thus, it may be important for land managers to be cautious about time and intensity of grazing along with the competitive landscape in grasslands.

## Literature Cited

Adler PB, Levine JM (2007) Contrasting Relationships between Precipitation and Species Richness in Space and Time. Oikos, 116, 221-232.

Armas C, Ordiales R, Pugnaire FI (2004) Measuring Plant Interactions: A New Comparative Index. Ecology, 85, 2682-2686.

Bakker J, Wilson S (2001) Competitive Abilities of Introduced and Native Grasses. Plant Ecology, 157, 119-127.

Brown BJ, Mitchell RJ, Graham SA (2002) Competition for Pollination between an Invasive Species Purple Loosestrife and a Native. Ecology, 83, 2328-2336.

Clark JS, Grimm EC, Donovan JJ et al. (2002) Drought Cycles and Landscape Responses to Past Aridity on Prairies of the Northern Great Plains, USA. Ecology, 83, 595-601.

Dangremond EM, Pardini EA, Knight TM (2010) Apparent Competition with an Invasive Plant Hastens the Extinction of an Endangered Lupine. Ecology, 91, 2261-2271.

D'Antonio CM, Mahall BE (1991) Root Profiles and Competition between the Invasive, Exotic Perennial, Carpobrotus edulis, and Two Native Shrub Species in California Coastal Scrub. American Journal of Botany, 78, 885.

DeKeyser ES, Meehan M, Clambey G, Krabbenhoft K (2013) Cool Season Invasive Grasses in Northern Great Plains Natural Areas. Natural Areas Journal, 33, 81-90.

Felip de Mendiburu (2015) Agricolae v. 1.2-2. http://tarwi.lamolina.edu.pe/~fmendiburu.

Glass GV, Peckham PD, Sanders JR (1972) Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Review of Educational Research, 42, 237.

Harwell MR, Rubinstein EN, Hayes WS, Olds CC (1992) Summarizing Monte Carlo Results in Methodological Research: The One- and Two-Factor Fixed Effects ANOVA Cases. Journal of Educational and Behavioral Statistics, 17, 315-339.

Kanaan E, Butler J (2012) Possible Interactions of Kentucky bluegrass and Western Wheatgrass Monocultures and Mixed Populations with Fertilization and Clipping. South Dakota Accademy of Sciences, 91, 242.

Kochy M, Wilson SD (2001) Nitrogen Deposition and Forest Expansion in the Northern Great Plains. Journal of Ecology, 89, 807-817.

Larson DL, Larson JL (2010) Control of One Invasive Plant Species allows Exotic Grasses to become Dominant in Northern Great Plains Grasslands. Biological Conservation, 143, 1901-1910.

Lix LM, Keselman JC, Keselman HJ (1996) Consequences of Assumption Violations Revisited: A Quantitative Review of Alternatives to the One-Way Analysis of Variance F Test. Review of Educational Research, 66, 579-619.

Mangla S, Sheley RL, James JJ, Radosevich SR (2011) Intra and Interspecific Competition among Invasive and Native Species during Early Stages of Plant Growth. Plant Ecology, 212, 531-542.

Millett B, Johnson WC, Guntenspergen G (2009) Climate Trends of the North American Prairie Pothole Region 1906-2000. Climatic Change, 93, 243-267.

Monson RK, Sackschewsky MR, Williams GJ (1986) Field Measurements of Photosynthesis, Water-Use Efficiency, and Growth in Agropyron smithii $\left(\mathrm{C}_{3}\right)$ and Bouteloua gracilis $\left(\mathrm{C}_{4}\right)$ in the Colorado Shortgrass Steppe. Oecologia, 68, 400-409.

Morgan J, Derner J, Milchunas D, Pendall E (2008) Management Implications of Global Change for Great Plains Rangelands. , 30, 18-22.

O'Brien P (2014) Plant Community Composition of Camp Grafton Training Center (South Unit) from 1998-2013. North Dakota State University Disseration.

Ogle SM, Reiners WA (2002) A Phytosociological Study of Exotic Annual Brome Grasses in a Mixed Grass Prairie/Ponderosa Pine Forest Ecotone. The American Midland Naturalist, 147, 25-31.

Patton B, Neville B, Nyren A (2013) Early Intensive Grazing Research in the Missouric Coteau Region of North Dakota: Year Three.
https://www.ag.ndsu.edu/CentralGrasslandsREC/cgrec-annual-reports-1/2013-annualreport/CGREC6PattonEarly.pdf

Pearson K (1900) On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be Reasonably Supposed to have Arisen from Random Sampling. Philosophical Magazine Series 5, 50, 157-175.

R Core Team (2012) R: A Language and Environment for Statistical Computing.
Reader RJ, Wilson SD, Belcher JW et al. (1994) Plant Competition in Relation to Neighbor Biomass: An Intercontinental Study with POA Pratensis. Ecology, 75, 1753.

Reed M, Peterson R (1961) Vegetation, Soil, and Cattle Responses to Grazing on Northern Great Plains Range. United States Department of Agriculture, Forest Service.

Samuel MJ, Hart RH (1992) Survival and Growth of Blue Grama Seedlings in Competition with Western Wheatgrass. Journal of Range Management, 45, 444.

Scotts Turfseed (2014) Prosperity Kentucky bluegrass. http://www.avseeds.com/bin/191.pdf.
Shapiro SS, Wilk MB (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611.

Taylor J (2001) Nassella viridula. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Forest Service, Rocky Mountain Research Station, Fire Science Laboratory. http://www.fs.fed.us/database/feis/.

Toledo D, Sanderson M, Spaeth K, Hendrickson J, Printz J (2014) Extent of Kentucky Bluegrass and Its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the United States. Invasive Plant Science and Management, 7, 543-552.

Ulrich E, Perkins L (2014) Bromus inermis and Elymus canadensis but not Poa pratensis Demonstrate Strong Competitive Effects and all Benefit from Priority. Plant Ecology, 215, 1269-1275.

United States Department of Agriculture Natural Resources Conservation Service (2014) National Resources Inventory Rangeland Resource Assessment.

Vasquez EA, James JJ, Monaco TA, Cummings DC (2010) Invasive Plants on Rangelands: A Global Threat. Rangelands, 32, 3-5.

Vinton MA, Goergen EM (2006) Plant-Soil Feedbacks Contribute to the Persistence of Bromus inermis in Tallgrass Prairie. Ecosystems, 9, 967-976.

Weaver JE (1991) Prairie plants and their environment: a fifty-year study in the Midwest. University of Nebraska Press, Lincoln.

Werner BA, Johnson WC, Guntenspergen GR (2013) Evidence for 20th Century Climate Warming and Wetland Drying in the North American Prairie Pothole Region. Ecology and Evolution, 3471-3482.

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer New York.
Wilson SD, Tilman D (1991) Component of Plant Competition Along an Experimental Gradient of Nitrogen Availability. Ecology, 72, 1050.

# CHAPTER 5. HIGHER PERCENT COVER OF POA PRATENSIS L. AND OTHER GRASSES IS CORRELATED WITH CLIMACTIC CHANGES IN THE TALLGRASS <br> <br> PRAIRIE OF THE NORTHERN GREAT PLAINS ${ }^{3}$ 

 <br> <br> PRAIRIE OF THE NORTHERN GREAT PLAINS ${ }^{3}$}

To be submitted to Rangeland Ecology with the following authors:
Lauren A. Dennhardt, Laura Aldrich-Wolfe, Katie Black, Winnie Shivega, and Steven E. Travers


#### Abstract

The effects of climate change are already observable in many regions. In the tallgrass region of the Northern Great Plains (NGP), they are being observed through increased annual precipitation and temperature. We quantified the composition of a tallgrass prairie in western Minnesota in order to better understand both plant cover changes and what environmental variables are correlated with these changes. We found a major shift from a forb to a grass dominated prairie, which was correlated with both fire management and an increase in precipitation in the region. We also found that the cover of Poa pratensis increased significantly and was associated with rising precipitation. Our study indicates that in the NGP, precipitation changes may be more of a driver of plant community changes than temperature changes.

\section*{Introduction}

Over the past 40 years, the eastern tallgrass portion of the Northern Great Plains which includes eastern North Dakota, western Minnesota, and portions of Canada (hereafter NGP), has trended and is continuing to trend toward a climate higher in precipitation and annual temperature (Morgan et al. 2008; Millett et al. 2009; Werner et al. 2013). There was an increase in annual average precipitation from 1958-2008 of 5-15\% in the NGP (U.S. Global Change


[^2]Research Program 2009). Precipitation in the spring and winter is projected to increase by another 10-30\% by 2080 (U.S. Global Change Research Program 2009). In western Minnesota, the temperature has risen an average of $1.3^{\circ} \mathrm{C}$ over the last century with that rate increasing in recent decades (Minnesota Department of Health 2015). These climactic shifts have effects on the plant communities in the region including shifting flowering times for nearly a third of species (Dunnell \& Travers 2011).

The vegetation of the NGP has adapted to periods of little rain fall with long, costly root systems (Weaver 1991). Typically, the NGP will undergo wet-dry cycles lasting 10-20 years in which succession between drought resistant and opportunistic species fluctuate (Weaver 1991; Valk 2005). However, the NGP is currently in a multi-decade higher precipitation trend (Valk 2005). This high precipitation trend may have serious implications for vegetation communities. In wetlands of the NGP, Typha species will dominate wet cycles and Phragmites australis (Cav.) Trin. ex Steud. will favor dry cycles (Valk 2005). This current high precipitation trend has increased Typha glauca in the region considerably since the 1960s (Valk 2005). There are historical reports on some of the wet-dry cycle changes in plant communities. It has long been documented that productivity on a grassland increases as precipitation levels rise (Branson 1985). Droughts were an important event in prairies that have led to an increase in the percent composition of native over invasive species (Weaver 1954), although there has been little research in recent decades on community shifts for terrestrial plant species in the region. Moreover, if climate predications are accurate and the wet-dry cycle has been disrupted, it is likely that vegetation communities will be altered. Annual temperature is projected to continue to rise in the region, which could desiccate wetlands if temperature changes outpace precipitation level increases (Johnson et al. 2005).

Since climate change may threaten biodiversity (Solomon et al. 2007; Primack \& MillerRushing 2009), many land managers are expected to be confronted with plant community effects in the future. Mitigation of plant community composition is accomplished through a variety of management tools including burning, mowing, herbicide application, and grazing. These methods can ameliorate the undesirable effects of invasive species, climate change, and disturbance. As prairie management and climate change exert forces on the prairie in the future, successful management will depend on untangling separate effects (Hellmann et al. 2008).

Our goal in this study is to better understand different effects of management and climactic change on plant community composition in the NGP. In this paper, we compare current vegetation characteristics with past communities and examine correlations among the observed patterns. Additionally, we analyze both environmental and management treatment variables to determine how these two factors affect the vegetation community of a mesic tallgrass prairie.

## Methods

## Data Collection

In order to characterize the relationship between plant communities, climactic changes, and management history in a tallgrass prairie, we evaluated the plant cover of dominant plant categories at six plots at a 2,700 hectare tallgrass prairie preserve in Clay county, Minnesota (Bluestem prairie, Nature Conservancy, 46.844683, -96.463276). The six 25 X 25 m plots were originally studied in 1978, 1979, and 1999 and represent six different plant communities with variable burn histories and soil types (Table 5.1; Fig. 5.1; Dziadyk 1981; Miller 2000). From previous studies, we acquired percent plant cover and percent soil moisture data (Dziadyk 1981; Miller 2000).

Table 5.1. Description of soil type, parent material, dominant plant species for each plot. The dominant plant species were determined in 1978 and 1979 (Dziadyk 1981).

| Plot | NRCS Soils | Parent material | Dominant plants | Years burned |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Rockwell clay loam | Glaciolacustrine deposits over loamy glacial till | Bouteloua gracilis <br> Stipa spartea | $\begin{aligned} & 1977,1996,1999, \\ & 2003,2008,2012 \end{aligned}$ |
| 2 | Rockwell clay loam | Glaciolacustrine deposits over loamy glacial till | Sporobolus heterolepis Schizachyrium scoparium | $\begin{aligned} & 1996,2002,2007, \\ & 2011 \end{aligned}$ |
| 3 | Foldahl loamy fine sand | Sandy glaciolacusrine deposits over loamy till | Schizachyrium <br> scoparium <br> Sporobolus heterolepis | $\begin{aligned} & 1996,2000,2005, \\ & 2009 \end{aligned}$ |
| 4 | Rockwell clay loam | Glaciolacustrine deposits over loamy glacial till | Andropogon gerardii Calamagrostis stricta | $\begin{aligned} & 1977,1996,1999 \\ & 2003,2008,2012 \end{aligned}$ |
| 5 | Fossum loamy sand | Sandy glaciofluvial deposits | Carex spp. | $\begin{aligned} & \text { 1996, 2000, 2005, } \\ & 2009 \end{aligned}$ |
| 6 | Foldahl loamy fine sand | Sandy glaciolacusrine deposits over loamy till | Elymus repens Forbs | $\begin{aligned} & \text { 1996, 2000, 2005, } \\ & 2009 \end{aligned}$ |



Figure 5.1. Plot location in Glyndon, Minnesota. The six locations were all on land managed by the Nature Conservancy. Each plot was $25 \times 25$ meters. The pie charts represent percent soil moisture in 1978, 1979, and 2014. We collected data twice from each plot in the summer of 2014.

In the summer of 2014 five of the original six plots were identified by the presence of metal poles that were placed at the plot corners in 1999 (Dziadyk 1981; Miller 2000). Plot six was not marked with poles because it was not sampled in 1999. We determined the location of plot six using coordinates from the 1978-79 study. Plots were sampled twice throughout the summer of 2014; once from June 9th to 13th and again from July 21st to the 24th. At each plot,
we copied the sampling protocol used in the past by systematically mapping and sampling 100 1 mx 1 m quadrats in a grid. There was an approximately 1 m wide buffer between quadrats. A surveyor's flag was dropped pin-first at ten haphazardly chosen locations within each quadrat. The category of the plant or bare ground was recorded at each quadrat depending on the most basal point of contact with the pin. In 1978, 100 quadrats were sampled per plot; in 1979 and 1999120 quadrats were sampled per plot. In each of these previous studies, plots were sampled once in late summer. In 2014, at the end of each sampling period at each plot we had 1000 individual data points, which resulted in a total of 12,000 data points.

Unlike the studies of these plots prior to 2000 , which sought to characterize plant communities varying in dominant plant species, we were interested in changes in plant communities that may have occurred because of climactic changes or management. We chose to focus on the following six plant categories: Spartina pectinata Bosc ex Link (prairie cordgrass), Poa pratensis L. (Kentucky bluegrass), Bromus inermis Leyss (smooth brome), other graminoid species (members of Poaceae and the genus Equisteum; hereafter referred to as grasses), forbs, and members of the sedge family (Cyperaceae). We chose Spartina pectinata and sedges because both categories are wetland plants which perform well in high soil moisture conditions (Weaver 1991). Poa pratensis and Bromus inermis are invasive species that have been documented as dominant in many regions of the NGP (Bahm et al. 2011a; United States Department of Agriculture Natural Resources Conservation Service 2014). Additionally, we chose to categorize the differences between forbs and grasses in order to see large scale changes.

In addition to recording plant cover, we measured percent soil moisture at all six plots. We used a coring tool with a 7 cm column to iteratively collect soil samples at ten locations across each plot. Approximately $1,155 \mathrm{~mL}$ of soil were thus collected from depths of 0-30, 30-

60 , and $60-90 \mathrm{~cm}$ each. These samples were then placed in plastic bags and returned to the lab in a cooler. On the same day as collection the soil samples were weighed, dried in an oven at $100^{\circ} \mathrm{C}$ for 48 hours, and weighed again. Percent soil moisture was calculated as the difference between wet soil mass and dry mass divided by the dry mass and multiplied by 100. Percent soil moisture was similarly measured at each depth at one location per plot in 1978 and three locations per plot in 1979. We collected ten cores per plot in order to ascertain a more representative average.

We also acquired data on temperature, precipitation, and snow accumulation for the region of the study. Daily values for each of these three variables were available from the National Climactic Data Center database (http://www.ncdc.noaa.gov/cag/time-series/us/32/00/pcp/12/06/1895-2014?base_prd=true\&firstbaseyear=1901\&lastbaseyear=2000) dating back to before the first study in 1978. The data originated from a weather station in Clay County, Minnesota located 8.4 kilometers from our study plots (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). Elevation data was collected from the Minnesota Geospatial Information Office (Minnesota Geospatial Information Office 2010). Soil type data was from the Geospatial Data Gateway managed by the United States Department of Agriculture (Geospatial Data Gateway, https://gdg.sc.egov.usda.gov/). A list of all the data used in our full model can be found in Table 5.1.

## Data analysis

We used the plant census data to calculate percent basal cover of the six plant categories at each plot in both early and late summer 2014. Percent basal cover was calculated as the total number of pin hits for a given plant category divided by the total number of pin drops at that plot multiplied by 100 (Silvy 2012). In order to choose which plant categories were to be included in
further analysis, we performed an ANOVA on percent cover estimates with year as the independent variable and a second ANOVA with plot as the independent variable. In this way we tested for spatial, temporal, and sampling period differences across plant basal cover as well as percent soil moisture. In order to not weaken our final model, we chose to only include variables that were significantly affected by either year or plot (in 2014 and across years) (McCune \& Grace 2002). If a difference was significant, we explored the data further using Tukey's honest significant difference (HSD) test to decipher how years and plots were grouped for each plant and soil group. Both the Tukey's HSD and ANOVA were executed in R using the 'agricolae' package (Mendiburu 2012).

In order to identify correlations between percent cover estimates and environmental factors, we executed a distance based redundancy analysis (dbRDA). We sought to identify meaningful correlations between plant communities and environmental factors. A problem with any analysis of correlations between plant and environmental variables is covariation among individual variables. This is commonly remedied with a multivariate analysis such as a redundancy analysis (RDA) or canonical correspondence analysis (CCA), which simultaneously accounts for covariation among multiple variables while still performing multiple linear regressions allowing the user to decipher meaningful relationships. CCAs are criticized for using chi-square distance measurements and RDAs require data to be linear. We bypassed this linear requirement by using a distance-based RDA (dbRDA). Before a RDA is performed, the response matrix is transformed by calculating a constrained dissimilarity matrix, which creates a principal coordinate analysis (PCoA; Legendre \& Anderson, 1999). This data transformation is necessary because a requirement of a RDA is for the data to be linear, which is rare in environmental data (McCune et al. 2002; Borcard 2011; Legendre 2012). We chose which
explanatory variables to include in the dbRDA by systematically adding variables to the dbRDA from our full list of explanatory variables until a model emerged with the most explanatory power (Table 5.2). This systematic model selection of variables included each permutation of order and inclusion/exclusion of every variable. We judged the power of our model by the value of our first two eigenvalues. For example, if adding an explanatory variable did not add any value to the eigenvalues we did not include that variable. The dbRDA was performed in 'vegan' using the CAPSCALE argument and a Bray-Curtis distance matrix (Oksanen et al. 2015). We assessed whether models were significant based on ANOVAs run on the whole model, the axes, and the explanatory variables with 200 permutations.

Table 5.2. Environmental variables included in full model of dbRDA. Variables were removed from the final analysis if they did not contribute to the eigenvalues.

| Variable | Description |
| :---: | :---: |
| Plot | The $25 \mathrm{~m} \times 25 \mathrm{~m}$ location at Bluestem Prairie sampled in 1978, 1979, 1998, 2014. |
| Year | The year data was collected. |
| Thirty | The percent soil moisture at $0-30 \mathrm{~cm}$ collected in 1978,1979 , and 2014. |
| Sixty | The percent soil moisture at $30-60 \mathrm{~cm}$ collected in 1978, 1979, and 2014. |
| Ninety | The percent soil moisture at $60-90 \mathrm{~cm}$ collected in 1978 , 1979, and 2014. |
| AvePr | The average precipitation for five years prior to the year sampled (National Oceanic and Atmospheric AdministrationNational Climatic Data Center 2015). |
| Spring | The average temperature for April through June in the sampling year (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). |
| logElevation | The log of the elevation in meters (Minnesota Geospatial Information Office 2010). |
| $\log$ AGDU | The log of the average growing degree units (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). |
| Precipitation | The average precipitation for the sampling year (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). |
| Snow | The average snowfall for the sampling year (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). |
| Temp | The average temperature for the sampling year (National Oceanic and Atmospheric Administration-National Climatic Data Center 2015). |
| Burn | Years since the last burn at each plot (The Nature Conservancy). |
| Soil | The soil type at the plot (Geospatial Data Gateway). |

A dbRDA does not handle missing data well and since we did not have data for soil moisture from 1998, we ran a separate dbRDA on soil moisture. Because there were not many
explanatory variables (soil moisture at 0-30, 30-60, and $60-90 \mathrm{~cm}$ ) and the number of explanatory variables cannot exceed the response variables, we split up the data into two groups-species level (POPR, BRIN, and Sedges) and functional groups (forbs and grasses). From those results, we executed a linear regression in R on the significant components when appropriate (R Core Team 2012).

## Results

Spatial and temporal changes in plant communities and soil moisture levels
Both ANOVAs on year and plot revealed that percent cover of S. pectinata was not significantly affected by either component, so we removed it from further analysis $\left(\mathrm{F}_{1,21}=3.284\right.$; $\mathrm{p}=0.0843 ; \mathrm{F}_{5,17}=1.135 ; \mathrm{p}=0.0602$ ). All other plant categories were significantly affected by one or both and thus remained in the analysis (Table 5.3).

Basal cover of most of our tested plant categories increased over the last four decades (Fig. 5.2). Poa pratensis and B. inermis cover were significantly affected by year where $P$. pratensis was higher in 2014 compared to other sampled years $\left(\mathrm{F}_{1,21}=15.33 ; \mathrm{p}=0.0008\right.$; $\mathrm{F}_{1,21}=6.45, \mathrm{p}=0.019$; Table 5.3; Table H.1, H.2). Cyperaceae members did not change over the last four decades $\left(\mathrm{F}_{1,21}=3.985, \mathrm{p}=0.059\right)$. The other change we documented was a shift from a forb to a grass dominated community (Fig. 5.3). Overall, the cover of grasses increased significantly in 2014 compared to previous years $\left(\mathrm{F}_{1,21}=43.12\right.$; $\mathrm{p}<.0001$; S3). Soil moisture levels were significantly affected by year for soil depths of $30-60 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$, but not $0-30$ $\mathrm{cm}\left(\mathrm{F}_{1,16}=10.56, \mathrm{p}=0.005 ; \mathrm{F}_{1,16}=8.12, \mathrm{p}=0.012 ; \mathrm{F}_{1,16}=1.98, \mathrm{p}=0.178 ; \mathrm{S} 4\right)$. For $30-60 \mathrm{~cm}$ the soil moisture content was higher in 2014 compared to other years (Table H.4).

Table 5.3. ANOVA in basal percent cover by each plant category by year and plot. Year was included as a random variable and plot was a fixed variable. Spartina pectinata was not significant for year or plot so it was not included in further analysis. Although sedges were not significant for the below categories, they were across plots for 2014 (Table H.5).

| By year |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Plant category | df | SS | MS |  | F | P |
| POPR | 1 | 1678 | 1678 | 15.33 | $0.0008^{*}$ |  |
| Sedges | 1 | 473.5 | 473.5 | 3.985 | $0.059^{\mathrm{NS}}$ |  |
| SPPE | 1 | 1.843 | 1.8434 | 3.284 | $0.0843^{\mathrm{NS}}$ |  |
| BRIN | 1 | 44.18 | 44.18 | 6.45 | $0.019^{*}$ |  |
| Grasses | 1 | 13864 | 13864 | 43.12 | $0.0001^{*}$ |  |
| Forbs | 1 | 15104.7 | 15104.7 | 37.972 | $0.0001^{*}$ |  |


| By plot |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| POPR | 5 | 622 | 124.3 | 0.63 | $0.68^{\mathrm{NS}}$ |
| Sedges | 5 | 1317 | 263.41 | 2.711 | $0.056^{\mathrm{NS}}$ |
| SPPE | 5 | 5.967 | 1.1935 | 2.648 | $0.0602^{\mathrm{NS}}$ |
| BRIN | 5 | 47.03 | 9.406 | 1.135 | $0.38^{\mathrm{NS}}$ |
| Grasses | 5 | 217.6 | 43.52 | 0.0387 | $0.999^{\mathrm{NS}}$ |
| Forbs | 5 | 961.3 | 192.26 | 0.1512 | $0.977^{\mathrm{NS}}$ |



Figure 5.2. Percent cover of three plant categories over time. Estimates are based on the number of intercepts divided by the total number per plot per year. The graph was created in ggplot2 (Wickham 2009).


Figure 5.2. Percent cover of three plant categories over time (continued). Estimates are based on the number of intercepts divided by the total number per plot per year. The graph was created in ggplot2 (Wickham 2009).


Figure 5.3. Grass percent basal cover at each plot including POPR, Cyperace, and BRIN. Estimates are based on the number of intercepts divided by the total number per plot per year. The graph was created in ggplot2 (Wickham 2009).

Plot differences were important for sedges and forbs in 2014 ( $\mathrm{F}_{5,5}=86.192, \mathrm{p}<0.001$; $\mathrm{F}_{5,5}=6.291, \mathrm{p}=0.0324$ ). Cover of sedges was higher on plot five compared to other plots, but the Tukey's posthoc test produced no spatial separation for forbs (Table H.5; H.6). For all plant categories plot differences across years was not significant (Table H.1-H.3, H.5, H.6). Plot differences were found to be an important component in percent soil moisture both in 2014 and across years for $0-30 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$ depths and for $20140-30 \mathrm{~cm}$ was significant as well (Table H.4, H.7).

In 2014, our plant measurements between early and late summer did not change significantly for all plant categories (S1-S3, S5, S6). There were significant differences for soil depths of $30-60 \mathrm{~cm}$ and 60-90 cm between the early and late sampling period in 2014 (S7).

## Environment and cover correlations

The final dbRDA model contained precipitation, spring time temperature, plot, and years since the last burn. In west-central Minnesota, annual precipitation has increased while annual spring time temperature has decreased (Fig. 5.4). Precipitation, spring time annual temperature, and years since last burn were all significant at the $95 \%$ confidence level within our model (Table 5.4). Our only explanatory variable which was not significant was plot, but we kept it in the model because it did contribute to our eigenvalues. We had three axes that were significant, but the third only accounted for $3.5 \%$ of the variance so it was not analyzed (Legendre et al., 2011). Our first two axes accounted for a total of $73 \%$ of the variance.

Environmental variables did correlate with some plant species in our overall dbRDA (Fig. 5.5). Poa pratensis demonstrated a positive relationship to annual precipitation and plot six. Cyperaceae is correlated with annual spring temperature. Forbs are negatively correlated with grasses and annual precipitation, while grasses are positively correlated with annual precipitation. Two to three years after a burn, is correlated with grasses more so than forbs. Whereas, forbs are more closely associated with one year after a burn or zero (never has been burned). Bromus inermis did not show an association with any variables.

The dbRDA on just soil moisture was significant for $P$. pratensis, $B$. inermis, and Cyperaceae ( $\mathrm{F}_{1,16}=3.12, \mathrm{p}=0.003$; S 8 ). It was not significant for the forb and graminoids matrix $\left(\mathrm{F}_{3,14}=2.38, \mathrm{p}=0.092 ; \mathrm{S} 8\right)$. We removed $0-30 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$ from the species model because it did not contribute to the eigenvalues. The dbRDA was significant for only $30-60 \mathrm{~cm}$ soil
moisture levels for both dbRDAs $\left(\mathrm{F}_{1,14}=6.70, \mathrm{p}=0.021 ; \mathrm{F}_{1,16}=3.12, \mathrm{p}=0.01\right)$. Because only the first axis on both dbRDAs had any explanatory power we conducted a linear regression on each plant category and the only significant soil moisture level which was $30-60 \mathrm{~cm}$. Only sedges and grasses/forbs displayed a significant positive correlation (Fig. 5.6).


Figure 5.4. Average spring temperature and average annual precipitation by year from multiple weather stations in west-central Minnesota. Data was collected from NOAA. Precipitation $\mathrm{r}^{2}=0.072, \mathrm{~F}_{1,36}=2.80, \mathrm{p}=0.10$ and annual spring time temperature $\mathrm{r}^{2}=0.001, \mathrm{~F}_{1,39}=0.468, \mathrm{p}=0.498$. (http://www.ncdc.noaa.gov/cag/time-series/us/21/4/pcp/12/12/1975-
2015?base_prd=true\&firstbaseyear=1901\&lastbaseyear=2000\&trend=true\&trend_base=10\&first trendyear=1975\&lasttrendyear=2015)

Table 5.4. The ANOVAs for model including all environmental variables. The data includes the overall model, explanatory variables, and individual axes. Each ANOVA was permuted 999 times within the 'vegan' package.

| Overall model |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Df |  | Variance | F |  |  |
| Model |  | 11 | 3.78 |  | 5.48 |  |
| Residual |  | 11 | 0.69 |  | 0.001 |  |
|  |  |  |  |  |  |  |
| Explanatory variables |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Precipitation | 1 | 1.47 | 23.49 | 0.001 |  |  |
| Spring Temp |  | 5 | 0.57 | 9.07 | 0.002 |  |
| Plot | 4 | 1.22 | 14.86 | 0.139 |  |  |
| Years since last |  |  |  |  | 0.001 |  |
| burn |  |  | 0.69 |  |  |  |
| Residual |  |  |  |  |  |  |

Individual Axes

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| CAP1 | 1 | 2.95 | 47.18 | $0.001^{*}$ |
| CAP2 | 1 | 0.31 | 4.98 | $0.001^{*}$ |
| CAP3 | 1 | 0.16 | 2.52 | $0.019^{*}$ |
| CAP4 | 1 | 0.07 | 1.19 | 0.280 |
| CAP5 | 1 | 0.06 | 0.99 | 0.405 |
| CAP6 | 1 | 0.05 | 0.84 | 0.622 |
| CAP7 | 1 | 0.05 | 0.72 | 0.743 |
| CAP8 | 1 | 0.03 | 0.54 | 0.904 |
| CAP9 | 1 | 0.03 | 0.51 | 0.904 |
| CAP10 | 1 | 0.03 | 0.44 | 0.956 |
| CAP11 | 1 | 0.02 | 0.37 | 0.973 |
| Residual | 11 | 0.69 |  |  |



Figure 5.5. Distance based redundancy analysis (dbRDA) on selected for environmental and plant data using a Bray-Curtis dissimilarity matrix. CAP1 and CAP2 were both statistically significant and account for $73.1 \%$ of the total variance.


Figure 5.6. Percent basal cover of sedges and grasses as a function of soil moisture at $30-60 \mathrm{~cm}$. Best fit regression lines and $95 \%$ confidence intervals are indicated. Significant linear regressions on $30-60 \mathrm{~cm}$ in all plots and all years. Percent soil moisture and plant cover for sedges $\left(\mathrm{r}^{2}=0.5418, \mathrm{SE}=9.074, \mathrm{~F}_{1,16}=18.92, \mathrm{p}<0.001\right)$ and grasses $\left(\mathrm{r}^{2}=0.32, \mathrm{SE}=27.65\right.$, $\mathrm{F}_{1,16}=12.89, \mathrm{p}=0.01$ ).

## Discussion

Our dbRDA attributed two major explanatory variables to the conversion from a forb to grass dominated community-fire management and rising precipitation levels. The productivity of grasses often increases with fire management. When regular fire management is absent from a tallgrass prairie, it is often dominated by forbs or woody species (Gibson \& Hulbert 1987; Vinton et al. 1993; Briggs \& Knapp 2001; Peterson et al. 2007). Because the Nature Conservancy has burned the prairie every four years the cumulative effect of management has likely increased the cover of grasses, which can be seen in our study (Fig. 5.5).

In our analysis, annual precipitation is a stronger explanatory variable than fire management. Evidence of precipitation regimes affecting forb versus grass dominated grasslands can be found during the Holocence (Clark et al. 2002). At the time the NGP was arid and dominated by forb species rather than grasses, which supports the opposite trend of what we are currently observing (Clark et al. 2002). Furthermore, a modern comparison of the Great Plains with the Great Basin verified that grass cover was positively correlated with higher levels of summer precipitation (Cook \& Irwin 1992). Studies that manipulated precipitation regimes consistently support C4 grasses favoring higher levels of precipitation (Nie et al. 1992; Collins et al. 2012). C3 grasses have been found to increase under higher precipitation levels as well, but only when $\mathrm{CO}_{2}$ concentrations were also increased (Nie et al. 1992). This same study found that C4 grasses increase in frequency under only increased precipitation (Nie et al. 1992). Collins et al., highlighted the strongest positive response to increased precipitation in a mesic prairie were C4 grasses. Our results are consistent with previous findings of increased grass cover associated with increased precipitation in a prairie community. Both the fire and precipitation levels may account for the extreme shift from a forb to grass dominated community we documented.

The positive relationship we found between percent grass cover and percent soil moisture ( $30-60 \mathrm{~cm}$ ) was found in another tallgrass prairie study where the authors compared percent soil moisture with annual aboveground biomass of grasses (Briggs \& Knapp 1995). Sedges also showed a strong positive relationship with percent soil moisture in our study, perhaps because the sedge species we commonly encountered may have been hydrophilic. Most of the interactions we tested with our plant communities and percent soil moisture proved to be statistically insignificant. It is possible that our comparison of percent soil moisture and some plant community characteristics were not significant because soil moisture may have been more dependent on soil type rather than precipitation levels.

Changing temperatures may play a role in the spread of some species in our study. Our climate dbRDA did indicate a relationship between basal cover of members of the Cyperaceae and spring annual temperature (Fig. 5.5). Most (63\%) sedges are C3 species (Bruhl \& Wilson 2007). However, previous studies have not found that C3 grass species respond positively to climate changes (Owensby et al. 1999; Epstein et al. 2002). Predictive climate change models focusing on vegetation characteristics have forecasted a $10-20 \%$ increase of C 4 grasses and a $10-$ 20\% decrease of C3 species when considering precipitation, temperature, and seasonality in North and South America (Epstein et al. 2002). One untested possibility for the trend we observed with Cyperaceae is an increase of $\mathrm{CO}_{2}$ in the atmosphere. A study comparing Cyperaceae grown in ambient and twice ambient conditions found that Cyperaceae nearly doubled in percent basal cover under increased $\mathrm{CO}_{2}$ conditions (Owensby et al. 1999). Another relationship we discovered was that basal cover of Cyperaceae was strongly correlated with plot five. Plot five was located in a low elevation area that was extremely wet, which likely provided ideal growing conditions for Cyperaceae.

The increase in $P$. pratensis we found over time follows regional trends. An increase in P. pratensis invasion has been documented by many studies (Cully et al. 2003; Grant et al. 2009b; DeKeyser et al. 2013b, 2015; O’Brien 2014; Toledo et al. 2014a). Notably, one survey from 2014 found that $20-35 \%$ of rangelands consisted of more than $50 \%$ soil surface cover of "invasive bluegrasses", which includes both Poa pratensis and Poa compressa L. (Canada bluegrass; United States Department of Agriculture Natural Resources Conservation Service 2014). Our analysis indicated a positive relationship between annual precipitation levels and $P$. pratensis. In one study, under increased precipitation and CO 2 levels, $P$. pratensis increased in frequency (Nie et al., 1989). Further evidence that $P$. pratensis is increasing because of precipitation is a study from 1954 where a heavily invaded prairie consisted of over $50 \% \mathrm{P}$. pratensis in 1937, but after a three year drought, P. pratensis dropped to 3\% (Weaver 1954). Since the NGP is higher in precipitation now compared to the past 100 years, $P$. pratensis may be increasing in frequency due to precipitation levels.

Although most climate studies on plant communities focus on changes in temperature, annual growing degree days and phenology, changes in precipitation may be more consequential in some areas. We conclude that the increasing annual precipitation in the NGP over the last 20 years has impacted the plant composition of the prairie. Although land managers may be able to reverse some of these climactic effects with prescribed burning or grazing, it does indicate as long as the NGP continues this higher precipitation trend, intense management should be maintained. The major caveat of our study is that we only observed one grassland preserve. More long-term data in the NGP is needed to draw major conclusions. As for the future, predictions of precipitation regimes are variable, although for northern climates the general
prediction is increased precipitation (Johnson et al. 2005, 2010). Overall, increased precipitation may increase the presence of invasive grass species in the NGP.

## Literature Cited

Bahm MA, Barnes TG, Jensen KC (2011) Herbicide and Fire Effects on Smooth Brome (Bromus inermis) and Kentucky Bluegrass (Poa pratensis) in Invaded Prairie Remnants. Invasive Plant Science and Management, 4, 189-197.

Borcard D (2011) Numerical Ecology with R. Springer, New York.
Branson FA (1985) Vegetation Changes on Western Rangelands. Society for Range Management, Denver, CO.

Briggs J, Knapp A (1995) Interannual Variability in Primary Production in Tallgrass Prairie: Climate, Soil Moisture, Topographic Position, and Fire as Determinants of Aboveground Biomass. American Journal of Botany, 82, 1024-1030.

Briggs J, Knapp A (2001) Determinants of C3 Forb Growth and Production in a C4 Dominated Grassland. Plant Ecology, 152, 93-100.

Bruhl J, Wilson K (2007) Towards a Comprehensive Survey of C3 and C4 Photosynthetic Pathways in Cyperaceae. Aliso, 23, 99-148.

Clark JS, Grimm EC, Donovan JJ et al. (2002) Drought Cycles and Landscape Responses to Past Aridity on Prairies of the Northern Great Plains, USA. Ecology, 83, 595-601.

Collins SL, Koerner SE, Plaut JA et al. (2012) Stability of Tallgrass Prairie During a 19-year Increase in Growing Season Precipitation: Long-Term Irrigation in Native Tallgrass Prairie. Functional Ecology, 26, 1450-1459.

Cook J, Irwin L (1992) Climate-Vegetation Relationships between the Great Plains and Great Basin. , 127, 316-326.

Cully AC, Cully JF, Hiebert RD (2003) Invasion of Exotic Plant Species in Tallgrass Prairie Fragments. Conservation Biology, 17, 990-998.

DeKeyser ES, Dennhardt LA, Hendrickson J (2015) Kentucky bluegrass (Poa pratensis )
Invasion in the Northern Great Plains: A Story of Rapid Dominance in an Endangered Ecosystem. Invasive Plant Science and Management, 8, 255-261.

DeKeyser ES, Meehan M, Clambey G, Krabbenhoft K (2013) Cool Season Invasive Grasses in Northern Great Plains Natural Areas. Natural Areas Journal, 33, 81-90.

Dunnell KL, Travers SE (2011) Shifts in the Flowering Phenology of the Northern Great Plains:
Patterns over 100 Years. American Journal of Botany, 98, 935-945.
Dziadyk B (1981) Structure and Function of Plant Communities in a Western Minnesota
Tallgrass Prairie. North Dakota State University, Fargo, ND.
Epstein H, Gill R, Paruelo J et al. (2002) The Relative Abundance of Three Plant Functional
Types in Temperate Grasslands and Shrublands of North and South America: Effects of
Projected Climate Change. Journal of Biogeography, 29, 875-888.
Geospatial Data Gateway Soil Survey Geographic database (2015) United States Department of Agriculture-Natural Resources Conservation Service. https://gdg.sc.egov.usda.gov/

Gibson D, Hulbert L (1987) Effects of Fire, Topography and Year-to-Year Climatic Variation on Species Composition in Tallgrass Prairie. Vegetatio, 72, 175-185.

Grant TA, Flanders-Wanner B, Shaffer TL, Murphy RK, Knutsen GA (2009) An Emerging Crisis across Northern Prairie Refuges: Prevalence of Invasive Plants and a Plan for Adaptive Management. Ecological Restoration, 27, 58-65.

Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five Potential Consequences of Climate Change for Invasive Species. Conservation Biology, 22, 534-543.

Johnson WC, Millett BV, Gilmanov T et al. (2005) Vulnerability of Northern Prairie Wetlands to Climate Change. BioScience, 55, 863.

Johnson WC, Werner B, Guntenspergen GR et al. (2010) Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate. BioScience, 60, 128-140.

Legendre P (2012) Numerical ecology. Elsevier, Amsterdam.
McCune B, Grace J (2002) Analysis of Ecological Communities. MjM Software Design.
McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR.

Miller K (2000) History and Dynamics of a Southern Lake Agassiz Basin Tallgrass Prairie Preserve. North Dakota State University, Fargo, ND.

Millett B, Johnson WC, Guntenspergen G (2009) Climate Trends of the North American Prairie Pothole Region 1906-2000. Climatic Change, 93, 243-267.

Minnesota Department of Health (2015) Minnesota Climate and Health Profile Report. http://www.health.state.mn.us/divs/climatechange/docs/mnprofile2015.pdf

Minnesota Geospatial Information Office (2010) LiDAR Elevation Data for Minnesota. http://www.mngeo.state.mn.us/chouse/elevation/lidar.html

Morgan J, Derner J, Milchunas D, Pendall E (2008) Management Implications of Global Change for Great Plains Rangelands. Society for Range Management, 30, 18-22.

National Oceanic and Atmospheric Administration-National Climatic Data Center (2015) Climate Data Online Search.

Nie D, Kirkham MB, Ballou LK, Lawlor DJ, Kanemasu ET (1992) Changes in prairie vegetation under elevated carbon dioxide levels and two soil moisture regimes. Journal of Vegetation Science, 3, 673-678.

O’Brien P (2014) Plant Community Composition of Camp Grafton Training Center (South Unit) from 1998-2013. North Dakota State University, Fargo, ND.

Oksanen J, Blanchet FG, Kindt R et al. (2015) vegan: Community Ecology Package. https://github.com/vegandevs/vegan

Owensby CE, Ham JM, Knapp AK, Auen LM (1999) Biomass Production and Species Composition Change in a Tallgrass Prairie Ecosystem after Long-Term Exposure to Elevated Atmospheric CO2. Global Change Biology, 5, 497-506.

Peterson DW, Reich PB, Wrage KJ (2007) Plant Functional Group Responses to Fire Frequency and Tree Canopy Cover Gradients in Oak Savannas and Woodlands. Journal of Vegetation Science, 18, 3-12.

Primack RB, Miller-Rushing AJ (2009) The Role of Botanical Gardens in Climate Change Research. New Phytologist, 182, 303-313.

R Core Team (2012) R: A Language and Environment for Statistical Computing.
Silvy NJ (Ed.) (2012) The Wildlife Techniques Manual. Johns Hopkins University Press, Baltimore, Md.

Solomon S, Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (Eds.) (2007) Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge ; New York.

Toledo D, Sanderson M, Spaeth K, Hendrickson J, Printz J (2014) Extent of Kentucky bluegrass and its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the USA. Invasive Plant Science and Management, 4, 543-552.

United States Department of Agriculture Natural Resources Conservation Service (2014) National Resources Inventory Rangeland Resource Assessment.
U.S. Global Change Research Program (Ed.) (2009) Global Climate Change Impacts in the United States: A State of Knowledge Report. Cambridge University Press, Cambridge England.

Valk AG van der. (2005) Water-level fluctuations in North American prairie wetlands. Hydrobiologia, 539, 171-188.

Vinton MA, Hartnett DC, Finck EJ, Briggs JM (1993) Interactive Effects of Fire, Bison (Bison bison) Grazing and Plant Community Composition in Tallgrass Prairie. American Midland Naturalist, 129, 10.

Weaver JE (1954) A Seventeen-Year Study of Plant Succession in Prairie. American Journal of Botany, 41, 31-38.

Weaver JE (1991) Prairie plants and their environment: a fifty-year study in the Midwest. University of Nebraska Press, Lincoln.

Werner BA, Johnson WC, Guntenspergen GR (2013) Evidence for 20th Century Climate Warming and Wetland Drying in the North American Prairie Pothole Region. Ecology and Evolution, 3471-3482.

Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York.

## CHAPTER 6. CONCLUSIONS

The goal of this dissertation was to specify the reasons Poa pratensis is invading plant communities in the NGP. The list of potential reasons include: climactic changes, human disturbance, adaptation, or some combination of the three. I have presented evidence that $P$. pratensis performs well in competition experiments and that rising precipitation levels are correlated with increased Poa pratensis frequency in the region.

Poa pratensis invasion is at least partially a result of increased precipitation in the NGP (Chapter 5). In addition to a correlation between annual precipitation and $P$. pratensis frequency, there is plenty of evidence from the literature that $P$. pratensis is limited by water availability. As mentioned earlier, the major invasion shift in ND is the westward movement of P. pratensis into mixed grass prairie. Western North Dakota had an average annual precipitation level of 406 mm from 1901-2000 and has been rising by $+63.5 \mathrm{~mm} /$ decade from 1895 to 2014 (National Oceanic and Atmospheric Administration 2014). The average precipitation from 2000-2014 in Western North Dakota has been 443mm (National Oceanic and Atmospheric Administration 2014). This rise is notable since $P$. pratensis grown in lawns need at least 400 mm of precipitation a year (Bush 2002) for successful growth. Further supporting the link between precipitation and invasion are studies that indicate $P$. pratensis competes better under increased precipitation (e.g. Nie et al. 1992), along with historical data supporting this trend (Weaver 1954). One aspect that is lacking is reliable long-term data on $P$. pratensis in the NGP, but there is currently work being conducted on resampling plots from the 1970s (Personal communication, John Hendrickson and Cami Dixon). Although, looking at the available data for the change in precipitation and $P$. pratensis at multiple sites in ND there is a visible connection between precipitation and grass frequency (Fig. 6.1).


Figure 6.1. The annual precipitation for the state of North Dakota plotted from 1895-2015 with an 1895-2015 trend line (blue line), a LOESS (locally weighted scatterplot smoothing; red line), and the average between 1901-2014 (flat gray line). The percentages on this figure are estimated percentages at which $P$. pratensis was found in each study: the percentages in the blue circle are from chapter five of this dissertation, the two percentages in the rounded square are from chapter two, and the four percentages in the square are from O'Brien 2014.

Further support for climactic changes influencing the change in $P$. pratensis frequencies comes from a study of a grassland at the military training base Camp Grafton in Ramsey County, ND. O'Brien found that levels of P. pratensis increased in frequency since the 1990's (O'Brien 2014). From 1998-2001 P. pratensis composed $65 \%$ of the percent cover of the grassland. However, in 2011-2013 it composed $93.8 \%$ on the upland site, remained steady at the midland site, and rose from $58.1 \%$ to $86.5 \%$ at the lowland site. This study attributed the change in $P$.
pratensis to increases in precipitation, annual growing degree days, and temperature (O'Brien 2014). One of the major differences between our studies is that I used a methodology in which environmental variables were selected whereas his study kept all variables in the model. This means, that in my study the stronger covariate is the one that is chosen to stay in the model-in my case precipitation.

It is possible that the increase in annual temperature in the region may also be contributing to invasion. Priority, the start of growth at an earlier time, has been shown to give P. pratensis a competitive advantage (Ulrich \& Perkins 2014). Since $P$. pratensis is an early emerging species and germinates in fall, it is logical to assume that the increased numbers of growing degree days in the region provide a growth advantage relative to other species. This hypothesis needs further empirical study.

There is evidence for other contributing factors in $P$. pratensis invasion that were not addressed in this thesis such as soil type and land use. From other studies we know that $P$. pratensis performs well on loamy soil (Klempel 2015) which is a soil type found extensively throughout North Dakota (Yang et al. 2007). There is also research that indicates that traditional grazing practices which discourage ranchers from grazing too early in the season allow for increased levels of invasion (Patton et al. 2013; Hendrickson \& Printz 2015).

Finally, the work described here led to multiple rejected hypotheses. The most notable was the lack of evidence for adaptation by P. pratensis that was presented in Chapter three. I found no evidence of detectable geographic patterning in the population genetics of this species. This conclusion led me to the consideration of an environmental shift being a cause for invasion. Another hypothesis rejected in Chapter three was that invasion was occurring because of propagule pressure. There was virtually no genetic overlap between the tested cultivars and wild
individuals; the amount of nuclear genetic diversity points to a long history of $P$. pratensis presence in the prairie. The other rejected hypotheses is that Poa pratensis is extremely competitive. Although it was facilitated by native species, it was less competitive relative to other native plant species in paired experiments.

One certainty is that over the past century, Poa pratensis has become a major portion of the prairie. This is evidenced from a few important places-the literature, reports from land managers, and warnings from senior ecologists in the region. Whether the cause of invasion is a climactic shift in temperature and precipitation or changing land-use, management strategies will need to be more deliberate and extensive in the future. North Dakota's west is a major cattle ranching territory and efforts should be maintained to increase high-intensity spring grazing and/or frequent burn regimes to keep maintain the tallgrass and mixed grass prairie. Both management strategies have been shown to be effective and will be needed in the future (Hendrickson \& Lund 2010; Patton et al. 2013).

## Literature Cited

Bush T (2002) Plant fact sheet: Kentucky bluegrass (Poa pratensis L.).
Hendrickson JR, Lund C (2010) Plant Community and Target Species Affect Responses to Restoration Strategies. Rangeland Ecology \& Management, 63, 435-442.

Klempel L (2015) Biological Capability of Selected Ecological Sites in the Western Dakotas.
North Dakota State University.
National Oceanic and Atmospheric Administration (2014) Climate at a Glance: North Dakota.
Nie D, Kirkham MB, Ballou LK, Lawlor DJ, Kanemasu ET (1992) Changes in Prairie
Vegetation under Elevated Carbon Dioxide Levels and Two Soil Moisture Regimes. Journal of Vegetation Science, 3, 673-678.

O’Brien P (2014) Plant Community Composition of Camp Grafton Training Center (South Unit) from 1998-2013. North Dakota State University.

Patton B, Neville B, Nyren A (2013) Early Intensive Grazing Research in the Missouric Coteau Region of North Dakota: Year Three. North Dakota State University.

Printz JL, Hendrickson JR (2015) Impacts of Kentucky bluegrass Invasion (Poa pratensis L.) on Ecological Processes in the Northern Great Plains. Rangelands, 37, 226-232.

Ulrich E, Perkins L (2014) Bromus inermis and Elymus canadensis but not Poa pratensis Demonstrate Strong Competitive Effects and all Benefit from Priority. Plant Ecology, 215, 1269-1275.

Weaver JE (1954) A Seventeen-Year Study of Plant Succession in Prairie. American Journal of Botany, 41, 31-38.

Yang Y, Wilson LT, Wang J (2007) Integrated Agricultural Information and Management System (iAIMS): Soil Data for North Dakota.

# APPENDIX A. COPYRIGHT PERMISSION TO USE CHAPTER TWO IN THIS 

## DISSERTATION



Date: October 27, 2015

Dear Lauren Dennhardt,

On behalf of Allen Press Publishing Services, I am pleased to grant permission to you for the reprinting of the following:
"Kentucky bluegrass (Poa pratensis) Invasion in the Northern Great Plains: A Story of Rapid Dominance in an Endangered Ecosystem" by Edward S. Dekeyser, Lauren A. Dennhardt, and John Hendrickson appearing in Invasive Plant Science and Management 8.3 (2015).

For use in author's dissertation.

This permission is a one-time, non-exclusive, electronic worldwide grant for English language use as described in this letter, and is subject to the following conditions:
I. No payment required.
2. Each copy containing our material that you reproduce or distribute must bear the appropriate copyright information, crediting the author, journal, and publisher (Invasive Plant Science and Manogement, Allen Press Publishing Services).

If these terms are acceptable, please sign and date, and fax back to my attention at 785-843-1853. This permission will be effective upon our receipt of the signed contract. If applicable, when sending payment, please make clear reference to our title and author: Materials should be addressed to Invosive Plont Science and Management, clo Marilyn Kearney, P.O. Box 1897, Lawrence, KS 66044.

Sincerely,

Marilyn Kearney
Publishing Specialist
Allen Press Publishing Services


We have elected not to use this material

## APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3

## The methodology and calculation used for calculating a mantel test on wind direction

In order to test the hypothesis of whether gene flow could be explained by predominant wind direction in June, we ran a Mantel test on wind direction and our pairwise Rho ${ }^{\text {ST }}$ values.

We tested whether wind pollination may explain the population landscape by first calculating the bearing between all tested NWRs in the study. We then calculated the predominant wind direction in June using nearby historical data for all sites. The North Dakota sites were the most robust. We picked the four weather stations closest to the NWR, calculated the average wind direction from 2001-2011, then found the average of the four sites. In South Dakota, the data was more limited. We took the closest average wind direction for June in 2002 or 2005 depending on what was available. We calculated the average wind direction using the equation below.

We first calculated $u$ and $v$.
$\mathrm{u}=-\mathrm{wspd} * \sin (w d i r)$
$\mathrm{v}=-\mathrm{wspd} * \cos (\mathrm{wdir})$

We then calculated the monthly mean for each month by calculating uave and vave.

We then transformed the data to wspd and wdir.
$\operatorname{rad}=4.0 * \operatorname{atan}(1.0) / 180$
wspd=sqrt(uave^2+vAve^2)/rad+180

We then calculated a matrix representing a coefficient of similarity between compass bearing and wind direction between two sites. We took the bearing between two points and separately calculated the least difference between the bearing and the wind direction of the first
site. Then we did the same for the second site. We took the two calculated numbers and added them together. We then ran two mantel tests. The first was on our wind direction and compass bearing similarity matrix and the pairwise RhoST values. The second mantel test was the same, but it was a paired Mantel test and included a distance matrix.


Figure B.1. The histogram showing the cutoff point for what a clone is considered to be using Genodive. The red line is the chosen threshold between the two bimodal peaks.

Table B．1．Paired $\mathrm{F}_{\text {ST }}$ values based on 5000 permutations calculated in SpageDi．Highlighted values with asterisk indicate a p－value of $>0.05$ ，thus non－significant values．P－values are listed below black bars．

| $\mathrm{F}_{\text {ST }}$ values |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Populations | $\begin{aligned} & \text { Z } \\ & \text { Z } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hat{z} \\ & 0 \\ & \text { on } \\ & \text { on } \end{aligned}$ | $\begin{aligned} & \text { 合 } \\ & \text { of } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { 领 } \\ & \text { 离 } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{0} \\ & 0 \\ & \tilde{J} \end{aligned}$ | $\begin{aligned} & \text { : } \\ & \text { त } \\ & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |
| Lostwood，ND |  | 0．051＊ | 0．048＊ | 0．089＊ | 0．065＊ | 0．099＊ | 0．084＊ | 0．075＊ | 0．154＊ |
| Souris，ND | 0.038 |  | 0.000 | 0.035 | 0.023 | 0.049 | 0.010 | 0．053＊ | 0．093＊ |
| Arrowwood，ND | 0.025 | 0.361 |  | 0．042＊ | 0.021 | 0．054＊ | 0．016＊ | 0．055＊ | 0．110＊ |
| Tewaukon，ND | 0.007 | 0.078 | 0.032 |  | 0．052＊ | 0.127 | 0.047 | 0．104＊ | 0．127＊ |
| Sandlake，SD | 0.001 | 0.302 | 0.324 | 0.008 |  | 0．087＊ | 0.034 | 0．064＊ | 0．124＊ |
| Hyde，SD | 0.006 | 0.072 | 0.040 | 0.000 | 0.002 |  | 0．087＊ | 0.027 | 0．176＊ |
| Madison，SD | 0.001 | 0.880 | 0.635 | 0.077 | 0.123 | 0.004 |  | 0．105＊ | 0．104＊ |
| Lake Andes，SD | 0.009 | 0.029 | 0.009 | 0.000 | 0.005 | 0.265 | 0.000 |  | 0．179＊ |
| Common Cultivars | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |

Table B．2．Paired Gst values based on 5000 permutations calculated in SpageDi．Highlighted values with asterisk indicate a p－value of $>0.05$ ，thus non－significant values．P－values are listed below black bars．

| Gst values |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Populations | $\begin{aligned} & \text { 合 } \\ & 0 . \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \hat{z} \\ & \dot{\theta} \\ & \text { B } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { 会 } \\ & \text { d } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { i } \\ & \text { 空 } \\ & \text { in } \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{0} \\ & 0 \\ & \tilde{J} \end{aligned}$ |  |
| Lostwood，ND |  | 0．047＊ | 0．030＊ | 0．074＊ | 0．048＊ | 0．068＊ | 0．043＊ | 0．053＊ | 0．119＊ |
| Souris，ND | 0.009 |  | 0．026＊ | 0．051＊ | 0．029＊ | 0．074＊ | 0．035＊ | 0．051＊ | 0．117＊ |
| Arrowwood，ND | 0.217 | 0.318 |  | 0．046＊ | 0．027＊ | 0．054＊ | 0．033＊ | 0．046＊ | 0．099＊ |
| Tewaukon，ND | 0.000 | 0.005 | 0.01 |  | 0．058＊ | 0．111＊ | 0．044＊ | 0．089＊ | 0．124＊ |
| Sandlake，SD | 0.006 | 0.187 | 0.249 | 0 |  | 0．074＊ | 0．036＊ | 0．049＊ | 0．118＊ |
| Hyde，SD | 0.009 | 0.009 | 0.035 | 0.001 | 0.003 |  | 0．082＊ | 0．019＊ | 0．160＊ |
| Madison，SD | 0.044 | 0.15 | 0.226 | 0.051 | 0.128 | 0.003 |  | 0．084＊ | 0．105＊ |
| Lake Andes，SD | 0.035 | 0.024 | 0.049 | 0.001 | 0.029 | 0.381 | 0.001 |  | 0．155＊ |
| Common Cultivars | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |

Table B.3. Allele lengths for each locus for each sample. A "-9" indicates missing data in which a peak was detected but unreadable. Many samples were sent in more than once for consistency tests. Site Code meanings are available in Table 3.1. Samples were named based upon site, transect number, and location on transect.

| Site Code | Sample <br> Name | Marker | $\begin{gathered} \text { Allele } \\ 1 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 2 \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 3 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 4 \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 5 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 6 \\ \hline \end{gathered}$ | Allele 7 | $\begin{gathered} \text { Allele } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW1 | A2.8 | 28 | 292 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 28 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 28 | 292 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 28 | 286 | 292 | 304 |  |  |  |  |  |
| TW1 | A3.2 | 28 | 286 | 292 |  |  |  |  |  |  |
| TW1 | A3.2 | 28 | 286 | 292 | 304 |  |  |  |  |  |
| TW1 | A3.8 | 28 | 270 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 28 | 270 | 292 |  |  |  |  |  |  |
| TW1 | A4.2 | 28 | -9 |  |  |  |  |  |  |  |
| TW1 | A4.2 | 28 | 270 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 28 | 270 | 304 |  |  |  |  |  |  |
| TW1 | A5.0 | 28 | 270 | 304 |  |  |  |  |  |  |
| TW1 | A5.0 | 28 | 270 | 304 |  |  |  |  |  |  |
| TW1 | A2.8 | 21 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 21 | 181 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 21 | 173 | 181 |  |  |  |  |  |  |
| TW1 | A3.2 | 21 | -9 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 21 | 179 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 21 | 179 | 186 |  |  |  |  |  |  |
| TW1 | A3.8 | 21 | 179 | 186 | 196 |  |  |  |  |  |
| TW1 | A4.2 | 21 | 181 | 184 |  |  |  |  |  |  |
| TW1 | A4.2 | 21 | 181 | 184 |  |  |  |  |  |  |
| TW1 | A5.0 | 21 | 181 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 21 | 181 | 183 |  |  |  |  |  |  |
| TW1 | A5.0 | 21 | 181 | 183 |  |  |  |  |  |  |
| TW1 | A2.8 | 23 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 23 | 302 | 312 |  |  |  |  |  |  |
| TW1 | A2.8 | 23 | 302 | 312 |  |  |  |  |  |  |
| TW1 | A3.2 | 23 | 286 | 291 |  |  |  |  |  |  |
| TW1 | A3.2 | 23 | 286 | 291 |  |  |  |  |  |  |
| TW1 | A3.8 | 23 | 329 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 23 | 312 | 320 | 327 | 329 |  |  |  |  |
| TW1 | A4.2 | 23 | 293 |  |  |  |  |  |  |  |
| TW1 | A4.2 | 23 | 288 | 293 |  |  |  |  |  |  |
| TW1 | A5.0 | 23 | 290 | 293 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{gathered} \text { Allele } \\ 1 \\ \hline \end{gathered}$ | Allele | Allele <br> 3 | $\begin{gathered} \text { Allele } \\ 4 \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 5 \end{gathered}$ | $\begin{gathered} \text { Allele } \\ 6 \end{gathered}$ | Allele 7 | $\begin{gathered} \text { Allele } \\ 8 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW1 | A5.0 | 23 | 290 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 23 | 290 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 8 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| TW1 | A2.8 | 8 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 8 | 178 | 200 | 208 | 216 | 226 |  |  |  |
| TW1 | A3.2 | 8 | 214 | 218 | 228 | 269 |  |  |  |  |
| TW1 | A3.2 | 8 | 214 | 218 | 228 | 269 |  |  |  |  |
| TW1 | A3.8 | 8 | 212 | 216 | 269 |  |  |  |  |  |
| TW1 | A3.8 | 8 | 206 | 212 | 216 | 228 | 239 | 269 |  |  |
| TW1 | A4.2 | 8 | 172 | 203 | 214 | 269 |  |  |  |  |
| TW1 | A4.2 | 8 | 172 | 203 | 214 | 239 | 269 |  |  |  |
| TW1 | A5.0 | 8 | 208 | 222 |  |  |  |  |  |  |
| TW1 | A5.0 | 8 | 200 | 208 | 222 |  |  |  |  |  |
| TW1 | A5.0 | 8 | 200 | 208 | 222 |  |  |  |  |  |
| TW1 | A2.8 | 9 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 9 | 301 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 9 | 299 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 9 | 299 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 9 | 298-2 | 305 |  |  |  |  |  |  |
| TW1 | A3.8 | 9 | 299 | 306 | 310 |  |  |  |  |  |
| TW1 | A4.2 | 9 | 306 |  |  |  |  |  |  |  |
| TW1 | A4.2 | 9 | 306 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 9 | 299 | 305 |  |  |  |  |  |  |
| TW1 | A5.0 | 9 | 299 | 305 |  |  |  |  |  |  |
| TW1 | A5.0 | 9 | 299 | 305 |  |  |  |  |  |  |
| TW1 | A2.8 | 15 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 15 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 15 | 260 | 277 |  |  |  |  |  |  |
| TW1 | A3.2 | 15 | 213 | 277 |  |  |  |  |  |  |
| TW1 | A3.2 | 15 | 198 | 213 | 244 | 260 | 277 | 282 | 363 |  |
| TW1 | A3.8 | 15 | 277 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 15 | 277 | 282 |  |  |  |  |  |  |
| TW1 | A4.2 | 15 | 284 |  |  |  |  |  |  |  |
| TW1 | A4.2 | 15 | 277 | 284 |  |  |  |  |  |  |
| TW1 | A5.0 | 15 | -9 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 15 | 284 | 290 |  |  |  |  |  |  |
| TW1 | A5.0 | 15 | 284 | 290 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW1 | A2.8 | 17 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 17 | -9 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 17 | 290 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 17 | 290 | 305 |  |  |  |  |  |  |
| TW1 | A3.8 | 17 | 284 | 305 |  |  |  |  |  |  |
| TW1 | A3.8 | 17 | 284 | 305 | 290 | 306 |  |  |  |  |
| TW1 | A4.2 | 17 | 280 | 296 |  |  |  |  |  |  |
| TW1 | A4.2 | 17 | 280 | 296 | 306 | 341 |  |  |  |  |
| TW1 | A5.0 | 17 | 295 | 306 | 320 | 334 |  |  |  |  |
| TW1 | A5.0 | 17 | 295 | 306 | 320 | ? | 334 |  |  |  |
| TW1 | A5.0 | 17 | 295 | 306 | 320 | 334 |  |  |  |  |
| TW1 | A2.8 | 10 | 260 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 10 | 251 | 263 |  |  |  |  |  |  |
| TW1 | A2.8 | 10 | 251 | 263 |  |  |  |  |  |  |
| TW1 | A3.2 | 10 | 260 |  |  |  |  |  |  |  |
| TW1 | A3.2 | 10 | 260 | 245 | 251 | 268 | 273 |  |  |  |
| TW1 | A3.8 | 10 | 251 | 257 |  |  |  |  |  |  |
| TW1 | A3.8 | 10 | 251 | 257 | 257 | 260 | 268 |  |  |  |
| TW1 | A4.2 | 10 | 251 | 255 |  |  |  |  |  |  |
| TW1 | A4.2 | 10 | 251 | 255 |  |  |  |  |  |  |
| TW1 | A5.0 | 10 | 260 |  |  |  |  |  |  |  |
| TW1 | A5.0 | 10 | 255 | 260 |  |  |  |  |  |  |
| TW1 | A5.0 | 10 | 260 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 25 | 151 | 160 | 170 | 203 |  |  |  |  |
| TW1 | A2.8 | 25 | 203 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 25 | 151 | 158 | 168 | 201 |  |  |  |  |
| TW1 | A3.2 | 25 | 160 | 175 | 195 | 205 |  |  |  |  |
| TW1 | A3.2 | 25 | 158 | 160 | 175 | 195 | 203 | 205 |  |  |
| TW1 | A3.8 | 25 | 160 | 175 | 197 | 201 | 205 |  |  |  |
| TW1 | A3.8 | 25 | 160 | 175 | 201 | 205 | 207 |  |  |  |
| TW1 | A4.2 | 25 | 151 | 160 | 168 | 201 |  |  |  |  |
| TW1 | A4.2 | 25 | 151 | 160 | 168 | 201 | 205 | 207 |  |  |
| TW1 | A5.0 | 25 | 151 | 160 | 162 | 168 | 175 | 191 | 203 |  |
| TW1 | A5.0 | 25 | 151 | 160 | 162 | 168 | 175 | 191 | 203 |  |
| TW1 | A5.0 | 25 | 151 | 160 | 162 | 168 | 175 | 191 | 203 |  |
| TW1 | A2.8 | 11 | 261 | 283 |  |  |  |  |  |  |
| TW1 | A2.8 | 11 | -9 |  |  |  |  |  |  |  |
| TW1 | A2.8 | 11 | 261 | 283 | 263 | 268 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW1 | A3.2 | 11 | 256 | 263 |  |  |  |  |  |  |
| TW1 | A3.2 | 11 | 256 | 263 | 265 |  |  |  |  |  |
| TW1 | A3.8 | 11 | 263 |  |  |  |  |  |  |  |
| TW1 | A3.8 | 11 | 263 |  |  |  |  |  |  |  |
| TW1 | A4.2 | 11 | 254 | 256 | 261 | 265 | 265 |  |  |  |
| TW1 | A4.2 | 11 | 254 | 256 | 261 | 265 |  |  |  |  |
| TW1 | A5.0 | 11 | 202 | 211 | 226 | 243 | 256 | 261 |  |  |
| TW1 | A5.0 | 11 | 202 | ? | 226 | 256 | 261 |  |  |  |
| TW1 | A5.0 | 11 | 202 | 211 | 226 | 243 | 256 | 261 |  |  |
| TW1 |  |  | 270 | 288 |  |  |  |  |  |  |
| TW2 | B1.8 | 28 | 270 | 288 |  |  |  |  |  |  |
| TW2 |  |  | 270 | 284 |  |  |  |  |  |  |
| TW2 | B2.0 | 28 | 270 | 284 |  |  |  |  |  |  |
| TW2 |  |  | 270 | 288 |  |  |  |  |  |  |
| TW2 |  |  | 270 | 288 |  |  |  |  |  |  |
| TW2 |  |  | 276 |  |  |  |  |  |  |  |
| TW2 | B2.4 | 28 | 270 |  |  |  |  |  |  |  |
| TW2 | B2.6 | 28 | 270 | 288 |  |  |  |  |  |  |
| TW2 |  | 2 | 270 | 288 |  |  |  |  |  |  |
| TW2 | B3.4 | 28 | 270 | 288 |  |  |  |  |  |  |
| TW2 |  |  | 181 | 183 | 192 |  |  |  |  |  |
| TW2 | B1.8 | 21 | 181 | 183 | 192 |  |  |  |  |  |
| TW2 |  |  | 183 | 184 | 186 | 192 |  |  |  |  |
| TW2 | B2.0 | 21 | 183 | 184 | 186 | 192 |  |  |  |  |
| TW2 |  |  | 181 | 183 | 186 | 192 |  |  |  |  |
| TW2 |  |  | -9 |  |  |  |  |  |  |  |
| TW2 |  |  | 179 | 192 |  |  |  |  |  |  |
| TW2 | B2.4 | 21 | 181 | 186 | 192 |  |  |  |  |  |
| TW2 | B2.6 | 21 | 181 | 183 | 186 | 192 |  |  |  |  |
| TW2 | 1 |  | 181 |  |  |  |  |  |  |  |
| TW2 | B3.4 | 21 | 179 | 183 | 192 |  |  |  |  |  |
| TW2 |  |  | 291 |  |  |  |  |  |  |  |
| TW2 | B1.8 | 23 | 291 |  |  |  |  |  |  |  |
| TW2 |  |  | 286 | 293 |  |  |  |  |  |  |
| TW2 | B2.0 | 23 | 286 | 293 |  |  |  |  |  |  |
| TW2 |  |  | 291 |  |  |  |  |  |  |  |
| TW2 |  |  | 291 |  |  |  |  |  |  |  |
| TW2 |  |  | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW2 | B2.4 | 23 | 286 | 293 |  |  |  |  |  |  |
| TW2 | B2.6 | 23 | 291 |  |  |  |  |  |  |  |
| TW2 | 1 |  | 291 |  |  |  |  |  |  |  |
| TW2 | B3.4 | 23 | 291 |  |  |  |  |  |  |  |
| TW2 |  |  | 192 | 203 |  |  |  |  |  |  |
| TW2 | B1.8 | 8 | 192 | 203 |  |  |  |  |  |  |
| TW2 |  |  | 206 | 208 |  |  |  |  |  |  |
| TW2 | B2.0 | 8 | 206 | 208 |  |  |  |  |  |  |
| TW2 |  |  | 192 | 196 | 203 |  |  |  |  |  |
| TW2 |  |  | 203 |  |  |  |  |  |  |  |
| TW2 |  |  | 203 |  |  |  |  |  |  |  |
| TW2 | B2.4 | 8 | 172 | 192 | 208 | 252 |  |  |  |  |
| TW2 | B2.6 | 8 | 192 | 196 | 203 |  |  |  |  |  |
| TW2 | 1 |  | -9 |  |  |  |  |  |  |  |
| TW2 | B3.4 | 8 | 200 | 203 |  |  |  |  |  |  |
| TW2 |  |  | 293 | 306 |  |  |  |  |  |  |
| TW2 | B1.8 | 9 | 293 | 306 |  |  |  |  |  |  |
| TW2 |  |  | ? | 306 |  |  |  |  |  |  |
| TW2 | B2.0 | 9 | 295 | 306 |  |  |  |  |  |  |
| TW2 |  |  | 293 | 306 |  |  |  |  |  |  |
| TW2 |  |  | 306 |  |  |  |  |  |  |  |
| TW2 |  |  | -9 |  |  |  |  |  |  |  |
| TW2 | B2.4 | 9 | 295 | 306 |  |  |  |  |  |  |
| TW2 | B2.6 | 9 | 293 | 306 |  |  |  |  |  |  |
| TW2 | B3.4 | 1 | -9 |  |  |  |  |  |  |  |
| TW2 | B3.4 | 9 | 305 |  |  |  |  |  |  |  |
| TW2 |  |  | 277 | 308 |  |  |  |  |  |  |
| TW2 | B1.8 | 15 | 277 | 308 |  |  |  |  |  |  |
| TW2 |  |  | 277 | 308 |  |  |  |  |  |  |
| TW2 | B2.0 | 15 | 277 | 308 |  |  |  |  |  |  |
| TW2 |  |  | 277 | 308 |  |  |  |  |  |  |
| TW2 |  |  | 277 | 308 |  |  |  |  |  |  |
| TW2 |  |  | -9 |  |  |  |  |  |  |  |
| TW2 | B2.4 | 15 | 277 | 308 |  |  |  |  |  |  |
| TW2 | B2.6 | 15 | 277 | 308 |  |  |  |  |  |  |
| TW2 | B3.4 | 1 | 277 | 308 |  |  |  |  |  |  |
| TW2 | B3.4 | 15 | 277 | 308 |  |  |  |  |  |  |
| TW2 |  |  | 286 | 296 | 306 | 339 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TW2 |  |  | 256 | 261 | 313 |  |  |  |  |  |
| TW2 | B2.4 | 11 | 256 | 261 | 263 | 293 |  |  |  |  |
| TW2 | B2.6 | 11 | 261 |  |  |  |  |  |  |  |
| TW2 | B3.4 | 11 | 250 | 256 | 261 |  |  |  |  |  |
| TW2 |  |  | 276 |  |  |  |  |  |  |  |
| TW2 |  |  | 276 |  |  |  |  |  |  |  |
| MD1 | C2.4 | 28 | 276 |  |  |  |  |  |  |  |
| MD1 |  |  | 288 |  |  |  |  |  |  |  |
| MD1 | C4.0 | 28 | 288 |  |  |  |  |  |  |  |
| MD1 |  |  | 292 |  |  |  |  |  |  |  |
| MD1 | C4.2 | 28 | 292 |  |  |  |  |  |  |  |
| MD1 |  |  | 270 |  |  |  |  |  |  |  |
| MD1 | C4.4 | 28 | 270 |  |  |  |  |  |  |  |
| MD1 |  |  | ? | 292 |  |  |  |  |  |  |
| MD1 | C4.6 | 28 | 290 | 292 |  |  |  |  |  |  |
| MD1 |  |  | 181 |  |  |  |  |  |  |  |
| MD1 |  |  | 181 | 196 |  |  |  |  |  |  |
| MD1 | C2.4 | 21 | 181 | 196 |  |  |  |  |  |  |
| MD1 |  |  | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 | C4.0 | 21 | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 |  |  | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 | C4.2 | 21 | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 |  |  | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 | C4.4 | 21 | 173 | 181 | 186 | 192 |  |  |  |  |
| MD1 |  |  | 173 | 181 | 186 | 189 |  |  |  |  |
| MD1 | C4.6 | 21 | 173 | 181 | 186 | 189 |  |  |  |  |
| MD1 |  |  | 289 | 312 |  |  |  |  |  |  |
| MD1 |  |  | 289 | 312 |  |  |  |  |  |  |
| MD1 | C2.4 | 23 | 289 | 312 |  |  |  |  |  |  |
| MD1 |  |  | 286 | 291 |  |  |  |  |  |  |
| MD1 | C4.0 | 23 | 286 | 291 |  |  |  |  |  |  |
| MD1 |  |  | 286 | 291 |  |  |  |  |  |  |
| MD1 | C4.2 | 23 | 286 | 291 |  |  |  |  |  |  |
| MD1 |  |  | 286 | 293-2 |  |  |  |  |  |  |
| MD1 | C4.4 | 23 | 286 | 293 |  |  |  |  |  |  |
| MD1 |  |  | 286 | 291 |  |  |  |  |  |  |
| MD1 | C4.6 | 23 | 286 | 291 |  |  |  |  |  |  |
| MD1 |  | 1 | 206 | 216 | 226 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele <br> 2 | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | Allele <br> 4 | $\begin{aligned} & \text { Allele } \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD1 |  |  | 206 | 216 | 226 |  |  |  |  |  |
| MD1 | C2.4 | 8 | 206 | 216 | 226 |  |  |  |  |  |
| MD1 |  |  | 196 | 203 | 208 | 212 | 226 |  |  |  |
| MD1 | C4.0 | 8 | 196 | 203 | 208 | 212 | 226 |  |  |  |
| MD1 |  |  | 194 | 208 | 226 |  |  |  |  |  |
| MD1 | C4.2 | 8 | 194 | 208 | 226 |  |  |  |  |  |
| MD1 |  |  | 172 | 192 | 202 | 208 |  |  |  |  |
| MD1 | C4.4 | 8 | 172 | 192 | 202 | 208 |  |  |  |  |
| MD1 |  |  | 170 | 194 | 196 | 214 | 218 | 228 |  |  |
| MD1 | C4.6 | 8 | 170 | 194 | 196 | 214 | 218 | 228 |  |  |
| MD1 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| MD1 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| MD1 | C2.4 | 9 | 287 | 297 |  |  |  |  |  |  |
| MD1 |  |  | 303 | 306 |  |  |  |  |  |  |
| MD1 | C4.0 | 9 | 303 | 306 |  |  |  |  |  |  |
| MD1 |  |  | 303 |  |  |  |  |  |  |  |
| MD1 | C4.2 | 9 | 303 |  |  |  |  |  |  |  |
| MD1 |  |  | 295 | 306 |  |  |  |  |  |  |
| MD1 | C4.4 | 9 | 295 | 306 |  |  |  |  |  |  |
| MD1 |  |  | 299 |  |  |  |  |  |  |  |
| MD1 | C4.6 | 9 | 299 |  |  |  |  |  |  |  |
| MD1 |  |  | 213 | 286 |  |  |  |  |  |  |
| MD1 |  |  | 183 | 213 | 286 |  |  |  |  |  |
| MD1 | C2.4 | 15 | 183 | 213 | 286 |  |  |  |  |  |
| MD1 |  |  | 198 | 292 | 312 | 328 |  |  |  |  |
| MD1 | C4.0 | 15 | 198 | 292 | 312 | 328 |  |  |  |  |
| MD1 |  |  | 292 | 312 |  |  |  |  |  |  |
| MD1 | C4.2 | 15 | 292 | 312 |  |  |  |  |  |  |
| MD1 |  |  | 277 | 308 |  |  |  |  |  |  |
| MD1 | C4.4 | 15 | 277 | 308 |  |  |  |  |  |  |
| MD1 |  |  | 198 | 277 |  |  |  |  |  |  |
| MD1 | C4.6 | 15 | 198 | 277 |  |  |  |  |  |  |
| MD1 |  |  | 284 |  |  |  |  |  |  |  |
| MD1 |  |  | 284 |  |  |  |  |  |  |  |
| MD1 | C2.4 | 17 | 284 |  |  |  |  |  |  |  |
| MD1 |  |  | 277 | 292 | 296-2 |  |  |  |  |  |
| MD1 | C4.0 | 17 | 277 | 292 | 296 |  |  |  |  |  |
| MD1 |  |  | 277 | 292 | 296-2 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD1 | C4.2 | 17 | 277 | 292 | 296 |  |  |  |  |  |
| MD1 |  |  | 275 | 284 |  |  |  |  |  |  |
| MD1 | C4.4 | 17 | 275 | 284 |  |  |  |  |  |  |
| MD1 |  |  | 290 |  |  |  |  |  |  |  |
| MD1 | C4.6 | 17 | 290 |  |  |  |  |  |  |  |
| MD1 |  |  | 251 | 273 |  |  |  |  |  |  |
| MD1 |  |  | 251 | 273 |  |  |  |  |  |  |
| MD1 | C2.4 | 10 | 251 | 273 |  |  |  |  |  |  |
| MD1 |  |  | 250 | 258 | 268 | 288 |  |  |  |  |
| MD1 | C4.0 | 10 | 250 | 258 | 268 | 288 |  |  |  |  |
| MD1 |  |  | 250 | 258 | 268 | 288 |  |  |  |  |
| MD1 | C4.2 | 10 | 250 | 258 | 268 | 288 |  |  |  |  |
| MD1 |  |  | 251 | 260 |  |  |  |  |  |  |
| MD1 | C4.4 | 10 | 251 | 260 |  |  |  |  |  |  |
| MD1 |  |  | 260 |  |  |  |  |  |  |  |
| MD1 | C4.6 | 10 | 260 |  |  |  |  |  |  |  |
| MD1 |  |  | 149 | 160 | 162 | 168 | 201 | 227 |  |  |
| MD1 |  |  | 149 | 160 | 168 | 201 | ? | 227 |  |  |
| MD1 | C2.4 | 25 | 149 | 160 | 168 | 201 | 215 | 227 |  |  |
| MD1 |  |  | 151 | 160 | 164 | 168 | 184 | 191 | 208 |  |
| MD1 | C4.0 | 25 | 151 | 160 | 164 | 168 | 184 | 191 | 208 |  |
| MD1 |  |  | 151 | 160 | 164 | 184 | 191 | 208 |  |  |
| MD1 | C4.2 | 25 | 151 | 160 | 164 | 184 | 191 | 208 |  |  |
| MD1 |  |  | 160 | 187 | 193 | 199 | 207 |  |  |  |
| MD1 | C4.4 | 25 | 160 | 187 | 193 | 199 | 207 |  |  |  |
| MD1 |  |  | 160 | 175 | 177 | 195 | 203 |  |  |  |
| MD1 | C4.6 | 25 | 160 | 175 | 177 | 195 | 203 |  |  |  |
| MD1 | C2.4 |  | 263 |  |  |  |  |  |  |  |
| MD1 |  |  | 263 |  |  |  |  |  |  |  |
| MD1 | C2.4 | 11 | 263 |  |  |  |  |  |  |  |
| MD1 |  |  | 254 | 256 | 263 | 265 | 283 | 316 |  |  |
| MD1 | C4.0 | 11 | 254 | 256 | 263 | 265 | 283 | 316 |  |  |
| MD1 |  |  | 263 | 283 |  |  |  |  |  |  |
| MD1 | C4.2 | 11 | 263 | 283 |  |  |  |  |  |  |
| MD1 |  |  | 261 |  |  |  |  |  |  |  |
| MD1 | C4.4 | 11 | 261 |  |  |  |  |  |  |  |
| MD1 |  |  | 263 |  |  |  |  |  |  |  |
| MD1 | C4.6 | 11 | 263 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD1 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 28 | 270 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 270 | 286 | 308 | 333 | 333 | 350 |  |  |
| MD2 | D3.0 | 28 | 270 | 286 | 308 | 333 | 333 | 350 |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 288 |  |  |  |  |  |  |  |
| MD2 | D3.2 | 28 | 288 |  |  |  |  |  |  |  |
| MD2 |  |  | ? |  |  |  |  |  |  |  |
| MD2 |  |  | 270 | 333 |  |  |  |  |  |  |
| MD2 | D3.4 | 28 | 270 | 333 |  |  |  |  |  |  |
| MD2 |  |  | 270 |  |  |  |  |  |  |  |
| MD2 | D4.2 | 28 | 270 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 21 | 181 |  |  |  |  |  |  |  |
| MD2 |  |  | 183 |  |  |  |  |  |  |  |
| MD2 |  |  | 183 | 186 |  |  |  |  |  |  |
| MD2 | D3.0 | 21 | 183 | 186 |  |  |  |  |  |  |
| MD2 |  |  | 181 |  |  |  |  |  |  |  |
| MD2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| MD2 | D3.2 | 21 | 181 | 186 | 192 |  |  |  |  |  |
| MD2 |  |  | 181 |  |  |  |  |  |  |  |
| MD2 |  |  | 173 | 179 | 184 | 192 |  |  |  |  |
| MD2 | D3.4 | 21 | 173 | 179 | 184 | 192 |  |  |  |  |
| MD2 |  |  | 184 |  |  |  |  |  |  |  |
| MD2 | D4.2 | 21 | 184 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 23 | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 286 |  |  |  |  |  |  |  |
| MD2 | D3.0 | 23 | 286 |  |  |  |  |  |  |  |
| MD2 |  |  | 302 | 312 |  |  |  |  |  |  |
| MD2 |  |  | 286 | 291 |  |  |  |  |  |  |
| MD2 | D3.2 | 23 | 286 | 291 |  |  |  |  |  |  |
| MD2 |  |  | 288 |  |  |  |  |  |  |  |
| MD2 |  |  | 286 | 327 |  |  |  |  |  |  |
| MD2 | D3.4 | 23 | 286 | 327 |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD2 | D4.2 | 23 | 286 |  |  |  |  |  |  |  |
| MD2 |  |  | 192 | 194 | 206 | 216 |  |  |  |  |
| MD2 | D4.0 | 8 | 192 | 194 | 206 | 216 |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 192 | 202 | 206 | 216 |  |  |  |  |
| MD2 | D3.0 | 8 | 192 | 202 | 206 | 216 |  |  |  |  |
| MD2 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| MD2 |  |  | ? | 196 | 203 | 208 | 219 | 226 |  |  |
| MD2 | D3.2 | 8 | 180 | 196 | 203 | 208 | 219 | 226 |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 196 | 203 | 210 | 218 | 228 |  |  |  |
| MD2 | D3.4 | 8 | 196 | 203 | 210 | 218 | 228 |  |  |  |
| MD2 |  |  | 203 | 212 |  |  |  |  |  |  |
| MD2 | D4.2 | 8 | 203 | 212 |  |  |  |  |  |  |
| MD2 |  |  | 303 | 310 | 319 |  |  |  |  |  |
| MD2 | D4.0 | 9 | 303 | 310 | 319 |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | ? |  |  |  |  |  |  |  |
| MD2 | D3.0 | 9 | 305 |  |  |  |  |  |  |  |
| MD2 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| MD2 |  |  | 303 |  |  |  |  |  |  |  |
| MD2 | D3.2 | 9 | 303 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| MD2 | D3.4 | 9 | 298 | 303 |  |  |  |  |  |  |
| MD2 |  |  | 303 | 310 |  |  |  |  |  |  |
| MD2 | D4.2 | 9 | 303 | 310 |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 15 | 290 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 290 |  |  |  |  |  |  |  |
| MD2 | D3.0 | 15 | 290 |  |  |  |  |  |  |  |
| MD2 |  |  | 277 | 286 |  |  |  |  |  |  |
| MD2 |  |  | 198 | 292 | 312 | 328 |  |  |  |  |
| MD2 | D3.2 | 15 | 198 | 292 | 312 | 328 |  |  |  |  |
| MD2 |  |  | 277 | 286 |  |  |  |  |  |  |
| MD2 |  |  | 209 | 258 | 274 |  |  |  |  |  |
| MD2 | D3.4 | 15 | 209 | 258 | 274 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD2 |  |  | 290 |  |  |  |  |  |  |  |
| MD2 | D4.2 | 15 | 290 |  |  |  |  |  |  |  |
| MD2 |  |  | 280 | 295 | 305 | 330 | 341 |  |  |  |
| MD2 | D4.0 | 17 | 280 | 295 | 305 | 330 | 341 |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 295 |  |  |  |  |  |  |  |
| MD2 | D3.0 | 17 | 295 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 277 | 292 | 296-2 |  |  |  |  |  |
| MD2 | D3.2 | 17 | 277 | 292 | 296 |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 284 | 296 |  |  |  |  |  |  |
| MD2 | D3.4 | 17 | 284 | 296 |  |  |  |  |  |  |
| MD2 |  |  | 280 | 288 |  |  |  |  |  |  |
| MD2 | D4.2 | 17 | 280 | 288 |  |  |  |  |  |  |
| MD2 |  |  | 260 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 10 | 260 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 250 |  |  |  |  |  |  |  |
| MD2 | D3.0 | 10 | 250 |  |  |  |  |  |  |  |
| MD2 |  |  | 251 | 263 |  |  |  |  |  |  |
| MD2 |  |  | 250 | 258 | 268 | 277 | 288 |  |  |  |
| MD2 | D3.2 | 10 | 250 | 258 | 268 | 277 | 288 |  |  |  |
| MD2 |  |  | 250 |  |  |  |  |  |  |  |
| MD2 |  |  | 251 |  |  |  |  |  |  |  |
| MD2 | D3.4 | 10 | 251 |  |  |  |  |  |  |  |
| MD2 |  |  | 251 | 257 |  |  |  |  |  |  |
| MD2 | D4.2 | 10 | 251 | 257 |  |  |  |  |  |  |
| MD2 |  |  | 160 |  |  |  |  |  |  |  |
| MD2 | D4.0 | 25 | 160 |  |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 151 | 160 | 162 | 178 | 201 |  |  |  |
| MD2 | D3.0 | 25 | 151 | 160 | 162 | 178 | 201 |  |  |  |
| MD2 |  |  | 160 | 170 | 201 |  |  |  |  |  |
| MD2 |  |  | 151 | 160 | 164 | 168 | 184 | 208 |  |  |
| MD2 | D3.2 | 25 | 151 | 160 | 164 | 168 | 184 | 208 |  |  |
| MD2 |  |  | 151 | 160 | 170 | 201 |  |  |  |  |
| MD2 |  |  | 154 | 160 | 168 | 170 | 184 | 193 | 199 | 205 |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | Allele <br> 3 | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele 6 | Allele <br> 7 | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD2 | D3.4 | 25 | 154 | 160 | 168 | 170 | 184 | 193 | 199 | 205 |
| MD2 |  |  | 151 | 160 | 187 | 201 |  |  |  |  |
| MD2 | D4.2 | 25 | 151 | 160 | 187 | 201 |  |  |  |  |
| MD2 |  |  | 226 | 261 |  |  |  |  |  |  |
| MD2 | D4.0 | 11 | 226 | 261 |  |  |  |  |  |  |
| MD2 |  |  | 251 | 265 |  |  |  |  |  |  |
| MD2 |  |  | 261 | 303 |  |  |  |  |  |  |
| MD2 | D3.0 | 11 | 261 | 303 |  |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 256 | 263 | 283 | 316 |  |  |  |  |
| MD2 | D3.2 | 11 | 256 | 263 | 283 | 316 |  |  |  |  |
| MD2 |  |  | 226 | 261 |  |  |  |  |  |  |
| MD2 |  |  | 261 | 268 |  |  |  |  |  |  |
| MD2 | D3.4 | 11 | 261 | 268 |  |  |  |  |  |  |
| MD2 |  |  | 256 | 261 | 297 |  |  |  |  |  |
| MD2 | D4.2 | 11 | 256 | 261 | 297 |  |  |  |  |  |
| MD2 |  |  | -9 |  |  |  |  |  |  |  |
| MD2 |  |  | 270 | 306 |  |  |  |  |  |  |
| LW3 | E1.6 | 28 | 270 | 306 |  |  |  |  |  |  |
| LW3 |  |  | 181 |  |  |  |  |  |  |  |
| LW3 |  |  | 179 |  |  |  |  |  |  |  |
| LW3 | E1.6 | 21 | 179 |  |  |  |  |  |  |  |
| LW3 |  |  | 302 | 312 |  |  |  |  |  |  |
| LW3 |  |  | 300 | 311 |  |  |  |  |  |  |
| LW3 | E1.6 | 23 | 300 | 311 |  |  |  |  |  |  |
| LW3 |  |  | 200 | 208 | 226 |  |  |  |  |  |
| LW3 |  |  | 198 | 206 | 214 | 224 |  |  |  |  |
| LW3 | E1.6 | 8 | 198 | 206 | 214 | 224 |  |  |  |  |
| LW3 |  |  | 287 | 295 | 298-2 | 301 |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 | E1.6 | 9 | 287 | 295 | 298 | 301 |  |  |  |  |
| LW3 |  |  | 286 |  |  |  |  |  |  |  |
| LW3 |  |  | 286 |  |  |  |  |  |  |  |
| LW3 | E1.6 | 15 | 286 |  |  |  |  |  |  |  |
| LW3 |  |  | 301 | 305-2 |  |  |  |  |  |  |
| LW3 |  |  | 301 | 305-2 |  |  |  |  |  |  |
| LW3 |  |  | 278 | 299 | 305 |  |  |  |  |  |
| LW3 | E1.6 | 17 | 278 | 299 | 305 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW3 |  |  | 263 |  |  |  |  |  |  |  |
| LW3 |  |  | 250 | 262 |  |  |  |  |  |  |
| LW3 | E1.6 | 10 | 250 | 262 |  |  |  |  |  |  |
| LW3 |  |  | 151 | 158 | 170 | 195 | 201 |  |  |  |
| LW3 |  |  | 149 | 156 | 168 | 199 | 201 |  |  |  |
| LW3 | E1.6 | 25 | 149 | 156 | 168 | 199 | 201 |  |  |  |
| LW3 |  |  | 261 | 283 |  |  |  |  |  |  |
| LW3 |  |  | 261 | 283 |  |  |  |  |  |  |
| LW3 | E1.6 | 11 | 261 | 283 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 | E1.8 | 28 | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 179 | 183 | 192 |  |  |  |  |  |
| LW3 |  |  | 179 | 184 | 194 |  |  |  |  |  |
| LW3 | E1.8 | 21 | 179 | 183 | 192 |  |  |  |  |  |
| LW3 |  |  | 288 |  |  |  |  |  |  |  |
| LW3 |  |  | 288 |  |  |  |  |  |  |  |
| LW3 | E1.8 | 23 | 288 |  |  |  |  |  |  |  |
| LW3 |  |  | 203 | 218 |  |  |  |  |  |  |
| LW3 |  |  | 218 |  |  |  |  |  |  |  |
| LW3 | E1.8 | 8 | 218 |  |  |  |  |  |  |  |
| LW3 |  |  | 295 | 303 |  |  |  |  |  |  |
| LW3 |  |  | 295 | 303 |  |  |  |  |  |  |
| LW3 | E1.8 | 9 | 295 | 303 |  |  |  |  |  |  |
| LW3 |  |  | 325 |  |  |  |  |  |  |  |
| LW3 |  |  | 325 |  |  |  |  |  |  |  |
| LW3 | E1.8 | 15 | 325 |  |  |  |  |  |  |  |
| LW3 |  |  | 277 | 284 | 292 | 308 |  |  |  |  |
| LW3 |  |  | 277 | 284 | 292 | 308 |  |  |  |  |
| LW3 | E1.8 | 17 | 277 | 284 | 292 | 308 |  |  |  |  |
| LW3 |  |  | 251 | 255 |  |  |  |  |  |  |
| LW3 |  |  | 250 | 255 |  |  |  |  |  |  |
| LW3 | E1.8 | 10 | 250 | 255 |  |  |  |  |  |  |
| LW3 |  |  | 158 | 164 | 194 |  |  |  |  |  |
| LW3 |  |  | 158 | 164 | 195 |  |  |  |  |  |
| LW3 | E1.8 | 25 | 158 | 164 | 194 |  |  |  |  |  |
| LW3 |  |  | 261 |  |  |  |  |  |  |  |
| LW3 |  |  | 256 | 261 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW3 | E1.8 | 11 | 256 | 261 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 | E2.2 | 28 | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| LW3 |  |  | 179 | 184 | 194 |  |  |  |  |  |
| LW3 | E2.2 | 21 | 179 | 183 | 194 |  |  |  |  |  |
| LW3 |  |  | 286 | 289 | 296 |  |  |  |  |  |
| LW3 |  |  | 288 | 295 |  |  |  |  |  |  |
| LW3 | E2.2 | 23 | 288 | 295 |  |  |  |  |  |  |
| LW3 |  |  | 194 | 206 | 212 | 219 |  |  |  |  |
| LW3 |  |  | 192 | 203 | 210 | 218 |  |  |  |  |
| LW3 | E2.2 | 8 | 192 | 203 | 210 | 218 |  |  |  |  |
| LW3 |  |  | 298-2 | 305 |  |  |  |  |  |  |
| LW3 |  |  | 295 | 303 |  |  |  |  |  |  |
| LW3 | E2.2 | 9 | 295 | 303 |  |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 |  |  | 325 |  |  |  |  |  |  |  |
| LW3 | E2.2 | 15 | 325 |  |  |  |  |  |  |  |
| LW3 |  |  | 278 | 284 | 294 | 308 |  |  |  |  |
| LW3 |  |  | 277 | 284 | 292 | 308 |  |  |  |  |
| LW3 | E2.2 | 17 | 277 | 284 | 292 | 308 |  |  |  |  |
| LW3 |  |  | 251 | 257 |  |  |  |  |  |  |
| LW3 |  |  | 251 | 255 |  |  |  |  |  |  |
| LW3 | E2.2 | 10 | 251 | 255 |  |  |  |  |  |  |
| LW3 |  |  | 160 | 168 | 197 |  |  |  |  |  |
| LW3 |  |  | 158 | 164 | 194 |  |  |  |  |  |
| LW3 | E2.2 | 25 | 158 | 164 | 194 |  |  |  |  |  |
| LW3 |  |  | 263 |  |  |  |  |  |  |  |
| LW3 |  |  | 256 | 261 |  |  |  |  |  |  |
| LW3 | E2.2 | 11 | 256 | 261 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 292 |  |  |  |  |  |  |
| LW3 |  |  | 276 | 290 |  |  |  |  |  |  |
| LW3 | E2.4 | 28 | 276 | 290 |  |  |  |  |  |  |
| LW3 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| LW3 |  |  | 179 | 183 | 192 |  |  |  |  |  |
| LW3 | E2.4 | 21 | 179 | 183 | 192 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW3 |  |  | 286 | 289 | 296 |  |  |  |  |  |
| LW3 |  |  | 288 |  |  |  |  |  |  |  |
| LW3 | E2.4 | 23 | 288 |  |  |  |  |  |  |  |
| LW3 |  |  | 189 | 194 | 206 | 212 | 219 |  |  |  |
| LW3 |  |  | 203 | 218 |  |  |  |  |  |  |
| LW3 | E2.4 | 8 | 203 | 218 |  |  |  |  |  |  |
| LW3 |  |  | 298-2 | 305 |  |  |  |  |  |  |
| LW3 |  |  |  |  |  |  |  |  |  |  |
| LW3 | E2.4 | 9 | -9 |  |  |  |  |  |  |  |
| LW3 |  |  | 183 | 310 | 326 |  |  |  |  |  |
| LW3 |  |  | 325 |  |  |  |  |  |  |  |
| LW3 | E2.4 | 15 | 325 |  |  |  |  |  |  |  |
| LW3 |  |  | 278 | 284 | 294 | 306 |  |  |  |  |
| LW3 |  |  | 277 | 284 | 292 | 306 |  |  |  |  |
| LW3 | E2.4 | 17 | 277 | 284 | 292 | 306 |  |  |  |  |
| LW3 |  |  | 251 | 257 |  |  |  |  |  |  |
| LW3 |  |  | 251 | 255 |  |  |  |  |  |  |
| LW3 | E2.4 | 10 | 251 | 255 |  |  |  |  |  |  |
| LW3 |  |  | 160 | 168 | 197 |  |  |  |  |  |
| LW3 |  |  | 158 | 164 | 194 |  |  |  |  |  |
| LW3 | E2.4 | 25 | 158 | 164 | 194 |  |  |  |  |  |
| LW3 |  |  | 263 |  |  |  |  |  |  |  |
| LW3 |  |  | 261 |  |  |  |  |  |  |  |
| LW3 | E2.4 | 11 | 261 |  |  |  |  |  |  |  |
| LW3 |  |  | 270 | 292 |  |  |  |  |  |  |
| LW3 |  |  | 270 | 292 |  |  |  |  |  |  |
| LW3 | E2.0 | 28 | 270 | 292 |  |  |  |  |  |  |
| LW3 |  |  | 179 | 184 | 199 |  |  |  |  |  |
| LW3 |  |  | 179 | 183 | 199 |  |  |  |  |  |
| LW3 | E2.0 | 21 | 179 | 184 | 199 |  |  |  |  |  |
| LW3 |  |  | 296 |  |  |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 | E2.0 | 23 | 296 |  |  |  |  |  |  |  |
| LW3 |  |  | 203 | 218 |  |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 | E2.0 | 8 | 203 | 218 |  |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 |  |  | 298-2 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele $3$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \end{aligned}$ | Allele <br> 6 | Allele $7$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW3 | E2.0 | 9 | 298 |  |  |  |  |  |  |  |
| LW3 |  |  | 221 | 286 | 308 | 347 |  |  |  |  |
| LW3 |  |  | 290 |  |  |  |  |  |  |  |
| LW3 | E2.0 | 15 | 290 |  |  |  |  |  |  |  |
| LW3 |  |  | 288 | 292 |  |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 | E2.0 | 17 | 288 | 292 |  |  |  |  |  |  |
| LW3 |  |  | 251 |  |  |  |  |  |  |  |
| LW3 |  |  | 289 | 292 |  |  |  |  |  |  |
| LW3 | E2.0 | 10 | 289 | 292 |  |  |  |  |  |  |
| LW3 |  |  | 149 | 158 | 195 |  |  |  |  |  |
| LW3 |  |  | 151 | 164 |  |  |  |  |  |  |
| LW3 | E2.0 | 25 | 149 | 158 | 195 |  |  |  |  |  |
| LW3 |  |  | 265 | 268 |  |  |  |  |  |  |
| LW3 |  |  | 261 | 263 | 268 |  |  |  |  |  |
| LW3 | E2.0 | 11 | 261 | 263 | 268 |  |  |  |  |  |
| LW3 |  |  | -9 |  |  |  |  |  |  |  |
| LW3 |  |  | 270 | 308 |  |  |  |  |  |  |
| LW2 | F2.6 | 28 | 270 | 308 |  |  |  |  |  |  |
| LW2 |  |  | 270 |  |  |  |  |  |  |  |
| LW2 |  |  | 308 | 333 |  |  |  |  |  |  |
| LW2 | F2.8 | 28 | 308 | 333 |  |  |  |  |  |  |
| LW2 |  |  | 270 |  |  |  |  |  |  |  |
| LW2 |  |  | 270 |  |  |  |  |  |  |  |
| LW2 | F3.0 | 28 | 270 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 270 | 284 |  |  |  |  |  |  |
| LW2 | F3.4 | 28 | 270 | 284 |  |  |  |  |  |  |
| LW2 |  |  | 270 | 286 |  |  |  |  |  |  |
| LW2 | F3.8 | 28 | 270 | 286 |  |  |  |  |  |  |
| LW2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LW2 |  |  | 179 | 181 | 186 |  |  |  |  |  |
| LW2 | F2.6 | 21 | 179 | 181 | 186 |  |  |  |  |  |
| LW2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LW2 |  |  | 179 | 181 | 186 |  |  |  |  |  |
| LW2 | F2.8 | 21 | 179 | 181 | 186 |  |  |  |  |  |
| LW2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LW2 |  |  | 179 | 186 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | Allele $7$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW2 | F3.0 | 21 | 179 | 186 |  |  |  |  |  |  |
| LW2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LW2 |  |  | 173 | 181 |  |  |  |  |  |  |
| LW2 | F3.4 | 21 | 173 | 181 |  |  |  |  |  |  |
| LW2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LW2 | F3.8 | 21 | 181 | 186 | 192 |  |  |  |  |  |
| LW2 |  |  | 286 | 291 |  |  |  |  |  |  |
| LW2 |  |  | 286 | 289 | 302 |  |  |  |  |  |
| LW2 | F2.6 | 23 | 286 | 289 | 302 |  |  |  |  |  |
| LW2 |  |  | 286 | 291 |  |  |  |  |  |  |
| LW2 |  |  | 286 | 289 | 302 |  |  |  |  |  |
| LW2 | F2.8 | 23 | 286 | 289 | 302 |  |  |  |  |  |
| LW2 |  |  | 286 | 291 |  |  |  |  |  |  |
| LW2 |  |  | 289 | 302 |  |  |  |  |  |  |
| LW2 | F3.0 | 23 | 289 | 302 |  |  |  |  |  |  |
| LW2 |  |  | 286 |  |  |  |  |  |  |  |
| LW2 |  |  | 289 |  |  |  |  |  |  |  |
| LW2 | F3.4 | 23 | 289 |  |  |  |  |  |  |  |
| LW2 |  |  | 289 | 302 | 312 |  |  |  |  |  |
| LW2 | F3.8 | 23 | 289 | 302 | 312 |  |  |  |  |  |
| LW2 |  |  | 208 | 219 | 226 |  |  |  |  |  |
| LW2 |  |  | 200 | 206 | 208 | 218 |  |  |  |  |
| LW2 | F2.6 | 8 | 200 | 206 | 208 | 218 |  |  |  |  |
| LW2 |  |  | 208 | 219 | 224 |  |  |  |  |  |
| LW2 |  |  | ? | 200 | 206 | 208 | 218 |  |  |  |
| LW2 | F2.8 | 8 | 170 | 200 | 206 | 208 | 218 |  |  |  |
| LW2 |  |  | 208 | 219 | 224 |  |  |  |  |  |
| LW2 |  |  | 194 | 206 |  |  |  |  |  |  |
| LW2 | F3.0 | 8 | 194 | 206 |  |  |  |  |  |  |
| LW2 |  |  | 208 |  |  |  |  |  |  |  |
| LW2 |  |  | 164 | 219 | 228 | 269 |  |  |  |  |
| LW2 |  |  | 164 | 176 | 184 | 203 | 232 | 247 | 263 | 274 |
| LW2 | F3.8 | 8 | 164 | 219 | 228 | 269 |  |  |  |  |
| LW2 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| LW2 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| LW2 | F2.6 | 9 | 287 | 298 |  |  |  |  |  |  |
| LW2 |  |  | 303 |  |  |  |  |  |  |  |
| LW2 |  |  | 287 | 298-2 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \hline \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW2 | F2.8 | 9 | 287 | 298 |  |  |  |  |  |  |
| LW2 |  |  | 303 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F3.0 | 9 | 287 |  |  |  |  |  |  |  |
| LW2 |  |  | 295 | 305 |  |  |  |  |  |  |
| LW2 |  |  | 290 |  |  |  |  |  |  |  |
| LW2 | F3.4 | , | 290 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F3.8 | 9 | 287 |  |  |  |  |  |  |  |
| LW2 |  |  | 292 |  |  |  |  |  |  |  |
| LW2 |  |  | 286 |  |  |  |  |  |  |  |
| LW2 | F2.6 | 15 | 286 |  |  |  |  |  |  |  |
| LW2 |  |  | 292 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F2.8 | 15 | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F3.0 | 15 | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 277 | 308 |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F3.4 | 15 | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 | F3.8 | 15 | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 284 | 301 |  |  |  |  |  |  |
| LW2 | F2.6 | 17 | 284 | 301 |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 284 | 301 |  |  |  |  |  |  |
| LW2 | F2.8 | 17 | 284 | 301 |  |  |  |  |  |  |
| LW2 |  |  | 277 | 292 | 296-2 |  |  |  |  |  |
| LW2 |  |  | 284 | 322 |  |  |  |  |  |  |
| LW2 | F3.0 | 17 | 284 | 322 |  |  |  |  |  |  |
| LW2 |  |  | 284 | 292 |  |  |  |  |  |  |
| LW2 |  |  | 286 | 306 |  |  |  |  |  |  |
| LW2 | F3.4 | 17 | 286 | 306 |  |  |  |  |  |  |
| LW2 |  |  | 341 |  |  |  |  |  |  |  |
| LW2 | F3.8 | 17 | 341 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | Allele $7$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW2 |  |  | 250 | 268 | 288 |  |  |  |  |  |
| LW2 |  |  | 257 |  |  |  |  |  |  |  |
| LW2 | F2.6 | 10 | 257 |  |  |  |  |  |  |  |
| LW2 |  |  | 250 | ? | 268 | 288 |  |  |  |  |
| LW2 |  |  | 257 |  |  |  |  |  |  |  |
| LW2 | F2.8 | 10 | 257 |  |  |  |  |  |  |  |
| LW2 |  |  | 250 | 268 | 288 |  |  |  |  |  |
| LW2 |  |  | 251 | 273 | 276 | 343 |  |  |  |  |
| LW2 | F3.0 | 10 | 251 | 273 | 276 | 343 |  |  |  |  |
| LW2 |  |  | 251 | 260 | 268 | 273 | 277 |  |  |  |
| LW2 |  |  | 268 | 285 |  |  |  |  |  |  |
| LW2 | F3.4 | 10 | 268 | 285 |  |  |  |  |  |  |
| LW2 |  |  | 251 | 260 |  |  |  |  |  |  |
| LW2 | F3.8 | 10 | 251 | 260 |  |  |  |  |  |  |
| LW2 |  |  | 160 | 164 | 184 | 191 | 208 |  |  |  |
| LW2 |  |  | 151 | 160 | 168 | 197 | 203 |  |  |  |
| LW2 | F2.6 | 25 | 151 | 160 | 168 | 197 | 203 |  |  |  |
| LW2 |  |  | 151 | 160 | 164 | 184 | 191 | 208 |  |  |
| LW2 |  |  | 151 | 160 | 168 | 177 | 197 | 203 | 227 |  |
| LW2 | F2.8 | 25 | 151 | 160 | 168 | 177 | 197 | 203 | 227 |  |
| LW2 |  |  | 151 | 160 | 164 | 168 | 184 | 191 | 208 |  |
| LW2 |  |  | 151 | 160 | 170 | 175 | 227 |  |  |  |
| LW2 | F3.0 | 25 | 151 | 160 | 170 | 175 | 227 |  |  |  |
| LW2 |  |  | 154 | 160 | 164 | 187 | 193 | 199 | 207 |  |
| LW2 |  |  | 160 | 170 | 177 | 203 | 218 | 238 |  |  |
| LW2 | F3.4 | 25 | 160 | 170 | 177 | 203 | 218 | 238 |  |  |
| LW2 |  |  | 160 | 170 | 178 | 201 |  |  |  |  |
| LW2 | F3.8 | 25 | 160 | 170 | 178 | 201 |  |  |  |  |
| LW2 |  |  | 263 |  |  |  |  |  |  |  |
| LW2 |  |  | 261 | 263 |  |  |  |  |  |  |
| LW2 | F2.6 | 11 | 261 | 263 |  |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 256 | 263 | 283 |  |  |  |  |  |
| LW2 | F2.8 | 11 | 256 | 263 | 283 |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 226 | 263 | 283 |  |  |  |  |  |
| LW2 | F3.0 | 11 | 226 | 263 | 283 |  |  |  |  |  |
| LW2 |  |  | 261 | 263 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | Allele <br> 3 | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | Allele <br> 5 | Allele 6 | Allele <br> 7 | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LW2 |  |  | 226 | 245 | 256 | 263 |  |  |  |  |
| LW2 | F3.4 | 11 | 226 | 245 | 256 | 263 |  |  |  |  |
| LW2 |  |  | 206 | 226 | 251 |  |  |  |  |  |
| LW2 | F3.8 | 11 | 206 | 226 | 251 |  |  |  |  |  |
| LW2 |  |  | -9 |  |  |  |  |  |  |  |
| LW2 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 | G2.8 | 28 | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 181 | 186 |  |  |  |  |  |  |
| SL1 |  |  | 179 | 183 |  |  |  |  |  |  |
| SL1 | G2.8 | 21 | 179 | 186 |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 | G2.8 | 23 | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 194 | 203 | 210 |  |  |  |  |  |
| SL1 |  |  | 192 | 208 |  |  |  |  |  |  |
| SL1 | G2.8 | 8 | 192 | 208 |  |  |  |  |  |  |
| SL1 |  |  | 305 | 313 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G2.8 | 9 | 305 | 313 |  |  |  |  |  |  |
| SL1 |  |  | 271 | 282 | 310 |  |  |  |  |  |
| SL1 |  |  | 198 |  |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G2.8 | 15 | 271 | 282 | 310 |  |  |  |  |  |
| SL1 |  |  | 275 | 288 | 291 |  |  |  |  |  |
| SL1 |  |  | 341 |  |  |  |  |  |  |  |
| SL1 |  |  | 275 | 284 | 288 |  |  |  |  |  |
| SL1 |  |  | 275 | 284 | 288 |  |  |  |  |  |
| SL1 | G2.8 | 17 | 275 | 288 | 291 |  |  |  |  |  |
| SL1 |  |  | 262 |  |  |  |  |  |  |  |
| SL1 |  |  | 251 |  |  |  |  |  |  |  |
| SL1 |  |  | 258 |  |  |  |  |  |  |  |
| SL1 | G2.8 | 10 | 251 |  |  |  |  |  |  |  |
| SL1 |  |  | 163 | 193 | 197 | 205 |  |  |  |  |
| SL1 |  |  | 146 | 162 | 170 | 191 | 203 |  |  |  |
| SL1 | G2.8 | 25 | 163 | 193 | 197 | 205 |  |  |  |  |
| SL1 |  |  | 261 | 268 | 283 | 297 | 316 |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | Allele $5$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL1 |  |  | 261 | 283 | 297 | 316 |  |  |  |  |
| SL1 |  |  | 261 | 283 | 297 | 316 |  |  |  |  |
| SL1 | G2.8 | 11 | 261 | 269 | 283 | 297 | 316 |  |  |  |
| SL1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 | G3.2 | 28 | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 181 | 186 |  |  |  |  |  |  |
| SL1 |  |  | 181 | 186 |  |  |  |  |  |  |
| SL1 | G3.2 | 21 | 181 | 186 |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 | G3.2 | 23 | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 194 | 203 | 210 |  |  |  |  |  |
| SL1 |  |  | 194 |  |  |  |  |  |  |  |
| SL1 | G3.2 | 8 | 194 | 203 | 210 |  |  |  |  |  |
| SL1 |  |  | 306 | 313 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G3.2 | 9 | 306 | 313 |  |  |  |  |  |  |
| SL1 |  |  | 277 |  |  |  |  |  |  |  |
| SL1 |  |  | 266 |  |  |  |  |  |  |  |
| SL1 |  |  | 198 | 303 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G3.2 | 15 | 266 |  |  |  |  |  |  |  |
| SL1 |  |  | 275 | 288 | 291 |  |  |  |  |  |
| SL1 |  |  | 275 | 288 | 291 |  |  |  |  |  |
| SL1 | G3.2 | 17 | 275 | 288 | 291 |  |  |  |  |  |
| SL1 |  |  | 262 |  |  |  |  |  |  |  |
| SL1 |  |  | 260 |  |  |  |  |  |  |  |
| SL1 | G3.2 | 10 | 262 |  |  |  |  |  |  |  |
| SL1 |  |  | 160 | 163 | 197 | 205 |  |  |  |  |
| SL1 |  |  | 149 | 163 | 175 | 193 | 205 |  |  |  |
| SL1 | G3.2 | 25 | 149 | 163 | 175 | 193 | 205 |  |  |  |
| SL1 |  |  | 261 | 283 | 297 | 316 |  |  |  |  |
| SL1 |  |  | 261 | 265 | 283 | 297 | 316 |  |  |  |
| SL1 | G3.2 | 11 | 261 | 283 | 297 | 316 |  |  |  |  |
| SL1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 270 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 28 | 270 | 276 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 |  |  | 179 | 184 | 186 | 189 |  |  |  |  |
| SL1 | G3.6 | 21 | 179 | 184 | 186 | 189 |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 |  |  | 286 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 23 | 286 |  |  |  |  |  |  |  |
| SL1 |  |  | 178-2 |  |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 8 | 178 |  |  |  |  |  |  |  |
| SL1 |  |  | 305 | 313 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 9 | 305 | 313 |  |  |  |  |  |  |
| SL1 |  |  | 292 | 299 |  |  |  |  |  |  |
| SL1 | G3.6 | 15 | 266 | 299 |  |  |  |  |  |  |
| SL1 |  |  | 275 | 288 |  |  |  |  |  |  |
| SL1 |  |  | 339 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 17 | 275 | 288 |  |  |  |  |  |  |
| SL1 |  |  | 260 | 332 |  |  |  |  |  |  |
| SL1 |  |  | 260 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 10 | 260 | 332 |  |  |  |  |  |  |
| SL1 |  |  | 149 | 156 |  |  |  |  |  |  |
| SL1 |  |  | 170 | 215 | 163 | 193 | 201 | 215 |  |  |
| SL1 |  |  | 199 |  |  |  |  |  |  |  |
| SL1 | G3.6 | 25 | 149 | 156 |  |  |  |  |  |  |
| SL1 |  |  | 261 | 265 | 163 | 193 | 201 | 215 |  |  |
| SL1 |  |  | 251 | 261 |  |  |  |  |  |  |
| SL1 | G3.6 | 11 | 261 | 265 |  |  |  |  |  |  |
| SL1 |  |  | 270 | 288 |  |  |  |  |  |  |
| SL1 |  |  | 270 | 284 | 308 |  |  |  |  |  |
| SL1 | G3.8 | 28 | 270 | 284 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  | 308 |  |  |  |  |  |
| SL1 |  |  | 179 | 184 |  |  |  |  |  |  |
| SL1 | G3.8 | 21 | 179 | 184 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 |  |  | 286 | 299 |  |  |  |  |  |  |
| SL1 | G3.8 | 23 | 286 | 299 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 |  |  | 216 | 236 | 269 | 274 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL1 | G3.8 | 8 | 216 | 236 | 269 | 274 |  |  |  |  |
| SL1 |  |  | 301 |  |  |  |  |  |  |  |
| SL1 | G3.8 | 9 | 301 |  |  |  |  |  |  |  |
| SL1 |  |  | 231 | 297 |  |  |  |  |  |  |
| SL1 | G3.8 | 15 | 231 | 297 |  |  |  |  |  |  |
| SL1 |  |  | 339 |  |  |  |  |  |  |  |
| SL1 | G3.8 | 17 | 339 |  |  |  |  |  |  |  |
| SL1 |  |  | 260 | 332 |  |  |  |  |  |  |
| SL1 |  |  | 316 | 327 |  |  |  |  |  |  |
| SL1 | G3.8 | 10 | 316 | 327 |  |  |  |  |  |  |
| SL1 |  |  | 170 | 215 |  |  |  |  |  |  |
| SL1 |  |  | -9 |  |  |  |  |  |  |  |
| SL1 | G3.8 | 25 | 170 |  |  |  |  |  |  |  |
| SL1 |  |  | 251 | 256 | 261 | 265 | 277 |  |  |  |
| SL1 |  |  | 261 |  |  |  |  |  |  |  |
| SL1 | G3.8 | 11 | 251 | 256 | 261 | 265 | 277 |  |  |  |
| SL1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SL1 | G2.6 | 28 | 270 | 276 |  |  |  |  |  |  |
| SL1 |  |  | 179 | 183 |  |  |  |  |  |  |
| SL1 |  |  | 179 | 183 |  |  |  |  |  |  |
| SL1 | G2.6 | 21 | 179 | 183 |  |  |  |  |  |  |
| SL1 |  |  | 296 |  |  |  |  |  |  |  |
| SL1 | G2.6 | 23 | 296 |  |  |  |  |  |  |  |
| SL1 |  |  | 192 | 208 |  |  |  |  |  |  |
| SL1 |  |  | 192 | 202 | 208 |  |  |  |  |  |
| SL1 | G2.6 | 8 | 192 | 202 | 208 |  |  |  |  |  |
| SL1 |  |  | 303 | 311 |  |  |  |  |  |  |
| SL1 |  |  | 303 | 311 |  |  |  |  |  |  |
| SL1 | G2.6 | 9 | 303 | 311 |  |  |  |  |  |  |
| SL1 |  |  | 277 |  |  |  |  |  |  |  |
| SL1 |  |  | 196 |  |  |  |  |  |  |  |
| SL1 | G2.6 | 15 | 277 |  |  |  |  |  |  |  |
| SL1 |  |  | 275 | 284 | 290 |  |  |  |  |  |
| SL1 |  |  |  | 275 | 288 | 290 |  |  |  |  |
| SL1 | G2.6 | 17 | 275 | 284 | 290 |  |  |  |  |  |
| SL1 |  |  | 258 |  |  |  |  |  |  |  |
| SL1 |  |  | 260 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | Allele | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL1 | G2.6 | 10 | 258 |  |  |  |  |  |  |  |
| SL1 |  |  | 144 | 160 | 191 | 203 |  |  |  |  |
| SL1 |  |  | 146 | 158 | 162 | 170 | 191 | 195 | 203 |  |
| SL1 | G2.6 | 25 | 144 | 160 | 191 | 203 |  |  |  |  |
| SL1 |  |  | 261 | 265 |  |  |  |  |  |  |
| SL1 |  |  | 261 | 265 | 283 | 297 | 316 |  |  |  |
| SL1 | G2.6 | 11 | 261 | 265 |  |  |  |  |  |  |
| SL1 |  |  | 270 |  |  |  |  |  |  |  |
| SL1 |  |  | ? |  |  |  |  |  |  |  |
| SL2 | H1.0 | 28 | 270 |  |  |  |  |  |  |  |
| SL2 |  |  | 175 | 181 |  |  |  |  |  |  |
| SL2 |  |  | 175 | 181 |  |  |  |  |  |  |
| SL2 | H1.0 | 21 | 175 | 181 |  |  |  |  |  |  |
| SL2 |  |  | 290 | 299 |  |  |  |  |  |  |
| SL2 |  |  | 289 | 299 |  |  |  |  |  |  |
| SL2 | H1.0 | 23 | 290 | 299 |  |  |  |  |  |  |
| SL2 |  |  | 200 | 216 | 236 |  |  |  |  |  |
| SL2 |  |  | 200 | 236 |  |  |  |  |  |  |
| SL2 | H1.0 | 8 | 200 | 236 |  |  |  |  |  |  |
| SL2 |  |  | 301 | 303 |  |  |  |  |  |  |
| SL2 |  |  | 301 |  |  |  |  |  |  |  |
| SL2 | H1.0 | 9 | 301 | 303 |  |  |  |  |  |  |
| SL2 |  |  | 299 | 318 |  |  |  |  |  |  |
| SL2 |  |  | 299 | 318 |  |  |  |  |  |  |
| SL2 | H1.0 | 15 | 299 | 318 |  |  |  |  |  |  |
| SL2 |  |  | 275 | 284 | 296 | 311 |  |  |  |  |
| SL2 |  |  | 275 | 284 | 296 | 311 |  |  |  |  |
| SL2 | H1.0 | 17 | 275 | 284 | 296 | 311 |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 250 |  |  |  |  |  |  |  |
| SL2 | H1.0 | 10 | 250 |  |  |  |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 168 | 181 | 205 |  |  |  |  |  |
| SL2 | H1.0 | 25 | 168 | 181 | 205 |  |  |  |  |  |
| SL2 |  |  | 224 | 263 | 275 |  |  |  |  |  |
| SL2 |  |  | 224 | 261 | 263 | 275 |  |  |  |  |
| SL2 | H1.0 | 11 | 224 | 263 | 275 |  |  |  |  |  |
| SL2 |  |  | 261 | 270 | 306 | 348 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL2 |  |  | 270 | 306 |  |  |  |  |  |  |
| SL2 |  |  | 288 | 309 |  |  |  |  |  |  |
| SL2 | H2.2 | 28 | 261 | 270 | 306 | 348 |  |  |  |  |
| SL2 |  |  | 179 |  |  |  |  |  |  |  |
| SL2 |  |  | 179 | 184 | 189 |  |  |  |  |  |
| SL2 | H2.2 | 21 | 179 |  |  |  |  |  |  |  |
| SL2 |  |  | 300 | 311 |  |  |  |  |  |  |
| SL2 |  |  | 286 | 290 |  |  |  |  |  |  |
| SL2 | H2.2 | 23 | 300 | 311 |  |  |  |  |  |  |
| SL2 |  |  | 198 | 224 |  |  |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 | H2.2 | 8 | 198 | 224 |  |  |  |  |  |  |
| SL2 |  |  | 287 | 295 | 301 |  |  |  |  |  |
| SL2 |  |  | 301 |  |  |  |  |  |  |  |
| SL2 | H2.2 | 9 | 287 | 295 | 301 |  |  |  |  |  |
| SL2 |  |  | 286 |  |  |  |  |  |  |  |
| SL2 |  |  | 286 | 310 |  |  |  |  |  |  |
| SL2 | H2.2 | 15 | 286 |  |  |  |  |  |  |  |
| SL2 |  |  | 299 | 305 |  |  |  |  |  |  |
| SL2 |  |  | 275 | 292 | 295 |  |  |  |  |  |
| SL2 | H2.2 | 17 | 299 | 305 |  |  |  |  |  |  |
| SL2 |  |  | 250 | 262 |  |  |  |  |  |  |
| SL2 |  |  | 250 | 262 |  |  |  |  |  |  |
| SL2 |  |  | 248 | 268 |  |  |  |  |  |  |
| SL2 | H2.2 | 10 | 250 | 262 |  |  |  |  |  |  |
| SL2 |  |  | 198 |  |  |  |  |  |  |  |
| SL2 |  |  | 149 | ? | 160 | 181 | 207 |  |  |  |
| SL2 | H2.2 | 25 | 198 |  |  |  |  |  |  |  |
| SL2 |  |  | 261 | 283 | 311 |  |  |  |  |  |
| SL2 |  |  | 256 | 261 | 283 |  |  |  |  |  |
| SL2 | H2.2 | 11 | 261 | 283 | 311 |  |  |  |  |  |
| SL2 |  |  | 288 |  |  |  |  |  |  |  |
| SL2 | H2.6 | 28 | 288 |  |  |  |  |  |  |  |
| SL2 |  |  | 173 | 179 | 184 | 189 |  |  |  |  |
| SL2 | H2.6 | 21 | 173 | 179 | 184 | 189 |  |  |  |  |
| SL2 |  |  | 286 | 290 |  |  |  |  |  |  |
| SL2 | H2.6 | 23 | 286 | 290 |  |  |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL2 |  |  | 192 | 206 | 224 |  |  |  |  |  |
| SL2 | H2.6 | 8 | 192 | 206 | 224 |  |  |  |  |  |
| SL2 |  |  | 301 | 303 |  |  |  |  |  |  |
| SL2 | H2.6 | 9 | 301 | 303 |  |  |  |  |  |  |
| SL2 |  |  | 290 | 310 | 326 |  |  |  |  |  |
| SL2 | H2.6 | 15 | 290 | 310 | 326 |  |  |  |  |  |
| SL2 |  |  | 275 | 292 | 295 |  |  |  |  |  |
| SL2 |  |  | 275 | 295 |  |  |  |  |  |  |
| SL2 | H2.6 | 17 | 275 | 292 | 295 |  |  |  |  |  |
| SL2 |  |  | 248 | 268 | 285 |  |  |  |  |  |
| SL2 | H2.6 | 10 | 248 | 268 | 285 |  |  |  |  |  |
| SL2 |  |  | 158 | 160 |  |  |  |  |  |  |
| SL2 |  |  | 149 | 158 | 160 | 181 | 207 |  |  |  |
| SL2 | H2.6 | 25 | 149 | 158 | 160 | 181 | 207 |  |  |  |
| SL2 |  |  | 261 | 283 |  |  |  |  |  |  |
| SL2 | H2.6 | 11 | 261 | 283 |  |  |  |  |  |  |
| SL2 |  | -9 |  |  |  |  |  |  |  |  |
| SL2 |  |  | 270 | 306 |  |  |  |  |  |  |
| SL2 | H2.0 | 28 | 270 | 306 |  |  |  |  |  |  |
| SL2 |  |  | 179 | 184 |  |  |  |  |  |  |
| SL2 |  |  | 179 |  |  |  |  |  |  |  |
| SL2 | H2.0 | 21 | 179 | 184 |  |  |  |  |  |  |
| SL2 |  |  | 290 | 299 |  |  |  |  |  |  |
| SL2 |  |  | 300 | 311 |  |  |  |  |  |  |
| SL2 | H2.0 | 23 | 290 | 299 | 311 |  |  |  |  |  |
| SL2 |  |  | 202 | 218 | 236 |  |  |  |  |  |
| SL2 |  |  | 192 | 206 | 224 |  |  |  |  |  |
| SL2 | H2.0 | 8 | 198 | 206 | 224 |  |  |  |  |  |
| SL2 |  |  | 303 |  |  |  |  |  |  |  |
| SL2 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| SL2 | H2.0 | 9 | 303 |  |  |  |  |  |  |  |
| SL2 |  |  | 318 |  |  |  |  |  |  |  |
| SL2 |  |  | 286 |  |  |  |  |  |  |  |
| SL2 | H2.0 | 15 | 318 |  |  |  |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 278 | 299 | 303 | 328 |  |  |  |  |
| SL2 | H2.0 | 17 | 278 | 299 | 303 | 328 |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \hline \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL2 |  |  | 250 | 262 |  |  |  |  |  |  |
| SL2 | H2.0 | 10 | 251 | 262 |  |  |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 160 |  |  |  |  |  |  |  |
| SL2 | H2.0 | 25 | 160 |  |  |  |  |  |  |  |
| SL2 |  |  | 224 | 265 |  |  |  |  |  |  |
| SL2 |  |  | 263 | 270 | 283 |  |  |  |  |  |
| SL2 | H2.0 | 11 | 224 | 265 |  |  |  |  |  |  |
| SL2 |  |  | 288 |  |  |  |  |  |  |  |
| SL2 |  |  | 288 |  |  |  |  |  |  |  |
| SL2 | H2.8 | 28 | 288 |  |  |  |  |  |  |  |
| SL2 |  |  | 181 | 192 |  |  |  |  |  |  |
| SL2 |  |  | 181 | 192 |  |  |  |  |  |  |
| SL2 | H2.8 | 21 | 179 | 191 |  |  |  |  |  |  |
| SL2 |  |  | 286 | 291 |  |  |  |  |  |  |
| SL2 |  |  | 286 | 291 |  |  |  |  |  |  |
| SL2 | H2.8 | 23 | 286 | 291 |  |  |  |  |  |  |
| SL2 |  |  | 208 | 219 | 226 |  |  |  |  |  |
| SL2 |  |  | 208 | 219 | 226 |  |  |  |  |  |
| SL2 | H2.8 | 8 | 208 | 219 | 226 |  |  |  |  |  |
| SL2 |  |  | 303 |  |  |  |  |  |  |  |
| SL2 |  |  | 287 | 298 | 303 |  |  |  |  |  |
| SL2 | H2.8 | 9 | 287 | 298 | 303 |  |  |  |  |  |
| SL2 |  |  | 286 | 290 | 312 | 328 | 340 |  |  |  |
| SL2 |  |  | 292 | 312 | 328 | 340 |  |  |  |  |
| SL2 | H2.8 | 15 | 286 | 292 | 312 | 328 | 340 |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 286 | 295 | 305 | 339 |  |  |  |  |
| SL2 | H2.8 | 17 | 286 | 295 | 305 | 339 |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 250 | 258 | 268 | 285 |  |  |  |  |
| SL2 | H2.8 | 10 | 250 | 258 | 268 | 285 |  |  |  |  |
| SL2 |  |  | -9 |  |  |  |  |  |  |  |
| SL2 |  |  | 160 | 164 | 184 | 191 | 208 | 218 |  |  |
| SL2 | H2.8 | 25 | 160 | 164 | 184 | 191 | 208 | 218 |  |  |
| SL2 |  |  | 256 | 263 | 283 |  |  |  |  |  |
| SL2 |  |  | 256 | 261 | 283 | 313 |  |  |  |  |
| SL2 | H2.8 | 11 | 256 | 263 | 283 | 313 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | Allele $5$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SL2 |  |  | 306 |  |  |  |  |  |  |  |
| LA1 | I2.4 | 28 | 306 |  |  |  |  |  |  |  |
| LA1 |  |  | 179 |  |  |  |  |  |  |  |
| LA1 |  |  | 306 |  |  |  |  |  |  |  |
| LA1 |  |  | 181 | 186 |  |  |  |  |  |  |
| LA1 |  |  | 181 | 186 |  |  |  |  |  |  |
| LA1 | I2.4 | 21 | 181 | 186 |  |  |  |  |  |  |
| LA1 |  |  | 293-2 |  |  |  |  |  |  |  |
| LA1 |  |  | 302 |  |  |  |  |  |  |  |
| LA1 |  |  | 302 |  |  |  |  |  |  |  |
| LA1 | I2.4 | 23 | 302 |  |  |  |  |  |  |  |
| LA1 |  |  | 214 | 222 |  |  |  |  |  |  |
| LA1 |  |  | 200 | 208 | 212 |  |  |  |  |  |
| LA1 |  |  | -9 |  |  |  |  |  |  |  |
| LA1 |  |  | 192 | 194 | 208 | 212 | 218 | 226 |  |  |
| LA1 | I2.4 | 8 | 192 | 194 | 208 | 212 | 218 | 226 |  |  |
| LA1 |  |  | -9 |  |  |  |  |  |  |  |
| LA1 |  |  | 298-2 |  |  |  |  |  |  |  |
| LA1 |  |  | 298-2 |  |  |  |  |  |  |  |
| LA1 | I2.4 | 9 | 298 |  |  |  |  |  |  |  |
| LA1 |  |  | 288 |  |  |  |  |  |  |  |
| LA1 |  |  | 277 | 282 |  |  |  |  |  |  |
| LA1 |  |  | 277 | 282 | 363 |  |  |  |  |  |
| LA1 | I2.4 | 15 | 277 | 282 | 363 |  |  |  |  |  |
| LA1 |  |  | 292 | 320 |  |  |  |  |  |  |
| LA1 |  |  | 278 | 290 | 301 |  |  |  |  |  |
| LA1 |  |  | 278 | 288 | 301 | 305 |  |  |  |  |
| LA1 | I2.4 | 17 | 278 | 288 | 301 | 305 |  |  |  |  |
| LA1 |  |  | 257 |  |  |  |  |  |  |  |
| LA1 |  |  | 251 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 250 | 263 |  |  |  |  |  |  |
| LA1 | I2.4 | 10 | 250 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 158 | 163 | 170 | 181 | 201 |  |  |  |
| LA1 |  |  | 160 | 170 | 201 |  |  |  |  |  |
| LA1 |  |  | 160 | 170 | 181 | 203 |  |  |  |  |
| LA1 | I2.4 | 25 | 160 | 170 | 181 | 201 |  |  |  |  |
| LA1 |  |  | 256 |  |  |  |  |  |  |  |
| LA1 |  |  | 261 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \end{aligned}$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA1 |  |  | 256 | 261 |  |  |  |  |  |  |
| LA1 | I2.4 | 11 | 256 | 261 |  |  |  |  |  |  |
| LA1 |  |  | 270 | 306 |  |  |  |  |  |  |
| LA1 |  |  | 270 | 286 | 306 |  |  |  |  |  |
| LA1 | I2.8 | 28 | 270 | 286 | 306 |  |  |  |  |  |
| LA1 |  |  | 181 |  |  |  |  |  |  |  |
| LA1 |  |  | 181 |  |  |  |  |  |  |  |
| LA1 | I2.8 | 21 | 181 |  |  |  |  |  |  |  |
| LA1 |  |  | 302 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 302 | 312 |  |  |  |  |  |  |
| LA1 | I2.8 | 23 | 302 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 200 | 208 | 226 |  |  |  |  |  |
| LA1 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| LA1 | I2.8 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| LA1 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| LA1 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| LA1 | I2.8 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| LA1 |  |  | 286 |  |  |  |  |  |  |  |
| LA1 |  |  | 286 |  |  |  |  |  |  |  |
| LA1 | I2.8 | 15 | 286 |  |  |  |  |  |  |  |
| LA1 |  |  | 301 | 305-2 | 341 |  |  |  |  |  |
| LA1 |  |  | 301 | 305 | 341 |  |  |  |  |  |
| LA1 | I2.8 | 17 | 301 | 305 | 341 |  |  |  |  |  |
| LA1 |  |  | 251 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 251 | 263 |  |  |  |  |  |  |
| LA1 | I2.8 | 10 | 251 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 158 | 170 | 201 |  |  |  |  |  |
| LA1 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| LA1 | I2.8 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| LA1 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA1 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA1 | I2.8 | 11 | 261 | 283 |  |  |  |  |  |  |
| LA1 |  |  | 306 |  |  |  |  |  |  |  |
| LA1 |  |  | 276 | 306 |  |  |  |  |  |  |
| LA1 | I3.0 | 28 | 276 | 306 |  |  |  |  |  |  |
| LA1 |  |  | 179 |  |  |  |  |  |  |  |
| LA1 |  |  | 181 |  |  |  |  |  |  |  |
| LA1 | I3.0 | 21 | 181 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele $7$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA1 |  |  | 302 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 302 | 312 |  |  |  |  |  |  |
| LA1 | I3.0 | 23 | 302 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 200 | 208 | 226 |  |  |  |  |  |
| LA1 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| LA1 | I3.0 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| LA1 |  |  | 287 | 298 | 303 |  |  |  |  |  |
| LA1 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| LA1 | I3.0 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| LA1 |  |  | 286 |  |  |  |  |  |  |  |
| LA1 |  |  | 286 |  |  |  |  |  |  |  |
| LA1 | I3.0 | 15 | 286 |  |  |  |  |  |  |  |
| LA1 |  |  | 301 | 305 | 341 |  |  |  |  |  |
| LA1 |  |  | 301 | 305 |  |  |  |  |  |  |
| LA1 | I3.0 | 17 | 301 | 305 |  |  |  |  |  |  |
| LA1 |  |  | 251 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 251 | 263 |  |  |  |  |  |  |
| LA1 | I3.0 | 10 | 251 | 263 |  |  |  |  |  |  |
| LA1 |  |  | 158 | 170 | 201 |  |  |  |  |  |
| LA1 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| LA1 | I3.0 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| LA1 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA1 |  |  | 261 | 275 | 283 | 316 |  |  |  |  |
| LA1 | I3.0 | 11 | 261 | 275 | 283 | 316 |  |  |  |  |
| LA1 |  |  | 261 | 270 | 306 |  |  |  |  |  |
| LA1 |  |  | 257 | 270 |  |  |  |  |  |  |
| LA1 | I3.2 | 28 | 260 | 270 | 306 |  |  |  |  |  |
| LA1 |  |  | 181 |  |  |  |  |  |  |  |
| LA1 |  |  | 181 |  |  |  |  |  |  |  |
| LA1 | I3.2 | 21 | 181 |  |  |  |  |  |  |  |
| LA1 |  |  | 296 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 296 | 312 |  |  |  |  |  |  |
| LA1 | I3.2 | 23 | 296 | 312 |  |  |  |  |  |  |
| LA1 |  |  | 211 | 216 | 226 |  |  |  |  |  |
| LA1 |  |  | 194 | 210 | 216 | 226 |  |  |  |  |
| LA1 | I3.2 | 8 | 194 | 210 | 216 | 226 |  |  |  |  |
| LA1 |  |  | 287 | 298-2 | 298 | 303 |  |  |  |  |
| LA1 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA1 | I3.2 | 9 | 287 | 297 | 299 | 303 |  |  |  |  |
| LA1 |  |  | 300 | 326 |  |  |  |  |  |  |
| LA1 |  |  | 300 | 326 |  |  |  |  |  |  |
| LA1 | I3.2 | 15 | 300 | 326 |  |  |  |  |  |  |
| LA1 |  |  | 294 | 301 | 302 | 341 |  |  |  |  |
| LA1 |  |  | 294 | 301 | 341 |  |  |  |  |  |
| LA1 | I3.2 | 17 | 294 | 301 | 303 | 341 |  |  |  |  |
| LA1 |  |  | 251 | 263 | 277 |  |  |  |  |  |
| LA1 |  |  | 251 | 263 | 277 |  |  |  |  |  |
| LA1 | I3.2 | 10 | 251 | 263 | 277 |  |  |  |  |  |
| LA1 |  |  | 160 | 168 | 201 | 203 |  |  |  |  |
| LA1 |  |  | 160 | 168 | 203 |  |  |  |  |  |
| LA1 | I3.2 | 25 | 160 | 168 | 200 | 202 |  |  |  |  |
| LA1 |  |  | 261 |  |  |  |  |  |  |  |
| LA1 |  |  | 261 |  |  |  |  |  |  |  |
| LA1 | I3.2 | 11 | 261 |  |  |  |  |  |  |  |
| LA1 |  |  | 270 |  |  |  |  |  |  |  |
| LA1 |  |  | 270 |  |  |  |  |  |  |  |
| LA1 | I3.4 | 28 | 270 |  |  |  |  |  |  |  |
| LA1 |  |  | 181 | 186 |  |  |  |  |  |  |
| LA1 |  |  | 181 | 186 |  |  |  |  |  |  |
| LA1 | I3.4 | 21 | 181 | 186 |  |  |  |  |  |  |
| LA1 |  |  | 302 |  |  |  |  |  |  |  |
| LA1 |  |  | 302 |  |  |  |  |  |  |  |
| LA1 | I3.4 | 23 | 302 |  |  |  |  |  |  |  |
| LA1 |  |  | 194 | 208 | 212 | 226 |  |  |  |  |
| LA1 |  |  | 208 | 212 | 226 |  |  |  |  |  |
| LA1 | I3.4 | 8 | 194 | 208 | 212 | 226 |  |  |  |  |
| LA1 |  |  | 287 | 293 | 303 |  |  |  |  |  |
| LA1 |  |  | 287 | 293 | 303 |  |  |  |  |  |
| LA1 | I3.4 | 9 | 287 | 293 | 303 |  |  |  |  |  |
| LA1 |  |  | 286 | 300 |  |  |  |  |  |  |
| LA1 |  |  | 286 | 300 |  |  |  |  |  |  |
| LA1 | I3.4 | 15 | 286 | 300 |  |  |  |  |  |  |
| LA1 |  |  | 302 | 305 |  |  |  |  |  |  |
| LA1 |  |  | 302 | 311 | 341 |  |  |  |  |  |
| LA1 | I3.4 | 17 | 302 | 304 | 312 | 340 |  |  |  |  |
| LA1 |  |  | 251 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA1 |  |  | 251 | 260 |  |  |  |  |  |  |
| LA1 | I3.4 | 10 | 251 | 261 |  |  |  |  |  |  |
| LA1 |  |  | 158 | 170 | 184 | 199 |  |  |  |  |
| LA1 |  |  | 151 | 158 | 170 | 187 | 199 |  |  |  |
| LA1 | I3.4 | 25 | 152 | 158 | 170 | 184 | 199 |  |  |  |
| LA1 |  |  | 256 | 261 | 283 |  |  |  |  |  |
| LA1 |  |  | 258 | 261 | 283 |  |  |  |  |  |
| LA1 | I3.4 | 11 | 257 | 261 | 283 |  |  |  |  |  |
| LA1 |  |  | 270 | 306 | 348 |  |  |  |  |  |
| LA2 | J1.0 | 28 | 270 | 306 | 348 |  |  |  |  |  |
| LA2 |  |  | 179 |  |  |  |  |  |  |  |
| LA2 |  |  | 179 |  |  |  |  |  |  |  |
| LA2 | J1.0 | 21 | 179 |  |  |  |  |  |  |  |
| LA2 |  |  | 300 | 311 |  |  |  |  |  |  |
| LA2 |  |  | 300 | 311 |  |  |  |  |  |  |
| LA2 | J1.0 | 23 | 300 | 311 |  |  |  |  |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 |  |  | 198 | 206 | 224 |  |  |  |  |  |
| LA2 | J1.0 | 8 | 198 | 206 | 224 |  |  |  |  |  |
| LA2 |  |  | 287 | 298-2 | 301 |  |  |  |  |  |
| LA2 |  |  | 287 | 298-2 | 301 |  |  |  |  |  |
| LA2 | J1.0 | 9 | 287 | 297 | 301 |  |  |  |  |  |
| LA2 |  |  | 286 |  |  |  |  |  |  |  |
| LA2 |  |  | 286 |  |  |  |  |  |  |  |
| LA2 | J1.0 | 15 | 286 |  |  |  |  |  |  |  |
| LA2 |  |  | 278 | 299 | 303 | 306 |  |  |  |  |
| LA2 |  |  | 299 | 303 | 306 |  |  |  |  |  |
| LA2 | J1.0 | 17 | 278 | 299 | 303 | 306 |  |  |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 |  |  | 250 | 262 |  |  |  |  |  |  |
| LA2 | J1.0 | 10 | 250 | 262 |  |  |  |  |  |  |
| LA2 |  |  | 149 | 154 | 164 | 199 |  |  |  |  |
| LA2 |  |  | 149 | 154 | 168 | 178 | 199 |  |  |  |
| LA2 | J1.0 | 25 | 149 | 154 | 164 | 199 |  |  |  |  |
| LA2 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| LA2 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA2 | J1.0 | 11 | 261 | 283 | 316 |  |  |  |  |  |
| LA2 |  |  | 270 | 306 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \end{aligned}$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA2 |  |  | 270 | 306 |  |  |  |  |  |  |
| LA2 | J1.2 | 28 | 270 | 306 |  |  |  |  |  |  |
| LA2 |  |  | 179 |  |  |  |  |  |  |  |
| LA2 |  |  | 179 |  |  |  |  |  |  |  |
| LA2 | J1.2 | 21 | 179 |  |  |  |  |  |  |  |
| LA2 |  |  | 300 | 311 |  |  |  |  |  |  |
| LA2 |  |  | 300 | 311 |  |  |  |  |  |  |
| LA2 | J1.2 | 23 | 300 | 311 |  |  |  |  |  |  |
| LA2 |  |  | 198 | 224 |  |  |  |  |  |  |
| LA2 |  |  | 198 | 206 | 224 |  |  |  |  |  |
| LA2 | J1.2 | 8 | 198 | 206 | 224 |  |  |  |  |  |
| LA2 |  |  | 287 | 298-2 | 301 |  |  |  |  |  |
| LA2 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| LA2 | J1.2 | 9 | 287 | 297 | 301 |  |  |  |  |  |
| LA2 |  |  | 286 |  |  |  |  |  |  |  |
| LA2 |  |  | 286 |  |  |  |  |  |  |  |
| LA2 | J1.2 | 15 | 286 |  |  |  |  |  |  |  |
| LA2 |  |  | 299 | 303 |  |  |  |  |  |  |
| LA2 |  |  | 299 | 306 |  |  |  |  |  |  |
| LA2 | J1.2 | 17 | 299 | 303 |  |  |  |  |  |  |
| LA2 |  |  | 250 | 262 |  |  |  |  |  |  |
| LA2 |  |  | 250 | 262 |  |  |  |  |  |  |
| LA2 | J1.2 | 10 | 250 | 262 |  |  |  |  |  |  |
| LA2 |  |  | 158 | 168 | 199 |  |  |  |  |  |
| LA2 |  |  | 149 | 158 | 168 | 199 |  |  |  |  |
| LA2 | J1.2 | 25 | 149 | 154 | 164 | 199 |  |  |  |  |
| LA2 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| LA2 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA2 | J1.2 | 11 | 261 | 283 | 316 |  |  |  |  |  |
| LA2 |  |  | 270 | 306 |  |  |  |  |  |  |
| LA2 | J1.4 | 28 | 270 | 306 |  |  |  |  |  |  |
| LA2 |  |  | 179 |  |  |  |  |  |  |  |
| LA2 | J1.4 | 21 | 179 |  |  |  |  |  |  |  |
| LA2 |  |  | 300 | 311 |  |  |  |  |  |  |
| LA2 | J1.4 | 23 | 300 | 311 |  |  |  |  |  |  |
| LA2 |  |  | 198 | 206 | 224 |  |  |  |  |  |
| LA2 | J1.4 | 8 | 198 | 206 | 224 |  |  |  |  |  |
| LA2 |  |  | 287 | 298-2 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | Allele $4$ | Allele $5$ | Allele <br> 6 | Allele $7$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA2 | J1.4 | 9 | 287 | 297 |  |  |  |  |  |  |
| LA2 |  |  | 286 |  |  |  |  |  |  |  |
| LA2 | J1.4 | 15 | 286 |  |  |  |  |  |  |  |
| LA2 |  |  | 299 |  |  |  |  |  |  |  |
| LA2 | J1.4 | 17 | 299 |  |  |  |  |  |  |  |
| LA2 |  |  | 250 | 262 |  |  |  |  |  |  |
| LA2 | J1.4 | 10 | 250 | 262 |  |  |  |  |  |  |
| LA2 |  |  | 149 | 154 | 164 | 199 |  |  |  |  |
| LA2 | J1.4 | 25 | 149 | 154 | 164 | 199 |  |  |  |  |
| LA2 |  |  | 261 | 283 |  |  |  |  |  |  |
| LA2 | J1.4 | 11 | 261 | 283 |  |  |  |  |  |  |
| LA2 |  |  | 270 |  |  |  |  |  |  |  |
| LA2 |  |  | 270 |  |  |  |  |  |  |  |
| LA2 | J2.6 | 28 | 270 |  |  |  |  |  |  |  |
| LA2 |  |  | 181 | 186 | 192 |  |  |  |  |  |
| LA2 |  |  | 179 | 184 | 189 |  |  |  |  |  |
| LA2 | J2.6 | 21 | 181 | 186 | 192 |  |  |  |  |  |
| LA2 |  |  | 286 | 293-2 |  |  |  |  |  |  |
| LA2 |  |  | 286 | 293 |  |  |  |  |  |  |
| LA2 | J2.6 | 23 | 286 | 294 |  |  |  |  |  |  |
| LA2 |  |  | 203 | 208 |  |  |  |  |  |  |
| LA2 |  |  | 206 |  |  |  |  |  |  |  |
| LA2 | J2.6 | 8 | 204 | 208 |  |  |  |  |  |  |
| LA2 |  |  | 293 | 305 |  |  |  |  |  |  |
| LA2 |  |  | 293 | 303 |  |  |  |  |  |  |
| LA2 | J2.6 | 9 | 293 | 303 |  |  |  |  |  |  |
| LA2 |  |  | 277 | 308 |  |  |  |  |  |  |
| LA2 |  |  | 277 | 307 |  |  |  |  |  |  |
| LA2 | J2.6 | 15 | 277 | 307 |  |  |  |  |  |  |
| LA2 |  |  | 284 | 292 | 302 |  |  |  |  |  |
| LA2 |  |  | 284 | 291 | 301 |  |  |  |  |  |
| LA2 | J2.6 | 17 | 284 | 291 | 301 |  |  |  |  |  |
| LA2 |  |  | 260 | 277 |  |  |  |  |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 | J2.6 | 10 | 260 | 278 |  |  |  |  |  |  |
| LA2 |  |  | 154 | 160 | 187 | 193 | 199 | 207 |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 | J2.6 | 25 | 153 | 159 | 187 | 193 | 199 | 207 |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | Allele $5$ | Allele <br> 6 | Allele $7$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LA2 |  |  | 263 |  |  |  |  |  |  |  |
| LA2 |  |  | 261 |  |  |  |  |  |  |  |
| LA2 | J2.6 | 11 | 261 |  |  |  |  |  |  |  |
| LA2 |  |  | 270 |  |  |  |  |  |  |  |
| LA2 | J2.8 | 28 | 270 |  |  |  |  |  |  |  |
| LA2 |  |  | 184 | 189 |  |  |  |  |  |  |
| LA2 | J2.8 | 21 | 184 | 189 |  |  |  |  |  |  |
| LA2 |  |  | 286 | 293 |  |  |  |  |  |  |
| LA2 | J2.8 | 23 | 286 | 293 |  |  |  |  |  |  |
| LA2 |  |  | 192 | 206 |  |  |  |  |  |  |
| LA2 | J2.8 | 8 | 192 | 206 |  |  |  |  |  |  |
| LA2 |  |  | 293 | 303 |  |  |  |  |  |  |
| LA2 | J2.8 | 9 | 293 | 303 |  |  |  |  |  |  |
| LA2 |  |  | 277 | 307 |  |  |  |  |  |  |
| LA2 | J2.8 | 15 | 277 | 307 |  |  |  |  |  |  |
| LA2 |  |  | 284 | 291 | 301 |  |  |  |  |  |
| LA2 | J2.8 | 17 | 284 | 290 | 300 |  |  |  |  |  |
| LA2 |  |  | 251 | 258 |  |  |  |  |  |  |
| LA2 | J2.8 | 10 | 251 | 258 |  |  |  |  |  |  |
| LA2 |  |  | 158 | 197 | 205 |  |  |  |  |  |
| LA2 | J2.8 | 25 | 158 | 197 | 205 |  |  |  |  |  |
| LA2 |  |  | 261 |  |  |  |  |  |  |  |
| LA2 | J2.8 | 11 | 261 |  |  |  |  |  |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 |  |  | -9 |  |  |  |  |  |  |  |
| LA2 |  |  | 270 | ? | 333 |  |  |  |  |  |
| AW1 | K1.0 | 28 | 270 | 306 | 333 |  |  |  |  |  |
| AW1 |  |  | 181 | 189 |  |  |  |  |  |  |
| AW1 |  |  | 179 | 181 | 186 |  |  |  |  |  |
| AW1 | K1.0 | 21 | 179 | 181 | 186 |  |  |  |  |  |
| AW1 |  |  | 286 | 316 |  |  |  |  |  |  |
| AW1 |  |  | 286 |  |  |  |  |  |  |  |
| AW1 | K1.0 | 23 | 286 |  |  |  |  |  |  |  |
| AW1 |  |  | 206 |  |  |  |  |  |  |  |
| AW1 | K1.0 | 8 | 206 |  |  |  |  |  |  |  |
| AW1 |  |  | 305 |  |  |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 | K1.0 | 9 | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW1 |  |  | 284 | 290 | 310 |  |  |  |  |  |
| AW1 |  |  | 288 |  |  |  |  |  |  |  |
| AW1 | K1.0 | 15 | 288 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 | 305-2 | 311 |  |  |  |  |  |
| AW1 |  |  | 286 | 291 | 305-2 | 311 |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 | K1.0 | 17 | -9 |  |  |  |  |  |  |  |
| AW1 |  |  | 251 | 260 |  |  |  |  |  |  |
| AW1 |  |  | 251 | 260 |  |  |  |  |  |  |
| AW1 |  |  | 250 | 258 | 260 |  |  |  |  |  |
| AW1 | K1.0 | 10 | 250 | 258 | 260 |  |  |  |  |  |
| AW1 |  |  | 160 | 177 | 191 | 197 |  |  |  |  |
| AW1 |  |  | 149 | 160 | 164 | 178 | 191 | 213 |  |  |
| AW1 |  |  | 146 | 158 | 175 | 187 | 194 | 210 |  |  |
| AW1 | K1.0 | 25 | 146 | 158 | 175 | 187 | 194 | 210 |  |  |
| AW1 |  |  | 256 | 268 | 277 |  |  |  |  |  |
| AW1 |  |  | 256 | 268 | 277 |  |  |  |  |  |
| AW1 |  |  | 256 | 268 | 277 |  |  |  |  |  |
| AW1 | K1.0 | 11 | 256 | 268 | 277 |  |  |  |  |  |
| AW1 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW1 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 28 | 270 | 276 |  |  |  |  |  |  |
| AW1 |  |  | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 179 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 21 | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 |  |  |  |  |  |  |  |
| AW1 |  |  | 290 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 23 | 292 |  |  |  |  |  |  |  |
| AW1 |  |  | 226 |  |  |  |  |  |  |  |
| AW1 |  |  | 200 | 226 |  |  |  |  |  |  |
| AW1 |  |  | 224 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 8 | 200 | 224 |  |  |  |  |  |  |
| AW1 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW1 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele <br> 2 | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | Allele <br> 4 | $\begin{aligned} & \text { Allele } \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW1 | K1.2 | 9 | 298 | 304 |  |  |  |  |  |  |
| AW1 |  |  | 266 | 277 |  |  |  |  |  |  |
| AW1 |  |  | 183 | 266 | 307 |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 15 | 184 | 266 | 278 | 306 |  |  |  |  |
| AW1 |  |  | 282 | 288 | 295 | 311 | 341 |  |  |  |
| AW1 |  |  | 288 | 295 | 311 |  |  |  |  |  |
| AW1 |  |  | 286 | 294 | 311 |  |  |  |  |  |
| AW1 | K1.2 | 17 | 288 | 295 | 311 |  |  |  |  |  |
| AW1 |  |  | 247 | 255 |  |  |  |  |  |  |
| AW1 |  |  | 247 | 255 |  |  |  |  |  |  |
| AW1 |  |  | 245 |  |  |  |  |  |  |  |
| AW1 | K1.2 | 10 | 245 | 255 |  |  |  |  |  |  |
| AW1 |  |  | 154 | 160 | 170 | 181 | 193 | 203 |  |  |
| AW1 |  |  | 154 | 160 | 168 | 168 | 178 | 193 | 203 |  |
| AW1 |  |  | 149 | 158 | 175 | 191 | 201 |  |  |  |
| AW1 | K1.2 | 25 | 154 | 158 | 170 | 180 | 193 | 203 |  |  |
| AW1 |  |  | 265 | 275 |  |  |  |  |  |  |
| AW1 |  |  | 265 | 275 |  |  |  |  |  |  |
| AW1 |  |  | 263 | 275 |  |  |  |  |  |  |
| AW1 | K1.2 | 11 | 265 | 275 |  |  |  |  |  |  |
| AW1 |  |  | 286 | 309 |  |  |  |  |  |  |
| AW1 |  |  | 270 | ? | 306 | 309 | 333 |  |  |  |
| AW1 | K1.4 | 28 | 270 | 286 | 309 | 333 |  |  |  |  |
| AW1 |  |  | 179 |  |  |  |  |  |  |  |
| AW1 |  |  | 179 | 183 |  |  |  |  |  |  |
| AW1 | K1.4 | 21 | 179 | 183 |  |  |  |  |  |  |
| AW1 |  |  | 290 | 295 |  |  |  |  |  |  |
| AW1 |  |  | 290 | 295 |  |  |  |  |  |  |
| AW1 | K1.4 | 23 | 290 | 295 |  |  |  |  |  |  |
| AW1 |  |  | 200 |  |  |  |  |  |  |  |
| AW1 |  |  | 200 |  |  |  |  |  |  |  |
| AW1 | K1.4 | 8 | 200 |  |  |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 |  |  | 299 | 303 |  |  |  |  |  |  |
| AW1 | K1.4 | 9 | 299 | 303 |  |  |  |  |  |  |
| AW1 |  |  | 274 | 288 | 292 | 307 |  |  |  |  |
| AW1 |  |  | 277 | 286 | 292 | 307 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele $3$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele $7$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW1 | K1.4 | 15 | 274 | 288 | 292 | 307 |  |  |  |  |
| AW1 |  |  | 275 | 284 | 296-2 |  |  |  |  |  |
| AW1 |  |  | 275 | 284 | 296-2 |  |  |  |  |  |
| AW1 | K1.4 | 17 | 275 | 284 | 297 |  |  |  |  |  |
| AW1 |  |  | 251 |  |  |  |  |  |  |  |
| AW1 |  |  | 251 |  |  |  |  |  |  |  |
| AW1 | K1.4 | 10 | 250 |  |  |  |  |  |  |  |
| AW1 |  |  | 151 | 158 | 175 | 191 | 194 |  |  |  |
| AW1 |  |  | 151 | 158 | 175 | 191 | 194 |  |  |  |
| AW1 | K1.4 | 25 | 151 | 158 | 175 | 191 | 194 |  |  |  |
| AW1 |  |  | 256 | 261 | 283 |  |  |  |  |  |
| AW1 |  |  | 256 | 261 | 283 |  |  |  |  |  |
| AW1 | K1.4 | 11 | 256 | 261 | 283 |  |  |  |  |  |
| AW1 |  |  | 286 |  |  |  |  |  |  |  |
| AW1 |  |  | 286 |  |  |  |  |  |  |  |
| AW1 | K2.4 | 28 | 286 |  |  |  |  |  |  |  |
| AW1 |  |  | 181 | 184 |  |  |  |  |  |  |
| AW1 |  |  | 181 | 184 |  |  |  |  |  |  |
| AW1 | K2.4 | 21 | 181 | 185 |  |  |  |  |  |  |
| AW1 |  |  | 286 | 293 |  |  |  |  |  |  |
| AW1 |  |  | 286 | 293 |  |  |  |  |  |  |
| AW1 | K2.4 | 23 | 286 | 292 |  |  |  |  |  |  |
| AW1 |  |  | 194 | 206 | 216 |  |  |  |  |  |
| AW1 |  |  | 206 | 216 |  |  |  |  |  |  |
| AW1 | K2.4 | 8 | 194 | 206 | 216 |  |  |  |  |  |
| AW1 |  |  | 303 | 310 |  |  |  |  |  |  |
| AW1 |  |  | 303 | 310 |  |  |  |  |  |  |
| AW1 | K2.4 | 9 | 303 | 310 |  |  |  |  |  |  |
| AW1 |  |  | 290 |  |  |  |  |  |  |  |
| AW1 |  |  | 290 |  |  |  |  |  |  |  |
| AW1 | K2.4 | 15 | 290 |  |  |  |  |  |  |  |
| AW1 |  |  | 295 | 330 |  |  |  |  |  |  |
| AW1 |  |  | 295 | 305 |  |  |  |  |  |  |
| AW1 | K2.4 | 17 | 295 | 305 | 330 |  |  |  |  |  |
| AW1 |  |  | 260 |  |  |  |  |  |  |  |
| AW1 |  |  | 251 | 260 |  |  |  |  |  |  |
| AW1 | K2.4 | 10 | 251 | 260 |  |  |  |  |  |  |
| AW1 |  |  | 151 | 156 | 160 | 177 | 201 |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele <br> 2 | Allele $3$ | Allele <br> 4 | Allele 5 | Allele <br> 6 | Allele <br> 7 | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW1 |  |  | 160 | 178 | 201 |  |  |  |  |  |
| AW1 | K2.4 | 25 | 151 | 155 | 160 | 178 | 201 |  |  |  |
| AW1 |  |  | 261 |  |  |  |  |  |  |  |
| AW1 |  |  | 261 | 297 |  |  |  |  |  |  |
| AW1 | K2.4 | 11 | 261 | 297 |  |  |  |  |  |  |
| AW1 |  |  | -9 |  |  |  |  |  |  |  |
| AW1 |  |  | 282 |  |  |  |  |  |  |  |
| AW1 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW1 | K2.6 | 28 | 270 | 276 |  |  |  |  |  |  |
| AW1 |  |  | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 183 |  |  |  |  |  |  |  |
| AW1 | K2.6 | 21 | 183 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 |  |  |  |  |  |  |  |
| AW1 |  |  | 291 |  |  |  |  |  |  |  |
| AW1 | K2.6 | 23 | 291 |  |  |  |  |  |  |  |
| AW1 |  |  | 189 | 194 | 212 | 226 |  |  |  |  |
| AW1 |  |  | 192 | 226 |  |  |  |  |  |  |
| AW1 |  |  | 192 | 226 |  |  |  |  |  |  |
| AW1 | K2.6 | 8 | 192 | 226 |  |  |  |  |  |  |
| AW1 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW1 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW1 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW1 | K2.6 | 9 | 298 | 305 |  |  |  |  |  |  |
| AW1 |  |  | 182 | 266 | 318 |  |  |  |  |  |
| AW1 |  |  | 183 | 318 |  |  |  |  |  |  |
| AW1 | K2.6 | 15 | 182 | 266 | 318 |  |  |  |  |  |
| AW1 |  |  | 288 | 296-2 | 311 |  |  |  |  |  |
| AW1 |  |  | 288 | 296-2 | 311 |  |  |  |  |  |
| AW1 | K2.6 | 17 | 288 | 296 | 312 |  |  |  |  |  |
| AW1 |  |  | 247 | 255 |  |  |  |  |  |  |
| AW1 |  |  | 247 |  |  |  |  |  |  |  |
| AW1 | K2.6 | 10 | 247 | 255 |  |  |  |  |  |  |
| AW1 |  |  | 151 | 160 | 168 | 177 | 193 | 203 |  |  |
| AW1 |  |  | 154 | 160 | 168 | 178 | 193 | 203 |  |  |
| AW1 | K2.6 | 25 | 151 | 160 | 168 | 178 | 192 | 202 |  |  |
| AW1 |  |  | 265 | 275 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele $7$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW1 |  |  | 265 | 275 |  |  |  |  |  |  |
| AW1 | K2.6 | 11 | 265 | 275 |  |  |  |  |  |  |
| AW1 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW1 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW2 | L2.6 | 28 | 270 | 276 |  |  |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 |  |  | 181 |  |  |  |  |  |  |  |
| AW2 |  |  | 181 | 186 |  |  |  |  |  |  |
| AW2 | L2.6 | 21 | 181 | 186 |  |  |  |  |  |  |
| AW2 |  |  | 289 |  |  |  |  |  |  |  |
| AW2 |  |  | 289 |  |  |  |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 | L2.6 | 23 | 289 |  |  |  |  |  |  |  |
| AW2 |  |  | 206 | 214 |  |  |  |  |  |  |
| AW2 |  |  | 169 | 192 | 196 | 202 | 206 | 212 | 214 | 224 |
| AW2 | L2.6 | 8 | 206 | 214 |  |  |  |  |  |  |
| AW2 |  |  | 298 | 305 |  |  |  |  |  |  |
| AW2 |  |  | 298 | 305 | 307 |  |  |  |  |  |
| AW2 | L2.6 | 9 | 298 | 305 | 307 | 288 |  |  |  |  |
| AW2 |  |  | 288 |  |  |  |  |  |  |  |
| AW2 |  |  | 183 | 288 |  |  |  |  |  |  |
| AW2 | L2.6 | 15 | 183 | 288 |  | 301 |  |  |  |  |
| AW2 |  |  | 282 | 286 | 290 | 301 |  |  |  |  |
| AW2 |  |  | 282 | 286 | 301 |  |  |  |  |  |
| AW2 | L2.6 | 17 | 282 | 286 | 290 |  |  |  |  |  |
| AW2 |  |  | 251 |  |  |  |  |  |  |  |
| AW2 |  |  | 248 | 277 | 296 |  |  |  |  |  |
| AW2 |  |  | 251 | 263 |  |  |  |  |  |  |
| AW2 |  |  | 251 | 258 |  |  |  |  |  |  |
| AW2 | L2.6 | 10 | 251 | 263 |  |  |  |  |  |  |
| AW2 |  |  | 154 | 160 | 177 | 197 |  |  |  |  |
| AW2 |  |  | 154 | 160 | 177 | 197 |  |  |  |  |
| AW2 |  |  | 215 |  |  |  |  |  |  |  |
| AW2 | L2.6 | 25 | 154 | 160 | 177 |  |  |  |  |  |
| AW2 |  |  | 261 | 268 | 285 |  |  |  |  |  |
| AW2 |  |  | 206 | 238 | 251 | 261 | 277 |  |  |  |
| AW2 | L2.6 | 11 | 261 | 268 | 285 |  |  |  |  |  |
| AW2 |  |  | 270 | 306 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW2 |  |  | 270 | 306 |  |  |  |  |  |  |
| AW2 | L4.4 | 28 | 270 | 306 |  |  |  |  |  |  |
| AW2 |  |  | 179 | 181 |  |  |  |  |  |  |
| AW2 |  |  | 179 | 181 |  |  |  |  |  |  |
| AW2 | L4.4 | 21 | 179 | 181 |  |  |  |  |  |  |
| AW2 |  |  | 300 |  |  |  |  |  |  |  |
| AW2 |  |  | 300 |  |  |  |  |  |  |  |
| AW2 | L4.4 | 23 | 300 |  |  |  |  |  |  |  |
| AW2 |  |  | 198 | 219 |  |  |  |  |  |  |
| AW2 |  |  | 198 | 219 |  |  |  |  |  |  |
| AW2 | L4.4 | 8 | 198 | 219 |  |  |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 |  |  | 298 | 303 |  |  |  |  |  |  |
| AW2 | L4.4 | 9 | 299 | 303 |  |  |  |  |  |  |
| AW2 |  |  | 286 |  |  |  |  |  |  |  |
| AW2 |  |  | 286 | 300 |  |  |  |  |  |  |
| AW2 | L4.4 | 15 | 286 | 300 |  |  |  |  |  |  |
| AW2 |  |  | 296 | 306 |  |  |  |  |  |  |
| AW2 |  |  | 296 | 306 |  |  |  |  |  |  |
| AW2 | L4.4 | 17 | 296 | 306 |  |  |  |  |  |  |
| AW2 |  |  | 260 |  |  |  |  |  |  |  |
| AW2 |  |  | 250 | 262 |  |  |  |  |  |  |
| AW2 | L4.4 | 10 | 250 | 262 |  | 194 | 201 |  |  |  |
| AW2 |  |  | 149 | 158 | 170 | 194 | 201 |  |  |  |
| AW2 |  |  | 158 | 170 | 194 | 201 |  |  |  |  |
| AW2 | L4.4 | 25 | 149 | 158 | 170 | 303 | 316 |  |  |  |
| AW2 |  |  | 256 | 261 | 283 | 303 | 316 |  |  |  |
| AW2 |  |  | 256 | 261 | 283 | 303 | 316 |  |  |  |
| AW2 | L4.4 | 11 | 256 | 261 | 283 |  |  |  |  |  |
| AW2 |  |  | 276 | 292 |  |  |  |  |  |  |
| AW2 |  |  | 276 | 290 |  |  |  |  |  |  |
| AW2 | L4.6 | 28 | 276 | 290 |  |  |  |  |  |  |
| AW2 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| AW2 |  |  | 179 | 183 | 194 |  |  |  |  |  |
| AW2 | L4.6 | 21 | 181 | 186 | 196 |  |  |  |  |  |
| AW2 |  |  | 286 | 289 | 296 |  |  |  |  |  |
| AW2 |  |  | 288 | 295 |  |  |  |  |  |  |
| AW2 | L4.6 | 23 | 286 | 300 | 296 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW2 |  |  | 206 | 219 |  |  |  |  |  |  |
| AW2 |  |  | 203 | 218 |  |  |  |  |  |  |
| AW2 | L4.6 | 8 | 203 | 219 |  |  |  |  |  |  |
| AW2 |  |  | 298-2 | 305 |  |  |  |  |  |  |
| AW2 |  |  |  | -9 |  |  |  |  |  |  |
| AW2 | L4.6 | 9 | 296 | 304 |  |  |  |  |  |  |
| AW2 |  |  | 326 |  |  |  |  |  |  |  |
| AW2 |  |  | 325 |  |  |  |  |  |  |  |
| AW2 | L4.6 | 15 | 326 |  |  |  |  |  |  |  |
| AW2 |  |  | 278 | 284 | 294 | 306 |  |  |  |  |
| AW2 |  |  | 277 | 284 | 292 | 306 |  |  |  |  |
| AW2 | L4.6 | 17 | 278 | 284 | 294 |  |  |  |  |  |
| AW2 |  |  | 251 | 257 |  |  |  |  |  |  |
| AW2 |  |  | 250 | 254 |  |  |  |  |  |  |
| AW2 | L4.6 | 10 | 250 | 254 |  |  |  |  |  |  |
| AW2 |  |  | 160 |  |  |  |  |  |  |  |
| AW2 |  |  | 158 | 164 | 194 |  |  |  |  |  |
| AW2 | L4.6 | 25 | 158 | 164 | 194 |  |  |  |  |  |
| AW2 |  |  | 261 | 263 |  |  |  |  |  |  |
| AW2 |  |  | 256 | 261 |  |  |  |  |  |  |
| AW2 | L4.6 | 11 | 261 | 263 |  | 333 | 348 |  |  |  |
| AW2 |  |  | 306 |  |  |  |  |  |  |  |
| AW2 |  |  | 270 | 290 | 306 | 333 | 348 |  |  |  |
| AW2 | L4.8 | 28 | 270 | 290 | 306 |  |  |  |  |  |
| AW2 |  |  | 179 | 179 |  |  |  |  |  |  |
| AW2 |  |  | 181 |  |  |  |  |  |  |  |
| AW2 | L4.8 | 21 | 181 |  |  |  |  |  |  |  |
| AW2 |  |  | 300 | 311 |  |  |  |  |  |  |
| AW2 |  |  | 300 | 311 |  |  |  |  |  |  |
| AW2 | L4.8 | 23 | 300 | 311 |  | 224 |  |  |  |  |
| AW2 |  |  | 184 | 198 | 206 | 224 |  |  |  |  |
| AW2 |  |  | 198 | 206 | 214 | 224 |  |  |  |  |
| AW2 | L4.8 | 8 | 198 | 206 | 214 | 301 |  |  |  |  |
| AW2 |  |  | 287 | 295 | 298-2 | 301 |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 | L4.8 | 9 | 287 | 295 | 297 |  |  |  |  |  |
| AW2 |  |  | 286 |  |  |  |  |  |  |  |
| AW2 |  |  | 286 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW2 | L4.8 | 15 | 286 |  |  |  |  |  |  |  |
| AW2 |  |  | 299 | 305 | 306 |  |  |  |  |  |
| AW2 |  |  | 299 | 305 | 306 |  |  |  |  |  |
| AW2 | L4.8 | 17 | 299 | 305 | 306 |  |  |  |  |  |
| AW2 |  |  | 250 | 262 |  |  |  |  |  |  |
| AW2 |  |  | 250 | 262 |  |  |  |  |  |  |
| AW2 | L4.8 | 10 | 250 | 262 |  |  |  |  |  |  |
| AW2 |  |  | 168 | 199 |  |  |  |  |  |  |
| AW2 |  |  | 149 | 154 | 168 | 199 |  |  |  |  |
| AW2 | L4.8 | 25 | 168 | 199 |  |  |  |  |  |  |
| AW2 |  |  | 261 |  |  |  |  |  |  |  |
| AW2 |  |  | 261 | 283 |  |  |  |  |  |  |
| AW2 | L4.8 | 11 | 261 | 283 |  |  |  |  |  |  |
| AW2 |  |  | 270 | 276 |  |  |  |  |  |  |
| AW2 | L5.2 | 28 | 270 | 276 |  |  |  |  |  |  |
| AW2 |  |  | 179 | 183 | 192 |  |  |  |  |  |
| AW2 |  |  | 333 |  |  |  |  |  |  |  |
| AW2 | L5.2 | 21 | 179 | 183 | 192 |  |  |  |  |  |
| AW2 |  |  | 288 |  |  |  |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 | L5.2 | 23 | -9 |  |  |  |  |  |  |  |
| AW2 |  |  | 194 | 203 |  |  |  |  |  |  |
| AW2 |  |  | 194 | 203 | 209 |  |  |  |  |  |
| AW2 |  |  | 203 | 219 |  |  |  |  |  |  |
| AW2 | L5.2 | 8 | 194 | 203 | 209 |  |  |  |  |  |
| AW2 |  |  | 303 |  |  |  |  |  |  |  |
| AW2 |  |  | -9 |  |  |  |  |  |  |  |
| AW2 | L5.2 | 9 | 303 |  |  |  |  |  |  |  |
| AW2 |  |  | 191 | 303 |  |  |  |  |  |  |
| AW2 | L5.2 | 15 | 191 | 303 |  |  |  |  |  |  |
| AW2 |  |  | 311 | 341 |  |  |  |  |  |  |
| AW2 |  |  | 282 | 284 | 288 | 292 | 301 | 305-2 | 341 |  |
| AW2 | L5.2 | 17 | 282 | 284 | 292 | 301 | 306 | 342 |  |  |
| AW2 |  |  | 258 | 332 |  |  |  |  |  |  |
| AW2 |  |  | 250 | 257 | 263 | 304 | 332 |  |  |  |
| AW2 |  |  | 251 | 260 |  |  |  |  |  |  |
| AW2 |  |  | 304 |  |  |  |  |  |  |  |
| AW2 | L5.2 | 10 | 250 | 257 | 263 | 304 | 332 |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AW2 |  |  | 160 |  |  |  |  |  |  |  |
| AW2 |  |  | 168 | 175 | 229 |  |  |  |  |  |
| AW2 | L5.2 | 25 | 160 |  |  |  |  |  |  |  |
| AW2 |  |  | 223 | 263 |  |  |  |  |  |  |
| AW2 |  |  | 206 | 275 |  |  |  |  |  |  |
| AW2 | L5.2 | 11 | 223 | 263 |  |  |  |  |  |  |
| AW2 |  |  | 270 |  |  |  |  |  |  |  |
| AW2 |  |  | 270 | 280 |  |  |  |  |  |  |
| SR1 | M1.2 | 28 | 270 | 280 |  |  |  |  |  |  |
| SR1 |  |  | 173 | 179 | 220 |  |  |  |  |  |
| SR1 |  |  | 179 | 220 |  |  |  |  |  |  |
| SR1 | M1.2 | 21 | 173 | 179 | 220 |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.2 | 23 | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 206 | 212 |  |  |  |  |  |  |
| SR1 |  |  | 206 | 212 |  |  |  |  |  |  |
| SR1 | M1.2 | 8 | 206 | 212 |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 | M1.2 | 9 | 303 |  |  |  |  |  |  |  |
| SR1 |  |  | 224 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.2 | 15 | 224 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 | M1.2 | 17 | 303 |  |  |  |  |  |  |  |
| SR1 |  |  | 255 | 264 |  |  |  |  |  |  |
| SR1 |  |  | 254 | 264 |  |  |  |  |  |  |
| SR1 | M1.2 | 10 | 254 | 264 |  |  |  |  |  |  |
| SR1 |  |  | 146 | 151 | 160 | 175 | 199 |  |  |  |
| SR1 | M1.2 | 25 | 146 | 151 | 160 | 175 | 199 |  |  |  |
| SR1 |  |  | 261 | 263 |  |  |  |  |  |  |
| SR1 |  |  | 261 | 285 |  |  |  |  |  |  |
| SR1 | M1.2 | 11 | 261 | 285 |  |  |  |  |  |  |
| SR1 |  |  | 280 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 28 | 280 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 |  |  | 179 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 21 | 179 |  |  |  |  |  |  |  |
| SR1 |  |  | 291 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 23 | 291 |  |  |  |  |  |  |  |
| SR1 |  |  | 206 | 206 |  |  |  |  |  |  |
| SR1 | M1.0 | 8 | 206 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 9 | 303 |  |  |  |  |  |  |  |
| SR1 |  |  | 224 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 15 | 224 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 | ? |  |  |  |  |  |  |
| SR1 | M1.0 | 17 | 303 | 305 |  |  |  |  |  |  |
| SR1 |  |  | 264 |  |  |  |  |  |  |  |
| SR1 | M1.0 | 10 | 264 |  |  |  |  |  |  |  |
| SR1 |  |  | 168 | 203 |  |  |  |  |  |  |
| SR1 | M1.0 | 25 | 168 | 203 |  |  |  |  |  |  |
| SR1 |  |  | 261 | 285 |  |  |  |  |  |  |
| SR1 | M1.0 | 11 | 261 | 285 |  |  |  |  |  |  |
| SR1 |  |  | 270 | 282 |  |  |  |  |  |  |
| SR1 |  |  | 280 |  |  |  |  |  |  |  |
| SR1 | M1.4 | 28 | 270 | 282 |  |  |  |  |  |  |
| SR1 |  |  | 181 | 220 |  |  |  |  |  |  |
| SR1 |  |  | 181 |  |  |  |  |  |  |  |
| SR1 |  |  | 179 | 184 |  |  |  |  |  |  |
| SR1 | M1.4 | 21 | 181 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 290 |  |  |  |  |  |  |  |
| SR1 | M1.4 | 23 | 290 |  |  |  |  |  |  |  |
| SR1 |  |  | 208 | 214 |  |  |  |  |  |  |
| SR1 |  |  | 208 |  |  |  |  |  |  |  |
| SR1 |  |  | 202 | 206 |  |  |  |  |  |  |
| SR1 | M1.4 | 8 | 208 |  |  |  |  |  |  |  |
| SR1 |  |  | 305 |  |  |  |  |  |  |  |
| SR1 |  |  | 306 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 303 |  |  |  |  |  |  |  |
| SR1 | M1.4 | 9 | 303 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | Allele <br> 4 | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele $7$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 |  |  | 185 |  |  |  |  |  |  |  |
| SR1 |  |  | 196 | 266 | 288 |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 292 | 299 |  |  |  |  |  |  |
| SR1 | M1.4 | 15 | 196 | 266 | 288 |  |  |  |  |  |
| SR1 |  |  | 305 | 306 |  |  |  |  |  |  |
| SR1 |  |  | 305 |  |  |  |  |  |  |  |
| SR1 |  |  | 286 | 339 |  |  |  |  |  |  |
| SR1 |  |  | 305 | 306 |  |  |  |  |  |  |
| SR1 |  |  | 286 | 296-2 |  |  |  |  |  |  |
| SR1 | M1.4 | 17 | 286 | 304 | 306 |  |  |  |  |  |
| SR1 |  |  | 257 | 265 |  |  |  |  |  |  |
| SR1 |  |  | 257 | 265 |  |  |  |  |  |  |
| SR1 |  |  | 257 | 265 |  |  |  |  |  |  |
| SR1 |  |  | 254 |  |  |  |  |  |  |  |
| SR1 | M1.4 | 10 | 257 | 265 |  |  |  |  |  |  |
| SR1 |  |  | 151 | 160 | 164 | 170 | 205 |  |  |  |
| SR1 |  |  | 151 | 160 | 164 | 170 | 205 |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.4 | 25 | 151 | 160 | 164 | 170 | 205 |  |  |  |
| SR1 |  |  | 261 | 287 |  |  |  |  |  |  |
| SR1 |  |  | 261 | 265 |  |  |  |  |  |  |
| SR1 |  |  | 252 | 261 | 277 |  |  |  |  |  |
| SR1 | M1.4 | 11 | 261 | 287 |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 270 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 28 | 270 |  |  |  |  |  |  |  |
| SR1 |  |  | 179 |  |  |  |  |  |  |  |
| SR1 |  |  | 179 | 181 |  |  |  |  |  |  |
| SR1 | M1.6 | 21 | 179 | 181 |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 288 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 23 | 288 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 198 | 214 |  |  |  |  |  |  |
| SR1 | M1.6 | 8 | 198 | 214 |  |  |  |  |  |  |
| SR1 |  |  | 298 | 305 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 |  |  | 295 | 303 |  |  |  |  |  |  |
| SR1 | M1.6 | 9 | 298 | 305 |  |  |  |  |  |  |
| SR1 |  |  | 277 | 286 |  |  |  |  |  |  |
| SR1 |  |  | 286 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 15 | 286 |  |  |  |  |  |  |  |
| SR1 |  |  | 292 | 315 | 322 |  |  |  |  |  |
| SR1 |  |  | ? |  |  |  |  |  |  |  |
| SR1 | M1.6 | 17 | 292 | 315 | 322 |  |  |  |  |  |
| SR1 |  |  | 250 | 251 |  |  |  |  |  |  |
| SR1 |  |  | 248 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 10 | 248 |  |  |  |  |  |  |  |
| SR1 |  |  | 151 | 162 | 170 | 187 | 199 |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 25 | 151 | 162 | 170 | 187 | 199 |  |  |  |
| SR1 |  |  | 261 | 284 | 303 |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.6 | 11 | 261 | 284 | 303 |  |  |  |  |  |
| SR1 |  |  | 276 | 288 |  |  |  |  |  |  |
| SR1 |  |  | 270 | 276 |  |  |  |  |  |  |
| SR1 | M1.8 | 28 | 276 | 288 |  |  |  |  |  |  |
| SR1 |  |  | 181 | 183 |  |  |  |  |  |  |
| SR1 |  |  | 179 |  |  |  |  |  |  |  |
| SR1 |  |  | 175 |  |  |  |  |  |  |  |
| SR1 | M1.8 | 21 | 181 | 183 |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.8 | 23 | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 218 |  |  |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 |  |  | 202 | 216 | 242 |  |  |  |  |  |
| SR1 | M1.8 | 8 | 202 | 216 | 242 |  |  |  |  |  |
| SR1 |  |  | 303 | 307 |  |  |  |  |  |  |
| SR1 |  |  | 306 |  |  |  |  |  |  |  |
| SR1 |  |  | 306 |  |  |  |  |  |  |  |
| SR1 | M1.8 | 9 | 303 | 307 |  |  |  |  |  |  |
| SR1 |  |  | 183 | 286 | 310 |  |  |  |  |  |
| SR1 |  |  | 286 | 308 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR1 |  |  | 286 | 308 |  |  |  |  |  |  |
| SR1 | M1.8 | 15 | 183 | 286 | 310 |  |  |  |  |  |
| SR1 |  |  | 286 | 292 | 305 | 311 | 315 |  |  |  |
| SR1 |  |  | 286 | 291 | 303 |  |  |  |  |  |
| SR1 |  |  | 286 | 291 | 303 |  |  |  |  |  |
| SR1 | M1.8 | 17 | 286 | 292 | 305 | 311 | 315 |  |  |  |
| SR1 |  |  | 251 |  |  |  |  |  |  |  |
| SR1 |  |  | 251 |  |  |  |  |  |  |  |
| SR1 |  |  | 251 |  |  |  |  |  |  |  |
| SR1 | M1.8 | 10 | 251 |  |  |  |  |  |  |  |
| SR1 |  |  | 160 | 170 |  |  |  |  |  |  |
| SR1 |  |  | 149 | 158 | 168 |  |  |  |  |  |
| SR1 |  |  | -9 |  |  |  |  |  |  |  |
| SR1 | M1.8 | 25 | 149 | 158 | 168 |  |  |  |  |  |
| SR1 |  |  | 256 | 261 | 303 | 311 |  |  |  |  |
| SR1 |  |  | 256 | 261 |  |  |  |  |  |  |
| SR1 |  |  | 202 | 256 | 261 | 303 |  |  |  |  |
| SR1 | M1.8 | 11 | 256 | 261 | 303 | 311 |  |  |  |  |
| SR1 |  |  | 270 |  |  |  |  |  |  |  |
| SR1 |  |  | 270 | 280 |  |  |  |  |  |  |
| SR1 |  |  | 290 |  |  |  |  |  |  |  |
| SR2 | N1.4 | 28 | 290 |  |  |  |  |  |  |  |
| SR2 |  |  | 179 | 184 |  |  |  |  |  |  |
| SR2 |  |  | 179 | 220 |  |  |  |  |  |  |
| SR2 |  |  | 179 | 184 | 194 |  |  |  |  |  |
| SR2 | N1.4 | 21 | 179 | 184 | 194 |  |  |  |  |  |
| SR2 |  |  | 290 |  |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 |  |  | 288 |  |  |  |  |  |  |  |
| SR2 | N1.4 | 23 | 288 |  |  |  |  |  |  |  |
| SR2 |  |  | 202 | 214 |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 |  |  | 203 | 216 |  |  |  |  |  |  |
| SR2 | N1.4 | 8 | 203 | 216 |  |  |  |  |  |  |
| SR2 |  |  | 303 | 310 |  |  |  |  |  |  |
| SR2 |  |  | 303 |  |  |  |  |  |  |  |
| SR2 |  |  | 303 | 305 |  |  |  |  |  |  |
| SR2 | N1.4 | 9 | 303 | 305 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 |  |  | 292 | 299 |  |  |  |  |  |  |
| SR2 |  |  | 277 |  |  |  |  |  |  |  |
| SR2 |  |  | 271 |  |  |  |  |  |  |  |
| SR2 | N1.4 | 15 | 271 |  |  |  |  |  |  |  |
| SR2 |  |  | 286 | 296-2 | 306 |  |  |  |  |  |
| SR2 |  |  | 303 |  |  |  |  |  |  |  |
| SR2 |  |  | 286 | 294 |  |  |  |  |  |  |
| SR2 | N1.4 | 17 | 286 | 294 |  |  |  |  |  |  |
| SR2 |  |  | 254 |  |  |  |  |  |  |  |
| SR2 |  |  | 255 | 265 |  |  |  |  |  |  |
| SR2 |  |  | 250 |  |  |  |  |  |  |  |
| SR2 | N1.4 | 10 | 250 |  |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 |  |  | 146 | 158 | 163 | 191 | 203 |  |  |  |
| SR2 |  |  | 144 | 158 | 164 | 191 | 203 |  |  |  |
| SR2 | N1.4 | 25 | 144 | 158 | 164 | 191 | 203 |  |  |  |
| SR2 |  |  | 252 | 261 | 277 |  |  |  |  |  |
| SR2 |  |  | 265 | 283 | 297 |  |  |  |  |  |
| SR2 |  |  | 261 | 275 |  |  |  |  |  |  |
| SR2 | N1.4 | 11 | 261 | 275 |  |  |  |  |  |  |
| SR2 |  |  | 290 | 315 |  |  |  |  |  |  |
| SR2 |  |  | 282 | 292 | 315 |  |  |  |  |  |
| SR2 |  |  | 290 |  |  |  |  |  |  |  |
| SR2 | N1.6 | 28 | 282 | 292 | 315 |  |  |  |  |  |
| SR2 |  |  | 181 |  |  |  |  |  |  |  |
| SR2 |  |  | 179 | 181 |  |  |  |  |  |  |
| SR2 |  |  | 179 |  |  |  |  |  |  |  |
| SR2 | N1.6 | 21 | 179 | 181 |  |  |  |  |  |  |
| SR2 |  |  | 286 | 291 |  |  |  |  |  |  |
| SR2 |  |  | 286 | 291 |  |  |  |  |  |  |
| SR2 |  |  | 286 | 290 |  |  |  |  |  |  |
| SR2 | N1.6 | 23 | 286 | 290 |  |  |  |  |  |  |
| SR2 |  |  | 202 | 226 |  |  |  |  |  |  |
| SR2 |  |  | 202 | 218 | 226 |  |  |  |  |  |
| SR2 |  |  | 200 | 224 |  |  |  |  |  |  |
| SR2 | N1.6 | 8 | 202 | 226 |  |  |  |  |  |  |
| SR2 |  |  | 305 |  |  |  |  |  |  |  |
| SR2 |  |  | 305 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | Allele $7$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N1.6 | 9 | 305 |  |  |  |  |  |  |  |
| SR2 |  |  | 286 | 299 | 308 | 326 |  |  |  |  |
| SR2 |  |  | 183 | 286 | 299 | 307 |  |  |  |  |
| SR2 |  |  | 286 | 307 | 325 |  |  |  |  |  |
| SR2 | N1.6 | 15 | 286 | 308 | 326 |  |  |  |  |  |
| SR2 |  |  | 292 | 314 | 328 |  |  |  |  |  |
| SR2 |  |  | 292 | 314 | 328 |  |  |  |  |  |
| SR2 |  |  | 292 | 294 | 311 | 328 |  |  |  |  |
| SR2 | N1.6 | 17 | 292 | 314 | 328 |  |  |  |  |  |
| SR2 |  |  | 255 | 273 |  |  |  |  |  |  |
| SR2 |  |  | 255 | 273 |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N1.6 | 10 | 255 | 273 |  |  |  |  |  |  |
| SR2 |  |  | 146 | 151 | 160 | 170 | 177 | 184 | 199 |  |
| SR2 |  |  | 146 | 151 | 160 | 170 | 177 | 187 | 199 |  |
| SR2 |  |  | 144 | 158 | 168 | 175 | 184 | 197 |  |  |
| SR2 | N1.6 | 25 | 146 | 151 | 160 | 170 | 177 | 186 | 198 |  |
| SR2 |  |  | 263 |  |  |  |  |  |  |  |
| SR2 |  |  | 263 |  |  |  |  |  |  |  |
| SR2 |  |  | 261 |  |  |  |  |  |  |  |
| SR2 | N1.6 | 11 | 263 |  |  |  |  |  |  |  |
| SR2 |  |  | 270 | 306 | 333 |  |  |  |  |  |
| SR2 |  |  | 261 | 270 | 306 |  |  |  |  |  |
| SR2 | N2.4 | 28 | 270 | 306 |  |  |  |  |  |  |
| SR2 |  |  | 181 |  |  |  |  |  |  |  |
| SR2 |  |  | 181 |  |  |  |  |  |  |  |
| SR2 | N2.4 | 21 | 181 |  |  |  |  |  |  |  |
| SR2 |  |  | 302 | 312 |  |  |  |  |  |  |
| SR2 |  |  | 302 | 312 |  |  |  |  |  |  |
| SR2 | N2.4 | 23 | 302 | 312 |  |  |  |  |  |  |
| SR2 |  |  | 178 | 200 | 208 | 216 | 226 |  |  |  |
| SR2 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| SR2 | N2.4 | 8 | 178 | 200 | 208 | 216 | 226 |  |  |  |
| SR2 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| SR2 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| SR2 | N2.4 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| SR2 |  |  | 286 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele <br> 2 | $\begin{aligned} & \text { Allele } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 |  |  | 264 | 286 | 318 |  |  |  |  |  |
| SR2 | N2.4 | 15 | 286 |  |  |  |  |  |  |  |
| SR2 |  |  | 301 | 305-2 |  |  |  |  |  |  |
| SR2 |  |  | 301 | 305-2 | 339 |  |  |  |  |  |
| SR2 | N2.4 | 17 | 301 | 305 | 339 |  |  |  |  |  |
| SR2 |  |  | 251 | 263 |  |  |  |  |  |  |
| SR2 |  |  | 251 | 263 |  |  |  |  |  |  |
| SR2 | N2.4 | 10 | 251 | 263 |  |  |  |  |  |  |
| SR2 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| SR2 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| SR2 | N2.4 | 25 | 151 | 158 | 170 | 200 |  |  |  |  |
| SR2 |  |  | 243 | 261 | 283 |  |  |  |  |  |
| SR2 |  |  | 261 | 283 |  |  |  |  |  |  |
| SR2 | N2.4 | 11 | 243 | 261 | 283 |  |  |  |  |  |
| SR2 |  |  | 270 | 276 |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 28 | 270 | 276 |  |  |  |  |  |  |
| SR2 |  |  | 181 | 186 | 199 |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 21 | 181 | 186 | 199 |  |  |  |  |  |
| SR2 |  |  | 289 | 291 | 312 |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 23 | 289 | 291 | 312 |  |  |  |  |  |
| SR2 |  |  | 200 | 208 | 226 |  |  |  |  |  |
| SR2 |  |  | 212 | 224 |  |  |  |  |  |  |
| SR2 | N2.6 | 8 | 200 | 208 | 226 |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 |  |  | 298-2 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 9 | 297 |  |  |  |  |  |  |  |
| SR2 |  |  | 197 |  |  |  |  |  |  |  |
| SR2 |  |  | 277 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 15 | 277 |  |  |  |  |  |  |  |
| SR2 |  |  | 282 | 290 |  |  |  |  |  |  |
| SR2 |  |  | 290 | 306 |  |  |  |  |  |  |
| SR2 | N2.6 | 17 | 282 | 290 |  |  |  |  |  |  |
| SR2 |  |  | 251 | 255 | 263 | 332 |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 10 | 251 | 255 | 263 | 332 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele <br> 7 | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR2 |  |  | 160 | 177 | 203 | 215 | 229 |  |  |  |
| SR2 | N2.6 | 25 | 160 | 177 | 203 | 215 | 229 |  |  |  |
| SR2 |  |  | 261 |  |  |  |  |  |  |  |
| SR2 | N2.6 | 11 | 261 |  |  |  |  |  |  |  |
| SR2 |  |  | 270 |  |  |  |  |  |  |  |
| SR2 |  |  | 270 | 292 |  |  |  |  |  |  |
| SR2 | N2.8 | 28 | 270 | 292 |  |  |  |  |  |  |
| SR2 |  |  | 179 | 186 |  |  |  |  |  |  |
| SR2 |  |  | 181 | 186 |  |  |  |  |  |  |
| SR2 | N2.8 | 21 | 181 | 186 |  |  |  |  |  |  |
| SR2 |  |  | 293-2 |  |  |  |  |  |  |  |
| SR2 |  |  | 289 | 293-2 |  |  |  |  |  |  |
| SR2 | N2.8 | 23 | 289 | 293 |  |  |  |  |  |  |
| SR2 |  |  | 203 | 212 |  |  |  |  |  |  |
| SR2 |  |  | 203 | 212 |  |  |  |  |  |  |
| SR2 | N2.8 | 8 | 203 | 212 |  |  |  |  |  |  |
| SR2 |  |  | -9 |  |  |  |  |  |  |  |
| SR2 |  |  | 298 | 305 |  |  |  |  |  |  |
| SR2 | N2.8 | 9 | 298 | 305 |  |  |  |  |  |  |
| SR2 |  |  | 290 |  |  |  |  |  |  |  |
| SR2 |  |  | 290 |  |  |  |  |  |  |  |
| SR2 | N2.8 | 15 | 290 |  |  |  |  |  |  |  |
| SR2 |  |  | 275 | 282 | 286 | 290 | 301 | 306 | 318 |  |
| SR2 |  |  | 286 | 306 |  |  |  |  |  |  |
| SR2 |  |  | 282 | 286 | 290 | 306 | 318 |  |  |  |
| SR2 | N2.8 | 17 | 282 | 286 | 290 | 306 | 318 |  |  |  |
| SR2 |  |  | 251 | 260 |  |  |  |  |  |  |
| SR2 |  |  | 251 | 263 |  |  |  |  |  |  |
| SR2 | N2.8 | 10 | 251 | 263 |  |  |  |  |  |  |
| SR2 |  |  | 146 | 151 | 160 | 164 | 181 | 184 | 197 |  |
| SR2 |  |  | 146 | 151 | 160 | 164 | 181 | 184 | 197 |  |
| SR2 | N2.8 | 25 | 146 | 151 | 160 | 164 | 181 | 184 | 197 |  |
| SR2 |  |  | 256 | 297 |  |  |  |  |  |  |
| SR2 |  |  | 256 | 298 |  |  |  |  |  |  |
| SR2 | N2.8 | 11 | 256 | 298 |  |  |  |  |  |  |
| SR2 |  |  | 270 |  |  |  |  |  |  |  |
| SR2 |  |  | 270 | 280 |  |  |  |  |  |  |
| HY1 | P1.0 | 28 | 270 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY1 |  |  | 183 | 186 |  |  |  |  |  |  |
| HY1 |  |  | 183 | 186 |  |  |  |  |  |  |
| HY1 | P1.0 | 21 | 183 | 186 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 | P1.0 | 23 | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 206 | 214 | 219 |  |  |  |  |  |
| HY1 |  |  | 192 | 206 | 214 | 219 |  |  |  |  |
| HY1 | P1.0 | 8 | 192 | 206 | 214 | 219 |  |  |  |  |
| HY1 |  |  | 289 | 298-2 | 305 |  |  |  |  |  |
| HY1 |  |  | 289 | 298-2 | 306 |  |  |  |  |  |
| HY1 | P1.0 | 9 | 289 | 297 | 305 |  |  |  |  |  |
| HY1 |  |  | 271 |  |  |  |  |  |  |  |
| HY1 |  |  | -9 |  |  |  |  |  |  |  |
| HY1 | P1.0 | 15 | 271 |  |  |  |  |  |  |  |
| HY1 |  |  | 275 |  |  |  |  |  |  |  |
| HY1 |  |  | 277 |  |  |  |  |  |  |  |
| HY1 | P1.0 | 17 | 277 |  |  |  |  |  |  |  |
| HY1 |  |  | 251 |  |  |  |  |  |  |  |
| HY1 |  |  | 251 |  |  |  |  |  |  |  |
| HY1 | P1.0 | 10 | 251 |  |  |  |  |  |  |  |
| HY1 |  |  | 151 | 160 | 164 | 170 | 184 | 201 |  |  |
| HY1 |  |  | 151 | 160 | 168 | 172 | 184 | 201 |  |  |
| HY1 | P1.0 | 25 | 151 | 160 | 168 | 172 | 184 | 201 |  |  |
| HY1 |  |  | 256 | 316 |  |  |  |  |  |  |
| HY1 |  |  | 256 | 316 |  |  |  |  |  |  |
| HY1 | P1.0 | 11 | 256 | 316 |  |  |  |  |  |  |
| HY1 |  |  | 306 |  |  |  |  |  |  |  |
| HY1 |  |  | 276 | 308 |  |  |  |  |  |  |
| HY1 | P1.2 | 28 | 306 |  |  |  |  |  |  |  |
| HY1 |  |  | 181 |  |  |  |  |  |  |  |
| HY1 |  |  | 181 |  |  |  |  |  |  |  |
| HY1 | P1.2 | 21 | 181 |  |  |  |  |  |  |  |
| HY1 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY1 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY1 | P1.2 | 23 | 302 | 312 |  |  |  |  |  |  |
| HY1 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| HY1 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY1 | P1.2 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| HY1 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| HY1 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| HY1 | P1.2 | 9 | 297 | 303 |  |  |  |  |  |  |
| HY1 |  |  | 286 |  |  |  |  |  |  |  |
| HY1 |  |  | 286 |  |  |  |  |  |  |  |
| HY1 | P1.2 | 15 | 286 |  |  |  |  |  |  |  |
| HY1 |  |  | 301 | 305-2 |  |  |  |  |  |  |
| HY1 |  |  | 301 | 305 |  |  |  |  |  |  |
| HY1 | P1.2 | 17 | 301 | 305 |  |  |  |  |  |  |
| HY1 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY1 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY1 | P1.2 | 10 | 251 | 263 |  |  |  |  |  |  |
| HY1 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY1 |  |  | 158 | 170 | 201 |  |  |  |  |  |
| HY1 | P1.2 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| HY1 |  |  | 261 | 283 |  |  |  |  |  |  |
| HY1 |  |  | 261 | 283 |  |  |  |  |  |  |
| HY1 | P1.2 | 11 | 261 | 283 |  |  |  |  |  |  |
| HY1 |  |  | 270 |  |  |  |  |  |  |  |
| HY1 |  |  | 270 |  |  |  |  |  |  |  |
| HY1 | P1.4 | 28 | 270 |  |  |  |  |  |  |  |
| HY1 |  |  | 181 | 186 |  |  |  |  |  |  |
| HY1 |  |  | 183 | 186 |  |  |  |  |  |  |
| HY1 | P1.4 | 21 | 181 | 186 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 | P1.4 | 23 | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 206 | 214 | 219 |  |  |  |  |  |
| HY1 |  |  | 206 | 214 | 219 |  |  |  |  |  |
| HY1 | P1.4 | 8 | 206 | 214 | 219 |  |  |  |  |  |
| HY1 |  |  | 289 | 298-2 | 305 |  |  |  |  |  |
| HY1 |  |  | 288 | 298-2 | 306 |  |  |  |  |  |
| HY1 | P1.4 | 9 | 289 | 297 | 305 |  |  |  |  |  |
| HY1 |  |  | 271 |  |  |  |  |  |  |  |
| HY1 |  |  | 271 | 304 |  |  |  |  |  |  |
| HY1 | P1.4 | 15 | 271 | 305 |  |  |  |  |  |  |
| HY1 |  |  | 275 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY1 |  |  | 275 |  |  |  |  |  |  |  |
| HY1 |  |  | 275 |  |  |  |  |  |  |  |
| HY1 |  |  | 284 | 305 | 330 |  |  |  |  |  |
| HY1 |  |  | 284 | 301 |  |  |  |  |  |  |
| HY1 | P1.4 | 17 | 275 |  |  |  |  |  |  |  |
| HY1 |  |  | 251 | 340 |  |  |  |  |  |  |
| HY1 |  |  | 251 |  |  |  |  |  |  |  |
| HY1 | P1.4 | 10 | 251 | 340 |  |  |  |  |  |  |
| HY1 |  |  | 151 | 160 | 164 | 170 | 184 | 201 |  |  |
| HY1 |  |  | 160 | 175 | 187 | 201 | 215 |  |  |  |
| HY1 | P1.4 | 25 | 151 | 160 | 164 | 170 | 184 | 201 |  |  |
| HY1 |  |  | 256 | 316 |  |  |  |  |  |  |
| HY1 |  |  | 256 | 316 |  |  |  |  |  |  |
| HY1 | P1.4 | 11 | 256 | 316 |  |  |  |  |  |  |
| HY1 |  |  | 270 | 276 |  |  |  |  |  |  |
| HY1 |  |  | 270 | 276 |  |  |  |  |  |  |
| HY1 | P2.4 | 28 | 270 | 276 |  |  |  |  |  |  |
| HY1 |  |  | 181 |  |  |  |  |  |  |  |
| HY1 |  |  | 181 |  |  |  |  |  |  |  |
| HY1 | P2.4 | 21 | 181 |  |  |  |  |  |  |  |
| HY1 |  |  | 286 | 291 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 291 |  |  |  |  |  |  |
| HY1 | P2.4 | 23 | 286 | 291 |  |  |  |  |  |  |
| HY1 |  |  | 214 | 224 |  |  |  |  |  |  |
| HY1 |  |  | 214 | 224 |  |  |  |  |  |  |
| HY1 | P2.4 | 8 | 214 | 224 |  |  |  |  |  |  |
| HY1 |  |  | 299 | 303 |  |  |  |  |  |  |
| HY1 |  |  | 301 | 305 |  |  |  |  |  |  |
| HY1 | P2.4 | 9 | 301 | 303 |  |  |  |  |  |  |
| HY1 |  |  | 320 | 328 |  |  |  |  |  |  |
| HY1 |  |  | 303 | 318 | 328 |  |  |  |  |  |
| HY1 | P2.4 | 15 | 303 | 318 | 328 |  |  |  |  |  |
| HY1 |  |  | 284 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 284 | 305 |  |  |  |  |  |  |
| HY1 | P2.4 | 17 | 284 | 303 |  |  |  |  |  |  |
| HY1 |  |  | 250 | 285 |  |  |  |  |  |  |
| HY1 |  |  | 250 | 285 |  |  |  |  |  |  |
| HY1 | P2.4 | 10 | 250 | 285 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY1 |  |  | 151 | 160 | 170 | 177 | 187 |  |  |  |
| HY1 |  |  | 160 | 170 | 178 | 187 | 208 |  |  |  |
| HY1 | P2.4 | 25 | 160 | 170 | 177 | 187 | 208 |  |  |  |
| HY1 |  |  | 256 | 263 | 297 |  |  |  |  |  |
| HY1 |  |  | 256 | 263 | 297 |  |  |  |  |  |
| HY1 | P2.4 | 11 | 256 | 263 | 297 |  |  |  |  |  |
| HY1 |  |  | 276 |  |  |  |  |  |  |  |
| HY1 |  |  | 276 |  |  |  |  |  |  |  |
| HY1 | P2.6 | 28 | 276 |  |  |  |  |  |  |  |
| HY1 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| HY1 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| HY1 | P2.6 | 21 | 181 | 186 | 196 |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 286 | 302 |  |  |  |  |  |  |
| HY1 | P2.6 | 23 | 286 | 302 |  |  |  |  |  |  |
| HY1 |  |  | 206 | 212 | 219 | 226 |  |  |  |  |
| HY1 |  |  | 206 | 219 | 226 |  |  |  |  |  |
| HY1 | P2.6 | 8 | 206 | 212 | 219 | 226 |  |  |  |  |
| HY1 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| HY1 |  |  | 287 | 298-2 |  |  |  |  |  |  |
| HY1 | P2.6 | 9 | 287 | 297 |  |  |  |  |  |  |
| HY1 |  |  | 264 | 286 |  |  |  |  |  |  |
| HY1 |  |  | 286 |  |  |  |  |  |  |  |
| HY1 | P2.6 | 15 | 264 | 286 |  |  |  |  |  |  |
| HY1 |  |  | 384 | 301 |  |  |  |  |  |  |
| HY1 |  |  | 284 | 294 | 301 |  |  |  |  |  |
| HY1 | P2.6 | 17 | 284 | 301 |  |  |  |  |  |  |
| HY1 |  |  | 251 | 257 |  |  |  |  |  |  |
| HY1 |  |  | 251 | 257 |  |  |  |  |  |  |
| HY1 | P2.6 | 10 | 251 | 257 |  |  |  |  |  |  |
| HY1 |  |  | 151 | 160 | 168 | 197 |  |  |  |  |
| HY1 |  |  | 160 | 170 | 197 |  |  |  |  |  |
| HY1 | P2.6 | 25 | 151 | 160 | 170 | 197 |  |  |  |  |
| HY1 |  |  | 256 | 263 | 283 |  |  |  |  |  |
| HY1 |  |  | 263 | 283 |  |  |  |  |  |  |
| HY1 | P2.6 | 11 | 256 | 263 | 283 |  |  |  |  |  |
| HY1 |  |  | 270 | 308 |  |  |  |  |  |  |
| HY1 |  |  | 270 | 308 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | Allele $4$ | Allele $5$ | Allele 6 | Allele $7$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY3 | Q1.8 | 28 | 270 | 308 |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 | Q1.8 | 21 | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 | Q1.8 | 23 | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 | Q1.8 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| HY3 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| HY3 | Q1.8 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 | Q1.8 | 15 | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 301 | 305-2 | 330 |  |  |  |  |  |
| HY3 |  |  | 301 | 305-2 | 341 |  |  |  |  |  |
| HY3 | Q1.8 | 17 | 301 | 305 | 330 |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 | Q1.8 | 10 | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 151 | 158 | 168 | 201 |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 | Q1.8 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 243 | 261 | 283 | 316 |  |  |  |  |
| HY3 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| HY3 | Q1.8 | 11 | 243 | 261 | 283 | 316 |  |  |  |  |
| HY3 |  |  | 270 | 306 |  |  |  |  |  |  |
| HY3 |  |  | 270 | 308 |  |  |  |  |  |  |
| HY3 | Q2.0 | 28 | 270 | 308 |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 | Q2.0 | 21 | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 | Q2.0 | 23 | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 158 | 194 | 200 | 203 | 208 | 216 | 226 |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | Allele | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY3 |  |  | 194 | 200 | 203 | 208 | 212 | 216 | 226 |  |
| HY3 | Q2.0 | 8 | 194 | 200 | 203 | 208 | 216 | 226 |  |  |
| HY3 |  |  | 287 | 298-2 | 303 | 310 |  |  |  |  |
| HY3 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| HY3 | Q2.0 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 | Q2.0 | 15 | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 301 | 305 | 341 |  |  |  |  |  |
| HY3 |  |  | 301 | 305-2 |  |  |  |  |  |  |
| HY3 | Q2.0 | 17 | 301 | 305 | 341 |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 | Q2.0 | 10 | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 | Q2.0 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 251 | 283 |  |  |  |  |  |  |
| HY3 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| HY3 | Q2.0 | 11 | 261 | 283 | 316 |  |  |  |  |  |
| HY3 |  |  | 306 |  |  |  |  |  |  |  |
| HY3 |  |  | 263 | 270 | 308 |  |  |  |  |  |
| HY3 | Q2.2 | 28 | 306 |  |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 181 |  |  |  |  |  |  |  |
| HY3 | Q2.2 | 21 | 181 |  |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 | Q2.2 | 23 | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 200 | 216 | 226 |  |  |  |  |  |
| HY3 |  |  | 200 | 216 | 226 |  |  |  |  |  |
| HY3 | Q2.2 | 8 | 200 | 216 | 226 |  |  |  |  |  |
| HY3 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| HY3 |  |  | 298-2 | 303 |  |  |  |  |  |  |
| HY3 | Q2.2 | 9 | 297 | 303 |  |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 | Q2.2 | 15 | 286 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY3 |  |  | 301 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 301 | 305 |  |  |  |  |  |  |
| HY3 | Q2.2 | 17 | 301 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 | Q2.2 | 10 | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 | Q2.2 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 261 | 283 |  |  |  |  |  |  |
| HY3 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| HY3 | Q2.2 | 11 | 261 | 283 | 316 |  |  |  |  |  |
| HY3 |  |  | -9 |  |  |  |  |  |  |  |
| HY3 |  |  | 261 | 270 | 276 | 306 |  |  |  |  |
| HY3 | Q2.4 | 28 | 261 | 270 | 276 | 306 |  |  |  |  |
| HY3 |  |  | 179 | 181 |  |  |  |  |  |  |
| HY3 |  |  | 179 | 181 |  |  |  |  |  |  |
| HY3 | Q2.4 | 21 | 179 | 181 |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 302 | 312 |  |  |  |  |  |  |
| HY3 | Q2.4 | 23 | 302 | 312 |  |  |  |  |  |  |
| HY3 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 |  |  | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 | Q2.4 | 8 | 200 | 208 | 216 | 226 |  |  |  |  |
| HY3 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| HY3 |  |  | 287 | 298-2 | 303 |  |  |  |  |  |
| HY3 | Q2.4 | 9 | 287 | 297 | 303 |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 286 |  |  |  |  |  |  |  |
| HY3 | Q2.4 | 15 | 286 |  |  |  |  |  |  |  |
| HY3 |  |  | 301 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 290 | 301 | 305 | 341 |  |  |  |  |
| HY3 | Q2.4 | 17 | 301 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 263 |  |  |  |  |  |  |
| HY3 | Q2.4 | 10 | 251 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 158 | 170 | 201 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HY3 | Q2.4 | 25 | 151 | 158 | 170 | 201 |  |  |  |  |
| HY3 |  |  | 261 | 283 |  |  |  |  |  |  |
| HY3 |  |  | 261 | 283 | 316 |  |  |  |  |  |
| HY3 | Q2.4 | 11 | 261 | 283 | 316 |  |  |  |  |  |
| HY3 |  |  | 276 | 290 |  |  |  |  |  |  |
| HY3 |  |  | 276 | 290 |  |  |  |  |  |  |
| HY3 | Q2.6 | 28 | 276 | 290 |  |  |  |  |  |  |
| HY3 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| HY3 |  |  | 181 | 186 | 196 |  |  |  |  |  |
| HY3 | Q2.6 | 21 | 181 | 186 | 196 |  |  |  |  |  |
| HY3 |  |  | 286 | 289 |  |  |  |  |  |  |
| HY3 |  |  | 286 | 289 |  |  |  |  |  |  |
| HY3 | Q2.6 | 23 | 286 | 289 |  |  |  |  |  |  |
| HY3 |  |  | 206 | 219 |  |  |  |  |  |  |
| HY3 |  |  | 206 | 219 |  |  |  |  |  |  |
| HY3 | Q2.6 | 8 | 206 | 219 |  |  |  |  |  |  |
| HY3 |  |  | 298-2 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 298-2 | 305 |  |  |  |  |  |  |
| HY3 | Q2.6 | 9 | 297 | 305 |  |  |  |  |  |  |
| HY3 |  |  | 326 |  |  |  |  |  |  |  |
| HY3 |  |  | 310 | 326 |  |  |  |  |  |  |
| HY3 | Q2.6 | 15 | 310 | 326 |  |  |  |  |  |  |
| HY3 |  |  | 278 | 284 | 294 | 306 |  |  |  |  |
| HY3 |  |  | 278 | 284 | 294 | 306 |  |  |  |  |
| HY3 | Q2.6 | 17 | 278 | 284 | 294 | 306 |  |  |  |  |
| HY3 |  |  | 251 | 257 |  |  |  |  |  |  |
| HY3 |  |  | 251 | 257 |  |  |  |  |  |  |
| HY3 | Q2.6 | 10 | 251 | 257 |  |  |  |  |  |  |
| HY3 |  |  | 160 | 168 | 197 |  |  |  |  |  |
| HY3 |  |  | 160 | 168 | 197 |  |  |  |  |  |
| HY3 | Q2.6 | 25 | 160 | 168 | 197 |  |  |  |  |  |
| HY3 |  |  | 263 |  |  |  |  |  |  |  |
| HY3 |  |  | 261 | 263 |  |  |  |  |  |  |
| HY3 | Q2.6 | 11 | 261 | 263 |  |  |  |  |  |  |
| HY3 |  |  | 257 | 280 |  |  |  |  |  |  |
| HY3 |  |  | 257 | 288 |  |  |  |  |  |  |
| Bewitched | R1.0 | 28 | 257 | 280 |  |  |  |  |  |  |
| Bewitched |  |  | 181 | 196 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bewitched |  |  | 181 | 196 |  |  |  |  |  |  |
| Bewitched | R1.0 | 21 | 181 | 196 |  |  |  |  |  |  |
| Bewitched |  |  | 286 | 293-2 |  |  |  |  |  |  |
| Bewitched |  |  | 286 | 289 | 296 |  |  |  |  |  |
| Bewitched | R1.0 | 23 | 286 | 294 |  |  |  |  |  |  |
| Bewitched |  |  | 210 | 226 | 252 |  |  |  |  |  |
| Bewitched |  |  | 226 |  |  |  |  |  |  |  |
| Bewitched | R1.0 | 8 | 210 | 226 | 252 |  |  |  |  |  |
| Bewitched |  |  | 299 | 311 |  |  |  |  |  |  |
| Bewitched |  |  | 293 | 305 |  |  |  |  |  |  |
| Bewitched | R1.0 | 9 | 299 | 311 |  |  |  |  |  |  |
| Bewitched |  |  | 288 | 304 |  |  |  |  |  |  |
| Bewitched |  |  | 277 | 282 | 304 |  |  |  |  |  |
| Bewitched | R1.0 | 15 | 288 | 304 |  |  |  |  |  |  |
| Bewitched |  |  | 298 | 328 |  |  |  |  |  |  |
| Bewitched |  |  | 278 | 291 | 296 | 311 |  |  |  |  |
| Bewitched | R1.0 | 17 | 298 | 326 |  |  |  |  |  |  |
| Bewitched |  |  | 255 | 268 | 311 |  |  |  |  |  |
| Bewitched |  |  | 251 | 308 |  |  |  |  |  |  |
| Bewitched | R1.0 | 10 | 255 | 268 | 311 |  |  |  |  |  |
| Bewitched |  |  | 158 | 164 | 170 | 184 | 191 | 210 |  |  |
| Bewitched |  |  | 158 | 164 | 184 | 191 | 199 |  |  |  |
| Bewitched | R1.0 | 25 | 158 | 164 | 170 | 184 | 191 | 210 |  |  |
| Bewitched |  |  | 256 | 263 |  |  |  |  |  |  |
| Bewitched |  |  | 256 | 263 | 293 |  |  |  |  |  |
| Bewitched | R1.0 | 11 | 256 | 263 |  |  |  |  |  |  |
| Bewitched | R1.2 | 28 | 257 | 288 |  |  |  |  |  |  |
| Bewitched | R1.2 | 21 | 181 | 196 |  |  |  |  |  |  |
| Bewitched | R1.2 | 23 | 286 | 289 | 296 |  |  |  |  |  |
| Bewitched | R1.2 | 8 | 226 |  |  |  |  |  |  |  |
| Bewitched | R1.2 | 9 | 293 | 305 |  |  |  |  |  |  |
| Bewitched | R1.2 | 15 | 277 | 282 | 304 |  |  |  |  |  |
| Bewitched | R1.2 | 17 | 278 | 291 | 296 | 311 |  |  |  |  |
| Bewitched | R1.2 | 10 | 251 | 308 |  |  |  |  |  |  |
| Bewitched | R1.2 | 25 | 158 | 164 | 184 | 191 | 199 |  |  |  |
| Bewitched | R1.2 | 11 | 256 | 263 | 293 |  |  |  |  |  |
| Bewitched |  |  | 254 | 284 | 288 | 315 |  |  |  |  |
| Bewitched |  |  | 288 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele $6$ | $\begin{aligned} & \text { Allele } \\ & 7 \end{aligned}$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Award | R1.4 | 28 | 254 | 284 | 288 | 315 |  |  |  |  |
| Award |  |  | 181 |  |  |  |  |  |  |  |
| Award |  |  | 181 | 196 |  |  |  |  |  |  |
| Award | R1.4 | 21 | 181 |  |  |  |  |  |  |  |
| Award |  |  | 286 | 291 |  |  |  |  |  |  |
| Award |  |  | 286 | 289 | 296 | 326 |  |  |  |  |
| Award | R1.4 | 23 | 286 | 291 |  |  |  |  |  |  |
| Award |  |  | 203 | 212 | 216 |  |  |  |  |  |
| Award |  |  | 226 |  |  |  |  |  |  |  |
| Award | R1.4 | 8 | 203 | 212 | 216 |  |  |  |  |  |
| Award |  |  | 298 | 306 |  |  |  |  |  |  |
| Award |  |  | 293 | 305 |  |  |  |  |  |  |
| Award | R1.4 | 9 | 298 | 306 |  |  |  |  |  |  |
| Award |  |  | 277 | 282 | 292 |  |  |  |  |  |
| Award |  |  | 277 | 282 | 304 |  |  |  |  |  |
| Award | R1.4 | 15 | 277 | 282 | 292 |  |  |  |  |  |
| Award |  |  | 278 | 284 | 295 | 306 |  |  |  |  |
| Award |  |  | 278 | 291 | 311 |  |  |  |  |  |
| Award | R1.4 | 17 | 278 | 284 | 295 | 306 |  |  |  |  |
| Award |  |  | 255 | 260 |  |  |  |  |  |  |
| Award |  |  | 308 |  |  |  |  |  |  |  |
| Award | R1.4 | 10 | 255 | 260 |  |  |  |  |  |  |
| Award |  |  | 149 | 160 | 164 | 177 | 191 | 199 |  |  |
| Award |  |  | 158 | 163 | 164 | 184 | 191 | 199 |  |  |
| Award | R1.4 | 25 | 149 | 160 | 164 | 177 | 191 | 199 |  |  |
| Award |  |  | 254 | 263 |  |  |  |  |  |  |
| Award |  |  | 256 | 261 | 293 |  |  |  |  |  |
| Award | R1.4 | 11 | 254 | 263 |  |  |  |  |  |  |
| Award | R1.6 | 28 | 288 |  |  |  |  |  |  |  |
| Award | R1.6 | 21 | 181 | 196 |  |  |  |  |  |  |
| Award | R1.6 | 23 | 286 | 289 | 296 | 326 |  |  |  |  |
| Award | R1.6 | 8 | 226 |  |  |  |  |  |  |  |
| Award | R1.6 | 9 | 293 | 305 |  |  |  |  |  |  |
| Award | R1.6 | 15 | 277 | 282 | 304 |  |  |  |  |  |
| Award | R1.6 | 17 | 278 | 291 | 311 |  |  |  |  |  |
| Award | R1.6 | 10 | 308 |  |  |  |  |  |  |  |
| Award | R1.6 | 25 | 158 | 163 | 165 | 184 | 191 | 199 |  |  |
| Award | R1.6 | 11 | 256 | 261 | 293 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | Allele | Allele | $\begin{aligned} & \text { Allele } \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | Allele $7$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Award |  |  | 257 | 280 |  |  |  |  |  |  |
| Award |  |  | 257 | 288 |  |  |  |  |  |  |
| Nuglade | R2.0 | 28 | 257 | 288 |  |  |  |  |  |  |
| Nuglade |  |  | 179 | 196 |  |  |  |  |  |  |
| Nuglade |  |  | 179 | 194 | 196 |  |  |  |  |  |
| Nuglade | R2.0 | 21 | 179 | 196 |  |  |  |  |  |  |
| Nuglade |  |  | 286 | 289 | 296 |  |  |  |  |  |
| Nuglade |  |  | 286 | 289 |  |  |  |  |  |  |
| Nuglade | R2.0 | 23 | 286 | 289 | 296 |  |  |  |  |  |
| Nuglade |  |  | 219 | 226 |  |  |  |  |  |  |
| Nuglade |  |  | 219 | 226 |  |  |  |  |  |  |
| Nuglade | R2.0 | 8 | 219 | 226 |  |  |  |  |  |  |
| Nuglade |  |  | 293 | 305 |  |  |  |  |  |  |
| Nuglade |  |  | 293 | 305 |  |  |  |  |  |  |
| Nuglade | R2.0 | 9 | 293 | 305 |  |  |  |  |  |  |
| Nuglade |  |  | 277 | 282 | 304 |  |  |  |  |  |
| Nuglade |  |  | 277 | 282 | 304 |  |  |  |  |  |
| Nuglade | R2.0 | 15 | 277 | 282 | 304 |  |  |  |  |  |
| Nuglade |  |  | 278 | 291 | 296 | 311 |  |  |  |  |
| Nuglade |  |  | 278 | 291 | 196 | 311 |  |  |  |  |
| Nuglade | R2.0 | 17 | 278 | 291 | 296 | 311 |  |  |  |  |
| Nuglade |  |  | 308 |  |  |  |  |  |  |  |
| Nuglade |  |  | 308 |  |  |  |  |  |  |  |
| Nuglade | R2.0 | 10 | 308 |  |  |  |  |  |  |  |
| Nuglade |  |  | 158 | 163 | 184 | 191 | 199 |  |  |  |
| Nuglade |  |  | 158 | 163 | 184 | 191 | 199 |  |  |  |
| Nuglade | R2.0 | 25 | 158 | 163 | 184 | 191 | 199 |  |  |  |
| Nuglade |  |  | 256 | 263 | 293 |  |  |  |  |  |
| Nuglade |  |  | 256 | 263 | 293 |  |  |  |  |  |
| Nuglade | R2.0 | 11 | 256 | 263 | 293 |  |  |  |  |  |
| Nuglade | S2.2 | 28 | 257 | 288 |  |  |  |  |  |  |
| Nuglade | S2.2 | 21 | 179 | 194 | 196 |  |  |  |  |  |
| Nuglade | S2.2 | 23 | 286 | 289 |  |  |  |  |  |  |
| Nuglade | S2.2 | 8 | 219 | 226 |  |  |  |  |  |  |
| Nuglade | S2.2 | 9 | 293 | 305 |  |  |  |  |  |  |
| Nuglade | S2.2 | 15 | 277 | 282 | 303 |  |  |  |  |  |
| Nuglade | S2.2 | 17 | 278 | 291 | 296 | 311 |  |  |  |  |
| Nuglade | S2.2 | 10 | 308 |  |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | Allele | Allele | Allele | Allele $4$ | Allele $5$ | Allele <br> 6 | Allele $7$ | Allele $8$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nuglade | S2.2 | 25 | 158 | 163 | 184 | 191 | 199 |  |  |  |
| Nuglade | S2.2 | 11 | 256 | 263 | 293 |  |  |  |  |  |
| Nuglade |  |  | 280 |  |  |  |  |  |  |  |
| Nuglade |  |  | 280 |  |  |  |  |  |  |  |
| Bedazzled | S3.0 | 28 | 280 |  |  |  |  |  |  |  |
| Bedazzled |  |  | 181 | 196 | 199 |  |  |  |  |  |
| Bedazzled |  |  | 181 | 196 | 199 |  |  |  |  |  |
| Bedazzled | S3.0 | 21 | 181 | 196 | 199 |  |  |  |  |  |
| Bedazzled |  |  | 286 | 291 | 293-2 |  |  |  |  |  |
| Bedazzled |  |  | 286 | 291 | 293-2 |  |  |  |  |  |
| Bedazzled | S3.0 | 23 | 286 | 291 | 293 |  |  |  |  |  |
| Bedazzled |  |  | 210 | 226 | 252 |  |  |  |  |  |
| Bedazzled |  |  | 210 | 226 | 242 | 252 |  |  |  |  |
| Bedazzled | S3.0 | 8 | 210 | 226 | 252 |  |  |  |  |  |
| Bedazzled |  |  | 299 | 311 |  |  |  |  |  |  |
| Bedazzled |  |  | 299 | 311 |  |  |  |  |  |  |
| Bedazzled | S3.0 | 9 | 299 | 311 |  |  |  |  |  |  |
| Bedazzled |  |  | 288 | 304 |  |  |  |  |  |  |
| Bedazzled |  |  | 288 | 304 |  |  |  |  |  |  |
| Bedazzled | S3.0 | 15 | 288 | 304 |  |  |  |  |  |  |
| Bedazzled |  |  | 298 | 306 | 328 |  |  |  |  |  |
| Bedazzled |  |  | 298 | 302 | 306 | 328 |  |  |  |  |
| Bedazzled | S3.0 | 17 | 298 | 306 | 328 |  |  |  |  |  |
| Bedazzled |  |  | 255 | 268 | 277 | 311 |  |  |  |  |
| Bedazzled |  |  | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled | S3.0 | 10 | 255 | 268 | 277 | 311 |  |  |  |  |
| Bedazzled |  |  | 158 | 164 | 170 | 186 | 210 |  |  |  |
| Bedazzled |  |  | 158 | 164 | 170 | 187 | 210 |  |  |  |
| Bedazzled | S3.0 | 25 | 158 | 164 | 170 | 186 | 210 |  |  |  |
| Bedazzled |  |  | 261 | 263 |  |  |  |  |  |  |
| Bedazzled |  |  | 261 | 263 |  |  |  |  |  |  |
| Bedazzled | S3.0 | 11 | 261 | 263 |  |  |  |  |  |  |
| Bedazzled | S3.2 | 28 | 280 |  |  |  |  |  |  |  |
| Bedazzled | S3.2 | 21 | 181 | 196 | 199 |  |  |  |  |  |
| Bedazzled | S3.2 | 23 | 286 | 291 | 293 |  |  |  |  |  |
| Bedazzled | S3.2 | 8 | 210 | 226 | 242 | 252 |  |  |  |  |
| Bedazzled | S3.2 | 9 | 299 | 311 |  |  |  |  |  |  |
| Bedazzled | S3.2 | 15 | 288 | 304 |  |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample <br> Name | Marker | Allele 1 | $\begin{aligned} & \text { Allele } \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | Allele <br> 4 | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | Allele <br> 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bedazzled | S3.2 | 17 | 298 | 302 | 306 | 328 |  |  |  |  |
| Bedazzled | S3.2 | 10 | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled | S3.2 | 25 | 158 | 164 | 170 | 187 | 210 |  |  |  |
| Bedazzled | S3.2 | 11 | 261 | 263 |  |  |  |  |  |  |
| Bedazzled |  |  | 257 | 280 |  |  |  |  |  |  |
| Bedazzled |  |  | 280 |  |  |  |  |  |  |  |
| Bedazzled |  |  | 280 |  |  |  |  |  |  |  |
| Bedazzled | S3.4 | 28 | 280 |  |  |  |  |  |  |  |
| Bedazzled |  |  | 179 | 199 |  |  |  |  |  |  |
| Bedazzled |  |  | 181 | 199 |  |  |  |  |  |  |
| Bedazzled |  |  | 181 | 199 |  |  |  |  |  |  |
| Bedazzled | S3.4 | 21 | 181 | 199 |  |  |  |  |  |  |
| Bedazzled |  |  | 286 | 291 |  |  |  |  |  |  |
| Bedazzled |  |  | 286 | 289 | 291 |  |  |  |  |  |
| Bedazzled |  |  | 286 | 289 | 291 |  |  |  |  |  |
| Bedazzled | S3.4 | 23 | 286 | 289 | 291 |  |  |  |  |  |
| Bedazzled |  |  | 226 | 252 |  |  |  |  |  |  |
| Bedazzled |  |  | 226 | 252 |  |  |  |  |  |  |
| Bedazzled |  |  | 226 | 252 |  |  |  |  |  |  |
| Bedazzled | S3.4 | 8 | 226 | 252 |  |  |  |  |  |  |
| Bedazzled |  |  | 299 | 311 |  |  |  |  |  |  |
| Bedazzled |  |  | 299 | 311 |  |  |  |  |  |  |
| Bedazzled |  |  | 299 | 311 |  |  |  |  |  |  |
| Bedazzled | S3.4 | 9 | 299 | 311 |  |  |  |  |  |  |
| Bedazzled |  |  | 288 | 304 |  |  |  |  |  |  |
| Bedazzled |  |  | 288 | 304 |  |  |  |  |  |  |
| Bedazzled |  |  | 288 | 304 |  |  |  |  |  |  |
| Bedazzled | S3.4 | 15 | 288 | 304 |  |  |  |  |  |  |
| Bedazzled |  |  | 302 | 306 |  |  |  |  |  |  |
| Bedazzled |  |  | 302 | 306 |  |  |  |  |  |  |
| Bedazzled |  |  | 302 | 306 |  |  |  |  |  |  |
| Bedazzled | S3.4 | 17 | 302 | 306 |  |  |  |  |  |  |
| Bedazzled |  |  | 255 | 268 |  |  |  |  |  |  |
| Bedazzled |  |  | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled |  |  | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled | S3.4 | 10 | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled |  |  | 162 | 164 | 184 | 191 | 210 |  |  |  |
| Bedazzled |  |  | 164 | 187 | 210 |  |  |  |  |  |

Table B.3. Allele lengths for each locus for each sample (continued).

| Site Code | Sample Name | Marker | $\begin{array}{r} \hline \text { Allele } \\ 1 \\ \hline \end{array}$ | $\begin{aligned} & \text { Allele } \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 5 \\ & \hline \end{aligned}$ | Allele <br> 6 | $\begin{aligned} & \text { Allele } \\ & 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Allele } \\ & 8 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bedazzled |  |  | 164 | 187 | 210 |  |  |  |  |  |
| Bedazzled | S3.4 | 25 | 164 | 187 | 210 |  |  |  |  |  |
| Bedazzled |  |  | 261 |  |  |  |  |  |  |  |
| Bedazzled |  |  | 263 |  |  |  |  |  |  |  |
| Bedazzled |  |  | 263 |  |  |  |  |  |  |  |
| Bedazzled | S3.4 | 11 | 263 |  |  |  |  |  |  |  |
| Bedazzled | S3.6 | 28 | 280 |  |  |  |  |  |  |  |
| Bedazzled | S3.6 | 21 | 181 | 199 |  |  |  |  |  |  |
| Bedazzled | S3.6 | 23 | 286 | 289 | 291 |  |  |  |  |  |
| Bedazzled | S3.6 | 8 | 226 | 252 |  |  |  |  |  |  |
| Bedazzled | S3.6 | 9 | 299 | 311 |  |  |  |  |  |  |
| Bedazzled | S3.6 | 15 | 288 | 304 |  |  |  |  |  |  |
| Bedazzled | S3.6 | 17 | 302 | 306 |  |  |  |  |  |  |
| Bedazzled | S3.6 | 10 | 255 | 268 | 276 | 311 |  |  |  |  |
| Bedazzled | S3.6 | 25 | 164 | 187 | 210 |  |  |  |  |  |
| Bedazzled | S3.6 | 11 | 263 |  |  |  |  |  |  |  |

# APPENDIX C. PERMIT FOR COLLECTING PLANT SAMPLES FOR THE GENETIC DIVERSITY AND FLOW CYTOMETRY STUDY IN 2012 AND 2013 

United States Department of the Interior<br>FISH AND WiLDLIFE SERVICE<br>Audubon National Wildlife Refuge<br>3275 11 $^{\text {th }}$ St. NW<br>Coleharbor, ND 58531-9419



May 7, 2012

Dr. Shawn Dekeyser
North Dakota State University
131 Walster Hall, PO Box 6050
Fargo, ND 58108
Dear Dr. Dekeyser,
This letter will serve as your authorization to conduct survey and research activities on Waterfowl Production Areas and National Wildlife Refuges in North Dakota and South Dakota in coordination with the Native Prairie Adaptive Management Project. The planned studies include: 1) Kentucky bluegrass response to management techniques; 2) Abiotic factors associated with Kentucky bluegrass invasion; 3) Kentucky bluegrass genetics analysis.

This authorization will be for 2012-2013. Conditions of this authorization include:
*contacting the appropriate management office prior to any field activities to receive final approval and any special conditions.
*no vehicle travel off of established trails will be allowed.
*all information, data, studies or project reports must be provided to the Service.
If we can be of any further assistance, please let me know.
Sincerely,

cc: ND \& SD WMD's \& NWR's

## APPENDIX D. PERMIT FOR COLLECTING PLANT SAMPLES FROM BLUESTEM

## PRAIRIE IN 2013. SAMPLES WERE USED FOR FLOW CYTOMETERY PROJECT



May 21. 2013
Lauren Dennhardt
North Dakota State University:
Department of Biological Sciences 651-503-6979 lauren.dennhardt/andsu.edu
1340 Bolley Drive.
Stevens 218.
Fargo. ND 58102
RE: The competitive behavior. population genetics. and ploidy of an important invasive species in native prairies of the prairie pothole region. Kentucky bluegrass (Poa pratensis L.)

This Research Permit ("Permit") serves as permission for you to conduct research on The competitive behavior. population genetics. and ploidy of an important invasive species in native prairies of the prairie pothole region. Kentucky bluegrass (Por pratensis L.) as described in the attached Permit Application (the "Research") at the following TNC Preserve(s)(s): Bluestem Prairie SNA (the "Preserve(s)"). Since Bluestem Prairie SNA is also a Scientific and Natural Area(s). you will need a separate permit from the Minnesota Department ol'Natural Resources. Please call or e-mail Mark Cleveland. DNR Scientific and Natural Areas Management Coordinator, at 651-259-5094 or mark.clevelamates sate,nm. Ins regarding this separate permit. The Rescarch is subject to the following requirements:

1. Contact stewardship staff (listed below) before entering the Preserve(s) to avoid conflicts with stewardship management activities such as prescribed burning.
2. The Research must be completed by June 20. 2013. Researeh activities and sampling methods will be carried out as outlined in the attached Permit Application. All field markers, equipment. and other materials must be removed from the Preserve(s) by this date.
3. Minimize the spread of invasive species while conducting the Research (Please refer to http:/imipnore pretention,himl for helpful tips and information from the Midwest Invasive Plant Network).
. No vehicles may be driven on the Preserve(s).
4. Carry this letter while on the Preserve(s) - with an attached copy of your Permit Application- and extend courtesy to other site visitors. explaining the Research when necessary,
5. You and/or your assistants are using the Preserve(s) at your own risk. You agree to take all necessary safety precautions to protect yourself. your assistants, and other Preserve(s) visitors. The Conservancy makes no warranties or representations concerning the suitability of the Preserve(s) for any purpose. You hereby indemnify the Conservancy against any loss or damage arising from your presence on the Preserve(s).
6. Acknowledge The Nature Conservancy in any presentations or publications generated by this work
7. Submit electronic copies of: a preliminary research summary by December 31. 2013. and a final report upon completion of your work. to ipastikare the, ong and meornctle incars. Include maps and spatial data with your report. We would also appreciate receiving a copy of any future peer-reviewed publications that summarize work conducted on our lands - in pdf format if possible.
8. If you have questions about the Preserve(s) management history or planned management activities (e.g. prescribed fire. weed control. mowing). please feel free to contact Matt Mecklenburg, Land Steward at 218-498-2679.
9. The Conservancy may lerminate this Permit at any time upon two weeks written notice. In addition. if you default in performance of this Permit. whether for circumstances within or beyond your control. the Conservancy may immediately terminate this Permit by written notice to you.
10. This Permit is not effective until you sign and date below to acknowledge your agreement with the terms and conditions set forth in this Permit.

## f you have any questions or comments about this permit. please feel free to call me at 219-727-6119.

Sincercly:


## Meredith Cornett

Director of Conservation Science. TNC
ee/ce: Brian Winter. Matt Meeklenburg. Marissa Ahlering. Phil Gerla. Mark Cleveland
I agree to abide by the terms and conditions set forth in this Research Permit
Signature Date
hauren Denaha/dF
Print Name


## STATE OF MINNESOTA DEPARTMENT OF NATURAL RESOURCES DIVISION OF ECOLOGICAL \& WATER RESOURCES SCIENTIFIC AND NATURAL AREAS PROGRAM

SPECIAL PERMIT NUMBER: 2013-23R
SCIENTIFIC AND NATURAL AREAS: Bluestem Prairie Sclentinc and Natural Areas
DATE: May 23, 2013
By virtue of the authority conferred on me by the Commissioner of Natural Resources relative to Sclentifc and Natural Areas, I grant permission to:
Lauren Dennhardt
Lauren Dennharot North Dakota State University, Department of Blological Sclences
1340 Bolley Drive, Stevens 218, Fargo, ND 58102
Work Teleghone: 651-503-6979
E-mall: lauren.dennharotondsuedu
With fild crew members: TBA
to enter upon the above Sclentific and Natural Area (SNA) to conduct a study of The compettive behavior, population genetics, and ploidy of an Important invasive species
In native prairies of the prairie pothole region, Kentucky bluegrass as descrbed in the 2013 application (dated $5 / 17 / 13$ ), and under the condilions listed below:

It is understood that the above named persons have a clear understanding of the purpose and long-term goal of state Sclentific and Natural Areas. In keeping with this purpose, they shall always conduct their activites in a manner that is least disruptive to the on-going natural processes of these areas. All activites carried out must be in accordance with the proposal submitted. Permission must be recelved from the SNA Program if the permitee desires or antcipates devlating tom this permit. In addition, the following conditions are placed on the proposal submitted:

1. All work shall be done to prevent the inadvertent transport of Invasive apecles. Order 113
is incorporated into this permit by reference and may be found at
ntip :/ifles.dnr.state mn. us/assistancelorants/habitatheritageloporder 113.pdr. Please note:
There are pockets of exotic invasive plants on all of these sites. The permitee shail prevent Invasive specles from entering into or spreading within a project site by cleaning equipment. foot gear, and clothing prior to arriving at the prolect site and before moving from area to area in the prolect site
2. No motorized vehicle may be used within the SNA boundary.
3. Soll samples will be taken as described in the permit application at Bluestem. Prairio sclentinc and Natural Areas.
4. Contact slie manager to coordinate placement of these instruments: Bluestem Prairie SNA Shelley Hedtike, SNA Speciallist, shelley.hedtke ©state.mn.us, 218-7397576 ex. 262 (0)
5. All markers, equipment, and other items used during the research shall be removed at the end of the study and disturbed soll replaced in a manner as close to its original arrangement as possible
6. Equipment and procedures used to collect soll samples or mark plots or other features should be placed or used so as not to cause damage to the resources
7. Any soll boring holes, soll sample spots, or sensor soll silts must be back filled, or closed (e.g. with a boot heel)
. Please carry thls permit whlle on the SNA and extend courtesy to any other site visitors, explaining thls research work when necessary.
8. You are using the SNA at your own risk. You agree to take all necessary satety precautions to protect yourself, your assistants, and any other SNA visitors.
9. Please acknowledge the Minnesota DNR, Sclentific and Natural Areas Program in any articles and presentations concerning this research.
10. Please submit electronic copies of: a preliminary research summary December 31, 2013; and a final report upon completion of your work, to mark.cleveland@state.mn.us. We would also appreciate receiving a copy of any future peer-reviewed publications that summarize work conducted on our lands - in pdf format if possible.

As with all SNAs, the site you have selected may be subject to planned management activities (e.g. brush and tree removal, prescribed burns, seed harvest, etc) during the duration of your permitted activities.

This permit is valid through December 31, 2013 and may be revoked at any time to protect the resources of the SNA upon verbal or written communication. This permit may be renewed for fieldwork in 2013.

By


James Japs
Division of Ecological \& Water Resources
500 Lafayette Rd., Box 25
St. Paul, MN 55155-4025

This SCIENTIFIC AND NATURAL AREA was established to protect and perpetuate Minnesota's rare and unique natural resources for nature observation, education and research purposes.

Principal activities which are UNLAWFUL in the use of this area are listed below:

* Collecting plants, animals, rocks or fossils
* Camping. picnicking, and swimming
* Horses, dogs, and other pets
* Snowmobiles and other motorized vehicles
* Hunting, trapping, fishing and boating
* Entry into restricted areas and sanctuaries


# APPENDIX F. COPYRIGHT FORM TO USE CHAPTER THREE IN THE 

## DISSERTATION

## allen press <br> PUBLISHING SERVICES

Date: January 13, 2016

Dear Lauren Dennhardt,
On behalf of Allen Press Publishing Services, I am pleased to grant permission to you for the reprinting of the following:
"There is no evidence of geographical patterning among invasive Poa pratensis L. populations in the northern Great Plains." by Lauren Dennhardt, Edward DeKeyser, Sarah Tennefos, and Steven Travers appearing in Weed Science (in-press) (2016).

For use in PhD dissertation
This permission is a one-time, non-exclusive, electronic worldwide grant for English language use as described in this letter, and is subject to the following conditions:
I. No payment required.
2. Each copy containing our material that you reproduce or distribute must bear the appropriate copyright information, crediting the author, journal, and publisher (Weed Science, Allen Press Publishing Services)

If these terms are acceptable, please sign and date, and fax back to my attention at 785-843-1853. This permission will be effective upon our receipt of the signed contract. If applicable, when sending payment, please make clear reference to our title and author. Materials should be addressed to Weed Science, clo Marilyn Kearney, P.O. Box 1897, Lawrence, KS 66044.

Sincerely,

Marilyn Kearney
Publishing Specialist
Allen Press Publishing Services $1 / 20 / 16$
We have elected not to use this material

## APPENDIX G. SUPPLEMENTARY MATERIAL FOR CHAPTER 4



Figure G.1. Histograms of the raw (top) and transformed (bottom) biomass data for the data which did not included undetectable biomass (less than 0.00).

Table G.1. Two-way ANOVA on the log transformed data without the dead plants for both the measured and competitor plants. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F -value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Measured | 3 | 1.87 | 17.50 | $<0.001^{* * *}$ |
| Competitor | 3 | 0.69 | 6.42 | $<0.001^{* * *}$ |
| Measured X Competitor | 9 | 0.14 | 1.28 | $0.252^{\mathrm{NS}}$ |
| Residuals | 192 | 0.11 |  |  |

Table G.2. Tukey's HSD on all measured plants without the dead plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

| $\log$ |  | SD |  |  |  | Sample <br> size |  | Min | Max | Tukey's <br> Assignment |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.85 | 0.38 | 52 | -1.95 | -0.04 | b |  |  |  |  |
| NAVI | -0.94 | 0.32 | 55 | -1.85 | -0.36 | b |  |  |  |  |
| PASM | -0.54 | 0.34 | 51 | -1.73 | 0.01 | a |  |  |  |  |
| POPR | -0.62 | 0.33 | 50 | -1.32 | -0.03 | a |  |  |  |  |

Table G.3. Tukey's HSD on all competitor plants without the dead plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | $\log$ of biomass | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.64 | 0.31 | 52 | -1.59 | -0.12 | a |
| NAVI | -0.71 | 0.35 | 56 | -1.95 | -0.04 | ab |
| PASM | -0.79 | 0.48 | 49 | -1.85 | 0.01 | ab |
| POPR | -0.83 | 0.34 | 51 | -1.83 | -0.24 | a |

Table G.4. Overall one-way ANOVA on Poa pratensis competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P -value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.242 | 2.475 | 0.0733 |
| Residuals | 46 | 0.098 |  |  |

Table G.5. Tukey's HSD on all competitors without the dead plants against Poa pratensis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

| $\log$ of biomass |  | SD | Sample size | Min | Max | Tukey's assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.48 | 0.09 | 12 | -1.00 | -0.21 | a |
| NAVI | -0.63 | 0.38 | 11 | -1.28 | -0.16 | a |
| PASM | -0.47 | 0.33 | 8 | -0.90 | -0.03 | a |
| POPR | -0.75 | 0.29 | 19 | -1.32 | -0.24 | a |

Table G.6. Overall one-way ANOVA on Bouteloua gracilis competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.334 | 2.600 | 0.063 |
| Residuals | 48 | 0.128 |  |  |

Table G.7. Tukey's HSD on all competitors without the dead plants against Bouteloua gracilis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | log of <br> biomass |  | SD |  | Sample <br> size |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Min | Max | Tukey's <br> Assignment |  |  |  |  |
| BOGR | -0.72 | 0.23 | 19 | -1.11 | -0.23 | a |
| NAVI | -0.79 | 0.46 | 12 | -1.95 | -0.04 | a |
| PASM | -1.10 | 0.36 | 9 | -1.63 | -0.53 | a |
| POPR | -0.92 | 0.41 | 12 | -1.83 | -0.42 | a |

Table G.8. Overall one-way ANOVA on Pascopyrum smithii competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012).

| df |  | MS | F-value | P-value |
| :--- | :---: | :---: | ---: | :---: |
| Competitor | 3 | 0.055 | 0.463 | 0.710 |
| Residuals | 47 | 0.119 |  |  |

Table G.9. Tukey's HSD on all competitors without the dead plants against Pascopyrum smithii after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | $\log$ of <br> biomass |  |  |  |  |  |  | SD |  |  | Sample <br> size |  | Min | Max | Tukey's assignment |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.44 | 0.24 | 10 | -0.98 | -0.12 | a |  |  |  |  |  |  |  |  |  |
| NAVI | -0.51 | 0.36 | 11 | -1.17 | -0.15 | a |  |  |  |  |  |  |  |  |  |
| PASM | -0.57 | 0.42 | 21 | -1.73 | 0.01 | a |  |  |  |  |  |  |  |  |  |
| POPR | -0.61 | 0.20 | 9 | -0.86 | -0.31 | a |  |  |  |  |  |  |  |  |  |

Tale G.10. Overall one-way ANOVA on Nassella viridula competitors without the dead plants using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.423 | 5.564 | 0.002 |
| Residuals | 51 | 0.083 |  |  |

Table G.11. Tukey's HSD on all competitors without the dead plants against Nassella viridula after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | log of <br> biomass |  |  |  |  |  |  | SD |  |  |  |  |  | Sample <br> size | Min | Max | Tukey's assignment |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.83 | 0.38 | 11 | -1.59 | -0.36 | a |  |  |  |  |  |  |  |  |  |  |  |
| NAVI | -0.80 | 0.20 | 22 | -1.36 | -0.50 | a |  |  |  |  |  |  |  |  |  |  |  |
| PASM | -1.19 | 0.34 | 11 | -1.85 | -0.79 | b |  |  |  |  |  |  |  |  |  |  |  |
| POPR | -1.07 | 0.29 | 11 | -1.74 | -0.76 | ab |  |  |  |  |  |  |  |  |  |  |  |

Table G.12. Two-way ANOVA on the log transformed data for both the measured and competitor plants. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | ---: | ---: | ---: | ---: |
| Measured | 3 | 0.437 | 3.174 | $0.0248^{*}$ |
| Competitor | 3 | 0.504 | 3.661 | $0.013^{*}$ |
| Measured X Competitor | 9 | 0.128 | 0.930 | $0.4994^{\text {NS }}$ |
| Residuals | 259 | 0.138 |  |  |

Table G.13. Tukey's HSD on all measured plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | Log of <br> biomass | SD | Sample <br> size | Min | Max | Tukey's <br> Assignment |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.84 | 0.34 | 70 | -1.30 | -0.02 | b |
| NAVI | -0.84 | 0.27 | 65 | -1.30 | -0.31 | ab |
| PASM | -0.68 | 0.44 | 70 | -1.30 | 0.03 | a |
| POPR | -0.74 | 0.42 | 70 | -1.30 | -0.00 | ab |

Table G.14. Tukey's HSD on all competitor plants after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

| log of <br> biomass |  |  | SD | Sample <br> size | Min | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Tukey's assignment

Table G.15. Overall one-way ANOVA on Poa pratensis competitors using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.31 | 1.83 | 0.1506 |
| Residuals | 66 | 0.17 |  |  |

Table G.16. Tukey's HSD on all competitors against Poa pratensis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | $\log$ of biomass | SD | Sample size | Min | Max | Tukey's assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.54 | 0.38 | 14 | -1.30 | -0.17 | a |
| NAVI | -0.69 | 0.42 | 14 | -1.30 | -0.13 | a |
| PASM | 0.79 | 0.51 | 14 | -1.30 | -0.00 | a |
| POPR | -0.84 | 0.37 | 28 | -1.30 | -0.21 | a |

Table G.17. Overall one-way ANOVA on Bouteloua gracilis competitors using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.209 | 1.826 | 0.151 |
| Residuals | 66 | 0.114 |  |  |

Table G.18. Tukey's HSD on all competitors against Bouteloua gracilis after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | $\log$ | std | r | Min | Max | Tukey's HSD |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.54 | 0.38 | 14 | -1.30 | -0.17 | a |
| NAVI | -0.69 | 0.42 | 14 | -1.30 | -0.13 | a |
| PASM | -0.79 | 0.51 | 14 | -1.30 | -0.00 | a |
| POPR | -0.84 | 0.37 | 28 | -1.30 | -0.21 | a |

Table G.19. Overall one-way ANOVA on Pascopyrum smithii competitors using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | ---: | ---: | :---: |
| Competitor | 3 | 0.086 | 0.432 | 0.731 |
| Residuals | 66 | 0.199 |  |  |

Table G.20. Tukey's HSD on all competitors against Pascopyrum smithii after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | $\log$ of <br> biomass |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| SD | Sample <br> size | Min | Max | Tukey's assignment |  |  |
| BOGR | -0.64 | 0.46 | 14 | -1.30 | -0.09 | a |
| NAVI | -0.66 | 0.47 | 15 | -1.30 | -0.12 | a |
| PASM | -0.65 | 0.44 | 27 | -1.30 | 0.03 | a |
| POPR | -0.80 | 0.41 | 14 | -1.30 | -0.27 | a |

Table G.21. Overall one-way ANOVA on Nassella viridula competitors using log transformed data. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | :---: | :---: | :---: | :---: |
| Competitor | 3 | 0.285 | 4.501 | 0.006 |
| Residuals | 61 | 0.063 |  |  |

Table G.22. Tukey's HSD on all competitors against Nassella viridula after log transformation. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

|  | log of <br> biomass |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| SD |  | Sample <br> size | Min | Max | Tukey's assignment |  |
| BOGR | -0.77 | 0.33 | 13 | -1.30 | -0.31 | ab |
| NAVI | -0.73 | 0.23 | 24 | -1.30 | -0.44 | a |
| PASM | -0.99 | 0.22 | 14 | -1.30 | -0.67 | b |
| POPR | -0.95 | 0.24 | 14 | -1.30 | -0.65 | ab |

Table G.23. ANOVA on linear regression for percent survival against average biomass without dead plants.

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | ---: | :---: |
| Average biomass | 1 | 0.113 | 0.001 | 0.980 |
| Residuals | 14 | 170.712 |  |  |

Table G.24. Two way ANOVA on the median RII values between the measured plants and competitors. Analysis was conducted in R (R Core Team 2012).

|  | df | MS | F-value | P-value |
| :--- | ---: | :---: | :---: | :---: |
| Measured | 3 | 0.138 | 8.677 | $0.012^{*}$ |
| Competitor | 3 | 0.041 | 2.575 | $0.167^{\mathrm{NS}}$ |
| Residuals | 5 | 0.016 |  |  |

Table G.25. Tukey's HSD on all measured plants using the median RII values. Tukey's HSD was conducted using the Agricolae package in R (R Core Team 2012; Felip de Mendiburu 2015).

| Measured plant | Median | SD | Sample <br> size | Min | Max | Tukey's assignment |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | -0.12 | 0.21 | 3 | -0.34 | 0.08 | ab |
| NAVI | -0.22 | 0.2 | 3 | -0.38 | 0.01 | b |
| PASM | -0.04 | 0.11 | 3 | -0.17 | 0.03 | ab |
| POPR | 0.28 | 0.06 | 3 | 0.22 | 0.33 | a |

Table G.26. The biomass data for the end of the competition experiment after the plants were washed then dried for 48 hours.

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVI | 1 | 0.8394 | 0.1108 | 0.9502 | 27.1 | Alive |
| BOGR | 1 | 0.0497 | 0.909 | 0.9587 | 27 | Alive |
| BOGR | 2 | 0.07379 | 0.13348 | 0.20727 | 36 | Dead |
| BOGR | 2 | 0.05083 | 0.07976 | 0.13059 | 30 | Dead |
| PASM | 3 | 0.09665 | 0.22917 | 0.32582 | 32 | Alive |
| BOGR | 3 | 0.02051 | 0.05331 | 0.07382 | 0 | Dead |
| NAVI | 4 | 0.0231 | 0.01802 | 0.04112 | 0 | Dead |
| POPR | 4 | 0.01803 | 0.0524 | 0.07043 | 0 | Dead |
| NAVI | 5 | 0.04235 | 0.09273 | 0.13508 | 23 | Alive |
| PASM | 5 | 0.38638 | 0.65278 | 1.03916 | 39.1 | Alive |
| PASM | 6 | 0.15961 | 0.46519 | 0.6248 | 30.2 | Alive |
| PASM | 6 | 0.3082 | 0.60381 | 0.91201 | 37.2 | Alive |
| BOGR | 7 | 0.09481 | 0.17083 | 0.26564 | 31.2 | Alive |
| POPR | 7 | 0.13492 | 0.44224 | 0.57716 | 29 | Alive |
| NAVI | 8 | 0.09346 | 0.1643 | 0.25776 | 27.6 | Alive |
| NAVI | 8 | 0.08679 | 0.11931 | 0.2061 | 23.6 | Alive |
| POPR | 9 | 0.05868 | 0.15341 | 0.21209 | 26 | Dead |
| PASM | 9 | 0.22794 | 0.47372 | 0.70166 | 47.5 | Alive |
| POPR | 10 | 0.06646 | 0.29477 | 0.36123 | 26.5 | Alive |
| POPR | 10 | 0.108 | 0.33549 | 0.44349 | 25.7 | Alive |
| POPR | 11 | 0.25487 | 0.62564 | 0.88051 | 35 | Alive |
| NAVI | 11 | 0.03788 | 0.11792 | 0.1558 | 29.5 | Alive |
| PASM | 12 | 0.07708 | 0.16804 | 0.24512 | 27.5 | Alive |
| NAVI | 12 | 0.04301 | 0.16187 | 0.20488 | 28 | Alive |
| POPR | 12 | 0.05085 | 0.10709 | 0.15794 |  | ? |
| PASM | 13 | 0.18822 | 0.32651 | 0.51473 | 35 | Alive |
| BOGR | 13 | 0.10679 | 0.26145 | 0.36824 | 39.5 | Alive |
| POPR | 14 | 0.16545 | 0.70206 | 0.86751 | 30.5 | Alive |
| PASM | 14 | 0.05533 | 0.19743 | 0.25276 | 31 | Alive |
| PASM | 15 | 0.12141 | 0.46508 | 0.58649 | 36.5 | Alive |
| PASM | 15 | 0.12478 | 0.44323 | 0.56801 | 33.5 | Alive |
| POPR | 16 | 0.20542 | 0.38436 | 0.58978 | 24.5 | Alive |
| POPR | 16 | 0.02214 | 0.04797 | 0.07011 | 17.5 | Dead |
| POPR | 17 | 0.07693 | 0.21235 | 0.28928 | 20.5 | Alive |
| BOGR | 17 | 0.05727 | 0.1958 | 0.25307 | 25.2 | Alive |
| NAVI | 18 | 0.06897 | 0.1571 | 0.22607 | 23.8 | Alive |
| NAVI | 18 | 0.01189 | 0.25933 | 0.27122 | 28.5 | Alive |
| NAVI | 19 | 0.12129 | 0.27828 | 0.39957 | 28.1 | Alive |
| 207 |  |  |  |  |  |  |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | 19 | 0.04929 | 0.13791 | 0.1872 | 29.4 | Alive |
| BOGR | 20 | 0.06359 | 0.17904 | 0.24263 | 30.5 | Alive |
| BOGR | 20 | 0.07184 | 0.14782 | 0.21966 | 33.5 | Alive |
| BOGR | 21 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 21 | 0 | 0 | 0 | 0 | Dead |
| POPR | 22 | 0.05134 | 0.11448 | 0.16582 | 0 | Dead |
| POPR | 22 | 0.02489 | 0.06109 | 0.08598 | 0 | Dead |
| NAVI | 23 | 0 | 0 | 0 | 0 | Dead |
| PASM | 23 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 24 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 24 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 25 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 25 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 26 | 0 | 0 | 0 | 0 | Dead |
| POPR | 26 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 27 | 0 | 0 | 0 | 0 | Dead |
| PASM | 27 | 0 | 0 | 0 | 0 | Dead |
| POPR | 28 | 0 | 0 | 0 | 0 | Dead |
| PASM | 28 | 0 | 0 | 0 | 0 | Dead |
| PASM | 29 | 0 | 0 | 0 | 0 | Dead |
| PASM | 29 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 30 | 0.04854 | 0.16643 | 0.21497 | 34.5 | Alive |
| POPR | 30 | 0.1426 | 0.47487 | 0.61747 | 29.5 | Alive |
| NAVI | 31 | 0.03921 | 0.11655 | 0.15576 | 19.5 | Alive |
| PASM | 31 | 0.12278 | 0.33871 | 0.46149 | 30.2 | Alive |
| POPR | 32 | 0 | 0 | 0 | 0 | Dead |
| POPR | 32 | 0.06036 | 0.15457 | 0.21493 | 22.1 | Dead |
| POPR | 33 | 0.1478 | 0.41903 | 0.56683 | 27.2 | Dead |
| PASM | 33 | 0.06286 | 0.30148 | 0.36434 | 33.3 | Dead |
| NAVI | 34 | 0.0215 | 0.09047 | 0.11197 | 20 | Dead |
| POPR | 34 | 0.2316 | 0.69746 | 0.92906 | 32.2 | Dead |
| NAVI | 35 | 0.09544 | 0.29221 | 0.38765 | 37.5 | Alive |
| NAVI | 35 | 0.10403 | 0.1954 | 0.29943 | 35.5 | Alive |
| NAVI | 36 | 0.08285 | 0.18419 | 0.26704 | 31.7 | Alive |
| BOGR | 36 | 0.0945 | 0.14747 | 0.24197 | 32.2 | Alive |
| POPR | 37 | 0.23433 | 0.57299 | 0.80732 | 33 | Alive |
| BOGR | 37 | 0.01058 | 0.03258 | 0.04316 | 22.1 | Dead |
| PASM | 38 | 0.21304 | 0.43034 | 0.64338 | 33.8 | Alive |
| BOGR | 38 | 0.11759 | 0.29792 | 0.41551 | 36 | Dead |
| 208 |  |  |  |  |  |  |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOGR | 39 | 0.11654 | 0.28595 | 0.40249 | 55 | Alive |
| BOGR | 39 | 0.08408 | 0.18701 | 0.27109 | 36.5 | Alive |
| PASM | 40 | 0.0872 | 0.37462 | 0.46182 | 31 | Alive |
| PASM | 40 | 0.19469 | 0.51031 | 0.705 | 55 | Alive |
| NAVI | 41 | 0.16793 | 0.33391 | 0.50184 | 30.5 | Alive |
| BOGR | 41 | 0.13731 | 0.38549 | 0.5228 | 35.5 | Alive |
| BOGR | 42 | 0.21305 | 0.5928 | 0.80585 | 43.4 | Alive |
| BOGR | 42 | 0.15937 | 0.28741 | 0.44678 | 31.5 | Alive |
| PASM | 43 | 0.08986 | 0.28183 | 0.37169 | 30.1 | Alive |
| POPR | 43 | 0.22495 | 0.94074 | 1.16569 | 32.5 | Alive |
| PASM | 44 | 0.05537 | 0.29832 | 0.35369 | 43.5 | Alive |
| PASM | 44 | 0.21143 | 0.51542 | 0.72685 | 43.2 | Alive |
| PASM | 45 | 0.20817 | 0.48413 | 0.6923 | 34 | Alive |
| BOGR | 45 | 0 | 0 | 0 | 0 | Dead |
| POPR | 46 | 0.14191 | 0.62404 | 0.76595 | 31 | Alive |
| BOGR | 46 | 0.06197 | 0.19434 | 0.25631 | 29 | Alive |
| POPR | 47 | 0.08319 | 0.28021 | 0.3634 | 25 | Alive |
| NAVI | 47 | 0.0481 | 0.13151 | 0.17961 | 18 | Alive |
| NAVI | 48 | 0.1224 | 0.20927 | 0.33167 | 31 | Alive |
| NAVI | 48 | 0.17962 | 0.15951 | 0.33913 | 30.1 | Alive |
| NAVI | 49 | 0.02171 | 0.04754 | 0.06925 | 9.5 | Alive |
| PASM | 49 | 0 | 0 | 0 | 0 | Dead |
| POPR | 50 | 0 | 0 | 0 | 0 | Dead |
| POPR | 50 | 0 | 0 | 0 | 0 | Dead |
| PASM | 51 | 0.0428 | 0.05442 | 0.09722 | 24.5 | Alive |
| PASM | 51 | 0.09638 | 0.15193 | 0.24831 | 29.5 | Alive |
| PASM | 52 | 0.19349 | 0.34394 | 0.53743 | 43.1 | Alive |
| BOGR | 52 | 0.01316 | 0.03441 | 0.04757 | 17 | Alive |
| BOGR | 53 | 0.00841 | 0.01127 | 0.01968 | 0 | Dead |
| NAVI | 53 | 0.01424 | 0.02555 | 0.03979 | 9.5 | Alive |
| PASM | 54 | 0.03533 | 0.06701 | 0.10234 | 19.2 | Dead |
| NAVI | 54 | 0.035 | 0.05288 | 0.08788 | 11.5 | Dead |
| BOGR | 55 | 0.04517 | 0.07753 | 0.1227 | 0 | Dead |
| BOGR | 55 | 0 | 0 | 0 | 0 | Dead |
| PASM | 56 | 0 | 0 | 0 | 0 | Dead |
| POPR | 56 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 57 | 0 | 0 | 0 | 0 | Dead |
| POPR | 57 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 58 | 0.08014 | 0.17314 | 0.25328 | 19.2 | Alive |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVI | 58 | 0.1104 | 0.15299 | 0.26339 | 21 | Alive |
| NAVI | 59 | 0.08429 | 0.09274 | 0.17703 | 23 | Alive |
| POPR | 59 | 0.03154 | 0.0832 | 0.11474 | 22.1 | Alive |
| POPR | 60 | 0 | 0 | 0 | 0 | Dead |
| POPR | 60 | 0.04284 | 0.05962 | 0.10246 | 17.2 | Alive |
| POPR | 61 | 0.16054 | 0.41212 | 0.57266 | 21.5 | Alive |
| BOGR | 61 | 0.14331 | 0.22991 | 0.37322 | 29 | Alive |
| POPR | 62 | 0.18681 | 0.58744 | 0.77425 | 24.5 | ? |
| PASM | 62 | 0.10858 | 0.14503 | 0.25361 | 0 | ? |
| POPR | 63 | 0.13917 | 0.15565 | 0.29482 | 0 | Dead |
| POPR | 63 | 0.06816 | 0.15765 | 0.22581 | 0 | Dead |
| POPR | 64 | 0.2152 | 0.48689 | 0.70209 | 27.5 | Alive |
| NAVI | 64 | 0.0426 | 0.05536 | 0.09796 | 20.2 | Alive |
| BOGR | 65 | 0.05 | 0.09545 | 0.14545 | 27 | Alive |
| PASM | 65 | 0.27581 | 0.48679 | 0.7626 | 28 | Alive |
| BOGR | 66 | 0.14508 | 0.43756 | 0.58264 | 41.5 | Alive |
| BOGR | 66 | 0.06144 | 0.14256 | 0.204 | 36.2 | Alive |
| BOGR | 67 | 0.08889 | 0.16093 | 0.24982 | 31.7 | Alive |
| NAVI | 67 | 0.36427 | 0.44111 | 0.80538 | 34 | Alive |
| PASM | 68 | 0.49255 | 0.71053 | 1.20308 | 38 | Alive |
| NAVI | 68 | 0.01935 | 0.0725 | 0.09185 | 22 | Alive |
| PASM | 69 | 0.04884 | 0.37513 | 0.42397 | 20.5 | Alive |
| PASM | 69 | 0.29992 | 0.25227 | 0.55219 | 36.5 | Alive |
| NAVI | 70 | 0.07111 | 0.18056 | 0.25167 | 9.3 | Alive |
| NAVI | 70 | 0.14427 | 0.31357 | 0.45784 | 0 | Alive |
| BOGR | 71 | 0.08039 | 0.29226 | 0.37265 | 0 | Alive |
| POPR | 71 | 0.12342 | 0.24143 | 0.36485 | 27 | Alive |
| BOGR | 72 | 0.06154 | 0.11977 | 0.18131 | 27.5 | Dead |
| NAVI | 72 | 0.27207 | 0.35093 | 0.623 | 33.5 | Dead |
| BOGR | 73 | 0 | 0 | 0 | 0 | Dead |
| PASM | 73 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 74 | 0.1139 | 0.2182 | 0.3321 | 31.5 | Alive |
| BOGR | 74 | 0.11414 | 0.15067 | 0.26481 | 22.8 | Alive |
| POPR | 75 | 0.10916 | 0.33372 | 0.44288 | 24 | Alive |
| NAVI | 75 | 0.04024 | 0.15817 | 0.19841 | 24 | Dead |
| POPR | 76 | 0 | 0 | 0 | 0 | Dead |
| PASM | 76 | 0.10329 | 0.18294 | 0.28623 | 36.5 | Alive |
| POPR | 77 | 0 | 0 | 0 | 0 | Dead |
| POPR | 77 | 0 | 0 | 0 | 0 | Dead |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVI | 78 | 0.1099 | 0.18779 | 0.29769 | 25.7 | Alive |
| NAVI | 78 | 0.04057 | 0.11694 | 0.15751 | 24.5 | Dead |
| NAVI | 79 | 0 | 0 | 0 | 0 | Dead |
| PASM | 79 | 0 | 0 | 0 | 0 | Dead |
| PASM | 80 | 0.05309 | 0.07236 | 0.12545 | 22.5 | Dead |
| PASM | 80 | 0.08812 | 0.07412 | 0.16224 | 23.4 | Dead |
| BOGR | 81 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 81 | 0 | 0 | 0 | 0 | Dead |
| PASM | 82 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 82 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 83 | 0 | 0 | 0 | 0 | Dead |
| POPR | 83 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 84 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 84 | 0 | 0 | 0 | 0 | Dead |
| PASM | 85 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 85 | 0 | 0 | 0 | 0 | Dead |
| POPR | 86 | 0 | 0 | 0 | 0 | Dead |
| PASM | 86 | 0.16229 | 0.22331 | 0.3856 | 42.5 | Dead |
| POPR | 87 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 87 | 0 | 0 | 0 | 0 | Dead |
| POPR | 88 |  | 0.22758 | 0.22758 | 4.7 | Dead |
| POPR | 88 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 89 | 0.01978 | 0.08997 | 0.10975 | 22.2 | Dead |
| PASM | 89 | 0.20558 | 0.54674 | 0.75232 | 53 | Alive |
| PASM | 90 | 0.21633 | 0.37005 | 0.58638 | 24 | Dead |
| PASM | 90 | 0.08898 | 0.45393 | 0.54291 | 29.5 | Dead |
| POPR | 91 | 0.11726 | 0.33473 | 0.45199 | 25 | Dead |
| PASM | 91 | 0.16155 | 0.49125 | 0.6528 | 37.6 | Dead |
| POPR | 92 | 0.1052 | 0.43882 | 0.54402 | 18 | Dead |
| BOGR | 92 | 0.08347 | 0.38504 | 0.46851 | 34.5 | Dead |
| NAVI | 93 | 0.03457 | 0.13545 | 0.17002 | 6.2 | Dead |
| POPR | 93 | 0.2118 | 0.37726 | 0.58906 | 9 | Dead |
| POPR | 94 | 0 | 0 | 0 | 0 | Dead |
| POPR | 94 | 0.26385 | 0.57258 | 0.83643 | 4.6 | Dead |
| BOGR | 95 | 0 | 0 | 0 | 0 | Dead |
| PASM | 95 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 96 | 0.10583 | 0.20296 | 0.30879 | 43.5 | Alive |
| BOGR | 96 | 0.09903 | 0.24083 | 0.33986 | 51.5 | Alive |
| BOGR | 97 | 0.16824 | 0.34387 | 0.51211 | 30 | Dead |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVI | 97 | 0.03332 | 0.09313 | 0.12645 | 19.3 | Dead |
| PASM | 98 | 0.18284 | 0.54544 | 0.72828 | 16 | Dead |
| NAVI | 98 | 0.02273 | 0.13075 | 0.15348 | 27.5 | Dead |
| PASM | 99 | 0.12775 | 0.37044 | 0.49819 | 19 | Dead |
| PASM | 99 | 0.13781 | 0.31617 | 0.45398 | 14.2 | Dead |
| NAVI | 100 | 0.08548 | 0.30346 | 0.38894 | 24.1 | Dead |
| NAVI | 100 | 0.04611 | 0.12534 | 0.17145 | 23 | Dead |
| POPR | 101 | 0.11884 | 0.16435 | 0.28319 | 20 | Dead |
| PASM | 101 | 0 | 0 | 0 | 0 | Dead |
| POPR | 102 | 0.0607 | 0.33626 | 0.39696 | 0 | Dead |
| BOGR | 102 | 0.02649 | 0.07997 | 0.10646 | 0 | Dead |
| POPR | 103 | 0.10457 | 0.28736 | 0.39193 | 21.6 | Dead |
| NAVI | 103 | 0.08819 | 0.17342 | 0.26161 | 21.7 | Dead |
| POPR | 104 | 0.07804 | 0.25322 | 0.33126 | 26 | Dead |
| POPR | 104 | 0.05978 | 0.24871 | 0.30849 | 25.8 | Dead |
| NAVI | 105 | 0.04791 | 0.05568 | 0.10359 | 21.6 | Alive |
| BOGR | 105 | 0.02752 | 0.14229 | 0.16981 | 27.5 | Dead |
| NAVI | 106 | 0.00314 | 0.01416 | 0.0173 | 0 | Dead |
| PASM | 106 | 0.08108 | 0.15377 | 0.23485 | 45 | Dead |
| NAVI | 107 | 0.09029 | 0.21964 | 0.30993 | 26 | Alive |
| NAVI | 107 | 0.03575 | 0.09084 | 0.12659 | 19.5 | Alive |
| BOGR | 108 | 0.07672 | 0.22162 | 0.29834 | 38.6 | Alive |
| BOGR | 108 | 0.11924 | 0.22244 | 0.34168 | 45 | Alive |
| BOGR | 109 | 0.01198 | 0.02335 | 0.03533 | 7 | Dead |
| PASM | 109 | 0.04125 | 0.10487 | 0.14612 | 20.5 | Alive |
| PASM | 110 | 0 | 0 | 0 | 0 | Dead |
| PASM | 110 | 0 | 0 | 0 | 0 | Dead |
| POPR | 111 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 111 | 0 | 0 | 0 | 0 | Dead |
| POPR | 112 | 0.04837 | 0.0993 | 0.14767 | 0 | Dead |
| BOGR | 112 | 0.00589 | 0.01492 | 0.02081 | 0 | Dead |
| POPR | 113 | 0.05609 | 0.12483 | 0.18092 | 19.5 | Alive |
| PASM | 113 | 0.04001 | 0.13891 | 0.17892 | 37 | Dead |
| POPR | 114 | 0 | 0 | 0 | 0 | Dead |
| POPR | 114 |  | 0.36996 | 0.36996 | 0 | Dead |
| NAVI | 115 | 0.02048 | 0.09485 | 0.11533 | 24 | Alive |
| PASM | 115 | 0.11114 | 0.42312 | 0.53426 | 60 | Alive |
| NAVI | 116 | 0.04748 | 0.11588 | 0.16336 | 19.9 | Dead |
| BOGR | 116 | 0.11244 | 0.09865 | 0.21109 | 31.5 | Dead |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVI | 117 | 0 | 0 | 0 | 0 | Dead |
| NAVI | 117 | 0.04505 | 0.23021 | 0.27526 | 28.2 | Alive |
| BOGR | 118 | 0.02788 | 0.07349 | 0.10137 | 17 | Alive |
| PASM | 118 | 0.26707 | 0.7573 | 1.02437 | 38.5 | Dead |
| BOGR | 119 | 0.07958 | 0.26307 | 0.34265 | 29.5 | Dead |
| BOGR | 119 | 0.09461 |  | 0.09461 | 48 | Dead |
| PASM | 120 |  |  | 0 | 35.5 | Alive |
| PASM | 120 | 0.31519 | 1.01881 | 1.334 | 44.5 | Alive |
| NAVI | 121 | 0.01133 | 0.0499 | 0.06123 | 24.5 | Alive |
| POPR | 121 | 0.05443 | 0.08295 | 0.13738 | 16.6 | Alive |
| NAVI | 122 |  | 0 | 0 | 0 | Dead |
| BOGR | 122 | 0.16258 | 0.31647 | 0.47905 | 51.2 | Alive |
| NAVI | 123 | 0.01016 | 0.01829 | 0.02845 | 10 | Dead |
| PASM | 123 | 0.22785 | 0.65047 | 0.87832 | 50 | Dead |
| NAVI | 124 | 0.05271 | 0.10363 | 0.15634 | 20.5 | Dead |
| NAVI | 124 | 0.1366 | 0.14858 | 0.28518 | 26.2 | Dead |
| POPR | 125 | 0.05666 | 0.12121 | 0.17787 | 6.5 | Dead |
| POPR | 125 | 0.07972 | 0.27965 | 0.35937 | 4.5 | Dead |
| POPR | 126 | 0.18274 | 0.53242 | 0.71516 | 9.3 | Dead |
| BOGR | 126 | 0.02549 | 0.07381 | 0.0993 | 0 | Dead |
| POPR | 127 | 0 | 0 | 0 | 0 | Dead |
| PASM | 127 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 128 | 0.025 | 0.06436 | 0.08936 | 25 | Alive |
| PASM | 128 | 0.30074 | 0.56613 | 0.86687 | 45.2 | Dead |
| BOGR | 129 | 0.03873 | 0.08868 | 0.12741 | 15.4 | Alive |
| BOGR | 129 | 0 | 0 | 0 | 0 | Dead |
| PASM | 130 | 0.00341 | 0.01882 | 0.02223 | 0 | Dead |
| PASM | 130 | 0.14227 | 0.4133 | 0.55557 | 9.1 | Alive |
| NAVI | 131 | 0.10982 | 0.17275 | 0.28257 | 22 | Alive |
| BOGR | 131 | 0.05774 | 0.12576 | 0.1835 | 40 | Alive |
| NAVI | 132 | 0.02742 | 0.07558 | 0.103 | 19.7 | Dead |
| POPR | 132 | 0.08138 | 0.16547 | 0.24685 | 23 | Dead |
| NAVI | 133 | 0.00891 | 0.03909 | 0.048 | 0 | Dead |
| PASM | 133 | 0.04593 | 0.11461 | 0.16054 | 0 | Dead |
| NAVI | 134 | 0.01305 | 0.04362 | 0.05667 | 20.2 | Dead |
| NAVI | 134 | 0.05374 | 0.08354 | 0.13728 | 22.6 | Dead |
| BOGR | 135 | 0.06309 | 0.12321 | 0.1863 | 32 | Dead |
| POPR | 135 | 0.05384 | 0.12815 | 0.18199 | 20 | Dead |
| BOGR | 136 | 0.06973 | 0.07798 | 0.14771 | 0 | Dead |

Table G.26. The biomass data for the end of the competition experiment (continued).

| Plant | ID | Root biomass | Stem biomass | Total | Height | Notes |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| PASM | 136 | 0.04838 | 0.30647 | 0.35485 | 0 | Dead |
| BOGR | 137 | 0 | 0 | 0 | 0 | Dead |
| BOGR | 137 | 0 | 0 | 0 | 0 | Dead |
| POPR | 138 | 0 | 0 | 0 | 0 | Dead |
| PASM | 138 | 0 | 0 | 0 | 0 | Dead |
| POPR | 139 | 0.08579 | 0.13642 | 0.22221 | 22 | Alive |
| POPR | 139 | 0.05728 | 0.1334 | 0.19068 | 23 | Alive |
| PASM | 140 | 0 | 0 | 0 | 0 | Dead |
| PASM | 140 | 0 | 0 | 0 | 0 | Dead |

## APPENDIX H. SUPPLEMENTARY MATERIAL FOR CHAPTER 5

Table H.1. Summary ANOVAs for Poa pratensis across years, plots across years, plots for 2014, and early and late sampling in 2014. Poa pratensis significantly changed in 2014, although not spatially or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 1678 | 15.33 | 0.000796 |
| Residuals | 21 | 109.5 |  |  |
| Plot (78-14) | 5 | 124.3 | 0.63 | 0.68 |
| Residuals | 17 | 197.4 |  |  |
| Plot ('14 only) | 5 | 715.6 | 2.178 | 0.207 |
| Early or late | 1 | 114.7 | 0.349 | 0.58 |
| Residuals | 5 | 328.6 |  |  |


| Year | Mean | SD | Sample size | Min | Max | Tukey's assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 0.33 | 0.51 | 6 | 0 | 1.2 | b |
| 1979 | 0.15 | 0.27 | 6 | 0 | 0.7 | b |
| 1998 | 0.9 | 0.62 | 5 | 0.1 | 1.6 | b |
| 2014 | 22.63 | 18.91 | 6 | 0.5 | 45.8 | a |

Table H.2. Summary ANOVAs for Bromus inermis across years, plots across years, plots for 2014, and early and late sampling in 2014. Bromus inermis significantly changed over the years, but was not detected in the Tukey's HSD test. Bromus inermis did not change spatially or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 44.18 | 6.45 | 0.019 |
| Residuals | 21 | 6.85 |  |  |
| Plot (78-14) | 5 | 9.406 | 1.135 | 0.38 |
| Residuals | 17 | 8.289 |  |  |
| Plot ('14 only) | 5 | 51.4 | 2.56 | 0.163 |
| Early or late | 1 | 79.05 | 3.937 | 0.104 |
| Residuals | 5 | 20.08 |  |  |


| Year | Mean | SD | Sample Size | Min | Max | Tukey's assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 0 | 0 | 6 | 0 | 0 | a |
| 1979 | 0.017 | 0.0408 | 6 | 0 | 0.1 | a |
| 1998 | 0 | 0 | 5 | 0 | 0 | a |
| 2014 | 3.6667 | 5.0696 | 6 | 0.45 | 13.45 | a |

Table H.3. Summary ANOVAs for grasses across years, plots across years, plots for 2014, and early and late sampling in 2014. Grasses significantly changed across years, specifically 2014 contained a larger percent cover than other years. Grasses did not change spatially over the years, spatially in 2014, or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 13864 | 43.12 | $<.0001$ |
| Residuals | 21 | 261 |  |  |
| Plot (78-14) | 5 | 43.52 | 0.0387 | 0.999 |
| Residuals | 17 | 1125.16 |  |  |
| Plot ('14 only) | 5 | 106.58 | 2.112 | 0.216 |
| Early or late | 1 | 296.01 | 5.865 | 0.06 |
| Residuals | 5 | 50.47 |  |  |


| Year | Mean | SD | Sample Size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 28.45 | 12.70 | 6 | 8.9 | 44.6 | b |
| 1979 | 17.85 | 6.50 | 6 | 9.6 | 25.7 | b |
| 1998 | 27.06 | 6.44 | 5 | 20.1 | 36.7 | b |
| 2014 | 87.28 | 5.98 | 6 | 79.5 | 97.3 | a |

Table H.4. Summary ANOVAs for percent soil moisture across years. Differences in soil moisture were found between years for depths of $30-60 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$ and spatially for depths of $0-30 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$. For the depth of $30-60 \mathrm{~cm}, 2014$ was significantly different. Tukey's honest significant difference test was executed in the R package Agricolae for each depth when ANOVA was significant (Felip de Mendiburu 2015).
$0-30 \mathrm{~cm}$ soils across years

|  | df | MS | F-value | P-value |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year <br> Residuals | 1 | 76 | 402.9 | 1.984 | 0.178 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Plot | 5 | 1088.2 | 7.237 | 0.00244 |  |  |
| Residuals | 12 | 150.4 |  |  |  |  |
| Plot | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| 1 | 8.54 | 4.49 | 3 | 5.6 | 13.71 | b |
| 2 | 32.23 | 7.16 | 3 | 24.1 | 37.6 | ab |
| 3 | 20.36 | 8.10 | 3 | 15.1 | 29.69 | b |
| 4 | 29.57 | 11.47 | 3 | 21.6 | 42.72 | b |
| 5 | 63.42 | 11.54 | 3 | 51.5 | 76.5 | a |
| 6 | 17.79 | 21.82 | 3 | 4.2 | 42.96 | b |

$30-60 \mathrm{~cm}$ soils across years

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year <br> Residuals | 1 | 587.80 | 10.56 | 0.00503 |
|  |  | 55.70 |  |  |
| Plot | 5 | 155.68 | 2.668 | 0.076 |
| Residuals | 12 | 58.35 |  |  |


| Year | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 13.8 | 6.38 | 6 | 6.4 | 22.4 | b |
| 1979 | 15.2 | 9.19 | 6 | 5.3 | 31.3 | b |
| 2014 | 26.6 | 7.23 | 6 | 14.95 | 35.81 | a |

Table H.4. Summary ANOVAs for percent soil moisture across years (continued).

| $60-90 \mathrm{~cm}$ soils across years |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | df | MS | F- value | P-value |  |  |
| Year | 1 | 205.99 | 8.12 | 0.01161 |  |  |
| Residuals | 16 | 25.38 |  |  |  |  |
| Plot | 5 | 70.631 | 3.27 | 0.04286 |  |  |
| Residuals | 12 | 21.576 |  |  |  |  |
| Year | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| 1978 | 14.58 | 5.57 | 6 | 7.8 | 23.2 | a |
| 1979 | 14.27 | 5.46 | 6 | 4.9 | 20.4 | a |
| 2014 | 21.61 | 4.49 | 6 | 15.14 | 27.09 | a |
| Plot | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| 1 | 10.31 | 7.02 | 3 | 4.9 | 18.24 | b |
| 2 | 15.97 | 5.32 | 3 | 12.6 | 22.1 | ab |
| 3 | 17.11 | 3.7 | 3 | 14.4 | 21.33 | ab |
| 4 | 21.36 | 4.98 | 3 | 18 | 27.09 | ab |
| 5 | 23.12 | 2.68 | 3 | 20.4 | 25.76 | a |
| 6 | 13.05 | 2.49 | 3 | 10.3 | 15.14 | ab |

Table H.5. Summary ANOVAs for sedges across years, plots across years, plots for 2014, and early and late sampling in 2014. Sedges significantly changed across the plots in 2014, specifically plot 5 contained a larger percent cover than other plots. Sedges did not change spatially over the years, across time, or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 473.5 | 3.985 | 0.059 |
| Residuals | 21 | 118.8 |  |  |
| Plot (78-14) | 5 | 263.41 | 2.711 | 0.056 |
| Residuals | 17 | 97.17 |  |  |
| Plot ('14 only) | 5 | 869.1 | 86.192 | $<0.0001$ |
| Early or late | 1 | 9.5 | 0.946 | 0.375 |
| Residuals | 5 | 10.1 |  |  |


| Plot ('14 only) | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.2 | 0.28 | 2 | 0 | 0.4 | d |
| 2 | 13.4 | 2.12 | 2 | 11.9 | 14.9 | bc |
| 3 | 18.15 | 2.76 | 2 | 16.2 | 20.1 | bc |
| 4 | 7.05 | 1.20 | 2 | 6.2 | 7.9 | bcd |
| 5 | 56.1 | 6.79 | 2 | 51.3 | 60.9 | a |
| 6 | 1.05 | 0.49 | 2 | 0.7 | 1.4 | cd |

Table H.6. Summary ANOVAs for forbs across years, plots across years, plots for 2014, and early and late sampling in 2014. Forbs significantly changed across years and spatially in 2014, specifically 2014 contained a lower percent cover than other years. Forbs did not change spatially over the years or across early or late sampling in 2014. Tukey's honest significant difference test was executed in the R package Agricolae for each year (Felip de Mendiburu 2015).

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 15104.70 | 37.972 | $<0.0001$ |
| Residuals | 22 | 397.80 |  |  |
| Plot (78-14) | 5 | 192.26 | 0.1512 | 0.977 |
| Residuals | 18 | 1271.93 |  |  |
| Plot ('14 only) | 5 | 71.64 | 6.291 | 0.0324 |
| Early or late | 1 | 34 | 2.986 | 0.1446 |
| Residuals | 5 | 11.39 |  |  |


| Year | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978 | 71.55 | 12.69594 | 6 | 55.4 | 91.1 | a |
| 1979 | 82.15 | 6.052846 | 6 | 74.3 | 90.4 | a |
| 1998 | 59.2833 | 33.9441 | 6 | 9 | 79.9 | a |
| 2014 | 12.6333 | 5.98487 | 6 | 2.7 | 20.5 | b |


| Plot (2014) | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 83.3 | 10.32 | 2 | 76 | 90.6 | a |
| 2 | 75.15 | 10.39 | 2 | 67.8 | 82.5 | a |
| 3 | 76.45 | 16.48 | 2 | 64.8 | 88.1 | a |
| 4 | 86.25 | 6.72 | 2 | 81.5 | 91 | a |
| 5 | 86 | 3.68 | 2 | 83.4 | 88.6 | a |
| 6 | 95.05 | 1.91 | 2 | 93.7 | 96.4 | a |

Table H.7. Summary ANOVAs on the 2014 percent soil data moisture data. Differences in soil moisture were found between early and late summer for depths of $30-60 \mathrm{~cm}$ and $60-90 \mathrm{~cm}$. Tukey's honest significant difference test was executed in the R package Agricolae for each depth (Felip de Mendiburu 2015).

$$
0-30 \mathrm{~cm} \text { soils in } 2014
$$

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Plot | 5 | 2708.3 | 47.67 | $<.0001$ |
| Residuals | 87 | 56.8 |  |  |
| Early or Late | 1 | 93.93 | 0.465 | 0.497 |
| Residuals | 91 | 202.09 |  |  |


| Plot | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.7 | 3.47 | 20 | 8.8 | 20.8 | d |
| 2 | 37.61 | 5.45 | 20 | 29.1 | 49.1 | b |
| 3 | 29.7 | 4.92 | 20 | 18.6 | 40.3 | c |
| 4 | 42.73 | 7.93 | 20 | 32.9 | 61.4 | b |
| 5 | 62.27 | 31.66 | 3 | 43 | 98.8 | a |
| 6 | 42.96 | 7.38 | 10 | 34.4 | 59.5 | b |

$30-60 \mathrm{~cm}$ soils in 2014

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Plot | 5 | 708.40 | 24.45 | $<.0001$ |
| Residuals | 87 | 29.00 |  |  |
|  |  |  |  |  |
| Early or Late | 1 | 737.30 | 12.60 | $<0.001$ |
| Residuals | 91 | 58.50 |  |  |


| Plot | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.95 | 3.83 | 20 | 8.63 | 20.37 | c |
| 2 | 27.08 | 4.98 | 20 | 19.5 | 36.86 | ab |
| 3 | 24.77 | 3.48 | 20 | 19.96 | 30.61 | b |
| 4 | 32.36 | 7.51 | 20 | 24.04 | 49.48 | ab |
| 5 | 35.81 | 4.74 | 3 | 32.97 | 41.28 | ab |
| 6 | 24.62 | 6.88 | 10 | 16.11 | 35.86 | b |

Table H.7. Summary ANOVAs on the 2014 percent soil data moisture data (continued).
$60-90 \mathrm{~cm}$ soils in 2014

|  | df | MS | F-value | P-value |
| :---: | :---: | :---: | :---: | :---: |
| Plot | 5 | 256 | 26.39 | $<.0001$ |
| Residuals | 80 | 9.7 |  |  |
|  |  |  |  |  |
| Early or Late | 1 | 248.48 | 11.55 | 0.001 |
| Residuals | 84 | 21.52 |  |  |


| Plot | Mean | SD | Sample size | Min | Max | Tukey's Assignment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.16 | 2.41 | 17 | 13.6 | 21.8 | c |
| 2 | 22.21 | 3.80 | 17 | 15.9 | 29.1 | b |
| 3 | 21.25 | 2.81 | 19 | 17.3 | 26.3 | b |
| 4 | 27.09 | 3.36 | 20 | 20.6 | 33.5 | a |
| 5 | 25.73 | 2.70 | 3 | 23.7 | 28.8 | ab |
| 6 | 15.14 | 3.00 | 10 | 9 | 19.5 | c |

Table H.8. Six separate ANOVAs on the two dbRDAs performed on plant and percent soil moisture data. The dbRDA was performed in vegan using the CAPSCALE argument and a Bray-Curtis dissimilarity matrix and ANOVAs were done using 200 permutations and a seed set of 44. Only the first axis of both dbRDAs was significant so we concluded a linear regression should be completed to visualize the interaction.

| Functional Group Level |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | df | variance | F-value | P-value |  |  |  |
| Model | 3 | 0.62 | 2.38 | 0.092 |  |  |  |
| Residuals | 14 | 1.22 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| $30-60 \mathrm{~cm}$ | 1 | 0.58 | 6.70 | 0.021 |  |  |  |
| $0-30 \mathrm{~cm}$ | 1 | 0.03 | 0.31 | 0.647 |  |  |  |
| $60-90 \mathrm{~cm}$ | 1 | 0.01 | 0.13 | 0.718 |  |  |  |
| Residuals | 14 | 1.25 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| CAP1 | 1 | 0.62 | 7.13 | 0.018 |  |  |  |
| CAP2 | 1 | 0.00 | 0.01 | 0.984 |  |  |  |
| CAP3 | 1 | 0.00 | 0.00 | 1.000 |  |  |  |
| Residual | 14 | 1.22 |  |  |  |  |  |
|  | Species Level |  |  |  |  |  |  |
|  | df | variance | F-value | P-value |  |  |  |
| Model | 1 | 1.42 | 3.12 | 0.003 |  |  |  |
| Residuals | 16 | 7.29 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 30-60 cm | 1 | 1.42 | 3.12 | 0.01 |  |  |  |
| Residuals | 16 | 7.29 |  |  |  |  |  |
| CAP1 | 1 | 1.42 | 3.12 | 0.004 |  |  |  |
| Residuals | 16 | 7.29 |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study. There were six plots at Bluestem prairie. We dropped 10 pins at 100 quadrats per plot. We collected data twice that summer. POPR=Poa pratensis, Sedge=Sedge family, $\mathrm{SPPE}=$ Spartina pectinata, BRIN=Bromus inermis, GR=Other grasses, $\mathrm{FO}=$ Forbs, and $\mathrm{BR}=$ Bare ground.

| $\stackrel{\ddot{\Xi}}{\square}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 長 } \\ & \stackrel{y}{0} \end{aligned}$ | $\begin{aligned} & \text { ๙1 } \\ & 0 \end{aligned}$ | $\begin{aligned} & \ddot{8} \\ & \stackrel{0}{0} \\ & \sim \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \stackrel{0}{2} \end{aligned}$ | $\frac{Z}{\text { Z }}$ | 令 | 0 | $\frac{\stackrel{\alpha}{\infty}}{(1)}$ | $\begin{aligned} & 0 \\ & \text { O} \\ & \text { of } \\ & \text { of } \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \text { OT} \\ & \text { O } \\ & \text { or } \\ & \hline 1 \end{aligned}$ | $\begin{aligned} & \text { 엊 } \\ & \text { O} \\ & \text { or } \\ & \text { ób } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/9/2014 | 1 | 1 | 1 | 0 | 0 | 0 | 9 | 0 | 0 | 13.2 | 16.0 | 14.1 |
| 6/9/2014 | 1 | 2 | 4 | 0 | 0 | 0 | 2 | 3 | 1 |  |  |  |
| 6/9/2014 | 1 | 3 | 1 | 0 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 4 | 2 | 0 | 0 | 0 | 4 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 5 | 3 | 0 | 1 | 0 | 4 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 6 | 5 | 0 | 1 | 0 | 3 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 7 | 1 | 0 | 1 | 0 | 7 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 8 | 3 | 0 | 1 | 0 | 4 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 9 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 10 | 1 | 0 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 11 | 1 | 0 | 0 | 0 | 2 | 3 | 4 | 14.4 | 14.0 | 17.7 |
| 6/9/2014 | 1 | 12 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 13 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 14 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 15 | 2 | 0 | 1 | 0 | 6 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 16 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 17 | 1 | 0 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 18 | 2 | 0 | 0 | 0 | 5 | 0 | 3 |  |  |  |
| 6/9/2014 | 1 | 19 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 20 | 3 | 0 | 3 | 0 | 4 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 21 | 3 | 0 | 1 | 0 | 4 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 22 | 7 | 0 | 0 | 0 | 1 | 1 | 1 | 17.2 | 15.8 | x |
| 6/9/2014 | 1 | 23 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 24 | 4 | 0 | 0 | 0 | 3 | 3 | 0 |  |  |  |
| 6/9/2014 | 1 | 25 | 4 | 0 | 3 | 0 | 3 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 26 | 4 | 0 | 0 | 0 | 4 | 0 | 2 |  |  |  |
| 6/9/2014 | 1 | 27 | 1 | 0 | 1 | 0 | 5 | 3 | 0 |  |  |  |
| 6/9/2014 | 1 | 28 | 1 | 0 | 0 | 0 | 3 | 3 | 3 |  |  |  |
| 6/9/2014 | 1 | 29 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 30 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 31 | 0 | 0 | 2 | 1 | 6 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 32 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 33 | 4 | 0 | 0 | 0 | 2 | 3 | 1 |  |  |  |
| 6/9/2014 | 1 | 34 | 3 | 0 | 0 | 0 | 5 | 2 | 0 | 14.9 | 14.0 | x |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\begin{gathered} \ddot{\Xi} \\ \hline \end{gathered}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { x } \\ & \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{8} \\ & 0 \end{aligned}$ | $\stackrel{M}{\stackrel{1}{2}}$ | $\frac{z}{\frac{z}{m}}$ | 㝑 | O | 毎 |  | or | \& O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/9/2014 | 1 | 35 | 1 | 0 | 1 | 0 | 7 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 36 | 2 | 0 | 0 | 1 | 3 | 4 | 0 |  |  |  |
| 6/9/2014 | 1 | 37 | 1 | 0 | 0 | 2 | 7 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 38 | 0 | 0 | 0 | 0 | 6 | 1 | 3 |  |  |  |
| 6/9/2014 | 1 | 39 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 40 | 0 | 0 | 0 | 0 | 5 | 3 | 2 |  |  |  |
| 6/9/2014 | 1 | 41 | 2 | 0 | 0 | 2 | 5 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 42 | 1 | 0 | 0 | 0 | 2 | 7 | 0 |  |  |  |
| 6/9/2014 | 1 | 43 | 0 | 0 | 0 | 0 | 4 | 4 | 2 |  |  |  |
| 6/9/2014 | 1 | 44 | 1 | 0 | 0 | 1 | 6 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 45 | 5 | 0 | 0 | 0 | 2 | 1 | 2 |  |  |  |
| 6/9/2014 | 1 | 46 | 4 | 0 | 0 | 0 | 1 | 5 | 0 | 13.0 | 15.2 | 16.5 |
| 6/9/2014 | 1 | 47 | 3 | 0 | 2 | 0 | 3 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 48 | 4 | 0 | 0 | 0 | 4 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 49 | 6 | 0 | 0 | 1 | 2 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 50 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 51 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 52 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 53 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 54 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 55 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 56 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 57 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 58 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 59 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 60 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 61 | 0 | 0 | 0 | 0 | 6 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 62 | 1 | 0 | 0 | 0 | 3 | 3 | 3 |  |  |  |
| 6/9/2014 | 1 | 63 | 2 | 0 | 0 | 0 | 3 | 4 | 1 |  |  |  |
| 6/9/2014 | 1 | 64 | 2 | 0 | 0 | 0 | 3 | 2 | 3 |  |  |  |
| 6/9/2014 | 1 | 65 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 66 | 4 | 0 | 0 | 0 | 2 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 67 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 68 | 0 | 0 | 0 | 0 | 7 | 2 | 1 |  |  |  |
| 6/9/2014 | 1 | 69 | 3 | 0 | 0 | 0 | 5 | 0 | 2 |  |  |  |
| 6/9/2014 | 1 | 70 | 1 | 0 | 0 | 0 | 5 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 71 | 5 | 0 | 0 | 0 | 3 | 2 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\begin{gathered} \ddot{\Xi} \\ \hline \end{gathered}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { an } \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{8} \\ & 0 \end{aligned}$ | $\stackrel{M}{\stackrel{1}{2}}$ | $\frac{z}{\frac{z}{m}}$ | 㝑 | O | 呂 |  | $\begin{aligned} & \text { O} \\ & \text { ơ } \\ & \text { Ô중 } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/9/2014 | 1 | 72 | 3 | 0 | 0 | 0 | 1 | 3 | 3 |  |  |  |
| 6/9/2014 | 1 | 73 | 0 | 0 | 0 | 0 | 5 | 4 | 1 | 10.7 | 12.3 | 16.6 |
| 6/9/2014 | 1 | 74 | 2 | 0 | 0 | 0 | 2 | 2 | 4 |  |  |  |
| 6/9/2014 | 1 | 75 | 0 | 0 | 0 | 0 | 8 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 76 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 77 | 2 | 0 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 78 | 2 | 0 | 0 | 0 | 6 | 0 | 2 |  |  |  |
| 6/9/2014 | 1 | 79 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 80 | 2 | 0 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 81 | 4 | 0 | 0 | 0 | 3 | 0 | 3 |  |  |  |
| 6/9/2014 | 1 | 82 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 83 | 5 | 0 | 0 | 0 | 1 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 84 | 3 | 0 | 0 | 0 | 6 | 0 | 1 | 11.3 | 12.9 | 17.9 |
| 6/9/2014 | 1 | 85 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 86 | 3 | 0 | 0 | 0 | 3 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 87 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 88 | 4 | 0 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 89 | 6 | 0 | 0 | 0 | 2 | 1 | 1 |  |  |  |
| 6/9/2014 | 1 | 90 | 3 | 0 | 0 | 0 | 4 | 1 | 2 |  |  |  |
| 6/9/2014 | 1 | 91 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 92 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 93 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 94 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 95 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 96 |  |  |  |  |  |  |  | 10.4 | 13.2 | 17.5 |
| 6/9/2014 | 1 | 97 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 98 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 99 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 100 |  |  |  |  |  |  |  |  |  |  |
| 6/9/2014 | 1 | 101 | 2 | 0 | 0 | 0 | 5 | 2 | 1 |  |  |  |
| 6/9/2014 | 1 | 102 | 3 | 0 | 0 | 0 | 4 | 1 | 2 |  |  |  |
| 6/9/2014 | 1 | 103 | 5 | 0 | 0 | 0 | 1 | 2 | 2 |  |  |  |
| 6/9/2014 | 1 | 104 | 2 | 0 | 0 | 0 | 5 | 1 | 2 |  |  |  |
| 6/9/2014 | 1 | 105 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 6/9/2014 | 1 | 106 | 0 | 0 | 0 | 0 | 7 | 2 | 1 |  |  |  |
| 6/9/2014 | 1 | 107 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 108 | 5 | 0 | 0 | 0 | 5 | 0 | 0 | 9.2 | 8.8 | 15.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\cong}{\tilde{\circ}}$ | $\#$ <br> 5 <br>  |  | $\begin{aligned} & \text { 几 } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{2}{m}}$ | ¢ | O | 鲑 | or | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/9/2014 | 1 | 109 | 2 | 0 | 0 | 0 | 6 | 0 | 2 |  |  |  |
| 6/9/2014 | 1 | 110 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 111 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 112 | 3 | 0 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 113 | 3 | 0 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 6/9/2014 | 1 | 114 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 115 | 2 | 0 | 0 | 0 | 3 | 4 | 1 |  |  |  |
| 6/9/2014 | 1 | 116 | 4 | 0 | 0 | 0 | 3 | 3 | 0 |  |  |  |
| 6/9/2014 | 1 | 117 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 118 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 6/9/2014 | 1 | 119 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 6/9/2014 | 1 | 120 | 1 | 0 | 0 | 0 | 8 | 0 | 1 | 10.3 | 8.7 | 16.1 |
| 6/10/2014 | 2 | 1 | 0 | 1 | 3 | 2 | 0 | 3 | 1 |  |  |  |
| 6/10/2014 | 2 | 2 | 4 | 0 | 2 | 0 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 3 | 2 | 0 | 4 | 1 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 4 | 2 | 1 | 2 | 1 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 5 | 0 | 0 | 5 | 1 | 2 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 6 | 0 | 0 | 3 | 0 | 3 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 7 | 2 | 1 | 5 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 8 | 0 | 2 | 4 | 0 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 9 | 1 | 1 | 2 | 1 | 1 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 10 | 2 | 1 | 3 | 0 | 3 | 1 | 0 | 27.7 | 23.0 | 22.6 |
| 6/10/2014 | 2 | 11 | 0 | 2 | 5 | 0 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 12 | 0 | 1 | 5 | 1 | 0 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 13 | 0 | 1 | 2 | 1 | 2 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 14 | 0 | 1 | 2 | 2 | 4 | 0 | 1 |  |  |  |
| 6/10/2014 | 2 | 15 | 0 | 3 | 1 | 0 | 1 | 5 | 0 |  |  |  |
| 6/10/2014 | 2 | 16 | 1 | 1 | 1 | 0 | 3 | 3 | 1 |  |  |  |
| 6/10/2014 | 2 | 17 | 0 | 2 | 2 | 0 | 3 | 2 | 1 |  |  |  |
| 6/10/2014 | 2 | 18 | 0 | 1 | 2 | 0 | 5 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 19 | 1 | 0 | 5 | 0 | 4 | 0 | 0 | 28.6 | 23.8 | 22.3 |
| 6/10/2014 | 2 | 20 | 0 | 3 | 3 | 0 | 3 | 0 | 1 |  |  |  |
| 6/10/2014 | 2 | 21 | 1 | 3 | 3 | 0 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 22 | 0 | 2 | 1 | 0 | 2 | 5 | 0 |  |  |  |
| 6/10/2014 | 2 | 23 | 0 | 2 | 1 | 0 | 1 | 6 | 0 |  |  |  |
| 6/10/2014 | 2 | 24 | 2 | 2 | 1 | 0 | 3 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 25 | 3 | 0 | 3 | 0 | 0 | 3 | 1 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\pi}}{\stackrel{0}{0}}$ | $\begin{aligned} & \# \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & \text { xu } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 80 \\ & \text { 皆 } \\ & i n \end{aligned}$ | $\frac{1}{n}$ | $\frac{z}{\underset{\sim}{n}}$ | 응 | O | $\frac{\text { 只 }}{(1)}$ |  | ore | ơ O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 2 | 26 | 2 | 0 | 0 | 3 | 1 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 27 | 0 | 1 | 3 | 0 | 0 | 5 | 1 |  |  |  |
| 6/10/2014 | 2 | 28 | 0 | 0 | 5 | 0 | 0 | 4 | 1 | 27.4 | 21.9 | 19.1 |
| 6/10/2014 | 2 | 29 | 6 | 0 | 0 | 0 | 1 | 2 | 1 |  |  |  |
| 6/10/2014 | 2 | 30 | 3 | 0 | 6 | 0 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 31 | 0 | 4 | 1 | 1 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 32 | 0 | 5 | 2 | 1 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 33 | 0 | 2 | 2 | 1 | 3 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 34 | 0 | 0 | 4 | 0 | 0 | 5 | 1 |  |  |  |
| 6/10/2014 | 2 | 35 | 0 | 4 | 1 | 1 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 36 | 0 | 2 | 3 | 0 | 1 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 37 | 1 | 0 | 5 | 0 | 1 | 3 | 0 | 32.9 | 23.2 | 19.8 |
| 6/10/2014 | 2 | 38 | 2 | 1 | 4 | 1 | 0 | 1 | 1 |  |  |  |
| 6/10/2014 | 2 | 39 | 3 | 1 | 3 | 0 | 1 | 1 | 1 |  |  |  |
| 6/10/2014 | 2 | 40 | 5 | 2 | 1 | 0 | 0 | 1 | 1 |  |  |  |
| 6/10/2014 | 2 | 41 | 0 | 1 | 2 | 1 | 2 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 42 | 1 | 4 | 1 | 2 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 43 | 1 | 1 | 1 | 0 | 0 | 6 | 1 |  |  |  |
| 6/10/2014 | 2 | 44 | 3 | 2 | 0 | 1 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 45 | 0 | 4 | 2 | 1 | 1 | 1 | 1 |  |  |  |
| 6/10/2014 | 2 | 46 | 1 | 2 | 2 | 0 | 0 | 4 | 1 | 28.8 | 20.7 | 15.1 |
| 6/10/2014 | 2 | 47 | 2 | 1 | 6 | 0 | 1 | 0 | 0 |  |  |  |
| 6/10/2014 | 2 | 48 | 3 | 3 | 3 | 0 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 49 | 3 | 0 | 2 | 0 | 2 | 2 | 1 |  |  |  |
| 6/10/2014 | 2 | 50 | 2 | 2 | 2 | 0 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 51 | 2 | 4 | 1 | 2 | 0 | 0 | 1 |  |  |  |
| 6/10/2014 | 2 | 52 | 2 | 1 | 2 | 2 | 1 | 0 | 2 |  |  |  |
| 6/10/2014 | 2 | 53 | 0 | 2 | 1 | 1 | 0 | 4 | 2 |  |  |  |
| 6/10/2014 | 2 | 54 | 2 | 2 | 2 | 2 | 0 | 1 | 1 |  |  |  |
| 6/10/2014 | 2 | 55 | 0 | 3 | 4 | 0 | 0 | 0 | 3 | 28.6 | 23.2 | x |
| 6/10/2014 | 2 | 56 | 1 | 2 | 0 | 1 | 0 | 1 | 5 |  |  |  |
| 6/10/2014 | 2 | 57 | 1 | 0 | 3 | 0 | 1 | 3 | 2 |  |  |  |
| 6/10/2014 | 2 | 58 | 0 | 2 | 3 | 0 | 1 | 3 | 1 |  |  |  |
| 6/10/2014 | 2 | 59 | 2 | 3 | 3 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 60 | 0 | 1 | 2 | 3 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 61 | 2 | 0 | 4 | 1 | 0 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 62 | 3 | 0 | 1 | 4 | 0 | 1 | 1 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\pi}}{\stackrel{0}{0}}$ | $\begin{aligned} & \text { \# } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\frac{2}{2}$ | $\begin{aligned} & \stackrel{8}{80} \\ & \stackrel{0}{0} \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{m}}$ | 令 | O | $\frac{\stackrel{\sim}{m}}{\infty}$ |  | ore | \& O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 2 | 63 | 1 | 0 | 2 | 1 | 2 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 64 | 2 | 0 | 2 | 1 | 0 | 4 | 1 | 26.8 | 26.7 | 15.8 |
| 6/10/2014 | 2 | 65 | 5 | 0 | 2 | 0 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 66 | 0 | 0 | 6 | 1 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 67 | 0 | 2 | 2 | 2 | 0 | 2 | 2 |  |  |  |
| 6/10/2014 | 2 | 68 | 1 | 0 | 2 | 2 | 2 | 1 | 2 |  |  |  |
| 6/10/2014 | 2 | 69 | 2 | 0 | 4 | 3 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 2 | 70 | 2 | 2 | 0 | 1 | 1 | 2 | 2 |  |  |  |
| 6/10/2014 | 2 | 71 | 0 | 1 | 3 | 4 | 0 | 0 | 2 |  |  |  |
| 6/10/2014 | 2 | 72 | 0 | 2 | 1 | 1 | 1 | 3 | 2 |  |  |  |
| 6/10/2014 | 2 | 73 | 0 | 1 | 2 | 2 | 0 | 1 | 4 | 32.5 | 24.5 | 17.5 |
| 6/10/2014 | 2 | 74 | 0 | 2 | 2 | 0 | 0 | 6 | 0 |  |  |  |
| 6/10/2014 | 2 | 75 | 0 | 1 | 1 | 0 | 0 | 4 | 4 |  |  |  |
| 6/10/2014 | 2 | 76 | 1 | 4 | 2 | 0 | 0 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 77 | 1 | 0 | 1 | 2 | 1 | 3 | 2 |  |  |  |
| 6/10/2014 | 2 | 78 | 0 | 0 | 3 | 1 | 1 | 5 | 0 |  |  |  |
| 6/10/2014 | 2 | 79 | 2 | 1 | 0 | 1 | 1 | 1 | 4 |  |  |  |
| 6/10/2014 | 2 | 80 | 0 | 5 | 2 | 0 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 81 | 1 | 2 | 1 | 0 | 2 | 1 | 3 |  |  |  |
| 6/10/2014 | 2 | 82 | 1 | 3 | 1 | 0 | 1 | 3 | 1 | 26.8 | 26.9 | 22.2 |
| 6/10/2014 | 2 | 83 | 2 | 2 | 1 | 1 | 0 | 3 | 1 |  |  |  |
| 6/10/2014 | 2 | 84 | 1 | 2 | 1 | 1 | 1 | 3 | 1 |  |  |  |
| 6/10/2014 | 2 | 85 | 1 | 2 | 0 | 3 | 1 | 2 | 1 |  |  |  |
| 6/10/2014 | 2 | 86 | 0 | 1 | 2 | 4 | 0 | 1 | 2 |  |  |  |
| 6/10/2014 | 2 | 87 | 1 | 0 | 1 | 2 | 2 | 2 | 2 |  |  |  |
| 6/10/2014 | 2 | 88 | 2 | 3 | 1 | 0 | 1 | 1 | 2 |  |  |  |
| 6/10/2014 | 2 | 89 | 0 | 3 | 0 | 2 | 0 | 1 | 4 |  |  |  |
| 6/10/2014 | 2 | 90 | 1 | 2 | 0 | 1 | 3 | 2 | 1 |  |  |  |
| 6/10/2014 | 2 | 91 | 0 | 1 | 0 | 4 | 5 | 0 | 0 | 29.3 | 22.6 | 19.3 |
| 6/10/2014 | 2 | 92 | 0 | 3 | 2 | 1 | 1 | 3 | 0 |  |  |  |
| 6/10/2014 | 2 | 93 | 2 | 2 | 2 | 1 | 1 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 94 | 3 | 0 | 2 | 0 | 0 | 5 | 0 |  |  |  |
| 6/10/2014 | 2 | 95 | 2 | 2 | 4 | 0 | 0 | 2 | 0 |  |  |  |
| 6/10/2014 | 2 | 96 | 4 | 0 | 0 | 1 | 1 | 4 | 0 |  |  |  |
| 6/10/2014 | 2 | 97 | 0 | 2 | 0 | 2 | 1 | 3 | 2 |  |  |  |
| 6/10/2014 | 2 | 98 | 1 | 2 | 2 | 1 | 0 | 1 | 3 |  |  |  |
| 6/10/2014 | 2 | 99 | 0 | 3 | 2 | 1 | 0 | 2 | 2 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\Xi}}{\square}$ | $\begin{aligned} & \# \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \frac{2}{2} \\ & 0 \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{80}{0} \\ & i \end{aligned}$ | $\frac{1}{n}$ | $\frac{\text { z }}{\stackrel{\rightharpoonup}{m}}$ | 米 | O | $\frac{\text { 只 }}{}$ |  | ore | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 2 | 100 | 1 | 0 | 2 | 2 | 1 | 2 | 2 |  |  |  |
| 6/11/2014 | 3 | 1 | 0 | 0 | 2 | 4 | 1 | 0 | 3 |  |  |  |
| 6/11/2014 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 3 |  |  |  |
| 6/11/2014 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 0 | 2 |  |  |  |
| 6/11/2014 | 3 | 4 | 0 | 0 | 0 | 0 | 6 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 5 | 0 | 0 | 1 | 1 | 4 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 6 | 0 | 0 | 1 | 0 | 4 | 4 | 1 |  |  |  |
| 6/11/2014 | 3 | 7 | 0 | 1 | 1 | 0 | 4 | 2 | 2 |  |  |  |
| 6/11/2014 | 3 | 8 | 0 | 1 | 1 | 0 | 2 | 3 | 3 |  |  |  |
| 6/11/2014 | 3 | 9 | 0 | 0 | 1 | 0 | 2 | 5 | 2 |  |  |  |
| 6/11/2014 | 3 | 10 | 0 | 0 | 0 | 0 | 4 | 3 | 3 | 22.3 | 19.7 | 20.8 |
| 6/11/2014 | 3 | 11 | 0 | 2 | 1 | 0 | 6 | 1 | 0 |  |  |  |
| 6/11/2014 | 3 | 12 | 0 | 2 | 2 | 0 | 3 | 1 | 2 |  |  |  |
| 6/11/2014 | 3 | 13 | 0 | 1 | 1 | 0 | 5 | 2 | 1 |  |  |  |
| 6/11/2014 | 3 | 14 | 0 | 1 | 4 | 0 | 3 | 1 | 1 |  |  |  |
| 6/11/2014 | 3 | 15 | 0 | 1 | 1 | 1 | 3 | 3 | 1 |  |  |  |
| 6/11/2014 | 3 | 16 | 1 | 1 | 0 | 0 | 3 | 3 | 2 |  |  |  |
| 6/11/2014 | 3 | 17 | 0 | 0 | 2 | 0 | 4 | 3 | 1 |  |  |  |
| 6/11/2014 | 3 | 18 | 0 | 2 | 3 | 0 | 3 | 1 | 1 |  |  |  |
| 6/11/2014 | 3 | 19 | 1 | 0 | 3 | 1 | 0 | 4 | 1 | 24.2 | 20.3 | 16.7 |
| 6/11/2014 | 3 | 20 | 0 | 0 | 2 | 2 | 1 | 4 | 1 |  |  |  |
| 6/11/2014 | 3 | 21 | 0 | 2 | 1 | 0 | 3 | 0 | 4 |  |  |  |
| 6/11/2014 | 3 | 22 | 0 | 3 | 3 | 0 | 2 | 2 | 0 |  |  |  |
| 6/11/2014 | 3 | 23 | 0 | 5 | 1 | 1 | 2 | 1 | 0 |  |  |  |
| 6/11/2014 | 3 | 24 | 2 | 4 | 1 | 1 | 0 | 2 | 0 |  |  |  |
| 6/11/2014 | 3 | 25 | 0 | 2 | 1 | 0 | 2 | 5 | 0 |  |  |  |
| 6/11/2014 | 3 | 26 | 0 | 2 | 3 | 0 | 3 | 2 | 0 |  |  |  |
| 6/11/2014 | 3 | 27 | 0 | 1 | 3 | 1 | 1 | 4 | 0 |  |  |  |
| 6/11/2014 | 3 | 28 | 3 | 2 | 3 | 0 | 1 | 1 | 0 | 22.9 | 19.7 | x |
| 6/11/2014 | 3 | 29 | 0 | 4 | 2 | 1 | 2 | 1 | 0 |  |  |  |
| 6/11/2014 | 3 | 30 | 0 | 0 | 0 | 2 | 4 | 4 | 0 |  |  |  |
| 6/11/2014 | 3 | 31 | 2 | 0 | 2 | 0 | 3 | 0 | 3 |  |  |  |
| 6/11/2014 | 3 | 32 | 1 | 1 | 2 | 1 | 2 | 0 | 3 |  |  |  |
| 6/11/2014 | 3 | 33 | 0 | 0 | 3 | 0 | 6 | 0 | 1 |  |  |  |
| 6/11/2014 | 3 | 34 | 0 | 2 | 2 | 0 | 4 | 0 | 2 |  |  |  |
| 6/11/2014 | 3 | 35 | 0 | 0 | 1 | 0 | 2 | 5 | 2 |  |  |  |
| 6/11/2014 | 3 | 36 | 1 | 1 | 3 | 0 | 2 | 1 | 2 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\begin{gathered} \ddot{\Xi} \\ \hline \end{gathered}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | $\frac{\stackrel{2}{2}}{0}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$ | $\stackrel{N}{\stackrel{1}{2}}$ | $\frac{z}{z}$ | ช | O | 合 | sొ O | or | so |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/11/2014 | 3 | 37 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 25.8 | 20.9 | 18.1 |
| 6/11/2014 | 3 | 38 | 0 | 2 | 1 | 1 | 2 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 39 | 2 | 0 | 2 | 0 | 1 | 2 | 3 |  |  |  |
| 6/11/2014 | 3 | 40 | 2 | 0 | 1 | 0 | 2 | 2 | 3 |  |  |  |
| 6/11/2014 | 3 | 41 | 0 | 2 | 3 | 0 | 2 | 2 | 1 |  |  |  |
| 6/11/2014 | 3 | 42 | 0 | 2 | 0 | 2 | 3 | 3 | 0 |  |  |  |
| 6/11/2014 | 3 | 43 | 0 | 3 | 3 | 0 | 1 | 3 | 0 |  |  |  |
| 6/11/2014 | 3 | 44 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6/11/2014 | 3 | 45 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6/11/2014 | 3 | 46 | 0 | 5 | 1 | 0 | 4 | 0 | 0 | 21.4 | 20.9 | 17.6 |
| 6/11/2014 | 3 | 47 | 0 | 2 | 1 | 0 | 2 | 2 | 3 |  |  |  |
| 6/11/2014 | 3 | 48 | 0 | 4 | 1 | 0 | 4 | 1 | 0 |  |  |  |
| 6/11/2014 | 3 | 49 | 0 | 2 | 3 | 0 | 1 | 3 | 1 |  |  |  |
| 6/11/2014 | 3 | 50 | 0 | 3 | 2 | 2 | 1 | 1 | 1 |  |  |  |
| 6/11/2014 | 3 | 51 | 0 | 0 | 0 | 2 | 4 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 52 | 0 | 3 | 0 | 1 | 4 | 0 | 2 |  |  |  |
| 6/11/2014 | 3 | 53 | 0 | 5 | 2 | 0 | 2 | 1 | 0 |  |  |  |
| 6/11/2014 | 3 | 54 | 0 | 3 | 0 | 0 | 3 | 4 | 0 |  |  |  |
| 6/11/2014 | 3 | 55 | 5 | 0 | 0 | 0 | 3 | 2 | 0 | 19.9 | 23.4 | 17.2 |
| 6/11/2014 | 3 | 56 | 0 | 1 | 0 | 0 | 5 | 4 | 0 |  |  |  |
| 6/11/2014 | 3 | 57 | 1 | 0 | 1 | 0 | 6 | 1 | 1 |  |  |  |
| 6/11/2014 | 3 | 58 | 0 | 1 | 3 | 0 | 3 | 3 | 0 |  |  |  |
| 6/11/2014 | 3 | 59 | 0 | 1 | 1 | 0 | 3 | 3 | 2 |  |  |  |
| 6/11/2014 | 3 | 60 | 0 | 1 | 0 | 0 | 3 | 5 | 1 |  |  |  |
| 6/11/2014 | 3 | 61 | 0 | 1 | 2 | 1 | 2 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 62 | 0 | 2 | 2 | 0 | 5 | 0 | 1 |  |  |  |
| 6/11/2014 | 3 | 63 | 0 | 4 | 1 | 0 | 3 | 0 | 2 |  |  |  |
| 6/11/2014 | 3 | 64 | 0 | 1 | 0 | 0 | 6 | 1 | 2 | 25.2 | 22.1 | 17.2 |
| 6/11/2014 | 3 | 65 | 0 | 1 | 0 | 4 | 2 | 3 | 0 |  |  |  |
| 6/11/2014 | 3 | 66 | 0 | 5 | 2 | 0 | 0 | 1 | 2 |  |  |  |
| 6/11/2014 | 3 | 67 | 0 | 1 | 1 | 0 | 1 | 6 | 1 |  |  |  |
| 6/11/2014 | 3 | 68 | 0 | 1 | 2 | 0 | 3 | 4 | 0 |  |  |  |
| 6/11/2014 | 3 | 69 | 0 | 1 | 3 | 0 | 2 | 1 | 3 |  |  |  |
| 6/11/2014 | 3 | 70 | 1 | 1 | 1 | 0 | 2 | 2 | 3 |  |  |  |
| 6/11/2014 | 3 | 71 | 0 | 0 | 4 | 0 | 3 | 0 | 3 |  |  |  |
| 6/11/2014 | 3 | 72 | 0 | 0 | 5 | 0 | 1 | 0 | 4 |  |  |  |
| 6/11/2014 | 3 | 73 | 0 | 2 | 0 | 2 | 4 | 1 | 1 | 15.7 | 18.9 | 20.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| ジ̃ | $\begin{aligned} & \# \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & \text { 亿 } \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & i \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{m}}$ | ¢ | O | $\frac{\alpha}{\infty}$ | or | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6／11／2014 | 3 | 74 | 0 | 2 | 1 | 1 | 3 | 3 | 0 |  |  |  |
| 6／11／2014 | 3 | 75 | 0 | 0 | 3 | 0 | 3 | 3 | 1 |  |  |  |
| 6／11／2014 | 3 | 76 | 2 | 1 | 1 | 0 | 3 | 3 | 0 |  |  |  |
| 6／11／2014 | 3 | 77 | 0 | 3 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 6／11／2014 | 3 | 78 | 0 | 2 | 0 | 0 | 2 | 4 | 2 |  |  |  |
| 6／11／2014 | 3 | 79 | 0 | 0 | 1 | 2 | 0 | 4 | 3 |  |  |  |
| 6／11／2014 | 3 | 80 | 0 | 0 | 1 | 1 | 1 | 2 | 5 |  |  |  |
| 6／11／2014 | 3 | 81 | 0 | 0 | 6 | 0 | 1 | 0 | 3 |  |  |  |
| 6／11／2014 | 3 | 82 | 0 | 3 | 2 | 0 | 3 | 1 | 1 | 23.2 | 18.3 | 19.2 |
| 6／11／2014 | 3 | 83 | 0 | 0 | 2 | 0 | 3 | 4 | 1 |  |  |  |
| 6／11／2014 | 3 | 84 | 0 | 2 | 2 | 0 | 1 | 3 | 2 |  |  |  |
| 6／11／2014 | 3 | 85 | 1 | 0 | 3 | 0 | 2 | 3 | 1 |  |  |  |
| 6／11／2014 | 3 | 86 | 0 | 4 | 4 | 0 | 0 | 2 | 0 |  |  |  |
| 6／11／2014 | 3 | 87 | 1 | 2 | 1 | 0 | 3 | 1 | 2 |  |  |  |
| 6／11／2014 | 3 | 88 | 0 | 2 | 1 | 0 | 0 | 5 | 2 |  |  |  |
| 6／11／2014 | 3 | 89 | 0 | 1 | 0 | 1 | 0 | 4 | 4 |  |  |  |
| 6／11／2014 | 3 | 90 | 0 | 1 | 1 | 0 | 2 | 3 | 3 |  |  |  |
| 6／11／2014 | 3 | 91 | 0 | 4 | 1 | 0 | 3 | 1 | 1 | 24.3 | 22.2 | 18.5 |
| 6／11／2014 | 3 | 92 | 1 | 2 | 5 | 0 | 2 | 0 | 0 |  |  |  |
| 6／11／2014 | 3 | 93 | 1 | 0 | 4 | 0 | 3 | 1 | 1 |  |  |  |
| 6／11／2014 | 3 | 94 | 0 | 0 | 4 | 2 | 2 | 2 | 0 |  |  |  |
| 6／11／2014 | 3 | 95 | 0 | 1 | 3 | 0 | 1 | 2 | 3 |  |  |  |
| 6／11／2014 | 3 | 96 | 0 | 1 | 0 | 1 | 5 | 2 | 1 |  |  |  |
| 6／11／2014 | 3 | 97 | 0 | 4 | 0 | 0 | 1 | 5 | 0 |  |  |  |
| 6／11／2014 | 3 | 98 | 0 | 4 | 1 | 0 | 1 | 2 | 2 |  |  |  |
| 6／11／2014 | 3 | 99 | 0 | 2 | 1 | 1 | 2 | 3 | 1 |  |  |  |
| 6／11／2014 | 3 | 100 | 0 | 5 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 6／10／2014 | 4 | 1 | 2 | 2 | 2 | 0 | 1 | 3 | 0 |  |  |  |
| 6／10／2014 | 4 | 2 | 0 | 0 | 3 | 0 | 5 | 2 | 0 |  |  |  |
| 6／10／2014 | 4 | 3 | 1 | 0 | 5 | 0 | 1 | 3 | 0 |  |  |  |
| 6／10／2014 | 4 | 4 | 1 | 0 | 4 | 0 | 1 | 4 | 0 |  |  |  |
| 6／10／2014 | 4 | 5 | 0 | 0 | 3 | 0 | 1 | 6 | 0 |  |  |  |
| 6／10／2014 | 4 | 6 | 2 | 2 | 3 | 0 | 1 | 2 | 0 |  |  |  |
| 6／10／2014 | 4 | 7 | 1 | 0 | 3 | 0 | 4 | 2 | 0 |  |  |  |
| 6／10／2014 | 4 | 8 | 2 | 0 | 2 | 0 | 2 | 4 | 0 |  |  |  |
| 6／10／2014 | 4 | 9 | 2 | 1 | 5 | 0 | 2 | 0 | 0 |  |  |  |
| 6／10／2014 | 4 | 10 | 1 | 0 | 6 | 0 | 3 | 0 | 0 | 36.1 | 27.0 | 23.0 |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{y}{\tilde{\sigma}}$ | $\#$ <br> 5 <br> $\stackrel{3}{2}$ | $\begin{aligned} & \text { ت} \\ & \text { 苛 } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { x } \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{80} \\ & \stackrel{0}{0} \end{aligned}$ | $\begin{gathered} \stackrel{4}{2} \\ \underset{\sim}{2} \end{gathered}$ | $\frac{z}{\frac{z}{\infty}}$ | \% | O | 合 |  |  | oᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 4 | 11 | 2 | 3 | 1 | 0 | 4 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 12 | 0 | 1 | 5 | 0 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 13 | 0 | 0 | 2 | 0 | 2 | 6 | 0 |  |  |  |
| 6/10/2014 | 4 | 14 | 2 | 2 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 15 | 3 | 1 | 2 | 0 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 16 | 1 | 5 | 0 | 0 | 3 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 17 | 2 | 3 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 18 | 5 | 2 | 1 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 19 | 4 | 2 | 0 | 0 | 2 | 1 | 1 | 38.0 | 26.1 | 25.1 |
| 6/10/2014 | 4 | 20 | 0 | 2 | 6 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 21 | 2 | 4 | 2 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 22 | 2 | 3 | 0 | 0 | 1 | 3 | 1 |  |  |  |
| 6/10/2014 | 4 | 23 | 4 | 2 | 2 | 0 | 0 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 24 | 3 | 0 | 0 | 0 | 2 | 2 | 3 |  |  |  |
| 6/10/2014 | 4 | 25 | 0 | 1 | 5 | 0 | 1 | 0 | 3 |  |  |  |
| 6/10/2014 | 4 | 26 | 2 | 3 | 4 | 0 | 1 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 27 | 1 | 1 | 3 | 0 | 2 | 2 | 1 |  |  |  |
| 6/10/2014 | 4 | 28 | 0 | 3 | 2 | 0 | 2 | 1 | 2 | 31.5 | 33.1 | 25.0 |
| 6/10/2014 | 4 | 29 | 0 | 3 | 6 | 0 | 0 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 30 | 0 | 3 | 4 | 0 | 1 | 0 | 2 |  |  |  |
| 6/10/2014 | 4 | 31 | 0 | 6 | 3 | 0 | 1 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 32 | 4 | 0 | 4 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 33 | 2 | 2 | 4 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 34 | 4 | 0 | 4 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 35 | 1 | 0 | 5 | 0 | 4 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 36 | 0 | 3 | 5 | 0 | 1 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 37 | 4 | 0 | 4 | 0 | 1 | 1 | 0 | 33.7 | 24.8 | 22.5 |
| 6/10/2014 | 4 | 38 | 1 | 2 | 3 | 0 | 4 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 39 | 2 | 2 | 2 | 0 | 3 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 40 | 3 | 0 | 4 | 0 | 3 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 41 | 1 | 0 | 1 | 0 | 5 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 42 | 2 | 1 | 2 | 0 | 2 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 43 | 1 | 0 | 4 | 0 | 2 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 44 | 6 | 0 | 3 | 0 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 45 | 3 | 0 | 4 | 0 | 3 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 46 | 5 | 0 | 1 | 0 | 3 | 0 | 1 | 25.3 | 24.9 | 22.4 |
| 6/10/2014 | 4 | 47 | 5 | 1 | 2 | 0 | 1 | 1 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $$ | $\begin{gathered} \# \\ \stackrel{\#}{2} \\ 0 \\ 2 \end{gathered}$ |  |  | $\begin{aligned} & \stackrel{0}{0} \\ & \text { B } \\ & i n \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{2}{m}}$ | ช̛0 | O | $\frac{\sim}{\infty}$ |  |  | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 4 | 48 | 0 | 2 | 5 | 0 | 3 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 49 | 3 | 0 | 3 | 0 | 4 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 50 | 0 | 1 | 6 | 0 | 2 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 51 | 1 | 1 | 3 | 1 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 52 | 6 | 0 | 3 | 0 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 53 | 4 | 3 | 0 | 1 | 1 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 54 | 4 | 0 | 4 | 0 | 0 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 55 | 3 | 0 | 5 | 0 | 1 | 1 | 0 | 28.5 | 27.9 | 22.3 |
| 6/10/2014 | 4 | 56 | 0 | 2 | 3 | 0 | 5 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 57 | 1 | 1 | 4 | 0 | 2 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 58 | 2 | 0 | 6 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 59 | 0 | 1 | 7 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 60 | 3 | 2 | 4 | 0 | 0 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 61 | 2 | 0 | 1 | 0 | 3 | 0 | 4 |  |  |  |
| 6/10/2014 | 4 | 62 | 4 | 0 | 0 | 0 | 3 | 0 | 3 |  |  |  |
| 6/10/2014 | 4 | 63 | 1 | 0 | 5 | 0 | 0 | 0 | 4 |  |  |  |
| 6/10/2014 | 4 | 64 | 3 | 0 | 4 | 0 | 2 | 1 | 0 | 32.8 | 29.8 | 22.8 |
| 6/10/2014 | 4 | 65 | 3 | 0 | 4 | 0 | 0 | 1 | 2 |  |  |  |
| 6/10/2014 | 4 | 66 | 0 | 0 | 4 | 0 | 0 | 3 | 3 |  |  |  |
| 6/10/2014 | 4 | 67 | 1 | 0 | 6 | 0 | 2 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 68 | 1 | 0 | 5 | 0 | 4 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 69 | 1 | 0 | 1 | 0 | 1 | 4 | 3 |  |  |  |
| 6/10/2014 | 4 | 70 | 0 | 0 | 3 | 0 | 4 | 2 | 1 |  |  |  |
| 6/10/2014 | 4 | 71 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 72 | 3 | 0 | 0 | 0 | 4 | 2 | 1 |  |  |  |
| 6/10/2014 | 4 | 73 | 6 | 0 | 0 | 0 | 1 | 3 | 0 | 30.0 | 30.1 | 23.2 |
| 6/10/2014 | 4 | 74 | 6 | 0 | 0 | 0 | 3 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 75 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 76 | 5 | 0 | 0 | 0 | 2 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 77 | 3 | 0 | 1 | 0 | 6 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 78 | 4 | 0 | 0 | 4 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 79 | 4 | 0 | 3 | 0 | 2 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 80 | 4 | 0 | 4 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 81 | 3 | 0 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 6/10/2014 | 4 | 82 | 1 | 0 | 2 | 0 | 2 | 1 | 4 | 32.2 | 27.9 | 22.7 |
| 6/10/2014 | 4 | 83 | 5 | 0 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 84 | 0 | 0 | 0 | 0 | 3 | 3 | 4 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\pi}}{\tilde{\tilde{0}}}$ | $\begin{aligned} & \# \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & \approx \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & i \end{aligned}$ | $\begin{aligned} & \text { N1 } \\ & \stackrel{2}{2} \end{aligned}$ | $\frac{z}{\frac{2}{\infty}}$ | 令 | O | $\frac{\text { 南 }}{}$ | s̊ | or ơo | \& O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/10/2014 | 4 | 85 | 5 | 0 | 0 | 0 | 4 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 86 | 4 | 0 | 0 | 0 | 2 | 2 | 2 |  |  |  |
| 6/10/2014 | 4 | 87 | 3 | 0 | 0 | 0 | 2 | 4 | 1 |  |  |  |
| 6/10/2014 | 4 | 88 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 89 | 6 | 0 | 0 | 0 | 3 | 0 | 1 |  |  |  |
| 6/10/2014 | 4 | 90 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 91 | 4 | 0 | 0 | 0 | 5 | 0 | 1 | 33.1 | 26.1 | 21.1 |
| 6/10/2014 | 4 | 92 | 1 | 0 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 6/10/2014 | 4 | 93 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 6/10/2014 | 4 | 94 | 3 | 0 | 0 | 0 | 2 | 5 | 0 |  |  |  |
| 6/10/2014 | 4 | 95 | 1 | 0 | 0 | 0 | 3 | 6 | 0 |  |  |  |
| 6/10/2014 | 4 | 96 | 3 | 0 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 97 | 1 | 0 | 0 | 0 | 6 | 3 | 0 |  |  |  |
| 6/10/2014 | 4 | 98 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 99 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 6/10/2014 | 4 | 100 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 1 | 0 | 1 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 2 | 0 | 2 | 1 | 0 | 6 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 3 | 0 | 2 | 3 | 0 | 5 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 4 | 0 | 2 | 2 | 0 | 6 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 5 | 0 | 4 | 1 | 0 | 3 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 6 | 0 | 0 | 2 | 0 | 7 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 7 | 0 | 6 | 4 | 0 | 0 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 2 |  |  |  |
| 6/12/2014 | 5 | 9 | 0 | 9 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 10 | 0 | 7 | 0 | 0 | 0 | 1 | 2 |  |  |  |
| 6/12/2014 | 5 | 11 | 0 | 5 | 0 | 0 | 4 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 12 | 0 | 1 | 2 | 0 | 7 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 13 | 0 | 4 | 1 | 0 | 3 | 1 | 1 |  |  |  |
| 6/12/2014 | 5 | 14 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 15 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 16 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 17 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 6/12/2014 | 5 | 18 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 19 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 20 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 21 | 0 | 4 | 0 | 0 | 6 | 0 | 0 |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| ジٓ | $\begin{aligned} & \# \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$ |  | $\frac{\underset{\sim}{0}}{2}$ | $\begin{aligned} & 80 \\ & \stackrel{80}{0} \\ & i \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \stackrel{2}{2} \end{aligned}$ | $\frac{z}{\sim}$ | 寿 | $\bigcirc$ | $\frac{\text { 只 }}{}$ | o九运醇 | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6／12／2014 | 5 | 22 | 0 | 4 | 1 | 0 | 4 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 23 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 24 | 0 | 6 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 25 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6／12／2014 | 5 | 26 | 0 | 3 | 0 | 0 | 0 | 7 | 0 |  |  |  |
| 6／12／2014 | 5 | 27 | 0 | 2 | 0 | 0 | 0 | 8 | 0 |  |  |  |
| 6／12／2014 | 5 | 28 | 0 | 6 | 0 | 0 | 0 | 3 | 1 |  |  |  |
| 6／12／2014 | 5 | 29 | 0 | 6 | 0 | 0 | 0 | 2 | 2 |  |  |  |
| 6／12／2014 | 5 | 30 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 6／12／2014 | 5 | 31 | 0 | 4 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 32 | 0 | 5 | 1 | 1 | 3 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 33 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 34 | 0 | 8 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 35 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 36 | 0 | 8 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 37 | 0 | 6 | 1 | 0 | 3 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 38 | 0 | 8 | 0 | 0 | 0 | 0 | 2 |  |  |  |
| 6／12／2014 | 5 | 39 | 0 | 2 | 0 | 0 | 0 | 7 | 1 |  |  |  |
| 6／12／2014 | 5 | 40 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 6／12／2014 | 5 | 41 | 0 | 3 | 0 | 1 | 5 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 42 | 0 | 5 | 0 | 0 | 3 | 1 | 1 |  |  |  |
| 6／12／2014 | 5 | 43 | 0 | 7 | 0 | 0 | 1 | 1 | 1 |  |  |  |
| 6／12／2014 | 5 | 44 | 0 | 8 | 1 | 0 | 1 | 0 | 0 |  |  |  |
| 6／12／2014 | 5 | 45 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 46 | 0 | 5 | 0 | 0 | 2 | 2 | 1 |  |  |  |
| 6／12／2014 | 5 | 47 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 48 | 0 | 6 | 0 | 0 | 2 | 1 | 1 |  |  |  |
| 6／12／2014 | 5 | 49 | 0 | 8 | 0 | 0 | 1 | 1 | 0 |  |  |  |
| 6／12／2014 | 5 | 50 | 0 | 7 | 0 | 0 | 1 | 1 | 1 |  |  |  |
| 6／12／2014 | 5 | 51 | 0 | 0 | 1 | 0 | 4 | 0 | 5 |  |  |  |
| 6／12／2014 | 5 | 52 | 0 | 1 | 0 | 1 | 2 | 2 | 4 |  |  |  |
| 6／12／2014 | 5 | 53 | 0 | 4 | 1 | 0 | 0 | 0 | 5 |  |  |  |
| 6／12／2014 | 5 | 54 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 6／12／2014 | 5 | 55 | 0 | 5 | 0 | 0 | 0 | 3 | 2 |  |  |  |
| 6／25／2014 | 5 | 56 | 0 | 7 | 1 | 0 | 1 | 1 | 0 |  |  |  |
| 6／25／2014 | 5 | 57 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 6／25／2014 | 5 | 58 | 0 | 6 | 1 | 0 | 1 | 1 | 1 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| پ゙ँ | $\begin{aligned} & \# \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 흠 } \\ & \text { 和 } \end{aligned}$ | $\begin{aligned} & \text { ๙1 } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{0}{80} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ | $\frac{\sqrt[4]{2}}{2}$ | $\frac{z}{\frac{z}{n}}$ | \% | O | $\stackrel{\sim}{\sim}$ | ơ | or ỡ | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/25/2014 | 5 | 59 | 0 | 6 | 2 | 0 | 1 | 1 | 0 |  |  |  |
| 6/25/2014 | 5 | 60 | 0 | 7 | 1 | 0 | 0 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 61 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 62 | 0 | 9 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| 6/12/2014 | 5 | 63 | 0 | 6 | 3 | 0 | 1 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 64 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 65 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 66 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 67 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 68 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 69 | 0 | 5 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 70 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 6/25/2014 | 5 | 71 | 0 | 0 | 1 | 5 | 3 | 1 | 0 |  |  |  |
| 6/25/2014 | 5 | 72 | 0 | 4 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 6/25/2014 | 5 | 73 | 0 | 8 | 0 | 1 | 0 | 0 | 1 |  |  |  |
| 6/25/2014 | 5 | 74 | 0 | 7 | 0 | 1 | 2 | 0 | 0 |  |  |  |
| 6/25/2014 | 5 | 75 | 0 | 8 | 0 | 0 | 1 | 1 | 0 |  |  |  |
| 6/25/2014 | 5 | 76 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 6/25/2014 | 5 | 77 | 0 | 7 | 0 | 0 | 0 | 0 | 3 |  |  |  |
| 6/25/2014 | 5 | 78 | 0 | 7 | 0 | 0 | 1 | 1 | 1 |  |  |  |
| 6/25/2014 | 5 | 79 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 6/25/2014 | 5 | 80 | 0 | 5 | 0 | 0 | 3 | 1 | 1 |  |  |  |
| 6/12/2014 | 5 | 81 | 0 | 3 | 1 | 0 | 5 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 82 | 0 | 9 | 1 | 0 | 0 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 83 | 0 | 7 | 2 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 84 | 0 | 9 | 1 | 0 | 0 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 85 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 86 | 0 | 7 | 1 | 0 | 2 | 0 | 0 |  |  |  |
| 6/12/2014 | 5 | 87 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 6/12/2014 | 5 | 88 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 89 | 0 | 4 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 90 | 0 | 6 | 2 | 0 | 2 | 0 | 0 |  |  |  |
| 6/25/2014 | 5 | 91 | 0 | 10 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 6/25/2014 | 5 | 92 | 0 | 6 | 1 | 0 | 0 | 0 | 3 |  |  |  |
| 6/25/2014 | 5 | 93 | 0 | 8 | 0 | 0 | 1 | 0 | 1 |  |  |  |
| 6/25/2014 | 5 | 94 | 0 | 6 | 2 | 0 | 0 | 2 | 0 |  |  |  |
| 6/25/2014 | 5 | 95 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{y}{\square}$ | $\begin{aligned} & \text { \# } \\ & \stackrel{\square}{2} \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { an } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{80} \\ & \stackrel{0}{0} \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\underset{\sim}{n}}$ | ऊु | O | 씄 |  | or | ơ O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/25/2014 | 5 | 96 | 0 | 7 | 2 | 0 | 0 | 1 | 0 |  |  |  |
| 6/25/2014 | 5 | 97 | 0 | 7 | 2 | 0 | 0 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 98 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 6/12/2014 | 5 | 99 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6/12/2014 | 5 | 100 | 8 | 0 | 1 | 0 | 0 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 1 | 2 | 0 | 4 | 4 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 2 | 6 | 0 | 0 | 3 | 0 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 3 | 2 | 0 | 2 | 5 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 4 | 3 | 0 | 1 | 4 | 1 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 5 | 4 | 0 | 4 | 2 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 6 | 5 | 0 | 3 | 2 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 7 | 7 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 8 | 5 | 0 | 0 | 3 | 2 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 9 | 7 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 10 | 7 | 0 | 0 | 2 | 0 | 1 | 0 | 30.6 | 26.4 | 13.8 |
| 6/13/2014 | 6 | 11 | 4 | 0 | 1 | 1 | 0 | 1 | 3 |  |  |  |
| 6/13/2014 | 6 | 12 | 4 | 0 | 1 | 5 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 13 | 3 | 0 | 0 | 4 | 1 | 1 | 1 |  |  |  |
| 6/13/2014 | 6 | 14 | 4 | 0 | 2 | 1 | 2 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 15 | 3 | 0 | 4 | 3 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 16 | 7 | 0 | 1 | 0 | 2 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 17 | 5 | 0 | 0 | 0 | 2 | 0 | 3 |  |  |  |
| 6/13/2014 | 6 | 18 | 5 | 0 | 0 | 3 | 0 | 0 | 2 |  |  |  |
| 6/13/2014 | 6 | 19 | 4 | 0 | 0 | 6 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 20 | 5 | 0 | 0 | 5 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 21 | 2 | 0 | 0 | 8 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 22 | 5 | 0 | 0 | 3 | 1 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 23 | 3 | 0 | 1 | 1 | 3 | 2 | 0 |  |  |  |
| 6/13/2014 | 6 | 24 | 8 | 0 | 2 | 0 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 25 | 8 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 26 | 6 | 0 | 0 | 3 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 27 | 7 | 0 | 0 | 2 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 28 | 8 | 0 | 0 | 2 | 0 | 0 | 0 | 32.1 | 24.5 | 15.2 |
| 6/13/2014 | 6 | 29 | 3 | 0 | 3 | 3 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 30 | 1 | 0 | 2 | 5 | 1 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 31 | 1 | 0 | 0 | 4 | 3 | 1 | 1 |  |  |  |
| 6/13/2014 | 6 | 32 | 3 | 0 | 0 | 0 | 3 | 1 | 3 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\pi}}{\tilde{\tilde{0}}}$ | $\begin{aligned} & \# \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$ |  | $\begin{aligned} & \text { ar } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 80 \\ & \frac{80}{0} \\ & i \end{aligned}$ | $\begin{gathered} \sqrt[1]{2} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$ | $\frac{z}{\underset{\sim}{n}}$ | ¢ | O | $\frac{\text { 南 }}{}$ |  | or | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6/13/2014 | 6 | 33 | 1 | 0 | 0 | 5 | 2 | 2 | 0 |  |  |  |
| 6/13/2014 | 6 | 34 | 5 | 0 | 0 | 2 | 3 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 35 | 1 | 0 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 36 | 6 | 0 | 0 | 4 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 37 | 7 | 0 | 0 | 1 | 0 | 0 | 2 |  |  |  |
| 6/13/2014 | 6 | 38 | 7 | 0 | 0 | 2 | 0 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 39 | 7 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 40 | 9 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 41 | 2 | 0 | 0 | 4 | 3 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 42 | 1 | 0 | 1 | 1 | 4 | 1 | 2 |  |  |  |
| 6/13/2014 | 6 | 43 | 6 | 0 | 0 | 2 | 1 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 44 | 7 | 0 | 1 | 2 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 45 | 9 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 46 | 5 | 0 | 0 | 0 | 4 | 1 | 0 | 30.1 | 21.8 | 16.3 |
| 6/13/2014 | 6 | 47 | 9 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 48 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 49 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 50 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 51 | 3 | 0 | 1 | 3 | 0 | 1 | 2 |  |  |  |
| 6/13/2014 | 6 | 52 | 1 | 0 | 1 | 4 | 2 | 0 | 2 |  |  |  |
| 6/13/2014 | 6 | 53 | 7 | 0 | 0 | 2 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 54 | 6 | 0 | 0 | 3 | 0 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 55 | 4 | 0 | 0 | 4 | 1 | 0 | 1 |  |  |  |
| 6/13/2014 | 6 | 56 | 6 | 0 | 0 | 1 | 1 | 2 | 0 |  |  |  |
| 6/13/2014 | 6 | 57 | 5 | 0 | 0 | 2 | 1 | 0 | 2 |  |  |  |
| 6/13/2014 | 6 | 58 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 59 | 5 | 0 | 0 | 0 | 0 | 0 | 5 |  |  |  |
| 6/13/2014 | 6 | 60 | 7 | 0 | 0 | 2 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 61 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 6/13/2014 | 6 | 62 | 1 | 8 | 0 | 1 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 63 | 2 | 3 | 0 | 2 | 1 | 1 | 1 |  |  |  |
| 6/13/2014 | 6 | 64 | 5 | 0 | 0 | 3 | 2 | 0 | 0 | 32.4 | 23.9 | 14.0 |
| 6/13/2014 | 6 | 65 | 3 | 0 | 0 | 7 | 0 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 66 | 8 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 67 | 2 | 0 | 0 | 6 | 2 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 68 | 9 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 6/13/2014 | 6 | 69 | 8 | 0 | 0 | 2 | 0 | 0 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| ジٓ | $\begin{aligned} & \# \\ & \stackrel{\#}{2} \\ & 0 \\ & 2 \end{aligned}$ |  |  | $\begin{aligned} & 80 \\ & 8_{0}^{0} \\ & 0 \end{aligned}$ | $\stackrel{1}{2}$ | $\frac{z}{\frac{z}{\infty}}$ | 屎 | O | $\stackrel{\stackrel{x}{m}}{\infty}$ | sొ © | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6／13／2014 | 6 | 70 | 6 | 0 | 1 | 2 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 71 | 8 | 0 | 0 | 2 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 72 | 8 | 0 | 1 | 1 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 73 | 3 | 1 | 0 | 4 | 1 | 0 | 1 |  |  |  |
| 6／13／2014 | 6 | 74 | 5 | 1 | 0 | 3 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 75 | 7 | 1 | 0 | 1 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 76 | 6 | 0 | 0 | 1 | 3 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 77 | 4 | 0 | 0 | 5 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 78 | 8 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 79 | 7 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 80 | 9 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 81 | 7 | 0 | 0 | 3 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 82 | 8 | 0 | 0 | 1 | 1 | 0 | 0 | 28.1 | 19.9 | 12.6 |
| 6／13／2014 | 6 | 83 | 8 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 84 | 2 | 0 | 0 | 2 | 6 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 85 | 3 | 0 | 0 | 1 | 6 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 86 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 87 | 7 | 0 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 6／13／2014 | 6 | 88 | 4 | 0 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 89 | 0 | 0 | 0 | 9 | 0 | 0 | 1 |  |  |  |
| 6／13／2014 | 6 | 90 | 6 | 0 | 0 | 4 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 91 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 92 | 2 | 0 | 0 | 2 | 6 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 93 | 4 | 0 | 0 | 2 | 4 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 94 | 4 | 0 | 0 | 3 | 3 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 95 | 6 | 0 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 6／13／2014 | 6 | 96 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 6／13／2014 | 6 | 97 | 9 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 98 | 5 | 0 | 0 | 2 | 3 | 0 | 0 |  |  |  |
| 6／13／2014 | 6 | 99 | 3 | 0 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 6／13／2014 | 6 | 100 | 7 | 0 | 1 | 0 | 2 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 1 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7／22／2014 | 4 | 2 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 3 | 0 | 0 | 3 | 0 | 5 | 2 | 0 |  |  |  |
| 7／22／2014 | 4 | 4 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 5 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 6 | 5 | 2 | 0 | 0 | 3 | 0 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| 』ٌ̈ | $\begin{aligned} & \text { \# } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 흏 } \\ & \text { 苛 } \end{aligned}$ | $\frac{x_{0}^{2}}{0}$ | $\begin{aligned} & 80 \\ & \stackrel{0}{8} \\ & i \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{0}}$ | \% | O | $\stackrel{\sim}{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/22/2014 | 4 | 7 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 8 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 9 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 10 | 0 | 0 | 1 | 0 | 8 | 1 | 0 | 24.9 | 21.4 | 20.1 |
| 7/22/2014 | 4 | 11 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 12 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 13 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 14 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 15 | 2 | 0 | 3 | 0 | 5 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 16 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 17 | 0 | 4 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 18 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 19 | 0 | 1 | 0 | 0 | 8 | 1 | 0 | 30.3 | 19.7 | 19.9 |
| 7/22/2014 | 4 | 20 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 21 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 22 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 23 | 1 | 1 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 24 | 1 | 1 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 25 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 26 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 27 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 28 | 4 | 2 | 0 | 0 | 4 | 0 | 0 | 25.4 | 19.9 | 19.1 |
| 7/22/2014 | 4 | 29 | 0 | 0 | 0 | 0 | 9 | 0 | 1 |  |  |  |
| 7/22/2014 | 4 | 30 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 31 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 32 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 33 | 1 | 0 | 0 | 0 | 4 | 5 | 0 |  |  |  |
| 7/22/2014 | 4 | 34 | 0 | 1 | 4 | 0 | 5 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 35 | 1 | 2 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 36 | 1 | 1 | 2 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 37 | 2 | 0 | 1 | 0 | 7 | 0 | 0 | 27.3 | 19.4 | 19.9 |
| 7/22/2014 | 4 | 38 | 2 | 1 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 39 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 40 | 1 | 1 | 2 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 41 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 42 | 2 | 1 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 43 | 2 | 1 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 242 |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| ジँ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { ֵ} \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 80 \\ & 0 \\ & 0 \end{aligned}$ | $\stackrel{\Gamma}{2}$ | $\frac{z}{z}$ | ช | O | 号 | sొ © | or | \&ᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7／22／2014 | 4 | 44 | 3 | 1 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 45 | 1 | 0 | 2 | 0 | 7 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 46 | 1 | 0 | 1 | 0 | 7 | 1 | 0 | 24.7 | 20.1 | 19.6 |
| 7／22／2014 | 4 | 47 | 6 | 0 | 0 | 0 | 3 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 48 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 49 | 1 | 2 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 50 | 1 | 0 | 2 | 0 | 6 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 51 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 52 | 0 | 1 | 0 | 0 | 5 | 4 | 0 |  |  |  |
| 7／22／2014 | 4 | 53 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 54 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 55 | 1 | 1 | 0 | 0 | 8 | 0 | 0 | 26.5 | 19.4 | 20.6 |
| 7／22／2014 | 4 | 56 | 3 | 1 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 57 | 2 | 2 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 58 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 59 | 4 | 2 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 60 | 0 | 4 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 61 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 62 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 63 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 64 | 2 | 0 | 0 | 0 | 8 | 0 | 0 | 27.8 | 20.3 | 19.4 |
| 7／22／2014 | 4 | 65 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 66 | 2 | 0 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 67 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 68 | 2 | 2 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 69 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7／22／2014 | 4 | 70 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7／22／2014 | 4 | 71 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 72 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 73 | 5 | 0 | 0 | 0 | 5 | 0 | 0 | 26.9 | 23.9 | 19.9 |
| 7／22／2014 | 4 | 74 | 7 | 1 | 0 | 0 | 1 | 0 | 1 |  |  |  |
| 7／22／2014 | 4 | 75 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 76 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 77 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7／22／2014 | 4 | 78 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 79 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／22／2014 | 4 | 80 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\cong}{\tilde{\circ}}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { 几 } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{0}{0} \\ & \sim \end{aligned}$ | $\frac{1}{2}$ | $\frac{\text { z }}{\frac{2}{m}}$ | ¢ | O | $\stackrel{\sim}{0}$ | oొ O | or | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/22/2014 | 4 | 81 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7/22/2014 | 4 | 82 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 30.8 | 20.2 | 17.1 |
| 7/22/2014 | 4 | 83 | 1 | 1 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 84 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 85 | 0 | 0 | 0 | 0 | 6 | 4 | 0 |  |  |  |
| 7/22/2014 | 4 | 86 | 0 | 2 | 0 | 1 | 7 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 87 | 1 | 0 | 1 | 1 | 6 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 88 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 89 | 0 | 0 | 0 | 0 | 7 | 2 | 1 |  |  |  |
| 7/22/2014 | 4 | 90 | 0 | 1 | 1 | 0 | 8 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 91 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 28.7 | 22.6 | 19.8 |
| 7/22/2014 | 4 | 92 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 93 | 0 | 0 | 0 | 0 | 6 | 4 | 0 |  |  |  |
| 7/22/2014 | 4 | 94 | 0 | 0 | 0 | 0 | 8 | 1 | 1 |  |  |  |
| 7/22/2014 | 4 | 95 | 2 | 0 | 0 | 2 | 3 | 3 | 0 |  |  |  |
| 7/22/2014 | 4 | 96 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/22/2014 | 4 | 97 | 1 | 3 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 98 | 1 | 1 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/22/2014 | 4 | 99 | 2 | 1 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/22/2014 | 4 | 100 | 3 | 1 | 0 | 2 | 3 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 1 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 2 | 0 | 5 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 3 | 0 | 3 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 4 | 0 | 5 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 5 | 0 | 8 | 1 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 6 | 0 | 6 | 2 | 0 | 2 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 7 | 0 | 6 | 0 | 0 | 0 | 2 | 2 |  |  |  |
| 7/24/2014 | 5 | 8 | 0 | 3 | 0 | 0 | 2 | 4 | 1 |  |  |  |
| 7/24/2014 | 5 | 9 | 0 | 6 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 10 | 0 | 4 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 11 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 12 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 13 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 14 | 0 | 7 | 1 | 0 | 0 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 15 | 0 | 5 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 16 | 0 | 5 | 1 | 0 | 2 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 17 | 0 | 8 | 0 | 0 | 2 | 0 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\Xi}}{\square}$ | $\begin{aligned} & \text { \# } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\frac{a_{2}^{0}}{0}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{n}}$ |  | O | 呂 |  | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/24/2014 | 5 | 18 | 0 | 5 | 1 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 19 | 0 | 6 | 0 | 0 | 0 | 1 | 3 |  |  |  |
| 7/24/2014 | 5 | 20 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 21 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 22 | 0 | 1 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 7/24/2014 | 5 | 23 | 0 | 3 | 0 | 0 | 4 | 2 | 1 |  |  |  |
| 7/24/2014 | 5 | 24 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 25 | 0 | 5 | 0 | 0 | 1 | 4 | 0 |  |  |  |
| 7/24/2014 | 5 | 26 | 0 | 1 | 0 | 0 | 2 | 6 | 1 |  |  |  |
| 7/24/2014 | 5 | 27 | 0 | 2 | 0 | 0 | 3 | 5 | 0 |  |  |  |
| 7/24/2014 | 5 | 28 | 0 | 6 | 0 | 0 | 0 | 4 | 0 |  |  |  |
| 7/24/2014 | 5 | 29 | 0 | 3 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 30 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 31 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 32 | 1 | 2 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 33 | 0 | 8 | 0 | 0 | 0 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 34 | 0 | 4 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 35 | 0 | 4 | 2 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 36 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 37 | 0 | 4 | 1 | 0 | 4 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 38 | 0 | 6 | 1 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 39 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 40 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 41 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 42 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 43 | 0 | 3 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 44 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 45 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 46 | 0 | 3 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 47 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 48 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 49 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 50 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 51 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 52 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 53 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 54 | 0 | 9 | 0 | 0 | 0 |  | 1 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| ॐ̆ | $\begin{aligned} & \# \\ & 5 \\ & 6 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 훈 } \\ & \text { 采 } \end{aligned}$ | $\begin{aligned} & \text { ~ } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{n}}$ | ¢ | O | $\frac{\stackrel{\sim}{\infty}}{\infty}$ | $\text { so }{ }_{\text {O/j}}^{\substack{\circ}}$ | ore | oᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/24/2014 | 5 | 55 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 56 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 57 | 0 | 4 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 58 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 59 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 60 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 61 | 0 | 2 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 62 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 63 | 0 | 3 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 64 | 0 | 3 | 0 | 0 | 2 | 4 | 1 |  |  |  |
| 7/24/2014 | 5 | 65 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 66 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 67 | 0 | 8 | 0 | 0 | 1 | 0 | 1 |  |  |  |
| 7/24/2014 | 5 | 68 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 69 | 0 | 5 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 70 | 0 | 5 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 71 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 72 | 0 | 3 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 73 | 0 | 9 | 0 | 0 | 0 | 1 | 0 | 49.7 | 29.2 | 22.4 |
| 7/24/2014 | 5 | 74 | 0 | 6 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 75 | 0 | 6 | 0 | 0 | 1 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 76 | 0 | 8 | 0 | 0 | 1 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 77 | 0 | 6 | 0 | 0 | 3 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 78 | 0 | 6 | 0 | 0 | 3 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 79 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 80 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 81 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 82 | 0 | 7 | 0 | 0 | 0 | 3 | 0 | 31.0 | 24.9 | 19.2 |
| 7/24/2014 | 5 | 83 | 0 | 8 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 84 | 0 | 8 | 0 | 0 | 1 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 85 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 86 | 0 | 7 | 0 | 0 | 2 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 87 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 88 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 89 | 0 | 3 | 0 | 0 | 2 | 5 | 0 |  |  |  |
| 7/24/2014 | 5 | 90 | 0 | 7 | 1 | 0 | 0 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 91 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 30.1 | 24.8 | 19.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| ॐ̆ | $\begin{aligned} & \# \\ & 5 \\ & 6 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \frac{\alpha}{n} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{n}}$ | ¢ | O | $\frac{\stackrel{\sim}{\infty}}{\infty}$ | $\text { so }{ }_{\text {O/j}}^{\substack{\circ}}$ | ore | oᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/24/2014 | 5 | 92 | 0 | 6 | 0 | 0 | 3 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 93 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 94 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 95 | 0 | 9 | 0 | 0 | 1 | 0 | 0 |  |  |  |
| 7/24/2014 | 5 | 96 | 0 | 6 | 0 | 0 | 2 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 97 | 0 | 9 | 0 | 0 | 0 | 1 | 0 |  |  |  |
| 7/24/2014 | 5 | 98 | 0 | 7 | 0 | 0 | 0 | 3 | 0 |  |  |  |
| 7/24/2014 | 5 | 99 | 0 | 6 | 1 | 0 | 1 | 2 | 0 |  |  |  |
| 7/24/2014 | 5 | 100 | 0 | 6 | 2 | 0 | 0 | 2 | 0 |  |  |  |
| 7/23/2014 | 6 | 1 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 2 | 3 | 1 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 3 | 3 | 0 | 0 | 2 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 4 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 5 | 7 | 0 | 0 | 2 | 1 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 6 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 7 | 5 | 0 | 0 | 1 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 8 | 7 | 0 | 0 | 1 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 9 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 10 | 7 | 0 | 0 | 0 | 2 | 1 | 0 | 26.7 | 13.9 | 8.2 |
| 7/23/2014 | 6 | 11 | 3 | 1 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 12 | 1 | 0 | 0 | 1 | 6 | 1 | 1 |  |  |  |
| 7/23/2014 | 6 | 13 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 14 | 1 | 0 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 7/23/2014 | 6 | 15 | 6 | 0 | 0 | 2 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 16 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 17 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 18 | 4 | 0 | 0 | 1 | 3 | 2 | 0 |  |  |  |
| 7/23/2014 | 6 | 19 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 20 | 4 | 0 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 21 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 22 | 5 | 0 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 7/23/2014 | 6 | 23 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 24 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 25 | 6 | 0 | 0 | 1 | 2 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 26 | 5 | 0 | 0 | 1 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 27 | 7 | 0 | 0 | 1 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 28 | 6 | 0 | 0 | 0 | 4 | 0 | 0 | 37.3 | 16.6 | 12.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\cong}{\tilde{\circ}}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { 几1 } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{\text { z }}{\frac{2}{m}}$ | ¢ | O | 鲑 | or | or | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/23/2014 | 6 | 29 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 30 | 2 | 0 | 0 | 1 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 31 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 32 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 33 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 34 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 35 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 36 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 37 | 4 | 0 | 0 | 0 | 5 | 0 | 1 |  |  |  |
| 7/23/2014 | 6 | 38 | 4 | 0 | 0 | 1 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 39 | 5 | 0 | 0 | 1 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 40 | 1 | 0 | 0 | 2 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 41 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 42 | 2 | 0 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 43 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 44 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 45 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 46 | 3 | 0 | 0 | 0 | 5 | 2 | 0 | 26.9 | 16.5 | 12.6 |
| 7/23/2014 | 6 | 47 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 48 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 49 | 5 | 0 | 0 | 1 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 50 | 4 | 0 | 0 | 1 | 4 | 0 | 1 |  |  |  |
| 7/23/2014 | 6 | 51 | 1 | 1 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 52 | 3 | 2 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 53 | 1 | 0 | 0 | 2 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 54 | 3 | 0 | 0 | 1 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 55 | 3 | 0 | 0 | 1 | 4 | 2 | 0 |  |  |  |
| 7/23/2014 | 6 | 56 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 57 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 58 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 59 | 8 | 0 | 0 | 0 | 2 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 60 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 61 | 2 | 0 | 0 | 1 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 62 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/23/2014 | 6 | 63 | 1 | 0 | 0 | 1 | 8 | 0 | 0 |  |  |  |
| 7/23/2014 | 6 | 64 | 5 | 0 | 0 | 0 | 4 | 0 | 1 | 29.1 | 16.5 | 14.7 |
| 7/23/2014 | 6 | 65 | 7 | 0 | 0 | 1 | 2 | 0 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).


Table H.9. Data collected in 2014 for long-term climate change study (continued).

|  | $\begin{aligned} & \# \\ & \stackrel{\#}{0} \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & \text { 镸 } \\ & \text { 蕃 } \end{aligned}$ | $\begin{aligned} & \text { a } \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & i \end{aligned}$ | $\frac{\sqrt[1]{2}}{\underset{\sim}{2}}$ | $\frac{z}{\underset{\infty}{n}}$ | \% | O | $\stackrel{\stackrel{x}{m}}{\infty}$ | so | or | or O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/21/2014 | 1 | 3 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 4 | 5 | 4 | 0 | 0 | 0 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 5 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 6 | 3 | 0 | 0 | 1 | 6 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 7 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 8 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 9 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 10 | 2 | 0 | 0 | 0 | 8 | 0 | 0 | 8.1 | 9.7 | 15.3 |
| 7/21/2014 | 1 | 11 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 12 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 13 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 14 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 15 | 3 | 0 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 16 | 2 | 0 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 17 | 1 | 0 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 7/21/2014 | 1 | 18 | 1 | 0 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 19 | 5 | 0 | 0 | 0 | 3 | 2 | 0 | 8.3 | 7.9 | 12.00 |
| 7/21/2014 | 1 | 20 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 21 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 22 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 23 | 7 | 0 | 0 | 0 | 3 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 24 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 25 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 26 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 27 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 28 | 3 | 0 | 0 | 0 | 7 | 0 | 0 | 8.8 | 8.5 | 14.8 |
| 7/21/2014 | 1 | 29 | 4 | 0 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 30 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 31 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 32 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 33 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 34 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 35 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 36 | 2 | 0 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 37 | 4 | 0 | 0 | 0 | 5 | 1 | 0 | 8.9 | 9.6 | 14.1 |
| 7/21/2014 | 1 | 38 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 39 | 2 | 0 | 0 | 0 | 6 | 1 | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| $\stackrel{\ddot{\Xi}}{\square}$ | $\begin{aligned} & \# \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 흘 } \\ & \text { 镸 } \end{aligned}$ |  | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{n}}$ | 舟 | O | $\stackrel{\sim}{m}$ |  | ore | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/21/2014 | 1 | 40 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 41 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 42 | 4 | 0 | 0 | 0 | 3 | 3 | 0 |  |  |  |
| 7/21/2014 | 1 | 43 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 44 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 45 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 46 | 4 | 0 | 0 | 0 | 6 | 0 | 0 | 10.6 | 15.9 | 14.9 |
| 7/21/2014 | 1 | 47 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 48 | 2 | 0 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 49 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 50 | 2 | 0 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 51 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 52 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 53 | 1 | 0 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 54 | 3 | 0 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7/21/2014 | 1 | 55 | 4 | 0 | 0 | 0 | 5 | 1 | 0 | 12.5 | 15.2 | 15.5 |
| 7/21/2014 | 1 | 56 | 1 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 57 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 58 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 59 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 60 | 3 | 0 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7/21/2014 | 1 | 61 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 62 | 5 | 0 | 0 | 0 | 4 | 0 | 1 |  |  |  |
| 7/21/2014 | 1 | 63 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 64 | 2 | 0 | 0 | 0 | 4 | 4 | 0 | 15.5 | 13.6 | x |
| 7/21/2014 | 1 | 65 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 66 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 67 | 6 | 0 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 68 | 2 | 0 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7/21/2014 | 1 | 69 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 70 | 4 | 0 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 71 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/21/2014 | 1 | 72 | 4 | 0 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 73 | 4 | 0 | 0 | 0 | 5 | 1 | 0 | 14.4 | 15.1 | 12.7 |
| 7/21/2014 | 1 | 74 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/21/2014 | 1 | 75 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/21/2014 | 1 | 76 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| $\stackrel{\ddot{\Xi}}{\square}$ | $\stackrel{\#}{\#}$ | $\begin{aligned} & \text { 長 } \\ & \text { 部 } \end{aligned}$ | $\frac{2}{0}$ | $\begin{aligned} & 80 \\ & \stackrel{8}{0} \\ & \sim \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{n}}$ | 舟 | O | $\stackrel{\text { a }}{\sim}$ |  | ore | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7／21／2014 | 1 | 77 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7／21／2014 | 1 | 78 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 79 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 80 | 3 | 0 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 7／21／2014 | 1 | 81 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 82 | 1 | 0 | 0 | 0 | 9 | 0 | 0 | 14.2 | 16.9 | 16.6 |
| 7／21／2014 | 1 | 83 | 5 | 0 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7／21／2014 | 1 | 84 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7／21／2014 | 1 | 85 | 4 | 0 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 86 | 4 | 0 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／21／2014 | 1 | 87 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 88 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 89 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 90 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 91 | 2 | 0 | 0 | 0 | 7 | 1 | 0 | 13.6 | 14.9 | 13.1 |
| 7／21／2014 | 1 | 92 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 93 | 5 | 0 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 94 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／21／2014 | 1 | 95 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 96 | 2 | 0 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 97 | 3 | 0 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7／21／2014 | 1 | 98 | 4 | 0 | 0 | 0 | 5 | 0 | 1 |  |  |  |
| 7／21／2014 | 1 | 99 | 2 | 0 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7／21／2014 | 1 | 100 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／22／2014 | 2 | 1 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7／22／2014 | 2 | 2 | 1 | 0 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7／22／2014 | 2 | 3 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7／22／2014 | 2 | 4 | 0 | 1 | 0 | 0 | 4 | 5 | 0 |  |  |  |
| 7／22／2014 | 2 | 5 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7／22／2014 | 2 | 6 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7／22／2014 | 2 | 7 | 0 | 1 | 0 | 0 | 4 | 5 | 0 |  |  |  |
| 7／22／2014 | 2 | 8 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7／22／2014 | 2 | 9 | 0 | 1 | 0 | 0 | 6 | 3 | 0 |  |  |  |
| 7／22／2014 | 2 | 10 | 1 | 0 | 0 | 0 | 8 | 1 | 0 | 22.6 | 19.4 | 18.3 |
| 7／22／2014 | 2 | 11 | 0 | 0 | 0 | 0 | 7 | 2 | 1 |  |  |  |
| 7／22／2014 | 2 | 12 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7／22／2014 | 2 | 13 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

|  | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { N } \\ & \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & i n \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{\infty}}$ | ช | O | $\frac{\sim}{\sim}$ |  | or | oᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/22/2014 | 2 | 14 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/22/2014 | 2 | 15 | 1 | 1 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/22/2014 | 2 | 16 | 0 | 1 | 1 | 0 | 5 | 3 | 0 |  |  |  |
| 7/22/2014 | 2 | 17 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7/22/2014 | 2 | 18 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7/22/2014 | 2 | 19 | 1 | 0 | 0 | 0 | 5 | 4 | 0 | 22.7 | 18.5 | 16.5 |
| 7/22/2014 | 2 | 20 | 0 | 2 | 0 | 0 | 3 | 5 | 0 |  |  |  |
| 7/22/2014 | 2 | 21 | 1 | 2 | 1 | 0 | 6 | 0 | 0 |  |  |  |
| 7/22/2014 | 2 | 22 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7/22/2014 | 2 | 23 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7/22/2014 | 2 | 24 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/22/2014 | 2 | 25 | 0 | 2 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7/22/2014 | 2 | 26 | 0 | 3 | 1 | 0 | 5 | 1 | 0 |  |  |  |
| 7/22/2014 | 2 | 27 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/22/2014 | 2 | 28 | 1 | 1 | 1 | 0 | 6 | 1 | 0 | 23.6 | 18.4 | 16.6 |
| 7/22/2014 | 2 | 29 | 0 | 2 | 1 | 0 | 6 | 1 | 0 |  |  |  |
| 7/22/2014 | 2 | 30 | 0 | 0 | 0 | 0 | 6 | 4 | 0 |  |  |  |
| 7/23/2014 | 2 | 31 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 32 | 0 | 1 | 1 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 33 | 1 | 2 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 7/23/2014 | 2 | 34 | 0 | 5 | 1 | 0 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 35 | 1 | 2 | 1 | 0 | 5 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 36 | 0 | 0 | 1 | 0 | 8 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 37 | 1 | 3 | 0 | 0 | 5 | 1 | 0 | 25.3 | 17.8 | x |
| 7/23/2014 | 2 | 38 | 0 | 2 | 1 | 7 | 0 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 39 | 1 | 2 | 2 | 0 | 3 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 40 | 1 | 0 | 1 | 0 | 5 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 41 | 1 | 2 | 1 | 0 | 4 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 42 | 0 | 1 | 1 | 0 | 5 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 43 | 1 | 1 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 44 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 45 | 0 | 2 | 1 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 46 | 0 | 2 | 0 | 0 | 6 | 2 | 0 | 29.8 | 18.1 | 17.6 |
| 7/23/2014 | 2 | 47 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 48 | 2 | 0 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 49 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 50 | 0 | 3 | 0 | 0 | 5 | 2 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

|  | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { xu} \\ & 0 \\ & 2 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & i n \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{\infty}}$ | ช | O | $\frac{\alpha}{\infty}$ |  | ore | oᄋ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/23/2014 | 2 | 51 | 0 | 3 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 52 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 53 | 3 | 0 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 54 | 0 | 1 | 0 | 0 | 3 | 6 | 0 |  |  |  |
| 7/23/2014 | 2 | 55 | 0 | 1 | 1 | 0 | 6 | 2 | 0 | 28.6 | 18.0 | 17.0 |
| 7/23/2014 | 2 | 56 | 0 | 1 | 2 | 0 | 4 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 57 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 58 | 1 | 0 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 59 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 60 | 1 | 2 | 0 | 0 | 5 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 61 | 1 | 1 | 2 | 0 | 4 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 62 | 4 | 1 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 63 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 64 | 2 | 2 | 0 | 0 | 3 | 3 | 0 | 27.3 | 21.7 | x |
| 7/23/2014 | 2 | 65 | 0 | 0 | 0 | 0 | 8 | 1 | 1 |  |  |  |
| 7/23/2014 | 2 | 66 | 1 | 3 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 67 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 68 | 2 | 0 | 1 | 0 | 5 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 69 | 1 | 0 | 0 | 0 | 5 | 4 | 0 |  |  |  |
| 7/23/2014 | 2 | 70 | 1 | 3 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 71 | 0 | 2 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 72 | 0 | 0 | 2 | 0 | 4 | 4 | 0 |  |  |  |
| 7/23/2014 | 2 | 73 | 1 | 4 | 0 | 0 | 5 | 0 | 0 | 24.5 | 20.2 | 18.0 |
| 7/23/2014 | 2 | 74 | 1 | 3 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 75 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 76 | 3 | 1 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 77 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 78 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 79 | 2 | 1 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 80 | 2 | 0 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 81 | 0 | 0 | 1 | 0 | 8 | 0 | 1 |  |  |  |
| 7/23/2014 | 2 | 82 | 0 | 3 | 0 | 0 | 7 | 0 | 0 | 25.0 | 16.3 | 13.7 |
| 7/23/2014 | 2 | 83 | 0 | 1 | 0 | 0 | 6 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 84 | 1 | 1 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 85 | 2 | 2 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 86 | 3 | 2 | 0 | 0 | 3 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 87 | 0 | 3 | 0 | 0 | 5 | 2 | 0 |  |  |  |

Table H.9. Data collected in 2014 for long-term climate change study (continued).

| 』ٌ̈ | $\begin{aligned} & \text { \# } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ |  | $\frac{\tilde{n}_{1}^{0}}{2}$ | $\begin{aligned} & 80 \\ & 80 \\ & 0 \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{m}}$ | 웅 | O | 呪 | of © ờ O | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/23/2014 | 2 | 88 | 1 | 2 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7/23/2014 | 2 | 89 | 1 | 1 | 1 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 90 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 91 | 1 | 0 | 0 | 0 | 8 | 1 | 0 | 25.6 | 18.9 | 16.5 |
| 7/23/2014 | 2 | 92 | 1 | 0 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 93 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 94 | 3 | 0 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 95 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 96 | 3 | 1 | 0 | 0 | 2 | 4 | 0 |  |  |  |
| 7/23/2014 | 2 | 97 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/23/2014 | 2 | 98 | 2 | 1 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7/23/2014 | 2 | 99 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 2 | 100 | 1 | 1 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7/23/2014 | 3 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/23/2014 | 3 | 2 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 3 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 4 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 5 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 6 | 0 | 2 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7/23/2014 | 3 | 7 | 0 | 5 | 0 | 0 | 4 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 8 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7/23/2014 | 3 | 9 | 0 | 1 | 0 | 0 | 8 | 0 | 1 |  |  |  |
| 7/23/2014 | 3 | 10 | 0 | 0 | 0 | 0 | 6 | 2 | 2 | 26.2 | 20.3 | 17.4 |
| 7/23/2014 | 3 | 11 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7/23/2014 | 3 | 12 | 0 | 2 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7/23/2014 | 3 | 13 | 0 | 6 | 0 | 0 | 4 | 0 | 0 |  |  |  |
| 7/23/2014 | 3 | 14 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7/23/2014 | 3 | 15 | 0 | 4 | 0 | 0 | 5 | 0 | 1 |  |  |  |
| 7/23/2014 | 3 | 16 | 0 | 2 | 0 | 0 | 6 | 1 | 1 |  |  |  |
| 7/23/2014 | 3 | 17 | 0 | 1 | 0 | 0 | 6 | 2 | 1 |  |  |  |
| 7/23/2014 | 3 | 18 | 0 | 4 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7/23/2014 | 3 | 19 | 0 | 0 | 0 | 0 | 7 | 2 | 1 | 19.7 | 17.8 | 17.7 |
| 7/23/2014 | 3 | 20 | 0 | 2 | 0 | 0 | 3 | 4 | 1 |  |  |  |
| 7/23/2014 | 3 | 21 | 0 | 4 | 0 | 0 | 5 | 0 | 1 |  |  |  |
| 7/23/2014 | 3 | 22 | 0 | 3 | 0 | 0 | 3 | 2 | 2 |  |  |  |
| 7/23/2014 | 3 | 23 | 0 | 0 | 0 | 0 | 8 | 1 | 1 |  |  |  |
| 7/23/2014 | 3 | 24 | 1 | 0 | 0 | 0 | 7 | 1 | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| 』ٌ̈ | $\begin{aligned} & \text { \# } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 䍖 } \\ & \text { ة } \end{aligned}$ | $\begin{aligned} & \text { an } \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{8}{80} \\ & \stackrel{0}{0} \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{m}}$ | 舟 | O | 呪 | of © ờ O | or | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7／23／2014 | 3 | 25 | 1 | 3 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／23／2014 | 3 | 26 | 0 | 0 | 0 | 0 | 6 | 4 | 0 |  |  |  |
| 7／23／2014 | 3 | 27 | 0 | 1 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 7／23／2014 | 3 | 28 | 0 | 3 | 0 | 0 | 6 | 0 | 1 | 21.7 | 17.1 | 16.3 |
| 7／23／2014 | 3 | 29 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／23／2014 | 3 | 30 | 0 | 2 | 0 | 0 | 6 | 1 | 1 |  |  |  |
| 7／23／2014 | 3 | 31 | 0 | 3 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7／23／2014 | 3 | 32 | 0 | 4 | 0 | 0 | 3 | 2 | 1 |  |  |  |
| 7／23／2014 | 3 | 33 | 0 | 4 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／23／2014 | 3 | 34 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／23／2014 | 3 | 35 | 0 | 8 | 0 | 0 | 1 | 1 | 0 |  |  |  |
| 7／23／2014 | 3 | 36 | 0 | 6 | 0 | 0 | 2 | 1 | 1 |  |  |  |
| 7／23／2014 | 3 | 37 | 0 | 6 | 0 | 0 | 4 | 0 | 0 | 24.9 | 17.1 | 15.2 |
| 7／23／2014 | 3 | 38 | 0 | 6 | 0 | 0 | 2 | 1 | 1 |  |  |  |
| 7／23／2014 | 3 | 39 | 1 | 3 | 0 | 0 | 4 | 2 | 0 |  |  |  |
| 7／23／2014 | 3 | 40 | 0 | 1 | 0 | 0 | 6 | 2 | 1 |  |  |  |
| 7／23／2014 | 3 | 41 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7／23／2014 | 3 | 42 | 0 | 0 | 0 | 0 | 7 | 1 | 2 |  |  |  |
| 7／23／2014 | 3 | 43 | 0 | 2 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7／23／2014 | 3 | 44 | 0 | 5 | 0 | 0 | 5 | 0 | 0 |  |  |  |
| 7／23／2014 | 3 | 45 | 0 | 3 | 0 | 0 | 5 | 1 | 1 |  |  |  |
| 7／23／2014 | 3 | 46 | 0 | 4 | 0 | 0 | 5 | 1 | 0 | 22.4 | 23.2 | 20.4 |
| 7／23／2014 | 3 | 47 | 0 | 2 | 0 | 0 | 5 | 2 | 1 |  |  |  |
| 7／23／2014 | 3 | 48 | 0 | 1 | 0 | 0 | 6 | 1 | 2 |  |  |  |
| 7／23／2014 | 3 | 49 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／23／2014 | 3 | 50 | 0 | 7 | 0 | 0 | 1 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 51 | 0 | 1 | 0 | 0 | 9 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 52 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 53 | 0 | 2 | 0 | 0 | 6 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 54 | 0 | 3 | 0 | 0 | 6 | 0 | 1 |  |  |  |
| 7／24／2014 | 3 | 55 | 0 | 3 | 0 | 0 | 7 | 0 | 0 | 28.7 | 23.1 | 18.8 |
| 7／24／2014 | 3 | 56 | 0 | 3 | 0 | 0 | 4 | 3 | 0 |  |  |  |
| 7／24／2014 | 3 | 57 | 0 | 1 | 0 | 0 | 6 | 3 | 0 |  |  |  |
| 7／24／2014 | 3 | 58 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 59 | 1 | 1 | 0 | 0 | 4 | 4 | 0 |  |  |  |
| 7／24／2014 | 3 | 60 | 0 | 3 | 0 | 0 | 3 | 4 | 0 |  |  |  |
| 7／24／2014 | 3 | 61 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| ジँ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 長 } \\ & \text { 部 } \end{aligned}$ | $\frac{x_{2}^{1}}{0}$ | $\begin{aligned} & 80 \\ & \stackrel{80}{0} \\ & 0 \end{aligned}$ | $\frac{1}{2}$ | $\frac{z}{\frac{z}{m}}$ | 응 | O | $\stackrel{\sim}{0}$ | sొ | or ỡ Ô |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7／24／2014 | 3 | 62 | 0 | 4 | 0 | 0 | 6 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 63 | 0 | 0 | 0 | 0 | 8 | 1 | 1 |  |  |  |
| 7／24／2014 | 3 | 64 | 0 | 3 | 0 | 0 | 6 | 1 | 0 | 22.5 | 16.6 | 14.9 |
| 7／24／2014 | 3 | 65 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 66 | 0 | 1 | 0 | 0 | 5 | 3 | 1 |  |  |  |
| 7／24／2014 | 3 | 67 | 0 | 2 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7／24／2014 | 3 | 68 | 0 | 2 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 69 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 70 | 0 | 0 | 0 | 0 | 6 | 4 | 0 |  |  |  |
| 7／24／2014 | 3 | 71 | 0 | 0 | 0 | 0 | 9 | 0 | 1 |  |  |  |
| 7／24／2014 | 3 | 72 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 73 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 19.0 | 16.8 | 15.5 |
| 7／24／2014 | 3 | 74 | 0 | 4 | 0 | 0 | 5 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 75 | 1 | 1 | 0 | 0 | 7 | 0 | 1 |  |  |  |
| 7／24／2014 | 3 | 76 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 77 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 78 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 79 | 0 | 0 | 0 | 0 | 8 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 80 | 0 | 2 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 81 | 0 | 3 | 0 | 0 | 6 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 82 | 0 | 1 | 0 | 0 | 8 | 1 | 0 | 21.0 | 18.0 | 14.7 |
| 7／24／2014 | 3 | 83 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 84 | 0 | 1 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 7／24／2014 | 3 | 85 | 0 | 3 | 0 | 0 | 7 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 86 | 0 | 2 | 0 | 0 | 5 | 3 | 0 |  |  |  |
| 7／24／2014 | 3 | 87 | 0 | 0 | 0 | 0 | 7 | 2 | 1 |  |  |  |
| 7／24／2014 | 3 | 88 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 89 | 0 | 1 | 0 | 0 | 7 | 2 | 0 |  |  |  |
| 7／24／2014 | 3 | 90 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 91 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 25.0 | 19.5 | 15.6 |
| 7／24／2014 | 3 | 92 | 0 | 2 | 0 | 0 | 8 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 93 | 0 | 2 | 0 | 0 | 5 | 1 | 2 |  |  |  |
| 7／24／2014 | 3 | 94 | 0 | 1 | 0 | 0 | 8 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 95 | 0 | 0 | 0 | 0 | 7 | 3 | 0 |  |  |  |
| 7／24／2014 | 3 | 96 | 1 | 0 | 0 | 0 | 7 | 1 | 1 |  |  |  |
| 7／24／2014 | 3 | 97 | 0 | 0 | 0 | 0 | 10 | 0 | 0 |  |  |  |
| 7／24／2014 | 3 | 98 | 0 | 3 | 0 | 0 | 5 | 2 | 0 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Table H．9．Data collected in 2014 for long－term climate change study（continued）．

| $\stackrel{0}{\check{\circ}}$ | $\begin{aligned} & \# \\ & 5 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { ت} \\ & \text { 菏 } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { N1 } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \stackrel{0}{00} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | $\frac{\sqrt[4]{2}}{\underset{\sim}{2}}$ | $$ | 尽 | O | 品 |  |  | or |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7／24／2014 | 3 | 99 | 0 | 0 | 0 | 0 | 9 | 1 | 0 |  |  |  |
| 7／24／2014 | 3 | 100 | 0 | 2 | 0 | 0 | 7 | 1 | 0 |  |  |  |

# APPENDIX I. RESEARCH PERMIT FOR CHAPTER FIVE OF THE DISSERTATION. 

## PERMIT WAS ISSUED BY THE NATURE CONSERVANCY



May 21, 2014
Steven Travers
NDSU
1340 Bolley Drive
Steven 218
Fargo, ND 58102
RE: Long term monitoring of species abundance in the tallgrass prairie of Minnesota
This Research Permit ("Permit") serves as permission for you to conduct research on the long term monitoring of species abundance in the tallgrass prairie of Minnesota , as described in the attached Permit Application (the "Research") at the following TNC Preserve: Bluestem Prairie SNA (the "Preserve"). Since Bluestem Prairie is also a Scientific and Natural Area, you will need a separate permit from the Minnesota Department of Natural Resources. Please call or e-mail Mark Cleveland, DNR Scientific and Natural Areas Management Coordinator, at 651-259-5094 or mark.cleveland@ state.mn.us regarding this separate permit. The Research is subject to the following requirements:

1. Contact stewardship staff (listed below) before entering the Preserve to avoid conflicts with stewardship management activities such as prescribed burning.
2. If you have questions about the Preserve' management history or planned management activities (e.g. prescribed fire, weed control, mowing), please feel free to contact Matt Mecklenburg, Land Steward at 218-498-2679.
3. The Research must be completed by August 15, 2014. Research activities and sampling methods will be carried out as outlined in the attached Permit Application. All field markers, equipment, and other materials must be removed from the Preserve by this date.
4. Minimize the spread of invasive species while conducting the Research (Please refer to http://mipn.org/prevention.html for helpful tips and information from the Midwest Invasive Plant Network).
5. No vehicles may be driven on the Preserve.
6. Carry this letter while on the Preserve - with an attached copy of your Permit Application- and extend courtesy to other site visitors, explaining the Research when necessary.
7. You and/or your assistants are using the Preserve at your own risk. You agree to take all necessary safety precautions to protect yourself, your assistants, and other Preserve visitors. The Conservancy makes no warranties or representations concerning the suitability of the Preserve for any purpose. You hereby indemnify the Conservancy against any loss or damage arising from your presence on the Preserve.
8. Acknowledge The Nature Conservancy in any presentations or publications generated by this work.
9. Submit electronic copies of: a preliminary research summary by December 31, 2014, and a final report upon completion of your work, to jpastika@tnc.org and mcornett@tnc.org. Include maps and spatial data with your report. We would also appreciate receiving a copy of any future peer-reviewed publications that summarize work conducted on our lands - in pdf format if possible.
10. The Conservancy may terminate this Permit at any time upon two weeks written notice. In addition, if you default in performance of this Permit, whether for circumstances within or beyond your control, the Conservancy may immediately terminate this Permit by written notice to you.
11. This Permit is not effective until you sign and date below to acknowledge your agreement with the terms and conditions set forth in this Permit.

If you have any questions or comments about this permit, please feel free to call me at 218-727-6119
Sincerely,

```
MyedinW,Come&A
```


## Meredith Cornett

Director of Conservation Science, TNC
ec/cc: Brian Winter, Matt Mecklenburg, Marissa Ahlering, Mark Cleveland
I agree to abide by the terms and conditions set forth in this Research Permit
_Steven Travers $\qquad$ _ $5 / 24 / 2014$ $\qquad$ Signature

Date
Steven Travers $\qquad$
$\overline{\text { Print }}$ Name

# APPENDIX J. RESEARCH PERMIT FOR CHAPTER FIVE OF THE DISSERTATION. 

THE PERMIT WAS ISSUED BY THE DEPARTMENT OF THE NATURAL

RESOURCES FOR THE SCIENTIFIC AND NATURAL AREA


## STATE OF MINNESOTA <br> DEPARTMENT OF NATURAL RESOURCES <br> DIVISION OF ECOLOGICAL SERVICES <br> SCIENTIFIC AND NATURAL AREAS PROGRAM

SPECIAL PERMIT NUMBER: 2013-25R
SCIENTIFIC AND NATURAL AREAS: Bluestem Prairie Sclentific and Natural Area
DATE: May 13, 2014
By virtue of the authority conferred on me by the Commissioner of Natural Resources relative to Sclentifc and Natural Areas, I grant permission to:

Name of Principal Investgator: Steve Travers
North Dakota State Unlverslty, Department of Blological Sclences
1340 Bolley Drive, Stevens 218, Fargo, ND 58102
Work Telephone: 701-231-9435 E-mal: Steven.travers/9ndsu.edu
Experience in Research Area: Career in field ecology starting In 1990
Field Crew Members: Designated field assistants
to enter upon the above Sclentific and Natural Areas (SNAs) for the purpose of Long term monitoring of specles abundance in the tallgrass prairie.
It is understood that the above named person has a clear understanding of the purpose and long-term goal of state Sclentific and Natural Areas. In keeping with this purpose, they shall always conduct thelr activtles in a manner that is least dlisruptive to the on-going natural processes of these areas. Permission must be recelved from the SNA Program it the permilee desires or anticipates deviating from this permil. In addition, the following conditions are placed on the proposal submitted:

1. This permit must be amended to include the names of any additional personnel, volunteers or contractors before they can collect specimens under this permit.
2. All work shal be done to prevent the inadvertent transport of Invaslve specles with adherence to DNR Operational Order \# 113 and Division of Ecological Resources Op. Order 113, Divislonal Guidellnes.
3. State listed endangered or threatened specles may only be collected under the special permit from the DNR's Divilion of Ecologlcal Resources. Please contact Richard Baker, Minnesota Endangered Specles Coordinator, MNDNR. He can be reached by phone ( $651-259-5073$ ) or by e-mal (richard, bakengednr slate mn.us).
4. No motorized vehicle (other than the helcopters) may be used within the SNA boundary.
5. Trampling of vegetation shall be avoided.
6. Flags used to mark plants, plots, or other features will be removed from the she upon completion of the study.
7. Please carry this permit whle on the SNA and extend courtesy to any other site visitors, explaining this research work when necessary.
8. The researchers will consult with SNA Speclalst, Shelley Hedtke (Phone \# 218-739-7576 ex. 262) (emall shelley.hectke@statemn.us).
9. Please acknowledge the Minnesota DNR, Sclentinc and Natural Areas Program in any articles and presentations concerning thls research.
10. Please submit electronicaly a copy of the list of specimens colected by December 31, 2014 to mank.clevelandosstate.mn.us. This list should specity the disposition of al specimens and include maps, GPS points, or other information on location of the collections of each specles. We would also appreclate recelving a copy of any future peer-revlewed publicatons that summarize work conducted on our lands - In poff format if posslble. If for any reason you do not do any work under thls research permit, please nouty us.

As with all SNA/s), the sites you have selected may be subject to planned management activities (e.g. brush and tree removal, prescribed burns, seed harvest, etc) during the duration of your permitted actuitles. Please contact the SNA Program with questions or concerns: (telephone) 651-259-5094, (e-mal) mark.cievelandigstate.mn.u5.

This permit is valid from the date of issuance through December 31, 2014 and may be revoked at any time to protect the resources of the SNA upon verbal or written communication. Upon request, this permit may be renewed for 2015.

By


Ann Pierce, Manager, Ecosystem Management and Protection Services Section
Division of Ecological \& Water Resources
500 Lafayette Rd., Box 25
St. Paul, MN 55155-4025

This SCIENTIFIC AND NATURAL AREA was established to protect and perpetuate Minnesota's rare and unique natural resources for nature observation, education and research purposes.
Principal activities which are UNLAWFUL in the use of this area are listed below:

* Collecting plants, animals, rocks or fossils
* Camping. picnicking, and swimming
* Horses, dogs, and other pets
* Snowmobiles and other motorized vehicles
* Hunting, trapping, fishing and boating
* Entry into restricted areas and sanctuaries


[^0]:    ${ }^{1}$ Lauren Dennhardt wrote at least a third and formatted two out of three graphics. Edited and prepared for publication. Figure 2.2 was modified slightly in order to provide data for chapter four. Published in Invasive Plant Science and Management (Appendix 2.1).

[^1]:    ${ }^{2}$ Lauren Dennhardt was the primary author, wrote the entire manuscript, collected and analyzed the data, prepared the manuscript for publication, and submitted the manuscript. Published in Weed Science (Appendix F).

[^2]:    ${ }^{3}$ Lauren Dennhardt wrote this manuscript, prepared the experimental design, organized field assistants, conducted the analysis, prepared graphs, and prepared the manuscript for publication. Other authors provided field assistance and editing help.

