
DYE DECOLOURIZATION BY IMMOBILIZED LACCASE AND

IMPACT OF AUXILIARY CHEMICALS ON DYE

DECOLOURIZATION

by

PAUL -PHILIPPE CHAMPAGNE

A thesis submitted to the

Department of Chemical Engineering

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

June 2009

Copyright c© Paul-Philippe Champagne, 2009



Abstract

Textile dyes are molecules designed to impart a permanent colour to textile fabrics. They

pose an environmental problem because they are toxic and they decrease the aesthetic value

of rivers and lakes. Current technologies for dye removal cannot remove all classes of dyes

and two or more technologies are usually combined to achieve statisfactory decolouriza-

tion efficiencies. Lignin-degrading enzymes like laccases are potential technologies for

dye decolourization and decolourization with immobilized laccase has been intensively in-

vestigated. The majority of those studies however have focused on dye disappearance and

several reported that significant dye adsorption had occured during the dye removal, mak-

ing the role of the enzyme unclear. Moreover, textile wastewaters contain auxiliary chem-

icals that can impact enzymatic dye decolourization and very few studies have evaluated

the impact of those substances on laccase. This research evaluated the feasibility of treat-

ing dye-contaminated textile wastewaters with an immobilized laccase system. The first

sub-objective was to examined the decolourization of Reactive blue 19 (an anthraquinone

dye) by Trametes versicolor laccase immobilized on controlled porosity carrier (CPC) sil-

ica beads and the second was to analyze the kinetic effects of a non-ionic surfactant Merpol,

sodium sulfate, and sodium chloride on laccase decolourization of Reactive blue 19. De-

colourization of Reactive blue 19 by immobilized laccase was mainly enzymatic although

dye some adsorption occurred. Decolourization led to less toxic by-products from azo and
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indigoid dyes whereas increased toxicity was observed for anthraquinone dyes. The fea-

sibility of immobilizing laccase on poly(methyl methacrylate) (PMMA) through its sugar

residues with a simple procedure was demonstrated and the mass of enzyme immobilized

compared well with other commercial acrylic supports. The decolorization of Reactive

blue 19 by laccase was inhibited by the non-ionic surfactant, Merpol by substrate deple-

tion. A model describing this inhibition was developed and was validated by a saturated

equilibrium binding experiment. While sodium sulfate (ionic strength) had no effect on ei-

ther ABTS oxidation or dye decolourization, sodium chloride inhibited laccase during dye

decolourization and the type and nature of the inhibition depended on the substrate. With

ABTS, the inhibition was hyperbolic non-competitive whereas it was parabolic mixed with

Reactive blue 19.
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Chapter 1

Introduction

Textiles dyes are poly-aromatic molecules that give a permanently color to materials like

textile fabrics (Vandevivereet al., 1998; of public works and government services Canada,

2001). Approximately 50,000 tons of dyes per year is loss to the environment world-

wide (Lewis, 1999) and Canada releases 500 tons per year mainly in the St-Lawrence

River (Maguire, 1992). Dyes can create an environmental problem since they resist bio-

degradation, and several of them and/or their degradation products are toxic (Moawadet al.,

2003).Environmental regulatory agencies in several countries are adopting stringent regu-

lations for the discharge of coloured effluents from textile and dyestuff manufacturers. The

cities of Kingston and Toronto (Ontario, Canada) modified their municipal by-laws in 2000

to prohibit the discharge of coloured effluents to the municipal sewage (City of Kingston,

2000; City of Toronto, 2000).

Textile wastewaters must be treated since residual dyes are toxic. Studies have shown

that several dyes, in particular azo dyes, are mutagenic as parent molecules or when they

are metabolized (Moawadet al., 2003; Bakshi and Sharma, 2003). As a result, the use

of certain azo dyes in Germany in consumers goods was banned in 1996 (Reid, 1996;

1



CHAPTER 1. INTRODUCTION 2

ETAD, 1996). Auxiliary chemicals such as solvents, detergents, dispersants and wetting

agents that are used to aid in the dyeing process add to the treatment complexity of textile

wastewaters (Wanget al., 2002). Substances like soaps and dispersants often disrupt nitro-

gen removal by nitrifying bacteria in activated sludge processes (Bohm, 1994; Vandevivere

et al., 1998). Although manufacturers have made considerable efforts to improve dye fix-

ation, the reduction achieved in residual dye concentration in waste effluents has not been

sufficient (Pierce, 1994). The widespread and increasing use of reactive dyes constitutes

a major part of the problem because these water-soluble dyes pass through the activated

sludge process untreated and are discharged into rivers (Pierce, 1994; Vandevivereet al.,

1998). The discharge of textile dyes into rivers or lakes is the most visible sign of wa-

ter pollution since several are visible at a low concentration of 0.005 ppm (mg/l) (O’Neill

et al., 1999).

No single conventional technology can remove all types of dyes because their molecular

structure and chemical properties vary widely and may be complex. Current technologies

such as coagulation, ozonation and activated carbon can efficiently remove only restricted

classes of dyes (Dubrowet al., 1996; Hassan and Hawkyard, 2002; Matsui, 1996). Dyes

adsorb to membrane of cells in conventional activated sludge and are poorly degraded. This

creates large volumes of sludge, and complicates subsequent disposal operations (Dubrow

et al., 1996; Robinsonet al., 2001). A combination of physical, chemical and biological

processes is most efficient for dye decolourization but can be expensive (Haiet al., 2007;

Robinsonet al., 2001). Therefore, a more efficient and cost-effective treatment is needed.

White rot fungi degrade lignin, a resistant bio-polymer, with their extracellular lignin-

degrading enzymes (LDEs), lignin peroxidase (liP), Manganese dependent peroxidase (MnP)

and laccase (phenol oxidase), when nutrient limitation triggers a secondary metabolic phase
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(Cameronet al., 2000; Leonowiczet al., 2001; Pointing, 2001). They degrade also a wide

range of persistant organic pollutants including textile dyes (Spadaro and Renganathan,

1994; Wong and Yu, 1999; Heinflinget al., 1998; Reyeset al., 1999; Nyanhongoet al.,

2002; Champagne and Ramsay, 2005). Fungal reactors have been developed for dye de-

colourization (Schliephakeet al., 1993; Yang and Yu, 1996a,b). The challenge in designing

such reactors for wastewater treatment is maintaining an adequate enzyme concentration

for high dye decolourization efficiencies; lignin-degrading enzymes are not continuously

secreted during the secondary phase and are digested by extracellular proteases as part of

the nitrogen turnover of fungi (Dosoretzet al., 1990; Staszczaket al., 2000). In addition,

fungi in reactors entangle with the impeller, increase the medium viscosity, and conse-

quently impede oxygen transfer because of their excessive growth and adhesion to surfaces

(Zhanget al., 1999; Moreiraet al., 2003). Using immobilized enzymes to maintain an

adequate enzyme concentration in a reactor is more easily achieved than controlling fungal

growth and avoids the increase of medium viscosity and the need of nutrient addition.

This research project aims at investigating dye decolourization by immobilized laccase

and to analyze the impacts of auxiliary chemicals (textile wastewater components) like

surfactants and salts on enzymatic dye decolourization.

In chapter two, an overview of the the current technologies for dye removal will be

introduced. Dye decolourization by white rot fungi and their enzymes will be reviewed.

This chapter will be concluded by a review of enzyme kinetics fundamentals so that the

reader has the tools necessary to understand the logic behind the models developed in

chapter 6 and 7 and how they were derived.

The goal of chapter three was to characterize the decolourization of Reactive blue 19,

a model anthraquinone dye, byTrametes versicolorlaccase immobilized on porous silica
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beads and quantify the contribution of dye adsorption to dye decolourization. In chap-

ter four,the application of immobilized laccase in decolourization was broadened to other

textile dyes and their toxicity before and after enzyme treatment was evaluated. The fifth

chapter focused on the feasibility of immobilizing of laccase on poly(methyl methacrylate)

(PMMA).

Finally, chapter six and seven focus on the impact of auxiliary chemicals on dye de-

colourization. In Chapter six, the effects of the non-ionic surfactant Merpol on the kinetics

of Reactive blue 19 decolourization was analyzed by steady-state kinetic analysis and a

model was accordingly developed. In the final chapter, the effects of pH, sodium sulfate

and sodium chloride on the kinetics of the oxidation of ABTS and on the decolourization

of Reactive blue 19 by laccase was analyzed and models were also developed. The conclu-

sions, contributions, and recommendations will be presented in chapter eight, nine, and ten

respectively.



Chapter 2

Literature review

2.1 Classification of dyes

Dye classification is published in the Colour Index (C.I.) (Christie, 2001; Waring and Hal-

las, 1990). The C.I. name of a dye indicates how it is applied to material, its hue (colour),

and its number specifies the chronological order of its commercial introduction (Christie,

2001). The CI classification is shown in Table 2.1 (O’Neillet al., 1999). The most common

chemical classes include the azo (-N=N-) and carbonyl (C=O) (including anthraquinones).

2.1.1 Azo dyes

Azo dyes like Acid red 27 (Figure 2.1) are the most important class of dyes and constitute

approximately 50 % of commercial dyes and 60 to 70 % of dyes used in traditional tex-

tile applications. They are characterized by their azo bond(s) (-N=N-) which is generally

attached to 2 aromatic radicals. The aromatic ring and the azo bond form the chromogen

(Christie, 2001; Waring and Hallas, 1990). Azo dyes as colourants can provide a complete

5
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Table 2.1: Classification of Colourants
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Figure 2.1: Acid red 27 (Amaranth)

range of hues. However, they are more important commercially in the yellow, orange and

red colours (Christie, 2001).

2.1.2 Anthraquinone dyes

The anthraquinone dyes form the most important subclass of the carbonyl dyes. The basic

structure of anthraquinone dye includes three membered rings where two carbonyl groups

are located on the middle ring (quinone moiety) (Figure 2.1.2), and the two outer rings

aromatic. Anthraquinones can provide the entire range of hues but are more used for their

violet, blue and green shades (Christie, 2001).

2.1.3 Ingöıd dyes

The first indigöıd dyes were produced from the plantIndigofera tinctoriaby Chinese, In-

dians and Indonesians through a fermentation process. These dyes form the oldest class

of naturally derived dyes. They are recognized for the wide variety of bright blue shades.
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Figure 2.2: Reactive blue 19 (Remazol Brilliant Blue R)

Figure 2.3: Acid blue 74 (Indigo carmine)

Nowadays, they are synthesized and used to dye denim jeans and jackets. Acid blue 74 or

indigo carmine (Figure 2.1.3) is a common dye of this class (Christie, 2001).

2.2 Current technologies for dye decolourization

There is currently no single technology that can decolorize all types of dyes (Talarposhti

et al., 2001). Dye decolourization can occur chemically, physically or biologically. Dyes

can be physically removed by adsorption onto activated carbon for example where no

molecular degradation occurs. In dye degradation, the chromophore (the portion of the
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molecule responsible for color) has been modified through chemical reactions. Biological

decolourization can occur through sorption to cellular membrane or by biochemical degra-

dation from biocatalysts. In this thesis, dye decolourization means dye degradation.

2.2.1 Activated carbon

Activated carbon is used to remove mainly acidic dyes but not reactive dyes (Reife and

Freeman, 1996; Robinsonet al., 2001). High removal efficiencies are not reproducible if

the sorbent is reused and/or the wastewater characteristics change (Robinsonet al., 2001).

Although a growing number of reports on the development of low cost activated carbon are

being published (Kimet al., 2008; Hameedet al., 2008; Nuneset al., 2009), it is mostly

used for effluents with low dye concentrations or is used as a polishing step (Reife and

Freeman, 1996).

2.2.2 Flocculation and electro-coagulation

In flocculation, colloids and/or particulates agglomerate as their electrostatic charges are

neutralized by flocculants (e.g., lime, alum, ferric salts or poly-electrolytes). In electro-

coagulation, an electrical current generates flocculants from the anode (Dubrowet al.,

1996; Robinsonet al., 2001). These processes have been used to remove dyes and pig-

ment aggregates from textile wastewaters (Essadkiet al., 2008; Zidaneet al., 2008). The

density of an aggregate can be controlled to enhance its settling or flotation (Kang, 2007).

The optimal concentration of flocculant depends on the static charge of the dye molecule

(Robinsonet al., 2001) and must be determined for each dye for efficient removal. How-

ever, these technologies tend to produce large volumes of sludge (suspended solids) and
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therefore require adequate space and capacity for disposal (Dubrowet al., 1996; Robinson

et al., 2001).

2.2.3 Fenton’s reagent

Fenton’s reagent combines hydrogen peroxide, H2O2, and ferrous iron (Fe2+) in solution

and can decolorize a variety of dyes (Sunet al., 2009; Ay et al., 2009; Alshamsiet al.,

2007). The reaction occurs through the following mechanism,

1. Fe2+ + H2O2

hν
GGGGGGA OH◦ + OH− + Fe3+

2. Fe3+ + H2O2 GGGA OOH◦ + H+ + Fe2+

and hydroxyl and peroxyl radicals generated can oxidize the dye. Fenton’s reagent

is adequate for toxic wastewaters that inhibit growth of the microbial consortium in the

sludge. However, the large volume of suspended solids that is generally produced through

flocculation requires space and capacity (Robinsonet al., 2001; Vandevivereet al., 1998;

Slokar and Majcen Le Marechal, 1998).

2.2.4 Ozonation

Several studies reported the successful decolourization of dye solution by ozonation (Khadhraoui

et al., 2009; Wuet al., 2008). Ozone is a strong oxidizing agent compared to chlorine and

hydrogen peroxide and can degrade a wide range of dyes. Ozonation is mostly used in the

later stage of the treatment process since it is less efficient in treating high-strength raw tex-

tile wastewaters (Luet al., 2009) which need additional treatment to achieve an acceptable

level of decolourization. The half-life of the ozonide radical(O·−
3 ) ranges from seconds to
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hours depending on the quality of the water and is generally decreased by organics com-

pounds present in the wastewater (von Gunten, 2007). Conditions such as pH must be

tightly controlled because hydroxide anions catalyze the decomposition of ozone (Hoigné,

1998). This technology is however applied to effluents with high dye concentrations only

because the capital costs to setup an ozonation facility are substantially higher than other

technologies (Robinsonet al., 2001; Vandevivereet al., 1998).

2.2.5 Activated sludge dye decolourization

Treatment of textile effluents by activated sludge has been achieved almost exclusively

under anaerobic conditions especially for azo dyes (Knapp and Newby, 1995; Bromley-

Challenoret al., 2000). The toxicity of auxiliary chemicals and dyes to the activated slude

also renders textile wastewater treatment difficult (Talarposhtiet al., 2001). Conventional

activated sludge can remove basic and direct dyes mainly through adsorption to the cellu-

lar membrane and shown to be effective (Chu and Chen, 2002; Shaulet al., 1991). It is

inefficient for effluents containing large quantities of reactive and acid dyes diluted with

domestic sewage (Vandevivereet al., 1998; Willmott et al., 1998). A small minority of

bacterial species can aerobically decolorize a restricted number of dyes. A few species of

actinomycetes were shown to efficiently decolorize and mineralize textile dyes (Ballet al.,

1989; Zhou and Zimmermann, 1993). Extra-cellular peroxidases produced by the bacte-

ria were shown to mediate decolourization (Paszczynskiet al., 1992) and the degradation

pathway was determined (Goszczynskiet al., 1994).
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2.2.6 Anaerobic dye decolourization

Several bacterial species can decolorize azo dyes under anaerobic conditions. Complete

mineralization of azo dyes, Disperse blue 79 and Acid orange 10, byBacillus fusiformis

from a dye-contaminated soil (Kolekaret al., 2008) and by a bacterial consortium (Bar-

raǵanet al., 2007) was recently demonstrated. Decolourization begins by a strict anaerobic

reductive cleavage of the azo linkage and produces colorless aromatic amines that are po-

tential carcinogens (Masonet al., 1978; Liuet al., 2007). Other researchers have added

an aerobic oxidation step to degrade and mineralize the amines (Libraet al., 2003; O’Neill

et al., 2000; Supakaet al., 2004). The dye molecule is reduced by either azoreductase

(Libra et al., 2003), or by unspecific cytoplasmic enzymes, which act as azoreductases

(Russet al., 2000). Although significant progress has been made, more species that can

completely mineralize textiles dyes need to be isolated.

2.3 Dye decolourization by white rot fungi

White rot fungi have been studied for nearly three decades and new species are being shown

to decolourize various textile dyes with their lignin-degrading enzymes (LDEs) (Cripps

et al., 1990; Champagne and Ramsay, 2005; Bhattiet al., 2008). Lignin peroxidases (LiP),

Mn-dependent peroxidases (MnP) and laccases are secreted when fungi are limited in car-

bon, nitrogen, and sulfur and/or phosphorous sources (secondary metabolism) (Kirk and

Farrell, 1987; Cameronet al., 2000; Leonowiczet al., 2001). Tien and Kirk (1983) re-

ported the first dye decolourization byPhanerochaete chrysosporium. Wesenberget al.

(2003) surveyed 29 white rot fungi capable of dye decolourization. Since then, several in-

vestigators have evaluated the decolourization of commercial dyes by new species (Asgher
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et al., 2008a; dos Santoset al., 2004; Levinet al., 2004; Mendonçaet al., 2008; Robinson

and Nigam, 2008). Dye decolourization capabilities vary with the fungal or enzyme species

(Chagas and Durrant, 2001; Nyanhongoet al., 2002). Crippset al. (1990) issued the first

report demonstrating the major role of lignin peroxidase inP. chrysosporiumcultures de-

colourizing Orange II, Trapeolin O and Azure B. Manganese peroxidase (MnP) and laccase

were the main enzymes detected in decolourizing cultures ofTrametes versicolor(ATCC

20869) (Swamy and Ramsay, 1999b) and the contribution of each enzyme to dye decolour-

ization depended on the dye (Champagne and Ramsay, 2005). MnP was eight times more

efficient than laccase in decolourizing the azo dye Acid red 27 but did not decolorize Re-

active blue 19, an anthraquinone dye. On the other hand, laccase efficiently decolourized

the anthraquinone dye. More recently, the central roles of laccase and manganese peroxi-

dase in decolorizing cultures ofPleurotus ostreatus(Faracoet al., 2009) andShizophyllum

communeIBL-6 (Bhatti et al., 2008) respectively, were demonstrated.

2.3.1 Main lignin-degrading enzymes

Lignin peroxidase (E.C. 1.11.1.14)

Lignin peroxidase (liP) was detected for the first time in cultures ofPhanerochaete chrysospo-

rium (Tien and Kirk, 1983). It is a monomeric N- and O-glycosylated protein expressed

in several iso-forms. LiP contains one iron in a protoporphyrin IX (heme) as a prosthetic

group and its molecular weight varies from 38 and 47 kDa. The enzyme is basic having an

iso-electric point between 3 and 5 depending on the iso-form (reviewed by Leonowiczet al.

(2001)). It requires hydrogen peroxide (H2O2) to catalyze a reaction that occurs through a

cycle illustrated in Figure 2.4. Hydrogen peroxide oxidizes the iron center of the heme to

generate an oxoferryl iron (Fe(IV)=O) and an oxidizing equivalent as a radical (compound
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1. Enz−heme[Fe(III)](PX)+H2O2 → (Enz−heme•+)[O = Fe(IV )](Compound I)+
H2O

2. (Enz − heme•+)[O = Fe(IV )](Compound I) + RH → Enz − heme[O =
Fe(IV )](compound II) + H+ + R•

3. Enz − heme[O = Fe(IV )](compound II) + RH → Enz − heme[Fe(III)](PX) +
H+ + R•

PX = native or resting enzyme Enz = enzyme

Figure 2.4: Catalytic cycle of lignin-peroxidase (Adapted from Banci (1997))

I). The enzyme intermediates, compound I and II, oxidize by one electron two substrates

to return to the resting state (PX).

Through this catalytic cycle, liP catalizes C-C and C-O cleavages in side chains of

lignin-like compounds leading in general to the depolymerization of dimers and oligomers

(de Jonget al., 1994; Spadaro and Renganathan, 1994; Tienet al., 1986). These reac-

tions can involve the oxidation of small molecular weight substrates like veratryl alcohol

(VA) (3,4-dimethoxy phenol) to veratraldehyde where an aryl cation radical intermediate

is generated. The latter is highly reactive and can subsequently oxidize lignin subunits.

Furthermore, veratryl alcohol can also reverse the deactivation of the enzyme caused by an

excess hydrogen peroxide (Wariishi and Gold, 1989; Chung and Aust, 1995).

The vast majority of decolourization studies with liP were conducted with azo dyes and

this may suggests that liP decolorizes these dyes more efficiently than the other classes

of dyes (Crippset al., 1990; Young and Yu, 1997; Podgorniket al., 1999; Verma and

Madamwar, 2002). However, other investigators have reported the decolourization of triph-

enyl methane dyes (Ollikkaet al., 1993; Crippset al., 1990) and methylene blue (Ferreira-

Leitãoet al., 2007). Spadaro and Renganathan (1994) analyzed the decolourization of the

azo dye, Disperse Yellow 3, byP. chrysosporiumliP and proposed a degradation pathway.
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Figure 2.5: Catalytic cycle of Mn(II)-peroxidase (Hofrichter, 2002)

Redox mediators can be used for dyes not directly degraded by the enzyme. For instance,

veratryl alcohol is required to decolorize Reactive Blue 19 (anthraquinone) (Christiana

et al., 2005).

Manganese peroxidase (E.C. 1.11.1.13)

Manganese peroxidase (MnP) is a glycoprotein containing an iron protoporphyrin group

IX as a prosthetic group. Its molecular weight varies from 40 to 46 kDa. Its iso-electric

point varies from 2.9 to 7.0 depending on the source species of the enzyme and iso-form

(reviewed by Leonowiczet al.(2001)). ForT. versicolor, the optimum pH of MnP can vary

from 3.5 to 5 depending on its iso-form (Johansson and Nyman, 1993). The catalytic cycle

of MnP shown in Figure 2.5 resembles that of liP but Mn2+ is the preferred electron donor

that reduces compound I and II back to the resting state.
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Mn3+ can oxidize the aromatic rings of the lignin subunits or other substrates once it

is chelated to organic acids produced by fungi (e.g., oxalate, malonate). Very few phenolic

substrates can reduce MnP compound II to the native ferric state because of the steric hin-

drance at the active site (Boominathan and Reddy, 1992). Like liP, MnP is also deactivated

by excess hydrogen peroxide (Wariishiet al., 1988).

The dye decolourization capability of MnP varies from one species to another and de-

pends on the iso-enzyme and reaction conditions (Liet al., 2009). In general, MnP requires

organic acids to decolorize dyes (Young and Yu, 1997). However, Heinflinget al. (1998)

showed thatP. chrysosporiumMnP decolourized little to none of the azo dyes Reactive

blue 38, Reactive violet 5, Reactive black 5, Reactive orange 96, Reactive red 198, and

Reactive blue 15 whereas MnP fromBjerkandera adustadecolorizes all these dyes in the

presence and in absence of Mn2+ . Shrivastavaet al. (2005) showed thatPleurotus ostrea-

tusMnP decolourized brominated and methylated sulfophthalein dyes less efficiently than

their non-substituted analogs because of steric hindrance.

Laccase (E.C. 1.10.3.2)

Laccase is a multi-copper glycoprotein and its molecular weight varies from 54 to 383

kDa depending on the fungal species (Baldrian, 2006). The enzyme contains four cop-

pers (Cu2+) with one near the active (type 1 (T1) copper) and a buried cluster of three

coppers with one type 2 (T2) and two type 3 (T3) coppers (Figure 2.6). The T1 copper

extracts electrons from the reducing substrate and transfers it to the tri-nuclear T2/T3 cop-

per cluster where molecular oxygen is reduced to water at T2 copper and T3 coppers act

as electron reservoirs (Claus, 2003, 2004; Bertrandet al., 2002; Bukhet al., 2006). The
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Figure 2.6: Catalytic cycle of laccase (reviewed in Solomonet al. (1996) )

enzyme catalyzes the oxidation of phenolic compounds and anilines (Xu, 1996). Laccase

is almost exlusively in a native intermediate oxidized state in aqueous solution (four Cu2+)

(Solomonet al., 1996).

The oxidation of the substrate limits the overall catalytic turnover as the reduction of

oxygen is relatively fast (Solomonet al., 1996; Bukhet al., 2006). Laccases efficiently

decolorize anthraquinone dyes and dyes containing phenolic moieties and are less efficient

at decolorizing azo dyes than peroxidases. Electron meditors like hydroxybenzotriazole

(HOBT), various phenolic compounds (Reyeset al., 1999; Michniewiczet al., 2008; Hu

et al., 2009; Murugesanet al., 2009) or few anthraquinones dyes (Wong and Yu, 1999)

can broaden the range of dyes decolourized by the enzyme. The dye decolourization ca-

pability of a laccase depends on its species and strain, and on the structure of the dye.

Nyanhongoet al. (2002) demonstrated that laccases from four white rot fungal species

(T.hirsuta, T.modesta, T. versicolorand Sclerotium rolfsii) decolourized anthraquinone,
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azo, indigo, and triarylmethane dyes at different rates and extent. Although Peralta-Zamora

et al. (2003) reported thatT. versicolorlaccase (strain CCT-4521) decolourized Reactive

blue 19 only in presence of HOBT, laccase fromT.versicolor(ATCC 20869) decolourized

the anthraquinone dye without a redox mediator (Champagne and Ramsay, 2005; Reyes

et al., 1999). Thus, generalized trends for predicting the capability of an enzyme to decol-

orize a target dye are not always valid.

2.3.2 Factors influencing dye decolourization by white rot fungi

Nutrients requirements

White rot fungi require nutrient-limiting conditions to secrete the lignin-degrading enzymes

and to decolourize textile dyes. Few species likePycnoporus cinnabarinusare exceptions

since they can decolourize coloured effluents during its growth phase with their constitu-

itively produced laccase (Schliephakeet al., 1993). Although nutrient limitation is nec-

essary, minimal amount of carbon and nitrogen sources are needed. Swamy and Ramsay

(1999c) determined that at least 0.5-g/l glucose was necessary for dye decolourization by

Trametes versicolor; however, excess ammonium cultures inhibited the decolourization

(Swamy and Ramsay, 1999b). Cultures growing with high amounts of carbon and nitrogen

instead (prior to the secondary metabolism) resulted in higher enzyme production and in-

creased decolourization rates (Chao and Lee, 1994).

Glucose is the mostly used carbon source for dye decolourization by white rot fungi.

Since it is not abundant in wastewater streams and can be expensive for large-scale treat-

ment, more economical carbon sources are being sought. Kapdanet al. (2000) conducted

dye decolourization withCoriolus versicolorusing molasses, starch and fructose and showed
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that color removal was not as efficient as with glucose and the decolourization extent varied.

The carbon to nitrogen ratio also affects the enzyme secretion during dye decolourization

(Asgheret al., 2008b) and can be adjusted to minimize the secretion of proteases that digest

the lignin-degrading enzymes as part of the nitrogen metabolic turnover of fungi (Dosoretz

et al., 1990; Staszczaket al., 2000).

Influence of the dye molecular structure on biodegradability

The molecular structure of the dye impacts the rate of dye decolourization and few scien-

tists attempted to formulate general rules to predict the degradability of dyes. Pasti-Grigsby

et al.(1992) studied the influence of aromatic substitution patterns on the bio-degradability

of sulfonated azo dyes withStreptomycetesp. andP. chrysosporium. Molecules includ-

ing a para or ortho hydroxyl group and at least one ortho electron-releasing substituent

relative to the azo bond (-N=N-) on an aromatic ring were rapidly decolourized byStrepto-

mycetesp peroxidase. However, purifiedP. chrysosporiumliP and MnP degraded all dyes

including those without those molecular features. It was hypothesized that the liP and MnP

capabilities to degrade a wider range of molecules was due to their higher redox potential

relative to that of the dyes. Kandelbaueret al.(2004) reported a similar correlation between

molecular structure and degradability withTrametes modestalaccase. Although there are

ample reports on dye decolourization using purified enzymes, the trends on peroxidase and

laccase reactivity towards a specific class of dyes still have to be validated for a greater

number of dyes.
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2.4 Dye decolourization in white rot fungal bioreactors

Few investigations have evaluated dye decolourization in fungal bioreactors for the design

of continuous decolourization processes. Successful uses of such bioreactors are summa-

rized in Tables 2.2 and 2.3.P. chrysosporiumis the most studied species for decolouriza-

tion in bioreactors. In general, decolourization extents reported were reproducible and no

external intervention was needed over a period of 9 to 12 days, after which, decolouriza-

tion efficiency would decrease with the enzyme activity. Rodriguez Coutoet al. (2000)

suggested that unstable enzyme production in an aged culture was due to the secretion of

extracellular proteases.
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Sustained enzyme production is an essential requirement for a stable decolourization

process. It depends on the oxygen transfer and nutrient feeding rate (Coutoet al., 2004;

Shahvaliet al., 2000; Swamy and Ramsay, 1999a; Li and Jia, 2008). However, good oxy-

gen transfer rate is hampered by the tendency of the fungal mycelium to excessive growth,

adhesion to surfaces, which ncreases oxygen demand and the medium viscosity (Moreira

et al., 2003). To maximize the operation time of fungal bioreactor, Zhanget al. (1999)

were able to operate a dye decolourizing fluidized bed reactor for two months by cleaning

screens and removing excess mycelia in the reactor each week in order to maintain oper-

ation. Eventually, the reactor was plugged and the decolourization efficiency decreased.

Decolourization resumed once the excess mycelia was removed.

The use of rotating biological contactors (RBCs) for white rot fungi is relatively re-

cent, as few investigations have reported its use for the decolourization of dyes (Kapdan

et al., 2000; Ramsay and Goode, 2004; Guimaraeset al., 2005; Nilssonet al., 2006).

Kapdanet al. (2000) showed that the rotational speed, the biofilm thickness and the car-

bon source concentration impacted on the decolourization efficiency withC. versicolor

(MUCL). Thicker biofilms when nutrient concentration was high increased the mass trans-

fer resistance to nutrient transfer and to enzyme secretion.

Dye decolourization in fungal bioreactors needs additional investigations to determine ef-

ficient strategies to sustain a continuous enzyme production and control the growth of the

mycelium as they are essential for a stable dye decolourization process.
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2.5 Dye decolourization by immobilized lignin-degrading

enzymes

Maintaining a stable enzyme concentration for dye decolourization with white rot fungi is

challenging. Intermittent feeding and appropriate maintenance must be provided and this

may not always be possible in a wastewater treatment process. For example, addition of

high glucose concentrations to provided high enzyme production is not cost effective (Kap-

danet al., 2000) and more economical and suitable carbon sources are required. While

fungal bioreactors are being developed, the potential of immobilized enzyme reactors is

being seriously examined (Tables 2.4, 2.5, 2.6, and 2.7). Immobilized peroxidase from

S. spontaneumdecolorized six azo, anthraquinone and triphenyl methane dyes (Shaffiqu

et al., 2002) andT. modestalaccase immobilized on alumina decolourized 41 commercial

azo, triphenyl methane, indigoid and heterocyclic dyes. Of these dyes, 36 were degraded

from 65 % to 100 % and five dyes were adsorbed and not degraded (Kandelbaueret al.,

2004).

Dye adsorption to the enzyme support is frequent particularly when the material is

polar or charged and may enhance the rate of color removal (Kandelbaueret al., 2004;

Peralta-Zamoraet al., 2003; Zilleet al., 2003; Rekúc et al., 2009a). Peralta-Zamoraet al.

(2003) showed that IRA-400 ionic exchange resin had the highest adsorption capacity for

the anthraquinone dye, Reactive blue 19, when compared with imidazol-modified silica

and montmorillonite. T. versicolor laccase on amberlite IRA-400, an anionic-exchange

resin, decolourized Reactive blue 19 with the highest rates compared to when the enzyme

was immobilized on the other supports. In addition, IRA-400-laccase decolourized the dye
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with and without hydroxybenzotriazole (HOBT), a redox mediator, but the free enzyme

required the mediator to decolorize the anthraquinone dye. The authors concluded that

decolourization with immobilized laccase occurred mainly through dye adsorption since

the rates of decolourization with and without the redox mediator were identical. Zilleet al.

(2003) demonstrated that 90 % of the Reactive black 5 decolourization byT. hirsutalaccase

immobilized on alumina was due to adsorption. Moreover, adsorption was still occurring

even after loss of laccase activity. On the other hand, dye adsorption did not occur dur-

ing decolourization with a plant peroxidase immobilized on polyethylene, a hydrophobic

material (Shaffiquet al., 2002).

There are fewer investigations on dye decolourization with immobilized peroxidases

most likely because hydrogen peroxide is required. Hydrogen peroxide must be carefully

added to the decolourization process or generated in situ to avoid enzyme deactivation and

achieve a stable decolourization process (Kimet al., 2005; Conesaet al., 2002; Torreset al.,

2003). Saccharum spontaneumperoxidase immobilized on polyethylene decolourized 15

batches of Procion green HE-4BD. Careful addition of hydrogen peroxide to the reactor

favoured an enzyme half-life of 60 h (Shaffiquet al., 2002). WhenBjerkanderasp MnP

decolourized the azo dye, Orange II, in a membrane reactor, 49 % of its initial activity was

lost in two hours and it was more sensitive to increased loading rates of hydrogen peroxide

(Lópezet al., 2004). However, decolourization was operated under optimized H2O2 and

MnP feeding rates for eight days with a stable decolourization efficiency of 96 %.

So far, the disappearance of dyes in defined solutions has been the main focus in the

vast majority of dye decolourization studies and more investigations must be conducted in

the context of a textile wastewater since some components may affect dye decolourization

and/or the enzyme. The application of dyes to fabrics requires auxiliary chemicals (dyeing
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aids) such as solvents, detergents, and wetting agents which are present in textile effluents

(Smith, 1986). Non-ionic surfactant like alcohol ethoxylates, alkylphenol ethoxylates, and

ionic ethoxylate surfactants such as alkylsulfates, and alkylether sulfates constitute a major

portion of the pollutants (Gonzálezet al., 2008). Abadullaet al. (2000) demonstrated that

T.hirsutalaccase was mildly inhibited by textile surfactants such as Univadine PA (anionic),

Tinegal MR (cationic) but not by Albegal FFA (non-ionic) and the immobilization of the

enzyme on alumina did not eliminate the inhibition. Although, surfactants generally tend

to denature proteins (Madaeni and Rostami, 2008; Otzenet al., 2009), reversed micelles

can stabilize enzymes in the organic phase for enzyme catalysis (Yang and Robb, 2005;

Wanget al., 2008b) or even allow protein refolding at their water core (Hagenet al., 2006).

Few studies have provided any information on how dye auxiliary chemicals may affect

decolourizing enzymes. This may be due to (1) the complex nature of colloidal interactions

which may exist between the enzyme, the dye molecule(s), and auxiliary chemicals and

(2) the scarce information on the composition of the dye effluent and the nature of its

constituents, which are usually undisclosed for proprietary processes. Stable immobilized

enzymes will deactivate with time and this must be considered in the design of an enzymatic

process (Aitken, 1993).

Reyeset al. (1999) showed thatCoriolus gallica laccase immobilized on agarose re-

tained 85 % of its activity after 10 batch decolourizations of a synthetic dye effluent contain-

ing Direct blue 200, Direct red 80, Direct black 28, sodium sulfate, sodium carbonate, soap

and dispersants. However, a laccase reactor retained only 14 % of its initial decolourization

activity after decolourizing ten batches of an industrial effluent and further investigation did

not provide information on the cause of the activity loss. Zilleet al. (2003) showed that

free laccase from the same species was two times more stable at high ionic strength (30
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g/l NaCl) than when immobilized on alumina when decolorizing 40 ppm Reactive black 5

(azo dye) in a real textile wastewater. The authors suggested that the enzyme and the dye at

high salt concentration form stable aggregates; the aggregation is favoured because sodium

chloride neutralizes the enzyme and dye net charges. The aggregates would prevent the

denaturation of the enzyme. Finally, this study demonstrates that predicting enzyme stabil-

ity is not always intuitive because of the numerous possible interactions between different

dyes and the enzymes.

2.5.1 Laccase immobilization and influence of the support material on

the stability of decolourization

The most important criteria for good immobilized enzyme activity are the mechanical prop-

erties (rigidity and durability), physical form (granules, sheets, inner tube walls, etc), re-

sistance to chemical and microbial attacks, material hydrophilicity, price, and availability

(Mosbachet al., 1976). Laccase has been immobilized on gels like Sepharose (agarose),

Sephadex (dextran), cellulose-based materials (Duranet al., 2002; Rekúc et al., 2008) and

allowed good activity retention since these materials are highly hydrophilic. However these

gels tend to may compress or expand and cannot be used in packed bed reactors (Rekuć

et al., 2009b). Laccases can also be immobilized on inorganic supports like alumina (Kan-

delbaueret al., 2004; Zilleet al., 2003), and silica (Peralta-Zamoraet al., 2003; Zhuet al.,

2007). Satisfactory laccase activities were achieved by first activating the material surface

with 3-aminopropyltriethoxysilane (APTES) to introduce amines and cross-link the en-

zyme to the surface with glutaraldehyde (Duranet al., 2002). However, these materials tend

to be brittle and therefore mechanical agitation must be limited. More recently, laccase was

immobilized on acrylic supports like poly(butyl acrylate-co-ethyleneglycol dimethacrylate)
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(Bryjak et al., 2007), poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) (Arica

et al., 2009), commercial acrylic carriers like Dilbeads and Sepabeads (Kunamneniet al.,

2008) and very high laccase activities were reported. Acrylic carriers have good mechani-

cal and chemical stability and can be made highly hydrophilic (Mosbachet al., 1976).

The stability of a decolourization process depends on the properties of the enzyme

support. Beads made of brittle materials, like as alumina or silica, erode when mechan-

ically agitated and this results in enzyme loss (Kandelbaueret al., 2004). Wanget al.

(2008a) showed that dye decolourization by laccase encapsulated in alginate-gelatin-PEG

(polyethylene glycol) beads depended strongly on the composition of the blend; using al-

ginate alone gave the lowest decolourization efficiency and enzyme stability. A bead blend

of alginate/gelatin and PEG improved enzyme stability and dye decolourization efficiency.

The investigation confirms that a support material must be chosen to maximize enzyme

activity and its mechanical properties and will dictate the configuration of the reactor (e.g.

packed bed reactor vs continuous stirred tank reactor).



CHAPTER 2. LITERATURE REVIEW 29

Ta
bl

e
2.

4:
D

ye
de

co
lo

ur
iz

at
io

n
w

ith
im

m
ob

ili
ze

d
lig

ni
n-

de
gr

ad
in

g
en

zy
m

es

E
nz

ym
e

S
ou

rc
e

Im
m

ob
ili

za
tio

n
m

et
ho

d
D

ye
s

D
ec

ol
ou

riz
at

io
n

ef
fic

ie
nc

y
R

ef
er

en
ce

s

La
cc

as
e

C
o

ri
o

lo
p

si
s

g
a

l-
lic

a
(U

M
H

82
60

)
C

ov
al

en
t

on
ac

-
tiv

at
ed

ag
ar

os
e-

C
N

B
r

R
ea

ct
iv

e
bl

ue
19

8
-

D
ye

ef
flu

en
t

70
%

R
ey

es
e

t
a

l.
(1

99
9)

La
cc

as
e

T
ra

m
e

te
s

m
o

d
-

e
st

a
C

ov
al

en
t

on
A

l 2
O

3

La
na

se
t

B
lu

e
R

(a
nt

hr
aq

ui
no

ne
)

10
0

%
(1

0-
12

h)
K

an
de

lb
au

er
e

ta
l.

(2
00

4)
A

ci
d

bl
ue

74
(in

-
di

go
id

)
99

%

C
ry

st
al

vi
ol

et
(t

rip
he

ny
l-

m
et

ha
ne

dy
e)

98
%

P
he

ny
la

zo
dy

e
99

%

La
cc

as
e

T
ra

m
e

te
s

ve
rs

i-
co

lo
r(

C
T-

45
21

)
C

ov
al

en
to

n
si

lic
a

R
ea

ct
iv

e
bl

ue
19

(a
nt

hr
aq

ui
no

ne
)

45
%

(0
.5

h)
P

er
al

ta
-Z

am
or

a
e

ta
l.

(2
00

3)
R

em
az

ol
bl

ac
k

B
(a

zo
)

9
%

R
ea

ct
iv

e
or

an
ge

12
2

(a
zo

)
55

%
(0

.5
h)

R
ea

ct
iv

e
re

d
25

1
(t

yp
e

n.
a.

)
25

%
(0

.5
h)



CHAPTER 2. LITERATURE REVIEW 30

Ta
bl

e
2.

5:
D

ye
de

co
lo

ur
iz

at
io

n
w

ith
im

m
ob

ili
ze

d
lig

ni
n-

de
gr

ad
in

g
en

zy
m

es

E
nz

ym
e

S
ou

rc
e

Im
m

ob
ili

za
tio

n
m

et
ho

d
D

ye
s

D
ec

ol
ou

riz
at

io
n

ef
fic

ie
nc

y
R

ef
er

en
ce

s

La
cc

se
T

ra
m

e
te

s
vi

llo
sa

C
ov

al
en

t
on

A
l 2

O
3

R
ea

ct
iv

e
bl

ac
k

5
98

%
(2

4
h)

Z
ill

eet
a

l.
(2

00
3)

La
cc

as
e

S
cl

e
ro

tiu
m

ro
lfs

ii
C

ov
al

en
t

on
A

l 2
O

3

C
om

m
er

ci
al

dy
e

m
ix

tu
re

R
ya

ne
ta

l.
(2

00
3)

La
cc

as
e

T
ra

m
e

te
s

h
irs

u
ta

C
ov

al
en

t
on

A
l 2

O
3

R
ea

ct
iv

e
bl

ue
22

1
(h

et
er

oc
y-

cl
e)

,
R

ea
ct

iv
e

bl
ac

k
5

(a
zo

),
D

ire
ct

bl
ue

71
(t

ria
zo

),
B

as
ic

re
d

9
B

as
e

(t
rip

h-
en

yl
m

et
ha

ne
),

R
ea

ct
iv

e
bl

ue
19

(a
nt

hr
aq

ui
no

ne
),

A
ci

d
bl

ue
22

5
(a

nt
hr

aq
ui

no
ne

),
A

ci
d

bl
ue

74
(in

di
go

id
),

D
ye

ef
flu

en
t

(R
ea

ct
iv

e
bl

ue
19

,
R

ea
ct

iv
e

bl
ue

22
1)

A
ba

du
lla

e
t

a
l.

(2
00

0)



CHAPTER 2. LITERATURE REVIEW 31

Ta
bl

e
2.

6:
D

ye
de

co
lo

ur
iz

at
io

n
w

ith
im

m
ob

ili
ze

d
lig

ni
n-

de
gr

ad
in

g
en

zy
m

es

E
nz

ym
e

S
ou

rc
e

Im
m

ob
ili

za
tio

n
m

et
ho

d
D

ye
s

D
ec

ol
ou

riz
at

io
n

ef
fic

ie
nc

y
R

ef
er

en
ce

s

La
cc

as
e

C
e

rr
e

n
a

u
n

ic
o

lo
r

A
ct

iv
at

ed
si

lic
a

w
ith

va
rio

us
si

la
ne

s
A

ci
d

bl
ue

74
(in

-
di

go
ca

rm
in

e)
78

-
85

(5
h)

%
R

ek
úc
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2.6 Objectives of research project

According to the literature, laccase has been the preferred lignin-degrading enzyme for

dye decolourization and immobilized laccase reactors have been studied more than im-

mobilized peroxidases (Duranet al., 2002) most likely because the enzyme requires only

oxygen as a co-substrate. The relatively high optimum temperatures of the enzyme ranging

from 50 to 70◦C (Wang and Ng, 2006; Rebrikovet al., 2006; Linkeet al., 2005; Hanet al.,

2005) makes it ideal for industrial applications and it should be more easily integrated into

industrial processes. Furthermore, new laccases have been isolated every year since 2004.

For these reasons, this research is focusing on laccase for dye decolourization.

The impact of common textile waste effluent components on enzyme activity has not

thoroughly been investigated. Most studies have focused on the disappearance of dyes and

have not attempted to determine the cause(s) of activity loss. Studying dye degradation

kinetics by immobilized laccase can give more insight on how it is affected by the com-

position of dye effluents and help predict the kinetic behaviour of the enzyme in industrial

dye decolourization. Protein immobilization is an economical and effective means of sta-

bilizing and reusing an enzyme but, as mentioned, the nature of the material can influence

the enzyme activity retention. Therefore, the ultimate goals of this research project are to

characterize the dye decolourization by laccase immobilized on silica beads and to deter-

mine the effects of auxiliary chemicals on the degradation kinetics of Reactive blue 19, an

anthraquinone dye. To attain these objectives, the research was divided into two main parts:
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2.6.1 Characterization of dye decolourization byTrametes versicolor

laccase immobilized on controlled porosity carrier silica (CPC)

beads and immobilization of laccase on PMMA.

In the third chapter, dye decolourization by immobilized laccase on controlled porosity

carrier (CPC) silica beads was characterized. The effect of immobilization on the pH ac-

tivity profile of the enzyme toward ABTS and Reactive blue 19 and the contribution of

dye adsorption in decolourization were analyzed. In chapter 3, the decolourization of two

anthraquinone, two azo and one indigoid dyes by free and immobilized laccase was com-

pared and the toxicity of decolourized solutions was analyzed. Chapter four focused on

the immobilization of laccase on polymethyl methacrylate (PMMA). PMMA was chosen

since it is an abundant and relatively economical material and less brittle than CPC-silica

beads. Furthermore, this polymer is the least hydrophobic of the elastomers and could be

sufficiently hydrophilic for good immo iblized laccase activity.

2.6.2 Impact of auxiliary chemicals on dye decolourization byT.versicolor

laccase

In the second phase, decolourization kinetics of textile dyes and the effects of common aux-

iliary chemicals like surfactants and salts were investigated. Since surfactant, Surfactants

may impact enzyme activity. Therefore, chapter five focuses on the effects of a non-ionic

surfactant, Merpol, on dye decolourization and these were quantified by steady-state ki-

netics. Merpol is a non-ionic ethoxylated based surfactant used as a wetting agent and

detergent to clean fabrics during dyeing processes. Finally in chapter six, the effects of

sodium chloride and sodium sulfate on dye decolourization were analyzed and a new dye



CHAPTER 2. LITERATURE REVIEW 35

decolourization chloride inhibition rate equation was proposed.

2.7 Enzyme kinetics fundamentals

This review on enzyme kinetics is based on enzyme kinetic textbooks by Segel (1993) and

Leskovac (2003) and is presented so explain the development kinetic models developed

in chapter six and seven and how they were derived. All concentrations and equilibrium

constants are assumed to be in units of molarity unless stated otherwise. An enzyme (E)

accelerates the rate of a chemical reaction by lowering its activation energy. First, it specif-

ically binds the substrate (S) and second, it converts substrate to the product (P) (equation

6.1).

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGA E + P (2.1)

The variablek2 is the first order rate constant describing the catalytic conversion of S to

P, andk1 andk−1 are the rate constants for the substrate binding and complex dissociation

respectively.

2.7.1 Derivation of rate equations

Enzyme rate equations can be derived using either the rapid equilibrium or steady-state

assumption.
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Rapid equilibrium assumption

Consider the previous single substrate reaction (equation 6.1) in which an enzyme catalyzes

the conversion of a substrate to a product. The binding of S is reversible and the conver-

sion of S to P, the catalytic step, is irreversible or the conversion of the product back to the

substrate is negligible (e.g. at the onset of a reaction). According to the rapid equilibrium

assumption, the rate of association of the substrate to the enzyme, and the rate of dissoci-

ation of the complex is much greater than the rate of generation of the product P enough

that a rapid equilibrium can be established between enzyme-substrate complex, the free

enzyme and the substrate. The procedure to derive a rate equation according to the rapid

equilibrium assumption is as follows:

1. Write a mass balance for the enzyme species. The total enzyme concentration (in

molarity) [E]t is equal to the sum of concentrations of the free enzyme, [E], and of

the enzyme-substrate complex, [ES].

[E]t = [E] + [ES] (2.2)

2. Write the rate equation as a function of the enzyme-substrate complex

v = k2[ES] (2.3)

The unit of the reaction rate,v, is molar concentration per time (e.g.,µM/min) and

k2 is a first order rate constant reciprocal time as a unit.
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3. Divide the rate equation 2.3 by the mass balance (equation 2.2)

v

[E]t
=

k2[ES]

[E] + [ES]
(2.4)

4. Express the concentration of each enzyme species in terms of E and S. When the

binding step (binding and dissociation) is at equilibrium, the binding rate between

the free enzyme and free substrate is equal to the dissociation rate of the enzyme-

substrate complex.

k1[E][S] = k−1[ES] (2.5)

5. The dissociation constant is defined as the ratio of the dissociation step over the

binding step. The dissociation is also the inverse of the true equilibrium constant for

the binding step.

KS =
k−1

k1

=
[E][S]

[ES]
=

1

Keq,S

∴ [ES] =
[E][S]

KS

(2.6)

6. Substitute the equilibrium expression (equation 2.6) in equation 2.4

v

[E]t
=

k2
[E][S]

KS

[E] +
[E][S]

KS

(2.7)

7. Eliminate [E] and multiply the numerator and denominator in the right hand-side of

equation 2.7

v =
k2[E]t[S]

KS + [S]
=

Vmax[S]

KS + [S]
(2.8)
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whereVmax = k2[E]t. The dissociation constantKS in units of molar concentration

indicates the affinity of the enzyme for the substrate or the strength of binding. It is also

the substrate concentration at half the maximum initial rate. This mathematical definition

differs from the Michaelis constant which will explained in the next section.

Steady-state or Briggs-Haldane assumption

In the steady-state assumption, the enzyme-substrate concentration is assumed to be much

less than the substrate concentration and therefore, the rate of change of the complex con-

centration is so small relative to that of the reactant concentration that it can be approx-

imated to be zero (
d[ES]

dt
= 0). The molar concentrations of ES, E and S do not need

to be in equilibrium and no assumption is made about the relative magnitude of the rate

of product generation and the rate of complex dissociation. When deriving a steady-state

rate equation, the enzyme complex species balances are expressed by a set of differential

equations describing the reactions that have to be solved.

1. Write the set of differential species balance describing the reactions and the enzyme

conservation equation

d[E]

dt
= (k1 + k2)[ES]− k1[E][S] (2.9)

d[S]

dt
= k−1[ES]− k1[E][S] (2.10)

d[ES]

dt
= k1[E][S]− (k1 + k2)[ES] (2.11)

d[P ]

dt
= k2[ES] (2.12)

[E]t = [E] + [ES] (2.13)
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2. [ES] is re-expressed in term of [E] and [S] from its corresponding differential bal-

ance,
d[ES]

dt
. From the steady-state assumption,

d[ES]

dt
= 0,

0 = k2[ES]− (k−1 + k2)[ES] (2.14)

[ES] =
k1[E][S]

k−1 + k2

(2.15)

3. Divide the velocity equation (2.3) by the enzyme conservation equation (2.13) to

obtain equation 2.4

4. Substitute [ES] (equation 2.15) into equation 2.4,

v

[E]t
=

k2
k1[E][S]

k−1 + k2

[E] +
k1[E][S]

k−1 + k2

(2.16)

5. Divide the numerator and denominator by [E], and multiply by
k−1 + k2

k1

v

[E]t
=

k2[S]

k−1 + k2

k1

+ [S]

(2.17)

v =
k2[E]t[S]

KM + [S]
=

Vmax[S]

KS + [S]
(2.18)
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The catalytic constant,k2, is also the turnover number which is the number of substrate

molecules converted to products per mole of enzyme per second and has units of inversed

time (usually sec−1). The Michaelis constant,KM , is the molar concentration of the sub-

strate that yields half the maximum reaction rate and is equal to
k−1 + k2

k1

= KS +
k2

k1

. The

constant approximates the affinity of the enzyme for its substrate or the strength of binding

between the enzyme and the substrate when the dissociation constantk−1 is larger thank2.

However, the constant has a kinetic component that is directly proportional to the relative

magnitude ofk2 to k−1 and can be significant in certain cases. The catalytic efficiency of

the enzymatic reaction is defined as ratio ofk2 to KM

k2

KM

= k1
k2

k1 + k2

(2.19)

The catalytic efficiency (in M−1sec−1) represents the number or frequency of collisions

between the enzyme and the substrate, (k1), multiplied by the fraction of productive colli-

sions (equation 2.19) between the enzyme and the substrate, that is the fraction of collisions

that leads to the formation of the product.

In many cases, either assumption will give the same rate equation for a given kinetic

scheme but the mathematical definitions or meaning of the equation constants will differ

(e.g. KS vs KM ). Otherwise, when the valuek2 approaches that ofk−1, steady-state

rate equations must be used because the concentration of [ES] is no longer dependent on

[E] and [S] only. The rapid equilibrium assumption is used in chapter six and seven to

derive the kinetic models and to analyze the initial rate data since it is the simplest and

most direct method to derive enzyme rate equations for simple and more complex multi-

ligands reaction schemes and should be considered first. If the rapid equilibrium equation
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fits the initial rate data, then the simplest kinetic mechanism is tentatively found and has

to be validated with independent experiments (Segel, 1993). Otherwise, the steady-state

assumption must be used. The algebraic manipulations may become more complicated

as the number of enzyme intermediates increases and schematic (graphical) methods for

deriving rate equations like that of King and Altman (1956) must be used to minimize the

risks of mistakes.

2.7.2 Reaction catalysis with two or more substrates

Laccases catalyze the reactions of two substrates to yield two products. Oxygen, the elec-

tron acceptor, can bind to the enzyme to be reduced to water before the electron donor (e.g.

phenol or ABTS) binds to the enzyme to convert to the second product. The reaction mech-

anism is the ping pong type since the enzyme switches from the stable native reduced state

(Ered) to the stable oxidized state (Eox) and release water. The steady-state rate equation

for ping-pong mechanism assuming that the reversed reaction is negligible is

v =
Vmax[A][B]

KM,B[A] + KM,A[B] + [A][B]
(2.20)

During a steady-kinetics experiment with a bisubstrate reaction, one substrate concen-

tration is varied while the other is kept constant. For laccase, the oxygen is concentration

is assumed to be constant (at 8.04 mg/l or 259µM) for the duration of the enzyme assay

if the substrate conversion does not exceed 10 % and if the substrate concentration largely

exceeds that of the enzyme. It is then possible to rearrange equation 2.20 to the general

Michaelis-Menten form with respect for substrate A,
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vA =




Vmax,A

KM,B

[B]
+ 1


 [A]




KM,A

KM,B

[B]
+ 1


 + [A]

=
kcat,A,app[E]t[A]

KM,A,app + [A]
(2.21)

and for substrate B,

vB =




Vmax,B

KM,A

[A]
+ 1


 [B]




KM,B

KM,A

[A]
+ 1


 + [B]

=
kcat,B,app[E]t[B]

KM,B,app + [B]
(2.22)

2.7.3 Experimental determination of Michaelis-Menten parameters

Steady-state kinetic experiments are conducted to determine the the Michaelis-Menten cat-

alytic parameters.KM,app and Vmax,app can be roughly estimated by plotting rate data

according to graphical methods that are based on the linearization of the Michaelis-Menten

model. These plotting methods are very useful for determining the nature (linear or non-

linear) and the type of enzyme inhibition (competitive, non-competitive, and uncompeti-

tive) .
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Lineweaver-Burk plot

The reciprocal of initial rates are plotted against the reciprocal substrate concentrations

and the result is a straight line described by the linearized form of the Michaelis-Menten

equation:

1

v
=

1

Vmax

+
KM

Vmax

1

[S]
(2.23)

The intercept is
1

Vmax

, the slope
KM

Vmax

andKM is determined from the abscissa at y

= 0 (Figure 2.7A). The turnover number can be calculated fromkcat =
Vmax

[E]t
. The errors

are amplified by the inversion (particularly at lower substrate concentrations) and the data

points must be weighted to improve the accuracy of the estimates if this method is to be

used primarily for the numerical estimation ofkcat and KM . However, this practice is

discouraged as Dowd and Riggs (1965) showed that this method out of all the linearization

transformations (Lineweaver-Burk, Eadie-Hoftsee, and Wolfe-Hanes (not covered in this

review)) systematically yields the estimates with the largest errors. The weighting method

or factors depends on the error trend or structure associated with the parameter estimates

(Dowd and Riggs, 1965; Wilkinson, 1961).

Eadie-Hoftsee plot

In this graphical method, rates divided by their corresponding concentration (
v

[S]
) are plot-

ted against the initial ratev and the line has the following equation

v

[S]
=

Vmax

KM

− v

KM

(2.24)
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TheKM is determined from the slope
−1

KM

andVmax is calculated from the intercept

Vmax

KM

(Figure 2.7B). On the hand, the error associated with the initial velocity,v, is not

amplified.
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Figure 2.7: Lineweaver-Burk (A) and Eadie Hofstee (B) plots
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Figure 2.8: Mixed type enzyme inhibition

2.7.4 Linear enzyme inhibition

Most enzyme inhibition occurs through basic mechanisms that can be derived from Figure

2.8. The above kinetic mechanism is mixed-inhibition and is described by the general rate

equation,

v =
k2[E]t[S]

KM

(
1 +

[I]

KI,1

)
+ [S]

(
1 +

[I]

KI,2

) (2.25)

Here in the equation,KM =
k−1 + k2

k1

, Ki1 andKi2 are the dissociation constants for

the binding of the inhibitor to the free enzyme and the enzyme-substrate complex respec-

tively and are defined as

KI,1 =
k−I,1

kI,1

(2.26)
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KI,2 =
k−I,2

kI,2

(2.27)

k−i andki are the dissociation and association rate constants, respectively.

Competitive inhibition

The inhibitor competes with the substrate to bind to the active site and does not bind the

enzyme-substrate complex, i.e.Ki2 → ∞. A greater substrate concentration is neces-

sary to achieve half the maximal velocity, i.e., a greater substrate concentrations is needed

to displace inhibitor molecules from the active site.Vmax or k2 (turnover number) is not

affected while the apparent Michaelis constant,KM,app, increases as the inhibitor concen-

tration increases. The rate equation is

v =
k2,app[E]t[S]

KM,app + [S]
=

k2[E]t[S]

KM

(
1 +

[I]

KI,1

)
+ [S]

(2.28)

The Lineweaver-Burk plot indicates competitive inhibition when the straight lines have

the same intercept and their slope increases as the inhibitor concentration increases (Figure

2.9A).

Non-competitive inhibition

In non-competitive inhibition, the inhibitor binds the free enzyme and the enzyme-substrate

with equal affinity (KI,1 = KI,1), i.e. the inhibitor binds a non-catalytic site that affect the

conversion of the substrate to the product. In that respect, the apparent turnover number

k2,app decreases and the apparent Michaelis constant is equal to the true value.
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Figure 2.9: Lineweaver-Burk plots of the competitive, non-competitive and uncompetitive
inhibitions
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v =
k2,app[E]t[S]

KM,app + [S]
=




k2

1 +
[I]

KI,2


 [E]t[S]

KM + [S]
(2.29)

The Lineweaver-Burk plot shows straight lines that have the same abscissa and different

intercepts. The slopes of the line increase as the inhibitor concentration increases (Figure

2.9B).

Uncompetitive inhibition

In uncompetitive inhibition, the inhibitor only binds to the enzyme-substrate complex and

not the free enzyme (KI,1 −→ ∞). The inhibitor binding site appears only when the

substrate is bound to the enzyme. The trueKM andk2 are decreased to the same extent so

that the catalytic efficiency is not altered.

v =
k2,app[E]t[S]

KM,app + [S]
=




k2

1 +
[I]

KI,2


 [E]t[S]

KM

(
1 +

[I]

KI,2

)
+ [S]

(2.30)

The Lineweaver-Burk yields a set of parallel lines (identical slopes) with different in-

tercepts, which increase with the inhibitor concentration (Figure 2.9C).

Mixed inhibition

In this type of inhibition, the inhibitor binds to both the free enzyme and the enzyme-

substrate complex with different affinity so that the alteration in the truek2,app andKM,app

varies according to the affinity of the inhibitor to enzyme species:
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v =
k2,app[E]t[S]

KM,app + [S]
=




k2

1 +
[I]

KI,2


 [E]t[S]

KM




1 +
[I]

KI,1

1 +
[I]

KI,2


 + [S]

(2.31)

2.7.5 Non-linear enzyme inhibition

The theory of the non-linear inhibition is presented in this section and includes the deriva-

tion of the rate equations 7.2 and 7.3 in chapter 7. There are two types of non-linear in-

hibition. Hyperbolic (partial) mixed-type inhibition occurs when the enzyme can generate

a product despite being bound to an inhibitor and parabolic inhibition occurs if more than

one inhibitor molecule can bind to the enzyme. The enzyme-inhibitor, EI, in Figure 2.10 is

Figure 2.10: General partial mixed inhibition (hyperbolic)

allowed to bind to the substrate and to generate a product. The bound inhibitor can affect
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the enzymes affinity for the substrate by factorα. The parameterβ is a fraction and is the

effectiveness for the complex ESI to generate the product and can take values between 0

and 1. The rate equation describing the kinetic scheme is

v =

k2[E]t[S]

(
1 +

β[I]

αKI

)

KS

(
1 +

[I]

KI

)
+ [S]

(
1 +

[I]

αKI

) (2.32)

Hyperbolic inhibition can be detected by plotting the slopes or the intercepts from the

Lineweaver-Burk plots as function of the inhibitor concentration and the curve will be

hyperbolic (Figure 2.11A).

Parabolic inhibition occurs when more than one inhibitor binding site exist and is usually

complete, i.e. no product can be generated by the enzyme when all inhibitor sites are

occupied. Parabolic inhibition is indicated if the replot of the Lineweaver-Burk slopes

shows a parabolic curve (Figure 2.11B). Consider the parabolic inhibition kinetic in Figure

2.12. In this scheme, the inhibitor (I) can bind two independent sites with the same affinity,

i.e., the inhibition constant,KI , is identical for both inhibitor binding sites. Theα factor

indicates that binding of the inhibitor affects the binding of the substrate S. The enzyme-

substrate with one inhibitor molecule can generate the product by a fractionβ of k2 but it

cannot when two inhibitor molecules are bound. The rate equation for this kinetic scheme

is

v =

k2[E]t[S]

(
1 +

2β[I]

αKI

)

KS

(
1 +

2[I]

KI

+
[I]2

KI
2

)
+ [S]

(
1 +

2[I]

αKI

+
[I]2

α2KI
2

) (2.33)

(See appendix C for derivation)
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To recapitulate, this section on enzyme kinetics has been presented to explain the de-

velopment of the kinetic models developed in chapter six and seven, the process by which

they were derived, and how to interpret them.
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Figure 2.11: Replots of Lineweaver-Burk slopes or intercepts for the detection of non-linear
inhibition
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Figure 2.12: Inhibition with 2 inhibitor binding sites affecting the binding of the substrate
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Reactive blue 19 decolourization by

laccase immobilized on silica beads
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3.1 Abstract

Laccase (31.5 U of activity/g or 4.39µg of protein/m2) from Trametes versicolorwas im-

mobilized on controlled-porosity-carrier (CPC) silica beads and evaluated for the decolour-

ization of Reactive blue 19, an anthraquinone dye. Immobilizing laccase changed the pH

activity profile of ABTS oxidation from a decaying trend to a bell-shaped curve with an

optimum at pH 5 but did not affect dye decolourization. Although there was an initial rapid

dye adsorption on the beads, 97.5 % of Reactive blue 19 removal was due to enzymatic

degradation. Treating the laccase immobilized beads with ethanolamine reduced dye ad-

sorption by 40 %. While the free enzyme lost 52 % of its activity in 48 h, the activity of
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the immobilized laccase was unchanged after four months of storage and three successive

decolourizations over 120 h.

3.2 Introduction

Environmental regulations of the discharge of coloured effluents have become more strin-

gent because approximately 50,000 tons of toxic textile dyes are released into the envi-

ronment every year worldwide (Lewis, 1999). In Canada, the discharge of coloured ef-

fluents to municipal sewage is prohibited in the cities of Kingston and Toronto (City of

Kingston, 2000; City of Toronto, 2000). A combination of physical, chemical and biolog-

ical processes can efficiently treat coloured effluents (Robinsonet al., 2001) but a single

technology may be more cost-effective.

White rot fungi degrade a wide range of persistent organic pollutants like phenols (Ko

and Chen, 2008; D’Annibaleet al., 2000; Hublik and Schinner, 2000; Zhanget al., 2008),

pesticides (Jolivaltet al., 2000) and textile dyes with their lignin-degrading enzymes such

as lignin peroxidase, manganese (II)-dependent peroxidase and laccase (phenol oxidase).

Laccases degrade dyes with phenolic and quinone moieties efficiently and may need a

redox mediator like hydroxybenzotriazole for dyes that do not include these molecular

features (Reyeset al., 1999; Nyanhongoet al., 2002; Peralta-Zamoraet al., 2003; Couto,

2007).

Using enzymes instead of fungal cultures would eliminate the need for laccase produc-

tion which depends on the cultures metabolic state which, in turn, is affected by conditions

such as pH and variation in effluent composition. The enzyme concentration in an immobi-

lized enzyme reactor is more easily controlled than that in fungal bioreactor. Moreover, im-

mobilization of laccase is potentially more cost-effective than using the free enzyme since
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Figure 3.1: Chemical structure of Reactive blue 19

it would greatly reduce enzyme loss and allow re-use. Laccase immobilized on various

supports has been evaluated for the treatment of pollutants such as phenols (Shuttleworth

and Bollag, 1986; Duran and Esposito, 2000; Duranet al., 2002) but few have investigated

dye decolourization. Immobilization of laccase on imidazol-modified silica gel (Peralta-

Zamoraet al., 2003) and silanized alumina particles (Zilleet al., 2003) have shown that

while both enzymatic degradation and sorption contributed to dye removal, the contribu-

tion of enzymatic decolourization was quite minor.

Although many studies have previously dealt with immobilized laccase on silica (Duran

et al., 2002), it has not been used for dye decolourization to our knowledge. In addition, the

immobilization can change an enzymes kinetic behaviour and response to environmental

conditions and these must also be quantified for design purposes. This study therefore

evaluates the decolourization of Reactive blue 19 (Figure 3.1), an anthraquinone dye, by

Trametes versicolorlaccase immobilized on controlled porosity carrier (CPC)-silica beads

and the impact of protein immobilization on dye decolourization.
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3.3 Materials and Methods

3.3.1 Chemicals

Pre-silanized (with 3-aminopropyltriethoxysilane (APTES)) CPC silica beads,Trametes

versicolorlaccase, Reactive blue 19 and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic

acid) (diammonium salt) were purchased from Sigma-Aldrich (Oakville, ON, Canada) and

glutaraldehyde from Acros (Belgium).

3.3.2 Surface area of beads

The surface area was determined by measuring the amount of N2 gas adsorbed on the beads

at different partial pressures (de Kanel and Morse, 1979) with a Micrometric Tristar 300

(Micrometric Instrument Corp).

3.3.3 Immobilization of laccase on CPC-Silica

Four grams of pre-silanized CPC-silica beads (355 to 600µm in diameter, an average

surface area of 42.1 m2/g and a pore size of 37.5 nm) were immersed in degassed 2.5

% glutaraldehyde in 0.1 M KH2PO4 at pH 5.0 for 2 h and thereafter placed in a laccase

solution ( 3 U/ml in 0.1 M KH2PO4 pH 5.0) for 36 h at 4◦C. The beads were subsequently

washed three times with distilled water and twice with phosphate buffer.

3.3.4 Free and immobilized enzyme assay

Laccase activity was measured by monitoring with a spectrophotometer the generation of

2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radicals (ABTS•−) at 420 nm from

the oxidation of ABTS (Wolfenden and Willson, 1982) at 23± 1◦C using a Spectramax
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250 plate reader with the SOFTmax PRO software package (Molecular Devices, CA, USA).

The assay mixture contained 0.2 mM ABTS, 100 mM sodium acetate buffer (pH 5.0) and

the enzyme sample (Bourbonnaiset al., 1995). One unit of laccase activity (U) was defined

as the amount of enzyme that formed 1µmol ABTS•− per min. Protein concentration was

measured as the absorbance at 280 nm and corrected for scattering effects with absorbance

readings at 320 nm according to equation 3.1:

A280
corr = A280 − A320 ∗

(
320

280

)4

(3.1)

For the immobilized laccase system, the CPC silica-laccase packed bed reactor (I.D. = 10

mm, l = 23 mm) was connected to a reservoir containing 100 ml of 50 mM sodium ac-

etate/50 mM KH2PO4 (pH 5) via a peristaltic pump. The solution was 100 % re-circulated

between the packed bed and the reservoir at a flow rate of 75 ml/min. To determine the

immobilized laccase activity, the linear variation of the concentration of ABTS•− in the

reservoir with time was measured for a 6 or 10 minute interval.

3.3.5 Decolourization of Reactive blue 19 by free laccase

Reactive blue 19 (0.036 mM or 22.5 mg/l) was decolorized with 5-7 U laccase in 125-ml

Erlenmeyer flasks containing 50 ml 0.1 M KH2PO4 at pH 5.0. Controls were identical but

did not contained laccase. All experiments were done at 23± 1 ◦C and pH 5. The dye

concentration was chosen since it is in the range of the typical dye concentration found in

textile wastewaters (O’Neillet al., 1999)
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3.3.6 Dye concentration

Reactive blue 19 concentration was measured using a Unicam UV1 spectrophotometer

(Spectronic Unicam, Cambridge, UK) at 592 nm, the maximum wavelength of absorbance.

The concentration of 0.036 mM (50 ppm) was chosen since it is typical of residual dye

concentration found in a textile wastewater (O’Neillet al., 1999).

3.3.7 Decolourization of Reactive blue 19 by immobilized laccase

A solution of Reactive blue 19 (0.036 mM) was continuously re-circulated at 4.15 ml/min

(equivalent to a hydraulic retention time of 2.44 min) from a reservoir containing 400 ml

of dye solution to a packed bed reactor (I.D. = 1.6 cm, h = 5.0 cm) with 4 g of CPC-

silica-laccase beads. Figure 3.2 shows a schematic of the experimental setup. The bed and

void volumes were about 10 and 1.6 ml respectively. After decolourization, the beads were

stored in 0.1 M KH2PO4 buffer at pH 5 and 23± 1◦C for 4 months. The rate of decolour-

ization was calculated by dividing the concentration difference between the reactor inlet

and outlet by the hydraulic retention time. The average rate was calculated by averaging

the decolourization rates in the reactor over the time interval during which the rates were

approximately constants. The rate constant was calculated by dividing the rate of decolour-

ization in the reactor by average concentration in the reactor Cinlet (see Appendix D.2 for

a sample calculation). After storage, Reactive blue 19 decolourization was measured. All

experiments were done at 23± 1 ◦C and pH 5.

3.3.8 Effect of enzyme immobilization on the pH profile of laccase

Free and immobilized laccase average reaction rates with 500µM ABTS or 50µM Reactive

blue 19 were measured in triplicate at pH 3, 4, 5, 6 and 7. For these experiments, the packed
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Figure 3.2: Schematic of Immobilized laccase setup
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bed reactor of CPC silica-laccase (I.D. = 10 mm, l = 23 mm, 2.5 g CPC-silica-laccase

beads) was connected to a reservoir containing 100 ml of 50 mM sodium acetate/50 mM

KH2PO4 (pH 5) via a peristaltic pump. The solution was 100 % re-circulated between

the packed bed and the reservoir at a flow rate of 75 ml/min. The linear variation of the

concentration of ABTS•− or Reactive blue 19 with time in the reservoir was measured over

a time interval of 10 minutes to determine the immobilized laccase average rate of reaction.

3.3.9 Reactive blue 19 adsorption and desorption

1.2 l of Reactive blue 19 solution (0.036 mM) was passed through the packed bed of CPC-

silica beads (I.D. = 1.6 cm, h = 5.0 cm, 4 g beads) at a flow rate of 32.8 ml/min with

active or heat inactivated laccase (autoclaved for 20 min at 121◦C). All other details are as

described in the decolourization experiment. The residual aqueous dye concentration in the

reservoir was measured and equilibrium was achieved within 3 hours. The dye adsorbed to

the beds was extracted with methanol until no further dye could be desorbed.

To determine if ethanolamine treatment after laccase immobilization would reduce

dye adsorption, CPC-silica-laccase beads were treated with 1 M ethanolamine and 0.2 M

borane-dimethyl amine. Laccase on treated and untreated beads was inactivated by auto-

claving for 20 min at 121◦C and thereafter exposed to 50 ml of 0, 39.9, 79.8, 119.7 and

159.6µM Reactive blue 19 in 50 mM KH2PO4 at pH 5 and 23.0◦C for 24 h in 125 ml

erlenmeyer flasks. Inactivation was confirmed since no laccase activity was detected after

autoclaving. Equilibrium was achieved in approximately 8 h.
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3.4 Results

3.4.1 Enzyme immobilization on CPC-silica

Glutaraldehyde was used to crosslink laccase to pre-silanized CPC silica beads. The ac-

tivity of immobilized laccase calculated from the declined activity in the supernatant from

three independent experiments was 31.5± 4.3 U/(g beads) with a protein loading of 185

± 58µg/(g beads). However, the measured immobilized enzyme activity on the beads was

1.11± 0.12 U/g.

3.4.2 Dye decolourization by free or immobilized laccase

Good decolourization rates of Reactive blue 19 were achieved in a re-circulating packed

bed reactor with laccase immobilized beads (Figure 3.3). As the recirculation rate increased

from 4.15 to 32.8 ml/min, the decolourization rate increased from 11.98 to 47.07µM/U-h.

These rates are better than those obtained with the free enzyme which decolorized 90 %

of Reactive blue 19 at an initial rate of 8.25µM/U-h. The free enzyme activity remained

constant during the three hours of decolourization.

3.4.3 Stability of decolourizing activity

After 4 months of storage at 23± 1 ◦C and pH 5 in 0.1 M KH2PO4 buffer, immobilized lac-

case decolourized Reactive blue 19 to a similar extent and rate as freshly prepared beads.

After storage, 80 to 71 % decolourization was achieved in three successive decolouriza-

tions over 120 hours (Figure 3.4) with average pseudo-first order reaction rate constant of

1.28± 0.03, 1.31± 0.04 and 1.51± 0.03 h−1 in the first, second and third decolouriza-

tions respectively. The pseudo-first order rate constants were calculated by dividing the
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Figure 3.3: Decolourization of Reactive blue 19 by laccase immobilized on CPC-silica
beads with 4 g of beads in a packed bed at pH 5.0 and 23± 1 ◦C at a recirculation rate of
4.15 ml/min and an initial dye concentration of 0.036 mM

decolourization rates by the dye concentration at each time point. The enzyme did not leak

from the beads as laccase activity was not detected in the aqueous phase.

3.4.4 Effect of enzyme immobilization on the pH profile of laccase

Immobilizing laccase affected the pH profile of ABTS (Figure3.5A); the pH-activity profile

changed from a decaying line to a bell-shaped curve with an optimum pH of 5. However,

the pH-activity profile of Reactive blue 19 was not affected by immobilization (Figure

3.5B).
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Figure 3.4: Decolourization of Reactive blue 19 in a packed bed by immobilized laccase
after 4 months of storage in phosphate buffer at pH 5.0 and 23± 1 ◦C

3.4.5 Contribution of adsorption to dye decolourization

Ethanolamine, commonly used to block remaining aldehyde groups after protein immobi-

lization, was evaluated for its ability to decrease the adsorption of Reactive blue 19. Using

different initial dye concentrations in Erlenmeyer flasks, ethanolamine-treated particles ad-

sorbed 40 % less dye than untreated, heat-inactivated particles (Figure 3.6). The partition

coefficient,Kp, decreased from 0.214 to 0.131 when the beads were treated. The adsorption

equilibrium occurred after 8 h.

Reactive blue 19 adsorbed to ethanolamine-treated beads with an intense blue colour

when laccase had been heat inactivated and used in a recirculating packed bed. The color

intensity persisted for the duration of the experiment, at least 24 h, with 21.4 % of the initial
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Figure 3.5: Effect of laccase immobilization on the pH profile of ABTS oxidation (A) and
the decolourization of Reactive blue 19 (B). The assay mixtures were buffered with 50 mM
NaOAc/50 mM NaH2PO4. The initial ABTS and Reactive blue 19 concentrations for the
free and immobilized laccase were 500 and 50µM respectively. Each data point is the
average of triplicates and error bars represent the standard error.
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Figure 3.6: Effect of ethanolamine pretreatment on Reactive blue 19 adsorption on lac-
case immobilized on CPC-silica particles. After immobilization and before the beads were
exposed to the dye, the beads were treated with ethanolamine to block reaction sites not oc-
cupied by the enzyme, and then laccase was heat inactivated. Experiments were conducted
in 50 mM KH2PO4 buffer at pH 5.0 and 23± 1◦C.
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Table 3.1: Reactive blue 19 removal in a packed bed reactor with recycle containing laccase
CPC-immobilized on silica beads which were pre-treated with ethanolamine before and
after heat inactivation. Dye was desorbed by methanol extraction at 22.5± 1 ◦C.

Laccase Total dye added After decolourization

(mg dye/g beads) % disappearance % in solution % desorbed

Active enzyme 7.47 97.4 2.61 0

Heat-inactivated enzyme 7.38 78.6 21.4 55.3

dye remaining in solution (Table 3.1). The adsorption equilibrium in this case was achieved

within 3 hours. However with active laccase, the intensity of the blue colour on the packed

bed began to decrease after 4 h when the aqueous dye concentration had decreased to about

50 %. After 8 h, there was no visible color in the aqueous phase, and the bed had a pale

pink colour with only 2.61 % of the initial dye measured in solution. While 55.3 % of the

dye was recovered by desorption from the heat inactivated bed, no dye was recovered from

the active bed.

3.5 Discussion

The retained activity of immobilized laccase based on the declining activity in the super-

natant (during the enzyme immobilization) did not reflect the measured activity. The latter

was 3.5 % (1.11 U/g) of the calculated activity (31.5 U/g). The ABTS concentration used to

measure the immobilized enzyme activity was well above theKM of the enzyme (50 to 73

µM). Therefore, the lower measured activity may be due to the denaturation of the enzyme
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and/or to diffusion limitations. Mass transfer resistance in enzyme reactors is common in

packed beds of porous enzyme supports (Barroset al., 1998; Kallenberget al., 2005).

In the few decolourization studies in which laccase was immobilized on a solid sup-

port, the majority of dye removal was due to adsorption. Abadullaet al. (2000), Zilleet al.

(2003) and Kandelbaueret al. (2004) used the same immobilization method, cross-linking

laccase onto silanized alumina with glutaraldehyde. The first two studies both worked

with Reactive black 5 but only Zilleet al. (2003) reported that the majority of dye decol-

oration (79 %) was due to adsorption and a very minor amount (4 %) to enzymatic activity

while Abadullaet al. (2000) did not comment on sorption taking place. In another study,

Kandelbaueret al. (2004) noted that adsorption played a role in decolourization but did

not determine the extent of its contribution. Peralta-Zamoraet al. (2003) showed that the

majority of color removal of Reactive blue 19 (also named Remazol Brilliant Blue R in

their paper) was due to adsorption with laccase immobilized on imidazol-modified silica

gel. In our study, which also used Reactive blue 19, the majority of dye (about 97 %)

was enzymatically degraded even though an initial, rapid adsorption occurred. Initially, the

rate of adsorption must have been faster than the rate of degradation to obtain the intense

blue colour. However, as the aqueous dye concentration decreased, the amount of adsorp-

tion must have decreased relative to the rate of dye degradation such that the intense blue

colour gradually disappeared leaving a pale pink colour on the active laccase bed.

A key reason why our results differed from those of Peralta-Zamoraet al.(2003) may be in

the immobilization method. They cross-linked laccase to silica gel using propylimidazol.

Imidazole groups are known binding sites for metal ions including Cu2+ (Kozlowskiet al.,

2005). Laccase is a metalloprotein with four Cu2+ atoms that catalyze the internal electron

transfer during oxidation. It is possible that the imidazole groups may have interacted with
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copper in laccase leading to enzyme inactivation. In our study, laccase was immobilized

on CPC-silica using APTES-glutaraldehyde which linked the amine groups on the enzyme

and the bead surface. This method has been shown in the literature to retain a high level

of laccase activity (Duranet al., 2002). Furthermore, from our results, laccase activity did

not appear to be adversely affected as decolourization rates per unit of enzyme activity for

the immobilized enzyme was as good as or better than the free enzyme. In addition, the

trend of the pH profile of dye decolourization did not change after immobilization. The

low decolourization rates at pH 6 and 7 were difficult to measure probably because of mass

transfer resistance.

Immobilizing laccase however drastically altered the pH profile of ABTS oxidation. The

two-unit shift of the optimum pH towards more alkaline values indicates that the local im-

mobilized enzyme micro-environment has a net negative charge (Goldstein, 1976). In a

negatively charged microenvironment, the local proton concentration is greater than the

bulk concentration. The excess pH could have inhibited the enzyme. The pKa of ABTS is

2.2 and it is expected to be in the form of the dianion predominantly (Scottet al., 1993). As

it approached the microenvironment however, it may have been neutralized by the excess

protons so that its oxidation to a cation was disfavored by the excess of positive charges.

As the pH is increased, the concentration of the buffer weak base that transports the pro-

tons away from the microenvironments increased. The generation of the cation would be

more favorable because of the reduced proton concentration. The large shift differs with

the results of Leonowiczet al. (1988) who showed a much smaller shift of 0.5 units with

T.versicolorlaccase immobilized on porous glass beads. The difference may be related to

the average pore size of the beads used in this study was half of that used by the authors

(37.5Å as opposed to 75̊A). This can greatly restrict the diffusion of the protons thereby
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creating a larger pH gradient between micro-environment and the bulk medium.

Although this immobilization technique has been used previously to immobilize laccase

on silica for various applications, this is the first report of its use in dye decolourization and

the first report of laccase immobilized on a support demonstrating color removal primarily

due to the enzymatic activity and not sorption.

Immobilization to a support can minimize the conformational changes that an enzyme may

undergo so that over time or when subjected to environmental perturbations, the immobi-

lized enzyme may have better stability. Although in our study, immobilized laccase was

more stable than the free enzyme, laccase immobilized on alumina had a lower stability

than the free enzyme in dyeing effluents (Zilleet al., 2003). The composition of dye ef-

fluents and different dye structures will influence enzyme stability (Reyeset al., 1999; Ko

and Chen, 2008) as well as decolourization rates. Although this study focused on Reactive

blue 19, the decolourization of other dyes and the effect of effluent components need to

be investigated before this process can be considered for industrial applications. However,

being able to store the immobilized laccase in a simple buffer under ambient conditions

would allow their re-use and could have economic and practical advantages.

3.6 Conclusion

In conclusion, we have shown thatT. versicolorlaccase immobilized on CPC-silica beads

decolourized Reactive blue 19 in a packed bed reactor and dye removal is primarily enzy-

matic. Immobilizing laccase considerably changed the pH activity profile of ABTS oxida-

tion but not that of dye decolourization. The activity of the immobilized enzyme was more
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stable than the free enzyme and similar decolourization rates were obtained after 4 months

of storage in phosphate buffer at room temperature.
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Chapter 4

Dye toxicity and decolourization by

laccase immobilized on CPC-silica beads

A manuscript of this chapter is preparation and is to be submitted to Applied Microbiology
and Biotechnoloy (Springer-Verlag)

4.1 Abstract

The toxicity and decolourization of textile dyes by laccase immobilized on CPC-silica

beads were evaluated. Anthraquinone (Reactive blue 19 and Dispersed blue 3) and in-

digoid (Acid blue 74) dyes were degraded more rapidly than the azo dyes (Acid red 27

and Reactive black 5). Furthermore, the immobilization procedure did not alter the laccase

decolourization efficiency. Visible dye adsorption correlated with the loss of activity of the

free enzyme in the presence of individual dyes. Azo and indigoid dyes were more toxic

than anthraquinone dyes as determined by the Microtox assay. However, the toxicity of

the azo and indigoid dyes decreased after enzymatic treatment while that of anthraquinone

dyes increased. This indicates that the decolourization products of anthraquinone dyes are

89
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potentially more toxic than the parent compounds.

4.2 Introduction

Residual dyes in textile wastewaters, when discharged in aquatic ecosystems, may reduce

the amount of sunlight to photosynthetic organisms which results in a decrease oxygen

levels. Domestic activated sludge processes poorly remove dyes because they and/or their

auxiliary chemicals are generally toxic to microorganisms (Rosaet al., 2001; Moawad

et al., 2003; Wanget al., 2002). Physical color removal methods (such as activated carbon

and coagulation) require subsequent disposal steps since dyes are not degraded, but just

transferred to a different phase (Reife and Freeman, 1996; Robinsonet al., 2001). Current

individual technologies are not effective with all dye classes and a combination of methods

may be required, thus increasing treatment costs (Talarposhtiet al., 2001). Therefore, a

more cost effective and efficient treatment is needed.

Extracellular lignin-degrading enzymes of white rot fungi like peroxidases and laccases

can decolourize dyes in liquid cultures (Kirbyet al., 2000; Champagne and Ramsay, 2005;

Husain, 2006; Wesenberget al., 2003). Immobilization of these enzymes is potentially

more cost-effective as it would allow their re-use and may improve enzyme stability. Al-

though purified fungal laccases have decolourized azo (Salonyet al., 2006), acid (Salony

et al., 2006; Youneset al., 2007) and anthraquinone (Luet al., 2007; Youneset al., 2007)

dyes, most studies have evaluated immobilized laccase to remove pollutants such as pesti-

cides and phenols from synthetic wastewaters (Yinghuiet al., 2002; Jolivaltet al., 2000).

Dye decolourization using laccase immobilized on imidazol-modified silica gel (Peralta-

Zamoraet al., 2003) or silanized alumina particles (Zilleet al., 2003) occurred mainly
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by adsorption, and to a lesser extent, by enzymatic decolourization. In Chapter 3, it was

demonstrated that laccase immobilized on controlled porosity carrier (CPC) beads using

APTES-glutaraldehyde decolourized Reactive blue 19, an anthraquinone dye, mainly by

enzymatic degradation. However, the decolourization of other textile dyes by the same

immobilized laccase preparation and the effect of immobilization on the decolourizing ca-

pability of laccase were not evaluated. The latter is important since immobilization should

not impair decolourization efficiency. Furthermore, there are few reports on the toxicity

of dyes decolourized by fungal cultures (Ramsay and Nguyen, 2002; Shin and Lee, 2000),

and even fewer on dyes decolourized by free or immobilized laccase (Abadullaet al., 2000;

Ulson de Souzaet al., 2007). Fungal cultures produce mixtures of different chemical com-

position than purified enzymes, and hence possibly different toxicities. This study com-

pared the decolourization of Reactive blue 19 with another anthraquinone dye (Disperse

blue 3), an indigoid dye (Acid blue 74) and two azo dyes (Acid red 27 and Reactive black

5) by Trametes versicolorlaccase immobilized on CPC-silica beads and the impact of de-

colourization on toxicity.

4.3 Materials and methods

4.3.1 Chemicals

CPC silica beads pre-silanized with 3-aminopropyltriethoxysilane (APTES),Trametes ver-

sicolor laccase, Acid red 27, Reactive blue 19, Reactive black 5 and 2,2’-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (diammonium salt) were purchased from Sigma-Aldrich

(Oakville, ON, Canada). Dispersed blue 3, Acid blue 74 and glutaraldehyde were pur-

chased from Acros (Belgium).
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4.3.2 Immobilization of laccase on CPC-silica

Four grams of pre-silanized CPC silica beads (355 to 600 m in diameter, an average surface

area of 42.1 m2/g and a pore size of 37.5 nm) were immersed in degassed 2.5 % glutaralde-

hyde in 0.1 M KH2PO4 at pH 5.0 for 2 h and thereafter placed in a laccase solution (3̃ U/ml

in 0.1 M KH2PO4 pH 5.0) for 36 h at 4◦C. The beads were then washed three times with

distilled water and twice with phosphate buffer.

4.3.3 Free and immobilized enzyme assay

Laccase activity was measured by monitoring with a spectrophotometer the generation of

2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS•−) at 420 nm from

the oxidation of ABTS (Wolfenden and Willson, 1982) at 23± 1 ◦C using a Spectramax

250 plate reader with the SOFTmax PRO software package (Molecular Devices, CA, USA).

Assays were conducted in 96-well plates (300µl per well). The assay mixture contained

0.2 mM ABTS, 100 mM sodium acetate buffer (pH 5.0) (Bourbonnaiset al., 1995) and

the enzyme sample for a total assay volume of 180µl. The corresponding path length of

absorbance was 0.5 cm . One unit of laccase activity (U) was defined as the amount of

enzyme that formed 1µmol ABTS•− per min. Protein concentration was measured as the

absorbance at 280 nm and corrected for scattering effects with absorbance readings at 320

nm (equation 4.1.

A280
corr = A280 − A320 ∗

(
320

280

)4

(4.1)

For the immobilized laccase system, the CPC silica-laccase packed bed reactor (I.D. = 10

mm, l = 23 mm) was connected to a reservoir containing 100 ml of 50 mM sodium ac-

etate/50 mM KH2PO4 (pH 5) via a peristaltic pump. The solution was 100 % re-circulated

between the packed bed and the reservoir at a flow rate of 75 ml/min. To determine the
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immobilized laccase activity, the linear variation of the concentration of ABTS•− in the

reservoir with time was measured for a 6 or 10 minute interval.

4.3.4 Decolourization by free laccase

All dyes were decolourized with 100 -150 U/l (i.e. 5-7.5 U) laccase in 125-ml Erlenmeyer

flasks containing 50 ml phosphate buffer (0.1 M KH2PO4 at pH 5.0) at 23± 1 ◦C and

pH 5. The concentration of Dispersed blue 3 (0.072 M) was twice the concentration of

other dyes (0.036 M) as the absorbance of its solution at the lower concentration was too

low to monitor its degradation. The concentration of 0.036 mM for each dye (except for

Disperse blue 3) was chosen since it is typical of residual dye concentration found in a

textile wastewater (O’Neillet al., 1999). Controls contained the dye solutions without

laccase. The initial rates of degradations were determined by calculating the tangent of the

slope of the decolourization progress curve.

4.3.5 Decolourization by immobilized laccase

Four grams of CPC-silica beads with 31.5± 4.3 U of laccase/g (i.e. 0.75± 0.10 U/m) or

4.39± 1.38µg of protein/m2 immobilized were used in a re-circulating packed or fluidized

bed reactor. Anthraquinone or indigo dye solutions were continuously re-circulated at 4.15

ml/min (hydraulic residence time (HRT)= 2.44 min) from a reservoir containing 400 ml of

the dye solution to a packed bed (I.D. = 1.6 cm, h = 5.0 cm). For the azo dyes, a similar

configuration was used except that the beads were fluidized in a 14-ml bed (I.D. = 1.6 cm,

h = 7.0 cm) at a flow rate of 45 and 39 ml/min (HRT = 0.31 min) respectively with 100 ml

of dye solution in the reservoir. The rate of decolourization was calculated by dividing the

concentration difference from the reactor inlet and outlet by the hydraulic retention time.
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The average rate was calculated by averaging the decolourization rates in the reactor at over

the time interval in which the rates were approximately constants. Experiments were done

at 23± 1◦C and pH 5.

4.3.6 Dye concentration

Dye concentration was measured using a Unicam UV1 spectrophotometer (Spectronic Uni-

cam, Cambridge, UK) at the maximum wavelength of each dye (Table 4.1).

4.3.7 Microtox analysis

The Microtox acute toxicity assay was conducted with a Microtox 500 Analyzer on dye

solutions according to the protocols provided by Azur Environmental (Newark, Delaware).

The pH of the samples was adjusted where necessary to 6.0 by adding 70µl 1 M NaOH.

From eight serial dilutions, the percent dilution which decreased the luminescence of a

modified strain of Vibrio fischeri after 15 min incubation by 20 % (EC20%) was deter-

mined using the Microtox data analysis program (Microtox Omni Software (1999) Azur

Environmental, Newark, Delaware, USA). Color correction was not necessary. Solutions

of zinc sulfate (ZnSO4 · 7 H2O) and 1 g glucose/l prepared in distilled water were used as

the positive and negative controls respectively. Each EC20% reported was the average of

triplicate analyses.

4.4 Results

Immobilized laccase, like the free enzyme, decolourized the indigoid (Acid blue 74) and

anthraquinone (Reactive blue 19, Dispersed blue 3) dyes more rapidly than the azo dyes

(). The indigoid and anthraquinone dyes did not affect the activity of free laccase in up
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Table 4.1: Dye structures and their maximum wavelength of absorption

Dyes molecular structure Molecular weightλmax (nm)

Reactive blue 19 626.5 592

Dispersed blue 3 296.3 719

Acid blue 74 466.3 609

Acid red 27 604.5 523

Reactive black 5 991.8 597
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to 3 hours of decolourization, maintaining 100 % of its activity. The free enzyme activity

however decreased by 33% and 97 % with azo dyes Acid red 27 and Reactive black 5 re-

spectively after 84 h (Table 4.2). Since a 60 % loss of activity also occurred with no dye

after 84 h, Reactive black 5 clearly inhibited laccase activity.

When the dyes were first exposed to the immobilized enzyme, an initial, rapid adsorp-

tion to the enzyme bed was observed with all dyes except Acid blue 74. By the end of the

decolourization, the adsorbed colour disappeared or persisted to varying degrees depend-

ing on how efficiently laccase degraded the dye. At the end of the experiment, the order in

which the dyes were visibly adsorbed to the immobilized enzyme bed from the least colour

to the most, was Acid blue 74 (no colour)< Reactive blue 19< Disperse blue 3< Acid red

27< Reactive black 5 (most intense colour) (Table 4.2) where laccase was mostly inhibited

by Reactive black 5.
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4.4.1 Toxicity of decolourized dyes

Microtox analyses were conducted before and after decolourization by free or immobilized

laccase. Using the EC20 % and the ranking of Coleman and Qureshi (1985), the toxicity of

the dye solutions were categorized as follows:>100 % = non-toxic; 100-75 % = slightly

toxic; 75-50 % = moderately toxic; 50 25 % = toxic;< 25 % = very toxic. The negative

control (1 g glucose/l) and laccase alone in the same buffer had no effect on the fluorescence

of V. fisheri (Table 4.3). However, the positive control (1 g ZnSO4 ·7H2O/l) was very

toxic while the buffer alone was moderately toxic. The azo and indigoid dyes were more

toxic than the anthraquinone dyes. Similar results were obtained whether the dyes were

decolourized by the free or immobilized enzyme except for Acid red 27 where the toxicity

had decreased with the immobilized enzyme but remained unchanged with the free enzyme.

Decolourization decreased the toxicity of the indigoid dye but increased the toxicity of the

anthraquinone dyes.
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4.5 Discussion

The present study evaluated the decolourization of a range of dyes by the same immobi-

lized laccase preparation used to decolourize Reactive blue 19 in Chapter 3. Like Reactive

blue 19, the immobilized enzyme decolourized Disperse blue 3 (anthraquinone), Acid blue

74 (indigoid), Acid red 27 (azo) and Reactive black 5 (azo) with a similar specificity and

rate as the free enzyme (Table 4.2). Protein immobilization can modify or deactivate the

enzyme if immobilization conditions are not appropriate. For example, excess glutaralde-

hyde, a common bifunctional cross-linker, can significantly cross-link enzymes to each

other resulting in a loss of functionality. In this study, the specificity of soluble and immo-

bilized laccase toward the dyes was nearly identical (Table 4.2) and there was no systematic

variation in the rate of decolourization per unit of enzyme after immobilization. The nearly

identical specificity before and after immobilization demonstrates that the enzyme’s struc-

ture was unaffected during immobilization and/or any change in the enzyme structure did

not affect its ability to degrade the dyes after immobilization. Furthermore, the substrate’s

access to the immobilized enzyme was not restricted by the mass transfer resistance and

the recirculation rate in the packed bed reactor was sufficiently high to ensure good mixing.

The boundary layer may have been sufficiently thin that forced convection would have been

the dominant transport mechanism of the dye to the immobilized laccase rather than free

diffusion. In light of these results, the immobilization protocol used in this investigation

did not impair enzyme decolourization and may allow advantages in terms of enhanced

stability and economy of reusing the immobilized laccase in industrial applications.

Although it was previously shown that decolourization of Reactive blue 19 was mainly en-

zymatic when laccase was immobilized on CPC-silica, it was observed in the present study

that dyes poorly decolorized by the free laccase adsorbed onto the immobilized preparation
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(Table 4.3). Dyes, which adsorbed the least or not at all, were decolourized the fastest.

Since anthraquinone (Reactive blue 19, Dispersed blue 3) and indigoid (Acid blue 74) dyes

were degraded more efficiently than the azo dyes (Acid red 27 and Reactive black 5), they

were better substrates for laccase as it is generally reported in the literature (Nyanhongo

et al., 2002). Zilleet al. (2004) has shown that an increased redox potential of the dyes

decreased the rate or extent of decolouration with aT. villosa laccase. The most poorly

decolorized dyes in this study were the azo dyes Acid red 27 and Reactive black 5 and co-

incidently, these had the highest redox potentials. The authors found that the addition of a

mediator, 1-hydroxybenzotriazole (HBT), enhanced the rate and extent of decolourization

of all dyes, including Acid red 27 and Reactive black 5, and attributed this to the higher re-

dox potential of laccase/HBT (+1.084 V vs NHE ie normal hydrogen electrode) compared

to laccase alone (+0.780 V vs NHE) (Bourbonnaiset al., 1995). The addition of mediators

such as hydroxybenzotriazole (HBT) or ABTS has been shown to improve decolourization

(Reyeset al., 1999; Zilleet al., 2004).

The present study also examined the toxicity of the dyes and their enzymatically decolour-

ized products. Dyes and auxiliary chemicals used in the dyeing process render textile

wastewaters toxic for activated sludge processes (Odeigahet al., 1995; Rosaet al., 2001;

Wanget al., 2002). Ramsay and Nguyen (2002) have shown that metabolites ofT. versi-

color not associated with decolourization can contribute to toxicity. These metabolites can

potentially mask the toxic effects of the parent dye and its daughter products (Ramsay and

Nguyen, 2002; Shinet al., 2002; Rosaet al., 2001). Hence, purified enzymes and inorganic

buffer were used to eliminate such contributions, and toxicity changes would be due only to

decolourized products. Several test organisms such as algae, bacteria, fish and plants have

been used to assess effluent toxicity (Rosaet al., 2001). When a variety of assays were



CHAPTER 4. DYE DECOLOURIZATION AND TOXICITY 102

compared,V. fischeri(a luminescent bacterium) was the most sensitive, and was consid-

ered the most effective and practical for the Microtox assay (Rosaet al., 2001; Wanget al.,

2002). Microtox results were shown to correlate to toxicity results in higher organisms.

In our study, the azo and indigoid dyes were more toxic than the anthraquinone dyes (Ta-

ble 4.3). However, Novotńy et al. (2006) reported that their anthraquinone dyes (Reactive

blue 19 and Dispersed blue 3) were more toxic than their azo dyes (Reactive orange 16 and

Congo red) when tested withV. fisherialso. Although this appears to be a contradiction,

the number of dyes in either study was low and the only dye common to both studies was

Dispersed blue 3. In our study, the toxicity analyses were done with the dyes in the enzyme

buffer (which had a mild toxic effect) in order to compare them with the decolourized

products. Novotńy et al. (2006) did no decolourization studies and had not specified the

exact composition of their dye solutions. Although Abadullaet al. (2000) evaluated dye

detoxification after decolourization byT. hirsutaimmobilized laccase, they used a different

toxicity assay withPseudomonas putidaand did not report the toxicity of the parent dyes.

Abadullaet al. (2000) showed that their azo (Reactive black 5 and Direct blue 71) and

indigoid (Acid blue 74) dyes as well as their anthraquinone (Reactive blue 19 and Acid

blue 225) dyes were detoxified. Our enzymatic decolourization results are different. Like-

wise to Abadullaet al.(2000), the decolourized products of the azo and indigoid dyes were

less toxic but those of the anthraquinone dyes were more toxic than the parent dyes. How-

ever, the indigoid dye (Acid blue 74) and one azo dye (Reactive black 5) were common to

both studies with similar detoxification results even though different toxicity assays were

performed. However, there were no anthraquinone dyes common to both studies and it is

likely thatV. fisherimay be more sensitive to anthraquinone dyes and/or their decolourized
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products thanP. putida. This indicates that a much wider range of dyes should be evaluated

within the same study as there is no standard assay commonly followed in the literature for

dye toxicity or detoxification data to be strictly compared.

In the anaerobic bacterial decolourization of azo dyes, the generation of aromatic amines

results in an increase in toxicity (Deleeet al., 1998). However, when followed by an aero-

bic bacterial step, the amines are degraded and the end toxicity is reduced (Gottliebet al.,

2003). On the other hand, it was shown in this study thatT.versicolorlaccase can detoxify

azo and indigoid dyes in one step process similarly to Abadullaet al. (2000). The decol-

orization of a greater number of anthraquinone dyes must be conducted to know if the tox-

icity increase is specific to the dye class or linked to the sensitivity of the micro-organism

used in the toxicity assay.

4.6 Conclusion

This present report demonstrated the decolourization of a broader range of dyes byT.versicolor

laccase immobilized on CPC-silica beads. The immobilization procedure did not affect the

enzyme specificity. Decolourization of anthraquinone dyes occurred more rapidly with less

tendency for adsorption to occur than azo or indigoid dyes. Although azo and indigoid dyes

were more toxic than the anthraquinone dyes, the latter seem to have generated more toxic

byproducts while those of azo and indigoid dyes decreased.
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Chapter 5

Immobilization of laccase on PMMA

A manuscript of this chapter is in preparation for submission to Biotechnology Progress
(Elsevier)

5.1 Abstract

Laccase fromTrametes versicolorwas immobilized on poly(methyl methacrylate) (PMMA).

PMMA beads were hydrazinolyzed and the enzyme immobilized on PMMA-hydrazide

through its polysaccharide residues yielding a higher specific activity than when glutaralde-

hyde cross-linking was used. Although the enzyme load was comparable to what has been

reported in the literature on commercial acrylic carriers, the specific activity was 50 %

lower. However, since the specific activity of immobilized laccase on PMMA was similar

to that of CPC-silica-laccase used for dye decolorization, the simple immobilization proce-

dure presented in this investigation offers the possibility of using an inexpensive material

for laccase immobilization and dye decolourization.
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5.2 Introduction

The use of enzymes in wastewater treatment has recently been the subject of intensive

research (Rigoet al., 2008; Lealet al., 2006). Laccases are blue copper oxidases that

have attracted great interest for removing residual dyes in textile wastewaters. These en-

zymes have been shown to efficiently decolourize dye solutions and are most efficient to-

ward anthraquinone dyes (Salonyet al., 2006; Nyanhongoet al., 2002; Wong and Yu,

1999). Protein immobilization is an economical and effective means of stabilizing and

reusing an enzyme and immobilized laccase reactors have been studied for dye decolour-

izaton. The most common inorganic supports to immobilize laccase are alumina (Zille

et al., 2003), silica (Peralta-Zamoraet al., 2003) and porous glass (Rogalskiet al., 1999;

Leonowiczet al., 1988). The procedure to immobilize laccase on these supports is to uti-

lize 3-aminoporpyltriethoxysilane (APTES) to introduce amines at the surface of the beads

and then cross-link the enzyme to the support using glutaraldehyde (Duranet al., 2002).

However, these materials are brittle and glutaraldehyde reacts with any primary amine on

the enzyme and may lead to its deactivation. More recently, laccase has been immobilized

on commercial acrylic co-polymers beads for dye decolorization (Aricaet al., 2009; Ku-

namneniet al., 2008). Poly (methyl methacrylate) (PMMA) is an acrylic, abundant, and

relatively inexpensive material that is mechanically more resistant and less brittle than sil-

ica or alumina. It is used to fabricate microfluidic devices and chromatography packing

material (Brownet al., 2006; Dominicket al., 2003; Fixeet al., 2004).

The polymer at its surface contains ester groups that can be converted to amines which

react with an aldehyde to generate an imine (R2-C=N-R) (Schiff base), which is unstable

to hydrolysis. Usually, a mild reducing agent like sodium cyanoborohydride or borane

dimethyl amine is used to stabilize the imine bond (Hermanson, 1996). Another option is
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to convert the ester groups of PMMA to hydrazides which react with aldehydes to form sta-

ble hydrazones (R2-CH=N-NH2) that are resistant to hydrolysis. Furthermore, hydrazides

are more reactive than amines towards aldehydes at neutral pH since they are completely

deprotonated at pH 5 while amines are deprotonated above pH 9 (Jostet al., 1974). Since

laccase is a glycoprotein, it can be immobilized through its polysaccharide residues that can

be converted to aldehydes with a mild oxidant like periodate. These glycosyl residues are

not involved in catalysis and are located away from the active site. Immobilizing laccase

through its glycosydic residues on PMMA has not been reported and could reduce the risk

of deactivation. Moreover, the proposed immobilization procedure is an efficient method

to orient the enzyme active site toward the bulk liquid (Turková, 1999; Zaborsky, 1976).

This study reports the feasibility of immobilizing Trametes versicolor laccase by using a

mild oxidant to link the glycolosyl residue to hydrazide groups on modified PMMA.

5.3 Materials and methods

5.3.1 Chemicals

Altuglas poly(methyl metacrylate) (PMMA) cylindrical pellets (3 mm long with a diame-

ter of 3 mm) were kindly donated by Arkema Canada (Toronto, ON).Trametes versicolor

laccase, Reactive blue 19, sodium periodate, hydrazine hydrate and dimethyl sulfoxide

(DMSO) were purchased from Sigma-Aldrich Canada (Oakville, Ontario). Sodium ac-

etate, sodium sulfate, sodium phosphate and the iodo-beads (Pierce Biotechnologies) were

purchased from Fisher Scientific Canada (Ottawa, Ontario). Sodium 125-iodine was pur-

chased from Perkin-Elmer (Waltham, MA, USA) and glutaric acid dialdehyde (glutaralde-

hyde) was purchased from Acros (Belgium).
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5.3.2 Surface area of beads

The specific surface area of the PMMA beads was determined by measuring the amount of

N2 gas adsorbed on the beads at different partial pressures according to the B.E.T. theory

(de Kanel and Morse, 1979). The quantity of gas adsorbed was measured with a Micromet-

ric Tristar 300 (Micrometric Instrument Corp) at the Centre for Manufacturing of Advanced

Ceramics and Nanomaterials, Queen’s University (Ontario, Canada).

5.3.3 Hydrazinolysis of PMMA

Hydrazinolysis of esters on PMMA with hydrazine is based on the procedure of (Holmberg

and Hyd́en, 1985). PMMA pellets were rinsed with 50 % propanol in deionized water and

dried under an air stream. The beads were immersed either in a solution of 25 - 30 %

hydrazine methanol-deionized water (1:1 v/v) at 50◦C for 24 h.

5.3.4 Enzyme preparation

Four hundred milligrams of lyophilysedT. versicolorlaccase was dissolved in 60 ml of 20

mM NaH2PO4 at pH 7, centrifuged at 10,000 g for 2 hours, and then filtered with a What-

man paper and Millipore filters (0.45µM). The filtrate containing laccase was dialyzed

against 20 mM NaH2PO4 pH 7 for 20 hours at a dilution factor of approximately 5,000 and

thereafter passed through a Q-sepharose anion exchange column pre-equilibriated with 20

mM NaH2PO4 at pH 7. Laccase was eluted in one step using 150 mM NaCl and dialyzed

against 50 mM NaOAc/50 mM NaH2PO4 pH 5.
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5.3.5 Immobilization of laccase through polysaccharide chains (method

# 1)

A solution of 1.75 mg/ml laccase was mixed with 12.77µl of 0.468 M sodium periodate (10

mM final concentration) and incubated in the dark at 25◦C for 4 hours. The reaction was

stopped by adding 75µl of ethylene glycol then dialyzed with an Amicon 20 ultrafiltration

unit using a polyethersulfone membrane with a molecular cutoff of 3500 MW. For the

immobilization, PMMA-hydrazide beads were incubated in a oxidized laccase solution

(2070µg/ml) buffered with 50 mM sodium acetate pH 5.5, at 22.0± 1 ◦C for 24 h.

5.3.6 Immobilization of laccase by glutaraldehyde activation (method

# 2)

Two grams of PMMA-hydrazide were immersed in a solution of 2.5 % aqueous glutaralde-

hyde for 2 hours at room temperature (22± 1◦C). The beads were rinced with deionized

water and immersed in a laccase solution with a protein concentration between 20 to 70

µg/ml.

5.3.7 Free and immobilized enzyme assay

Laccase activity was measured by monitoring with a spectrophotometer the generation of

2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS•−) at 420 nm from

the oxidation of ABTS (Wolfenden and Willson, 1982) at 23± 1◦C using a Spectramax 250

plate reader with the SOFTmax PRO software package (Molecular Devices, CA, USA).The

assay mixture contained 0.2 mM ABTS, 100 mM sodium acetate buffer (pH 5.0) and the

enzyme sample (Bourbonnaiset al., 1995). One unit of laccase activity (U) was defined as

the amount of enzyme that formed 1 mol ABTS•− per min. For the immobilized laccase
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system, the PMMA-laccase packed bed reactor (I.D. = 16 mm, l = 55 mm) was connected

to a reservoir containing 100 ml of 50 mM sodium acetate/50 mM KH2PO4 (pH 5) via a

peristaltic pump. The solution was 100 % re-circulated between the packed bed and the

reservoir at a flow rate of 75 ml/min. To determine the immobilized laccase activity, the

variation of the concentration of ABTS•− in the reservoir with time was measured for a 6

or 10 minute interval during which the variation was linear.

5.3.8 Radio-labeling and quantification of laccase

Laccase was radio-labeled as specified by the supplier’s protocol to quantify the amount of

enzyme immobilized on the beads. 1 mCi of sodium 125-iodine was oxidized using 2 iodo-

beads. The 0.75 ml-solution of the generated 125-iodide was incubated with 0.75 ml of 1.8

mg/ml laccase for 15 min on ice and the reaction stopped with 10 mM sodium metabisulfite.

The iodinated laccase solution was separated from the unreacted iodine using a pre-packed

Sephadex G-25 column (gel filtration) and one-ml fractions were collected. The fractions

were quantified using a 1275 Minigamma gamma counter (LKB-Wallac, Turku, Finland).

Laccase was quantified by monitoring the counts per minutes of 125I-laccase on 0.65 g

of beads in 15-ml plastic test tubes. The counts were corrected with the count efficiency

(9̃6 %) and converted to the mass of laccase using the specific radio-activity. The mass

of laccase immobilized was also determined by UV absorbance at 280 nm when laccase

was cross-linked with glutaraldehyde. The readings were corrected for Raleigh scattering

at 320 nm according to the following formula:

A280
corr = A280 − A320 ∗

(
320

280

)4

(5.1)

The coefficient of absorption for laccase wasε280=1.074 ml/mg and was determined

by the ProtoParam program (protein parameter predictor) from the ExPASy websitehttp :
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//ca.expasy.org/tools/protparam.html.

5.3.9 Dependence of immobilized laccase mass on the initial enzyme

concentration

A 1:10 ratio of radio-labeled to non-labeled laccase was modified by periodate oxidation

then immobilized on PMMA-hydrazide beads according to the method described previ-

ously. A calibration curve with five initial laccase concentrations (25, 50, 100, 200 and

400µg/ml) was used to determine the amount of immobilized laccase by relating laccase

concentration with cpm.

5.4 Results

5.4.1 PMMA surface area and quantification of immobilized laccase

Laccase was radio-labeled with 125-iodine to accurately quantify the immobilized enzyme

since its concentration was below the detection limit of common protocols (e.g. UV, Lowry

and Bradford). The mass of immobilized laccase was determined by measuring the gamma

counts generated by immobilized I125-laccase and divided by the total surface area of the

beads as determined by the BET method (194.34 cm2/g) to obtain the amount of laccase

immobilized per gram of beads. As shown in Figure 5.1, increasing the initial laccase con-

centration increased the mass of enzyme immobilized. The theoretical maximum amount

of laccase that can be immobilized, assuming an effective molecular radius of 4 nm, is

0.218µg/cm (for a protein monolayer), or 42.4µ/g PMMA. The maximum experimental

mass of enzyme immobilized was 0.0477µg/cm2 or 9.9µg/g and is approximately 4 times

lower than the theoretical maximum which could be immobilized.
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Figure 5.1: Effect of initial laccase concentration on its mass immobilized on PMMA-
hydrazide pellets. The error bars represent the standard errors calculated from triplicates.

5.4.2 Effect of initial enzyme concentration, temperature and pH on

the specific activity of immobilized laccase

The specific activity was calculated by dividing the measured activity of immobilized lac-

case by its estimated mass. The initial specific activity of the free enzyme varied between

50 and 80 U/mg (data not shown). The highest immobilized laccase activity on PMMA

was achieved at 23◦C and increasing the pH of immobilization from 5 to 7 did not sta-

tistically affect the specific activity. The specific activity of immobilized laccase was 110

times higher when the enzyme was immobilized through its polysaccharide chains than

when glutaraldehyde cross-linked the enzyme to PMMA (Table 5.1).
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Table 5.1: Effect of temperature, pH and initial laccase concentration laccase immobiliza-
tion on PMMA-hydrazide beads in 50 mM NaOAc buffer with 5 g of PMMA-hydrazide
with a (total area of 971.7 cm2)

Immobilization
temperature

Immobilization pH Initial laccase con-
centration (µg/ml)

laccase immo-
bilized (µg)

Specific activity
(U/mg)

Periodate oxidation based immobilization

23 5 35.19 7.56± 0.34 2.82± 0.15

23 5 22.21 4.85± 0.34 2.05± 0.16

5 5 21.39 4.67± 0.34 1.53± 0.12

5 7 29.00 6.28± 0.34 1.30± 0.24

Glutaraldehyde cross-linking

23 5 63.27 838± 113 0.0204± 0.003

5.5 Discussion

The goal of this study was to assess the feasibility of immobilizingTrametes versicolorlac-

case on PMMA, a relatively inexpensive material, instead of using more expensive com-

mercial protein supports. This was successfully accomplished with both immobilization

protocols, i.e., the commonly used glutaraldehyde cross-linking and the milder periodate

oxidation. However, using the milder periodate oxidation resulted in higher specific activ-

ities suggesting that immobilizing laccase through its sugar residues which are away from

the active site is a better strategy for preserving enzyme activity. This may have reduced

the risk of deactivating the active site while glutaraldehyde can react with any primary
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amine group and lead to enzyme deactivation. The higher quantity of immobilized lac-

case when cross-linked with glutaraldehyde suggests that multiple layers of laccase were

formed. However, due to diffusion limitations, enzymes in the lower layers could be less

active.

The mass of protein immobilized on PMMA achieved in this study compares well with

those reported with commercial or tailored acrylic carriers (Table 5.2).

Table 5.2: Comparative table of masses immobilized laccase with commercial acrylic-
based carriers

Support Laccase
source

Protein surface
concentration
(µg/cm2

Specific activity
(U/mg protein)

References

Sepabead EC-EP3 Myceliophora
thermophila

0.0758 6.23 Kunamneni
et al. (2008)

Dilbeads NK Myceliophora
thermophila

0.0414 5.11 Kunamneni
et al. (2008)

Poly(glycidyl
methacrylate)-
co-ethylene-
dimethacrylate)

Cerrena uni-
color

0.241 77.6 Arica et al.
(2009)

PMMA T. versicolor 0.0477 2.82 Present study

CPC-silica beads T. versicolor 4.39 x 10−3 1.50 Chapter 3

However, the enzyme was less active by almost 50 % than that reported by Kunam-

neniet al. (2008) and twenty-seven times lower that reported by Aricaet al. (2009). The

large difference may be explained in part by the activity units based on different substrates
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(Arica et al., 2009). While the nature of the acrylic monomers of Dilbeads and Sepabeads

was not reported, acrylic polymers used for enzyme immobilization generally possess sub-

stantial hydrophilicity to favor good enzyme activity retention (Eptonet al., 1976; Novick

and Dordick, 2000). PMMA may not be as hydrophilic has the Dilbead and Sepabead

polymers and this difference may explain the lower laccase specific activity in this inves-

tigation. Moreover, (Aricaet al., 2009) used spacer arms to retain good enzyme activity.

To increase the total immobilized laccase activity, porous beads can be used to increase the

protein immobilized and a spacer arm to increase the distance between the enzyme and the

carrier to minimize interactions. Nonetheless, the results suggest that PMMA is a suitable

support for laccase and can be used for dye decolourization since its specific activity was

comparable to that achieved with CPC-silica beads.

There are no reports on the effect of the immobilization temperature on the activity

of immobilized laccase. Although Bahar and Celebi (1999) demonstrated that increasing

the immobilization temperature of a glucoamylase from 20 to 40◦C did not affect its im-

mobilized activity, in this study, the highest specific activity of immobilized laccase was

obtained room temperature. The results in this study indicate that immobilizing the enzyme

at 5 or 23◦C does not affect greatly the activity of the enzyme.

5.6 Conclusion

This investigation has reported for the time the immobilization ofT.versicolor laccase

through its polysaccharide residues on PMMA beads which were hydrazinolyzed in one

step. The hydrazinolysis eliminates the need for a polymerization process that can be labor

intensive and requires an elaborate setup. The retention of laccase activity on PMMA was

lower than some common commercial carrier but may be sufficient for dye decolorization

applications. The simple immobilization method may be a viable alternative to using more
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expensive commercial beads or the more brittle alumina and silica beads.
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Chapter 6

The effects of a non-ionic surfactant,

Merpol, on laccase decolourization of

Reactive blue 19

6.1 Abstract

Laccase is a multi-copper oxidase that can decolorize textile dyes and there is increasing

interest in its use to treat textile wastewaters which also contain auxiliary chemicals such as

surfactants and salts. This investigation examines the effect of Merpol, a non-ionic surfac-

tant, on the decolorization of Reactive blue 19, an anthraquinone dye, and on the oxidation

of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) byTrametes versicolor

laccase. The results show that the surfactant had little effect on the enzyme or on ABTS

oxidation which followed Michaelis-Menten kinetics. However, Reactive blue 19 decol-

orization was inhibited with increasing Merpol concentration. Spectroscopic analysis of
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the dye with Merpol and analysis of the kinetic data show that decolorization rates de-

pended on an interaction between the dye and the surfactant. The proposed inhibition by

a substrate depletion model in which the dye concentration decreases as a dye molecule

binds to a surfactant molecule and/or is sequestered into micelles fits the data suitably and

the model was validated by estimating the inhibition constant from independent saturation

equilibrium binding assays. This study is the first to investigate the kinetic effect of a sur-

factant on the enzymatic dye decolorization and to show the depleting effect of Merpol on

Reactive blue 19.

6.2 Introduction

Enzymes may be used to effectively remove low concentration pollutants in wastewaters

(Karam and Nicell, 1997). The lignin-degrading enzyme laccase has attracted significant

interest for treating textile waste effluents and its ability to decolorize dyes (reviewed in

Husain (2006)). It is copper oxidase that efficiently degrades anthraquinone dyes and dyes

with phenolic moieties (Young and Yu, 1997; Nyanhongoet al., 2002; Champagne and

Ramsay, 2005). Unlike lignin or manganese peroxidase, laccase requires only molecular

oxygen as a co-substrate and may be more suitable biocatalysts for industrial and bioreme-

diation applications. Laccase can degrade phenolic compounds in wine distillery wastewa-

ter (Strong and Burgess, 2008), estrogens in municipal wastewater (Auriolet al., 2007) and

textile dyes in textile wastewaters (Reyeset al., 1999). In the latter investigation, immo-

bilized Coriolopsis gallicalaccase decolorized 10 batches of an industrial waste effluent

containing Direct Blue 200, Direct Red 80 and Direct Black 22. The removal efficiency de-

creased with increasing decolorization batches and the authors could not identify the cause

of the enzyme deactivation. Although a few studies have used laccase to decolorize indus-

trial textile waste effluents, there is no kinetic investigation of the effects of the effluent
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components on enzyme activity.

Textile wastewaters contain not only residual dyes, but also auxiliary chemicals such as

surfactants, salts, oils and greases. Surfactants are amphiphilic molecules with a polar head

and hydrophobic carbon chains. Although a growing number of studies focus on laccase ac-

tivity in reverse micelles (Khmelnitskyet al., 1992; Michizoeet al., 2005; Liuet al., 2006),

few investigations have analyzed the effect of surfactants on enzymatic dye decolorization.

Harazono and Nakamura (2005) showed that MnP from Phanerochaete sordida required

Tween 80, a non-ionic surfactant, to decolorize a mixture of reactive dyes (Reactive black

5, Reactive red 120, Reactive green 5 and Reactive orange 14) but was inhibited by another

surfactant, polyvinyl alcohol (PVA). The authors thought that inhibition occurred because

PVA interrupted the lipid peroxidation which generates reactive radicals. Abadullaet al.

(2000) reported that Univadine PA (anionic surfactant), Tinegal MR (cationic surfactant)

and Albegal FFA (wetting agent) inhibited 2,6-dimethoxyphenol oxidation byTrametes

hirsuta laccase by 17.9 %, 5.2 % and 2.3 % respectively but the effects on dye decoloriza-

tion were not examined. Moreover, there are no studies which have examined the effect of

surfactants on decolorization kinetics by laccase.

Merpol is a non-ionic, polyethylene oxide surfactant used as a wetting and emulsify-

ing agent to achieve better fabric permeation that allows an even dyeing of textile fabrics.

There is no report on the effects of a non-ionic surfactant like Merpol on dye decoloriza-

tion or decolorization kinetics. Since such a surfactant could be in the dye effluent, it is

useful to know whether it affects the enzymatic decolorization. This investigation there-

fore analyzes the impact of Merpol on the decolorization of an anthraquinone dye, Reactive

blue 19 (6.1A), by laccase fromTrametes versicolorand compares the decolorization kinet-

ics with laccase oxidation of 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (6.1B)

(ABTS)
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6.3 Materials and methods

6.3.1 Chemicals

2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), Reac-

tive blue 19, Merpol HCS, Q-sepharose, sodium dihydrogenophosphate, sodium acetate

and Trametes versicolor laccase were purchased from Sigma-Aldrich Canada (Oakville

ON, Canada).
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Figure 6.1: Structure of (A) Reactive blue 19 and (B) ABTS
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6.3.2 Enzyme preparation

Four hundred milligrams of lyophilized Trametes versicolor laccase was dissolved in 60

ml of 20 mM NaH2PO4 at pH 7, centrifuged at 10,000 x g for 2 hours, and then filtered

with a Whatman paper and Millipore filters (0.45µM). The filtrate was dialyzed against 20

mM NaH2PO4 pH 7 for 20 hours at a dilution factor of approximately 5,000 then passed

through a Q-Sepharose anion exchange column pre-equilibrated with 20 mM NaH2PO4 at

pH 7. Laccase was eluted in one step using 150 mM NaCl. The eluate was dialyzed against

50 mM NaOAc/50 mM NaH2PO4 pH 5.

6.3.3 Enzyme assay and quantification

Laccase activity was determined by monitoring with a spectrophotometer the generation of

2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS•) at 420 nm from the

oxidation of ABTS (Wolfenden and Willson, 1982) at 23± 1◦ C using a Spectramax 250

plate reader with the SOFTmax PRO software package (Molecular Devices, Sunnyvale CA,

USA). The assay mixture contained 0.5 mM ABTS, 100 mM sodium acetate buffer (pH 5.0)

and the enzyme aliquot for total reaction mixture of 180µl. The path length of absorbance

in the well for this volume was 0.5 cm. One unit of laccase activity (U) was defined as

the amount of enzyme that formed 1µmol ABTS• per minute. Protein concentration was

measured by the absorbance at 280 nm and corrected for scattering effects with absorbance

readings at 320 nm.

6.3.4 Dye concentration and spectroscopic analysis

The concentration of Reactive blue 19 was measured with a Unicam UV1 spectropho-

tometer (Spectronic Unicam, Cambridge, UK) or Spectramax 250 plate reader at the dyes

maximum absorption wavelength (592 nm). The absorbance coefficient was determined to
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be 10,044 M−1cm−1 (in 50 mM NaOAc/50 mM NaH2PO4 pH 5) with a calibration curve

from 0 to 45.3µM. Spectral scans of the dye or ABTS with (3.09 g/l) or without Merpol

were conducted.

6.3.5 Saturation equilibrium binding

Equilibrium binding assays were conducted by incubating dye concentrations of 16, 32, 48,

64, 80, 96, 112 and 128µM at a fixed Merpol concentration of 0.386, 0.773, or 1.03 g/l.

The assay mixture was buffered with 50 mM NaOAc/50 mM NaH2PO4 pH 5. Assays were

conducted in 96-well plates that were pre-saturated with the surfactant for 4 hours. The

dye-Merpol binding was allowed to reach equilibrium for 45 minutes, time after which the

absorbance readings did not fluctuate with time. The dye-Merpol complex was monitored

with the Spectramax 250 at 630 nm.

6.3.6 Effect of Merpol on Reactive blue 19 decolorization and on ABTS

oxidation and kinetic studies

Initial dye decolorization rates were measured in the presence of 0, 0.773, 1.55, 2.58 or 3.09

g/l Merpol. The rate of ABTS oxidation was measured in the presence of 0, 1.55 or 3.09

g/l Merpol. All assays were conducted at pH 5 in 50 mM NaOAc/50 mM NaH2PO4 and in

96-well plates (300µl per well). Each well contained 108µl of buffer, 36µl of substrate

(in the same buffer), and 36µl of laccase solution for total reaction mixture of 180µl. The

path length of absorbance in the well for this volume was 0.5 cm. The assay mixture had

a final concentration of 0.274 nM laccase with ABTS and 120 nM with Reactive blue 19.

For steady-state kinetic analysis, initial rates were similarly determined for 0 to 400µM

Reactive blue 19 and for 0 to 1000µM ABTS. The reaction was initiated by adding the

enzyme aliquot to the assay mixture. Time course curves of 61 absorbance points were
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generated over 30 minutes and the initial rate was determined by the software package

SOFTmax Pro (Molecular Devices) by calculating the tangent slope to the first five to ten

points so that the decrease did not exceed 10 % conversion (see Appendix D.2 for a sample

calculation). The initial rates were measured in triplicate at 22± 1◦C as described. All

experiments were done in triplicate and the results shown are averages with the error bars

representing the standard error.

6.3.7 Estimation of kinetic constants

The estimation of kinetic parameters and the inhibition constants were determined by non-

linear least square regression (The sums of squares was minimized with the Gauss-Newton

algorithm with equal weighting for each parameters) using the R statistical package (R

project for statistical computing, CRAN) and Systat (Systat Software, Inc., San Jose, CA,

USA). Although in the data analysis each data point was fitted to the model, the triplicates

were averaged and the model fitted through the average values for graphical presentation.

6.4 Results

6.4.1 Effect of Merpol on the rate of ABTS oxidation and dye decol-

orization by laccase

Increasing the Merpol concentration from 0 to 3.09 g/l had little effect on ABTS oxidation

while the rate of Reactive blue 19 decolorization decreased significantly from 1.79 to 0.37

µM/min (Figure 6.2).
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Figure 6.2: Effect of Merpol on the rate of ABTS oxidation and Reactive blue 19 decolour-
ization by laccase. The decolourization assay mixture contained 120 nM laccase in a 50
mM NaOAc/50 mM NaH2PO4 pH 5 and the temperature was 22± 1 C. Each data point is
the average of triplicates and error bars represent the standard deviation.

6.4.2 Effect of Merpol on the kinetics of ABTS oxidation and Reactive

blue 19 decolorization

The Michaelis-Menten rate equation (equation 6.2) for an enzyme-catalyzed reaction (equa-

tion 6.1) describes the dependence of the reaction rate (v) on the molar concentration of the

free substrate [S] and the total enzyme[E]tot.

E + S
kf

GGGGGGBFGGGGGG

kr

ES
kcat

GGGGGGGAE + P (6.1)

The kcat is the turnover number and is usually expressed in unit of s−1 and KM is

the affinity constant as well as the molar concentration of the free substrate that yields a

reaction rate equal to half the maximum rate,Vmax (= kcat[E]tot).
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Figure 6.3: Effect of Merpol on ABTS oxidation by 0.274 nM laccase in 50 mM NaOAc/50
mM NaH2PO4 at pH 5 (T = 22± 1◦C). Comparison of experimental data (each symbol
is the average of triplicates and the error bars represent the standard deviation) and the
Michaelis-Menten model (equation 1, solid lines).

v =
kcat[E]tot[S]

KM + [S]
=

Vmax[S]

KM + [S]
(6.2)

ABTS oxidation by laccase followed Michaelis-Menten kinetics at all Merpol concen-

trations tested (0 to 3.09 g/l) (Figure 6.3). Although Figure 3 shows little effect on ABTS

oxidation, the kcat increased slightly from 93.6 to 98.3 s−1 and theKM from 32.1 to 54.9

µM (Table 6.1) indicating that the surfactant reduced the affinity of the enzyme for ABTS

while slightly enhancing the enzyme activity.

6.4.3 Spectroscopic analysis of Reactive blue 19 with Merpol

Spectroscopic analysis of Reactive blue 19 without Merpol or laccase showed a maximum

absorbance at 592 nm. With the addition of 3.09 g/l Merpol, a second peak appeared at
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630 nm. There was a slight but not significant shift in the spectral behavior of ABTS after

Merpol addition (Figure 6.4A and B) and Merpol alone did not absorb in the visible range

(Figure 6.4C).

6.4.4 Saturation equilibrium binding

The dye-Merpol complex was monitored spectrophotometrically at 630 nm. The absorbance

at 630 nm shown in Figure 6.5 corresponding to the complex was calculated by subtract-

ing the absorbance of the dye at that wavelength from the absorbance of the dye-surfactant

mixture. As shown in the figure, the dye-Merpol complex increased with increasing dye

concentration and tended to plateau at high concentrations. The derivation of the model

fitted through the points is presented in the next section.

6.4.5 Estimation ofKd from the saturation equilibrium experiment

The equilibrium binding of Reactive blue 19 (S, the ligand) to Merpol (M) to form a com-

plex (SM) is described by

S + M
kf

GGGGGGBFGGGGGG

kr

SM (6.3)

where kf and kr are the rate constants for the ligand binding and complex dissociation

respectively. At equilibrium, the rate of binding is equal to the rate of dissociation

rbinding = rdissociation (6.4)

kf [M ][S] = kr[SM ] (6.5)

kr

kf

=
[S][M ]

[SM ]
= Kd (6.6)
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Figure 6.4: Spectrophotometric analysis of (A) ABTS, (B) Reactive blue 19, with and
without Merpol and (C) 3.09 g/l Merpol alone. The mixture contained 50µM Reactive
blue 19 or 0.5µM ABTS and 3.09 g/l Merpol in 50 mM NaOAc/50 mM NaH2PO4 buffer
at pH 5 (T = 22± 1◦C).
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Figure 6.5: Saturation equilibrium of Reactive blue 19 and Merpol binding. The ab-
sorbances were calculated by subtracting The assay mixture was buffered with 50 mM
NaOAc/50 mM NaH2PO4 pH 5 (T = 22± 1◦C).

Kd is the equilibrium dissociation constant and is in units of concentration. The total

concentration of Merpol is

[M ]total = [M ] + [SM ] (6.7)

Solving equation 6.6 for [M] and substituting into equation 6.7 yields

[M ]total =
[SM ]Kd

[S]
+ [SM ] = [SM ]

(
Kd

[S]
+ 1

)
(6.8)

After rearranging equation 6.8, we get

[SM ] =
[M ]total[S]

Kd + [S]
(6.9)

Since the formation of the complex was monitored at 630 nm,
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[SM ] =
A630

ε630 × l
=

A630

ε630 × 0.5cm
(6.10)

where A630 is the absorbance at 630 nm, l is the path length of the medium, andε630

is the absorption coefficient (in M−1 cm−1) at 630 nm. Substituting equation 6.10 into

equation 6.9, we obtain

A630 =
2ε630[M ]total[S]

Kd + [S]
=

γ630[M ]total[S]

Kd + [S]
(6.11)

whereγ630 is a lumped absorption coefficient and is equal to 2ε630. With equation 6.11,

Kd was estimated to be 44.1± 10.1µM andγ630 to be 0.119± 0.010 l g−1 cm−1 (Table I).

6.4.6 Kinetic modeling of the effect of Merpol on the decolorization of

Reactive blue 19 by laccase

Without Merpol, the Reactive blue 19 decolorization also followed Michaelis-Menten ki-

netics (Figure 6.6 ) but as the Merpol concentration increased, the initial rates decreased

and decolorization kinetics became increasingly sigmodal. The dependence of initial rates

on initial dye concentrations in the presence of Merpol did not follow Michaelis-Menten

kinetics. Hence, a modified rate equation is hypothesized where the inhibitor (M, i.e. Mer-

pol) binds to the free substrate (S, i.e. Reactive blue 19) but not the enzyme (E, laccase)

(Figure 6.7).

Furthermore, the enzyme can convert the free dye only to decolorized products (P) as

the dye bound by Merpol is unavailable for decolorization. Since the total dye concentra-

tion added to the reaction mixture,[S]T , is the sum of the free dye[S], the enzyme-dye

complex[ES] and the dye-Merpol complex[SM ] concentrations,[S] can be expressed as
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Figure 6.6: Inhibition of laccase decolourization of Reactive blue 19 by Merpol (A) and
the residual plot (B). The laccase concentration was 120 nM in 50 mM NaOAc/50 mM
NaH2PO4 buffered at pH 5. Comparison of experimental data (each symbol is the average
of triplicates and the error bars represent the standard deviation) and the substrate depletion
model (equation 5, solid lines).
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Figure 6.7: Kinetic scheme for the inhibition of dye decolourization by substrate depletion

[S] = [S]T − ([ES] + [SM ]) (6.12)

Given that [S]≫ [E], then [S]≫ [ES] so that [ES] can be omitted and equation 6.12

simplified to

[S] = [S]T − [SM ] (6.13)

Similarly, the free Merpol concentration, [M], can be estimated as

[M ] = [M ]T − [SM ] (6.14)

where[M ]T is the total Merpol concentration. Substituting equation 6.13 in equation

6.2, we obtain
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v =
kcat[E]tot ([S]T − [SM ])

KM + ([S]T − [SM ])
(6.15)

The dissociation constant,Kd, for M binding to S is

Kd =
[S][M ]

[SM ]
(6.16)

Substituting equations 6.13 and 6.14 in equation 6.16 yields

Kd =
([S]T − [SM ]) ([M ]T − [SM ])

[SM ]
(6.17)

Solving equation 6.17 for [SM],

[SM ] =
1

2

(
Kd + [S]T + [M ]T −

√
(Kd + [S]T + [M ]T )2 − 4× [S]T [M ]T

)
(6.18)

The number of inhibitor (Merpol) binding sites, n (µmol per g of Merpol), is propor-

tional to the total inhibitor concentration[M ]T such that

[M ]T = n[M ]0 (6.19)

wheren is theµmoles of dye bound to 1 gram of Merpol and[M ]0 is the total surfactant

concentration added (in g/l). The correlation between the decolorization rate, the dye and

surfactant concentrations was reasonably described by the modified rate equation (equation

6.15) (solid lines) with no bias (Figure 6.6B) which also predicted the sigmoidal kinetic

behavior (Figure 6.6A). Kinetic parameters were determined (Table 6.1) and the number of

µmoles of dye bound to 1 gram of Merpol,n, was found to be 80.3µmol/g.
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Table 6.1: Effect of Merpol on ABTS oxidation and the decolourization of Reactive blue
19 by 120 nM laccase in 50 mM NaOAc/50 mM NaH2PO4, pH=5. The kinetic parameters
for ABTS were determined using the Michaelis-Menten model and for Reactive blue 19
using the derived inhibition model

Steady-state kinetics

Merpol (g/l) kcat (s−1) KM (µM) kcat / KM n (µmol/g) Kd (µM)

(×105 M−1 s−1)

ABTS
0 93.6± 0.7 32.1± 1.2 29.2 - -
1.55 95.2± 0.7 42.0± 1.4 22.7
3.09 98.3± 1.0 54.9± 2.7 18.0

Reactive blue 19

0 - 3.09 1.65± 0.07 537± 36 80.5± 2.2 38.3± 3.4

Saturation equilibrium binding

Merpol (g/l) γ630 (l g−1 cm−1) Kd (µM)

0 - 1.03 0.119± 0.010 44.1± 10.1
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6.5 Discussion

The results in this study show that Merpol had little effect on laccase but affected the decol-

orization of Reactive blue 19. Since Merpol slightly increased the ABTS oxidation rate (Ta-

ble 6.1), the surfactant may have a stabilizing and/or inducing effect on laccase for ABTS.

Bastoet al. (2007) also showed improved laccase stability in the presence of polyvinyl

alcohol in the ultrasonic decolorization of Indigo carmine. However, when Reactive blue

19 was the substrate, Merpol clearly inhibited its decolorization. Although Abadullaet al.

(2000) did not examine the effect of surfactants on enzymatic dye decolorization, they

found that Univadine PA (anionic surfactant), Tinegal MR (cationic surfactant) and Albe-

gal FFA (wetting agent) inhibited the oxidation of 2,6-dimethoxyphenol by laccase. The

inhibition was less severe than that obtained with Reactive blue 19 in the present study.

Their highest inhibition of 17.9 % was obtained with 2 g/l Univadine PA while with 2 g/l

Merpol, Reactive blue 19 decolorization was inhibited by approximately 50 %.

Merpol may have had a slight enhancing effect on the ABTS oxidation but it did change

the kinetics of the reaction. Since Merpol had little effect on the enzymatic oxidation of

ABTS but significantly inhibited the enzymatic decolorization of Reactive blue 19, the sur-

factant must have interacted with the dye. This interaction was detected in the absorbance

spectral scan by the appearance of a second peak of at 630 nm (Figure 6.5B) that correspond

to the absorption of the dye-Merpol complex. This wavelength shift was not observed for

ABTS. It is also clear that Merpol is not responsible for the second peak since it did not

absorb in the visible range.

A model of inhibition by substrate depletion where the dye molecules bind to Merpol

molecules to reduce the amount of free dye available to react with laccase describes the de-

colorization kinetics. This model is in good agreement with the experimental data as seen
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in Figure 6.6A and the residual plot also shows no bias (Figure 6.6B). In addition, the ki-

netic mechanism is supported by saturation equilibrium binding data that clearly shows that

Merpol binds Reactive blue 19. The difference between the Kd estimated from the equilib-

rium binding experiment and the from the kinetic model are not statistically significant (α

= 0.05).

The dye may have interacted with the surfactant molecules or with the micelles as all

Merpol concentrations were above the critical micelle concentration of 0.5 g/l. It is not

clear why the surfactant interacted with the dye but not with ABTS. Although Reactive

blue 19 most likely bears a net negative charge at pH 5, the hydrophobic interactions with

Merpol may be dominant. This may partially explain our results as Tokudaet al. (1999)

has shown that both electrostatic and hydrophobic interactions affected decolorization rates

by peroxide bleaching agents in the presence of surfactant molecules.

The proposed inhibition model may also explain the results of Huet al. (2007) where

Tween 80 significantly inhibited the oxidation of benzo[k]fluoranthene (BaP) by laccase

immobilized on kaolinite. Tween 80 was used to increase the solubility of BaP in order

to increase its availability to the enzyme. However, as the apparent solubility increased,

BaP molecules were probably entrapped inside the micelles which then presented a barrier

between BaP and the immobilized laccase and resulted in an apparent inhibition.

This is the first study to show that enzymatic decolorization can be affected by the

interaction between a dye and a surfactant. This is significant since surfactants are common

in dye effluents and can affect not only biological decolorization (whether enzymatic or

with a fungal culture) but also physical or chemical decolorization processes (Tokudaet al.,

1999). The efficiency of the process will most likely diminish with the degree of interaction

between the dye and the surfactant and the quantity of the surfactant. This impact would

be even greater at low dye concentrations which are typical of most dye effluents. Thus

it is important to better understand the nature of these interactions, not only to predict
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decolorization but also to determine how these interactions can be minimized.

Conclusions

We have examined the effect of a non-ionic surfactant, Merpol, on the enzymatic oxida-

tion of ABTS and decolorization of Reactive blue 19 using laccase. The surfactant has no

significant effects on the enzyme itself as it has no effect on ABTS oxidation. Although

Merpol had little effect on ABTS oxidation, Reactive blue 19 decolorization was inhib-

ited with increasing surfactant concentration. Spectral scans of the dye with and without

Merpol and analysis of kinetic data show that decolorization rates depend on the interaction

between the dye and the surfactant. The inhibition model fits the data suitably since the dye

concentration decreases as the dye is removed from the reaction as it binds to the surfactant

molecule and/or is sequestered into micelles. This is the first study to show this effect in

enzymatic dye decolorization.
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Chapter 7

Effects of pH chloride and sodium

sulfate on the decolourization of

Reactive blue 19

7.1 Abstract

Laccases are phenol-oxidases produced by white rot fungi and their potential application

for the decolourization of textile wastewaters has been the object of intensive research.

Textile wastewaters contain salts like sodium chloride and sodium sulphate, and their pH

may vary between 3 and 12. As these factors may affect enzyme activity, the effects of pH,

sodium chloride and ionic strength on Trametes versicolor laccase during the decolouriza-

tion of Reactive blue 19, a model anthraquinone dye, and the oxidation of 2,2-Azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS), the reference substrate, were evaluated by

steady-state kinetic analysis. The results showed that increasing the pH decreased the rate

of ABTS oxidation whereas the decolourization of Reactive blue 19 was optimal at pH

145
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4. While sodium sulphate did not affect laccase activity, sodium chloride inhibited both

ABTS oxidation and dye decolourization. However, the type of inhibition was substrate

dependent. With ABTS, the inhibition was hyperbolic non-competitive and was parabolic

mixed with Reactive blue 19. Furthermore, the results suggested that two chlorides may

bind to laccase in the presence of the dye. This investigation is the first to propose a model

of laccase inhibition in which the type of inhibition by chloride depends on the substrate.

7.2 Introduction

Laccases are copper oxidases produced by white rot fungi that can degrade a wide range

of organic pollutants including textile dyes, and have attracted great interest for their po-

tential application in bioremediation and textile wastewater treatment (Torreset al., 2003;

Baldrian, 2006). These enzymes decolourize anthraquinone dyes efficiently and their speci-

ficity can be broadened to other classes of dyes by using small molecular weight mediators

such as hydroxybenzotriazole (Reyeset al., 1999; Peralta-Zamoraet al., 2003; Trovaslet

et al., 2007; Murugesanet al., 2007). Fungal laccases contain four coppers organized into

two copper clusters. The type 1 copper is located near the active site and receives the elec-

trons extracted from the substrate(s). The electrons are then transferred to the two type 3

coppers, which relay the electrons to type 2 copper where oxygen is reduced to water. The

type 2 and type 3 coppers are arranged in a triangle and form the tri-nuclear cluster located

at the core of the enzyme. Oxygen must access the tri-nuclear cluster through a channel for

its reduction.

Textile wastewaters contain sulphate and chloride salts that vary from 930 to 3460 mg/l

and 400 to 16,000 mg/l respectively (Orhonet al., 2001; Vishnuet al., 2008). Their pH

may vary from 3 to 12 depending on the dyeing process used (Rutherfordet al., 2003;

EPA, 1996). Halides salts are known to affect laccase but the effect depends on the enzyme
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species. In general, fluoride has been shown to be the strongest inhibitor of laccases relative

to chloride and bromide (Farnetet al., 2008; Xu, 1996). More particularly, Koudelka and

Ettinger (1988) demonstrated that fluoride partially inhibits Rhus vernucifora laccase by

binding to type 2 copper. On the other hand, Vaz-Dominguezet al. (2008) showed that

Trametes hirsutalaccase activity was completely suppressed by fluoride and partially by

chloride. Hydroxide anions also bind to type 2 copper and prevent the binding of oxygen at

alkaline pHs (Koudelkaet al., 1985). Furthermore, the redox potential of the substrate may

depend on the pH and also influence the shape of the pH activity profile of the enzyme (Xu,

1997). Neither study analyzing the kinetics of laccase inhibition by chloride during dye

decolourization nor the effects of sulphate on laccase has been reported. The quantification

of these effects would be useful for the design of an enzymatic treatment. Therefore, this

investigation will analyse the effects of pH, sodium chloride, and sodium sulphate on the

kinetic behaviour ofTrametes versicolorlaccase during the oxidation of ABTS and the

decolourization of Reactive blue 19 a model anthraquinone dye.

7.3 Material and methods

7.3.1 Chemicals

Controlled porosity carrier (CPC) silica beads pre-silanized with 3-aminopropyltriethoxysilane

(APTES), Trametes versicolor laccase, 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

(ABTS) diammonium salt and borane dimethylamine were purchased from Sigma-Aldrich

Canada (Oakville, On). Glutaraldehyde (glutaric acid dialdehyde) was purchased from

Acros (Belgium).
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7.3.2 Enzyme preparation

Four hundred milligrams of lyophilisedT.versicolorlaccase was dissolved in 60 ml of 20

mM NaH2PO4 at pH 7, centrifuged at 10,000 x g for 2 hours and thereafter filtered with

a Whatman paper and Millipore filters (0.45µM). The filtrate was dialyzed against 20

mM NaH2PO4 pH 7 for 20 hours at a dilution factor of approximately 5,000 then passed

through a Q-sepharose anion exchange column pre-equilibriated with 20 mM NaH2PO4 at

pH 7. Laccase was eluted in one step using 150 mM NaCl. The eluate was dialyzed against

50 mM NaOAc/50 mM NaH2PO4 pH 5.

7.3.3 Laccase assay

The activity of laccase was determined by monitoring spectrophotometrically the genera-

tion of 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals (ABTS•) at 420 nm

from the oxidation of ABTS (Wolfenden and Wilson, 1982) at 23±1◦C using a Spectramax

250 plate reader (with the SOFTmax PRO software package (Molecular Devices, Sunny-

vale CA, USA)). The assay mixture contained 500µM ABTS, and 100 mM sodium acetate

buffer (pH 5.0) for total reaction mixture of 180µl. The path length of absorbance in the

well for this volume was 0.5 cm. The rate of reaction was expressed inµM/min or in units

of laccase.

7.3.4 Protein assay

The protein concentration was determined by UV absorbance at 280 nm and corrected for

Raleigh scattering with readings at 320 nm according to the following formula

Acorr
280 = A280 − A320 ×

(
320

280

)4

(7.1)
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The coefficient of absorption for laccase (ε280=1.074 ml/mg) was determined by the

ProtoParam program (protein parameter predictor) from the ExPASy website

(http : //ca.expasy.org/tools/protparam.html).

7.3.5 Dye concentration and decolorization assay

The Reactive blue 19 concentration was determined spectrophotometrically by monitoring

the absorbance at 592 nm. The decolorization activity was calculated by dividing the rate

of absorbance change by the coefficient of absorption of 10,044 M−1cm−1 (determined

from a calibration curve from 0 to 45.7µM). The rate of decolorization was expressed in

µM/min.

7.3.6 Initialrate analysis (steady-state kinetics)

The effects of pH, sodium chloride and sodium sulphate on the free laccase were quantified

by initial rate analysis with ABTS, as the reference substrate, and Reactive blue 19. The

assay mixture was buffered with 50 mM NaOAc/50 mM KH2PO4 and included 0.274 nM

laccase with ABTS or 120 nM laccase with Reactive blue 19. All assays were conducted

in 96-well plates (300µl per well). Each well contained 108µl of buffer, 36µl of substrate

(in the same buffer), and 36µl of laccase solution for total reaction mixture of 180µl.

The path length of absorbance in the well for this volume was 0.5 cm. The initial ABTS

concentrations (unless stated otherwise) were 10, 20, 30, 40, 50, 100, 200, 300, 400, 500,

600, 700, 800, 900 and 1000µM and the initial dye concentrations were 10, 20, 30, 40,

50, 75, 100, 150, 200, 250, 300, 350 and 400µM. Time course curves of 61 absorbance

points were generated over 30 minutes and the initial rate was determined by the software

package of the plate reader, SOFTmax Pro (Molecular Devices) by calculating the tangent

slope to the first five points (see Appendix D.2 for a sample calculation). The initial rates
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were measured in triplicate at 22± 1◦C and the results shown are averages with the error

bars representing the standard error.

7.3.7 Effect of pH and salts

Laccase steady-state kinetics with ABTS and Reactive blue 19 were performed at pH 3, 4,

5, 6 and 7 in a 50 mM NaOAc/50 mM KH2PO4 buffer and the pH was adjusted with a 6

M H2SO4. For the impact of salts on laccase kinetics, analyses with both substrates were

conducted in the presence of 50, 100, 150 or 200 mM sodium chloride and 7, 28, 49 or 70

mM sodium sulphate. The initial ABTS concentrations in the sodium chloride experiment

were 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 or 600µM. All assays

were buffered with 50 mM NaOAc/50 mM KH2PO4 at pH 5.

7.3.8 Data analysis

The Michaelis-Menten model was used to fit the experimental pH and sodium sulfate data

whereas modified rate equations were derived to analyze the effects of sodium chloride.

Kinetic parameters and inhibition constants were determined by nonlinear least square re-

gression (The sums of squares was minimized with the Gauss-Newton algorithm with equal

weighting for each parameters) using the R statistical package (R project for statistical com-

puting, CRAN) and Systat (Systat Software, Inc., San Jose, CA, USA).



CHAPTER 7. EFFECTS OF PH AND SALTS ON DYE DECOLOURIZATION 151

7.4 Results

7.4.1 Effect of pH on the oxidation of ABTS and decolorization of Re-

active blue 19

The apparent turnover number,kcat,app, and the apparent Michaelis constant,KS,app, for

ABTS oxidation by laccase decreased from pH 3 to 7 (Figure 7.1A and Table 7.1) whereas

the optimum kcat,app for Reactive blue 19 decolourization was at pH 4 (Figure 7.1B and

Table 7.2) and theKS,app profile showed a maximum at pH 5. The kinetic parameters from

Tables 7.1 and 7.2 were estimated from the initial rates from Figures 7.1A-B.

Table 7.1: Estimation of kcat,app and KS,app for the oxidation of Reactive blue 19 by 120
nM free laccase in 50 mM NaOAc/50 mM NaH2PO4 at different pHs. Each data point is
the average of triplicates and error bars represent the standard error.

pH kcat,app (s−1) KS,app (µM) (kcat/KS)app (× 105 M−1 s−1)

3 252± 2 35.3± 1.2 71.4
4 179± 1 33.9± 1.1 52.8
5 110.2± 0.4 32.1± 0.7 34.3
6 28.7± 0.2 13.6± 0.6 21.1
7 2.58± 0.26 4.5± 5.2 5.73
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Table 7.2: Estimation of kcat,app and KS,app for the oxidation of Reactive blue 19 by 120
nM free laccase in 50 mM NaOAc/50 mM NaH2PO4 at different pHs. Each data point is
the average of triplicates and error bars represent the standard error.

pH kcat,app (s−1) KS,app (µM) (kcat/KS)app (× 105 M−1 s−1)

3 4.11± 0.24 137± 19 27.5
4 4.63± 0.38 313± 30 15.0
5 2.64± 0.23 373± 66 0.0592
6 0.567± 0.096 248± 14 0.0131
7 0.120± 0.0114 115± 85 0.00349

7.4.2 Effect of ionic strength on the oxidation of ABTS and Reactive

blue 19

Both kcat,app and KS,app did not vary significantly, as the ionic strength, i.e. the sodium

sulphate concentration, increased from 7 to 49 mM (ionic strength = 0.100 to 0.310 mM)

for the ABTS oxidation, or for the Reactive blue 19 decolorization (Figure 7.2A-B)

7.4.3 Effect of sodium chloride on the oxidation of ABTS and decol-

orization of Reactive blue 19

Exposure of laccase to an increasing chloride concentration non-linearly decreased the ap-

parent turnover number for ABTS oxidation and Reactive blue 19 (Figure 7.3A-B). On the

other hand, KS,app for ABTS oxidation increased with salt concentration but decreased for

dye decolourization.

The Lineweaver-Burk plot show that laccase inhibition by chloride is partial non-competitive

with ABTS (the lines do not intercept at the abscissa) and is mixed with Reactive blue 19

(Figure 7.4A-B). The replot of the Lineweaver-Burk slopes against the salt concentration
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Figure 7.1: The effect of pH on the oxidation kinetics of ABTS and on the decolourization
of Reactive blue 19 by free laccase.The laccase concentration for the oxidation of ABTS
and the decolourization of Reactive blue 19 were 0.274 nM and 120 nM respectively. The
assays were buffered at the selected pHs with 50 mM NaOAc/50 mM NaH2PO4. Each data
point is the average of triplicates and error bars represent the standard error.
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Figure 7.2: Effect of ionic strength on the oxidation of ABTS (A) and Reactive blue 19
(B). The assay mixtures were buffered with 50 mM NaOAc/50 mM NaH2PO4 at pH 5 with
0.274 and 120 nM laccase for the oxidation of ABTS and the decolorization of Reactive
blue 19 respectively. Each data point is the average of triplicates and error bars represent
the standard error.
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Figure 7.3: Effect of sodium chloride on the oxidation of (A) ABTS and (B) Reactive blue
19 by laccase. The assay mixtures were buffered with 50 mM NaOAc/50 mM NaH2PO4 at
pH 5 with 0.274 and 120 nM for the oxidation of ABTS and the decolourization of Reactive
blue 19 respectively. Each data point is the average of triplicates and error bars represent
the standard error.
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Figure 7.4: Non-linear dependence of slopes from the Lineweaver-Burk plots (Ks/Vmax)
for ABTS (A-C) and Reactive blue 19 (B-D)
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Figure 7.5: Proposed scheme hyperbolic inhibition of laccase for the oxidation of ABTS

for the ABTS oxidation was hyperbolic indicating a partial inhibition (Figure 7.4C) while

that for the decolourization of Reactive blue 19 was parabolic (Figure 7.4D) indicating that

two inhibitor binding sites exist on the enzyme. Partial inhibition signifies that the enzyme-

inhibitor-substrate complex can generate the product. A general hyperbolic mixed-type in-

hibition was assumed (Figure 7.5) for the ABTS reaction where chloride can bind to the

free enzyme and enzyme-substrate complex. The enzyme-substrate-inhibitor complex is

able to generate the product (equation 7.2) (Segel, 1993).

v =

kcat[E]t[S]

(
1 +

β[I]

αKI

)

KS

(
1 +

[I]

KI

)
+ [S]

(
1 +

[I]

αKI

) (7.2)

whereKi is the inhibition constant describing the dissociation of the enzyme-inhibitor

complex into the free enzyme and the inhibitor. The parameterα is the factor by which the

enzyme substrate affinity is affected by the bound inhibitor and is the effectiveness of the

enzyme-substrate-inhibitor for generating the product.
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Figure 7.6: Proposed scheme for parabolic inhibition of laccase for the decolourization of
Reactive blue 19
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A parabolic replot of the Lineweaver-Burk slopes (KS/Vmax) against the inhibitor con-

centration (Figure 7.4D) indicates that two inhibitor binding sites on an enzyme exist

(Leskovac, 2003; Segel, 1993). A scheme was elaborated to describe the enzyme inhibition

during dye decolorization where two chlorides can bind to the free enzyme and the enzyme

substrate complex at two sites that have identical affinity for the inhibitor (Figure 7.6). The

enzyme-substrate complex bound by one inhibitor molecule can generate the product by

a fractionβ of kcat whereas the inhibition is complete when two inhibitor molecules are

bound to the enzyme, i.e., it cannot generate the product. Similarly to the ABTS case, the

inhibitor can affect the enzymes affinity for the dye by a factorα. The corresponding rate

equation for the two-site model is

v =

kcat[E]t[S]

(
1 +

2β[I]

αKi

)

KS

(
1 +

2[I]

Ki

+
[I]2

Ki
2

)
+ [S]

(
1 +

2[I]

αKi

+
[I]2

α2Ki
2

) (7.3)

Equations 7.2 and 7.3 were fitted to rate data for ABTS oxidation and decolourization of

Reactive blue 19 respectively (Figure 7.7A, Figure 7.8A) and the good fit was assessed with

the residuals plots showing no biases. The kinetic parameters (Table 7.3) were estimated

by nonlinear regression.

7.5 Discussion

A small number of investigations have reported on the effects of pH on dye decolorization

by laccase. Nyanhongoet al. (2002) showed that the optimum pH of the Reactive blue 19

decolourization byTrametes modestalaccase was 4.5 whereas Murugesanet al. (2007) re-

ported an optimal pH of 4 for the decolourization of the same dye byGanoderma lucidum

laccase. In this study, the decolorization of dye byTrametes versicolorlaccase was optimal
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Figure 7.7: Effect of NaCl inhibition on (A) ABTS oxidation and with residuals (B) by free
laccase. Comparison of experimental data (each symbol is the average of triplicates and the
error bars represent the standard deviation) and the inhibition model for ABTS oxidation
(equations 7.2) , solid lines).
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Figure 7.8: Effect of NaCl inhibition on (A) Reactive blue 19 with residuals (B) by laccase.
Comparison of experimental data (each symbol is the average of triplicates and the error
bars represent the standard deviation) and the inhibition model for ABTS oxidation and
and Reactive blue 19 (equations 1 and 2 respectively, solid lines).
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Table 7.3: Estimation of the kinetic paramaters from the proposed models for the oxidation
of ABTS (0.274 nM laccase) and for the decolourization of Reactive blue 19 (120 nM
laccase) in 50 mM NaOAc/50 mM NaH2PO4 pH 5 in presence of 0 - 200 mM sodium
chloride. Each data point is the average of triplicates and error bars represent the standard
error.

Hyperbolic mixed-type inhibition

Substrate kcat,app (s−1) KS,app (µM) KI (mM) α β

ABTS 142± 1 73.6± 1.8 12.8± 0.4 5.06± 0.28 0.0777± 0.0111

Parabolic inhibition

Reactive blue 19 1.71± 0.09 419± 31 54.7± 12.0 0.743± 0.060 0.274± 0.089
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at pH 4.

The redox potential of laccase is independent of pH and that of a substrate will decrease

with increasing pH if a proton is generated from the reaction (Xu, 1997). The rate of

a laccase-catalyzed reaction is proportional to the difference between type 1 copper and

the substrate redox potentials (Xu, 1997). Therefore, any variation in the rate is due to a

change in the substrate potential. Koudelkaet al. (1985) showed that enzyme inhibition at

alkaline pH was caused by hydroxide anions that bind to type 2 copper where oxygen is

reduced to water. Madzaket al. (2006) confirmed that the only charged residue, aspartate

206 (negative carboxyl), in the active site of laccase weakly contributed to the pH profile.

The redox potential of ABTS is independent of pH since its oxidation does not involve

the release of a proton (Xu, 1997). Hence, the gradual inhibition of the enzyme with

increasing pH was mainly due to an increasing hydroxide concentration, which caused

a strictly declining activity as a function of pH. On the other hand, the decolourization

profile of Reactive blue 19 showed an optimum pH of 4 and therefore suggests that the dye

decolourization involves the release of a proton; a decrease in the dyes redox potential may

have generated the ascending part of the curve and as the pH was further increased, the

hydroxide inhibition became dominant and caused the curve to decline.

Few studies have examined the effect of reaction conditions on the kinetics of laccase

dye decolourization. Trovasletet al. (2007) showed that sodium chloride and sodium sul-

fate inhibited the decolourization of Acid blue 62 byPycnoporus sanguineuslaccase but

no kinetic analysis was conducted. In this present study, sodium sulphate affected neither

ABTS oxidation nor the decolourization of Reactive blue 19 (Figure 7.2A B). The rate of a

reaction will not be affected if one of the reactants is neutral (Upadhyay, 2006). Since oxy-

gen is neutral, any observed effects on the rate would be due to alterations to the enzyme.

Therefore, sodium sulphate or the ionic strength does not affectT.versicolorlaccase.
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Since the ionic strength did not affect laccase, it was clearly inhibited by chloride. Naki

and Vorfolomeev (1981) demonstrated that chloride is a competitive inhibitor with various

electron donors as substrates whereas in this study, the inhibition of ABTS oxidation byT.

versicolorlaccase was hyperbolic non-competitive in the presence of chloride. The increas-

ing KS,app indicates that chloride decreased the enzyme affinity for ABTS and the inhibi-

tion can be considered partial competitive also (Figure A). The apparent turnover kcat,app

decreases because chloride decrease the concentration of fully free active enzyme. Since

the enzyme-subtrate-inhibitor complex is not as efficient as the enzyme-subtrate complex

to generate the product, the maximum rate of reaction decreases. Vaz-Dominguezet al.

(2008) showed that chloride is not likely to penetrate the channel leading to type 2 cop-

per because of its size and is not likely to inhibit the reduction of oxygen. Therefore, the

decreased kcat,app may also reflect the ability of chloride to suppress the electron transfer

from the substrate to type 1 copper, or from type 1 copper to type 3 copper. On the other

hand, the inhibition was parabolic mixed when Reactive blue 19 was the substrate (Figure

7.4B-D). Parabolic inhibition occurs when two inhibitor binding sites exist on an enzyme.

A kinetic mechanism in which chloride can bind to two sites with equal affinity (i.e., equal

KI) was derived. It was also assumed that the product can be generated when one chloride

is bound to laccase, as it is the case in ABTS oxidation, while no product is generated

when 2 chlorides are bound to the enzyme (Figure 7.6). It is not clear why parabolic inhi-

bition occurs in dye decolourization but not in ABTS oxidation. As previously mentioned,

chloride inhibits laccase by binding to the active site. Theα value of 0.743 signifies that

chloride increases the affinity of laccase for Reactive blue 19 and vice-versa. Upon binding

of the dye, it is possible that the active site may widen or be distorted allowing the binding

of a second chloride. The higher value of KI = 54.8 mM relative to 12.8 mM with ABTS,

suggest that the inhibitor binding sites resulting from a widening of the active site have

lower affinity for chloride. The halide, less tightly bound, would then be less efficient at
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suppressing the electron transfer from the substrate to the coppers in the tri-nuclear cluster.

This could in turn explain the larger value of Reactive blue 19 decoluorization (0.274) than

that of ABTS (0.0778). As mentioned, the parameterβ is the effectiveness of enzyme to

generate a product when bound by one chloride. The binding of two chlorides however,

would completely inhibit the enzyme, i.e., completely interrupt the electron transfer from

the substrate to the tri-nuclear cluster. To summarize, a halide like fluoride completely in-

hibitsTrametes hirsutalaccase (Vaz-Dominguezet al., 2008) by blocking electron transfer

at the active site near T1 copper and at the T2 copper through a channel. Since it is not

likely that chloride can penetrate the channel leading to type 2 copper because of its larger

size, it is proposed that the binding of two chlorides to laccase favoured by Reactive blue

19 completely inhibits the enzyme. This is the first report to the best of our knowledge

which proposes a mechanism for the complete inhibition of laccase by chloride.

7.6 Conclusions

This investigation has analyzed the impact of pH, sodium chloride and sodium sulphate on

dye decolorization. Alkaline pHs inhibited both the oxidation of ABTS and the Reactive

blue 19 decolorization. The Reactive blue 19 decolorization is optimal at 4 and the pH

profile suggests that a proton is released from dye decolorization. Ionic strength did not

affect ABTS oxidation or dye decolorization. The effects of sodium chloride on laccase

kinetics of oxidation of ABTS and on the decolorization of Reactive blue 19 were quantified

and the type of laccase inhibition by chloride depended on the substrate. For both reactions,

the exposure of laccase to the halide showed non-linear inhibitions. A hyperbolic partial

non-competitive inhibition was observed when ABTS was the substrate while a parabolic

mixed-type inhibition was occurred with Reactive blue 19. To the best of our knowledge,

this is the first study to demonstrate that proposes a mechanism by which chloride can



CHAPTER 7. EFFECTS OF PH AND SALTS ON DYE DECOLOURIZATION 166

completely inhibit laccase. The proposed models can be used to estimated the size of an

eventual enzyme reactor for design of an enzyme treatment.
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Chapter 8

Conclusions

1. The decolourization of Reactive blue 19 by laccase immobilized on CPC-silica beads

was mainly enzymatic although dye adsorption occurred. Dye adsorption was re-

duced by treating CPC- silica-laccase beads with ethanolamine which blocks the

unreacted aldehyde groups after laccase immobilization

2. Immobilizing laccase on silica beads change its pH activity profile for oxidizing

ABTS oxidation but did not affect that for decolourizing Reactive blue 19. Fur-

thermore, the dye specificity of the enzyme was not affected by immobilization since

it was similar for immobilized and free laccase. Azo dyes were the least efficiently

decolourized most likely because of their high redox potentials.

3. The toxicity of the parent dyes and their degradation product(s) varied with the dye.

After a laccase treatment, Indigoid and azo dye were detoxified whereas the decolour-

ization of the anthraquinone dyes led to an increased toxicity.

4. Merpol inhibited the decolourization of Reactive blue 19 byT.versicolorlaccase by

substrate depletion. A Michaelis-Menten like model in which Merpol binds the dye

169
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was derived. The proposed kinetic mechanism of inhibition is supported by statis-

tically similar Merpol-dye dissociation constants estimated by steady-state kinetics

and by saturation equilibrium binding.

5. Increasing pH inhibited the laccase ABTS oxidation while the optimum pH of Re-

active blue 19 decolourization was 4. While sodium sulfate did not affect laccase,

sodium chloride inhibited laccase ABTS oxidation and dye decolourization. When

ABTS was the substrate, the inhibition was hyperbolic non-competitive and from the

rate model, it was suggested that one chloride anion was bound to the enzyme. With

Reactive blue 19, the parabolic mixed inhibition suggested that two chlorides bind to

laccase for its complete inhibition. A proposed model in which the dye increases the

affinity of the enzyme for chloride enough to favour the binding of a second anion

was derived.

6. T. versicolorlaccase was immobilized through its polysaccharide residues on PMMA

and the enzyme load compared well with commercial protein supports. Immobiliz-

ing laccase through its sugar residues favoured higher specific immobilized enzyme

activity than using glutaraldehyde cross-linking. The specific activity of laccase on

PMMA was higher than that achieved on the CPC-silica beads and suggests that

PMMA is suitable support for dye decolourization.



Chapter 9

Contributions

9.1 Decolourization of Reactive blue 19 by laccase immo-

bilized on CPC-silica beads

In the analysis of the decolourization of Reactive blue 19 by immobilized laccase, dye re-

moval was mainly enzymatic. It was possible to reduce dye adsorption by treating the beads

with ethanolamine to block the aldehyde groups not occupied by laccase. With other dyes,

it was also discovered that significant dye adsorption occurred when the enzyme was inef-

ficient at decolorizing the dyes. These findings contributed to understanding some of the

possible reasons why dye adsorption occurred during decolourization by an immobilized

enzyme.

9.2 Immobilization of laccase on PMMA

Laccase was successfully immobilized on PMMA. This investigation was the first to report

the immobilization of laccase on a relatively inexpensive material. Moreover, this is a
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convenient method that can be used without an elaborate experimental setup or the use of

more expensive commercial protein supports.

9.3 Effect of Merpol on the decolourization of Reactive

blue 19 by laccase

Since Merpol is a surfactant used as a wetting agent and detergent in the dyeing process,

it was relevant to analyze its impact on dye decolourization by laccase. Merpol, a non-

ionic surfactant, inhibited the decolourization of Reactive blue 19 by substrate depletion;

by spectroscopic analysis, it was demonstrated that the dye interacted with the surfactant

and the binding quantified. A rate model was developed to describe the kinetic mechanism.

The main contribution of this investigation is that it is the first to report on Merpol inhibition

of laccase decolourization of Reactive blue 19 and to elucidate the kinetic mechanism of

inhibition. Moreover, the kinetic model was supported by a qualitative (spectroscopy) and

quantitative (equilibrium binding) analyses of the interaction between Reactive blue 19 and

Merpol. The model developed can be used to estimate the size of a laccase reactor for the

treatment of texitle wastewaters.

9.4 Effect of Sodium chloride and ionic strength on the

decolourization of Reactive blue 19 by laccase

It was shown that laccase was not affected by ionic strength and that chloride inhibited its

decolourization of Reactive blue 19. As previously shown, when ABTS was the substrate,

the inhibition was hyperbolic non-competitive whereas when Reactive blue 19 was the

substrate, the inhibition was parabolic mixed. The main contribution of this section is
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that this is the first investigation to demonstrate that the mechanism of chloride inhibition

depended on the substrate and an appropriate kinetic model was proposed. The kinetics

models developed can be used to estimate the size of a laccase reactor for the treatment of

textile wastewaters.



Chapter 10

Recommendations

10.1 To investigate the influence of the nature of the en-

zyme support on enzymatic dye decolourization

Since the specific activities of immobilized laccase on silica and PMMA beads differed and

the enzyme pH profile was modified, it is clear that the support materials analyzed in this

research influenced the activity of immobilized laccase. More materials should be evaluated

to understand their effect on laccase activity. The importance of material hydrophilicity for

laccase immobilization should be investigated to determine if the activity retention can be

improved without the use of commercial supports. The activity of laccase immobilized on

support with increasing hydrophilicity should be analyzed. (e.g. poly(ethylene-co-butyl

metha acrylate), PMMA, polyhydroxyethyl methacrylate ).

174



CHAPTER 10. RECOMMENDATIONS 175

10.2 Immobilization of laccase on porous PMMA beads

Laccase was successfully immobilized on PMMA beads and the retained laccase activity

was higher than on silica beads. To increase the mass of enzyme immobilized, laccase

should be immobilized on porous PMMA beads and the preparation tested for dye de-

colourization.

10.3 Characterize laccase kinetic in real textile wastewa-

ters

The effects of individual auxiliary chemicals on dye decolourization were analyzed in a

synthetic buffer to understand their impact on the decolourization mechanism. However,

the combined effect(s) of these components in a textile wastewater may be different. It is

recommended that the kinetic behaviour of the enzyme in an actual wastewater be charac-

terized to understand how all the components together impact enzymatic decolourization.

Comparing laccase kinetics in buffer and in wastewater may help to identify other inhibitors

and knowledge of its behaviour over time will allow us to develop better strategies to main-

tain long term enzyme stability. Furthermore, the assessment of the enzyme’s stability in

wastewater must be conducted before the steady-state kinetic studies in a wastewater sam-

ples. Once a kinetic rate and enzyme deactivation model are obtained, an enzyme reactor

can be sized and tested for the decolourization of an industrial textile wastewater.
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10.4 Study the impacts of factors like salts and pH on the

interaction of Merpol and Reactive blue 19

The nature of the interaction(s) between the anthraquinone dye, Reactive blue 19, and

Merpol should be investigated since the presence of a surfactant like Merpol can negatively

affect decolourization. Knowledge of the effects of pH, temperature and common textile

salts on the binding of Reactive blue 19 to Merpol may allow us to develop strategies to

minimize these influences. Furthermore, it should be determined whether other classes of

textile dyes will bind to Merpol in a similar manner.



Appendix A

Statistical analysis of the difference

between the dissociation constants

estimated from binding and kinetic

assays

The t-test is conducted to determine whether the difference between the equilibrium disso-

ciation constants for the Merpol-Reactive blue 19 interaction. The hypothesis (H1) is that

theKd estimated by saturated equilibrium binding is statistically different than estimated

from the steady-state kinetic analysis. The null hypothesis (H0) is

H0: The values are distinct

H1: The values are not distinct

H0 is rejected if tcalculated < ttable
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Kd,1 (x1) = 44.1,
s1√
n1

= 10.1, n1 = 81

Kd,2 (x2) = 38.3,
s2√
n2

= 3.4, n2 = 672

t =
x1 − x2√
s2
1

n1

+
s2
2

n2

=
44.1− 38.3√
10.12 + 3.42

= 0.544

degreeoffreedom(d.o.f.) =

(
s2
1

n1

+
s2
2

n2

)2

(
s2
1

n1

)2

n1 − 1
+

(
s2
2

n2

)2

n2 − 1

=
10.12 + 3.42

10.14

81− 1
+

3.44

672− 1

= 99

The p-value fortcalculated = 0.544 is 0.294 for a 1 sided-test. The value ofttabulated

with a p-value of 0.294, a significance levelα=0.05, and a degree of freedom of 99 is

1.055. Sincetcalculated < ttabulated, the null hypothesis is rejected. TheKd values are not

statistically different.



Appendix B

Derivation of the rate equation for the

hyperbolic mixed inhibition

B.1 Rate equation for the general mixed inhibition

Consider the following hyperbolic mixed inhibition scenario (Figure B.1) where the enzyme-

inhibitor, EI, is allowed to bind the substrate and to generate a product. The bound inhibitor

can affect the enzymes affinity for the substrate by factor . The parameter is the fractional

effectiveness for the complex ESI to generate the product. The rapid equilibrium rate equa-

tion for the mixed-type inhibition is derived as follow:

1. Mass balance for the enzyme species

[E]t = [E] + [ES] + [EI] + [ESI] (B.1)
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Figure B.1: General partial mixed inhibition (hyperbolic)

2. Rate equation which is a function of the enzyme-substrate complex

v = k2[ES] + βk2[ESI] (B.2)

3. Divide the rate equation (B.2) by the mass balance (equation B.1)

v

[E]t
=

k2[ES] + βk2[ESI]

[E] + [ES] + [EI] + [ESI]
(B.3)

4. Express the concentration of each enzyme species in terms of free E and free S at

equilibrium

v

[E]t
=

k2
[E][S]

KS

+ βk2
[E][S][I]

αKSKi

[E] +
[E][S]

KS

+
[E][I]

Ki

+
[E][S][I]

αKSKi

(B.4)
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5. Cancel [E] and rearrange

v

[E]t
=

k2
[S]

KS

+ βk2
[S][I]

αKSKi

1 +
[S]

KS

+
[I]

Ki

+
[S][I]

αKSKi

(B.5)

v

[E]t
=

k2[S] + βk2
[S][I]

αKi

KS + [S] +
KS[I]

Ki

+
[S][I]

αKi

(B.6)

v =

k2[E]t[S]

(
1 +

β[I]

αKi

)

KS

(
1 +

[I]

Ki

)
+ [S]

(
1 +

[I]

αKi

) (B.7)

B.2 Derivation of the rate equation for the parabolic mixed

inhibition

Parabolic inhibition occurs when more than one inhibitor binding site exist and is usu-

ally complete, i.e. no product can be generate by the enzyme when all inhibitor sites are

occupied by the inhibitor. Consider the following parabolic inhibition kinetic scheme

where the inhibitor (I) can bind two independent sites with the same affinity, i.e., the

inhibition constant,Ki, is identical for both inhibitor binding sites. Theα factor indicates

that binding of the inhibitor affects the binding of the substrate S. The enzyme-substrate

with one inhibitor molecule can generate the product by a fractionβ of k2 but it cannot

when two inhibitor molecules are bound. The rate equation for this kinetic scheme is

derived as follow
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Figure B.2: Parabolic two-site mixed inhibition
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1. Write the velocity equation divided by the enzyme conservation equation

v

[E]t
=

k2[ES] + 2βk2[ESI]

[E] + [ES] + [EI] + [IE] + [ESI] + [IES] + [IEI] + [IEIS]
(B.8)

2. Express each enzyme complex species by its equilibrium dissociation relationship

v

[E]t
=

k2

(
[E][S]

KS

+ 2β
[E][S][I]

αKSKi

)

[E] +
[E][S]

KS

+
[E][I]

Ki

+
[I][E]

Ki

+
[E][S][I]

αKSKi

+
[E][S][I]

αKSKi

+
[E][I]2

K2
i

+
[E][S][I]2

α2KSK2
i

(B.9)

3. Eliminate [E]

v

[E]t
=

k2

(
[S]

KS

+ 2β
[S][I]

αKSKi

)

1 +
[S]

KS

+
2[I]

Ki

+
2[S][I]

αKSKi

+
[I]2

K2
i

+
[S][I]2

α2KSK2
i

(B.10)

4. Multiply the numerator and denominator byKS and rearranging

v

[E]t
=

k2[S]

(
1 +

2β[I]

αKi

)

KS + [S] +
2[I]KS

Ki

+
2[S][I]

αKi

+
KS[I]2

K2
i

+
[S][I]2

α2K2
i

(B.11)

v =

k2[E]t[S]

(
1 +

2β[I]

αKi

)

KS

(
1 +

2[I]

Ki

+
[I]2

K2
i

)
+ [S]

(
1 +

2[I]

αKi

+
[I]2

α2K2
i

) (B.12)



Appendix C

Calculation of reaction rates

C.1 Initial rates

In chapter six and seven, the initial rate was determined by calculating the slope of the

tangent at the onset of the reaction or progress curve so that the points considered did not

exceed 10 % conversion as shown in Figure C.1).

C.2 Calculation of average reaction rates and of rate con-

stants from the immobilized laccase reactor

For dye decolourizations conducted with the CPC-silica-laccase packed bed, the reactor

inlet and outlet concentration were monitored and recorded (Figure C.2 and C.3). The rate

of decolourization in the packed bed was calculated as follow:

The rate of decolourization in the reactor was calculated as follow

• Cinlet = 17.59 mg/l

• Coutlet= 7.36 mg/l
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Figure C.1: Example time course curve return by the software SOFTmax PRO (Molecular
Devices, Sunnyvale CA,USA)

Figure C.2: Concentration profile of Reactive blue 19 decolourization by immobilized lac-
case.
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Figure C.3: Table of measured concentrations, calculated 1-reactor volume removal effi-
ciency in (%) with time

• Vreactor,void = 1.6 ml

• flowrate = 4.15 ml
min

• hydraulic retention time (HRT) = 0.385 min

rate =
Cinlet − Coutlet

HRT
=

(17.59− 7.36)mg
l

0.385′min
mg/l = 26.6 mg

lmin

The removal efficiency of the reactor is equal to

%removal =
Cinlet − Coutlet

Cinlet

× 100 =
17.6− 7.36

17.6
× 100 = 58.2%

The rate constant (k) was calculated as follow:

k =
decolourizationrate

Cinlet

=
26.6 mg

lmin

17.6mg/l
= 1.51 min−1.


