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Abstract

The objective of this work is to develop mathematical models to predict molecular weight
distributions (MWDs) of ethylene copolymers produced in an industrial gas-phase reactor using a
Ziegler-Natta (Z-N) catalyst. Because of the multi-site nature of Z-N catalysts, models of Z-N
catalyzed copolymerization tend to be very large and have many parameters that need to be
estimated. It is important that the data that are available for parameter estimation be used

effectively, and that a suitable balance is achieved between modeling rigour and simplification.

In the thesis, deconvolution analysis is used to gain an understanding of how the polymer
produced by various types of active sites on the Z-N catalyst responds to changes in the reactor
operating conditions. This analysis reveals which reactions are important in determining the
MWD and also shows that some types of active sites share similar behavior and can therefore
share some kinetic parameters. With this knowledge, a simplified model is developed to predict
MWDs of ethylene/hexene copolymers produced at 90 °C. Estimates of the parameters in this
isothermal model provide good initial guesses for parameter estimation in a subsequent more

complex model.

The isothermal model is extended to account for the effects of butene and temperature.
Estimability analysis and cross-validation are used to determine which parameters should be
estimated from the available industrial data set. Twenty model parameters are estimated so that
the model provides good predictions of MWD and comonomer incorporation. Finally, D-, A-,
and V-optimal experimental designs for improving the quality of the model predictions are
determined. Difficulties with local minima are addressed and a comparison of the optimality

criteria is presented.
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Chapter 1

Introduction

1.1 Problem Description

This work focuses on the development of mathematical models for predicting the
molecular weight distribution (MWD) of polyethylene (PE) produced using a-olefin comonomers
and a particular Ziegler-Natta (Z-N) catalyst in a gas-phase process. Polyethylene, the most
widely produced polymer in the world, is generally classified as low-density (LDPE), high-
density (HDPE), or linear-low-density (LLDPE).!""! LDPE is usually produced by free-radical
polymerization and features long-chain branches. HDPE and LLDPE are commonly produced
using Z-N catalysts and are generally linear polymers. An a-olefin such as butene or hexene is
often used to add short-chain branches to the polymer in order to control its density (a measure of
comonomer incorporation and polymer crystallinity). There are several types of active sites on Z-
N catalysts. Because of this multi-site nature, polyethylene produced using Z-N catalysts tends to
have a broader MWD than PE produced using single-site catalysts. Mechanistic models of PE
produced by Z-N catalysts tend to be very complex because of the large number of possible
reactions and because each type of active site requires a different set of reaction rate constants.!"*
"1 Consequently, these large models with many reactions have a substantial number of kinetic
parameters that need to be estimated if the model is to be used to provide accurate predictions. It
is difficult to estimate large numbers of parameters, especially if limited data are available.
Therefore, simpler models with fewer parameters and effective techniques to help with parameter

estimation are desirable.



The kinetics of ethylene copolymerization with Z-N catalysts have been well
characterized by Kissin.!"*! Generally, the average molecular weight of the polymer is controlled
by the presence of hydrogen in the reactor. The most common cause for chain termination is
chain transfer to hydrogen; thus, when more hydrogen is present, more chain-stopping events take
place, thereby lowering the resulting molecular weight of the polymer. Other reactor conditions
such as temperature and the various monomer concentrations also have an effect on the MWD.
Many efforts have been made to model copolymerizations using Z-N catalysts. de Carvalho et
al.'*! have developed a commonly used reaction scheme to model the polymerization. If this
standard scheme is used, there are about 20 reactions included in the model. Each of these
reactions requires a separate kinetic rate constant and activation energy for each type of active
site on the catalyst. As a result, when this complete reaction scheme is used to model the PE
MWD produced by a catalyst with five types of active sites, there are up to 200 different kinetic
rate parameters (rate constants plus activation energies) that need to be estimated. This is an
impossible task, given a reasonable amount of data. Therefore, some simplifying assumptions
must be made to reduce the number of parameters in the model to a manageable number.

Even with a simplified reaction scheme and model, the parameter estimation may still be

difficult. Many modellers have assumed arbitrary values for all of their model parameters.' '*-

1.11 1.4, 1.5, 1.12-1.14]

I Other modellers have adjusted a few key parameters to match available data.!
Many modellers have assumed the presence of only one or two types of active sites on the

catalyst [1.3,1.4,1.9, 1.10, 1.12-1.20]

1.2 Process Description

The model to be developed predicts MWDs and comonomer incorporation of

ethylene/butene and ethylene/hexene copolymers. These copolymers are produced in a gas-phase
2



(1211 and later transferred to BP Chemicals!"! and

process, developed by Naphtachimie in France
then to INEOS. This process is known as the Innovene™ process. A simplified schematic is
shown in Figure 1.1.1. The MWD is determined by the catalyst and by the operating conditions
in the reactor. Although a large number of reactor operating conditions are monitored and
controlled, the reactor temperature and the gas-phase partial pressures of the various reactants are
of particular interest because they influence the polymer MWD. The gas-phase ratios of the

reactants (butene/ethylene, hexene/ethylene, and hydrogen/ethylene) are used to control the

polymer molecular weight and density.

Gas Recycle

Catalyst Feed @

Polymer Remowval

Reaction Gazes

Figure 1.1 Simplified Process Flow Diagram.

The MWDs are measured using high-temperature gel permeation chromatography (GPC).

In GPC, a dilute polymer solution is passed through a column containing a porous gel. The
3



polymer is thereby separated by size. Smaller polymer chains enter the pores in the gel and thus
take longer to pass through the column compared to the longer polymer chains that pass through

1221 Thus the molecular weight of each polymer

the column without spending time in the pores.
fraction is determined by the amount of time it takes to pass through the column. The MWD is
determined based on the fraction of the polymer that exits the column at a given time. The
comonomer incorporation (the fraction of the polymer chain that is made up of comonomer rather

than ethylene) can be determined by infrared (IR) spectroscopy.'*

1.3 Modeling Approach

Modeling involves not only the derivation of model equations but also obtaining
estimates of the model parameters. Without good parameter estimates, the model can only
provide qualitative predictions that may be unreliable. The process of modeling involves several
steps: 1) developing an understanding of the process to be modeled, ii) derivation of mathematical
equations to represent the process, iii) the collection of data, iv) the estimation of model

(123, 1241 There is not always a clear

parameters, and v) the validation of model predictions.
beginning or end to this process, because improved model equations are often derived after
parameters are estimated and predictions are tested. Additional experiments are often performed
after some of the parameters are estimated, in an effort to obtain better information that will lead
to better parameter estimates and model predictions. In short, modelling is usually an iterative or

cyclical process in which information is obtained, learning occurs, and model improvements are

made (see Figure 1.2).



Process

Investigation
Experimental Model
Design Derivation
Estimability
Parameter Analysis
Estimation

Figure 1.2 Model development cycle

Models can either be empirical models or fundamental mechanistic models. Empirical
models do not require prior knowledge of the process; they simply fit parameters to relate input
variables to responses. As a result, empirical models are easy to build but have the disadvantage
that they are only applicable to the operating region for which they were developed. Mechanistic
models on the other hand are based on the underlying physical relationships between input
variables and responses. This makes the models more rigorous and more applicable over a larger
operating region, but means that they are harder to develop and to estimate. The model presented
in this work is a semi-empirical model. Fundamental knowledge of the system is included, but
simplifications are made and parameters are estimated in an empirical manner to get a semi-
empirical model for the particular system. Depending on the quality of data available and the
complexity of the model, different levels of simplification are appropriate to achieve a final semi-
empirical model that can be used for making predictions. In this work, good model predictions

are more important than the physical veracity of the parameter estimates.



1.4 Thesis Outline and Objectives

The objectives of this thesis are: 1) to develop a mathematical model to predict MWD of
ethylene/butene and ethylene/hexene copolymers produced by Z-N catalysts, ii) to estimate model
parameters using data supplied by our industrial sponsor, and iii) to design additional experiments
aimed at improving model predictions. As a first step in the model development process, an
empirical, deconvolution-based, analysis of industrial ethylene copolymerization data is
performed in Chapter 2 to obtain information about relevant phenomena that should be included
in mechanistic MWD models. In Chapter 3, a mechanistic model is developed to predict MWD
and comonomer incorporation for ethylene/hexene copolymers produced isothermally at 90 °C.
The reaction scheme and the resulting model are simplified so that reasonable estimates can be
obtained for key model parameters. In Chapter 4, the isothermal MWD model is extended to
account for operation at a variety of temperatures and with butene comonomer. Parameter
estimability analysis and cross-validation are used to determine which parameters should be
estimated from the available data. The predictive ability of the model is demonstrated by using
the model to predict experimental results not used in parameter estimation (cross-validation). The
final parameter values that are reported make use of information from all of the available data. In
Chapter 5, sequential experiments are designed that should lead to improved parameter estimates

and model predictions. These new experiments are of interest to our industrial sponsor.

In addition to the models, parameter values, and suggested experiments described above,
this thesis provides up-to-date reviews of mathematical models of polyethylene reactors and of
parameter estimation in complex mechanistic models within the various chapters. This thesis
further develops the estimability analysis tool for parameter ranking that has been used by

[1.25-1.28]

previous researchers in our group. Appropriate uncertainty-based scaling factors are

6



developed and are described in Chapter 4. This scaling has subsequently been used by other

1.29, 1.30

students in our group.! I Cross-validation is proposed for deciding how many parameters to

estimate from the ranked parameter list determined via estimability analysis. Finally, features of
A-, D- and V-optimal sequential experimental designs are compared and recommendations are

made about problems related to local optima.

This thesis is presented in manuscript format. Chapters 2 and 3 have been published in
the journal Macromolecular Reaction Engineering, and Chapter 4 has been accepted for

publication in the same journal.
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Chapter 2

Exploring Reaction Kinetics of a Multi-Site Ziegler-Natta Catalyst
Using Deconvolution of Molecular Weight Distributions for Ethylene-

Hexene Copolymers

Duncan E. Thompson, Kim B. McAuley, and P. James McLellan
Department of Chemical Engineering, Queen’s University, Kingston, ON, K7L 3N6, Canada
Fax: 1-(613)-533-6637, email: mcauleyk@chee.queensu.ca
Keywords: copolymerization, deconvolution, molecular weight distribution / molar mass

distribution, Ziegler-Natta polymerization

2.1 Summary

Industrial ethylene-hexene copolymer samples produced using a supported Ti-based
Ziegler-Natta catalyst were deconvoluted into five Flory molecular weight distributions (MWDs).
Relationships between reactor operating conditions and deconvolution parameters confirmed that
temperature and hydrogen and hexene concentrations influenced the MWD. The two sites that
produced low-molecular-weight polymer responded similarly to changes in reactor operating
conditions, as did the three sites that produce high-molecular-weight polymer. Increasing hexene
concentration resulted in relatively more polymer being produced at the two low-molecular-
weight sites and less at the high-molecular-weight sites. The information obtained will be useful
for making simplifying assumptions during kinetic model development.

This work was published in Macromolecular Reaction Engineering in 2007,
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2.2 Introduction

Polyethylene, the polymer with the highest annual world-wide production, is commonly
used for films and packaging as well as automotive applications. Polyethylene and its
copolymers are generally classified as either low-density (LDPE), high-density (HDPE), or

linear-low-density (LLDPE) polyethylene.*"!

LDPE, which contains long branches, is made
using high-pressure free-radical polymerization, whereas HDPE and LLDPE, which are linear
polymers, are most often made using Ziegler-Natta catalysts. In HDPE and LLDPE production,
an a-olefin comonomer (e.g., hexene or butene) is incorporated to produce short-chain branches.
Increasing levels of comonomer incorporation result in lower polymer density.*"! HDPE and
LLDPE are made in solution and slurry processes, but the gas-phase process is most economical
for large-scale production.**! World-wide production of all types of polyethylene is growing, but
HDPE and LLDPE production are growing faster than production of LDPE.*?!

Polyolefins made using Ziegler-Natta catalysts have very broad MWDs. A polymer’s
MWD influences its end-use properties’™ such as its Young’s modulus, impact strength, and
melting point. Industrial reaction engineers would like to have kinetic models that predict the
MWD (and comonomer incorporation) from the reactor operating conditions. End-use properties
could then be predicted from reactor operating conditions, assuming that structure-property
relationship models are available to predict end-use properties from MWD (and composition).
Mathematical models enable engineers to determine the properties of copolymer currently being
produced in a reactor, and to select the appropriate reactor conditions to make polymer grades
with desired properties. In gas-phase polyethylene reactors, the polymerization rate, polymer

density and average molecular weight are controlled by adjusting the catalyst feed rate, the

comonomer feed rate, the hydrogen (a chain transfer agent) feed rate and the temperature.
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Polymerization proceeds faster at higher temperatures, so reactors are usually operated at high
temperature (typically over 80 °C) to maintain high reaction rates without using excessive
amounts of catalyst. If the temperature is too high in gas-phase reactors, serious problems such as
particle agglomeration can arise. Since different polyethylene grades have different particle-
softening temperatures, different grades are produced at different temperatures. The more
hydrogen that is present in the reactor, the lower the average molecular weight of the polymer
(and the higher the melt index) that is produced. The amount of comonomer in the reactor is used
to control the density of the copolymer. Short-chain branches, produced by comonomer
incorporation, disrupt crystallization, resulting in relatively more amorphous polymer (which is
less dense) and relatively less crystalline polymer (which is more dense).

A variety of different HDPE polymer grades are produced commercially to satisfy
customers who require polyethylene with different densities and average molecular weights.
Table 2.1 shows the scaled reactor operating conditions used to produce the ethylene/hexene
copolymer samples that were used in the current study. These sample MWDs were produced
using a supported Ti-based Ziegler-Natta catalyst in gas-phase commercial and pilot plants over a
28°C temperature range. Some of the runs are replicates of each other. Figure 2.1a) to ¢) show
MWDs for the three pairs of replicate runs from Table 2.1. Although the two MWDs shown in
Figure 2.1 a) are very close to each other, Figure 2.1 b) and ¢) show more variability between
replicates. Some of these runs were conducted several months apart, and so the larger differences
between some of the replicates could be the result of small batch-to-batch differences in the
catalyst, impurities in the reactors, disturbances away from operating setpoints, and GPC drift.
The replicate runs were produced using the same operating conditions; however, it is also

possible to produce the same grade of polymer (same melt index and density) at different
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operating conditions. For example, runs 1, 2, and 12 produced the same grade, as did runs 3, 5, 9,

and 10. Since the samples being examined resulted from industrial test runs performed for a

variety of purposes unrelated to the current work, only a limited range of experimental conditions

were used to generate the data. Although we would like to have a richer data set, this was not

possible.

Table 2.1 Scaled reactor operating conditions for sixteen ethylene/hexene copolymerization runs
and weight-average molecular weight and density of the resulting copolymer. Reactor operating

conditions were scaled to protect proprietary information.

Run | Temperature H,/C, Ratio C¢/C, Ratio Pcs Mw Density
(gmol)  (kgm?)
1 0 0.54 1 0.67 68372 931.2
2 0 0.68 1 0.67 70660 933
3 0.36 0.46 0.08 0.67 99150 952
4 0.36 1 0.34 0.83 65234 947.5
5 0.36 0.46 0.08 0.67 95806 952.3
6 0.36 0.46 0.27 0.33 83049 946.5
7 0.36 0.27 0 1 122470 955.3
8 0.36 0.86 0.015 0.73 85943 957.2
9 0.36 0.46 0.16 0.67 86600 951
10 0.36 0.46 0.16 0.67 89450 950.5
11 0 0.49 0.89 0.67 83000 937.9
12 0 0.54 1 0.67 72300 933
13 0.57 0.14 0.74 0 73000 934.5
14 0.71 0 0.66 0.03 78700 936.5
15 0.57 0.08 0.81 0 75400 935.7
16 1 0 0.14 0.47 82600 947.9
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Figure 2.1 a) Measured MWDs from replicate runs 9 and 10. b) Measured MWDs for replicate
runs 3 and 5. ¢) Measured MWDs of replicate runs 1 and 12.

The broad MWDs of polyethylene copolymers produced using heterogeneous Ziegler-
Natta catalysts are the result of several types of active sites on the catalyst.**) The multi-site
nature of the catalyst makes it difficult to develop kinetic models that can predict MWD and
comonomer composition. Because each site type can have different kinetic behaviour, large
numbers of kinetic parameters are needed. As a result, many modellers only assume two or three
types of active sites and make many simplifying assumptions, but almost all end up with a very

[2.5-2.9

large number of kinetic parameters I'that need to be estimated.

In theory, each type of active site produces polymer with an instantaneous MWD that can

[2.4, 2.10, 2.11]

be described by Flory’s most probable distribution, assuming that temperature,

hydrogen and monomer concentrations are uniform in the amorphous phase of the polymer
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% originally proposed deconvolution analysis as a

throughout the reactor. Vickroy et al.’*'
technique for decomposing MWDs into their component Flory distributions. Soares and
Hamielec clearly outlined the methodology that is most often used to deconvolute experimental
MWDs.>!"! Using nonlinear regression techniques, the average molecular weight of polymer
produced at each site, as well as the mass fraction of polymer produced at each site, can be
determined.

Kissin and others have found that five to seven Flory components are often needed to
adequately match the MWD of polyolefins produced using Ziegler-Natta catalysts.>* *!%- 212 2131
However, it is widely believed that there are not this many chemically distinct types of active
sites on Ziegler-Natta catalysts. In fact, by broadening the component distributions to account for
site-surface interactions, Soares found that broad MWDs could be explained using only two or

>4 Although using a broadened Flory component

three chemically distinct types of active sites.!
distribution reduces the number of sites, it would require that additional broadening parameters be

included in the model. Therefore, this method has not been pursued. Maschio et al. used log-

normal distributions, which are broader than Flory distributions, to represent individual

2.15 - [2.16]

components of MWDs,*"”! as proposed by Keii. Log-normal distributions could model the

polymer produced by “a group of relatively similar active sites producing polymer with M L/ M \

< 37,25 whereas the Flory distribution only models a single site type with a theoretical
polydispersity of two. Maschio and Scali compared two deconvolution methods to determine the

171 A two-peak

effects of mass-transfer phenomena on the MWD in free radical polymerizations.
method in which one peak characterized polymer produced early in a reaction under chemical

control, and the second peak characterized higher-molecular-weight polymer produced under

diffusive control was used to predict MWDs. A multi-peak method that had peaks corresponding
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to many different conversions was also used. They found that the multi-peak method “...is

potentially much superior, but the results prove to be more sensitive to the quality of the

99[2.17]

experimental part. Pinto’s group found that fewer sites were needed for deconvolution of

MWDs produced in unsteady-state reactions if dynamic models were used rather than the more

traditional steady-state models.”"™

Pinto’s group also found that, under some circumstances, it was easier to use cumulative

2.19, 2.20

probability distributions! ! for deconvolution rather than the usual differential distribution

]

211 . e e . . .. . .
approach.! Because the cumulative distribution is always a monotonic increasing function

constrained between 0 and 1, the cumulative-distribution approach can encounter fewer numerical
problems than the traditional differential-distribution approach, particularly for multimodal
MWDs.

Deconvolution analysis has been used to explore polymerization kinetics at various types

2.21]

of sites, with the aim of developing kinetic models. Khare et al.”*"*! and Soares et al.**" used

[2.11

traditional deconvolution techniques™'" to determine the number of sites needed to model the

MWD of polymer produced using a Ziegler-Natta catalyst. Deconvolution has also been used by

2192201 46 develop a method for the quantitative evaluation of kinetic constants in

Pinto’s group
Ziegler-Natta and metallocene-catalyzed olefin polymerizations for both conventional®'” and
high-activity catalysts.***) Nele and Pinto*** used MWD deconvolution to predict whether the
polymers that are produced would have bimodal MWDs.

Kissin has done extensive work using deconvolution to better understand the kinetics of
ethylene polymerization with heterogeneous Ziegler-Natta catalysts.>* *#2*1  Kissin

characterized the effects of important reactor operating conditions on the active sites. Hydrogen

is a chain-transfer agent and so, not surprisingly, it was found that an increase in hydrogen
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concentration reduced the average molecular weight of polymer produced at all sites.*>%2> %]

30]

Hydrogen also suppresses overall catalyst activity™® and polymerization rates. Higher

temperatures were found to decrease the average molecular weight of the polymer produced, and

]

to increase the activity of the catalyst.**! In copolymerization with hexene, high temperatures

[2.25]

make the catalyst more effective at incorporating comonomers. Kissin also found that the

pressure of ethylene in the reactor had very little effect on the average molecular weight and mass
fraction of polymer produced by individual active sites.!**>**!

In copolymerization reactions using hexene, Kissin found that the presence of hexene
greatly increased the amount of polymer produced by low-molecular-weight sites, since these

[2.23, 2.25, 2.28, 2.31]

sites more easily incorporate comonomer than high-molecular-weight sites do. In

batch or semi-batch reactors, the low-molecular-weight sites dominate during the early stages of
polymerization, whereas the high-molecular-weight sites dominate during the later stages.”*
Kissin also found that, in the presence of hydrogen and hexene, the low-molecular-weight sites
reactivate after chain-transfer reactions much more quickly than the high-molecular-weight

sites.**

I In homopolymerization, all of the sites reactivate after chain-transfer reactions at about
the same rate. Therefore, deconvolution has proven a useful tool for exploring the behaviour of
multi-site catalysts. By examining the effects of reactor operating conditions on different types of
active sites, useful information for developing fundamental kinetic models can be found.

In the current work, sixteen MWDs are deconvoluted, and the relationships among the
deconvolution parameters, and between the deconvolution parameters and the reactor operating

conditions, are examined. Density measurements, which are related to copolymer composition,

were also obtained for the same industrial samples. Unfortunately, we were not provided with
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composition distribution measurements, so we do not have any direct information about the
composition of the copolymer produced at the different sites.

In this work, the method used to perform deconvolution is described, and difficulties
associated with ill-conditioning of the deconvolution parameter-estimation problem are explored.
To explore the reaction kinetics, the relationships between the deconvolution parameters for the
active sites and the reactor operating conditions are examined using scatter plots and correlation
coefficients.  Important correlations are identified, and recommendations for using this
information during kinetic-model development are made. We show that the two apparent low-
molecular-weight sites respond similarly to reactor operating conditions, as do the three apparent
high-molecular-weight sites, helping to confirm that there are not five chemically distinct types of

active sites on the catalyst.

2.3 Deconvolution of MWDs

I was used to deconvolute the MWDs for

The method of Soares and Hamielec!*'!
the sixteen runs into their component Flory distributions, as shown for run 9 in Figure
2.2. The samples were taken from continuous steady-state gas-phase processes with long
residence times. Therefore, it is assumed that the reaction conditions were constant, and
that any heat or mass-transfer resistances early on in the particle life have little influence
on the MWD. It was found that five sites were needed to adequately fit the MWDs. If
four sites were used, then the deconvolution often failed to provide a good fit of the tails
of the MWDs, but no problems of this nature were encountered when five sites were
used. Using five sites is also consistent with the findings of Kissin for a similar Ti-based
24]

catalyst.!
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Figure 2.2 The MWD of run 9, deconvoluted into five component Flory distributions.

For each Flory distribution, w(r,j) the weight fraction of chains of length r
produced at a site of type j is given by:

w(r,j) = rfr exp(— z'jr) (2.1)

where 7; is the ratio of the rate of chain-terminating events to chain-propagating events at sites of

type 7.*""1 We numbered the sites from 1 to 5, with j=1 corresponding to the site that produces

the lowest-average-molecular-weight polymer and j=5 corresponding to the site that produces the

highest molecular weight. A derivation of how Equation 2.1 is converted into 4w is
dlog Mw

presented in the appendix. The overall chain-length distribution of the polymer (composed of the

individual Flory components) is therefore:
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W(r)= zj’jlm L w(r, j) (2.2)

W(r) is the weight fraction of the polymer of chain-length » produced at all sites, and m; is
the mass fraction of polymer produced by site type j. Ny is the number of site types. Two
parameters, 7; and m;, must be estimated for each Flory component. The 7; parameter determines
the horizontal position of the component distribution along the chain-length (or molecular weight)
axis, and the m; parameter determines the relative height (see Figure 2.3). The estimated

deconvolution parameters, 7; and m; for each of the sixteen samples are shown in Table 2.2.

0.81

o
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.

dW / dlogMw
o
~

0.2}

Figure 2.3 Effects of 7; and m;. 7; affects the average molecular weight of polymer produced by a
site, and m; affects the relative size of the component from a site.
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Table 2.2 Deconvolution results obtained assuming five site types.

Sample Mw 71 (%) 73 T4 T5 my my ms my ms
(gmol) | (*10°) (*10%) (*10%) (*10%) (*10°)
1 68372 | 9.977 1951 0.768 0305 0.127 | 0.073 0.384 0.407 0.112 0.022
2 70660 | 6.064 1.712 0.747 0335 0.168 | 0.072 0.372 0.433 0.095 0.028
3 99150 | 5.939 1.546 0.683 0.297 0.123 | 0.041 0.290 0.477 0.146 0.046
4 65234 | 9.349 1.798 0.733 0.286 0.116 | 0.079 0.440 0.389 0.079 0.013
5 05806 | 7.434 1.723 0.732 0313 0.118 | 0.053 0.266 0.474 0.161 0.046
6 83049 | 8912 1.687 0.690 0.281 0.115| 0.055 0.384 0421 0.113 0.026
7 122470 | 9.753 1.590 0.641 0.257 0.096 | 0.040 0.277 0.440 0.186 0.057
8 85943 | 10.070 1.798 0.710 0.276 0.098 | 0.072 0.362 0.412 0.124 0.029
9 86600 | 6.497 1.612 0.714 0309 0.128 | 0.052 0.316 0.470 0.127 0.035
10 89450 | 6.338 1.567 0.693 0.301 0.133 | 0.051 0.312 0.474 0.126 0.038
11 83000 | 6.170 1.634 0.704 0.286 0.128 | 0.052 0.349 0455 0.120 0.024
12 72300 | 6.544 1.750 0.760 0.337 0.151 | 0.068 0.361 0.436 0.107 0.028
13 73000 | 8.928 1.719 0.716 0.290 0.101 | 0.067 0.420 0.403 0.093 0.017
14 78700 | 8.744 1.664 0.696 0.282 0.102 | 0.056 0.411 0.412 0.101 0.020
15 75400 | 9.154 1.712 0.718 0.286 0.098 | 0.063 0.420 0.403 0.094 0.019
16 82600 | 9.255 1.586 0.696 0.292 0.101 | 0.063 0.382 0430 0.114 0.022

The active-site parameters, 1, and m; were estimated jointly using least-squares
regressio