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ABSTRACT

In this thesis we have investigated electrostatic interactions at dielectric interfaces using theoretical

models based on the non-linear Poisson-Boltzmann theory and its extensions. We have focused on three

major topics: (1) modeling the energetics and interactions of charged nanoparticles trapped at the air-water

interface; (2) calculation of the line tension between domains in charged lipid membranes, lipid-lipid corre-

lations, and how membrane curvature is influenced by charged peptides; and (3) extensions of the classical

Poisson-Boltzmann theory by accounting for the influence of ion-specific solvent-mediated interactions.

More precisely, ion-specificity has been accounted for using the Poisson-Helmholtz-Boltzmann formalism,

which adds to the bare Coulombic interactions a Yukawa-like potential that accounts for the interacting hy-

dration shells of ions. Motivated by recent experimental and computational results, all projects present here

aim to provide a deeper understanding of fundamental physical properties of charged dielectric interfaces.
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3.2. Illustration of the planar capacitor model that serves us as an approximation for a spherical
particle of radius R. Three regions, air (for −2R < x < −R, with dielectric constant εa and di-
mensionless potential Ψa), the inside of the particle (for −R < x < 0, with dielectric constant εn

and dimensionless potential Ψn), and water (x > 0, with dielectric constant εw and dimension-
less potential Ψw), are separated by two planar surfaces, located at x = −R and x = 0, that are
oriented normal to the x-axis. The location x = −2R is kept at fixed potential Ψa = 0, and the
two surfaces at constant surface charge density: σa, at the surface exposed to the air and σw at
the surface facing the aqueous medium. The dimensionless electrostatic potential in bulk water
(at x→ ∞) is denoted by Ψ

(b)
w (dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. The same system as illustrated in Fig. 3.1 but for a spherical particle of radius R that partitions
equatorially to the air-water interface; θ is the polar angle measured with respect to the normal
direction as indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Electrostatic free energy difference 4Fel(εn, lmax) = Fel(εn, lmax)− Fel(εn = 5, lmax = 70) as
function of the number of coefficients lmax for a spherical particle of radius R = 50 nm with
uniform surface charge densities σa = 3.2 nC/cm2 = 0.0002e/nm2 at the air-exposed region
and σw = 3.2 µC/cm2 = 0.2e/nm2 at the water-exposed region. The three different curves refer
to εn = 0 (top), εn = 2 (middle), and εn = 5 (bottom). The Debye screening length is lD = 5nm. 39

3.5. Contour plots of the dimensionless electrostatic potential, calculated for σa = 0 (left) and σa =
3.2 nC/cm2 = 0.0002 e/nm2 (right). Both plots are computed for a particle radius R = 50 nm,
Debye length lD = 5 nm, surface charge density at the water-exposed region of the particle
σw = 3.2 µC/cm2 = 0.2 e/nm2, dielectric constant inside the particle εn = 2, and vanishing
potential difference Ψ

(b)
w = 0 between bulk water and air. Darker shading corresponds to a more

positive dimensionless potential Ψ as marked in the legend. . . . . . . . . . . . . . . . . . . . 41

3.6. Apparent charge density σ
app
a at the air-exposed surface of a spherical particle as function of the

particle’s dielectric constant εn. Solid and dashed lines correspond, respectively, to results in the
nonlinear Poisson-Boltzmann and the linear Debye-Hückel regimes. Different curves in each
diagram refer to different σa = σ

app
a (εn = 0). The two columns of diagrams are computed for

σw = 0 (left) and σw = 3.2 µC/cm2 (right); The three rows refer to Ψ
(b)
w = −2 (top), Ψ

(b)
w = 0

(middle), and Ψ
(b)
w = 2 (bottom). All results are derived for R = 50 nm and lD = 5nm. The two

bullets in the middle-right diagram refer to the contour plots displayed in Fig. 3.5. . . . . . . . 42

3.7. Apparent surface charge density σ
app
a at the air-exposed surface as function of εn according to

the planar capacitor approximation, calculated according to Eq. 3.16 (solid lines) on the level
of nonlinear Poisson-Boltzmann theory and according to Eq. 3.19 (dashed lines) in the linear
Debye-Hückel limit. All results are computed for exactly the same set of parameters as in
Fig. 3.6. Specifically, different curves in each diagram refer to different σa = σ

app
a (εn = 0).

The two columns of diagrams are computed for σw = 0 (left) and σw = 3.2 µC/cm2 (right); The
three rows refer to Ψ

(b)
w = −2 (top), Ψ

(b)
w = 0 (middle), and Ψ

(b)
w = 2 (bottom). All results are

derived for R = 50 nm and lD = 5 nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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3.8. Apparent surface charge density σ
app
a at the air-exposed particle region as function of the Debye

screening length lD for fixed σw = 3.2µC/cm2, R= 50nm, and Ψ
(b)
w = 0. Dashed and solid lines

in the upper two diagrams refer to σa = 0 and σa = 3.2 nC/cm2, respectively. Dashed and solid
lines in the lower two diagrams refer to σa = 16 nC/cm2 and σa = 32 nC/cm2, respectively.
Left and right diagrams correspond, respectively, to calculations for the spherical geometry (see
Section 3.2) and the planar capacitor approximation (see Section 3.1). The four different curves
for each set are derived for εn = 0 (symbol ◦), εn = 1 (/), εn = 2 (•), εn = 5 (.). We have placed
the symbols at position lD = 5nm, for which all calculations in Figs. 3.6 and 3.7 were carried out. 48

4.1. Two point charges with valencies za and zw are located at distances xa above and −xw below an
air-water interface, respectively. Air has a dielectric constant εa ≈ 1. Water (the shaded region)
has a dielectric constant εw ≈ 80 and contains a symmetric 1:1 electrolyte of bulk concentration
n0. Co-ions and counter-ions are represented schematically. The x-axis of a Cartesian coordinate
system points normal to the interface. The three positions x = xa, x = 0 (coinciding with the
air-water interface), and x = xw divide space into four regions indexed 1,2,3,4. . . . . . . . . . 53

4.2. The square root of the electrostatic interaction free energy,
√

Uel/kBT , of two pairs of point
charges (see Fig. 4.1) as function of

√
1/s3, where s is the distance between the two pairs along

the air-water interface. All curves are derived using Eqs. 4.11 and 4.12 with xw =−xa, εa = 1,
and εw = 80. The three diagrams correspond to za = 20 and zw = 0 (top diagram), za = 0 and
zw = 500 (middle diagram), and za = 20 and zw = 500 (bottom diagram). All curves are color-
coded according to xa = 0 (black), xa = 1 nm (blue), xa = 2 nm (red), and xa = 4 nm (green).
Sets of curves of the same color in each diagram refer to lD → ∞, lD = 100 nm, lD = 10 nm,
lD = 5 nm, and lD = 2 nm (from top to bottom). The curves for lD → ∞ are shown as dashed
lines. The upper diagram contains additional dotted curves (the bottom ones for green, red, and
blue color), which correspond to the large salt limit, lD→ 0. . . . . . . . . . . . . . . . . . . . 60

4.3. The dipole moment defined in Eq. 4.21 shown as function of the Debye screening length lD (in
all cases with xw = −xa, εa = 1, and εw = 80) for the same three combinations of valencies
[za = 20 and zw = 0 (top diagram), za = 0 and zw = 500 (middle diagram), and za = 20 and
zw = 500 (bottom diagram)] and the same coloring scheme [xa = 0 (black), xa = 1 nm (blue),
xa = 2nm (red), and xa = 4nm (green)] as in Fig. 12.2. The upper diagram displays µ; the middle
and lower diagrams display 4µ = µ −

√
2 e(za + zw)lDεa/εw. Solid lines refer to numerical

calculations of µ according to Eqs. 4.11 and 4.12. Dashed lines show µ according to Eq. 4.22,
implying a constant µ =

√
2 e xa(za− zwεa/εw). . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1. Schematic illustration of a planar lipid layer that bridges between two coexisting phases com-
posed of a binary mixture of anionic and neutral lipids. The position x = 0 divides between
the two phases, each with average mole fractions φ̄1 (for x < 0) and φ̄2 (for x > 0). The cross-
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electrolyte of bulk concentration n0. The diffuse ion cloud of monovalent co- and counter-ions
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5.2. Electrostatic contribution to the line tension Λel plotted as function of the bulk lipid composi-
tion of phase 2, φ̄2, for fixed φ̄1 = 0.1,0.5,0.9. Upper solid lines correspond to fixed charge
densities in both phases (case I); lower solid lines to phase 1 at constant electric potential and
phase 2 at constant charge density (case II); dotted lines to constant charge density in one phase
and constant chemical potential in the other (case III); and dashed lines to constant chemical
potential in both phases (case IV). The long dashed lines in left-top diagram (indicated by DH),
refer to results obtained in the Debye-Hückel limit. Left and right plots refer to lD = 1 nm and
lD = 3 nm, respectively. We have used a Bjerrum lenght lB = 0.7 nm and a cross-sectional area
per lipid a = 0.65 nm2 in all calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3. Lipid composition φ(x) normal to the phase boundary for φ̄1 = 0.25 and φ̄2 = 0.75. Straight
solid lines correspond to fixed charge densities at both phases (case I); upper right solid line
to phase 1 at constant electric potential and phase 2 at constant charge density (case II); dotted
lines to constant charge density in one phase and constant chemical potential in the other (case
III); and dashed lines to constant chemical potential in both phases (case IV). We have used
a Bjerrum lenght lB = 0.7 nm, a Debye length lD = 3 nm, and a cross-sectional area per lipid
a = 0.65 nm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4. Schematic illustration of a planar lipid layer with two phases as in Fig. 12.1, yet described
in terms of polar coordinates r and φ (instead of Cartesian coordinates). The aqueous phase
corresponds to the range 0 < r < ∞ and 0 < φ < π . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1. A: Schematic illustration of a one-dimensional lattice (of coordination number z = 2) with N =
16, N1 = 7, N2 = 9. The displayed example configuration has N11 = 3, N12 = 4, N21 = 4, N22 = 5
(assuming periodic boundaries). The interaction energy between a (12) or (21) pair is denoted
by ω . Hence, the total interaction energy of the displayed configuration is (N12 +N21)ω = 8ω .
B: The reaction scheme invoked by Eq. 6.4 is characterized by an equilibrium constant K. . . . 89
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number z = 2) with N = 16, NE

1 = 8, NI
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N1121 = N1212 = N2121 = N1112 = N1221 = N2221 = N2122 = 1, N2212 = 2, and N2111 = N1211 = 3.
The remaining Ni jkl’s vanish. The interaction energy for this particular example is 10ωE +8ωI +
8η + 16ε . B: All 16 distinct double pair conformations with their corresponding interaction
energies. Here, ωE and ωI are nearest neighbor interaction energies within the external (E) and
internal (I) layer, η is the interaction energy across the bilayer, and ε denotes the hydrophobic
mismatch energy. C: Lipids with different chain length may or may not create hydrophobic
mismatch. The identification of molecule types 1 and 2 with short and long chain lipids provides
our motivation for the different mismatch energies. The displayed examples, (1221), (2211),
(1121), and (1212), have mismatch energies of 0, 0, ε , and 2ε , respectively. . . . . . . . . . . . 91

6.3. The reaction scheme invoked by Eqs. 6.11. The equilibrium constants are K1 = K2 = e−2ε ,
K3 = e−2(ωE+ε), K4 = e−2(ωI+ε), K5 = e−2(ωE+η), K6 = e−2(ωI+η), and K7 = e−2η . . . . . . . . . 95

6.4. Equilibrium constants K predicted by the quasi-chemical approximation, plotted as function of
the interaction energy across the lipid bilayer η . The three sets of curves correspond to different
lipid-lipid interaction energies ω = 0 (a), ω = 0.2 (b), and ω = −0.2. (c). Each set contains
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6.5. Equilibrium constants K predicted by Monte Carlo simulations of two coupled two-dimensional
cubic lattices (each of 20×20 lattice sites) with interaction parameters identical to those used in
QCA. Figs. 6.4 and 6.5 are derived for the same interaction parameters, the former using QCA
and the latter using Monte Carlo simulations. Specifically, the three sets of curves correspond
to different lipid-lipid interaction energies ω = 0 (a), ω = 0.2 (b), and ω =−0.2. (c). Each set
contains two different curves (marked by data points), calculated for a mismatch energy ε = 0
(marked by the symbol •) and ε = 0.2 (�). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6. Equilibrium constants K predicted by the quasi-chemical approximation, plotted as function of
the mismatch energy ε for ω = −0.25 (left diagram) and ω = −0.1 (right diagram). These
two choices of ω model, respectively, the absence and presence of the divalent ligand in the
experiments of Zhang et al [2]. Solid lines refer to η = 0, dashed lines to η =±0.4, and dotted
lines to η =±0.8. For each pair of broken or dotted lines, the upper curve refers to negative η

and the lower curve to positive η . Experimentally observed equilibrium constants [2], including
their error bars, are indicated on the left-hand side (ll and ss) and right-hand side (sl) of each
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7.1. Design of metaphilic helical peptides. (A) Metaphilic helical peptides are poly(arginine) ana-
logues characterized by long hydrophobic side chains (1318 σ -bonds in length) that have either
a terminal guanidinium group or alkyl chain. Charged monomers having guanidinium groups
were used to synthesize homopolypeptides (top left). A mixture of charged monomers and
uncharged monomers, which feature terminal alkyl chains, were used to synthesize random
copolypeptides (bottom). All prepared peptides adopt an -helical conformation except for P3
(top right), which was synthesized as a random coil from racemic monomers. (B) The structural
peptide design parameters include the following: n (degree of polymerization), x (number of
methylene groups), y (molar fraction of uncharged monomers), R (terminal alkyl chain), Mn

(number-average molecular weight in kDa). (C) Metaphilic peptides featuring long side chains
with terminal cationic and alkyl groups favor a stable α-helical conformation in aqueous solu-
tion. (D) Simplified cartoon depictions comparing the fractions of charged and uncharged side
chains among the various metaphilic peptides. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2. Landing and insertion processes of metaphilic peptides near a membrane. (A) Time-averaged
force F exerted on the peptide upon landing. The force is evaluated as a function of the distance z
between the center of mass of the peptide backbone and the head groups of the outer membrane
leaflet. Two different cases are compared, in which 50% (red) and 100% (blue) of side chains
are terminated by charged end groups. (B) Time-averaged tilt angle of the peptide backbone
with respect to the membrane plane, as a function of peptide distance to the membrane. Note
that tilt angle is zero when the peptide is parallel to the membrane and positive otherwise. (C)
Averaged deviation ∆z of the charged groups from the center of mass of the peptide backbone.
(D) Free-energy profile G(z), obtained through integration of the force profile F(z) shown in
panel (A). (E) Sequence of simulation images demonstrating landing, initial anchoring (insertion
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on their charges: red for +1e, white for uncharged, and blue for 1e. (F) Final state of a peptide
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7.3. Metaphilic helical peptides generate NGC necessary for membrane permeation. SAXS spectra
from DOPS/DOPE = 20/80 membranes incubated with homopolymer (A) and random copoly-
mer (B) peptides at electroneutral P/L molar ratios. Correlation peaks corresponding to iden-
tified cubic phases are indicated (black lines). Inset in (A) provides an expanded view of the
cubic reflections (boxed region) for P5. (C,D) Indexing of the peptide-induced Pn3m and Im3m
cubic phases is shown by plotting the measured Q positions, Qmeasured, versus the assigned
reflections in terms of Miller indices,

√
h2 + k2 + l2. The slopes of the linear regressions were

used to calculate their lattice parameters, which are listed in the legends. . . . . . . . . . . . . 119

7.4. Relations of membrane permeation with hydrophobic volume and cationic charge. Membrane
permeation, as measured by FITC and peptide uptake in cells, was found to correlate with
the hydrophobic volumes and cationic charges of metaphilic helical peptides. A set of ho-
mopolypeptides (P1, P5, P6) with similar degree of polymerization and charge exhibited both
FITC (A) and peptide (C) uptake levels that tracked well with their different hydrophobic vol-
umes. Conversely, a set of random copolypeptides (P10P14) with identical degree of polymer-
ization and comparable hydrophobic volumes showed that increasing cationic charge correlated
with increased FITC (B) and peptide (D) uptake. (E) Among all nine metaphilic helical peptides
tested, we also observed that the ratio of FITC uptake to peptide uptake generally increased with
hydrophobic volume. Greater hydrophobic volumes promote more stable pores with longer life-
times, which allow more efficient membrane permeation by free molecules of peptide and FITC.
In contrast, lower hydrophobic volumes are expected to yield more transient pores with shorter
lifetimes, and thus, facilitate rapid translocation of the peptide across a membrane. . . . . . . . 120

7.5. Membrane insertion of a metaphilic peptide results in a less negative Gaussian modulus. (A) We
characterize a lipid molecule in terms of the cross-sectional area ai at the hydrocarbon chain-
headgroup interface, the cross-sectional headgroup area ah (measured at a surface parallel to
the hydrocarbon chain-headgroup interface at distance lh away), and the effective thickness b of
the hydrocarbon chain region. The volume vL occupied by the lipid’s two hydrocarbon chains
is conserved. The polar headgroup is represented by a light-shaded circle. (B) The Gaussian
modulus (measured in units of the thermal energy unit kBT ) as a function of the peptide-to-
lipid ratio P/L. The full molecular model (solid line) accounts for both the increase in the
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of the anionic lipid head groups with the cationic terminal groups of the metaphilic peptide side
chains. This is contrasted with ignoring either the hydrophobic peptide volume (vP = 0, dashed
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8.1. Schematic illustration of two like-charged planar surfaces (located at positions x = 0 and x = D,
each of lateral area A and with surface charge density σ ), embedded in a solution of negatively
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uniform surface charge density −z/(4πR2) (a) or has all z charges located at the center of the
sphere (b). The system is in contact with a reservoir of monovalent point-like positive and
negative salt ions, each of concentration n0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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8.2. Local volume charge density ρ(x) for homogeneously charged particles with z = 1, a = 60nm2,
n0 = 0, and D= 20nm. Solid lines refer to our non-linear PB model (that is, solutions of Eqs. 8.8
and 8.9), and the bullets to the prediction from Monte Carlo simulations. Different colors refer
to different particle radii: R = 0.5 nm (green), R = 1.0 nm (blue), and R = 2.5 nm (red). The
inset shows the corresponding local particle concentration m(x). The dashed black curve in the
main figure and in the inset corresponds to the classical PB result for point-like ions. . . . . . . 140

8.3. Normalized local volume charge density, −2Raρ(x)/e, for R = 3.5 nm, D = 50 nm, and z = 24.
Solid lines and filled symbols are computed using PB theory and Monte Carlo simulations,
respectively. Different colors correspond to different surface charge densities σ = e/a with
a = 5 nm2 (black), a = 10 nm2 (red), a = 20 nm2 (green), and a = 60 nm2 (blue). . . . . . . . . . 141

8.4. Local volume charge density ρ(x) for homogeneously charged particles of radius R= 3.5nm and
surface charge density σ = e/a with a = 60 nm2. Solid lines and filled symbols are computed
using PB theory and Monte Carlo simulations, respectively. Different colors correspond to
different particle valencies: z = 3 (blue), z = 6 (red), z = 12 (black) and z = 24 (green). Upper
and lower diagram refer to D = 20 nm and D = 50 nm, respectively. The two broken lines
in each diagram indicate the two limiting cases of uniform particle distribution and complete
surface adsorption. No salt is present (n0 = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.5. Nanoparticle concentration profiles m(x) for different radii R = 1 nm (black curves) and R =
3.5 nm (red curves) as well as for uniform surface charge density (solid lines) and all charge
being localized at the particle center (broken lines). The upper diagram refers to lD = 10 nm,
the lower to lD = 1.0 nm. All calculations correspond to lB = 0.7 nm, D = 20 nm, a = 60 nm2,
and z = 24. The bullets mark the concentrations m(R). . . . . . . . . . . . . . . . . . . . . . . 144
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9.1. Binodal (solid lines) and spinodal (dashed lines) as function of the bulk volume fraction, φb,
of the spherical particles. The red and blue pairs of curves apply to the lattice Yukawa fluid
and the Carnahan-Starling Yukawa fluid, respectively. The critical points χ = χc at φb = φc are
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9.2. Schematic illustration of a Yukawa fluid confined to the region x > 0 due to the presence of a
planar rigid wall at x = 0. The concentration profile n(x) (with bulk value nb) and corresponding
potential Ψ(x) (with bulk value Ψb) along the x-axis are plotted qualitatively for the case l > 0
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9.3. Scaled surface tension γκ/nb versus bulk potential Ψb = (4πl/κ2)nb for an ideal Yukawa fluid
calculated on the level of mean-field theory. The solid curve shows the result according to a
numerical integration of Eq. 9.27. The dashed curve corresponds to a series expansion, γκ/nb =
−Ψb/4−Ψ2

b/16+ 7Ψ3
b/288, valid up to third order in Ψb. The fluid is locally unstable for
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9.4. Scaled surface tension γvκ versus bulk volume fraction φb for a lattice Yukawa fluid (red lines)
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ical solutions of Eq. 9.33. The dashed red lines represent the fourth-order expansion according
to Eq. 9.24 with g′′(0) = 6/π . We compare these results with our findings for the ideal Yukawa
fluid: the numerical prediction according to Eq. 9.27 (solid black lines) and the fourth-order
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correspond to numerical solutions of Eqs. 9.21-9.23. The dashed blue lines represent the fourth-
order expansion according to Eq. 9.24 with g′′(0) = 8. We compare these results with our
findings for the ideal Yukawa fluid: the numerical prediction according to Eq. 9.27 (solid black
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9.6. Schematic illustration of an attractive Yukawa fluid (with l < 0 and thus χ > 0) that phase
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9.7. Scaled surfaced tension γνκ as function of χ (diagram A) and as function of 4φ = (φb,2−
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10.1. Total cation-cation interaction energy Utot(r) according to Eq. 10.3 with le = 0.7 nm and κ−1 =
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10.2. Ψ(x) and Ψh(x) (upper diagram), and n+(x) and n−(x) (lower diagram). Different curves cor-
respond to different hydration repulsion strengths: lh = 0.2 nm (black), lh = 0.4 nm (blue),
lh = 0.6 nm (red), lh = 0.8 nm (green). The solid lines account for cation-cation hydration
repulsion whereas the dashed lines ignore it. The dashed lines in the inset of the upper diagram
follow Eq. 10.10. The filled circles in the lower diagram mark the maximum counterion concen-
tration n+(dStern) at position dStern. The black dash-dotted line corresponds to the electrostatic
potential (upper diagram) and counterion concentration (lower diagram) according to the classi-
cal GC model. All results are derived for fixed κ−1 = 0.3nm, σe/e=−1/nm2, σn = 5/nm2, and
κ−1

e = 1 nm. The Debye screening length κ−1
e = 1 nm corresponds to a bulk salt concentration

of n0 = 0.057/nm3; for large x all curves in the lower diagram (including the inset) converge to
this value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.3. Counterion concentration profile n+(x) for κ−1 = 0.3 nm, σe/e = −1/nm2, σn = 5/nm2, and
lh = 0.4 nm. Different curves correspond to different salt concentrations in the bulk: n0 =1 mM
(red), 4 mM (green), 100 mM (blue), and 400 mM (black). The inset shows predictions of the
lattice gas GC model with a cell size of a = 2lh = 0.8 nm according to Eq. 10.11 for the same
set of salt concentrations as in the main diagram. Solid and dashed lines in the inset correspond
to σe/e =−1/nm2 and σe/e =−2/nm2, respectively. . . . . . . . . . . . . . . . . . . . . . . 181

10.4. The two blue lines (one solid and one dashed) replot the potential profiles from the upper di-
agram in Fig. 10.2 for lh = 0.4 nm. The vertical dashed line marks the position x = dStern =
0.77nm of the Stern plane (see the blue bullet in the lower diagram of Fig. 10.2). The five black
solid lines show Ψ(x) according to Eq. 10.12 (the GCS model) for σe/e =−1nm2, κ−1

e = 1nm,
εrel = 1, and different values of the surface charge density σStern at the Stern layer: σStern =−σe,
σStern =−0.75σe, σStern =−0.5σe, σStern =−0.25σe, and σStern = 0 (from top to bottom). The
surface potential Φ(0) is plotted in the inset as function of σStern. . . . . . . . . . . . . . . . . 181

10.5. The dimensionless electrostatic potential Ψ(x) for σe/e = −1/nm2. The solid lines replot the
results for uniform dielectric constant, εrel(x) ≡ 1, from the upper diagram in Fig. 10.2, where
lh = 0.2 nm (black), lh = 0.4 nm (blue), lh = 0.6 nm (red), lh = 0.8 nm (green). The dashed lines
show the corresponding results for an exponentially decaying dielectric constant with a relative
surface value εrel(0) = 0.5. The inset shows the relation between the dimensionless surface
potential Ψ(0) and the surface charge density σe for uniform (solid lines) and exponentially
decaying (dashed lines) dielectric constants, the latter with εrel(0) = 0.5. . . . . . . . . . . . . . 182

11.1. Schematic illustration of a planar surface with surface charge density σe in contact with an
aqueous solution containing monovalent ions of bulk cation and anion concentrations n0 and
dielectric constant εW ≈ 80. Mobile ions interact with each other through their excluded vol-
ume, through a Coulomb potential, and through a Yukawa potential. The latter two account
for electrostatic and hydration-mediated interactions, respectively. They are specified by the
relationships Uaa(r), Uac(r), and Ucc(r) for anion-anion, anion-cation, and cation-cation inter-
actions, respectively, where r is the ion-to-ion distance; see the text for details. The strength
of the electrostatic interaction equals kBT if two ions are separated by a distance lB. Similarly,
the strength of the hydration interaction equals kBT for an anion-anion pair at distance a, for an
anion-cation pair at distance b, and for a cation-cation pair at distance c away from each other. . 187

xxi



11.2. Monte Carlo simulation results for the differential capacitance Cdi f f = dσe/dΦ(0) as function
of the surface charge density σe, obtained by two different methods: the Lamperski-Zydor algo-
rithm (black bullets) and the two-point derivative (blue-colored bar-chart). The inset shows the
variation of the dimensionless electrostatic surface potential, Ψ(0) = eΦ(0)/kBT , as function
of σe. (Abscissa labels in the inset and main figure are identical.) The blue-colored bar-chart
illustrates the intervals used for the two-point derivative. The displayed example is based on an
ion radius of R = 0.2 nm and the absence of hydration interactions (a = b = c = 0). . . . . . . . 195

11.3. Differential capacitance Cdi f f as function of the surface charge density σe. Filled circles are
results obtained by Monte Carlo simulations. The dotted, solid, dashed, and dash-dotted black
lines correspond to the PB, PB-Stern, PCS-Stern, and PLG-Stern models, respectively. The
thickness of the Stern layer, dStern = R, is equal to the ion radius R = 0.2nm. The solid gray line
is the result predicted by the approximation of dense ion packing, Cdi f f = 2ε0εW/[(2R)3(σe/e)].
The inset shows Monte Carlo simulation results of the counterion concentration profiles n−(x)
for various charge densities: σe = 6.4e/nm2 (red), σe = 3.2e/nm2 (green), and σe = 1.6e/nm2

(blue). The same color scheme is used to mark the corresponding values of Cdi f f in the main plot.197

11.4. Differential capacitance Cdi f f as function of the surface charge density σe for various ion radii
R when only electrostatics and finite ion size effects (but no hydration-mediated interaction, a =
b= c= 0) are taken into account. Symbols mark results obtained from Monte Carlo simulations.
Solid and dashed lines correspond to the PCS-Stern and PLG-Stern models, respectively. The
Stern layer thickness is dStern =R. Different colors correspond to R= 0.2nm (black), R= 0.4nm
(red), and R = 0.6 nm (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.5. Differential capacitance Cdi f f as function of the surface charge density σe for R = 0.2 nm and
different values of a = b = c = 0.2 nm (black bullets), a = b = c = 0.4 nm (red diamonds),
and a = b = c = 0.6 nm (green triangles). Monte Carlo simulation results are marked by the
different symbols as indicated. The color-matching solid, and dash-dotted lines correspond to
the PHB and PHLG models, respectively. For R = 0.2 nm we have also added a broken line (in
black), which displays the prediction of the PHCS model. The solid gray line marks the limiting
behavior Cdi f f = 2ε0εW/[(2R)3(σe/e)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.6. Differential capacitance Cdi f f as function of the surface charge density σe when hydration-
mediated interactions are present with a = b = c = 0.6 nm. Different colors correspond to
different ion size R according to R→ 0 nm (blue), R = 0.2 nm (black), R = 0.4 nm (red), R =
0.6 nm (green), and R = 0.8 nm (orange). Monte Carlo simulation results are marked by the
different symbols as indicated. The color-matching solid, and dashed lines correspond to the
PHCS and PHLG models, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

11.7. Counterion concentration profile n−(x) near the charged planar surface, located at x = 0, for
σe = 0 (upper diagram) and σe = 1.0 e/nm2 (middle and lower diagrams). Black and green
circles/curves refer to R = 0.2 nm and R = 0.6 nm, respectively. Monte Carlo simulation data
are indicated by filled circles for a = b = c = 0 and by open circles for a = b = c = 0.6nm. Note
that the Monte Carlo simulation results in the middle and lower diagrams are identical. In the
upper and lower diagrams, dashed lines refer to the PHCS model. In the middle diagram, dash-
dotted lines correspond to the PHLG model. Dotted horizontal lines at n = n0 = 0.057/nm3 in
the upper diagram correspond to the PB-Stern model. . . . . . . . . . . . . . . . . . . . . . . . 204

xxii



12.1. Differential capacitance, Cdi f f , as function of the surface charge density, σe. The dotted black
line is the classical Poisson-Boltzmann result Cdi f f = εwε0

√
1+w2/lD with w = 2πlBlDσe/e.

Curves colored red and green are calculated for a = b = c = 0, with ion radius R = 0.2 nm (red)
and R = 0.6 nm (green) in the absence (dash-dotted lines) and presence (solid lines) of a Stern
layer of thickness dS = R. The color-matching bullets are corresponding results from Monte
Carlo simulations. The black dashed line and the black bullets are mean-field and Monte Carlo
simulation results, respectively, obtained for R = 0.2 nm, a = b = c = 0.6 nm, and σ− = σ+ =
5.0 nm−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12.2. Differential capacitance, Cdi f f , as function of the surface charge density σe, for different com-
binations of the solvent-mediated interaction parameters a and c: a = b = c = 0.6 nm (black),
a = 0.8nm and c = 0.4nm (red), and finally a = 1.0nm and c = 0.2nm (blue). Dashed lines and
color-matching bullets refer to mean-field predictions and corresponding Monte Carlo simula-
tion results. All results are derived for fixed R = 0.2 nm, σ− = σ+ = 5.0 nm−2, and b = 0.6 nm.
The gray dotted line marks the limiting expression Cdi f f = 2εwε0/[(2R)3σe/e], valid for large
|σe|. The inset displays model predictions for Cdi f f as function of arsinh[2arsinh(2πlBlDσe/e)]
according to Eq. 12.12, with dS = da

S = 0.2 nm (black), dS = 0.132 nm and da
S = 0.266 nm (red),

as well as dS = 0.066 nm and da
S = 0.332 nm (blue), all derived for lD = 1 nm. . . . . . . . . . . 217

12.3. Differential capacitance, Cdi f f , as function of the surface charge density, σe, for different values
of the anion-cation interaction strength b as indicated. Dashed lines and color-matching bullets
refer to mean-field predictions and corresponding Monte Carlo simulation results. All results
are derived for fixed R = 0.2 nm, σ− = σ+ = 5.0 nm−2, a = 0.8 nm, and c = 0.4 nm. . . . . . . 219

12.4. Ion concentration profiles n−(x) (open circles) and n+(x) (open diamonds) near the charged
electrode as predicted by Monte Carlo simulations for σe =−0.01e/nm2. Different colors refer
to different values of b as specified in Fig. 12.3: b = 0 (black), b = 0.6 nm (red), b = 0.9 nm
(blue), and b = 1.2 nm (green). The color-matching solid lines [for n−(x)] and broken lines [for
n+(x)] display the corresponding mean-field predictions. All fixed parameters are the same as
in Fig. 12.3, namely R = 0.2 nm, σ− = σ+ = 5.0 nm−2, a = 0.8 nm, and c = 0.4 nm. . . . . . . . 219

12.5. Differential capacitance, Cdi f f , as function of the surface charge density, σe, for different values
of σ+ as indicated in the figure legend. Dashed lines and color-matching bullets refer to mean-
field predictions and corresponding Monte Carlo simulation results. All results are derived for
fixed R = 0.2 nm, a = b = c = 0.6 nm, and σ− = 5 nm−2. . . . . . . . . . . . . . . . . . . . . . 221

12.6. Differential capacitance, Cdi f f , as function of the electrostatic surface potential Φ0, for different
concentrations n0 of a the electrolyte: n0 = 0.01 M (black), n0 = 0.02 M (red), n0 = 0.05
M (green), n0 = 0.1 M (blue), and n0 = 0.5 M (purple). Experimental data points reported
by Hamelin [7] are marked by crosses; solid lines represent mean-field results obtained for
a = 0.4 nm, b = 0.04 nm, c = 0.53 nm, σ+ = 2.25 nm−2, σ− = 2.5 nm−2, and R = 0.72 nm. . . . 222

12.7. The two perturbation contributions fS(w) and f a
S (w) as function of w = 2πlBlDσe/e. . . . . . . 225

xxiii



1. INTRODUCTION

Interfaces between media of different dielectric constants are omnipresent in cellular and molecular

biology, pharmaceutical sciences, colloid chemistry, and biotechnology[8]. For example, all major classes

of charged biomacromolecules (such as proteins, nucleic acids and lipid membranes) and many types of

other macroions (including nanoparticles and colloids) can be represented by bodies of low inner dielectric

constant that carry electric charges exclusively on their interface directly adjacent to an aqueous phase

with high dielectric constant. Electric charges rarely reside inside these macroions because they would

produce large electric fields with a correspondingly high energetic penalty. Translation of charges along

the interface — instead of moving them into the region of low dielectric constant — is much less costly,

implying that inhomogeneously charged interfaces should be abundant. In cellular biology, for example,

this is indeed evident for lipid membranes, where charged lipids are frequently enriched within membrane

domains, channels [9], or at proteins adsorption sites [10, 11]. A similar increase in the local charge density

is also observed in lipid monolayers, which constitute a quasi two-dimensional model fluid that, depending

on the applied lateral pressure [12, 13], is able to undergo phase separations at a dielectric boundary between

air and water.

The long range of Coulomb interactions plays an important role for the structure of phase-separated

systems. From an electrostatic point of view, the formation of a two-dimensional circular domain is less fa-

vorable than the formation of an elongated domain. The line tension between domains of a two-dimensional

fluid, however, favors circular domains shapes. Hence, the competition between the two contributions —

electrostatic and line tension — can be expected to produce complex patterns of domain shapes in lipid

monolayers[14, 15], such as “the stripe phases” observed by Sriram and co-worker[16] in monolayers of

lipid mixtures. Another interesting system are nanoparticles, which are often observed to partition into di-

electric interfaces [17, 18, 19, 20, 21]. This tendency follows from a simple surface tension argument [22]:

the surface tension tends to have a large magnitude in phase separated fluids of large dielectric mismatch.

For example, the surface tension for an air-water interface at 300K is ∼ 1.75kBT/nm2 (i.e., ∼ 0.0072N/m).

A wide range of nanoparticles are able to effectively lower the energy associated with the surface tension

by partitioning to the interface [23, 24]. In some cases, the interplay of electrostatic interactions and surface

tension leads to the formation of ordered structures such as two-dimensional arrays of nanoparticles [25, 26].
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How electrostatic interactions affect particle partitioning remains a debated topic because modeling inhomo-

geneously charged dielectric interfaces is a challenging task. Different modeling approaches are available,

but each of them involves approximations and comes with limitations. For example, the huge increase of

computational power during the last decades has inspired the development of large-scale all-atom computer

simulations that, although being based on classical (Newtonian) physics, accurately describe electrostatic

interactions at dielectric interfaces [27]. However, limits with respect to accessible time and length scales

remain; they still prohibit to study large-scale collective phenomena such as phase separations and self

assembly. Coarse grained simulation approaches have further expanded the limits on simulation time and

system size, but at the expense of ignoring properties of the solvent [28, 29, 30] and, hence, solvent-mediated

interactions [31]. Besides that, most of the computational studies of fluids with non-homogeneous dielec-

tric constants do not account for “dielectric effects” such as the formation of image charges [32] explicitly;

instead, these effects are implicitly incorporated into effective charges and dielectric permittivities [33, 34].

Phenomenological modeling approaches — which are often carried out on the mean-field level, including

the continuum Poisson-Boltzmann theory— purposely ignore as many details as affordable. Instead, they

focus on a small number of “order parameters” such as local ion concentrations or the local dielectric con-

stant [35, 36]. Although computationally far less costly, the risk of such an approach lies in the possibility

of selecting an inappropriate set of order parameters. The advantage is that mean-field approaches provide a

transparent formalism that can often be analyzed comprehensively and easily reveal the underlying physics,

sometimes even leading to analytic expressions of optimal order parameters and minimal free energies [36].

Clearly, the different modeling approaches complement each other, and each of them can benefit from the

presence of the others.

In this thesis we use the mean-field Poisson-Boltzmann theory (and extensions of it) to investi-

gate electrostatic interactions at dielectric interfaces. We focus on three major scenarios: i) nanoparticles

trapped at the interface between two media of distinct dielectric constants; ii) lipid membranes that can

be phase separated or subject to changes in their curvature upon interaction with charged rod-like pep-

tides; and iii) charged electrodes in contact with an aqueous solution containing monovalent ions which

can interact among each other not only through the Coulomb potential but also by hydration-mediated

non-electrostatic interactions. The following manuscripts that related to these major topics are listed below:
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Topic: Nanoparticles at Dielectric Interfaces

• G. V. Bossa, J. Roth, K. Bohinc, S. May, The apparent charge of nanoparticles trapped at a water

interface, Soft Matter 12 (18) (2016) 4229–4240. Role: contribution to project design and manuscript

writing; discussion of the results; analytical and numerical calculations.

• G. V. Bossa, K. Bohinc, M. A. Brown, S. May, Dipole moment of a charged particle trapped at the

air–water interface, J. Phys. Chem. B 120 (26) (2016) 6278–6285. Role: contribution to project

design and manuscript writing; discussion of the results; analytical and numerical calculations.

Topic: Lipid Membranes

• G. V. Bossa, M. A. Brown, K. Bohinc, S. May, Modeling the electrostatic contribution to the line

tension between lipid membrane domains using Poisson–Boltzmann theory, Int. J. Adv. Eng. Sci.

Appl. Math. 8 (2) (2016) 101–110. Role: contribution to the manuscript writing; discussion of the

results; analytical and numerical calculations.

• G. V. Bossa, J. Roth, S. May, Modeling lipid–lipid correlations across a bilayer membrane using

the quasi-chemical approximation, Langmuir 31 (36) (2015) 9924–9932. Role: contribution to the

manuscript writing and numerical calculations; discussion of the results.

• M. W. Lee, M. Han, G. V. Bossa, C. Snell, Z. Song, H. Tang, L. Yin, J. Cheng, S. May, E. Luijten, et al.,

Interactions between membranes and “metaphilic” polypeptide architectures with diverse side- chain

populations, ACS Nano 11 (3) (2017) 2858–2871. Role: contribution to the mean-field modeling and

results discussion.

Topic: Incorporation of Non-Electrostatic Interactions Potentials into Poisson-Boltzmann Theory

• K. Bohinc, G. V. Bossa, S. Gavryushov, S. May, Poisson-Boltzmann model of electrolytes containing

uniformly charged spherical nanoparticles, J. Chem. Phys. 145 (23) (2016) 234901. Role: contribu-

tion to the mean-field modeling and results discussion.

• G. V. Bossa, J. Norris, S. May, Surface tension of a Yukawa fluid according to mean-field theory, J.

Chem Phys. 146 (13) (2017) 134701. Role: contribution to project design and manuscript writing;

discussion of the results; analytical and numerical calculations.
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• M. A. Brown, G. V. Bossa, S. May, Emergence of a Stern layer from the incorporation of hydration

interactions into the Gouy–Chapman model of the electrical double layer, Langmuir 31 (42) (2015)

11477–11483. Role: contribution to analytical and numerical calculations; discussion of the results.

• D. L. Z. Caetano, G. V. Bossa, V. M. de Oliveira, M. A. Brown, S. J. de Carvalho, S. May, Role of ion

hydration for the differential capacitance of an electric double layer, Phys. Chem. Chem. Phys. 18

(40) (2016) 27796–27807. Role: contribution to project design and manuscript writing; discussion of

the results; analytical and numerical calculations.

• D. L. Z. Caetano, G. V. V. Bossa, V. M. de Oliveira, M. Brown, S. J. de Carvalho, S. May, Differential

capacitance of an electric double layer with asymmetric solvent-mediated interactions: Mean-field

theory and Monte Carlo simulations, Phys. Chem. Chem. Phys. (19) (2017) 23971-23981. Role:

contribution to project design and manuscript writing; discussion of the results; analytical and numer-

ical calculations.

Other published works were not included here because they are either review papers or address

subjects that only peripherally fit the scope of this thesis:

• S. Holzschuh, K. Kaeß, G. V. Bossa, C. Decker, A. Fahr, S. May, Investigations of the influence of

liposome composition on vesicle stability and drug transfer in human plasma: a transfer study, J.

Liposome Res. (2016) DOI:10.1080/08982104.2016.1247101. Role: contribution to the mean-field

modeling and results discussion.

• T. P. de Souza, G. V. Bossa, P. Stano, F. Steiniger, S. May, P. L. Luisi, A. Fahr, Vesicle aggregates as a

model for primitive cellular assemblies, Phys. Chem. Chem. Phys. 19 (30) (2017). Role: contribution

to the mean-field modeling and results discussion. 20082–20092.

• K. Bohinc, G. V. Bossa, S. May, Incorporation of ion and solvent structure into mean-field modeling

of the electric double layer, Adv. Colloid Interface Sci. (2017) DOI: 10.1016/j.cis.2017.05.001. Role:

contribution to the manuscript writing and discussion of the results.

In the following we introduce each of the three research subjects.
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1.1. Nanoparticles at Dielectric Interfaces

Nanoparticles have promising potential in industrial and biotechnological applications, being used

in emulsion stabilizers [37], colloidosomes [38], bijels [39], and anti-reflective coatings [40, 41]. When

trapped at dielectric interfaces, these particles are electrostatically stabilized and able to form ordered two-

dimensional arrays [25, 26]. The pioneering works of Frank Stillinger [42], Alan Hurd [43], and Pawel

Pieranski [17] have highlighted the dipole-like nature of the electrostatic interactions experienced by charged

colloids placed at dielectric interfaces. In the specific case of an air-water interface, two main facts are noted:

first, the colloid surface exposed to air usually carries fewer electric charges than the surface immersed in

water; and second, the mobile ions in water screen the interaction and, cause a repulsive force that decays

exponentially with the distance r between two colloids. Another factor that plays an important role in

the interaction between interface-trapped particles are image charges. Both image charges and salt ions

contribute to a total interaction that decays ∼ 1/r3 and is inversely proportional to the salt concentration in

aqueous solution. In view of that, several recent studies have provided inconsistent evidence about the role

played by the mobile ions in solution, with some groups reporting that the long-ranged repulsion between

charged nanoparticles was insensitive to changes in salt concentration [37, 44], and others stating that such

forces were weakly salt-dependent [45, 25].
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Figure 1.1. Schematic illustration of the systems studied in Part I of this thesis. On the left panel, charged
spherical particles partition equatorially into the air-water interface. On the right panel, each hemisphere of
a colloid is represented by a point charge placed at a fixed distance away from the air-water interface. In
both cases, the aqueous solution contains monovalent anions and cations.

Part I of this thesis addresses the calculation of the electrostatic interaction between charged nanopar-

ticles placed at an air-water interface (see Fig.1.1). Using a mean-field approach, we have first studied a

spherical particle that partitions equatorially into the interface. By accounting for all the involved dielec-
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tric media (i.e., air, water, and the inside of the colloid) and solving the corresponding coupled Poisson-

Boltzmann and Laplace equations, we have found the electrostatic potential everywhere in the system. In

addition to numerical calculations, we have obtained an analytical expression that allows to rationalize the

role played by the dielectric constant inside the colloid and how it influences the effective charge density on

the particle surface exposed to the air phase. In an extension of this project, we have generalized a model

developed by Frank Stillinger [42] by representing each of the two hemispheres of an interface-trapped par-

ticle by a point charge. Then, we analyzed how different immersion depths — the distance from the point

charges to the interface — affect the dipole-like nature of the interactions. Moreover, we have found that

the force calculated by our model was similar to that reported by experimental works [46, 26].

1.2. Lipid Membranes

Lipid membranes are complex self-assembled structures that not only spatially organize cells and

cellular organelles but also coordinate the trans-membrane communication, regulate permeability, and serve

as reaction platform for biochemical and biophysical functions. Besides its primary role as a permeability

barrier, lipid membranes can also form domains and rafts. Membrane rafts are heterogeneous dynamic

regions of small spatial extension (10−200nm) enriched in raft-lipids such as sphingolipids and cholesterol

[47, 48]. Furthermore, it is believed that rafts are involved in a multitude of biological processes, including

signal transduction [49], protein targeting [50] and virus assembly [51]. The raft hypothesis has motivated

many theoretical and experimental studies about domain formation in model membranes [52]. One of the

conceptually most important parameters to characterize domains is the line tension between a domain and

its immediate environment [52, 53, 54]. Line tensions have been measured for a number of different mixed

lipid bilayers [53, 54] and protein decorated interfaces [55]. Although charged lipids are often accumulated

in domains — regions where there is a discernible influence of electric charges on the line tension [53, 56]

— no theoretical models have previously been proposed for quantifying the electrostatic contribution to the

line tension [57]. One difficulty in modeling the line tension is that changing the electrostatic environment

affects the line tension not only directly, but also indirectly through restructuring the arrangement of lipids

at the domain boundary. This scenario is somewhat similar to the bending stiffness of a membrane, where

electrostatic interactions also affect its non-electrostatic contribution [58, 59]. Another difficulty is related

to the fact that most lipids have a large dipole moment that can also affect the line tension [56].
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Figure 1.2. Schematic illustration of one of the systems studied in Part II of this thesis: a planar lipid layer
composed of neutral and negatively charged lipids that undergoes phase separation, resulting in a highly and
a weakly charged phase.

In part II of this thesis we present research projects that focus on lipid membranes. We have initially

studied a planar lipid membrane composed only of neutral and negatively charged lipids (see Fig. 1.2).

When this binary membrane undergoes phase separation, domains with distinct bulk lipid compositions

will form. Concomitantly, an excess in the free energy per unit length of the boundary arises between the

domains: the line tension. By means of a mean-field model based on the non-linear Poisson-Boltzmann

equation, we have determined the electrostatic contribution to the line tension considering various boundary

conditions related to the mobility of the lipids present in each phase. The values that we calculated are

comparable to those reported experimentally for the total line tension, thus suggesting the crucial role

played by electrostatic interactions. In addition to our numerical solutions, analytical expressions valid

for the regime of weakly charged membranes were determined making use of the Kontorovich-Lebedev

transformations [60]. Another topic investigated here was how the bending stiffness of a membrane is

affected by electrostatic interactions. More precisely, we have employed the Poisson-Boltzmann theory to

study how the membrane curvature is modified by the interaction with “metaphilic” polypeptides, a type

of peptide characterized by a “bottlebrush” architecture consisting of a rigid hydrophobic core covered by

mobile side chains terminated with hydrophobic or cationic terminal groups. In this project, our results

demonstrated that the dynamic shape-changing properties of these peptides play an important role for their

antimicrobial activity [61].

Besides the electrostatic interactions between charged lipids, structural features of lipid membranes

are also affected by inter-leaflet coupling and lipid correlations. Experimentally, correlations along a mem-

brane can be probed by the Nearest-Neighbor Recognition (NNR) method developed by Regen and cowork-

ers [62]. More specifically, the NNR method uses the thiolate-disulfide interchange reaction to accurately

quantify lipid pairing in mixed membranes. This pairing reflects lipid-lipid correlations and thus motivates
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the comparison with theoretical predictions. However, the description of lipid correlations demands ap-

proaches beyond the mean-field level discussed so far. In view of that, we proposed a model that employs

the quasi-chemical approximation[63] to describe the lipid-lipid correlations across a bilayer membrane.

Using this model in conjunction with Monte Carlo simulations, we analyzed how the lipid distributions

were affected by distinct lipid-lipid interaction parameters and salt concentrations [4].

1.3. Incorporation of Non-Electrostatic Interaction Potentials Into Poisson-Boltzmann Theory

In the previous sections, we have focused on the description of electrostatic interactions on phase

separated systems and colloids with distinct charge distributions. However, the interaction of mobile ions

with charged surfaces — such as electrodes, lipid membranes or macroions — is influenced not only by the

bare Coulomb interactions, but also by effects due to structural features of the mobile ions. More precisely,

these ion-specific effects include (but are not limited to) ionic size, shape, propensity to form hydration

shells, and polarizability [64, 65, 66, 67, 68]. One of the most notorious experimental manifestations of

ion specificity is the so-called Hofmeister effect [69, 66], which can arise not only from the finite size of

ions but, more importantly, from the ion-induced ordering of water molecules [70]. Water molecules form

hydration shells that depend on the size and charge distribution of the hydrated ions. Consequently, when

ions interact mutually, the perturbation of their hydration shells contributes to an additional non-electrostatic

interaction potential [65].

In recent years, a multitude of modeling studies – mostly employing computer simulations [65,

71, 67] – have improved our understanding of the origin and implications of ion specificity in systems of

biological significance. Yet, there are also a number of phenomenological approaches that are based on ac-

counting for the dipole potential of water and the ordering of water molecules at interfaces and near charged

electrodes and/or macroions [72, 73, 74]. One of the approaches used to include ion specificity into the

Poisson-Boltzmann formalism describes water by means of Langevin dipoles [75, 76, 77]; the other, leading

to the Poisson-Helmholtz-Boltzmann model, introduces an additional Yukawa potential as effective solvent-

mediated ion-ion interaction potential [31, 78], which adds to the Coulomb interaction[8,9,10]. In addition

to solvent-mediated interactions, the classical Poisson-Boltzmann theory also ignores the non-vanishing

steric size of ions. Consequently, the concentration of counter-ions at the immediate vicinity of a charged

electrode (or macroion surface) is greatly overestimated. In order to overcome this issue, steric effects are

8



commonly incorporated into the Poisson-Boltzmann framework by means of non-ideal entropic contribu-

tions, with some of the most frequently used models accounting for excluded volume interactions either on

the basis of a lattice gas model [79, 80] or using the Carnahan-Starling equation of state [81, 82, 83, 84].

−
+

+
−

+
+

−
+

+
−

+
+

−
+

+

−
++

−
+

+

−+ +

−
+

+

−
++

−
++

−
+

+

−
++

−
+

+

−+
+

−
+

+

−
++

−
+

+

−+ +

−
+

+

−
++

−+
+

−
+

+

−+ +

−
++

−
+

+

−+
+

−
+

+

−
++

−
++

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−+ +

−
+

+
−

+
+

−
+

+ −
+

+

−
++

−
+

+

−+
+

−
+

+−
++

− +

+

−
+

+

− +
+

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−
+

+

−
++ −

+

+

−
+

+

−
++

−
+

+

−+
+

−
+

+

−
+

+−+ +

−+
+

−
+

+

−
+

+

−
+

+

−+ +

−
+

+

− +

+−
+

+

−
++

−+ +

−
+

+

a

b

c

−+
+

+

+

+

+

+

+

+

+

+

−

+

−

−

−

Figure 1.3. Schematic illustration of the type of systems studied in Part III of this thesis: a planar charged
surface in contact with an aqueous solution containing monovalent cations and anions. In some of the
projects considered here, the ions experience not only the electrostatic, but also solvent-mediated interac-
tions. While the former are described by the Poisson-Boltzmann formalism, the latter are accounted for
using ion-specific Yukawa pair potentials with strengths proportional to a set of parameters a, b, and c.
Figure adapted from Ref. [9].

In part III of this thesis, we have explored extensions of the Poisson-Boltzmann theory by includ-

ing hydration-mediated interactions, excluded volume interactions, and ions with spatially-extended charge

distributions. We have predominantly considered a single flat charged surface exposed to an electrolytic so-

lution in which the ions experience the combined action of Coulomb, hydration, and steric interactions (see

Fig. 1.3). The structure of the ensuing electric double layer differs from the predictions of classical Poisson-

Boltzmann theory. To characterize these differences, we computed the differential capacitance of the electric

double layer and compared our mean-field results with detailed Monte Carlo Simulations performed in the

NVT ensemble.
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2. MATHEMATICAL METHODS

The present thesis investigates the role played by electrostatic interactions in a variety of systems,

ranging from colloids placed at the air-water interface to charged lipid membranes at physiological condi-

tions. All systems share one point in common: they involve the formation of an electric double layer, which

is modeled on the level of the classical or a generalized version of the Poisson-Boltzmann theory. In the

following we discuss the theoretical basis of the classical Poisson-Boltzmann theory and show how it can

be extended to jointly describe electrostatic and non-electrostatic interactions at dielectric interfaces.

2.1. Poisson-Boltzmann Equation

The Poisson-Boltzmann (PB) theory neglects the solvent structure (apart from accounting for a

uniform dielectric background) and, being a mean-field theory, it also ignores ion-ion correlations. These

approximations render the PB theory mathematically simpler than more detailed approaches, but they still

preserve the ability to describe the formation of an electric double layer in a meaningful way. For example,

consider a macroion that carries a fixed surface charge density σ and is immersed in an aqueous solutions of

dielectric constant εw containing monovalent ions (see Fig. 2.1). In the following we show how PB theory

allows us to determine the electrostatic potential and, hence, how the mobile ions are distributed in the

vicinity of the macroion. The basic idea of the classical PB theory relies on the assumption [35, 36] that the

local concentration of cations, n+, and anions, n−, obey a Boltzmann distribution

n± = n0 exp
(∓eΦ

kBT

)
, (2.1)

where Φ is the average local electric potential (in Volts), e the elementary charge, kB the Boltzmann constant,

T the absolute temperature and n0 the bulk ionic concentration (that is, the concentration in the regions where

the potential is zero). For a medium of uniform dielectric constant εw, the Poisson equation reads,

∇
2
Φ =−e(n+−n−)

ε0εw
, (2.2)
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Figure 2.1. Schematic illustration of a macroion that carries a positive surface charge density σ and is
embedded in an aqueous solution of dielectric constant εw containing monovalent salt ions of bulk concen-
tration n0. The charges on the macroion surface induce the formation of a diffuse layer of counter-ions at its
vicinity.

where ε0 and ∇2 are the vacuum permittivity and Laplace operator, respectively. Upon inserting the Boltz-

mann distributions (eq. 2.1) into the Poisson equation (eq. 2.2) we arrive at the Poisson-Boltzmann equation

∇
2
Φ =

2en0

εwε0
sinh

(
eΦ

kBT

)
. (2.3)

The Poisson-Boltzmann equation is a non-linear, second-order partial differential equation for the electro-

static potential Φ, the complete solution of which demands a set of two boundary conditions. Often, one of

them is the vanishing bulk potential, and the other is related to fixing the surface charge density, σ , or, for

mobile surface charges, fixing their electrochemical potential µ .

2.2. Mean-Field Free Energy

The Poisson-Boltzmann equation can be derived by performing a functional minimization of the

thermodynamic free energy with respect to all unconstrained parameters. For classical PB theory, the set

of unconstrained parameters corresponds to the concentrations n+ and n−. Beyond the classical model, this

approach also allows us to incorporate extensions, such as additional non-electrostatic ion-ion interactions.

We start by writing the general Helmholtz free energy

F =U−T S, (2.4)
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where U is the energy due to particle-particle and particle-surface interactions (electrostatic interactions in

the present case), and S accounts for the entropy associated with the motional degrees of freedom of the

mobile ions. In the following we will discuss each term individually.

The electrostatic energy of the system, U , can be expressed as

U
kBT

=
1
2

lB
e2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)
|r− r′| , (2.5)

where the local volume charge density is a function of the position vector r, and the two integrations

are carried out over the entire space. In addition, we have introduced in eq. 2.5 the Bjerrum length lB =

e2/(4πε0εwkBT ), which for an aqueous solution (i.e., εw = 80) at room temperature is lB = 0.7 nm. eq. 2.5

suggests the definition of a dimensionless electrostatic potential Ψ through

Ψ(r) =
lB
e

∫
d3r′

ρ(r)
|r− r′| , (2.6)

which is connected to the regular electrostatic potential Φ via Ψ = eΦ/kBT . Although eq. 2.6 allows for

the determination of the potential based on the ionic concentrations, a local representation of Ψ is often

mathematically more convenient. A local representation of eq. 2.6 can be found upon applying the Laplace

operator ∇2 to both sides of eq. 2.6 and using its corresponding Green’s function G (r) =−1/(4π|r|), which

satisfies ∇2G (r) = δ (r). We find

∇
2
Ψ(r) =−4π

lB
e

ρ(r), (2.7)

which is the Poisson equation and thus identical to eq. 2.2 but expressed in terms of lB and the dimensionless

potential Ψ. With this information at hand, we rewrite the electrostatic interaction energy in eq. 2.5 as

U
kBT

=− 1
8πlB

∫
d3r Ψ(r)∇2

Ψ(r). (2.8)

Then, the vector identity −Ψ(r)∇2Ψ(r) = [∇Ψ(r)]2−∇[̇Ψ(r)∇Ψ(r)] allows us to write

U
kBT

=
1

8πlB

∫
d3r [∇Ψ(r)]2− 1

8πlB

∫
d3r ∇[̇Ψ(r)∇Ψ(r)], (2.9)

where, according to Gauss’s law, the final integral can be written as a surface integral — carried out over

the entire space —
∫

d2rΨ(r)∇Ψ(r) . Let us discuss this surface integral. In regions far away from the
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charge distributions, Ψ(r) ∼ 1/|r| and ∇Ψ(r) ∼ 1/r2, while the area over which the integration is carried

out grows proportionally to r2; roughly speaking, the entire surface integral decreases like 1/r. Hence, when

we integrate over a sufficiently large space (thereby enclosing all the charges) this integral vanishes [85] and

we arrive at the familiar expression for the electrostatic energy

U
kBT

=
∫

d3r
(∇Ψ)2

8πlB
. (2.10)

Next, we focus on the entropic contribution to the system free energy. In the classical Poisson-

Boltzmann theory, it is assumed that the N ions contained in any sub-volume V of the aqueous solution are

point-like particles and, hence, on the mean-field level we arrive at the entropy of an ideal-gas

S =−kBN

[
ln

(
Nv
V

)
−1

]
, (2.11)

where v is a constant related to the thermal wavelength [86]. The Helmholtz free energy of an ideal gas

Fideal(T,V,N) = −T S is a function of the temperature T , volume V , and particle number N. Although

eqs. 2.10 and 2.11 can be used to find the relation between the local electrostatic potential and local ionic

concentrations, many systems of biological and technological interest have the chemical potential, µ , fixed

instead of the particle number N. A convenient way to account for this constraint and obtain F̃ideal(T,V,µ)

from Fideal(T,V,N) is by using the Legendre transformation:

F̃ideal(T,V,µ) = Fideal(T,V,N)−Nµ = Fideal(T,V,N)−N
∂Fideal(T,V,N)

∂N

∣∣∣∣∣
T,V0,N0

(2.12)

= kBT N

[
ln

(
Nv
V

)
−1

]
− kBT N ln

(
N0v
V0

)
= kBTV n

[
ln

(
n
n0

)
−1

]
,

where N0 is the number of ions in the bulk, V0 is the bulk volume, and we have introduced the local ionic

concentration n ≡ N/V and its corresponding bulk value n0 = N0/V0. The assumption that the mobile ions

in solution behave like an ideal-gas allows us to extend eq. 2.12 to two ionic species by writing the total

entropic contribution as the sum of two individual contributions, one for cations (n+) and another for anions

(n−). Then, eq. 2.12 can conveniently be written as

F̃ideal(T,V,µ)
kBTV

= n+ ln

(
n+
n0

)
−n++n− ln

(
n−
n0

)
−n−. (2.13)
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Finally, by recalling eq. 2.10 the complete free energy of the system reads

F
kBT

=
∫

d3r

[
(∇Ψ)2

8πlB
+n+ ln

(
n+
n0

)
−n++n− ln

(
n−
n0

)
−n−+2n0

]
, (2.14)

where we have added the last term, the constant 2n0, to ensure that the free energy vanishes when Ψ→ 0

and n± = n0.

After having determined both the electrostatic and entropic contributions, we can carry out a func-

tional minimization of F , that is, compute δF(n+,n+) subject to the potential Ψ and ion concentrations

obeying the Poisson equation (eq. 2.7). This results in

δF
kBT

=
∫

d3r

{
δn+

[
Ψ+ ln

n+
n0

]
+δn−

[
−Ψ+ ln

n−
n0

]}
+
∫

d2r
δσ

e
·Ψ, (2.15)

where we note that the final term vanishes if the surface charge density on the macroion, σ , is fixed. As

thermal equilibrium demands δF = 0 (and δn± are arbitrary), each of the two expressions enclosed by

square brackets in eq. 2.15 must vanish identically, i.e.,

Ψ+ ln
n+
n0

= 0, −Ψ+ ln
n−
n0

= 0, (2.16)

implying the Boltzmann distributions

n± = n0e∓Ψ. (2.17)

Inserting n+ and n− into the Poisson equation (eq. 2.7), we obtain the Poisson-Boltzmann equation ∇2Ψ(r)=

−4πlBn0[e−Ψ(r)− eΨ(r)]. It is common to introduce the Debye screening length lD = (8πlBn0)
−1/2. The PB

equation can then be expressed as

l2
D∇

2
Ψ(r) = sinhΨ(r). (2.18)

Note that eqs. 2.18 and 2.3 are equivalent. Assuming that n± fulfill the Boltzmann distributions given by

eq. 2.17, we may use the differential form of the free energy in eq. 2.15 to compute F through a hypothetical

charging process
F

kBT
=
∫

d2r
∫

σ/e

0

1
e

dσ̄ ·Ψ(σ̄/e). (2.19)
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In order to carry out the charging process according to eq. 2.19, we note that the relation Ψ(σ̄/e) is only

needed at the macroion surface; this often simplifies the calculation of free energies.

The results above are valid for a macroion carrying a fixed surface charge density σ . However,

quantities other than σ can be kept constant as, for example, the electrostatic potential Ψ0 over the macroion

surface. In order to account for this new constraint, we introduce a transformed free energy F̃ and carry out

a Legendre transformation of eq. 2.15:

F̃
kBT

=
F

kBT
−
∫

d2r
σ

e
Ψ. (2.20)

Functional minimization of eq. 2.20 yields

δ F̃
kBT

=
δF
kBT
−δ

∫
d3r

σ

e
Ψ =

∫
d3r

{
δn+

[
Ψ+ ln

n+
n0

]
+δn−

[
−Ψ+ ln

n−
n0

]}
(2.21)

+
∫

d3r
δσ

e
·Ψ−

∫
d2r

δσ

e
·Ψ−

∫
d2r δΨ · σ

e
.

With the local concentrations n± obeying eq. 2.17, the terms inside square brackets vanish and we arrive at

δ F̃/kBT =−∫ d2r δΨ ·σ/e. Then, F̃/kBT can be written as

F̃
kBT

=−
∫

d2r
∫

Ψ0

0
dΨ̃ · σ(Ψ̃)

e
. (2.22)

Here too, it is noteworthy that the relation between σ and Ψ̃ is only needed at the macroion surface.

Eqs. 2.19 and 2.22 have been used to study a lipid monolayer that consists of two separated phases,

one kept at fixed surface charge density, and the other at fixed electrostatic potential; this scenario is further

discussed in chapter 5.

2.3. Poisson-Boltzmann Equation in Planar Geometry

The non-linear Poisson-Boltzmann equation (eq. 2.18) and extensions of it underlie all projects

presented in this thesis. Analytical solutions of this equation are available only for very few cases. One of

these is a single, extended, planar electrode of area A that carries a surface charge density σ and is exposed

to an electrolyte containing monovalent cations and anions of bulk concentration n0. The planar geometry
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implies that all properties of the system depend only on the distance x to the electrode; hence, we replace the

argument r in eq. 2.18 by x. For the planar geometry, the first integration of the Poisson-Boltzmann equation

can be carried out: dΨ/dx =−2l−1
D sinh(Ψ/2); therefore, at position x = 0

2πlB
σ

e
=

1
lD

sinh[Ψ(x = 0)/2], (2.23)

where we have used the boundary conditions (dΨ/dx)x=0 =−4πlBσ/e and vanishing of the potential (and

its derivative) at x→ ∞. eq. 2.23 reveals a non-linear relation between the surface potential Ψ0 ≡Ψ(x = 0)

and surface charge density σ . When expressed in terms of the surface potential, we arrive at the so-called

Grahame equation [35, 87]

Ψ0 = 2arsinh(2πlBlDσ/e). (2.24)

We can integrate the PB equation once more to find the electrostatic potential at any point of the system [35]

Ψ(x) =−2

[
1− tanh(Ψ0/4)e−lDx

1+ tanh(Ψ0/4)e−lDx

]
, (2.25)

with Ψ0 according to eq. 2.24. For a charged planar surface placed at x = 0, in Fig. 2.2 we present the

dimensionless potential Ψ(x) given by eq. 2.25 (left panel) and the local concentrations (right panel) of

cations (n+, solid lines) and anions (n−, dashed lines), respectively. Different colors correspond to different

surface charge densities: σ = 0.1e/nm2 (in black), σ = 0.5e/nm2 (in red), and σ = 1e/nm2 (in blue).

We can also find an analytical expression for the system free energy by applying the charging pro-

cess according to eq. 2.19:
F

AkBT
=
∫

σ/e

0

dσ̄

e
Ψ0(σ̄/e). (2.26)

Then, upon using the surface potential Ψ0(σ̄/e) given by the Grahame equation (eq. 2.24), eq. 2.26 yields

F
AkBT

= 2
∫

σ/e

0

dσ̄

e
arsinh(2πlBlDσ̄/e) =

1
πlBlD

[p arsinh(p)−
√

1+ p2 +1], (2.27)

with p≡ 2πlBlDσ/e.

Eq. 2.25 can be applied to a plethora of systems that exhibit planar symmetry, including charged

lipid layers, metallic electrodes and colloidal suspensions. For applications that demand more sophisti-

cated coordinates (e.g., spherical) and/or complex boundary conditions, solutions of the non-linear Poisson-
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Figure 2.2. Left panel: Dimensionless electrostatic potential Ψ(x) calculated via eq. 2.25. Right panel:
Local concentration of cations (solid lines) and anions (dashed lines) according to the Poisson-Boltzmann
theory. In both panels, different colors correspond to different surface charge densities: σ = 0.1e/nm2

(black), σ = 0.5e/nm2 (red), and σ = 1e/nm2 (blue). The remaining parameters are n0 = 0.056nm−3 and
lB = 0.7nm

Boltzmann equation are accessible only numerically. An efficient method to solve eq. 2.18 is the Newton-

Raphson iteration scheme [56]. This method determines the solution of eq. 2.18 via solving an iterative

sequence of linear differential equations

l2
D∇

2
Ψn+1 = (Ψn+1−Ψn) coshΨn + sinhΨn, (2.28)

starting with Ψn = 0 in iteration step n = 1 and progressing until convergence is achieved for sufficiently

large n (as convergence criterion one can use the stationarity Ψn+1 = Ψn, or the minimization of the associ-

ated system free energy). Non-linear boundary conditions can also be incorporated into the Newton-Raphson

iteration scheme [56].

2.4. Non-Ideal Entropic Contributions

The mathematical formalism presented so far has allowed us to derive the Poisson-Boltzmann equa-

tion from the functional minimization of the system free energy. One of the facts that renders this theory

mathematically so simple is the modeling of the electrolyte as an ideal-gas composed of point-like ions. In

order to account for deviations from ideal behavior —as for example, due to the finite size of ions— we add
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to eq. 2.14 a non-ideal entropy contribution

Fnon−id

kBT
=
∫

V

d3r
[
g(n++n−)− (n++n−)g′(2n0)

]
, (2.29)

with the function g(n++ n−) appearing in the equation of state pV/(NkBT ) = 1+ g′(n)− g(n)/n of a gas

that exerts a pressure p at fixed number N of particles kept at temperature T and confined to a volume

V . We define n = n++ n− = N/V and a prime denotes a derivative with respect to the argument, that is,

g′(n)≡ dg(n)/dn. The system free energy now reads

F
kBT

=
∫

d3r

[
(∇Ψ)2

8πlB
+n+ ln

(
n+
n0

)
−n++n− ln

(
n−
n0

)
−n−+2n0 (2.30)

+g(n++n−)− (n++n−)g′(2n0)

]
.

Analogously to the ideal-gas case, functional minimization of this free energy yields

δFtot

kBT
=
∫

V

d3r

{
δn−

[
−Ψ+ ln

n−
n0

+g′(n−+n+)−g′(2n0)

]

+ δn+

[
Ψ+ ln

n+
n0

+g′(n−+n+)−g′(2n0)

]}
. (2.31)

As exercised previously, the requirement that δF = 0 when thermal equilibrium is reached allows us to

obtain the following relations between the local ionic concentrations n± and the electrostatic potential

−Ψ+ ln
n−
n0

+g′(n−+n+)−g′(2n0) = 0, (2.32)

Ψ+ ln
n+
n0

+g′(n−+n+)−g′(2n0) = 0.

Eqs. 2.32 are generally transcendental, but some specific choices of g(n) yield analytic expressions for

n+ = n+(Ψ) and n− = n−(Ψ). Clearly, the Boltzmann distributions shown in eq. 2.17 are recovered in the

absence of non-ideal effects; that is, g(n) = 0. Another case where an analytic relation is available occurs

when using a lattice-gas model [79, 80] to account for the finite size of ions. More precisely, assuming

that all ions have the same diameter 2R and that each lattice cell can host no more than one single ion, the
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function g(n) reads

gLG(n) =
gLG

0 n+(1−gLG
0 n) ln(1−gLG

0 n)
gLG

0
, (2.33)

where gLG
0 = (2R)3 corresponds to the volume of the lattice cell. Hence, upon inserting eq. 2.33 into 2.32

and solving for n+ and n− we find the Fermi-Dirac-like distributions

n+ =
n0eΨ

1−2φ0 +2φ0 cosh(Ψ)
(2.34)

n− =
n0eΨ

1−2φ0 +2φ0 cosh(Ψ)
,

with φ0 ≡ n0(2R)3. Upon inserting these results back into the Poisson equation, we arrive at a modified [80]

Poisson-Boltzmann equation

l2
D∇

2
Ψ =

sinhΨ

1−2φ0 +2φ0 cosh(Ψ)
. (2.35)

eq. 2.35 recovers the “classical” Poisson-Boltzmann equation in the limit of point like-ions; that is, when

R→ 0. It is also noteworthy that for large potentials (Ψ→ ±∞) the ionic profiles saturate, that is, they

reach a plateau of constant value that does not change upon increasing |Ψ| (see Fig. 2.3). Eqs. 2.33 -2.35

are used and further discussed in chapters 7-10. Besides the lattice-gas model, effects due to the finite size

n+(Ψ)

n−(Ψ)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.0001

0.001

0.01

0.1

1

10

Ψ

n±(Ψ)

nm−3

Figure 2.3. Distribution of cations (n+, in blue) and anions (n−, in red) as function of the electrostatic
potential Ψ according to eqs. 2.34. Values obtained for particle radius R = 0.2nm and n0 = 0.057nm−3

(which, for lB = 0.7nm, corresponds to ∼ 100mM and is marked by a black dashed line).
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of ions are frequently accounted for by means of phenomenological equations of states, such as the van der

Waals [88] and the Carnahan-Starling equations of state [81, 89] for hard-sphere fluids (and a generalization

to mixtures of spherical particles with different sizes, the so-called Boublik-Mansoori-Carnahan-Starling-

Leland equation of state [81, 82, 83, 90, 91]). We now focus on the Carnahan-Starling equation of state;

in order to use it in our formalism, we must first determine its corresponding function g(n). Assuming that

all ions in solution are spherical particles of the same radius, the Carnahan-Starling equation of state reads

[81, 89]
PV

NkBT
=

1+η +η2−η3

(1−η)3 , (2.36)

where the parameter η is defined by:

η =
4πR3N

3V
=

4πR3(N++N−)
3V

. (2.37)

The finite size of ions will affect their distribution and, consequently, the overall entropic contribution to

the Helmholtz free energy F . Here, these non-ideal effects are incorporated into a (still unknown) function

G(η), which is added to the ideal term (eq. 2.11):

F
kBT

= N

[
ln

(
Nv
V

)
−1

]
+NG(η). (2.38)

From thermodynamics, we know that the pressure of a system can be determined by P = −(∂F/∂V )|T,N ,

which, applied to eq. 2.38 and recalling that η is a function of V , yields:

P
NkBT

=
1
V

[
1+η

dG(η)

dη

]
. (2.39)

Then, upon equaling eq. 2.39 to eq. 2.36,

1+η +η2−η3

(1−η)3 = 1+η
dG(η)

dη
, (2.40)

and solving this differential equation for G(η), one finds

G(η) =
∫

η

0

[
−1+

1+ η̃ + η̃2− η̃3

(1− η̃)3

]
dη̃

η̃
=

η(4−3η)

(1−η)2 , (2.41)
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where we have used the boundary condition G(η = 0) = 0. With this result, eq. 2.38 now reads

F
kBT

= N

[
ln

(
Nv
V

)
−1

]
+N

η(4−3η)

(1−η)2 , (2.42)

or, equivalently, in terms of n = N/V

F
kBT

=
∫

d3r

[
n{ln(nv)−1}+n

η(4−3η)

(1−η)2

]
. (2.43)

Finally, based on the definition of η (eq. 2.37), we identify the function g(n) according to the Carnahan-

Starling equation of state as

gCS(n) = nG(η) =
gCS

0 n2(4−3gCS
0 n)

(1−gCS
0 n)2

, (2.44)

where we have used η = gCS
0 N/V = gCS

0 n with gCS
0 = 4πR3/3. The function gCS(N) is used and further

discussed in Chapters 7-10.

2.5. Incorporation of Non-Electrostatic Pair Potentials

Deviations from the ideal-gas regime can be accounted for not only via non-ideal entropy terms,

but also by means of non-electrostatic pair potentials that adds to the bare Coulomb potential. By denoting

the former and latter potentials by un and ue, respectively, in this section we present a field-based approach

that allows the incorporation of non-electrostatic interactions into the Poisson-Boltzmann formalism. For

a sake of simplicity, we initially assume that only one ion type n (e.g., cations, n = n+) experiences the

non-electrostatic potential. Hence, we recall the system free energy, F = U − T S, but with the total pair

potential U now written as U =Ue +Un, with Ue given by eq. 2.10 and Un by

Un

kBT
=

1
2

∫
d3r

∫
d3r′n(r)n(r′)un(r− r′), (2.45)
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with the integrals being carried out over the entire space. Analogously to the previous section, based on

eq. 2.45 we can define a corresponding non-electrostatic potential

Ψn(r) =
∫

d3r′un(r− r′)n(r′). (2.46)

Even with an unspecified un(r−r′), we can use the Green’s function method to find the differential equations

associated with the non-electrostatic potential, that is, we can follow the same steps that led us from eq. 2.6

to eq. 2.7. In line with this, we initially define an operator A (r) which, when acting on its associated

Green’s function G (r− r′), yields A (r)G (r− r′) = −4πδ (|r− r′|). Thus, using this operator in eq. 2.46

we find

A (r)Ψn(r) =
∫

d3r′A (r)un(r− r′)n(r′) =−4πn(r). (2.47)

2.5.1. Yukawa-like Potential

Let us now discuss some applications of the general result presented in eq. 2.47. For example, if

un(r− r′) is Coulomb-like (i.e., ∼ 1/(|r− r′|)), we must have A (r) ∼ ∇2 and, hence, eq. 2.47 yields a

Poisson equation similar to eq. 2.7. Another interesting case — which is employed and further discussed in

chapters 8-10 — occurs when un(r− r′) takes the form of a Yukawa-like potential

un(r− r′) = ln
e−κ|r−r′|

|r− r′| , (2.48)

where κ is a characteristic decay length and ln is an interaction strength that plays the same role as lB does for

electrostatics. The operator A (r) associated with un(r−r′) is A (r) = ∇2−κ2. Then, with this information

used in eq. 2.47, we find a Helmholtz-like differential equation with complex wave parameter and a source

term

∇
2
Ψn(r)−κ

2
Ψn(r) =−4πlnn(r). (2.49)
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2.5.2. Oscillatory Yukawa Potential

The formalism presented so far can also be employed to describe an ion-specific damped oscilla-

tory force between two flat surfaces [92, 93, 94]. In line with this, we modify eq. 2.48 by introducing an

oscillatory term

un(r− r′) = ln
e−κα|r−r′|

|r− r′| ei(κβ |r−r′|+φ), (2.50)

where i is the imaginary unit, α and β are two real dimensionless constants that quantify the interaction

range, and φ is a phase shift in the oscillations. We note that eq. 2.48 is recovered by setting α = 1 and

β = φ = 0. Similarly to the previous case, the operator associated with eq. 2.50 is

An =
1+ γ2

4κ2 ∇
4 +∇

2−κ
2, (2.51)

with ∇4 being the bi-harmonic operator and γ a constant that specifies the values of α and β via

α =
γ√

1+ γ2 +(1+ γ2)3/2
, and β =

√
1+ γ2 +(1+ γ2)3/2

1+ γ2 . (2.52)

Hence, upon applying eq. 2.51 in 2.50 we obtain

1+ γ2

4κ2 ∇
4
Ψn(r)+∇

2
Ψn(r)−κ

2
Ψn(r) =−2π(1− iγ)eiφ lnn(r). (2.53)

It is noteworthy that only the real part of the above equations is of physical significance. Finally, we can use

eqs. 2.53 and 2.45 and the Gauss law to write the non-electrostatic energy Un as

Un

kBT
=
∫

d3r
−1+γ2

4κ2 (∇2Ψn)
2 +(∇Ψn)

2 +κ2Ψn

4πln(1− iγ)eiφ . (2.54)

Although written for non-electrostatic oscillatory interactions, eq. 2.54 represents a general result that can

reproduce all the cases discussed here. For example, in the specific scenario where the pair-potential between

particles does not exhibit oscillations — that is, α = 1, β = φ = 0, and γ = i — eq. 2.54 yields

Un

kBT
=
∫

d3r
(∇Ψn)

2 +κ2Ψn

8πln
. (2.55)
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In addition, we note that eq. 2.55 becomes similar to the electrostatic energy (eq. 2.10) when κ = 0 and

ln = lB.

2.5.3. Arbitrary Interaction Potentials and Laplace Transformation

In the preceding sections we have discussed how electrostatic and non-electrostatic potentials can

be incorporated into the Poisson-Boltzmann formalism. We now go a step further and discuss a mean-

field approach that allows us to account for any arbitrary pair-potential, un(r). In view of that, we start by

expressing the interaction potential un(r) as a sum of Yukawa potentials [31] via

un(r) =
∫

∞

0
dκ a(κ)

e−κr

r
, (2.56)

with κ being an inverse decay length and a(κ) the corresponding weight. In addition, we identify r u(r) =

L [a(κ)] as a Laplace transformation; hence, once u(r) is specified, we can find the coefficients a(κ) through

the inverse Laplace transformation a(κ) = L −1[ru(r)]. In terms of un(r), the interaction energy of the

system can be expressed as

U
kBT

=
1

2e2

∫
d3r

∫
d3r′ρ(r)ρ(r′)u(|r− r′|) = 1

2e

∫
d3r ρ(r)

∫
dκ a(κ)Ψ(r,κ), (2.57)

where we have used the auxiliary potential

Ψ(r,κ) =
∫

d3r′
ρ(r′)

e
1

|r− r′|e
−κ|r−r′|. (2.58)

For any choice of κ , the potential Ψ(r,κ) fulfills the differential equation ∇2Ψ(r,κ)−κ2Ψ(r,κ)=−4πρ(r).

With the energy U defined in a general form as in eq. 2.57, it is noteworthy to point out that the specific

choice a(κ̄) = lBδ (κ̄−0) yields the familiar expression for the electrostatic energy

U
kBT

=
1
2e

∫
d3r ρ(r)Ψ(r,κ = 0). (2.59)

As exercised previously, by combining the energy U (eq. 2.57) with the entropic contribution

(eq. 2.13) we can find the system free energy F = U −T S. The functional minimization of F [Ψ(r)] then
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yields the integro-differential equation

∇
2
Ψ(r,κ)−κ

2
Ψ(r,κ) =−4πn0

{
exp

[
−
∫

∞

0
dκ̄a(κ̄)Ψ(r, κ̄)

]
+ exp

[∫
∞

0
dκ̄a(κ̄)Ψ(r, κ̄)

]}
, (2.60)

which has to be solved [31] for all κ that are necessary to produce u(r) according to eq. 2.56. In the

electrostatic regime, for example, we have only one discrete value of κ , which vanishes. More precisely,

with κ = 0 and recalling the “electrostatic coefficient” a(κ̄) = lBδ (κ̄−0) we find

∇
2
Ψ(r,κ = 0) =−4πn0[e−lBΨ(r,κ=0)+ elBΨ(r,κ=0)]. (2.61)

Upon defining Ψ(r)≡ lBΨ(r,κ = 0), we finally obtain

∇
2
Ψ(r) =−4πn0[e−Ψ(r)− eΨ(r)] = 8πlBn0 sinh[Ψ(r)] =

1
l2
D

sinh[Ψ(r)], (2.62)

which is the Poisson-Boltzmann equation.
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3. THE APPARENT CHARGE OF NANOPARTICLES TRAPPED AT A

WATER INTERFACE *

3.1. Introduction

Charged colloids or nanoparticles that partition into the dielectric interface between air and water

(and similarly for oil and water) can arrange into ordered two-dimensional phases, which are stabilized

by long-ranged repulsive electrostatic interactions. Such decorated interfaces offer promising applications,

including emulsions stabilization [1, 95, 37, 96], antireflective coatings [41, 40], and optical devices. The

two-dimensional nature of their electrostatically stabilized ordering render interface-trapped particles also

interesting from a fundamental point of view.

Classical works by Stillinger [42] and Pieranski [17] highlight the dipole-like nature of the electro-

static interactions between charged particles at dielectric interfaces. Clearly, within a bulk aqueous solution

the interaction is screened by mobile ions (salt, or H+ and OH− ions in the absence of salt) and thus decays

exponentially whereas in a uniform dielectric medium without mobile ions a bare 1/r-Coulomb potential as

function of the distance r emerges. When trapped at an air-water (or oil-water) interface, image charges and

the presence of mobile ions in the aqueous region render the long-range part of the interaction dipole-like,

1/r3, and inversely proportional to the salt concentration [43].

Charged colloids or nanoparticles often carry dissociable groups (phosphate or carboxyl moieties

[97, 98, 99, 100]) that allow the surface charge density to adjust. When immersed in water the particle’s

surface charge density is much larger than that of a particle being exposed to air or oil [101]. Indeed, water

has a large dielectric constant and contains mobile ions that provide an effective screeing of electrostatic

interactions. In contrast, the high cost of forming electrostatic fields in media of low permittivity (air or oil)

and the absence of mobile ions tend to oppose the accumulation of charge at charge-regulated surfaces. This

results in charge densities that are high and low in the water-exposed and air- (or oil-) exposed regions of

*Reprinted from “G. V. Bossa, J. Roth, K. Bohinc, S. May, The apparent charge of nanoparticles trapped at a water interface,
Soft Matter 12 (18) (2016) 4229–4240.”. Reproduced by permission of The Royal Society of Chemistry. Copyright 2016 The
Royal Society of Chemistry. This paper can be accessed online at http://pubs.rsc.org/-/content/articlehtml/
2016/sm/c6sm00334f. The material in this chapter was co-authored by Guilherme V. Bossa, Joseph Roth, Klemen Bohinc and
Sylvio May. G. V. Bossa contributed to the project design and manuscript writing. G.V.B. was responsible for the mathematical
development, numerical and analytical solution of the equations, figures preparation, and discussion of the results.
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the particle, respectively. However, the latter and not the former mediate long-ranged particle-particle inter-

actions. In line with this, Aveyard et al [101] have reported that the ordered pattern formed by polystyrene

latex particles covered by sulfate groups was insensitive to the electrolyte when they were placed at an oil-

water interface. The authors concluded that the electrostatic repulsion emerged exclusively due to residual

charges at the oil-exposed surface regions of the particles.

Based on the initially observed [101] electrolyte insensitivity and the perceived importance of the

charges exposed to the oil, Danov et al. [102, 103, 104] have modeled the electrostatic force acting on

charged colloids at the oil-water interface thereby imposing a scenario of no penetration of the electric

field into the aqueous medium. Computational studies with a similar scope have been presented by Zhao

et al [105] and Majee et al [106]. Both consider spherical particles that partition equatorially into the

oil-water interface and compute electrostatic fields inside the aqueous and oil phases for asymmetric charge

distributions on the particles (that is, different uniform surface charge densities on the oil- and water-exposed

particle regions). While the two models accurately account for the particle shape and charge distribution,

neither of them allows the electrostatic field to penetrate into the particle interior and thus to couple the

electrostatic properties in the aqueous phase with those in the apolar medium.

Recent experiments have shown, however, that the repulsion between charged colloids at an oil-

water interface is weakly dependent on the electrolyte concentration [26, 25, 45, 1], putting into question

the sole responsibility of the oil-exposed charges for the long-range dipole interactions. As pointed out

by Frydel et al [107], there is a possibility of the electric field produced by the charges on the water-

facing side of a particles to propagate into the oil phase by passing though the particle interior instead

of spreading exclusively into the aqueous phase. This idea has been pursued through a renormalization

approach [107, 100, 108], where the charges on the water-facing side of a colloid give rise to an electrostatic

potential in the air (or oil) phase that far away from the colloid can be matched with the potential produced

by a dipole with an effective dipole moment. The effective dipole moment was determined from numerical

solutions of the Poisson-Boltzmann and Laplace equations for spherical particles [107]. Yet, what was not

accounted for is the possibility that, first, not only the water-facing side of the colloid but also its oil-facing

side is charged and, second, the dielectric constant inside the colloid can be different from that in the air.

In the present work we analyze the electrostatic properties of a spherical particle (a colloid or a

nanoparticle) that partitions equatorially into the air-water interface. We allow the particle to have different

uniform charge densities on its water- and air-exposed regions. In contrast to previous studies we explicitly
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include into our model the dielectric properties inside the particle. That is, we allow the electric field to

propagate into the particle interior and thus to either enhance or diminish the electric field in the air. Hence,

our model is designed to predict the salt dependence of the long-ranged dipolar particle-particle inteactions.

Our calculations are carried out on the level of mean-field electrostatics. To this end, we solve Laplace

equations in the air and inside the spherical particle, and the non-linear Poisson-Boltzmann equation in

the water phase. Two approximations are adopted. First, we assume the radius of the particle is much

larger than the Debye screening length of the aqueous solution and, second, the surface potential at the

air-water interface is fixed and constant. We express our results in terms of an effective surface charge

density at the air-exposed region of the particle, which generally differs from the bare charge density due

to the contribution from the electric field inside the particle. Our calculations demonstrate that even with a

small dielecric constant inside the particle, the charges at its water-exposed region can make a significant

contribution to the long-ranged dipolar interactions between interfacially trapped particles. We analyze

this behavior in terms of several paramters: the dielectric constant inside the particle, the salt content in the

aqueous solution, and the potential drop at the air-water interface. We also show that a simple approximation

– that of a planar capacitor – yields an explicit expression for the effective charge density at the air-exposed

region of the particle, which is in qualitative agreement with our numerical calculations for the spherical

geometry.

3.2. Theory

We consider a particle (a nanoparticle or a colloid) of uniform dielectric constant εn that partitions

into the interface between air (with dielectric constant εa = 1) and water (with dielectric constant εw = 80

and in presence of monovalent salt with bulk concentration n0). The surface of the particle carries a fixed

surface charge density that we denote by σa for the air-exposed region and by σw for the water-exposed

region; see Fig. 3.1. At this point we do not assume a specific shape of the particle, nor that the two

surface charge densities σa and σw are uniform; both will be specified below. However, because we only

target electrostatic interactions, we treat the air-water interface throughout this work as flat; i.e., we neglect

surface perturbations due to capillary effects.

The present work is based on mean-field electrostatics, expressed in terms of the commonly used

dimensionless electrostatic potential Ψ = eΦ/kBT , where Φ is the electrostatic potential, kB the Boltzmann

28



constant, T the absolute temperature, and e the elementary charge. Note that Ψ = 1 corresponds to an

electrostatic potential of Φ = 25 mV at room temperature. We use indices “a”, “w”, and “n” to label the

three regions: air, water, and the inside of the nanoparticle. Hence Ψa, Ψw, and Ψn, denote the dimensionless

potential in the air, water, and particle interior, respectively. With this, the electrostatic free energy, in units

of kBT , of the charged particle at the air-water interface can be expressed as

Fel

kBT
= εa

∫

Va

dv
(∇Ψa)

2

8πlB
+ εw

∫

Vw

dv
(∇Ψw)

2

8πlB
+ εn

∫

Vn

dv
(∇Ψn)

2

8πlB

+
∫

Vw

dv
[

n+ ln
n+
n0
−n++n− ln

n−
n0
−n−+2n0

]
(3.1)

−
∫

Vw

dv Ψ
(b)
w (n+−n−).

The first three volume integrals, which run over the air (volume Va), water (volume Vw), and nanoparticle

(volume Vn) regions, account for the energy stored in the electrostatic field; lB = e2/(4πε0kBT ) = 56 nm

is the Bjerrum length in vacuum (the permittivity of free space is denoted by ε0). The fourth integral

corresponds to the demixing free energy of two ideal gases, one for the mobile cations and the other for the

mobile anions in the aqueous solution, expressed in terms of the local cation concentration, n+, and local

anion concentration, n−. In the bulk of the aqueous phase n+ = n− = n0.

ε
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ε
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σ
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σ
w
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+

+

+
+ +

+

+

++

+
+

+

Figure 3.1. Schematic illustration of a charged particle (a nanoparticle or colloid, with dielectric constant
εn), located at the interface between air (with dielectric constant εa = 1) and water (with dielectric constant
εw = 80). The aqueous phase contains monovalent salt ions of bulk concentration n0. The surface charge
densities of the particle at its air-exposed and water-exposed regions are denoted by σa and σw, respectively.

29



We note that the electrostatic potential is believed to change when passing from air into the bulk of

an aqueous solution. The potential difference likely reflects both the adsorption of ions (OH− versus H+)

and the dipole potential from interface-induced water ordering. The magnitude and sign have been a matter

of debate [109, 110], but a change from a more negative potential in the air to a more positive potential in

bulk water finds wide experimental [111, 112] and some computational [113] support. In the present work

we use the potential in the air, far away from the air-water interface and from the particle, as reference that we

define as zero. Hence, in the bulk of the aqueous phase, the potential adopts a non-vanishing constant value

that we denote by Ψ
(b)
w . The final term in Eq. 3.1 introduces Ψ

(b)
w as a fixed (and yet unspecified) external

potential in the aqueous medium. Indeed, minimization of Fel with respect to the local ion concentrations

yields the Boltzmann distributions

n± = n0e∓(Ψw−Ψ
(b)
w ), (3.2)

which recover n+= n−= n0 for Ψw =Ψ
(b)
w . When combined with the Poisson equation ∇2Ψw =−4πlB(n+−

n−), Eq. 3.2 gives rise to the Poisson-Boltzmann equation,

l2
D∇

2
Ψw = sinh(Ψw−Ψ

(b)
w ), (3.3)

where lD = (8πlBn0/εw)
−1/2 is the familiar Debye screening length. Minimization of Fel also produces the

Laplace equations

∇
2
Ψa = 0, ∇

2
Ψn = 0, (3.4)

for the potentials in the air (Ψa) and inside the particle (Ψn). At the interfaces between the particle and air

as well as between the particle and water, the change in the normal component of the electric displacement

field equals the fixed surface charge density [114]. At the air-exposed surface Aa of the particle this reads

εa

(
∂Ψa

∂N

)

Aa

− εn

(
∂Ψn

∂N

)

Aa

=−4πlB
σa

e
, (3.5)

and similarly for the water-exposed surface Aw of the nanoparticle

εw

(
∂Ψw

∂N

)

Aw

− εn

(
∂Ψn

∂N

)

Aw

=−4πlB
σw

e
, (3.6)

where ∂/∂N denotes the derivative in the normal direction of the particle, pointing away from the particle’s
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interior. In the present work we assume the Debye screening length lD is much smaller than the radius of

curvature at any point of the particle. For example, a salt concentration of 1 mM gives rise to lD ≈ 10 nm

so that we would assume R� 10 nm for a spherical nanoparticle of radius R. Generally, the assumption

R� lD renders the solution of the Poisson-Boltzmann equation in the aqueous medium sufficiently close to

that of a planar extended surface, allowing us to carry out the first integration [36]

∂Ψw

∂N
=− 2

lD
sinh

(
Ψw−Ψ

(b)
w

2

)
. (3.7)

Eq. 3.7 is valid everywhere in the aqueous medium; when applying it to the water-exposed surface of the

particle and using the continuity condition Ψw|Aw = Ψn|Aw , Eq. 3.6 reads

εw
2
lD

sinh

(
Ψn|Aw−Ψ

(b)
w

2

)
+ εn

(
∂Ψn

∂N

)

Aw

= 4πlB
σw

e
. (3.8)

Eq. 3.8 will serve us as one of the boundary conditions for solving the Laplace equation inside the particle.

Due to the presence of salt and the large dielectric constant of water it is a reasonable approximation

to treat the aqueous solution as a perfect conductor, implying the condition Ψa = 0 at the air-water interface.

We also wish to calculate the electrostatic free energy. To this end, we insert the distributions for

n± from Eq. 3.2 into Eq. 3.1, and then re-express Fel exclusively in terms of the particle’s surface potentials

using the Poisson-Boltzmann equation (Eq. 3.3) and the Laplace equations (Eq. 3.4) as well as the boundary

conditions Eqs. 3.5 and 3.8,

Fel

kBT
=

1
2e



∫

Aa

do Ψaσa +
∫

Aw

do Ψwσw


− εw

8πlBlD

∫

Aw

do

[
8 cosh

(
Ψw−Ψ

(b)
w

2

)
−8

− 2Ψw sinh

(
Ψw−Ψ

(b)
w

2

)]
. (3.9)

Here, the first integration runs over the particle’s air-exposed surface region (Aa), and the second and third

integrations run over the particle’s water-exposed surface region (Aw).

The electrostatic problem is now fully defined; we need to solve the two Laplace equations in

Eqs. 3.4, each in a medium with uniform but different dielectric constant, subject to the boundary conditions

in Eqs. 3.5 and 3.8 (the latter one being nonlinear), and Ψa = 0 at both the air-water interface and at very large

distance away from the particle. Once the potential at the surface of the particle is known, we may calculate
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the corresponding electrostatic free energy using Eq. 3.9. In order to find explicit solutions for the potential

we need to specify the shape of the particle. We will focus on a spherical particle of radius R that partitions

equatorially to the air-water interface. However, prior to considering the spherical geometry explicitly, we

investigate a planar capacitor-like geometry that serves us as an approximation for the spherical geometry

and allows to compute simple analytical solutions for the potential.

3.2.1. Planar Capacitor Approximation

As we shall demonstrate in the Results and Discussion section, the planar capacitor displayed in

Fig. 3.2 reproduces the electrostatic properties of a spherical, interface-trapped particle reasonably well.

+
+
+
+
+
+

+

+

Ψ

Ψ

x0−2R −R

ε ε εn w

σ σw

w

w

Ψ

Ψ

n

a a

a

(b)

Figure 3.2. Illustration of the planar capacitor model that serves us as an approximation for a spherical
particle of radius R. Three regions, air (for −2R < x < −R, with dielectric constant εa and dimensionless
potential Ψa), the inside of the particle (for −R < x < 0, with dielectric constant εn and dimensionless
potential Ψn), and water (x > 0, with dielectric constant εw and dimensionless potential Ψw), are separated
by two planar surfaces, located at x = −R and x = 0, that are oriented normal to the x-axis. The location
x =−2R is kept at fixed potential Ψa = 0, and the two surfaces at constant surface charge density: σa, at the
surface exposed to the air and σw at the surface facing the aqueous medium. The dimensionless electrostatic
potential in bulk water (at x→ ∞) is denoted by Ψ

(b)
w (dashed line).

It consists of two planar surfaces with surface charge densities σa and σw that enclose a region of

dielectric constant εn. The capacitor plates are located at positions x = −R and x = 0, along the normal

direction x. The region x > 0 models the water phase with its dielectric constant εw, whereas the region

−2R < x < −R has dielectric constant εa and represents the air region. We point out that there are no

obvious choices for the linear extensions of the particle and air regions. Our assumptions −R < x < 0

and −2R < x < −R both seem convenient but a more detailed model could attempt to further optimize

these ranges. We denote the dimensionless electrostatic potential within the air, nanoparticle, and water
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by Ψa(x), Ψn(x), and Ψw(x), respectively. For the planar capacitor geometry the Laplace equations (see

Eqs. 3.4), Ψ′′a(x) = 0 and Ψ′′n(x) = 0, yield the two solutions Ψa(x) = Ψ
(a)
0 (2+ x/R) and Ψn(x) = Ψ

(a)
0 +

(Ψ
(w)
0 −Ψ

(a)
0 )(1+ x/R), written in terms of the yet unknown surface potentials, Ψ

(a)
0 = Ψa(−R) = Ψn(−R)

and Ψ
(w)
0 = Ψn(0) = Ψw(0), and fulfilling the condition Ψa(−2R) = 0. It is convenient to define the two

coupling parameters

Ha =
εalD
εwR

, Hn =
εnlD
εwR

, (3.10)

and express the surface charge densities σa and σw in terms of the dimensionless quantities

σ̄a =
4πlBlD

εw

σa

e
, σ̄w =

4πlBlD
εw

σw

e
. (3.11)

Eqs. 3.5 and 3.8 then read for the planar capacitor model

Ha
Ψ
′
a(−R)−Hn

Ψ
′
n(−R) =

σ̄a

R
,

2
R

sinh

(
Ψn(0)−Ψ

(b)
w

2

)
+Hn

Ψ
′
n(0) =

σ̄w

R
. (3.12)

Upon inserting the potentials Ψa(x) and Ψn(x) we obtain two algebraic equations for the two surface poten-

tials

Ha
Ψ

(a)
0 −Hn

(
Ψ

(w)
0 −Ψ

(a)
0

)
= σ̄a,

2sinh

(
Ψ

(w)
0 −Ψ

(b)
w

2

)
+Hn

(
Ψ

(w)
0 −Ψ

(a)
0

)
= σ̄w. (3.13)

Note that for Hn = 0 the air and water regions decouple and we immediately obtain

Ψ
(w)
0 (Hn = 0) = Ψ

(b)
w +2

(
σ̄w

2

)
(3.14)

for the surface potential at the water-exposed plate. For Hn � 1 (that is, εnlD � εwR) we can expand

Ψ
(w)
0 = Ψ

(w)
0 (Hn = 0)+Hn4Ψ

(w)
0 up to linear order in Hn and thus re-express Eqs. 3.13 as a linear system
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in terms of Ψ
(a)
0 and4Ψ

(w)
0 . The solution yields explicit relations for the two surface potentials

Ψ
(w)
0 =

(Ha +Hn)q
[
Ψ

(b)
w +2

(
σ̄w
2

)]
+Hnσ̄a

(Ha +Hn)q+HaHn ,

Ψ
(a)
0 =

Hn q
[
Ψ

(b)
w +2

(
σ̄w
2

)]
+(Hn +q)σ̄a

(Ha +Hn)q+HaHn , (3.15)

where we have defined q =
√

1+ σ̄2
w/4.

We are interested in the apparent surface charge density σ
app
a of the particle as observed from the

air. We define σ
app
a as the surface charge density at the air-exposed region of the particle that preserves

the electric field in the air while imposing εn = 0. Similar to Eq. 3.11, we define a dimensionless apparent

charge density σ̄
app
a = 4πlBlDσ

app
a /(eεw), which we can compute according to Eq. 3.12 through σ̄

app
a =

σ̄a +HnRΨ′n(−R), or equivalently using Eq. 3.13, σ̄
app
a = HaΨ

(a)
0 . Hence, the surface potential at the air-

exposed region of the nanoparticle determines the apparent surface charge density (in units of the elementary

charge e)

σ
app
a

e
=

εa

4πlBR

Hn q
[
Ψ

(b)
w +2

(
σ̄w
2

)]
+(Hn +q)σ̄a

(Ha +Hn)q+HaHn . (3.16)

Of course, for Hn = 0 we recover σ
app
a = σa. Also, in the limit of large surface charge density at the

water-exposed surface, σ̄w� 1, we obtain

σ
app
a

e
=

σa
e + εn

4πlBR

[
Ψ

(b)
w +2ln(σ̄w)

]

1+ εn
εa

, (3.17)

which exhibits additivity of the contributions from the bare surface charge density σa and from the field

due to both the charges that face the aqueous medium and the potential difference Ψ
(b)
w across the air-

water surface. Moreover, if in addition we demand Ψ
(b)
w = 0, σ̄a = 0, and εn = εa, Eq. 3.16 reduces to

σ
app
a = εa ln(σ̄w)/(4πlBR), which is smaller by a factor of four than the prediction for the renormalized

surface charge density at the particle-air interface that Oettel and Dietrich [100] have derived.

We note that the surface potentials in Eqs. 3.15 become an exact solution of Eqs. 3.13 if the scaled

surface charge density σ̄w� 1 is sufficiently small. This case corresponds to the linear Debye-Hückel limit
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of Poisson-Boltzmann theory, leading to

Ψ
(w)
0 =

(Ha +Hn)
(

Ψ
(b)
w + σ̄w

)
+Hnσ̄a

(Ha +Hn)+HaHn , (3.18)

Ψ
(a)
0 =

Hn
(

Ψ
(b)
w + σ̄w

)
+(Hn +1)σ̄a

(Ha +Hn)+HaHn ,

and thus

σ
app
a

e
=

εa

4πlBR

Hn
(

Ψ
(b)
w + σ̄w

)
+(Hn +1)σ̄a

(Ha +Hn)+HaHn . (3.19)

In the Results and Discussion section we will analyze and discuss the behavior of σ
app
a as predicted by the

planar capacitor approximation.

3.2.2. Spherical Geometry

We now focus on the spherical geometry; that is, a spherical particle of radius R partitioning equa-

torially to the air-water interface as illustrated in Fig. 3.3. Recall that σa and σw denote the surface charge

densities on the air-exposed and water exposed regions of the particle, respectively. In the following we

assume that each of these two surface charge densities is uniform. We also recall that the potentials in the

air, Ψa, and inside the particle, Ψn, fulfill the Laplace equation (see Eqs. 3.4), subject to the boundary con-

ditions in Eqs. 3.5 and 3.8, and Ψa = 0 at both the air-water interface and at very large distance away from

the particle. Due to the spherical geometry and because of the rotational symmetry with respect to an axis

through the center of the sphere directed normal to the air-water interface, we can express the solutions for

Ψa and Ψn in terms of Legendre polynomials Pl(s) of order l through

Ψn(r,s) =
∞

∑
l=0

AlPl(s)rl, Ψa(r,s) =
∞

∑
l′=1,3,5,...

BlPl(s)
rl+1 , (3.20)

where r is the distance to the center of the particle, s = cosθ is the cosine of the angle with respect to the

direction normal to the air-water interface, and Al and Bl are yet to be determined sets of constants. Note

that Ψn(r,s) is defined for 0≤ r ≤ R and −1≤ s≤ 1. Similarly, Ψa(r,s) is defined for r ≥ R and 0≤ s≤ 1.

Because we require the potential at the air-water interface Ψa(r >R,s= 0) = 0 to vanish, the sum in Eq. 3.20

runs only over uneven Legendre polynomials. Continuity Ψa(R,s) = Ψn(R,s) at the air-exposed region of
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the particle, i.e. for 0≤ s≤ 1, must allow us to express the coefficients Al and Bl in terms of a single set of

coefficients that we denote by Cl . Indeed continuity is ensured by choosing

Al =
Cl

Rl , (3.21)

Bl = Rl+1(2l +1)
∞

∑
l′=0

Cl′gl′l,

where the numbers

gmn =

1∫

0

ds Pm(s)Pn(s) (3.22)

are defined for any combination of non-negative integers m and n. The integral in Eq. 3.22 yields [115]

gmn =





1/(2n+1) m = n

0 m 6= n and m+n even

ḡmn m even and n odd

ḡnm n even and m odd

with

ḡmn =
(−1)

m+n+1
2 m! n!

2m+n−1(m−n)(m+n+1)
[(m

2

)
!
]2 [(n−1

2

)
!
]2 , (3.23)

where m is an even and n an odd integer. The coefficients Cl in Eqs. 3.21 appear in an expansion of the

dimensionless surface potential Ψ0(s) = Ψa(R,s) = Ψn(R,s) in terms of Legendre polynomials, Ψ0(s) =

∑
∞
l=0ClPl(s) with −1≤ s≤ 1.

In order to determine the coefficients Cl , which contain all the information needed to specify the

electrostatic potential everywhere, we proceed as for the planar capacitor approximation (see the preceding

section 3.1) by expanding the surface potential at the water-exposed region of the particle in terms of Hn up

to first order. The two boundary conditions in Eqs. 3.5 and 3.8 then read

Ha

(
∂Ψa

∂ r

)

r=R

−Hn

(
∂Ψn

∂ r

)

r=R

= − σ̄a

R
, (3.24)

q
R

[
Ψ0(s)−Ψ

(b)
w −2

(
σ̄w

2

)]
= −Hn

(
∂Ψn

∂ r

)

r=R

,

where we have used the definitions in Eqs. 3.10 and 3.11 for Hn, Ha, σ̄n and σ̄a. Also, q =
√

1+ σ̄2
w/4 as
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previously defined. We point out that the first and second line in Eqs. 3.24 apply to 0≤ s≤ 1 and−1≤ s≤ 0,

respectively. Because Eqs. 3.24 are linear in the dimensionless potentials, we can use Ψn(r,s) and Ψa(r,s)

from Eq. 3.20 together with the coefficients in Eq. 3.21 to extract the following linear system of equations

0 = −σ̄agl− (−1)lglq
[

Ψ
(b)
w +2

(
σ̄w

2

)]
+Hn 2l

2l +1
Cl +q

∞

∑
l′=0

Cl′(−1)l′+l gl′l (3.25)

+ Ha
∞

∑
l′=1,3,5,...

(l′+1)(2l′+1)gl′l

∞

∑
l′′=0

gl′l′′Cl′′

for the coefficients Cl with l = 0,1,2, . . . . In Eq. 3.25 we have introduced the definition gm =
∫ 1

0 dsPm(s) for

any non-negative integer m, which amounts to [115]

gm =





1 m = 0

0 m 6= 0 and m even

(−1)
m−1

2 m!!
m(m+1)(m−1)!! m odd.

To derive Eq. 3.25 we have also used orthogonality
∫ 1
−1 Pm(x)Pm(x)dx = δmn2/(2m+1), where δmn denotes

the Kronecker delta, and symmetry
∫ 0
−1 Pm(x)dx = (−1)m ∫ 1

0 Pm(x)dx of the Legendre polynomials.

εw

εa

σa

σ
w

εn
+ +

+

+
+

++
+

+

+

++

R
θ

Figure 3.3. The same system as illustrated in Fig. 3.1 but for a spherical particle of radius R that partitions
equatorially to the air-water interface; θ is the polar angle measured with respect to the normal direction as
indicated.
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Solutions of Eq. 3.25 can be found numerically for a finite set of coefficients Cl with l = 0,1,2, . . . , lmax.

The choice of lmax will determine the accuracy of the electrostatic potential. We will determine lmax such

that the free energy Fel = Fel(lmax), calculated on the basis of the surface potential Ψ0(s) = ∑
lmax
l=0ClPl(s),

converges to Fel(lmax → ∞) up to a certain numerical accuracy. Recall that Fel is fully determined by the

surface potential; see Eq. 3.9. For spherical particle geometry, Eq. 3.9 reads

Fel

2πR2kBT
=

1
2e


σa

1∫

0

ds Ψ0(s)+σw

0∫

−1

ds Ψ0(s)




− εw

8πlBlD

1∫

−1

ds

[
−8+8 cosh

(
Ψ0(s)−Ψ

(b)
w

2

)

− 2Ψ0(s) sinh

(
Ψ0(s)−Ψ

(b)
w

2

)]
. (3.26)

We finally investigate the linearized Debye-Hückel limit, valid if the dimensionless potential in the

aqueous phase, measured with respect to the bulk, is sufficiently small, |Ψw−Ψ
(0)
w | � 1. In this case q = 1

and 2(σ̄w/2) = σ̄w, and the system of equations, Eq. 3.25, reads

0 = −gl

[
σ̄a +(−1)l

(
Ψ

(b)
w + σ̄w

)]

+ Hn 2l
2l +1

Cl +
∞

∑
l′=0

Cl′(−1)l′+l gl′l (3.27)

+ Ha
∞

∑
l′=1,3,5,...

(l′+1)(2l′+1)gl′l

∞

∑
l′′=0

gl′l′′Cl′′ .

The electrostatic free energy in the linearized Debye-Hückel limit becomes

Fel

2πR2kBT
=

1
2e


σa

1∫

0

ds Ψ0(s)+σw

0∫

−1

ds Ψ0(s)




− εw

8πlBlD

1∫

−1

ds Ψ
(b)
w

[
Ψ

(b)
w −Ψ0(s)

]
. (3.28)
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3.3. Results and Discussion

We consider a spherical particle of radius R = 50 nm, immersed at the interface between air (with

dielectric constant εa = 1) and water (with dielectric constant εw = 80); see Fig. 3.3. We first compute the

electrostatic free energy Fel , as specified in Eq. 3.26, as function of the number of coefficients lmax that

are used to numerically solve the linear system in Eq. 3.25. Fig. 3.4 displays the free energy difference

4Fel(εn, lmax) = Fel(εn, lmax)−Fel(εn = 5, lmax = 70) as function of lmax for a particle with representative

surface charge densities of σa = 3.2 nC/cm2 and σw = 3.2 µC/cm2. Note that 3.2 µC/cm2 corresponds

to 0.2 e/nm2. We have also chosen a Debye screening length lD = 5 nm (which corresponds to a 4 mM

concentration of monovalent salt cations and anions in the bulk), and a reference potential Ψ
(b)
w = 0 in the

aqueous phase. The three different curves refer to the dielectric constants of εn = 0 (top), εn = 2 (middle),

and εn = 5 (bottom) inside the spherical particle.

10 20 30 50 70

lmax

0.00
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ǫn = 0

ǫn = 2

ǫn = 5

Figure 3.4. Electrostatic free energy difference 4Fel(εn, lmax) = Fel(εn, lmax)−Fel(εn = 5, lmax = 70) as
function of the number of coefficients lmax for a spherical particle of radius R = 50 nm with uniform sur-
face charge densities σa = 3.2 nC/cm2 = 0.0002e/nm2 at the air-exposed region and σw = 3.2 µC/cm2 =
0.2e/nm2 at the water-exposed region. The three different curves refer to εn = 0 (top), εn = 2 (middle), and
εn = 5 (bottom). The Debye screening length is lD = 5nm.

Clearly, in the hypothetical limit of εn = 0 the inside of the particle becomes impenetrable to the

electric field; this renders the electrostatic properties of the air-exposed and water-exposed regions of the

particle independent from each other. Increasing εn allows the electric field to enter the particle and thus
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decreases the free energy. The free energy also decreases with lmax because each Cl adds a degree of freedom

to the system. Most importantly, Fel(lmax) converges to a fixed constant (within the thickness of the printed

symbol) for a value of lmax smaller than about 70. Consequently, we have carried out all our calculations for

lmax = 70. That is, we have solved Eq. 3.25 (in the nonlinear regime) and Eq. 3.27 (in the linear regime) for

l = 0 . . .70, yielding the dimensionless surface potential Ψ0(s) = ∑
70
l=0ClPl(s) and thus, using Eqs. 3.21, the

dimensionless potentials Ψn(r,s) = ∑
70
l=0 AlPl(s)rl (with r ≤ R and −1≤ s≤ 1) inside the spherical particle

and Ψa(r,s) = ∑
69
l=1,3,5,... BlPl(s)/rl+1 (with r ≥ R and 0≤ s≤ 1) in the air.

The main objective of the present work is to predict the apparent charge of the spherical particle on

its air-exposed region. In addition to the bare charge, this renormalized charge contains a contribution from

the electric field that penetrates through the particle’s interior and determines the salt dependence of the

long-ranged dipolar interactions among interface-trapped particles. For the planar capacitor approximation

we have already defined in Eq. 3.16 the apparent surface charge density σ
app
a . In a similar manner we define

the average apparent surface charge density

σ
app
a =− εa

4πlB

1∫

0

ds

(
∂Ψa(r,s)

∂ r

)

r=R

(3.29)

of the air-exposed region for a spherical particle. Equivalently, we refer to Qapp
a = 2πR2σ

app
a as the apparent

total charge that the particle carries at its air-exposed region. With our particle radius R = 50 nm this can be

re-expressed as
Qapp

a

e
= 0.98

σ
app
a

nC cm−2 . (3.30)

Hence, when measured in units of nC/cm2, the numerical value of σ
app
a is almost identical to the total

number of elementary charges that appear to be attached to the air-exposed region of the R = 50 nm particle.

Fig. 3.5 shows two contour plots of the dimensionless electrostatic potential, calculated for particle

radius R = 50nm, Debye length lD = 5nm, surface charge density at the water-exposed region of the particle

σw = 3.2 µC/cm2 = 0.2 e/nm2, dielectric constant inside the particle εn = 2, and Ψ
(b)
w = 0.

The two diagrams are computed for surface charge densities at the air-exposed particle region σa = 0

(left) and σa = 3.2 nC/cm2 = 0.0002 e/nm2 (right). At the water-exposed region, both particles possess an

almost identical constant potential of Ψ0(s) = 4.36, which is slightly smaller than the prediction from the

Poisson-Boltzmann model for a planar isolated surface Ψ0(s) = Ψ
(b)
w +2(σ̄w/2) = 4.37 (the close proximity
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is expected and, in fact, was our motivation for the expansion of the surface potential with respect to Hn,

employed in the derivations of Eqs. 3.24 and 3.25). At the air-exposed surface, however, Ψ0(s) adopts

a minimum at s = 1 when σa = 0 (left), whereas it adopts a maximum at s = 1 when σa = 3.2 nC/cm2

(right). These differences result from the interplay between the charges attached to the water-exposed and

air-exposed faces of the particle and the vanishing potential at the air-water interface. This interplay is also

reflected in the apparent surface charge densities at the air-exposed region, for which we obtain according

to Eq. 3.29 σ
app
a = 3.6 nC/cm2 (left) and σ

app
a = 5.9 nC/cm2 (right). We can thus state that, according

to Eq. 3.30, the ≈ 3200 charges attached to the water-exposed region of the particle cause an increase in

the number of apparent charges on the air-exposed particle region from zero to 3.6 for the left diagram in

Fig. 3.5 and from 3.2 to 5.9 for the right diagram in Fig. 3.5. Of course, an isolated consideration of the two

arbitrarily selected systems in Fig. 3.5 does not yield a systematic understanding of the relation between σa

and σ
app
a . In the following we provide a more comprehensive analysis.

Figure 3.5. Contour plots of the dimensionless electrostatic potential, calculated for σa = 0 (left) and σa =
3.2 nC/cm2 = 0.0002 e/nm2 (right). Both plots are computed for a particle radius R = 50 nm, Debye length
lD = 5nm, surface charge density at the water-exposed region of the particle σw = 3.2 µC/cm2 = 0.2e/nm2,
dielectric constant inside the particle εn = 2, and vanishing potential difference Ψ

(b)
w = 0 between bulk water

and air. Darker shading corresponds to a more positive dimensionless potential Ψ as marked in the legend.

In Fig. 3.6 we show the results of a detailed analysis of σ
app
a as function of εn for eleven different

choices of σa in each diagram. All results in Fig. 3.6 refer to a Debye screening length lD = 5 nm (that is,

a 4 mM salt concentration in the aqueous medium). Each diagram corresponds to a specific combination

of σw and Ψ
(b)
w , with σw = 0 in the left column and σw = 3.2 µC/cm2 in the right column, as well as

Ψ
(b)
w =−2 in the upper row of diagrams, Ψ

(b)
w = 0 in the middle row, and Ψ

(b)
w =+2 in the bottom row. All

solid lines refer to calculations based on the nonlinear Poisson-Boltzmann model; see Eq. 3.25. The dashed
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lines, visible only in the right column of diagrams are computed for the linearized Debye-Hückel model;

see Eqs. 3.27. On the left column of diagrams, the dashed lines coincide with the solid lines and are thus not

visible individually. In the limit εn = 0 there is no interaction between the air- and water-exposed regions

of the particle, implying σ
app
a = σa. Hence, the value of σa for which each curve in Fig. 3.6 is derived

corresponds to the value of σ
app
a at εn = 0. Note also that the two specific systems represented in Fig. 3.5

are marked in Fig. 3.6 by the symbol •.
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Figure 3.6. Apparent charge density σ
app
a at the air-exposed surface of a spherical particle as function of the

particle’s dielectric constant εn. Solid and dashed lines correspond, respectively, to results in the nonlinear
Poisson-Boltzmann and the linear Debye-Hückel regimes. Different curves in each diagram refer to different
σa = σ

app
a (εn = 0). The two columns of diagrams are computed for σw = 0 (left) and σw = 3.2 µC/cm2

(right); The three rows refer to Ψ
(b)
w = −2 (top), Ψ

(b)
w = 0 (middle), and Ψ

(b)
w = 2 (bottom). All results are

derived for R = 50 nm and lD = 5nm. The two bullets in the middle-right diagram refer to the contour plots
displayed in Fig. 3.5.
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Let us now discuss the findings in Fig. 3.6. Consider first the middle diagram on the left column,

derived for σw = 0 and Ψ
(b)
w = 0. For σa = 0 the particle is completely uncharged, the potential is zero

everywhere, and thus σ
app
a = 0 for any choice of εn. For σa > 0 the apparent value σ

app
a decreases with

growing εn because a part of the electric field propagates through the inside of the particle and interacts

with negative charges in the aqueous solution that are polarized at the water-exposed region of the particle.

This is more favorable than passing exclusively through the air and interacting with negative charges in the

aqueous solution that are polarized at the air-water interface. We note that the ratio σ
app
a /σa reaches 50%

roughly at εn ≈ 4. We also note that the potential inside the aqueous phase, which is only caused by the few

charges at the air-exposed region of the particle, is small so that it practically makes no difference to use the

linear Debye-Hückel model or the nonlinear Poisson-Boltzmann approach.

Next, we consider the middle diagram on the right column, derived for σw = 3.2 µC/cm2 and

Ψ
(b)
w = 0. For σa = 0 all charges carried by the particle (about 3200) are attached to the water-exposed

region. These charges are very effectively screened by the mobile salt ions in the aqueous solution, which

are present with a bulk concentration of 4 mM. However, as εn grows, a small (but increasing) part of the

electric field produced by σw is able to propagate through the particle interior into the air and thus appears

as an apparent charge density σ
app
a . For example, at εn = 2, we find σ

app
a = 3.6 nC/cm2, corresponding to

an apparent number of 3.6 elementary charges attached to the air-exposed particle region. This, in fact is the

example already presented in Fig. 3.5 (left diagram) and marked by the lower of the two bullets in the middle-

right diagram of Fig. 3.6. Although few in number, these apparent charges are unscreened and thus highly

effective in influencing the long-ranged interactions between interface-trapped particles. As σa grows, the

increase in σ
app
a (εn) becomes weaker and eventually reverses into a decreasing function. Indeed, with

growing σa the particle-propagating part of the electric field produced by the air-exposed charges becomes

stronger and eventually reverses the direction of the total electric field in the particle interior. The reversal

occurs roughly at σa = 12nC/cm2. At this particular combination of charge densities – about 3200 charges at

the water-exposed region and 12 charges at the air-exposed region of the particle – the dielectric constant εn

becomes practically irrelevant and thus does not affect the interactions between interface-trapped particles.

It is one of the central conclusions of the present work that the ability of the electric field to propagate into

the particle interior can enhance or diminish the interaction strength of particles at the air-water (and similar

for oil-water) interface. That is, already a few air-exposed charges will reverse the direction of the electric

field inside the particle and thus qualitatively change the influence of the particle’s dielectric constant on the
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long-ranged particle-particle interactions.

As pointed out in the Introduction, sign and magnitude of the change in electrostatic potential upon

crossing from air into bulk water have received significant attention in recent years [109, 110, 111, 112, 113].

The implications of this potential difference on the electrostatic properties of interface-trapped particles,

however, have not been analyzed previously. We have therefore incorporated the presence of an arbitrary

bulk potential Ψ
(b)
w into our theoretical approach (recall that Ψ

(b)
w denotes the difference of the dimensionless

electrostatic potential in bulk water and in air, both far away from the air-water interface). Note that we

have not introduced an additional change in potential when passing from the interior of the particle into

the aqueous medium. In fact, there is no need to introduce such an additional change in potential if we

interpret Ψ
(b)
w as the difference in the change of the (dimensionless) electrostatic potential at the bare air-

water interface and particle-water interface. We do not know the sign and magnitude of Ψ
(b)
w but we can

analyze its general impact on σ
app
a . This is shown in the upper and lower rows of Fig. 3.6 for Ψ

(b)
w =−2 and

Ψ
(b)
w = 2, respectively. Our motivation to use the specific magnitude |Ψ(b)

w | = 2 for the displayed examples

goes back to a suggestion of Gehring and Fischer [112]. Yet, we emphasize that the actual value and sign of

Ψ
(b)
w remain a matter of debate. A negative value of Ψ

(b)
w mimics the presence of additional negative charges

at the water-exposed region of the particle, implying more negative slope of the function σ
app
a (εn). This is

most clearly seen for the case σw = σa = 0, where the increase of εn from 0 to 2 changes σ
app
a from 0 to

about −1.8 nC/cm2; see the upper-left diagram of Fig. 3.6. Hence, even a completely uncharged particle

carries a small apparent negative charge on its air-exposed face. All curves (solid lines) in the two top and

two bottom diagrams of Fig. 3.6 can be rationalized by translating a negative or positive bulk potential Ψ
(b)
w

into, respectively, an additional negative or positive charge at the water-exposed particle region. We add two

comments. First, changing the magnitude of |Ψ(b)
w | from 0 to 2 (which corresponds to a change of 50 mV)

typically causes Qapp
a to adjust by 2-5 elementary charges for a fixed εn in the region 2 < εn < 5. Second,

the relation σ
app
a (εn) can pass through a local maximum (which, however, is not very pronounced). This

implies that, perhaps somewhat unexpectedly, the apparent charge Qapp
a may be observed to first increase

and then decrease as function of increasing εn.

We have carried out calculations of σ
app
a on the basis of the nonlinear Poisson-Boltzmann model

(solid lines in Fig. 3.6) and the linearized Debye-Hückel approximation (dashed lines in Fig. 3.6). For

σw = 0 (left column of diagrams in Fig. 3.6) both models yield virtually identical results, but for σw =

3.2 µC/cm2 (right column of diagrams in Fig. 3.6) this is no longer the case. Indeed, the surface potential
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at the water-exposed region of the particle is only slightly smaller than 4.37, implying that the linearization

of the Poisson-Boltzmann equation is a poor approximation and, in fact, overestimates the magnitude of the

surface potential [36]. Hence, in the linearized model, we expect the more positive surface potential at the

water-exposed particle region to cause a larger σ
app
a than the nonlinear model predicts, and this is indeed

what we observe in Fig. 3.6. Despite this overestimation, however, the qualitative nature of the results for

σ
app
a is preserved in the linear Debye-Hückel approximation; this includes the reversal of the slope of the

function σ
app
a (εn) for sufficiently large σa as can be observed directly in the top-right diagram of Fig. 3.6

(at about σa = 16 nC/cm2).

Numerical results like those in Fig. 3.6 are computed for a specific set of parameters, of which

some are kept constant and others varied across a small set of discrete values. Analytic expressions offer

the advantage of allowing a systematic analysis and hence a clearer understanding of the relationships be-

tween parameters. In section 3.1 we have proposed a planar capacitor approximation and derived a simple

expression for σ
app
a ; see Eq. 3.16 (as well as Eq. 3.17 for large σw and Eq. 3.19 for small σw). Recall that

the planar capacitor approximation is based on representing the interface-trapped spherical particle by the

geometry of a planar capacitor; see Fig. 3.2. In Fig. 3.7 we present predictions for σ
app
a as function of εn

according to the planar capacitor approximation for exactly the same set of parameters as in Fig. 3.6. Here

too, solid lines refer to nonlinear Poisson-Boltzmann theory (calculated using Eq. 3.16), whereas the dashed

lines correspond to the linear Debye-Hückel limit (calculated using Eq. 3.19). A comparison of Figs. 3.6

and 3.7 reveals good qualitative agreement. This includes (i) the slope-reversion of σ
app
a (that is, σ

app
a being

a decreasing function for sufficiently large σa and an increasing function for sufficiently small σa), (ii) the

down-shift of the point where the slope-reversion occurs for negative Ψ
(b)
w and its up-shift for positive Ψ

(b)
w ,

(iii) the excellent agreement between the nonlinear and linear models for σw = 0, and (iv) the overestimation

of σ
app
a for large σw when comparing the linear and nonlinear models. There are also notable differences

between Figs. 3.6 and 3.7. First, the dependence of σ
app
a on εn tends to be stronger in the planar capacitor

approximation as compared to the spherical geometry. For example, for σw = 0, Ψ
(b)
w = 0, σa = 16 µC/cm2,

and εn = 5 our calculations predict σ
app
a = 7 µC/cm2 for spherical geometry and σ

app
a = 3 µC/cm2 for

the planar capacitor approximation. A second difference is the lack of any local maxima of the function

σ
app
a (εn). Instead, at one specific value for σa (the slope-reversion point) the function σ

app
a (εn) becomes in-

dependent of εn; the corresponding locations are marked by pairs of open circles in Fig. 3.7 (the two pairs of

open circles on the diagrams refer to the nonlinear and linear models). From Eq. 3.16 we find the condition
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σ
app
a = σa to be fulfilled for

σa

e
=

εa

4πlBR

[
Ψ

(b)
w +2

(
σ̄w

2

)]

=
εa

4πlBR
Ψ

(w)
0 (Hn = 0). (3.31)

This marks the point where for εn = 0 the potential produced by σa at the air-exposed surface is equal to the

potential produced by σw at the water-exposed surface. The electrostatic properties of the air-exposed and

water-exposed regions are then decoupled and thus do not depend on εn. A similar rationale applies to the

slope reversion of spherical particles observed in Fig. 3.6.

As discussed in the Introduction, experimental investigations of how the salt concentration in the

aqueous medium affects the observed long-ranged repulsive forces between interface-trapped colloidal par-

ticles have not led to conclusive results. A number of studies suggest the interaction is insensitive to the

salt concentration [101, 18, 116], while others report a weak dependence [44, 26, 25, 45, 1]. Note that the

force between two interface-trapped particles is proportional to the square of the apparent surface charge

density σ
app
a , which depends on the salt concentration. In Fig. 3.8 we display the dependence of σ

app
a on

the Debye screening length lD for spherical particle geometry (left diagrams) and for the planar capacitor

approximation (right diagrams).

The two sets of curves in each diagram (σa = 0 for dashed lines in upper diagrams, σa = 3.2nC/cm2

for solid lines in upper diagrams, σa = 16 nC/cm2 for dashed lines in lower diagrams, and σa = 32 nC/cm2

for solid lines in lower diagrams) refer to εn = 0 (symbol ◦), εn = 1 (/), εn = 2 (•), εn = 5 (.). We have

placed the symbols ◦, /, •, . at the position lD = 5 nm, which corresponds to the results in Figs. 3.6 and 3.7.

Note that for spherical geometry we only consider Debye lengths up to lD = 10 nm to ensure lD� R.

All curves in Figs. 3.8 indicate nondecreasing behavior of σ
app
a as function of lD. That is, adding

salt is never predicted to increase the apparent particle charge (yet, it could do so in the hypothetical case that

the bare charge densities σa and σw were of different sign). Let us discuss decreasing the salt concentration

from 100 mM (lD = 1 nm) to 1 mM (lD = 10 nm) for a particle of dielectric constant εn = 5. For σa = 0

this induces an increase of σ
app
a from 2.0 nC/cm2 to 7.3 nC/cm2 and thus a 13.5-fold increase in the force

between two particles (the force increase calculated within the planar capacitor approximation is 13.1). For

large σa the absolute increase in σ
app
a is similar but the relative increase in the force is much lower. For

example, σa = 32 nC/cm2 leads to an increase in σ
app
a from 14.1 nC/cm2 to 19.5 nC/cm2, implying a 1.9-

46



fold increase of the force (and a 1.6-fold increase predicted by the planar capacitor approximation). Because

the planar capacitor model makes reasonable predictions, we may insert the parameters used in our specific

example into Eq. 3.17 (namely σw = 3.2 µC/cm2, R = 50 nm, lB = 56nm, εa = 1, εw = 80, εn = 5, and

Ψ
(0)
w = 0), yielding

σ
app
a = c1σa + c2 ln(c3lD) , (3.32)

with c1 = 0.17, c2 = 0.75 nC/cm2, and c3 = 1.76/nm.
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Figure 3.7. Apparent surface charge density σ
app
a at the air-exposed surface as function of εn according to

the planar capacitor approximation, calculated according to Eq. 3.16 (solid lines) on the level of nonlinear
Poisson-Boltzmann theory and according to Eq. 3.19 (dashed lines) in the linear Debye-Hückel limit. All
results are computed for exactly the same set of parameters as in Fig. 3.6. Specifically, different curves in
each diagram refer to different σa = σ

app
a (εn = 0). The two columns of diagrams are computed for σw = 0

(left) and σw = 3.2 µC/cm2 (right); The three rows refer to Ψ
(b)
w =−2 (top), Ψ

(b)
w = 0 (middle), and Ψ

(b)
w = 2

(bottom). All results are derived for R = 50 nm and lD = 5 nm.
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Such a relation could, in principle, be used to estimate the bare charge density σa from the measured

salt-dependence of the force between interface-trapped particles.
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Figure 3.8. Apparent surface charge density σ
app
a at the air-exposed particle region as function of the

Debye screening length lD for fixed σw = 3.2 µC/cm2, R = 50 nm, and Ψ
(b)
w = 0. Dashed and solid lines in

the upper two diagrams refer to σa = 0 and σa = 3.2 nC/cm2, respectively. Dashed and solid lines in the
lower two diagrams refer to σa = 16 nC/cm2 and σa = 32 nC/cm2, respectively. Left and right diagrams
correspond, respectively, to calculations for the spherical geometry (see Section 3.2) and the planar capacitor
approximation (see Section 3.1). The four different curves for each set are derived for εn = 0 (symbol ◦),
εn = 1 (/), εn = 2 (•), εn = 5 (.). We have placed the symbols at position lD = 5nm, for which all calculations
in Figs. 3.6 and 3.7 were carried out.

To be specific, we attempt to model the salt concentration dependence of the force F ∼ (σapp
a )2/r4

between charge-stabilized polystyrene particles (R = 1.5 µm, εn = 2.5, σw = 9.1 µC/cm2) at a decane-

water interface (εa = 2.0, εw = 80) as measured by Park et al [1]. For this system we obtain c1 = 0.44,

c2 = 2.03× 10−6 nC/cm2, and c3 = 5.0/nm. Decreasing the salt concentration from 1 mM (implying
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l(1)D = 10 nm) to 0.01 mM (implying l(2)D = 100 nm) at a particle-to-particle separation of r = 9 µm was

reported to increase the force from about F1 = 0.2 pN to about F2 = 0.6 pN. Using the dependence of the

force F on σ
app
a together with Eq. 3.32 yields

σa =
c2

c1

√
F1 ln

(
c3l(2)D

)
−√F2 ln

(
c3l(1)D

)

√
F2−
√

F1
= 0.06

nC
cm2 . (3.33)

This (very rough) estimate predicts the surface charge density at the oil-exposed region of the particle to be

150,000 times smaller than that at the water-exposed region. This implies the particle carries a total of about

50 elementary charges on its oil-exposed surface.

We finally point out that in Fig. 3.6 we had discussed the possibility of adjusting σa to render

σ
app
a virtually independent of εn. Fig. 3.8 reveals that this may also be accomplished by adjusting the salt

concentration. For example for σa = 3.2 nC/cm2 (see the upper left diagram in Fig. 3.8) the solid lines all

intersect in a region close to lD = 1nm, implying σ
app
a does not depend on εn. Note that the planar capacitor

approximation also predicts such a point, yet fails to correctly predict the corresponding salt concentration.

3.4. Conclusion

This work has studied the electrostatic properties of a spherical nanoparticle with dielectric constant

εn, trapped at an air-water interface using mean-field electrostatics. Our specific goal was to characterize

how the interplay between the electrostatic properties in the aqueous medium and in the air influence each

other and may lead to the observed weak salt dependence of long-ranged dipolar forces that stabilize ordered

arrays of particles at dielectric interfaces. We have expressed this interplay by introducing an apparent

surface charge density σ
app
a of the nanoparticle at its air-exposed region. Indeed, the apparent surface

charge density is generally different from the bare surface charge density σa at the air-exposed region. The

difference arises from the ability of the electric field to propagate through the particle interior; this may

either enhance or diminish σ
app
a , depending on how large the surface charge density σw of the particle at

its water-exposed region is and how effectively salt ions in the aqueous medium screen these charges. For

a particle size of 100 nm with several thousands of charges attached to the water-facing side, decreasing

the salt concentration from 100 mM to 1 mM increases the apparent number of elementary charges at the

air-exposed region by only a few. Yet, these charges are unscreened and thus very effective in modulating
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long-ranged dipolar interactions between particles. If the bare charge density σa on the air-exposed face

of the particle amounts to not many more than those added apparent charges, a salt dependence should be

observable experimentally. In fact the salt dependence may then be used to estimate σa in the first place. In

order to facilitate calculations, we have introduced a simple planar capacitor approximation that allows to

calculate an estimate of σ
app
a analytically. Note that our theoretical model makes significant approximations

that we have adopted to simplify the mathematical formalism. They include equatorial partitioning of the

particle and a constant electrostatic potential at the air-water interface. Note also that we have focused

only on electrostatic interactions; capillary forces may further affect interactions between interface-trapped

particles if the particles are sufficiently large. In addition, we have ignored ion-specific effects, which have

been suggested to modify the salt concentration dependence of the interaction between interfacially trapped

colloids [44, 26]. Interface-induced solvent polarization, which may further modulate this dependence [117],

is approximately accounted for in our model through Ψ
(b)
w .
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4. THE DIPOLE MOMENT OF A CHARGED PARTICLE TRAPPED

AT THE AIR-WATER INTERFACE *

4.1. Introduction

Understanding the behavior of nanoparticles and colloids at liquid interfaces is not only of funda-

mental interest with regard to the physics of two-dimensional systems [118, 119, 120], it also is of impor-

tance for practical applications such as the stabilization of emulsions and foams [38, 121, 122, 123], for

colloidal self-assembly [124, 125], and for electronic and optical devices [126, 127]. Charged particles at

the air-water or oil-water interface are subject to long-range dipolar interactions, which can be exploited

by forming colloidal arrays of very small surface concentration [128, 101, 45, 26]. The description of the

physical properties of such arrays is, however, challenged by the complexity of electrostatic interactions

near and across discontinuous dielectric interfaces [17, 129].

More than 50 years ago, Stillinger [42] used the linearized Poisson-Boltzmann approach – also

known as Debye-Hückel model [130, 131] – to calculate the interaction free energy between two point

charges q that are located at the interface between air and water with dielectric constants εa = 1 and εw = 80,

respectively. The resulting expression was later decomposed by Hurd [43] into two contributions, a screened

electrostatic decay that reflects the salt concentration n0 in the aqueous phase (as expressed by the Debye

screening length lD∼ n−2
0 ) and a dipolar repulsion that is mediated by the presence of the adjacent medium of

low dielectric constant. The dipolar repulsion can be expressed in terms of two aligned dipoles that interact

in air, each with a dipole moment µ =
√

2 q lDεa/εw. Note that Stillinger’s model predicts µ to strongly

depend of the ambient salt concentration in the aqueous phase. In fact, the dipolar repulsion free energy

scales directly with the Debye screening length lD, with no residual interaction being left in the limit of large

salt content, where lD → 0. However, experiments that have measured the interaction between interface-

trapped colloids show diverse dependencies on the salt concentration, ranging from significant [1] over weak

*Reproduced with permission from “G. V. Bossa, K. Bohinc, M. A. Brown, S. May, Dipole moment of a charged particle
trapped at the air–water interface, J. Phys. Chem. B 120 (26) (2016) 6278–6285”. Copyright 2016 American Chemical Society.
This paper can be accessed online at http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.6b02703. The material in
this chapter was co-authored by Guilherme V. Bossa, Klemen Bohinc, Matthew A. Brown, and Sylvio May. G. V. Bossa contributed
to the project design and manuscript writing. G.V.B. was responsible for the mathematical development, numerical and analytical
solution of the equations, figures preparation, and discussion of the results.
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[18, 1, 26] to the virtual absence of a salt concentration dependence [101]. These different behaviors can be

associated with the different charge densities on the air-exposed and water-exposed regions of the trapped

particles, the former and latter being responsible for, respectively, the salt-independent [101, 102, 103] and

salt-dependent contributions [107] to the dipolar repulsion.

Clearly, the inability of Stillinger’s approach to produce different scenarios for the salt concentration

dependence of the interaction between interface-trapped particles originates in the simplicity of the model,

namely the point-like nature and interfacial position of the involved charges. It is no surprise that a multitude

of follow-up modeling approaches have attempted to account in more detail for the spatial structure of the

interface-trapped particles and the different charge densities of their air-exposed and water-exposed regions

[132, 129, 103], for finite-size counterion effects [44], and for additional capillary forces [102]. These

models typically yield numerical results but in some limiting cases, such as that of small distances between

the interface-trapped particles [106] or for a multipole expansion of the particles [108], analytic results can

emerge. A theoretical approach that extends the analysis of the above-mentioned dipole moment µ to a

spatially extended charge distribution has, so far, not been presented.

In the present work we extend Stillinger’s model from one single point charge that is attached to

the air-water interface to two spatially separated point charges that reside on the different sides of the air-

water interface. We propose this model to represent an interface-trapped particle, such as a nanoparticle or

colloid, with the water-exposed and air-exposed surface charges of the particle being lumped into the water-

immersed and air-immersed point charges, respectively. We seek to characterize the interaction between

two particles, especially its residual dipolar component at large particle-to-particle distances. To this end,

we numerically analyze the effective dipole moment µ and present a simple approximate expression that

describes the dependence of µ on the particle size and salt content.

4.2. Theoretical Model

We consider a pair of two point charges with valencies za and zw. The two charges are separated by

a distance xa− xw from each other. The charge with valence za is immersed in air and resides at distance xa

(with xa > 0) above an air-water interface. The charge with valence zw is immersed in the aqueous phase

and is located at distance −xw (with xw < 0) below the air-water interface. Hence, the pair is oriented

perpendicular to the air-water interface and partially penetrates into each of the two coexisting phases as
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illustrated in Fig. 4.1.

The aqueous solution is characterized by a dielectric constant εw and contains monovalent mobile

cations and anions, each with bulk concentration n0. The dielectric constant in the air is denoted by εa. We

place the x-axis of a Cartesian coordinate system perpendicular to the air-water interface so that the two

charges with valencies za and zw correspond to the position vectors {xa,0,0} and {xw,0,0}, respectively. In

the following it is convenient to express the y- and z-coordinates of an arbitrary position vector r = x+ s as

the sum of a vector x = xex normal to the air-water interface, where ex is a unit vector in the x-direction, and

a vector s = yey + zez parallel to the air-water interface, where ey and ez are unit vectors along the y- and

z-directions, respectively.

x=x
a

x=x
w

ε
a

zw

za

ε
w

 

1

2

3

4

x=0

x

Figure 4.1. Two point charges with valencies za and zw are located at distances xa above and −xw below
an air-water interface, respectively. Air has a dielectric constant εa ≈ 1. Water (the shaded region) has a
dielectric constant εw ≈ 80 and contains a symmetric 1:1 electrolyte of bulk concentration n0. Co-ions and
counter-ions are represented schematically. The x-axis of a Cartesian coordinate system points normal to
the interface. The three positions x = xa, x = 0 (coinciding with the air-water interface), and x = xw divide
space into four regions indexed 1,2,3,4.

To calculate the electrostatic potential at every point in space we employ the same approach as used

by Stillinger [42] for one single point charge. To this end, we divide the space into four regions that are

separated by three parallel planes located at x = xa, x = 0, and x = xw. We index the four regions i = 1 for

x≥ xa, i = 2 for xa ≥ x≥ 0, i = 3 for 0≥ x≥ xw, and i = 4 for xw ≥ x. Instead of the electrostatic potential

Φ, we will work with the dimensionless electrostatic potential Ψ = eΦ/kBT , where e denotes the elementary

charge, kB the Boltzmann constant, and T the absolute temperature. The dimensionless potential in the four

regions is then denoted by Ψi = Ψi(r) with i = 1,2,3,4. Clearly, in the air (regions 1 and 2) the potential
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fulfills the Laplace equation

∇
2
Ψ1 = 0, ∇

2
Ψ2 = 0. (4.1)

The aqueous phase (regions 3 and 4) contains mobile ions, the presence of which could be described by

the non-linear Poisson-Boltzmann approach. However, because we represent a charged object (such as a

nanoparticle or colloid) by two point charges, our approach is not appropriate to model the potential near

those two charges. We thus focus on large distances away from the two charges, where the potential is

sufficiently small so that the linearized Debye-Hückel model becomes applicable. In regions 3 and 4 we

then need to solve the equations

l2
D∇

2
Ψ3 = Ψ3, l2

D∇
2
Ψ4 = Ψ4, (4.2)

where lD = (8πlBn0/εw)
−1/2 is the Debye screening length. The Bjerrum length lB = e2/(4πε0kBT ) (where

ε0 is the permittivity of free space) corresponds to the distance at which two elementary charges in vacuum

experience an electrostatic interaction equal to the thermal energy kBT . At room temperature lB = 56 nm.

Note the Bjerrum length in water is lB/εw = 0.7 nm. Solutions

Ψi(r) =
1

(2π)2

∞∫

−∞

dky

∞∫

−∞

dkzΨ
(k)
i (r) (4.3)

for the total potential in all four regions i = 1,2,3,4 can be decomposed into solutions corresponding to

individual wave vectors k = {ky,kz} of magnitude k =
√

k2
y + k2

z . These particular solutions

Ψ
(k)
1 (r) = Ae−|k|xeik·s,

Ψ
(k)
2 (r) = (Be−|k|x +Ce|k|x)eik·s,

Ψ
(k)
3 (r) = (De−

√
k2+l−2

D x +Ee
√

k2+l−2
D x)eik·s,

Ψ
(k)
4 (r) = (Fe

√
k2+l−2

D x)eik·s, (4.4)

ensure vanishing of the potential far away from the air-water interface, namely for Ψ1(x→ ∞) = 0 and

Ψ4(x→−∞) = 0). The six constants A,B,C,D,E,F in Eq. 4.4 must be determined from both continuity

of the potential and from a set of appropriate boundary conditions. Regarding the former, continuity of the

potential at positions x = xa, x = 0, and x = xw entails the three conditions Ψ1({xa,y,z}) = Ψ2({xa,y,z}),
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Ψ2({0,y,z}) = Ψ3({0,y,z}), and Ψ3({xw,y,z}) = Ψ4({xw,y,z}). The latter relate the normal derivative of

the potential to the change in dielectric constant across the air-water interface

εa

(
∂Ψ2

∂x

)

x=0

= εw

(
∂Ψ3

∂x

)

x=0

(4.5)

and to the surface charge densities σa at x = xa and σw at x = xw,

(
∂Ψ1

∂x

)

x=xa

−
(

∂Ψ2

∂x

)

x=xa

=−4π
lB
εa

σa

e
,

(
∂Ψ3

∂x

)

x=xw

−
(

∂Ψ4

∂x

)

x=xw

=−4π
lB
εw

σw

e
. (4.6)

Note that the presence of the two discrete charges with valencies za and zw translates into surface charge

densities σa(s) = zaδ (s) at the surface x = xa and σw(s) = zwδ (s) at the surface x = xw, where the Dirac

delta peak at s = 0 is related to the wave numbers k through

δ (s) =
1

(2π)2

∞∫

−∞

dkz

∞∫

−∞

dky eik·s. (4.7)

Eqs. 4.3-4.7 together with the continuity conditions make the calculation of the constants A,B,C,D,E,F for

every wave vector k straightforward. The resulting expressions for the potentials Ψi(r) (with i = 1,2,3,4)

become most convenient when expressing the components of the wave vector in polar coordinates, l and θ ,

through ky = (l/lD)cos(θ) and kz = (l/lD)sin(θ); this implies for the area element of the wave vector space

dky dkz =(l/l2
D)dl dθ . In fact, the resulting integration over the variable θ is of the form

∫ 2π

0 dθ eis(l/lD) cosθ =

2πJ0(sl/lD), where J0 denotes the Bessel function of first kind and order zero, and thus can be carried out.

Note that in the following we write the potential Ψi(r)→Ψi(x,s) directly as function of x and s =
√

y2 + z2.

With this, the final expression for the potential in region 1 (where x≥ xa) reads

Ψ1(x,s) =
2zalB
εalD

∞∫

0

dl
e−

x
lD

lJ0

(
s
lD

l
)

εal + εw
√

1+ l2

[
εal cosh

(
xa

lD
l
)

+ εw

√
1+ l2 sinh

(
xa

lD
l
)
+ εal

zw

za
e

xw
lD

√
1+l2

]
. (4.8)
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For region 4 (where x≤ xw) we obtain

Ψ4(x,s) =
2zwlB
εwlD

∞∫

0

dl
e

x
lD

√
1+l2

J0

(
s
lD

l
)

εal + εw
√

1+ l2

[
εwl

za

zw
e−

xa
lD

l

− εa
l2

√
1+ l2

sinh
(

xw

lD

√
1+ l2

)
(4.9)

+ εwl cosh
(

xw

lD

√
1+ l2

)]
.

Our objective is to calculate the interaction free energy

Uel(s)
kBT

= zaΨ1(xa,s)+ zwΨ4(xw,s) (4.10)

between two identical pairs of charges that are separated by a distance s. Using Eq. 4.8 and 4.9 we find

Uel

kBT
= 2

lB
lD

∞∫

0

dl l
J0

(
s
lD

l
)(

caaz2
a +2cawzazw + cwwz2

w
)

εal + εw
√

1+ l2
, (4.11)

with

caa = e−
xa
lD

l

[
cosh

(
xa

lD
l
)
+

εw

εa

√
1+ l2

l
sinh

(
xa

lD
l
)]

,

caw = e−
xa
lD

l e
xw
lD

√
1+l2

,

cww = e
xw
lD

√
1+l2

[
cosh

(
xw

lD

√
1+ l2

)
− εa

εw

l√
1+ l2

sinh
(

xw

lD

√
1+ l2

)]
. (4.12)

Eqs. 4.11 and 4.12 are the major result of our theoretical model; they constitute a generalization of Still-

inger’s classical result [42] that we analyze and discuss in the following.

4.3. Results

Our main objective is to investigate the salt concentration dependence of the interaction free en-

ergy Uel(s) as function of the distance s between the two pairs of point charges. Generally, the integral in

Eq. 4.11 does not yield exact solutions. We therefore present in this section analytically accessible limiting

cases followed by a discussion of numerical results. At the end we characterize the dipolar behavior of the
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interaction in the limit of large s.

4.3.1. Analytic Solutions in Limiting Cases

The specific case xa = xw = 0 places both charges, the one with valence za and the other with

valence zw, directly at the air-water interface. This implies caa = caw = cww = 1 in Eqs. 4.11 and 5.16 and

thus recovers Stillinger’s classical result [42]

Uel

kBT
= 2 (za + zw)

2 lB
lD

∞∫

0

dl l
J0

(
s
lD

l
)

εal + εw
√

1+ l2
. (4.13)

In the limit εa→ 0 we obtain from Eq. 4.13 the result Uel/kBT = 2(za + zw)
2lBe−s/lD/(εws), which is twice

the screened (Yukawa-like) interaction energy between two point charges, each with effective valence za +

zw, in a bulk electrolyte of Debye screening length lD. Similarly, twice the Coulomb interaction energy

Uel/kBT = 2(za+zw)
2lB/(εas) between two point charges in a medium of dielectric constant εa is recovered

from Eq. 4.13 in the limit εw → 0. Note that both cases contain an additional factor of 2, which is a

consequence of excluding the electric field from the space of vanishing dielectric constant or, equivalently,

of doubling the charge at the interface due to its own identical image.

In a medium with uniform dielectric constant εa = εw (and still with xa = xw = 0), Eq. 4.13 yields

the exact result
Uel

kBT
=

2
εa

(za + zw)
2 lB

l2
D

s3

[
1−
(

1+
s
lD

)
e−s/lD

]
, (4.14)

which corresponds to a Coulomb interaction at small distances and to a dipolar interaction at large distances.

More specifically, at small distances we recover the electrostatic interaction Uel/kBT = (za + zw)
2lB/(εas)

between two charges of valence za + zw in a medium of uniform dielectric constant εa. At large distances s,

the term in Eq. 4.15 that decays exponentially becomes small, leaving a dipolar repulsion energy Uel/kBT =

lB(µ/e)2/(εas3) with a dipole moment µ =
√

2 e(za + zw)lD.

Another, and more relevant, case within the scenario xa = xw = 0 is that of a strong dielectric

discontinuity, εa� εw, which has been analyzed previously by Hurd [43], yielding the approximate relation

Uel

kBT
=

2
εw

(za + zw)
2 lB

[
εa

εw

l2
D

s3 +
e−s/lD

s

]
. (4.15)
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The first part in Eq. 4.15, valid in the limit of large s, corresponds to the interaction energy Uel/kBT =

lB(µ/e)2/(εas3) between two dipoles in air, each of dipole moment µ =
√

2 e(za + zw)lDεa/εw. The second

part in Eq. 4.15, a screened (Yukawa-like) repulsion energy, is the dominating behavior of the exponentially

decaying contribution to Eq. 4.13.

For zw = 0 (with za > 0 and xa > 0) we are left with a single point charge suspended in the air at a

distance xa away from the interface. In the two limits εw→ ∞ and εw→ 0 the water phase is impenetrable

to the electric field, either with a fixed potential (for εw→ ∞) or with vanishing surface charge density (for

εw→ 0) at the air-water interface; Eqs. 4.11 and 4.12 then yield

Uel

kBT
= z2

a
lB
εa

[
1
s
± 1√

s2 +(2xa)2

]
, (4.16)

where the plus and minus signs refer to εw→ 0 and εw→ ∞, respectively. The latter case implies a dipolar

interaction energy Uel/kBT = 2lBz2
ax2

a/(εas3) for xa� s. Similarly, for za = 0 (with zw > 0 and xw < 0) we

are left with a single point charge suspended in the aqueous phase at a distance−xw away from the interface.

The two limits εa→ ∞ and εa→ 0 now yield

Uel

kBT
= z2

w
lB
εw

[
e−s/lD

s
± e−

√
s2+(2xw)2/lD

√
s2 +(2xw)2

]
, (4.17)

where the plus and minus signs refer to εa → 0 and εa → ∞, respectively. Clearly, Eqs. 4.16 and 4.17

describe the interaction between two point charges located close to a field-impenetrable medium, either

with (the minus sign) or without (the plus sign) mobile charges on the surface of the field-impenetrable

medium. Eqs. 4.16 and 4.17 are based on, respectively, an unscreened (∼ 1/s) and a screened (∼ e−s/lD/s)

electrostatic interaction energy of two point charges in a bulk medium.

Still another exact result is available in the limit lD → ∞, which corresponds to the salt-free case

n0 = 0. Eqs. 4.11 and 4.12 then produce

Uel

lBkBT
=

z2
w

εw

[
1
s
+

(
εw− εa

εw + εa

)
1√

s2 +(2xw)2

]

+
z2

a

εa

[
1
s
−
(

εw− εa

εw + εa

)
1√

s2 +(2xa)2

]

+
4zazw

εw + εa

1√
s2 +(xa− xw)2

, (4.18)
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which corresponds to the well-known result [114] for the interaction energy between two identical pairs of

charges that span across a discontinuous dielectric interface. For xa = xw = 0, Eq. 4.18 simplifies to the

Coulomb repulsion Uel/kBT = lB(za + zw)
2/(sεav) with the average dielectric constant εav = (εa + εw)/2.

For za = −zw = z the leading term Uel/kBT = [2lB(z2/s3) (xa/εa− xw/εw)
2]/(1/εa + 1/εw) for small xa

and xw is dipolar. Note that in a uniform dielectric medium with εw = εa = εav this reduces to the familiar

dipole-dipole interaction Uel/kBT = lBz2(xa− xw)
2/(εavs3).

4.3.2. Discussion of Numerical Results

Fig. 4.2 presents numerical results for the interaction between the two pairs of charges, in all cases

with xw = −xa, εa = 1, and εw = 80. Our choice xw = −xa mimics equatorial partitioning of an interface-

trapped spherical particle. We plot
√

Uel/kBT as function of s−3/2 because the slope of the resulting curves

can inform us about the magnitude of a dipole moment that causes the interaction. Specifically, if the

electrostatic interaction
Uel

kBT
=

lB
εa

(
µ

e

)2 1
s3 (4.19)

is effectively that between two aligned dipoles, each of dipole moment µ , in a uniform medium of dielectric

constant εa, the slope equals
√

lB/εa× µ/e. The three different diagrams in Fig. 4.2 correspond to the

combinations za = 20 and zw = 0 (top diagram), za = 0 and zw = 500 (middle diagram), and za = 20 and

zw = 500 (bottom diagram). That is, the three diagrams refer, respectively, to a single point charge of valence

20 at distance xa above the air-water interface (top diagram), to a single point charge of valence 500 at the

same distance xa below the air-water interface (middle diagram), and to the simultaneous presence of these

two charges above and below the air-water interface (bottom diagram). Our choice for the valencies 20 and

500 is motivated by the typically vastly different surface charge densities of interface-trapped colloids at

their air-exposed and water-exposed surface regions. Each diagram contains four sets of differently colored

curves; they correspond to xa = 0 (black), xa = 1 nm (blue), xa = 2 nm (red), and xa = 4 nm (green). Each

set of fixed color contains five curves; they are computed for different Debye screening lengths: lD → ∞,

lD = 100 nm, lD = 10 nm, lD = 5 nm, and lD = 2 nm (from top to bottom). The curves for lD→ ∞ are shown

as dashed lines. In addition, the upper diagram contains dotted curves, which apply to the limiting case of

an infinite amount of added salt, lD→ 0.
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Figure 4.2. The square root of the electrostatic interaction free energy,
√

Uel/kBT , of two pairs of point
charges (see Fig. 4.1) as function of

√
1/s3, where s is the distance between the two pairs along the air-

water interface. All curves are derived using Eqs. 4.11 and 4.12 with xw = −xa, εa = 1, and εw = 80. The
three diagrams correspond to za = 20 and zw = 0 (top diagram), za = 0 and zw = 500 (middle diagram), and
za = 20 and zw = 500 (bottom diagram). All curves are color-coded according to xa = 0 (black), xa = 1 nm
(blue), xa = 2 nm (red), and xa = 4 nm (green). Sets of curves of the same color in each diagram refer to
lD→ ∞, lD = 100 nm, lD = 10 nm, lD = 5 nm, and lD = 2 nm (from top to bottom). The curves for lD→ ∞

are shown as dashed lines. The upper diagram contains additional dotted curves (the bottom ones for green,
red, and blue color), which correspond to the large salt limit, lD→ 0.
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Consider first the upper diagram, where a single positive point charge of valence 20 is suspended

in air, at distance xa above the air-water interface. When xa = 0 (see the black curves in the top diagram of

Fig. 4.2), the interaction is described by the Stillinger’s result [42] in Eq. 4.13. In the additional absence

of salt (the dashed curve in black) the interaction energy Uel/kBT = lBz2
a/(εavs) is Coulombic, with an

effective dielectric constant εav = (εa + εw)/2. This also follows from Eq. 4.18 (with zw = 0 and xa = 0).

The presence of salt renders the interaction for large s dipolar. Added salt also weakens the magnitude

of the interaction until, in the limit lD → 0, it vanishes completely (that is Uel(s) = 0). This strong salt

concentration dependence is a characteristic feature of Eq. 4.13 as is evident from Hurd’s analysis [43] (see

Eq. 4.15), which predicts Uel ∼ l2
D for large s. For non-vanishing xa, the limit of no added salt (see the blue,

red, and green dashed curves in the upper diagram of Fig. 12.2) is again described by Eq. 4.18. Note that the

dominating contribution to Uel(s) remains Coulombic at large distances (hence, all dashed lines merge into

one single curve U1/2
el ∼ (s−3/2)

1/3
in the limit of large s). The next-order term is dipolar, as in Eq. 4.19,

with an effective dipole moment µ =
√

2 ezaxa
√
(εw− εa)/(εw + εa), or

µ =
√

2 ezaxa (4.20)

for εw� εa. This dipolar contribution determines virtually all of the differences between the dashed lines in

the upper diagram of Fig. 12.2. Lowering xa or adding salt decreases the interaction energy Uel . However,

even if an infinite amount of salt is added, the interaction always remains non-vanishing for any choice of

xa with xa > 0. It is then given by the limit εw → ∞, as specified in Eq. 4.16, which for large s implies a

dipolar interaction as in Eq. 4.19 with an effective dipole moment again given by Eq. 4.20. The large salt

limit, lD → 0, is displayed in the upper diagram of Fig. 4.2 by the blue, red, and green dotted lines. We

emphasize that the entire salt concentration dependence is described by the differences between the dotted

and dashed lines for the blue, red, and green sets of curves. These differences are small, which is in contrast

to Stillinger’s predictions in Eqs. 4.13 and 4.15 for the exact interfacial location (xa = 0) of the charge. If

we identify the point charge in our present model with the charge located at the air-exposed region of an

interface-trapped particle, our model for xa > 0 would predict a limited salt concentration dependence of the

interaction free energy Uel(s), which agrees with experimental observations but is in contrast to Eqs. 4.13

and 4.15.

Consider next the middle diagram of Fig. 4.2, where a single positive point charge of valence 500 is
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suspended in the aqueous phase, at distance xa away from air-water interface. As expected, the interaction

energy Uel(s) depends strongly on the presence of salt but is only moderately affected by the distance xa. In

fact, increasing xa renders the interaction more favorable (as opposed to the charge being suspended in air).

The reason is the sign of the charge and its image charge being the same if the charge is suspended in the

medium with the higher dielectric constant, implying a repulsive interaction. Conversely, they have opposite

sign if the charge is immersed in the medium with the lower dielectric constant, which implies an attractive

interaction. In the limit lD→ ∞ this is revealed immediately by Eq. 4.18; see the different signs in the first

and second line of that equation. Again, the limit lD→ ∞ renders the interaction Coulombic, whereas it is

dipolar in the presence of salt. Hence, for any non-vanishing salt content the slopes of all solid lines in the

middle diagram of Fig. 4.2 remain finite and non-vanishing in the limit of large s. As xa grows and as more

salt is added (smaller lD), the dipole moment µ decreases.

Finally, consider the bottom diagram of Fig. 4.2. Here, both charges are present, the one with va-

lence za = 20 immersed in air and the other with valence zw = 500 immersed in water. Note that all the three

terms, caa, caw, and cww, in Eq. 4.12 are now non-vanishing (including the coupling term caw). At vanishing

salt content the interaction energy is described by Eq. 4.18, which due to the valence asymmetry zw� za is

dominated by the interaction between the two water-immersed charges. This renders the interaction energies

in the bottom diagram of Fig. 4.2 very similar to those in the middle diagram, given lD is large or infinite. For

large salt content (small lD), electrostatic interactions in the water are screened and the interaction energies

in the bottom diagram of Fig. 4.2 become similar to those in the upper diagram. Therefore, while for large lD

an increase in xa decreases Uel , we observe that for small lD an increase in xa increases Uel . In between these

these two limiting behaviors, there exists a specific distance for each given salt concentration (for example

s≈ 16 nm if lD ≈ 5 nm) for which the interaction becomes independent of xa. Here, the changes in Uel due

to increasing the distance of the air-immersed and water-immersed charge to the interface eliminate each

other.
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4.3.3. The Dipole Moment at Large Separations

After discussing the interaction Uel(s) in general terms, we now analyze the residual dipole moment

µ = e

√
εa

lB

(
dUel/kBT
d(1/s3)

)

s→∞

, (4.21)

at large distances s. Fig. 4.3 shows the dipole moment as function of the Debye screening length lD, in all

cases with xw =−xa, εa = 1, and εw = 80, for the same three combinations of valencies [za = 20 and zw = 0

(top diagram), za = 0 and zw = 500 (middle diagram), and za = 20 and zw = 500 (bottom diagram)] and

the same coloring scheme [xa = 0 (black), xa = 1 nm (blue), xa = 2 nm (red), and xa = 4 nm (green)] as in

Fig. 4.2.

Consider first the upper diagram of Fig. 4.3. The black solid curve results from a numerical cal-

culation of Stillinger’s integral in Eq. 4.13; i.e., a charge of valence za = 20 is located directly at the

air-water interface, xa = 0. The corresponding black dashed line is Hurd’s [43] approximate expression

µ =
√

2 ezalDεa/εw, valid for εw � εa; see the discussion following Eq. 4.15. The linear relationship

µ ∼ lD is an obviously excellent approximation over a wide range of Debye screening lengths. Devia-

tions at large lD indicate approaching the salt-free limit, where µ diverges; see Fig. 4.2. Growing separation

xa between the point charge and the air-water interface increases µ; the numerical results according to

Eqs. 4.11 and 4.12 are shown as solid lines. The corresponding dashed lines show the approximate relation

µ =
√

2 eza(xa + lDεa/εw), which adds the dipole moment in the limit of high salt content as specified in

Eq. 4.20, to Hurd’s expression. Agreement with the full numerical result according to Eqs. 4.11 and 4.12 is

excellent over a wide range of Debye screening lengths.

Consider next the middle diagram of Fig. 4.3. Here, only the water-immersed charge with valence

zw = 500 is present. The plotted quantity 4µ = µ −
√

2 ezwlDεa/εw is the difference between the actual

dipole moment and Hurd’s [43] approximate expression. The solid and dashed lines refer to the numerical

integration of Eqs. 4.11 and 4.12 and to the expression4µ =−
√

2 ezwxaεa/εw, respectively. For xa = 0 the

difference between the two curves (the two black curves in the middle diagram of Fig. 4.3) expresses the dif-

ference between Stillinger’s integral expression in Eq. 4.13 and Hurd’s approximation µ =
√

2 ezwlDεa/εw.

This is analogous for the other pairs of curves (blue, red, and green), yet with Hurd’s approximation ex-

tended to µ =
√

2ezw(lD−xa)εa/εw, which accounts for the non-vanishing separation xa between the water-
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immersed charge and the air-water interface. The middle diagram of Fig. 4.3 reveals that the approximation

µ =
√

2ezw(lD−xa)εa/εw works well for intermediate values of lD, yet not in the limits lD→ 0 and lD→∞.
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Figure 4.3. The dipole moment defined in Eq. 4.21 shown as function of the Debye screening length lD
(in all cases with xw = −xa, εa = 1, and εw = 80) for the same three combinations of valencies [za = 20
and zw = 0 (top diagram), za = 0 and zw = 500 (middle diagram), and za = 20 and zw = 500 (bottom
diagram)] and the same coloring scheme [xa = 0 (black), xa = 1 nm (blue), xa = 2 nm (red), and xa = 4 nm
(green)] as in Fig. 12.2. The upper diagram displays µ; the middle and lower diagrams display 4µ =
µ−
√

2 e(za + zw)lDεa/εw. Solid lines refer to numerical calculations of µ according to Eqs. 4.11 and 4.12.
Dashed lines show µ according to Eq. 4.22, implying a constant µ =

√
2 e xa(za− zwεa/εw).
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We finally consider the bottom diagram of Fig. 4.3, which applies to the combined presence of

both the air-immersed and water-immersed charge. Here again we have plotted the difference 4µ = µ −
√

2e(za+zw)lDεa/εw between the actual dipole moment µ and Hurd’s approximation
√

2e(za+zw)lDεa/εw.

The solid lines refer to the numerical integration of Eqs. 4.11 and 4.12. The dashed lines approximate the

dipole moment by the simple expression

µ =
√

2 e
[

lD
εa

εw
(za + zw)+ xa

(
za−

εa

εw
zw

)]
. (4.22)

Even in this general case (non-vanishing za and zw) the agreement is reasonable over a wide range of inter-

mediate Debye screening lengths. Hence, we suggest µ according to Eq. 4.22 as a generalization of Hurd’s

limiting result [43] for the dipolar interaction at large distances between charged particles at the air-water in-

terface. We note that in the limit of a large salt content, lD→ 0, Eq. 4.22 should be replaced by µ =
√

2exaza.

This predicts a residual dipolar interaction that is determined solely by the air-exposed charge of the particle.

We also note that Eq. 4.22 can easily be extended to the case where xa and xw are two independent variables

(instead of assuming xw =−xa); it then reads µ =
√

2 e [lD(εa/εw)(za + zw)+ xaza + xwzw(εa/εw)].

Our extension of Stillinger’s model from one single point charge to two spatially separated point

charges is subject to the same approximations as Stillinger’s original model. One is the use of the linear

Debye-Hückel model, which in comparison to the non-linear Poisson-Boltzmann approach overestimates

electrostatic potentials near charged macroions. Even though we focus on large particle separations, where

the interaction potentials are small enough to justify the use of the Debye-Hückel approximation, the pref-

actor of the interaction potential – namely the magnitude of the dipole moment µ in Eq. 4.19 – tends to be

overestimated. Note that this nonlinear screening effect is salt dependent. To compensate for the overestima-

tion, a salt-dependent charge-renormalization factor g = g(lD) can be introduced [107]. We obtain a simple

approximation for g from a previously suggested electrostatic model of an interface-trapped charged colloid

[133]. The colloid has a radius R, dielectric constant εn, and is assumed to partition equatorially to an air-

water (or oil-water) interface. The numerical predictions for the apparent colloid charge (i.e., the apparent

charge that determines the dipole moment µ as defined in Eq. 4.19) can be captured reasonably well using a

planar capacitor model; see reference [133] for a detailed discussion of the planar capacitor model. The ratio

between the predicted apparent colloid charge calculated on the basis of the non-linear Poisson-Boltzmann

model (Eq. 16 in reference [133]) and the linear Debye-Hückel model (Eq. 19 in reference [133]), subject
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to the assumptions εwR� εnlD and lBlDzw� εwR2, yields the estimate

g =
ln
(

2lBlDzw
εwR2

)
+ zalB

εnR

zalB
εnR + zwlBlD

εwR2

(4.23)

for the salt-dependent charge-renormalization factor. With the renormalization factor included, the dipole

moment becomes µrenorm = gµ , where µ is specified in Eq. 4.22.

Table 4.1. Comparison of the dipole moments µexperim, as derived from experiments of Park et al [1], with
our theoretical prediction µrenorm = gµ for various salt concentrations.

dipole moment
in units of e×106nm

salt concentration (mM)
1 0.5 0.1 0.01 no salt

µexperim 1.9 2.8 3.0 3.5 4.5
µrenorm 2.4 2.7 3.2 3.7 4.1

As pointed out in the Introduction, the salt dependence of dipolar interactions between interface-

trapped colloids has been measured previously. One of the most detailed data sets has been reported by Park

et al [1] for spherical, charge-stabilized polystyrene particles of radius R = 1.5 µm and εn = 2.5 at a decane-

water interface. The forces between individual particles were observed to follow a dipolar 1/r4-behavior

with a salt-dependent prefactor. From the measured forces (see Fig. 3 of reference [1]) we can extract the

dipole moment µ = µexperim as defined in Eq. 4.19, with the Bjerrum length lB = 56 nm in vacuum and a

dielectric constant εa = 2 of decane. These experiment-based values µexperim for the dipole moment are

specified in Table 4.1; they increase from µ = 1.9× 106 e nm for 1 mM salt to µ = 4.5× 106 e nm in the

absence of salt. We have determined µrenorm as defined in the preceding paragraph to fit the experimental

values, using xa and za as free parameters and fixing εa = 2, εw = 80, zw = 7.9×106, and lB = 56 nm. Note

that the estimate for zw = 2πR2σw follows from the surface charge density σw = 0.56 e/nm2 of polystyrene

particles in water. A fit of the values for µexperim in Table 4.1 yields xa = 4.2 nm and za = 1900, where a

Debye length lD = 600 nm was chosen to model the case of no added salt.

The resulting dipole moments µrenorm (listed in Table 4.1) exhibit reasonable agreement with µexperim.

We emphasize that our underlying approach of assuming point charges interacting according to the linearized

Debye-Hückel model (yet with an added charge-renormalization factor) was designed to yield a simple ana-
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lytic expression for µ rather than to accurately reproduce experimental results. In light of this, the agreement

between µrenorm and µexperim appears satisfying but may also be fortuitous.

4.4. Conclusions

This work has presented a generalization of Stillinger’s classical work [42] on how charged particles

trapped at a dielectric interface such as air and water interact with each other. Instead of locating a single

point charge directly at the interface we have considered two individual point charges that protrude into the

two interfacing media. An integral expression for the interaction between two such pairs of point charges

is derived based on the Debye-Hückel approach, analytically accessible solutions are discussed, and an ap-

proximate expression for the dipole moment in the limit of large separations between the charge pairs along

the air-water interface is proposed. The dipole moment reflects not only the total charge but also its fractions

located at the air-exposed and water-exposed particle faces, the particle size, and the salt content. We find

a non-vanishing residual dipole moment even in the limit of large salt content, as long as the air-immersed

charge remains at a non-vanishing distance away from the air-water interface. Our results are subject to

the limitations of modeling individual point charges using the Debye-Hückel approach [129]. However, to

account for nonlinear screening, we have also introduced a salt-dependent charge-renormalization factor

and compared the predicted (renormalized) dipole moments with recent experimental results from Park et al

[1]. Our model is susceptible to future extensions such as, for example, the consideration of more complex

charge distributions or additional dielectric discontinuities.
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5. MODELING THE ELECTROSTATIC CONTRIBUTION TO THE

LINE TENSION BETWEEN LIPID MEMBRANE DOMAINS USING

POISSON-BOLTZMANN THEORY *

5.1. Introduction

It is likely that one of the most significant events in the evolution of life was the advent of lipid

membranes – structures able to spatially organize cells and coordinate the exchange of matter between

the cytosplasm and extracellular space [134, 135, 136, 137]. Besides acting as a permeability barrier, lipid

membranes are also able to form domains that have been suggested to be involved in a multitude of biological

processes such as cell signaling, fusion, and defense [138, 48, 11, 139, 140]. Due to the structural complexity

of biomembranes, the experimental characterization of their physical properties is often based on model

membranes. Certain ternary lipid mixtures undergo phase transitions where large domains rich in cholesterol

and lipids with saturated acyl chains form a liquid ordered phase (Lo) that coexists with a liquid disordered

phase (Ld) composed of mostly unsaturated lipids [52, 54, 137, 141, 142, 143]. At the boundaries between

these distinct phases, the mismatch between the membrane thickness of the Lo and Ld phases is one of the

main factors that turns the interfacial region into an environment different from that experienced by the lipids

in the bulk of each phase (i.e., far away from the phase boundary [144]). The varying microenvironment

in the normal direction of the boundary region also leads to an adjusting local composition of the lipids as

compared to their bulk values. The resulting line tension, Λ, reflects the minimal energy per unit length to

link the two lipid domains to each other [53, 145, 139]. The line tension plays a crucial role in membrane

phase separation, fission, budding, and vesicle formation [52, 146, 147]; its magnitude is sensitive to changes

in the boundary structure such as, for example, binding of proteins, partitioning of surfactants, or membrane

bending [144, 148, 149, 150, 151].

*Reprinted from Springer article “G. V. Bossa, M. A. Brown, K. Bohinc, S. May, Modeling the electrostatic contribution to the
line tension between lipid membrane domains using Poisson–Boltzmann theory, Int. J. Adv. Eng. Sci. Appl. Math. 8 (2) (2016)
101–110” with permission of Springer. Copyright 2016. This paper can be accessed online at https://link.springer.
com/article/10.1007/s12572-015-0158-6. The material in this chapter was co-authored by Guilherme V. Bossa,
Matthew A. Brown, Klemen Bohinc, and Sylvio May. G. V. Bossa contributed to the project design and manuscript writing. G.V.B.
was responsible for the mathematical development, numerical and analytical solution of the equations, figures preparation, and
discussion of the results.
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Typically about one third of all lipids present in biomembranes carry a negative excess charge. Con-

sequently, we expect the line tension Λ between membrane domains to also reflect electrostatic properties.

We point out that while Λ is positive the electrostatic contribution Λel to the line tension must be negative.

The negative sign of Λel is a simple consequence of the repulsive nature of the (screened) electrostatic in-

teractions between the anionic lipids in the membrane: close to the boundary between two phases – one

with higher and one with lower surface charge density – a favorable electrostatic excess free energy (as

compared to two unperturbed bulk phases) emerges. It originates in the larger electrostatic energy gain of

the anionic lipids near the boundary of the phase with the higher surface charge density as compared to the

electrostatic energy loss of the anionic lipids near the boundary of the phase with the lower surface charge

density. The gain in electrostatic excess free energy is also signified by an increased spatial freedom that

the diffuse counterion cloud in the vicinity of the domain boundary (with its abrupt change in the membrane

surface charge density) has.

In the present work we use non-linear Poisson-Boltzmann theory to model a straight interfacial

region between two large charged membrane domains that are in contact with an electrolyte solution and

extract Λel as function of the average (bulk) lipid composition in each phase. In order to discuss the influence

of lipid mobility on Λel , we analyze various combinations of boundary conditions related to fixing the local

surface charge density, the electrostatic surface potential, and an electrochemical potential of the lipids in

each phase. While fixing the surface charge density or electrostatic potential corresponds, respectively, to the

two thermodynamic limits of no or completely unrestricted mobility of the surface charges on the membrane,

the latter case of a fixed electrochemical potential accounts for lipid mobility subject to a demixing entropy

penalty and is thus the most relevant scenario for fluid-like lipid domains. In addition to our numerical results

valid within non-linear Poisson-Boltzmann theory, we also derive analytical expressions for Λel , valid in the

linear Debye-Hückel regime for the two specific cases where one domain carries a fixed surface charge

density and the other one has either a fixed electrostatic potential or a fixed surface charge density. Our

modeling approach predicts Λel to be negative with a magnitude on the order of piconewton. Experimentally

determined values of the total line tension are positive, with magnitudes also on the order of piconewton.

This suggests electrostatic interactions to generally provide an important contribution to (in fact, lowering

of) the total line tension Λ. An extraction of Λel from experimental results of Λ is, however, hampered by

the intricate coupling between electrostatic and non-electrostatic interactions in a lipid membrane.
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5.2. Theory

Consider a planar lipid layer that consists of a binary mixture of neutral and negatively charged

lipids with φ being the local mole fraction (composition) of the latter. We assume the presence of two

coexisting lipid phases, indexed 1 and 2, with mole fractions φ̄1 and φ̄2 of the anionic lipid in the bulk. The

two phases are macroscopically large, separated by a straight interface along the x = 0 line of a Cartesian

coordinate system. Phases 1 and 2 extend respectively into the x < 0 and x > 0 regions, as illustrated in

Fig. 5.1, with z = 0 and an unrestricted range along the y-coordinate (which points outward the page). The

two phases are in contact with a symmetric 1:1 electrolyte located within the half-space z > 0.

ε
W

φ1 φ 2

a

phase 2phase 1

x

z

Figure 5.1. Schematic illustration of a planar lipid layer that bridges between two coexisting phases com-
posed of a binary mixture of anionic and neutral lipids. The position x = 0 divides between the two phases,
each with average mole fractions φ̄1 (for x < 0) and φ̄2 (for x > 0). The cross-sectional area per lipid,
a = 0.65 nm2, is assumed to be the same for both species. The lipid layer is facing an aqueous solution of
dielectric constant εW = 80 that contains a symmetric 1:1 electrolyte of bulk concentration n0. The diffuse
ion cloud of monovalent co- and counter-ions is represented schematically.

Note that we only need to consider a single leaflet of the membrane because the low dielectric

constant inside the membrane’s hydrocarbon core effectively decouples the electrostatic properties of a lipid

bilayer [152].

5.2.1. Electrostatic Free Energy

The electrostatic free energy of the coexisting phases can be expressed within classical Poisson-

Boltzmann theory as the sum of an electrostatic energy and an ideal demixing entropy contribution of the
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mobile ions in the aqueous solution; it reads

F(σ)
el =

εW ε0

2

∫

V

dv(∇Φ)2 (5.1)

+ kBT
∫

V

dv
[

n+ ln
n+
n0
−n++n− ln

n−
n0
−n−+2n0

]
,

where the two volume integrals
∫

V dv→ ∫
∞

−∞
dx
∫

∞

−∞
dy
∫

∞

0 dz run over the aqueous solution (i.e., the half-

space z > 0); Φ is the local electrostatic potential, kB is the Boltzmann constant, T is the absolute temper-

ature, n+ and n− are the local concentrations of mobile cations (the counterions) and anions (the coions),

respectively, and n0 = n+(z→ ∞) = n−(z→ ∞) is their bulk value. Note that all local system properties

depend only on the x-coordinate; Φ = Φ(x), n± = n±(x), and φ = φ(x). Also, ε0 is the vacuum permittivity

and εW = 80 is the dielectric constant of water. The first term in Eq. 5.1 represents the energy stored in

the electrostatic field, −∇Φ, and the second term consists of the ideal mixing free energy of two ideal gases

composed of either counterions or coions and kept at constant chemical potential to account for the existence

of a bulk electrolyte. The local volume charge density of the electrolyte (for z > 0) is ρ = e(n+−n−); this

allows us to express the Poisson equation as ∇2Φ = −e(n+− n−)/(ε0εW ) where e denotes the elementary

charge. The variation of F(σ)
el = F(σ)

el [Φ(n+,n−),n+,n−] with respect to n+ and n− and subject to satisfying

Poisson’s equation results in

δF(σ)
el =

∫

V

dv δn+

(
kBT ln

n+
n0

+ eΦ

)
(5.2)

+
∫

V

dv δn−

(
kBT ln

n−
n0
− eΦ

)
+
∫

A

da Φ̃δσ ,

where the area integration
∫

A da =
∫

∞

−∞
dx
∫

∞

−∞
dy in the final term runs over the entire lipid layer (z = 0)

and Φ̃ = Φ(z = 0) denotes the surface potential. The requirement that δF(σ)
el = 0 in thermal equilibrium

entails the Boltzmann distributions n± = n0 exp(∓Ψ), which we express in terms of the local dimensionless

potential Ψ = eΦ/kBT . The final term in Eq. 5.2 vanishes if the lipid layer carries a fixed surface charge

density σ . Such a scenario is applicable to gel-phase or crystalline membranes where the lipids have no

translational in-plane mobility [153]. On the other hand, if the lipid charges have completely unrestricted

(metal-like) lateral mobility, the condition of a fixed and constant electrostatic surface potential Φ̃ is implied

and the thermodynamic free energy reads F(Φ̃)
el = F(σ)

el −
∫

A daΦ̃σ .
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The two cases, immobile lipids (constant and fixed σ ) and unrestricted lipid mobility (constant and

fixed Φ̃), constitute, respectively, upper and lower thermodynamic limits for the free energy (subject to the

same reference state), implying the values obtained for any type of partially restricted lipid mobility (that is,

a fixed electrochemical potential µ) must must lie in between them. A specific example for the latter case

are fluid domains in which the lipids are not frozen at their positions but exhibit lateral mobility that is only

subject to a demixing (but to no other energy) penalty. For the demixing penalty we conveniently adopt the

ideal mixing free energy of a lattice gas [63] with a local mole fraction φ = φ(x) of the anionic lipid

Fmix =
kBT

a

∫

A

da

[
φ ln

φ

φ̄
+(1−φ) ln

1−φ

1− φ̄

]
, (5.3)

where a is the cross-sectional area per lipid headgroup (which we assume to be the same for both the anionic

and neutral lipid). Following Fig. 12.1, the reference composition φ̄ in Eq. 5.3 is identified with the average

composition in each phase by

φ̄ =





φ̄1, if x < 0, phase 1

φ̄2 if x > 0, phase 2.
(5.4)

Note that employing the step-like function for φ̄(x) in Eq. 5.4 assumes that in the absence of electrostatic

interactions the phase boundary is infinitely sharp. Moving away from the phase boundary, lipids in each

phase become less influenced by electrostatic interactions with lipids in the other phase, thus increasingly

adopting bulk properties including the surface potential in the bulk Φ̃(b) = Φ(z = 0,x→ ±∞). The total

free energy becomes F(µ)
el = F(σ)

el +Fmix; its functional minimization predicts a constant electrochemical

potential

µ =−eΦ̃
(b) =−eΦ̃+ kBT ln

[
φ(1− φ̄)

φ̄(1−φ)

]
(5.5)

of the anionic lipids in each of the phases 1 (where µ = µ1(φ̄1)) and 2 (where µ = µ2(φ̄2)). Rearrang-

ing Eq. 5.5 yields an explicit relation between local lipid composition φ = φ(x) and local dimensionless

electrostatic surface potential Ψ̃ = Ψ̃(x) of the lipid layer

φ =
1

1+ 1−φ̄

φ̄
e−Ψ̃+Ψ̃(b)

, (5.6)

with Ψ̃ ≡ eΦ̃/kBT and Ψ̃(b) = eΦ̃(b)/kBT . Note the dimensionless surface potential in the bulk Ψ̃(b)(φ̄) is
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different in phases 1 and 2. That is, Ψ̃(b) = Ψ̃
(b)
1 in phase 1 (x < 0) and Ψ̃(b) = Ψ̃

(b)
2 in phase 2 (x > 0); see

below in Eq. 5.11 for an explicit relation.

In the following subsection we also consider the combination of different boundary conditions in

phases 1 and 2 (fixed σ , fixed Φ̃, or fixed µ). The only case that cannot be combined is that of two fixed but

different surface potentials, Φ̃1 = Φ̃
(b)
1 in phase 1 and Φ̃2 = Φ̃

(b)
2 in phase 2, because the free energy then

diverges to negative values with infinitely large magnitude.

5.2.2. Poisson-Boltzmann Equation and Boundary Conditions

Upon inserting the Boltzmann distributions for the mobile ion concentrations n± back into the Pois-

son equation, we arrive at the Poisson-Boltzmann equation,

l2
D∇

2
Ψ = sinhΨ, (5.7)

with the Debye screening length given by lD = (8πlBn0)
−1/2 for a symmetric 1:1 electrolyte. The Bjerrum

length, lB, is defined as the distance where the electrostatic interaction energy between two elementary

charges is equal to the thermal energy unit kBT . For an aqueous medium (εW ≈ 80) at room temperature,

lB = 0.7 nm.

Solutions of Eq. 5.7 must fulfill appropriate boundary conditions which reflect the degree of charge

mobility in each phase. In the present work we consider four distinct sets of boundary conditions that are

imposed onto the two phases of the planar lipid layer depicted in Fig. 5.1:

I Each of the two phases is kept at constant (but not necessarily the same) surface charge density. This

implies (
∂Ψ

∂ z

)

z=0

=
4πlB

a
φ̄ , for −∞ < x < ∞ (5.8)

with φ̄ given in Eq. 5.6. Hence, the local composition φ(x) = φ̄ is a step function, and the fixed surface

charge densities are σ1 =−eφ̄1/a in phase 1 and σ2 =−eφ̄2/a in phase 2.

II Phase 1 carries a constant surface charge density σ1 = −eφ̄1/a and phase 2 is kept at uniform and

constant electrostatic surface potential Ψ̃2 = Ψ̃
(b)
2 = Ψ̃

(b)
2 (φ̄2).

III Phase 1 carries a constant surface charge density σ1 =−eφ̄1/a and phase 2 is kept at constant electro-
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chemical potential, µ2 = µ2(φ̄2) =−kBT Ψ̃
(b)
2 (φ̄2). This implies

(
∂Ψ

∂ z

)

z=0

=
4πlB

a





φ̄1, for x < 0

1

1+ 1−φ̄2
φ̄2

e−Ψ̃+Ψ̃
(b)
2

, for x > 0;

(5.9)

IV Phases 1 and 2 each have constant electrochemical potentials µ1 = µ1(φ̄1) = −kBT Ψ̃
(b)
1 (φ̄1) and µ2 =

µ2(φ̄2) =−kBT Ψ̃
(b)
2 (φ̄2), respectively, implying

(
∂Ψ

∂ z

)

z=0

=
4πlB

a
1

1+ 1−φ̄

φ̄
e−Ψ̃+Ψ̃(b)

, for −∞ < x < ∞.

(5.10)

In Eqs. 5.8-5.10 we have used the relation σ =−eφ/a, combined with Eq. 5.6 if µ is fixed in either phase

1 or 2. Also recall that the z-axis points normal to the membrane plane into the electrolyte; see Fig. 12.1.

Finally, the relation between surface charge density (or, equivalently, average mole fraction φ̄ of the anionic

lipid) and dimensionless surface potential Ψ̃(b) = Ψ(z = 0,x→±∞) in the bulk is, according to non-linear

Poisson-Boltzmann theory, given by [35]

Ψ̃
(b)(φ̄) =−2

(
2πlBlD

a
φ̄

)
(5.11)

We highlight that φ̄ and Ψ̃(b) adopt the values φ̄1 and Ψ̃
(b)
1 in phase 1 (for x < 0), and φ̄2 and Ψ̃

(b)
2 in phase 2

(for x > 0).

Because of its non-linear nature, analytic solutions of Eq. 5.7 can be found only for a few specific

geometries and boundary conditions, a fact that generally necessitates the use of approximations or numeri-

cal methods. An efficient method to numerically solve Eq. 5.7 for all four sets of boundary conditions listed

above employs a Newton-Raphson iteration scheme which starts with Ψn = 0 for n = 1 and subsequently

progresses from n to n+1 according to

l2
D4Ψn+1 = (Ψn+1−Ψn) coshΨn + sinhΨn (5.12)
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until convergence (where Ψn+1 = Ψn) is achieved for sufficiently large n. Note that Eq. 5.12 is linear in

Ψn+1 and can thus be solved for any given Ψn using standard methods. An analogous scheme can also be

employed to linearize the boundary conditions of the type in Eqs. 5.9 or 5.10.

At large distances away from the phase boundary, |x| � lD, the solution of the Poisson-Boltzmann

equation approaches that of a bulk system where the composition φ(x) = φ̄ is homogeneous in each phase

and where the dimensionless surface potential Ψ̃(b) is that specified in Eq. 5.11. The corresponding electro-

static free energy per unit area A in each of the two bulk phases is

F(b)
el

AkBT
=−4sinh2(Ψ̃(b)/4)

2πlBlD
(5.13)

if the electrostatic surface potential Φ̃(b) = kBT Ψ̃(b)/e is fixed and

F(b)
el

AkBT
= 2

φ̄

a

[
1−q

p
+ ln(p+q)

]
(5.14)

if the surface charge density σ =−eφ̄/a or the electrochemical potential µ are fixed. For Eq. 5.14 we have

used the definitions p = 2πlBlDφ̄/a and q =
√

p2 +1.

5.2.3. Electrostatic Contribution to the Line Tension

The line tension Λel is defined as the electrostatic excess free energy (per unit length) due to the

interactions of the anionic lipids in phase 1 with those in phase 2 including all secondary effects such as

compositional modifications and changes in the structure of the diffuse counterion layer. From the total

electrostatic free energy Fel (which we compute numerically and which we identify with F(σ)
el , F(Φ̃)

el , or

F(µ), depending on whether the surface charge density σ , surface potential Φ̃, or electrochemical potential

µ in a given phase is fixed) and the known bulk free energy (given by Eqs. 5.13 or 5.14) we extract the

electrostatic line tension through

Λel =
Fel−F(b)

el
L

, (5.15)

where F(b)
el refers to the same combined total area of phases 1 and 2 in the lipid layer as Fel but treating both

as bulk phases. In Eq. 5.15, L denotes the length of the domain boundary along the y-axis in which we solve

the Poisson-Boltzmann equation. Of course Λel does not depend on the choice of L because the structure of
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the phase boundary is invariant along the y-direction. Yet, we highlight that we assume the domain boundary

to be straight. Bending the boundary would entail an additional energy cost and thus an increase in Λel .

5.3. Results and Discussion

We have solved the non-linear Poisson-Boltzmann equation, Eq. 5.7, for each of the four sets of

boundary conditions specified above. Numerical solutions are computed in a region xmin ≤ x ≤ xmax, 0 ≤

z ≤ zmax, and a unit length L along the y-direction, with −xmin = xmax = zmax = 5lD. Using the numerical

solutions Ψ(x,z) we compute the corresponding free energy Fel and from Eq. 5.15 calculate Λel as function

of φ̄1, φ̄2 and lD. In all cases we used the Bjerrum length lB = 0.7 nm and a cross-sectional area per lipid of

a = 0.65nm2. Our results for Λel as function of φ̄2 are displayed in the diagrams of Fig. 12.2; different rows

refer to different combinations of φ̄1, different columns to different Debye screening lengths (lD = 1 nm in

the left column and lD = 3 nm in the right column).

The four curves in each diagram correspond to our four sets of boundary conditions I-IV. Fig. 5.2 is

the main result of the present work.

Fig. 5.2 reveals that Λel is always negative due to the electrostatic free energy gain at the interfacial

region. When φ̄1 = φ̄2, both phases have the same bulk lipid composition and a boundary between them

no longer exists. Then, the excess free energy vanishes and Λel becomes equal to zero for all types of

boundary conditions I-IV. Each diagram in Fig. 12.2 displays four curves. The two solid curves correspond

to the thermodynamic limits of immobile lipids (boundary condition I, upper solid curve) and unrestricted

migration of charges in phase 2 (boundary condition II, lower solid curve). In between these two curves is a

dotted curve that refers to boundary condition III, where the lipids in phase 2 have a constant electrochemical

potential. As discussed above, thermodynamics requires that the dotted curves stay strictly in between the

two solid ones. We note that in most cases the two solid curves stay close together, which indicates a limited

influence of the charge mobility in phase 2. However, if φ̄1 is large and φ̄2 is small, lipid migration entails

a significant influence on Λel; see the discussion below. Finally, the dashed curves in Fig. 5.2 correspond

to constant electrochemical potential in both phases 1 and 2 (boundary condition IV). This is the physically

most relevant set of boundary conditions if both phases are in the fluid state, thus containing mobile lipids

with the corresponding demixing entropy penalty accounted for.

Besides our numerical approach, for boundary conditions I and II we have also calculated explicit
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analytic expressions for Λel in the linear Debye-Hückel limit (which requires |Ψ|� 1 at each location within

the aqueous phase). This approximation leads to a linearized Poisson-Boltzmann equation, l2
D∇2Ψ = Ψ,

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1

Λel
nm
kBT

φ̄1 = 0.1
...........
......................................................................................................................................................................................................................................................................

........
...........
..........................................................................................................................................................................................................................................................................

..........
. ........... ...........

...........
...........

...........
...........

...........
........... ........... ........... ...........

....
................................................................

........
.........
. ..................

..................

..................

..................

..................

............

..........
........ ..................

..................

..................

..................

..................

................

......................................................................................... ................
................

................
................

...............................
......................

DH

.......

.......

.......

.......

........

.......

.......

.......

........

.......
........
.......
..........
.......................................................................................................................................................................................................................................................................................

φ̄1 = 0.1

.......

.......

.......

........
.......
........
........
........
..........................................................................................................................................................................................................................................................................................

............................

.......

....
.......
....
.......
....
.......
....
...........

...........
...........

...........
...........

...........
...........

...........
...........

........... ........... ...........

..
..
..
..
..
..
..
...
.......................................................................

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1

Λel
nm
kBT

φ̄1 = 0.5

.......
........
........
.......
........
........
........
........
........
.........
.........
..........
............
...............
..............................

................................................................................................................................................................

......

.......

.......

.......

........
.......
........
.......
........
.......
........
.......
........
.......
........
........
........
.......
........
.........
........
.........
..........
.............
................

............................................................................................................................................................................

.......
....
.......
....
.......
....
........
...
........
...
...........

........... ........... ........... ........... ........... ........... ...........

..
..
..
..
..
..
..
...
...
...
...
...
....

..........
...............................

.......

.......

.......

.......

.......

.......

........

.......

.......

.......

.......

........
.......
.......
.......
........
.......
........
.......
........
.......
.........
.........
..........
.............
...................................................................................................................................................

φ̄1 = 0.5

.......

.......

.......

.......

.......

........

.......

.......

.......

.......

........

.......
.......
.......
........
.......
.......
........
.......
........
.........
.........
..........
...........
.................

......................................................................................................................................................

.......

....
.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
........
...
...........

........... ........... ........... ........... ........... ........... ..........

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..
...
...
...
....
..........................................

0.0 0.2 0.4 0.6 0.8 1.0

φ̄2

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1

Λel
nm
kBT

φ̄1 = 0.9

.......
.......
........
........
.......
........
.......
........
........
.......
........
........
........
........
........
........
.........
.........
..........
..........
...........
............
..............
.................

.............................
......................................................................................

.......
........
.......
.......
........
........
.......
........
.......
........
........
........
.......
........
........
........
.........
.........
..........
.........
............
...........
............
.................

...........................
..............................................................................................

.......
......
.......
......
.......
......
.......
......
........
.....
........
.....
..........
...
.............

.............
............. .....

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
....
....

......
............

0.0 0.2 0.4 0.6 0.8 1.0

φ̄2

φ̄1 = 0.9

.........

..........

..........

..........

............
............
............
..............
..............
..............
................
................
..................
....................
......................
........................
..........................
..............................
................................
......................................
............................................
......................................................
....................................................................
..........................................................................................
......................................................................................................................................

................................................................................................................................................................................................................................................................


.......

........

.......

.......

........
.......
........
.......
........
.......
........
........
.......
........
.......
.......
.......
.........
........
.........
.........
...........
...........
.............
..................

....................................

.......
....
.......
....
.......
....
.......
....
.......
....
.......
....
........
...
........
...
...........

...........
.......

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
...
...
...
....
......

....

Figure 5.2. Electrostatic contribution to the line tension Λel plotted as function of the bulk lipid composition
of phase 2, φ̄2, for fixed φ̄1 = 0.1,0.5,0.9. Upper solid lines correspond to fixed charge densities in both
phases (case I); lower solid lines to phase 1 at constant electric potential and phase 2 at constant charge
density (case II); dotted lines to constant charge density in one phase and constant chemical potential in the
other (case III); and dashed lines to constant chemical potential in both phases (case IV). The long dashed
lines in left-top diagram (indicated by DH), refer to results obtained in the Debye-Hückel limit. Left and
right plots refer to lD = 1 nm and lD = 3 nm, respectively. We have used a Bjerrum lenght lB = 0.7 nm and a
cross-sectional area per lipid a = 0.65 nm2 in all calculations.
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which can be solved using the Kontorovich-Lebedev transformation [154, 60] and yields

Λel =−
(Ψ̃

(b)
1 − Ψ̃

(b)
2 )2

8π2lB
for boundary condition I, (5.16)

Λel =−
(Ψ̃

(b)
1 − Ψ̃

(b)
2 )2

16πlB
for boundary condition II, (5.17)

where Ψ̃
(b)
1,2 = Ψ̃(b)(φ̄1,2) =−4πlBlDφ̄1,2/a are linearized versions of Eq. 5.11. Recall that boundary condi-

tion I refers to fixing the surface charge densities σ1 and σ2 in both phases; boundary condition II fixes σ1

in phase 1 and the surface potential Φ̃2 in phase 2. As is required thermodynamically, Λel is larger (that is,

less negative) in the former case as compared to the latter. The derivation of Eqs. 5.16 and 5.17 is outlined

in the Appendix. The long dashed lines indicated by DH in the left-top diagram of Fig. 5.2 provide a com-

parison between the values obtained from Eqs. 5.16 and 5.17 (broken lines) and the corresponding outputs

from our numerical solution in the non-linear regime (solid lines). We note that the linear and non-linear

regimes coincide only for a very small compositional range when both φ̄1 and φ̄2 are small; higher charge

densities render the assumption of small potentials no longer valid. For both boundary conditions (I and II),

we point out that while in the linear regime Λel always adopts a quadratic behavior Λel ∼ (φ̄1− φ̄2)
2, no such

symmetry is present in the non-linear case. This results from non-linear effects that are absent in the linear

Debye-Hückel regime.

Upon decreasing the amount of salt in solution, electrostatic interactions become less screened and

we expect larger magnitudes of Λel . Indeed, with a larger Debye length lD (right column of diagrams in

Fig. 5.2, calculated for lD = 3 nm), we see that Λel reaches more negative values. To illustrate this fact,

for boundary condition II and φ̄1 = 0.9 and φ̄2 = 0.025 we obtain Λel = −0.73 kBT/nm for lD = 1 nm and

Λel =−1.25 kBT/nm when lD = 3 nm.

We now discuss the influence of lipid migration on the electrostatic line tension Λel . To this end,

Fig. 5.3 shows the compositional profile φ(x) for the specific case φ̄1 = 0.75, φ̄2 = 0.25 and lD = 3 nm. The

two solid curves refer to boundary conditions I and II, the dotted curve to boundary conditions III, and the

dashed curve to boundary conditions IV. The corresponding four line tensions are Λel = −0.10 kBT/ nm

(case I), Λel = −0.17 kBT/ nm (case II), Λel = −0.13 kBT/ nm (case III), and Λel = −0.12 kBT/ nm (case

IV). Fig. 5.3 indicates that lipid migration tends to further enhance compositional differences in the vicinity
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of a phase boundary. That is, the interfacial region is attractive and repulsive to lipids residing in the

phase with larger and smaller φ̄ , respectively. The domain boundary-induced compositional enhancement

is largest if the mobility of charges in a given phase is unrestricted and becomes smaller if an additional

demixing entropy penalty is present. The physical origin for the enhancement of compositional differences

near a phase boundary is the same that renders Λel negative in the first place: anionic lipids in the more

highly charged phase have fewer anionic lipids to interact with when close to the phase boundary. The

corresponding gain in free energy is larger than the concomitant loss due to the fact that anionic lipids in

the less highly charged phase have more anionic lipids to interact with when close to the phase boundary.

Clearly then, the more highly charged phase further attracts anionic lipids to its boundary whereas the less

highly charged phase repels them.
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Figure 5.3. Lipid composition φ(x) normal to the phase boundary for φ̄1 = 0.25 and φ̄2 = 0.75. Straight
solid lines correspond to fixed charge densities at both phases (case I); upper right solid line to phase 1 at
constant electric potential and phase 2 at constant charge density (case II); dotted lines to constant charge
density in one phase and constant chemical potential in the other (case III); and dashed lines to constant
chemical potential in both phases (case IV). We have used a Bjerrum lenght lB = 0.7 nm, a Debye length
lD = 3 nm, and a cross-sectional area per lipid a = 0.65 nm2.

For the boundary conditions and lipid compositions analyzed here, the calculated magnitudes of Λel

are generally on the order of 1kBT/nm (≈ 4.1pN), thus being comparable to values reported experimentally

for the total line tension [155, 53]. For example, Tian et al [155] determined the line tension between coexist-

ing Lo and Ld phases within giant unilamellar vesicles composed by mixtures of dioeoylphosphatidylcholine
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(DOPC), cholesterol (Chol) and egg sphingomyeline (ESM). For a DOPC:Chol:ESM compositional ratio of

0.34:0.16:0.5 they measured an average total line tension of Λ = 3.3pN≈ 0.8kBT/nm. If the ratio was 0.34:

0.4:0.26, which is closer to the critical point, the line tension dropped to 0.5 pN≈ 0.1 kBT/nm. Monolayers

composed by dihydrocholesterol (Dchol, 15-25 mol%) and different lipids were investigated by Bischof and

Wilke [53], yielding Λ≈ 0.9 pN for Dchol:DPPE and Λ≈ 0.15 pN for Dchol:DPPG binary mixtures. Here

DPPE and DPPG refer to dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylglycerol, re-

spectively. We note that it is currently not possible to extract the electrostatic contribution Λel from the total

measured line tension Λ. Even when comparing lipids with the same acyl chain structure (like DPPE and

DPPG), the chemical differences of their headgroups imply different properties to form domains and thus

different non-electrostatic contributions to the line tension. For example, the phosphatidylethanolamine

headgroup of DPPE has an effectively smaller size than that of phosphatidylglycerol, which affects the

cross-sectional area occupied by the lipid and induces a pronounced negative spontaneous curvature. Even

experiments with identical lipid mixtures but distinct electrostatic properties (e.g., amounts of added salt)

cannot be used straightforwardly to extract Λel , because electrostatic interactions modify the cross-sectional

area per lipid and thus also affect the non-electrostatic contribution to Λ. Note there is a similar coupling

between electrostatic and non-electrostatic interactions for the bending stiffness of a lipid bilayer [156].

5.4. Conclusions

The electrostatic contribution Λel to the total line tension Λ between two phases with distinct aver-

age charge density in a planar lipid membrane was determined using non-linear Poisson-Boltzmann theory.

To this end, we have numerically solved the Poisson-Boltzmann equation for a set of four different boundary

conditions that account for varying levels of lipid mobility. For two limiting thermodynamic cases we have

also calculated Λel based on the linear Debye-Hückel regime by solving the linearized Poisson-Boltzmann

equation. In this case, the use of the Kontorovich-Lebedev transformation provided us with analytical ex-

pressions for Λel which, due to their simplicity, may be used in subsequent membrane modeling approaches.

We generally find Λel to be negative with a magnitude below or on the order of 1kBT/nm when the

Debye length lD is in the range 1− 3 nm. The negative values for Λel are a consequence of the favorable

electrostatic conditions near the boundary of two phases with different average surface charge densities.

Our theoretically predicted negative electrostatic contribution to Λ is on the same order than the positive
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values deduced from experimental measurements. This clearly highlights the importance of electrostatic

interactions for the ensuing line tension. Yet, we also emphasize that electrostatic and non-electrostatic

contributions to Λ influence each other, which makes the extraction of Λel from experimentally reported

values for Λ difficult.

5.5. Appendix : Calculation of Λel using the Kontorovich-Lebedev transformation

We solve the linearized Poisson-Boltzmann equation expressed in polar coordinates r and ϕ ,

1
r

∂

∂ r

(
r

∂Ψ

∂ r

)
+

1
r2

∂ 2Ψ

∂ϕ2 =
Ψ

l2
D
, (5.18)

for the dimensionless electrostatic potential Ψ=Ψ(r,ϕ) within the region 0≤ r≤∞ and 0≤ ϕ ≤ π depicted

in Fig. 5.4. Let us first consider the mixed case where one phase is kept at constant charge density σ1 and

the other at fixed and constant dimensionless surface potential Ψ̃
(b)
2 . When expressed in polar coordinates,

the boundary conditions specified in case II above read

1
r

(
∂Ψ

∂ϕ

)

ϕ=π

= 4πlB
σ1

e
, Ψ(r,ϕ = 0) = Ψ̃

(b)
2 (5.19)

and Ψ(r→ ∞,ϕ) = 0. The first relation fixes the surface charge density σ1 = −eφ̄1/a of phase 1, and the

second relation specifies the surface potential Φ̃
(b)
2 = kBT Ψ̃

(b)
2 /e of phase 2.

φ1 φ 2

r

a

phase 2phase 1

Figure 5.4. Schematic illustration of a planar lipid layer with two phases as in Fig. 12.1, yet described in
terms of polar coordinates r and φ (instead of Cartesian coordinates). The aqueous phase corresponds to the
range 0 < r < ∞ and 0 < φ < π .

A convenient method to solve Eq. 5.18 and to calculate Λel employs the Kontorovich-Lebedev
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transformation [154, 157, 158, 60] Ψ(r,ϕ)→ ϒ(λ ,ϕ), defined through

ϒ(λ ,ϕ) =

∞∫

0

dr
r

Ψ(r,ϕ)Kiλ (r/lD) (5.20)

and its corresponding back-transformation

Ψ(r,ϕ) =
2

π2

∞∫

0

dλϒ(λ ,ϕ)Kiλ (r/lD)λ sinh(πλ ) (5.21)

where Kiλ (x) is the modified Bessel function of the second kind of order λ and i is the imaginary unit. We

note that the same method has been used previously by Duplantier [159] and Kang et al [60] for wedge-like

geometries and boundary conditions of type I (yet not for type II). When expressed in terms of ϒ = ϒ(λ ,ϕ),

Eq. 5.18 reads
∂ 2ϒ

∂ϕ2 = λ
2
ϒ (5.22)

and the two boundary conditions in Eq. 5.19 become

(
∂ϒ

∂ϕ

)

ϕ=π

=
πΨ̃

(b)
1

2cosh(π

2 λ )
, (5.23)

ϒ(λ ,ϕ = 0) =
πΨ̃

(b)
2

2λ sinh(π

2 λ )
. (5.24)

with Ψ̃
(b)
1 = −4πlBlDφ̄1/a. The condition Ψ(r → ∞,ϕ) = 0 is consistently fulfilled due to the property

Kn(x→∞) = 0 for all choices of n. The solution of Eq. 5.22 subject to the boundary conditions in Eqs. 5.23

and Eq. 5.24 is

ϒ =
π

2λ cosh(λπ)

[
Ψ̃

(b)
2

cosh[λ (π−ϕ)]

sinh(π

2 λ )
+ Ψ̃

(b)
1

sinh(λϕ)

cosh(π

2 λ )

]
. (5.25)
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Transforming back from ϒ(λ ,ϕ) to Ψ(r,ϕ) according to Eq. 5.21 gives rise to

Ψ(r,ϕ) =
2
π

∞∫

0

dλ
Kiλ (r/lD)
cosh(λπ)

[
Ψ̃

(b)
2 cosh

(
π

2
λ

)
(5.26)

× cosh[λ (π−ϕ)]+ Ψ̃
(b)
1 sinh

(
π

2
λ

)
sinh(λϕ)

]
.

From the solution Ψ(r,ϕ) in Eq. 5.26 we calculate the electrostatic line tension Λel as the excess free energy

per unit length

Λel

kBT
=

σ1

2e

∞∫

0

dr
[
Ψ(r,π)−4πlBlD

σ1

e

]
(5.27)

+
Ψ̃

(b)
2

8πlB

∞∫

0

dr

[
1
r

(
∂Ψ(r,ϕ)

∂ϕ

)

ϕ=0
+

Ψ̃
(b)
2

lD

]
.

Instead of using σ1, it is convenient to express the fixed surface charge density in phase 1 in terms of the

corresponding surface potential Ψ̃
(b)
1 = 4πlBlDσ1/e far away from the boundary between the phases (that is

Ψ̃
(b)
1 = Ψ(r→ ∞,ϕ = π)). From Eq. 5.26 we can compute both Ψ(r,π) and (∂Ψ/∂ϕ)ϕ=0 and use these

results to calculate the excess free energy according to Eq. 5.27. This leads to the expression for Λel as

specified in Eq. 5.17.

When each of the two phases carries a fixed surface charge density (σ1 in phase 1 and σ2 in phase

2, as specified in boundary condition type I above), Eq. 5.19 reads

1
r

(
∂Ψ

∂ϕ

)

ϕ=π

= 4πlB
σ1

e
,

1
r

(
∂Ψ

∂ϕ

)

ϕ=0
= 4πlB

σ2

e
. (5.28)

The derivation of Λel follows the same steps as for the mixed boundary conditions, leading to the final result

specified in Eq. 5.16.

We note that the result in Eq. 5.16 also appears as a special case of calculating Λel in a wedge-like

geometry where the wedge subtends an angle α . For this case, Λel is given by

Λel(α) =
(Ψ̃

(b)2
1 + Ψ̃

(b)2
2 )M1(α)− (Ψ̃

(b)
1 − Ψ̃

(b)
2 )2M2(α)

4πlB
. (5.29)
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The two functions M1(α) and M2(α) have been calculated previously by Kang et al [60]

M1(α) =

∞∫

0

dω

[
tanh(ωα)

tanh(ωπ)
−1
]

(5.30)

and

M2(α) =

∞∫

0

dω

[
tanh(ωα)

sinh(2ωπ)
− c
]

(5.31)

with c = 0. We note a typo in the work of Kang et al [60], who state Eq. 5.31 with c = 1. For α = π we find

M1(α) = 0 and M2(π) = 1/(2π), and Eq. 5.29 becomes the same as Eq. 5.16.
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6. MODELING LIPID-LIPID CORRELATIONS ACROSS A BILAYER

MEMBRANE USING THE QUASI-CHEMICAL APPROXIMATION*

6.1. Introduction

Biomembranes constitute an example par excellence for complex fluids: they are self-assembled

structures consisting of lipids and proteins that exhibit no long-range order but form dynamically changing

heterogeneities on the nanometer-scale due to a complex interplay of lipid-based interactions and protein-

based scaffolding. The former and latter are often discussed in terms of two conceptual models, the “lipid

raft” model [47, 160] and the “fence and picket” model [161], respectively. Lipid-based interactions, es-

pecially in the presence of cholesterol, have been studied extensively in the context of nonideal mixing,

domain formation, and lateral phase separation in model membranes [162, 163, 164, 165].

One specific question that has attracted some interest is the interaction of domains across a lipid

bilayer. Inter-leaflet coupling of solid-phase domains in fluid membranes has been demonstrated experi-

mentally already more than two decades ago [166]. Spatial registration across the membrane exists also

for fluid-phase domains in coexisting liquid-ordered and liquid-disordered phases. In a symmetric model

membrane fluid-phase domains appear in spatial registration across the bilayer [167]. In an asymmetric

membrane domain formation in one leaf can be induced or suppressed by the apposed leaf [168, 169].

Additional evidence of inter-leaflet coupling has been deduced, for example, from variations of phase sep-

aration temperatures in asymmetric versus symmetric bilayers [170] and from the dependence of protein

sequestration into membrane domains on bilayer asymmetry [171]. The domains are large in all these cases,

on the order of hundreds of nanometers or even micrometers, and thus reflect collective interactions of many

lipids across the bilayer.

Evidence for inter-leaflet coupling exists also on the level of individual lipids. For example, the

diffusion of particle-labeled lipids is affected by inter-leaflet coupling on the scale of a few nanometers [172].

*Reproduced with permission from “G. V. Bossa, J. Roth, S. May, Modeling lipid–lipid correlations across a bilayer membrane
using the quasi-chemical approximation, Langmuir 31 (36) (2015) 9924–9932”. Copyright 2015 American Chemical Society. This
paper can be accessed online at http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b01719. The material
in this chapter was co-authored by Guilherme V. Bossa, Joseph Roth, and Sylvio May. G. V. Bossa contributed to the manuscript
writing. G.V.B. was responsible for the mathematical development, simulation procedure, figures preparation, and discussion of
the results.
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An experimental method that probes correlations of lateral membrane organization on a molecular level is

Nearest-Neighbor Recognition (NNR) developed by Regen and coworkers [62]. This method exploits a

thiolate-disulfide interchange reaction to obtain a snapshot of nearest neighbor lipid distribution in a mixed

membrane. NNR has originally been used to investigate molecular recognition between phospholipids but

has recently also been applied to study interactions of phospholipids with cholesterol [173] and lipidated

peptides [174]. A specific system designed to accentuate inter-leaflet correlations is a binary lipid membrane

that contains lipids with two different hydrocarbon chain lengths: a short-chain and a long-chain lipid. To

avoid the creation of a hydrophobic mismatch [175, 176] between long and short acyl chains, the lipids can

be expected to arrange complementarily across the bilayer (i.e. a short-chain lipid in one leaf facing a long-

chain lipid in the apposed leaf). Indeed, using NNR Regen and coworkers have been able to demonstrate

and quantify such correlations [177, 178, 2].

We note that the NNR experiments have motivated a number of computer simulation studies based

either on atomistic or coarse grained lipid models. Molecular Dynamics simulations have yielded a signifi-

cant degree of complementarity for a mixture of gel and fluid phase lipids [179] and for small lipid domains

[180]. A Monte Carlo simulation study [181] has identified entropy-driven clustering and complementary

matching, arising from the steric hindrance of long-chain lipids across the bilayer. Finally, a weak degree

of complementary matching was predicted by a hybrid method [182] for a mixture of two fluid phase form-

ing lipids of different hydrocarbon chain lengths. In addition to these simulation works, Williamson and

Olmsted [183] have recently presented a lattice model to study the registration versus anti-registration of

domains during phase separation. The model aims to describe sufficiently large domains, but it also incor-

porates chain packing aspects on the level of individual lipids, including the tendency to avoid hydrophobic

mismatch through complementary lipid packing across the bilayer. The authors analyze their model on the

mean-field level, thereby predicting interesting kinetic scenarios where small anti-registered metastable do-

mains may form initially and then nucleate to reach a stable thermodynamic equilibrium of large registered

domains.

The present theoretical work was motivated by one of the above-mentioned NNR studies, where

Zhang et al [2] have determined the degree of cross talk between the two leaves of a binary lipid bilayer. To

briefly discuss that study, consider the probability of the two lipid types, in the following labeled 1 and 2,

to form (11), (12), and (22) pairs in an equimolar 1 : 1 lipid bilayer. Here, pair formation refers to lipids

residing in the same leaflet, where their headgroups are in close contact and able to engage in a chemical
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reaction that results in disulfide bridging. NNR measures these probabilities by taking a snapshot of nearest

neighbor contacts. That is, it determines the concentrations [11], [12], and [22] of lipid-lipid pairs. From

this, Zhang et al [2] calculated the equilibrium constant K = [12]2/([11][22]), corresponding to the chemical

reaction scheme (11)+(22)
 2 (12). For an ideal mixture [12]/2 = [11] = [12] and thus K = 4. For K 6= 4

the mixing is nonideal: K > 4 favors an alternating checkerboard-like lipid arrangement and K < 4 manifests

effective attraction between lipids of the same type, the latter favoring domain formation and possibly even

phase separation. Zhang et al [2] have investigated two different versions of lipids of types 1 and 2, one

with shorter (index “s”) and one with longer (index “l”) hydrocarbon chains (yet, each lipid variation 1s and

1l as well as 2s and 2l with the same headgroup structure). The corresponding equilibrium constants for the

three equimolar lipid mixtures 1s2s, 1l2l , and 1s2l , were found to be Kss = 6.55± 0.36, Kll = 6.76± 0.16,

and Ksl = 6.92± 0.47, respectively. Here, the presence of a mismatch in the lipid’s hydrocarbon chain

lengths did not significantly affect the degree of nonideality as compared to having no mismatch. We note

that all three equilibrium constants were larger than 4, which likely resulted from the fact that one lipid

type was carrying a negative excess charge. The corresponding electrostatic interaction leads to an effective

repulsion between lipids of the same type implying K > 4. It is worth pointing out, however, that the excess

charge is only one among a multitude of often opposing factors in determining the mixing properties of lipid

membranes [184].)

In another set of experiments, Zhang et al [2] added the divalent cationic ligand hexamethyl-1,6-

hexanediammonium dichloride to each of the three mixtures 1s2s, 1l2l , and 1s2l . Because of its two positive

charges the ligand tends to bind to (and thus bring into close proximity) two charged lipids. Hence, the

equilibrium constant is expected to decrease. Indeed, the authors find Kss = 4.88±0.27, Kll = 4.86±0.09,

and Ksl = 3.84±0.12, all being smaller than their corresponding values in the absence of the ligand. In fact,

the presence of the divalent ligand renders all three mixtures more ideal and, most importantly, introduces

a significant difference for matching and non-matching lipid chain lengths. Consequently, the additional

decrease of the equilibrium constant for the lipid mixture with non-matching lipid chains was interpreted

by Zhang et al [2] as an indication of cross talk across the bilayer. We point out that it is not obvious to

rationalize why cross talk across the bilayer is only observed in the presence of the ligand but not in its

absence. Ligand-induced modifications of lipid-lipid interactions within each leaflet seem to affect lipid-

lipid recognition across the bilayer.

In this work we propose a theoretical model for the interaction of lipids within and across a lipid
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bilayer. To account for nearest neighbor correlations between lipids within and across lipid layers we need to

go beyond the often used Landau or Landau-Ginzburg mean-field theory. Because the analysis by Zhang et

al [2] of their NNR experiments is carried out in terms of a chemical reaction scheme, we find it appropriate

to employ a similar modeling approach, namely the quasi-chemical approximation (QCA). To this end we

apply QCA to a system of two coupled 2D lattice models (that represent the two macroscopically homo-

geneous leaves of a lipid bilayer). Although QCA (and modifications of it) is a frequently used method in

statistical mechanics of weakly correlated systems to factorize contact probabilities [185, 186], it has rarely

[187] been adapted to the context of lipid bilayers. Here, we apply QCA to a macroscopically homogeneous

binary lipid bilayer that does not undergo lateral phase separation but exhibits lipid-lipid correlations on

molecular scales both within and across its two leaflets.

Our model introduces three interaction parameters. The first (denoted below by ω) accounts for

lipid-lipid interactions within each leaf. Because our model does not target phase transitions, ω does not

need to carry a positive sign. In fact, a negative sign, which reflects an effective repulsion between lipids of

the same type, will be most appropriate to model the experiments by Zhang et al [2]. The second interaction

parameter (denoted below by η) describes lipid-lipid interactions across the membrane. Both ω and η reflect

pairwise lipid-lipid interactions. The third parameter (denoted below by ε) accounts for the hydrophobic

mismatch associated with lipids of different chain lengths, which involves multi-body interactions (that

is, interactions involving four lipids on the level of QCA). We demonstrate that the observed presence of

cross talk can be rationalized by QCA, but only if the hydrophobic mismatch parameter ε is included in the

analysis.

6.2. Theory

6.2.1. Reminder of QCA

We briefly recall the basic idea behind QCA; further details can be found in textbooks [188, 189].

A binary lattice gas with nearest neighbor interactions can be analyzed using QCA by assuming that pairs of

nearest neighbors are statistically uncorrelated. Consider a lattice of coordination number z with N =N1+N2

sites of which N1 and N2 are occupied by molecules of type 1 and 2, respectively. Our notion of molecules is

general but in this work we will identify them with lipids. Fig. 6.1 displays an example, a one-dimensional
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system with z = 2.

We denote by N11, N12, N21, N22 the numbers of (11), (12), (21), (22) pairs, respectively. Conserva-

tion of N1 and N2 implies the relations (z/2)N1 =N11+N12 and (z/2)N2 =N21+N22. (Note that the periodic

boundary conditions used to express these relations become irrelevant in the thermodynamic limit N→ ∞.)

In addition, each (12) pair must be matched by a corresponding (21) pair, implying N12 = N21. There is thus

only one single degree of freedom left to the system, which we denote by the sum N̄ = N12 +N21 of (12)

and (21) pairs.

11 pair 12 pair 21 pair 22 pair

+
K

ω

2

type 1 type 2
(A)

(B)

Figure 6.1. A: Schematic illustration of a one-dimensional lattice (of coordination number z = 2) with
N = 16, N1 = 7, N2 = 9. The displayed example configuration has N11 = 3, N12 = 4, N21 = 4, N22 = 5
(assuming periodic boundaries). The interaction energy between a (12) or (21) pair is denoted by ω . Hence,
the total interaction energy of the displayed configuration is (N12 +N21)ω = 8ω . B: The reaction scheme
invoked by Eq. 6.4 is characterized by an equilibrium constant K.

We assume nearest neighbor interactions with a corresponding interaction energy ω between any

two neighboring lattice sites that are occupied by different types of molecules. Hence, any given microstate

entails an interaction energy u = ω(N12 +N21). The Helmholtz free energy is then

F =− ln

[
∑
{i j}

e−u({Ni j})
]

(6.1)

where the sum runs over all microstates; i.e., all possible distributions of (11), (12), (21), (22) pairs. Note

also that everywhere in the present work we express the free energy (and, in fact, all energies) in units of

the thermal energy kBT where kB is Boltzmann’s constant and T the absolute temperature. For sufficiently

large system size (that is, in the thermodynamic limit N→∞) the sum in Eq. 6.1 can be approximated by its

largest contribution. The quasi-chemical approximation offers a simple way to calculate that contribution

89



by assuming nearest neighbor pairs are uncorrelated. Indeed, accounting for pairwise (but no higher-order)

correlations is the one step that QCA goes beyond the mean-field model. This allows us to write the free

energy F = F(N11,N12,N21,N22) in Eq. 6.1 explicitly as

F = F0 +N11 lnN11 +N12 lnN12

+ N21 lnN21 +N22 lnN22 +ω(N12 +N21) (6.2)

where F0 is a constant. As pointed out above, the Ni j’s are not all independent but can be expressed in terms

of the single degree of freedom N̄ through N11 = (zN1− N̄)/2, N22 = (zN2− N̄)/2, and N12 = N21 = N̄/2.

Inserting these equations into Eq. 6.2 yields F(N̄) which must adopt a minimum in thermal equilibrium.

From (dF/dN̄)N1,N2 = 0 we find

N̄2

(zN1− N̄)(zN2− N̄)
=

N12 N21

N11 N22
= e−2ω (6.3)

which constitutes a quadratic equation for N̄. Eqs. 6.2 and 6.3 establish the framework for the extended

model of the present work. We proceed with several remarks. First, although pairs (12) and (21) are micro-

scopically distinguishable, they contribute the same to the averaged behavior of the system; it is therefore

useful to rewrite Eq. 6.3 as
N̄2

N11 N22
=

(N12 +N21)
2

N11 N22
= 4e−2ω = K (6.4)

which can be viewed as resulting from the chemical reaction illustrated in Fig. 6.1B (hence the notion of

the quasi-chemical approximation). The corresponding equilibrium constant is K = 4 exp(−2ω). Second,

the limit ω → 0 leads to a non-interacting lattice gas, resulting in an equilibrium constant K = 4 as well as

in N11 = zN2
1/N, N12 = N21 = (z/2)N1N2/N, and N22 = zN2

2/N. Third, consistency with the ideal gas limit

determines the constant F0 = (1− z)[N1 ln(N1/N)+N2 ln(N2/N)]− (z/2)N lnN. Fourth, for z = 2 the quasi-

chemical approximation represents the exact solution of the one-dimensional Ising model with conserved

magnetization. Finally, calculation of the free energy upon insertion of F0 and N̄ (the solution of Eq. 6.3) is

straightforward and leads to a well-known [188, 189] analytic expression for the free energy F .
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6.2.2. QCA for Two Coupled Layers

We extend QCA to the case of two coupled lattice gases that represent the two leaflets of a lipid

bilayer. The two lattice gases are referred to as external (E) and internal (I); both have the same size N and

the same coordination number z. The external lattice contains NE
1 sites occupied by molecules of type 1 (and

consequently NE
2 = N−NE

1 sites occupied by molecules of type 2). Similarly, the internal lattice contains

NI
1 sites occupied by molecules of type 1 (and consequently NI

2 = N−NI
1 sites occupied by molecules of

type 2). The two lattice gases reside on top of each other: each lattice site on one lattice is neighbor to a

single corresponding site on the other, apposed, lattice. A specific microstate for a one-dimensional case

(with z = 2) is illustrated in Fig. 6.2A.
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Figure 6.2. A: Schematic illustration of two coupled one-dimensional binary lattice gases (of coordination
number z = 2) with N = 16, NE

1 = 8, NI
1 = 10. The displayed bilayer microstate has N1122 = N1121 = N1212 =

N2121 = N1112 = N1221 = N2221 = N2122 = 1, N2212 = 2, and N2111 = N1211 = 3. The remaining Ni jkl’s vanish.
The interaction energy for this particular example is 10ωE + 8ωI + 8η + 16ε . B: All 16 distinct double
pair conformations with their corresponding interaction energies. Here, ωE and ωI are nearest neighbor
interaction energies within the external (E) and internal (I) layer, η is the interaction energy across the
bilayer, and ε denotes the hydrophobic mismatch energy. C: Lipids with different chain length may or may
not create hydrophobic mismatch. The identification of molecule types 1 and 2 with short and long chain
lipids provides our motivation for the different mismatch energies. The displayed examples, (1221), (2211),
(1121), and (1212), have mismatch energies of 0, 0, ε , and 2ε , respectively.
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Our numerical calculations below are carried out for two-dimensional lattices with z = 6. To specify

the microscopic state of the two coupled lattice gases, we introduce the notation (i jkl) for a given double

pair where each index can adopt the value 1 or 2. Here, the letters i j denote two neighboring sites in the

external layer and kl two neighboring sites in the internal layer such that pairs ik and jl are spatially apposed

across the layer. All 24 = 16 different double pair conformations are illustrated in Fig. 6.2B.

Each double pair conformation is assigned a microscopic interaction energy. We account for four

different contributions. First, nearest neighbors of type 1 and 2 in the external layer interact with energy

ωE . Second, nearest neighbors of type 1 and 2 in the internal layer interact with energy ωI . Below we will

set both interaction parameters equal, which is appropriate when modeling the experimental setup of Zhang

et al [2]. Keeping ωE and ωI initially separate facilitates the discussion of the free energy contributions

below and preserves applicability of our model to more general situations such as supported bilayers or a

membrane whose two leaflets face different electrolytes. Third, there is an interaction energy η of nearest

neighbors of type 1 and 2 across the two layers. Fourth, we assign an interaction energy ε to all double pairs

that contain a 3:1 or 1:3 ratio of molecules of type 1 and 2, and an interaction energy 2ε to the double pairs

(1212) and (2121). Our motivation for the fourth energy contribution is the hydrophobic mismatch penalty

that two lipids of different chain length in a lipid bilayer incur; see the illustration in Fig. 6.2C. We note that

the doubling of the hydrophobic mismatch penalty, when comparing conformations such as (1212) with

(1211) represents a reasonable assumption; a more general model would assign two independent energy

constants.

As an example consider the double pair (1121). It has an interaction energy η +ωI + ε because

the two lattice sites belonging to the internal layer interact with each other, there is one pair of different

lipids interacting across the two layers, and the change in bilayer thickness implies a hydrophobic mismatch

penalty. Note that while ωE , ωI , and η refer to two-body interactions, the hydrophobic mismatch energy ε

emerges from a four-body interaction. We also point out that the two states (1221) and (2112) each have

an energy ωE +ωI +2η and thus do not contain a hydrophobic mismatch penalty. This is a consequence of

chain interdigitation across the midplane of the lipid bilayer as illustrated in Fig. 6.2C for the double pair

(1221).

We denote by Ni jkl the number of double pairs that exhibit conformation (i jkl). The 16 different

Ni jkl’s are not all independent. The relations that exist between the Ni jkl’s can conveniently be expressed

using the following summation convention: Ni jk• = Ni jk1 +Ni jk2 and analogously for any other index. That
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is, appearance of the symbol • indicates summation over all combinations of the two possible values 1 and

2. For example, N1•2• = N1121 +N1122 +N1221 +N1222, etc. Conservation of the numbers of lipids of type 1

and 2 in each layer then implies

z
2

NE
1 = N1•••,

z
2

NI
1 = N••1•,

z
2

N = N•••• (6.5)

There are only three (and not four) independent conservation relations because the number of lattice sites (N)

is the same for both layers. Furthermore, in each layer each pair (12) must be matched by a corresponding

pair (21) in that same layer. This gives rise to the two relations

N12•• = N21••, N••12 = N••21 (6.6)

Eq. 6.6 can be viewed as symmetry relations that follow from the lateral isotropy of both lattices. In fact,

four additional independent symmetry relations can be identified,

N1221 = N2112, N1212 = N2121

N1121 = N1112, N1•1• = N•1•1 (6.7)

There is no other independent symmetry relation that would add to those in Eqs. 6.6 and 6.7. Hence, Eqs. 6.5,

6.6 and 6.7 comprise a set of 9 relations that reduce the number of degrees of freedom from 16 to 7. The

free energy of the two coupled lattices can be written in analogy to Eq. 6.1 as

F =− ln

[
∑
{i jkl}

e−u({Ni jkl})
]

(6.8)

where u = u({Ni jkl}) denotes the interaction energy for a given set {Ni jkl} of double pairs and where the

summation runs over all possible microstates {i jkl}. With the interaction scheme in Fig. 6.2B we can
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express the interaction energy of any given bilayer microstate as

u = (N1112 +N1121 +N2212 +N2221) (η +ωI + ε)

+ (N1211 +N1222 +N2111 +N2122) (η +ωE + ε)

+ (N1122 +N2211)2η

+ (N1212 +N2121) (ωE +ωI +2ε)

+ (N1221 +N2112) (ωE +ωI +2η) (6.9)

For example, the microstate displayed in Fig. 6.2A has u = 10ωE + 8ωI + 8η + 16ε . Using QCA renders

all double pairs statistically independent and thus allows us to express the free energy of a sufficiently large

system as

F = F0 +u({Ni jkl})+
2

∑
i=1

2

∑
j=1

2

∑
k=1

2

∑
l=1

Ni jkl lnNi jkl (6.10)

where the constant F0 is independent of the Ni jkl’s. We highlight that the statistical independence of the

double pairs that enter Eq. 6.10 means all correlations between the 4 lipids that constitute a double pair can

be accounted for; these include both pairwise and multi-body correlations. As pointed out, the system has 7

independent degrees of freedom. The derivative of the free energy with respect to all 7 degrees of freedom

must vanish in thermal equilibrium. This gives rise to the following 7 equations

N1222N2221

N1221N2222
= e−2ε ,

N1112N2111

N1111N2112
= e−2ε ,

N1222N2122

N1122N2222
= e−2(ωE+ε),

N2212N2221

N2211N2222
= e−2(ωI+ε), (6.11)

N2112N1222

N1112N2222
= e−2(ωE+η),

N2112N2221

N2111N2222
= e−2(ωI+η),

N1222N2221

N1212N2222
= e−2η

The reaction scheme invoked by Eqs. 6.11 is schematically displayed in Fig. 6.3. Note that Eqs. 6.5, 6.6

and 6.7 together with Eqs. 6.11 constitute a set of 16 equations for the occupation numbers Ni jkl of the 16
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double pair conformations. For any given set of numbers N, NE
1 , NI

1, ωE , ωI , η , ε the 16 different Ni jkl’s can

easily be computed numerically.
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Figure 6.3. The reaction scheme invoked by Eqs. 6.11. The equilibrium constants are K1 = K2 = e−2ε ,
K3 = e−2(ωE+ε), K4 = e−2(ωI+ε), K5 = e−2(ωE+η), K6 = e−2(ωI+η), and K7 = e−2η .

6.3. Results and Discussion

Our objective is to compute the numbers of (11), (12), and (22) pairs in each layer individually.

To characterize the corresponding distributions we define (in analogy to Eq. 6.4) the apparent equilibrium

constants

KE =
(N12••+N21••)2

N11••N22••
, KI =

(N••12 +N••21)
2

N••11 N••22
(6.12)

in the external and internal layer, respectively. In the experiments by Zhang et al [2] the lipid membrane

was macroscopically homogeneous and symmetric; i.e. both bilayer leaves consisted of an equimolar 1 : 1

lipid mixture of types 1 and 2. This implies ωE = ωI and NE
1 /N = NI

1/N = 0.5. For ωE = ωI symmetry

gives rise to KE = KI . It is thus convenient to define ω = ωE = ωI and K = KE = KI . Hence, the function

K = K(ω,η ,ε) completely specifies the pair distribution in each of the two layers as function of the lipid-

lipid interaction strengths within (ω) and across (η) membrane leaflets and as function of the hydrophobic

mismatch penalty (ε). We have calculated K = K(ω,η ,ε) from solutions of the equations for the various

Ni jkl as discussed in the previous section.
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6.3.1. Discussion of Limiting Cases

We discuss combinations of limiting cases for the hydrophobic mismatch penalty parameter ε =

{0,+∞} and the inter-leaflet lipid-lipid interaction parameter η = {−∞,0,+∞}. A summary of the results,

valid for arbitrary choices of the nearest neighbor lipid-lipid interaction parameter ω is displayed in Table

6.1.

Table 6.1. Equilibrium constants K predicted for the six combinations of ε = {0,+∞} and η =
{−∞,0,+∞}. Each result is valid for arbitrary ω .

η →−∞ η = 0 η →+∞

ε = 0 K = 4 e−4ω K = 4 e−2ω K = 4 e−4ω

ε →+∞ K = 4 e−4ω K = e−4ω K = 0

Each case can be rationalized by considering the conformations (i jkl) that are adopted with non-

vanishing probability:

ε = 0 and η = 0: The two leaflets are completely decoupled and, hence, the single-layer result K = 4e−2ω

according to Eq. 6.4 is adopted.

ε = 0 and η →+∞: The two apposed leaflets are strongly coupled into symmetric pairs, leaving only the

four distinct conformations (1111), (2222) (each with vanishing energy) and (1212), (2121) (each

with an energy of 2ω). This effectively doubles the interaction energy ω→ 2ω as compared to η = 0.

Hence K = 4e−4ω .

ε = 0 and η → −∞: The two apposed leaflets are strongly coupled into anti-symmetric pairs, leaving

only the four distinct conformations (1122), (2211) (each with vanishing energy) and (1221), (2112)

(each with an energy of 2ω). As in the preceding case, this effectively doubles the interaction energy

ω → 2ω as compared to η = 0. Hence K = 4e−4ω .

ε =+∞ and η = 0: There can be no mismatch, leaving only the six conformations (1111), (1122), (2211),

(2222) (all with vanishing energy) and (1221), (2112) (both with an energy of 2ω). With the defini-

tion of the equilibrium constant in Eq. 10.9 and the Boltzmann factor for the interaction energy ω we
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obtain

K =
(e−2ω + e−2ω)2

2×2
= e−4ω (6.13)

ε =+∞ and η =→+∞: Here, the only surviving states are (1111) and (2222), implying K = 0. Note that

in this limit the bilayer would separate into pure phases of type 1 and type 2, irrespective of ω .

ε = +∞ and η =→−∞: Here, the surviving four states are (1122), (2211) (both with vanishing energy)

and (1221), (2112) (both with an energy of 2ω). This implies K = 4e−4ω .

6.3.2. Discussion of Numerical Results

Next, in Fig. 6.4, we display numerical results for K(ω,η ,ε) as function of η . Note that K is plotted

logarithmically. We first consider the special case ε = 0, thus ignoring the hydrophobic mismatch energy

penalty. The three solid lines in Fig. 6.4 all refer to ε = 0, with ω = 0 for curve a, ω = 0.2 for curve b, and

ω = −0.2 for curve c. We note that the formulation of our model only in terms of ω and η (that is, with

ε = 0) retains all nearest neighbor interactions, lateral in each leaflet and across the membrane, yet ignores

any multi-body interactions. For ω = 0, lipids within the two leaflets do not interact with each other. The

lipid mixture in each leaflet is then random, implying K = 4 as discussed following Eq. 6.4. The random

distribution for ω = 0 is not affected by η (the solid curve a in Fig. 6.4). For ω = 0.2 (the solid curve

b in Fig. 6.4) lipids of types 1 and 2 effectively attract each other. This leads to K < 4. In the complete

absence of inter-leaflet interactions, η = 0, we obtain K = 4 e−2ω = 2.68 according to Eq. 6.4. Increasing

the magnitude of η enhances the effective lipid-lipid attraction strength within each leaflet and thus must

further decrease K. The decrease is invariant with respect to the sign of η . We have discussed this already

in Table 6.1 for the limit |η | → ∞, where apposed lipids are forced to interact via symmetric (for η →+∞)

or antisymmetric (for η →−∞) pairs across the bilayer and thus double their effective attraction strength

from ω = 0.2 to 2ω = 0.4, implying K(|η | → +∞) = 4 e−4ω = 1.80. For ω = −0.2 (the solid curve c in

Fig. 6.4) lipids of types 1 and 2 effectively repel other lipids or their own species, implying K > 4. For

η = 0 we obtain K = 4 e−2ω = 5.97, which according to Table 6.1 further increases with growing |η | up to

K = 4 e−4ω = 8.90 in the limit |η | → ∞. Here again, inter-leaflet coupling enhances the effective lipid-lipid

attraction strength within each leaflet.

Switching on the hydrophobic mismatch energy ε renders the curves in Fig. 6.4 asymmetric with
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respect to the sign of η . The physically relevant case is ε > 0, where mismatch implies a penalty and not

an energy reward. The three dashed lines in Fig. 6.4 all refer to ε = +0.2, again with a ω = 0 for curve a,

ω = 0.2 for curve b, and ω =−0.2 for curve c. Generally, K decreases if ε is increased from ε = 0 to ε = 0.2

(see also the left and right diagrams in Fig. S1 of the Supporting Information). This is expected because

growing ε favors the zero-mismatch states, 1111, 1122, 1221, 2222, 2211, 2112. Two of these states have

lipids of different types in each leaflet (1221 and 2112), and the remaining four (1111, 1122, 2222, 2211)

have lipids of the same type in each leaflet. This implies a stronger statistical weight of configurations with

neighboring lipids of the same type in each leaflet and, hence, the decrease of K.
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solid lines refer to ǫ = 0
dashed lines refer to ǫ = 0.2

Figure 6.4. Equilibrium constants K predicted by the quasi-chemical approximation, plotted as function of
the interaction energy across the lipid bilayer η . The three sets of curves correspond to different lipid-lipid
interaction energies ω = 0 (a), ω = 0.2 (b), and ω = −0.2. (c). Each set contains two different curves,
calculated for a mismatch energy ε = 0 (solid lines) and ε = 0.2 (dashed lines).

We note an additional consequence: if only the states 1122, 1221, 2211, 2112 were populated, all

lipids would face a lipid of opposite type on the other side of the bilayer. In this hypothetical scenario one

leaflet would form a perfect hydrophobic template for the other one. The additional statistical preference of

the two other states, 1111 and 2222, leads to the observed decrease of K in Fig. 6.4 for growing ε . Because a

transition away from either one of these two states is not possible without hydrophobic mismatch, population

of the state 1111 (and equivalently for 2222) must give rise to spatial clusters, implying registered domains

of lipids of type 1 (and equivalently for type 2). These clusters are illustrated in the Table of Contents entry.

The tendency that K decreases with growing ε is further modulated by η . Growing η disfavors four
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of the six states, leaving only 1111 and 2222 unaffected; this gives rise to a further decrease of K. On the

other hand, increasingly negative values of η leave the four states 1122, 1221, 2211, and 2112 unaffected,

and thus oppose the statistical bias introduced by increasing ε . As a consequence, the values of K for ε = 0

and ε = 0.2 approach each other if η becomes more and more negative. These trends are all consistent with

the entries in Table 6.1.

6.3.3. Monte Carlo Simulations

In order to verify that the trends predicted by QCA are not artifacts of neglecting correlations be-

tween the 16 double pair conformations, we have carried out Monte Carlo simulations of two coupled two-

dimensional cubic lattices, each with 20×20 lattice sites and the same interactions as defined in Fig. 6.2B.

The results are displayed in Fig. 6.5.
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Figure 6.5. Equilibrium constants K predicted by Monte Carlo simulations of two coupled two-dimensional
cubic lattices (each of 20× 20 lattice sites) with interaction parameters identical to those used in QCA.
Figs. 6.4 and 6.5 are derived for the same interaction parameters, the former using QCA and the latter using
Monte Carlo simulations. Specifically, the three sets of curves correspond to different lipid-lipid interaction
energies ω = 0 (a), ω = 0.2 (b), and ω =−0.2. (c). Each set contains two different curves (marked by data
points), calculated for a mismatch energy ε = 0 (marked by the symbol •) and ε = 0.2 (�).

Clearly, there is qualitative agreement between the data in Figs. 6.4 and 6.5. Deviations of K from

K = 4 tend to be somewhat stronger in the Monte Carlo simulations as compared to QCA, which is the

expected consequence of neglecting correlations in QCA.
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6.3.4. Comparison with Experimental Results

We compare the predictions of QCA with the experimental results of Zhang et al [2]. Here, NNR

was used to demonstrate the presence of cross talk between the two leaflets of a fluid lipid bilayer. As

discussed in the Introduction, equimolar lipid mixtures with different combinations of short and long chains,

1s2s, 1l2l and 1s2l , yielded equilibrium constants Kss = 6.55±0.36, Kll = 6.76±0.16, and Ksl = 6.92±0.47

in the absence of a divalent ligand as well as Kss = 4.88±0.27, Kll = 4.86±0.09 and Ksl = 3.84±0.12 in

the presence of the divalent ligand. The decrease of the equilibrium constant for the short-chain and long-

chain lipid mixture (1s2l) in the latter case was interpreted as evidence of a hydrophobic templating effect

across the two apposed leaflets of a fluid lipid membrane (referred to as “cross talk” by Zhang et al [2]).

Note that the observed equilibrium constants are marked in Fig. 6.6 (left and right diagrams refer to absence

and presence of the ligand, respectively).
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Figure 6.6. Equilibrium constants K predicted by the quasi-chemical approximation, plotted as function of
the mismatch energy ε for ω = −0.25 (left diagram) and ω = −0.1 (right diagram). These two choices of
ω model, respectively, the absence and presence of the divalent ligand in the experiments of Zhang et al [2].
Solid lines refer to η = 0, dashed lines to η =±0.4, and dotted lines to η =±0.8. For each pair of broken
or dotted lines, the upper curve refers to negative η and the lower curve to positive η . Experimentally
observed equilibrium constants [2], including their error bars, are indicated on the left-hand side (ll and ss)
and right-hand side (sl) of each diagram.

Consider the presence of the divalent ligand (right diagram of Fig. 6.6). For the 1s2s and 1l2l sys-

tems, where all lipids have the same chain length, neither direct lipid-lipid interactions across the membrane

nor hydrophobic mismatch penalties are expected to be relevant, implying η = ε = 0. (Strictly, even for the

1s2s and 1l2l systems there could be some degree of hydrophobic mismatch and a non-vanishing lipid-lipid
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interaction across the membrane, namely if the different headgroups occupy different cross-sectional areas.

The importance of this scenario is difficult to assess because no experimental data for the cross-sectional

areas of the exchangeable phospholipids used in the experiments of Zhang et al [2] are available.) The two

layers in the QCA model then decouple and the equilibrium constant is ω =−(1/2) ln(K/4) =−0.1 for the

experimentally observed K ≈ 4.9. For the 1s2l system we need to include the influence of η and/or ε . The

solid line in the right diagram of Fig. 6.6 shows the influence of ε for η = 0. Clearly, the hydrophobic mis-

match penalty ε lowers K and can thus rationalize the experimentally observed decrease of Ksl as compared

to Kss and Kll , which was interpreted as evidence for the presence of “cross talk”. The reduction of K results

from the zero-mismatch states having twice as many lipid neighbors of the same type (1111, 1122, 2211,

and 2222) than of different type (1221 and 2112). In addition, the most unfavorable high-mismatch states

1212 and 2121 have lipid neighbors of different type. Hence, avoiding mismatch tends to induce effective

attraction between lipids of the same type. The reason behind this tendency is that the mismatch-induced

energy bias ε favors the clustering of states for which the membrane does not change its thickness: states

that are either complementary across the membrane (1122, 2211, 1221 and 2112) or represent domains of

lipid type 1 (1111) or lipid type 2 (2222). The latter two are responsible for the decrease in K for growing

ε . Note that “cross talk” is not the result of direct lipid-lipid interactions across the membrane. Indeed, K

increases with growing magnitude of η (the same for positive or negative η), given ε = 0 and ω < 0.

Let us estimate the interaction parameters ε and η . A crude estimate for an upper bound of ε

can be obtained by assuming each lipid chain adopts its optimal length, but at the cost of the long chains

exposing some of their hydrocarbon segments to the aqueous phase if mismatch is present; see for example

the illustration of the conformation 1121 in Fig. 6.2C. The corresponding energy cost should be on the order

γ δha/z where γ = 12kBT/nm2 is the hydrocarbon chain-water interfacial tension [190], a≈ 0.65nm2 is the

cross-sectional area of a (double tail) lipid, δh ≈ 0.3 nm is the length of the chain segment that is exposed

to aqueous solvent, and z = 4 . . .6 is the coordination number of the lattice. With this we obtain a mismatch

energy of ε . γ δh a/(zkBT ) = 0.6 kBT . Another upper bound for ε can be estimated by assuming the

membrane thickness stays constant, but at the cost of a corresponding stretching/compressing deformation

of the lipids, as characterized by the compressional modulus Kc = 40 kBT/nm2 of a lipid membrane [191].

For example, consider the conformation 1121 and denote the optimal chain lengths of the short and long

chains by hS and hL. If the actually adopted chain lengths for the 1121 conformation are h1, h2, h3 and h4,
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we can write for the free energy per lipid double pair (of total cross-sectional area 2a)

F
kBT

= a
Kc

2

[(
h1

hS
−1
)2

+

(
h2

hS
−1
)2

+

(
h3

hL
−1
)2

+

(
h4

hS
−1
)2
]

(6.14)

We fix the thickness D = h1+h3 = h2+h4 of the lipid double pair and define the two chain length relaxation

parameters η1 = h1/h3 and η2 = h2/h4. Then, optimizing F(D,η1,η2) yields F = a(Kc/2)(hS−hL)
2/(3h2

S+

h2
L). With hS = 0.8hL we obtain the upper bound estimate ε . F/kBT = 0.18. The actual value of ε is

expected to result from an optimization of the two mechanisms, variations of the membrane thickness and

partial lipid chain protrusions into the aqueous phase; we expect it to be smaller but still on the same order of

magnitude than the lower of our two estimates. This justifies our choice of the range 0≤ ε ≤ 0.2 in Fig. 6.6.

The extent of lipid interactions across a lipid bilayer has been estimated recently by Collins [192]

using a simple membrane line tension argument to be, very roughly, on the order of 0.1 . . .1 kBT/nm2. A

much more detailed coarse grained Molecular Dynamics simulation by Risselada and Marrink [193] of a

ternary mixture of dipalmitoylphosphatidylcholine, dilinoleoylphosphatidylcholine, and cholesterol, which

form coexisting liquid-disordered and liquid-ordered lipid phases, yielded 0.1 . . .0.2 kBT/nm2. Measured

per lipid cross-sectional area the latter corresponds to η = 0.05 . . .0.1. However, for coexisting liquid-

disordered and liquid-ordered phases of ternary lipid mixtures with cholesterol η is likely much larger than

for binary lipid mixtures where the lipids are all in the liquid-disordered state. Indeed, the different material

stiffness of the disordered and ordered lipid phases has been suggested to determine the magnitude of η

[194]. Hence, for binary lipid mixtures in their fluid state we can assume η < 0.1. The influence of η on the

equilibrium constant K is then negligible (see Figs. 6.5,6.6, and S1). We speculate that the predicted lack

of direct coupling, as expressed by the weak dependence of K on η , might be related to the experimentally

observed insensitiveness of the gel-to-liquid phase transition temperature on the degree of externally induced

inter-leaflet asymmetry [195, 196].

Our estimates of η and ε indicate that Fig. 6.6 (especially the solid line in each diagram, which

corresponds to η = 0) is likely to capture the relevant regimes for the experiments of Zhang et al [2].

Recall that the right diagram refers to the system containing the divalent ligand for which “cross talk” was

observed experimentally, as evidenced by the decrease of the equilibrium constant Ksl as compared to Kss
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and Kll . Clearly our model reproduces the experimental findings and provides a physical explanation for

why Ksl is reduced. Yet, we also point out that in the absence of the ligand (left diagram in Fig. 6.6) there was

no experimental indication of a “cross talk” between the two leaflets whereas our model would still predict

a decrease of Ksl . Even for a different set of interaction parameters our model would not be able to fit all

six experimental equilibrium constants at the same time. A possible reason could be that the divalent ligand

acts beyond merely increasing the attractive interaction between two charged lipids as we have assumed in

our model. Consider, for example, that the size of the divalent ligand exceeds the headgroup-to-headgroup

distance between two neighboring anionic lipids. To reduce its effective length, the ligand could then bind in

an oblique orientation which induces a height mismatch and this affects the interaction parameter ε . Another

possibility is that binding of the ligand alters the cross-sectional area per lipid. A smaller cross-sectional

area imparts a thickening of the bilayer, which again affects the mismatch energy ε . Still another possible

scenario is that the ligand, when bound, forms a tight complex with two anionic lipids, which enhances its

propensity to serve as template across the bilayer by increasing the effective lipid size. Our present level

of QCA does not capture this effect, unless the ligand is explicitly incorporated into the microstates of the

lipid double pair (see Fig. 6.2). The number of microstates for each individual lipid double pair would then

increase significantly due to the possible presence or absence of the ligand, which exceeds the scope of the

present work but would be an interesting extension. However, the principal physical mechanism of how

“cross talk” is induced across a lipid bilayer through hydrophobic templating is already captured by the

present model.

6.4. Conclusions

Modeling of the coupling between the two leaflets of a mixed lipid bilayer has focused in the past

on mean-field models [197, 198] and computer simulations [179, 193, 180]. The former neglect lipid-

lipid correlations, rendering them useful in describing the inter-leaflet coupling of entire phase-segregated

domains but incapable of characterizing the coupling on the level of individual lipids. The latter are powerful

in describing any type of coupling, often however without allowing for a straightforward extraction of the

underlying physical mechanism behind the coupling.

The present work was motivated by NNR experiments from Zhang et al [2], who predict “cross

talk” through a hydrocarbon chain length-mediated hydrophobic templating effect on the level of individual
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lipids. To describe the cross talk on this level, we needed to go beyond the mean-field approximation.

To this end, we have included lipid-lipid correlations using the quasi-chemical approximation scheme of a

lattice gas model of a lipid bilayer. Our theoretical approach employs the notion of “chemical reactions”

as a tool to describe nearest neighbor correlations. This mimics the experimental NNR approach of Zhang

et al [2], which takes a snapshot of a binary membrane and then describes nearest neighbor correlations

in terms of a chemical reaction and a corresponding equilibrium constant. A smaller equilibrium constant

reflects a larger probability that two neighboring lipids in a given leaflet are of the same type. According

to our theoretical model and supporting Monte Carlo Simulations, the experimentally observed reduction of

the equilibrium constant for binary mixtures of long and short chain lipids in their fluid state (as compared

to having no chain length mismatch) results from the tendency of the membrane to maintain a constant

thickness, implying an enhanced probability of lipids of the same type (that is, the same chain length) to be

located at close proximity. In addition, we find that two interaction parameters, accounting for lipid-lipid pair

interactions within each leaflet and for hydrophobic mismatch, are crucial to reproduce the experimentally

observed cross talk whereas direct lipid-lipid pair interactions across the membrane are not needed and are

likely to be negligible for binary lipid membranes in their fluid state.
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7. INTERACTIONS BETWEEN MEMBRANES AND “METAPHILIC”

POLYPEPTIDE ARCHITECTURES WITH DIVERSE SIDE-CHAIN

POPULATIONS*

7.1. Introduction

The functions of proteins or peptides, such as molecular recognition, enzymatic reactions, and al-

losteric regulation, are determined by their structures and their internal motions: Proteins or peptides can

fold into structures that present specific chemical patterns on their molecular surfaces. These nanoscopically

defined patterns of charge, hydrogen bonding, and/or hydrophobicity, which strongly influence peptide or

protein interactions, are known to be partly smeared out by thermal fluctuations. For protein configurations

structurally cognate to the native folded state, the protein energy surface, which controls protein dynamics,

can have multiple minima, and proteins exhibit harmonic motions within these minima as well as crossing of

potential barriers between them. In general, however, molecular thermal motions are not large compared to

the dimensions of the molecule. Moreover, single-molecule experiments show that folded proteins typically

have Young’s moduli of≈ 1× 108 Pa [199, 200, 201], which give the protein a solid-like rigidity. There is

a rich literature showing that in the low-temperature limit, proteins can undergo a dynamic transition to a

glass-like solid state with small fluctuations [202, 203]. Taken together, the surface structure, shape, and

elasticity of a protein determine the resultant presentation of surface chemistry, and thereby enable or limit

its interactions. It would be interesting to start with the functional requirements for a given protein or peptide

class, and explore the opposite limit, where patches of surface chemistry can be mobile.

Both antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) are short (generally < 50

amino acids) peptides that exert their functions by interacting with and permeating membranes. As part of

the innate host defense, AMPs collectively exhibit broad spectrum antimicrobial activity [204, 205, 206]

*Reproduced with permission from “M. W. Lee, M. Han, G. V. Bossa, C. Snell, Z. Song, H. Tang, L. Yin, J. Cheng, S. May,
E. Luijten, et al., Interactions between membranes and “metaphilic” polypeptide architectures with diverse side- chain populations,
ACS Nano 11 (3) (2017) 2858–2871”. Copyright 2017 American Chemical Society. This paper can be accessed online at http:
//pubs.acs.org/doi/abs/10.1021/acsnano.6b07981. The material in this chapter was co-authored by Michelle W.
Lee, Ming Han, Guilherme V. Bossa, Carly Snell, Ziyuan Song, Haoyu Tang, Lichen Yin, Jianjun cheng, sylvio May, Erik Luijten,
and Gerard C. L. Wong. G. V. Bossa contributed to the mean-field modeling, figures preparation, writing and discussion of the
results.
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typically through the disruption and permeabilization of bacterial membranes [205, 206, 207]. Although

AMPs are abundant and diverse in sequence and structure, they share some common features. Most AMPs

are cationic and characterized by facially amphiphilic patterns of hydrophobicity and charge [205, 204, 206,

208, 209]. CPPs are capable of efficiently translocating across cell membranes and can mediate the uptake

of conjugated cargos [210, 211, 212]. CPPs are generally cationic, but can also be amphiphilic, with the

arginine-rich CPPs comprising the most widely studied group [210, 212, 213, 214, 215, 216]. Many CPP

sequences are derived from natural proteins and peptides; however, research groups have also developed

synthetic CPPs [210, 215]. While cationic charge and amphiphilicity are characteristics often found in both

AMPs and CPPs, it has been noted that these properties can be found in many other membrane-remodeling

peptides [217], including viral budding peptides [218] and viral fusion peptides [219]. While the vast ma-

jority of AMPs and CPPs are composed of linear amino acid sequences, a number of research groups have

recently explored unconventional nanoscopic architectures in the design of polymer-based antimicrobial

and cell-penetrating agents that are also characterized by cationic charge and hydrophobicity, including

circular peptides, and especially an extensive taxonomy of side chain-rich comb, brush, or dendrimer ar-

chitectures [220, 221, 222, 223, 224, 225]. In this work, we systematically investigate a prototypical class

of peptides with side chain-rich architectures. These peptides consist of a rigid helical core decorated with

mobile and flexible side chains that are terminated by cationic and hydrophobic groups, an arrangement

that allows cationic and hydrophobic end groups to undergo large displacements, reminiscent of the Lin-

demann criterion for melting [226, 227]. Therefore, these molecules have unusually chemically adaptable

and quasi-liquid surfaces. Although one might expect that the loss of well-defined spatial relations between

cationic and hydrophobic patches on a highly evolved peptide or protein leads to a degradation of activity,

we surprisingly find the opposite. We show that the membrane- permeating activity of AMPs and CPPs, both

commonly characterized by anchored cationic and hydrophobic groups, can be significantly enhanced by the

highly adaptable side chain-rich architecture: Like organisms that adapt to different colored environments

via metachrosis, these molecular architectures adapt to different solvent environments (water, amphiphilic

interface, hydrophobic membrane core) by being “metaphilic” rather than statically amphiphilic. In a sense,

these metaphilic peptides are a molecular analogue of recently engineered omniphilic/omniphobic surfaces

[228, 229, 230]. Computer simulations indicate that the quasi-liquid surface of the peptide allows it to

adapt to environmental change by rearranging the flexible side chains, a capability that plays a key role in

enabling unusual interactions with membranes. Specifically, these metaphilic peptides are able to induce
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membrane-destabilizing curvature necessary for permeation, which we determine using X-ray measure-

ments. Furthermore, because these metaphilic molecules can adapt their surface chemistry, we can control

their charge and hydrophobicity over a broad range and still maintain water solubility, unlike many AMPs

and CPPs [231, 232, 233, 234, 235]. This allows us to show how the activity of these metaphilic peptides

is amplified with hydrophobicity and cationic charge, and we rationalize these results using a quantita-

tive mean-field theory. One goal of this paper is to develop a general conceptual vocabulary to analyze

how molecules of different architectures beyond linear peptides interact with membranes, and how these

architectures consequently allow small quantitative changes in structural parameters to lead to qualitative

differences in membrane interactions.

7.2. Results and Discussion

7.2.1. Methaphilic Membrane-Active Peptides

We previously developed a series of bottlebrush-like, radially amphiphilic peptides, where hy-

drophobic side chains that terminate in a cationic group are attached to a rigid core [236, 237].

Here we generalize this design and also create peptides with side chains having heterogeneous

distributions of cationic and hydrophobic end groups. The surfaces of these brush-like molecules can mimic

the chemical surfaces of natural AMPs, but maintain the mobility of cationic and hydrophobic patches so

that they can rearrange in response to environmental changes. Specifically, these metaphilic molecules are

water-soluble -helical poly(arginine)-based polypeptides [238] (7.1), which include both homopolymers and

random copolymers. The metaphilic peptide monomer features a long hydrophobic side chain with either

a terminal guanidinium or alkyl chain that is positioned distally (1318 σ -bonds away) from the backbone.

Increasing cationic residues in a prototypical peptide has been shown to reduce helical stability due to greater

electrostatic repulsion between side chains [231, 232] and increasing hydrophobicity leads to poor water

solubility and aggregation [233, 234, 235].In the current architecture, charges are positioned at a significant

distance away from the helical backbone to decrease the surface charge density and side chain repulsion,

which promotes their stable -helical conformation in an aqueous environment [238]. In addition, the charged

exterior shell formed by the terminal guanidinium groups around the helical backbone enables the metaphilic

peptides to maintain water solubility by shielding the hydrophobic carbon side chains and helical core from
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solution. All metaphilic peptides were synthesized through ring-opening polymerization of γ-chloroalkyl-

L-glutamate based N-carboxyanhydrides, followed by the conversion of the side chain chloro groups into

azido groups, and the subsequent copper-catalyzed Huisgen click chemistry with propargyl guanidines to

attach guanidinium groups at the side chain terminus [238]. This robust and efficient synthesis enables the

control of the side chain hydrophobicity in two different ways: (1) the variation of methylene spacer lengths

between the pendant triazoles and esters through selecting different amino acid precursors (P1,P5, P6); (2)

the introduction of additional hydrophobic moieties by coconjugating long chain alkynes together with the

propargyl guanidines (P10P12). The latter also enables the control of charge density by varying the feeding

ratios of propargyl guanidines and long chain alkynes (P11, P13, P14).

7.2.2. Metaphilic Peptides Exhibit Adaptable Amphiphilicty upon Interaction with Membranes

We performed generic coarse-grained molecular dynamics simulations to investigate the behavior

of these metaphilic peptides as they interact with lipid membranes in an aqueous environment. Specifically,

we were interested in the process in which a metaphilic peptide (with either 50% or 100% of its side chains

terminated by a cationic end group) approaches a negatively charged membrane surface and subsequently

inserts and organizes itself within the phospholipid bilayer.

The adaptation of the peptide configuration and its free-energy variation were quantitatively ex-

plored in a steered landing process, as illustrated in Fig. 7.2. At large separation, the peptide barely interacts

with the oppositely charged membrane due to electrostatic screening by the ions (Fig. 7.2A), and its back-

bone effectively behaves as a neutral rod, randomly orienting with an average tilt angle θ = π/2−1 toward

the membrane (Fig. 7.2B). Its affinity to the membrane emerges at separations z < 68Å (defined as the dis-

tance between the peptide center and the membrane outer leaflet), around one peptide length. The peptide

backbone begins to orient more orthogonally so that some of the charged side chains are able to reach the

membrane. Apart from reorienting, the peptide also reorganizes its mobile side chains with their charged

end groups extending toward the membrane, giving rise to an asymmetric charge distribution. This asym-

metry is reflected in and quantified by the average deviation ∆z of the charged end groups from the peptide

center (Fig. 7.2C). The tilted peptide touches the membrane and starts to settle at z = 50Å; it fully lies

down at z≈ 40Å, reaching its strongest asymmetry. Completion of this “landing” process is marked by the

distance at which the forces on the peptide are balanced, near z landing = 36Å. The free-energy changes
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for the peptides with 50% and 100% charge coverage upon landing are 4.9kBT and 8.4kBT , respectively

(Fig. 7.2D).

Furthermore, we also simulated the free (i.e., nonsteered) landing and insertion process of a peptide

with 100% charge coverage, as illustrated in Fig. 7.2E. Initially, the peptide indeed tilts toward the mem-

brane with charged end groups shifted downward, confirming our findings. After landing, the hydrophobic

parts of the side chains tend to merge into the hydrophobic interior of the membrane, whereas the charged

end groups tend to stay outside. The peptide first “anchors” to the membrane by bending a side chain and

partially inserting its hydrophobic part into the membrane. Such a side chain can then further minimize

its energy by “tunneling” of its charged end group toward the membrane surface on the inner leaflet. This

process provides a strong driving force for the second stage, namely insertion of the peptide to completely

span the membrane bilayer.

The insertion process exhibits a strong dependence on side chain length. From simulations we

found that peptides with twice shorter side chains fail to insert (Fig.7.2F). These side chains are too short

to undergo significant adaption required by the “anchoring” and “tunneling” stages. As a consequence, the

hydrophobic parts of the peptide side chains are shielded by the charged end groups and unable to interact

with the membrane. This obstacle, however, can be overcome by reducing the charge coverage. As shown

in Fig. 7.2G, a peptide with reduced charge coverage of 50% and short side chains can successfully anchor

to the interior of the membrane via its uncharged side chains. Having uncharged, hydrophobic side chains

is sufficient to facilitate insertion and span the membrane. This indicates that membrane insertion is less

efficient with shorter cationic side chains. However, it is possible to optimize the efficiency of the peptide

by combining high charge coverage to achieve a large landing rate and a finite fraction of uncharged side

chains to assist in the hydrophobic insertion process.

7.2.3. Dynamic Adaptability of Metaphilic Peptides Can Enhance Membrane Permeation

Previous studies have suggested that penetration of amphiphilic helical peptides into a bilayer per-

turbs the hydrophobic interactions of the membrane core, thus leading to membrane destabilization. This

process depends on both the hydrophobic content of the peptide and membrane penetration depth. In-

deed, the reduction of membrane activity of cationic amphiphilic α-helices has been found to correlate

with decreased hydrophobicity [239, 240]. Accordingly, the relative sizes of the polar and hydropho-
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bic faces of an amphiphilic helical peptide have been shown to affect the induced membrane curvature

[208, 241, 242, 243, 244, 245, 246]. For metaphilic peptides, there is a wider range of possibilities. Al-

though sometimes AMPs can become amphiphilic and α-helical as they touch down on a membrane, the

simulation model here predicts that the metaphilic peptide will undergo a series of structural transitions as

it engages the membrane that are not possible for most proteins or peptides: it has uniformly distributed

side chains in bulk aqueous solution far from a membrane, but adopts a facially amphiphilic structure near

a membrane, with cationic end groups arranged to face toward the membrane surface. Once adsorbed onto

the membrane surface, the peptide reorganizes its side chain components to invert its facial amphiphilicity

with cationic end groups associated with the polar lipid head groups at the surface, while the hydropho-

bic moieties penetrate further into the membrane core. Depending on the length of the side chains relative

to the membrane thickness, terminal groups of the side chains can diffuse through the membrane, so that

it is possible for a single metaphilic peptide to present guanidinium groups to polar lipid head groups on

both leaflets of the membrane, which is not possible for AMPs. These effects lead to two interesting con-

sequences. It is known that details of amphiphilic conformation can play important roles in peptidemem-

brane interactions necessary for function [242, 247, 248, 249]. The ability of metaphilic peptides to invert

their facial amphiphilicity via progressive side chain migration suggests a direct translocation mechanism

with no analogue in natural peptides. Moreover, simultaneous presentation of curvature-generating guani-

dinium groups to both membrane leaflets may lead to significantly enhanced membrane curvature generation

[218, 250, 251, 252, 253, 254] which we explore in the next section.

7.2.4. Metaphilic Peptides Can Induce Negative Gaussian Curvature Necessary for Membrane Per-

meation

To assess the membrane-permeating mechanism of these peptides, we used high-resolution syn-

chrotron small-angle X-ray scattering (SAXS) to quantitatively characterize the membrane deformations

induced by metaphilic peptide variants. Small unilamellar vesicles (SUVs) were prepared from a phospho-

lipid mixture of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and 1,2-dioleoyl-sn-glycero-3- phos-

phoethanolamine (DOPE) at a molar ratio of 20/80. Each metaphilic peptide was incubated with SUVs at

a specified peptide-to-lipid (P/L) molar ratio corresponding to an electroneutral P/L charge ratio and the

resulting membrane structures were characterized using SAXS.
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We found that all α-helical metaphilic peptides (P1, P4P6, P10P14) resulted in the restructuring

of the lipid vesicles into phases rich in negative Gaussian curvature (NGC) (Fig. 7.3 A,B), whereas control

samples of SUVs only exhibited a broad characteristic feature consistent with the form factor of unilamellar

vesicles. For every helical peptide, we typically observed a coexistence of phases: (1) one set of peaks with

integral Q-ratios, which indexed a lamellar (Lα ) phase with periodicity in the range of 5.5 to 7.4 nm; (2) a

second set of correlation peaks with Q-ratios
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9, consistent with an inverted hexagonal

(HII) phase with a lattice parameter of 6.8 to 8.0 nm; (3) a third set of peaks with characteristic Q-ratios

that indexed either a Pn3m “double-diamond” or an Im3m “plumber’s nightmare” cubic (QII) lattice, or a

coexistence of both. Q-ratios of
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Im3m cubic phases, respectively. In our experiments, cubic phase lattice parameters were found to range

from 15.4 to 28.2 nm for Pn3m and 20.9 to 24.8 nm for Im3m (Fig. 7.3 C,D). For coexisting Pn3m and Im3m

cubic phases, the ratio of their lattice parameters was close to the Bonnet ratio of 1.279 [255], indicating

that the amount of curvature is balanced across the cubic phases, and thus implying that they are close to

equilibrium. A bicontinuous cubic phase, such as Pn3m and Im3m, consists of two nonintersecting aqueous

regions separated by a lipid bilayer that traces out a periodic minimal surface. All points along this minimal

surface have NGC, which is also known as saddle-splay curvature due to its shape and the surface bends

upward in one direction and bends downward in the orthogonal direction. NGC is topologically required

for processes such as pore formation, budding, blebbing, and vesicularization [218, 252, 253, 256], all of

which destabilize and compromise the barrier function of membranes. In fact, for molecules and peptides

with functions determined by their membrane-disrupting activity, a strong correlation has been identified

between NGC generation and their activity. For example, AMPs generally kill bacteria by inducing mem-

brane permeabilization [204, 205, 206, 257, 258]. Recent studies have shown the trend of NGC generation

and membrane permeation for a large number of α−helical AMPs [218, 252], AMP mutants,and synthetic

AMP analogues [259, 207]. Similarly, this trend has also been observed for a range of CPPs and transporter

sequences [250, 251, 253, 254]. We found that the amounts of NGC generated by the present metaphilic

peptides are comparable to those generated by AMPs [218, 252] and CPPs [250, 251, 253, 254]. From the

simulation data, it is clear that metaphilic peptides can interact with membranes in ways that many peptides

cannot. However, the SAXS results above show that metaphilic peptides retain the ability to permeabilize

membranes like AMPs and CPPs.

We find that the inducible asymmetric shape of these metaphilic peptides is necessary in facilitating
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NGC and membrane permeation activity. Nonhelical P3, a random-coil peptide synthesized from racemic

monomers [238] and cognate to metaphilic peptides considered here, was not able to generate NGC, al-

though it is able to interact with the membrane to induce lamellar and inverted hexagonal phases (Fig. 7.3A).

Consistent with this, P3 demonstrated significantly lower membrane permeability [238]. Together, these re-

sults suggest that the asymmetric elongated shape stabilized by the rigid helical backbone is important for

membrane permeation.

7.2.5. A Critical Comparison of Membrane Activity of Metaphilic Peptides, AMPs, and CPPs

We assessed the membrane permeation of a broad range of metaphilic peptides displaying different

side chain lengths, types, and distributions. Peptide uptake alone and fluorescein isothiocyanate (FITC)

uptake, when coincubated with peptide, were measured in HeLa cells in previous experiments [238]. FITC,

a membrane impermeable fluorophore, has been used to evaluate peptide- induced pore formation in cell

membranes, as the presence of pores allows molecules to enter cells via diffusion [260, 261]. The results

show that all of the -helical metaphilic peptides exhibited membrane permeability, which is in agreement

with our SAXS measurements showing that they are able to induce the curvature required for such membrane

activity. In addition, the membrane permeabilities of the peptides were all found to be higher than those of

well-known arginine-rich CPPs such as a domain of the human immunodeficiency virus type 1 tranactivator

of transcription protein (HIV-TAT) and nona-arginine (R9) [238].

Among the helical homopolypeptides (P1, P4P6), P6 had the longest charged side chains and

resulted in the highest FITC and peptide uptake levels [238]. We hypothesize that this is due in part

to its metaphilic presentation of guanidinium groups to the lipid head groups of both inner and outer

leaflets, which can promote efficient generation of curvature at both membrane locations [218, 250, 251,

252, 253, 250, 254]. The longer hydrophobic side chains also allow deeper membrane penetration and

membrane spanning, which can further facilitate membrane curvature and destabilization. Previous work

has similarly suggested that a greater number of arginines results in stronger membrane curvature effects

[218, 250, 251, 261] and that arginine side chains can penetrate into the membrane interior due to attrac-

tion to the phosphate groups on the distal leaflet of the bilayer, leading to the formation of transient pores

[261, 262, 263, 264]. Consistent with this picture, metaphilic peptides with shorter side chains that cannot

span the membrane generally have lower uptake activity.
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We specifically compared helical metaphilic peptides with similar degrees of polymerization and

cationic charge (P1, P5,P6) and found that both their FITC and peptide uptake levels racked with their

hydrophobic volumes (Fig. 7.4 A,C) (For details about the Methods, see Ref. [5]). Among metaphilic

peptides with similar levels of hydrophobic volume (P10P14), we observed that membrane permeation ac-

tivity increased with increasing cationic charge (Fig. 7.4 B,D). We further identified a more general relation

among all tested helical metaphilic peptides, namely, that increases in the hydrophobic volume resulted in a

higher ratio of FITC uptake to peptide uptake (Fig. 7.4 E). We hypothesize that these identified trends can

be explained by differences in AMP vs CPP behavior, and differences in how free dyes and free peptides

translocate into cells.

In these experiments, FITC molecules and peptides are not conjugated to one another, so both can

diffuse independently in solution when coincubated with cells. In order for FITC molecules to enter cells, the

peptides need to form sufficiently stable pores in the membrane to allow free FITC to pass through. AMPs

typically permeate membranes by forming transmembrane pores [265, 266], and therefore, free molecules

of AMPs or FITC are able to gain access to the cell interior through those pores. The membrane-associated

peptides that create the pores themselves can also stochastically translocate into the cell as the pores close

[265, 267]. In general, the lifetimes of membrane pores can vary greatly [263, 265] with transient pores al-

lowing only a few peptides to translocate before closing, and more persistent pores allowing both membrane-

associated peptides and free molecules through [262]. AMPs generally contain more hydrophobic residues

than CPPs and generate stable membrane pores whereas CPPs are less hydrophobic and cross membranes

quickly via transient pores. Therefore, synthetic peptides that have sufficient hydrophobicity can exhibit

AMP-like behavior and insert into the membrane to create transmembrane pores that allow transport across

membranes. In contrast, synthetic peptides with low hydrophobicity can behave like CPPs, which are able

to translocate across membranes via transient membrane permeation [212, 251, 261, 268, 269].

We observed that greater peptide hydrophobic volume generally results in increased uptake of both

FITC and peptide. Previous work has shown that increasing the hydrophobicity of CPPs enhances their

interaction with the membrane, in turn affecting their behavior, which can change from rapid translocation

across membranes to inducing slow leakage of dye from vesicles [250, 270, 271]. This finding suggests that

hydrophobicity, which increases affinity for the membrane core and promotes deeper membrane penetration,

can aid in stabilizing peptide-induced pore formation and yield longer pore lifetimes. By increasing the

time that a membrane pore remains open, small molecules such as FITC, as well as free peptides in solution
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that are not membrane-associated, can flow through into the cell. However, there is the potential trade-off

between stable pore formation and translocation across a bilayer. As hydrophobicity enhances association

of the peptide with the membrane interior to create a stable pore, it also impairs internalization of the peptide

due to the greater chance of being retained in the membrane core [215, 250, 262, 271, 272]. This reciprocity

provides a hypothesis as to why we see the ratio of FITC uptake to peptide uptake generally being higher

for peptides with greater hydrophobic volume. As previously mentioned, increased peptide hydrophobicity

predominately facilitates increased uptake of both FITC and free peptides, yet attenuates the translocation

of lipid-associated peptides that compose the pores. Conversely, we expect lower hydrophobicity to inhibit

the uptake of free molecules, and instead, promote internalization of membrane-associated peptides. Thus,

a compensatory exchange exists between free peptide uptake and lipid-associated peptide uptake, which

together constitute the total measured peptide uptake. Understandably, because FITC uptake requires stable

pores, the effects of peptide hydrophobicity would be more prominent for FITC uptake in comparison to

peptide uptake. As a result, the observed relationship between hydrophobic volume and the ratio of FITC

uptake to peptide uptake will reflect that of hydrophobicity and FITC uptake. We also found that both FITC

and peptide uptake increased with increasing cationic charge. The initial step for cellular entry of either

molecule involves electrostatic interactions between the peptide and the membrane surface [212, 273, 274,

275]. Therefore, increased positive charge can promote more efficient binding of the peptide to the negative

charges on the cell surface, which can subsequently enhance overall membrane permeation and cellular up-

take. Finally, it is important to note that the cationic charge specifically for the metaphilic peptides originates

from their guandinium groups. Interestingly, the guanidinium group of arginine has been found to play a

key role in CPP membrane permeation [276, 277], and an increased number of arginines increases both the

ability to generate NGC and cellular up- take [213, 218, 250, 251, 261, 277, 278] All of these findings are

in agreement with our observations here.

7.3. Metaphilic Peptide Behavioral Trends Consistent with Mean-Field Description

We further characterized the ability of metaphilic peptides to induce NGC by a simple mean-field

model. The model is an extension of the opposing-forces model [279, 280] supplemented by a hydrocarbon

chain free energy that reflects the packing of the lipid tails in a bilayer geometry [281, 282]. Specifically,

each lipid is characterized by its cross-sectional area ai at the polarapolar interface, its cross-sectional area ah
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at the headgroup region (measured at fixed distance lh away from the polarapolar interface), and the effective

hydrocarbon chain extension b; see Fig. 7.5 A. The lipid free-energy model (see the section Methods below)

features “opposing forces” due to the presence of repulsive interactions between lipid head groups and a

chain-stretching penalty, which are both counterbalanced by a surface tension that acts at the polarapolar

interface.

For any membrane curvature, the conformation of the membrane can be energetically optimized,

subject to conservation of the hydrophobic lipid volume vL. This allows calculation of the Gaussian modulus

κ̄ . Note that negative κ̄ implies a stable bilayer. When κ̄ becomes positive, the membrane tends to sponta-

neously adopt saddle-like conformations that are characterized by NGC. We chose model parameters of our

molecular free energy that are typical for a lipid bilayer with 20 mol % charged lipids (φ = 0.2), obtaining a

Gaussian modulus κ̄ = −3.1kBT Inserting metaphilic peptides into the lipid bilayer with a peptide-to-lipid

ratio P/L will perturb the host lipid bilayer and thus alter κ̄ . Within our mean-field framework, we account

for two different types of perturbation. The first originates from insertion of the hydrophobic moieties of the

peptide into the hydrocarbon core of the lipid bilayer, and the second relates to the electrostatic interactions

of the charged terminal groups of the peptide side chains with the anionic lipid head groups. Our model

describes the former as an effective increase of the hydrophobic lipid volume vL → vL + vPP/L where vP

is the hydrophobic volume of the peptide. The latter is quantified based on the Poisson-Boltzmann model,

which describes free energies of charged surfaces in an electrolyte solution as a function of their effective

surface charge density.

We used model parameters that reflect a typical experimental situation, with φ = 0.2, a hydrophobic

peptide volume vL = 15nm3, and zc = +35 charges per peptide. Fig. 7.5B shows the Gaussian modulus

κ̄ as a function of P/L from P/L = 0 to P/L = 1/175. The maximal value P/L = φ/zc = 1/175 reflects

electroneutrality of the membrane. Membrane destabilization is absent when the hydrophobic volume of

the peptide is assumed to vanish (dash-dotted line) or when electrostatic interactions are ignored (dashed

line). However, when both perturbation modes are accounted for (solid line), the Gaussian modulus adopts

a positive sign.

Deep insertion of the peptide into the hydrocarbon core of the membrane tends to not only increase

the membrane thickness, but also increase the cross-sectional area per lipid. Yet, a larger cross-sectional lipid

area implies weaker mutual headgroup repulsion and an increased surface tension energy at the polarapolar

interface. Hence, we expect the membrane to seek a deformation mode that decreases ai even if at the

115



same time ah increases. This is accomplished by a saddle deformation. The electrostatic neutralization of

the anionic lipid head groups by the terminal groups of the metaphilic peptide side chains further lowers

the headgroup repulsion strength and, therefore, even more so enhances the tendency of the membrane to

minimize its free energy by adopting NGC.

In our mean-field description above, we found that their facially amphiphilic structural organization

allows metaphilic peptides to penetrate deeply into the membrane and render the Gaussian modulus less

negative. In addition, peptides with cationic charges also shift the Gaussian modulus to less negative values.

Both of these changes in the membrane Gaussian modulus are destabilizing and promote NGC generation,

which is necessary for membrane permeation. These mean-field trends are in agreement with SAXS mea-

surements and cell uptake results. In fact, these trends are strikingly similar to those observed for AMPs

[218, 252, 259, 207]. Here we see that these metaphilic peptides give us a valuable perspective: It is not

possible to vary hydrophobicity and charge of many AMPs and CPPs over a large range due to solubility

and stability issues. However, the adaptable architecture of metaphilic peptides can accommodate greater

cationic charge and hydrophobicity. As a result, these are ideal systems for testing how physicochemical

properties impact membrane activity, as the above comparison shows. Further details on the molecular

model can be found in Methods and Supporting Information in Appendix 7.5.
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Figure 7.1. Design of metaphilic helical peptides. (A) Metaphilic helical peptides are poly(arginine) ana-
logues characterized by long hydrophobic side chains (1318 σ -bonds in length) that have either a terminal
guanidinium group or alkyl chain. Charged monomers having guanidinium groups were used to synthesize
homopolypeptides (top left). A mixture of charged monomers and uncharged monomers, which feature ter-
minal alkyl chains, were used to synthesize random copolypeptides (bottom). All prepared peptides adopt
an -helical conformation except for P3 (top right), which was synthesized as a random coil from racemic
monomers. (B) The structural peptide design parameters include the following: n (degree of polymeriza-
tion), x (number of methylene groups), y (molar fraction of uncharged monomers), R (terminal alkyl chain),
Mn (number-average molecular weight in kDa). (C) Metaphilic peptides featuring long side chains with
terminal cationic and alkyl groups favor a stable α-helical conformation in aqueous solution. (D) Simpli-
fied cartoon depictions comparing the fractions of charged and uncharged side chains among the various
metaphilic peptides.
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Figure 7.2. Landing and insertion processes of metaphilic peptides near a membrane. (A) Time-averaged
force F exerted on the peptide upon landing. The force is evaluated as a function of the distance z between
the center of mass of the peptide backbone and the head groups of the outer membrane leaflet. Two different
cases are compared, in which 50% (red) and 100% (blue) of side chains are terminated by charged end
groups. (B) Time-averaged tilt angle of the peptide backbone with respect to the membrane plane, as a
function of peptide distance to the membrane. Note that tilt angle is zero when the peptide is parallel to the
membrane and positive otherwise. (C) Averaged deviation ∆z of the charged groups from the center of mass
of the peptide backbone. (D) Free-energy profile G(z), obtained through integration of the force profile F(z)
shown in panel (A). (E) Sequence of simulation images demonstrating landing, initial anchoring (insertion
of a side chain into the membrane), initial tunneling (a charged group of a side chain reaching the surface
of the inner membrane leaflet), and full insertion in a membrane-spanning state, for a peptide with 4-bead
long side chains, of which 100% have charged end groups. Lipid tails and surrounding ions are not shown
here. The hydrophobic components of the side chains are colored in cyan, the peptide core is depicted in
gray. The remaining beads are color coded based on their charges: red for +1e, white for uncharged, and
blue for 1e. (F) Final state of a peptide with 2-bead long side chains, of which 100
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Figure 7.3. Metaphilic helical peptides generate NGC necessary for membrane permeation. SAXS spec-
tra from DOPS/DOPE = 20/80 membranes incubated with homopolymer (A) and random copolymer (B)
peptides at electroneutral P/L molar ratios. Correlation peaks corresponding to identified cubic phases are
indicated (black lines). Inset in (A) provides an expanded view of the cubic reflections (boxed region) for P5.
(C,D) Indexing of the peptide-induced Pn3m and Im3m cubic phases is shown by plotting the measured Q
positions, Qmeasured, versus the assigned reflections in terms of Miller indices,

√
h2 + k2 + l2. The slopes

of the linear regressions were used to calculate their lattice parameters, which are listed in the legends.
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Figure 7.4. Relations of membrane permeation with hydrophobic volume and cationic charge. Membrane
permeation, as measured by FITC and peptide uptake in cells, was found to correlate with the hydropho-
bic volumes and cationic charges of metaphilic helical peptides. A set of homopolypeptides (P1, P5, P6)
with similar degree of polymerization and charge exhibited both FITC (A) and peptide (C) uptake levels
that tracked well with their different hydrophobic volumes. Conversely, a set of random copolypeptides
(P10P14) with identical degree of polymerization and comparable hydrophobic volumes showed that in-
creasing cationic charge correlated with increased FITC (B) and peptide (D) uptake. (E) Among all nine
metaphilic helical peptides tested, we also observed that the ratio of FITC uptake to peptide uptake gen-
erally increased with hydrophobic volume. Greater hydrophobic volumes promote more stable pores with
longer lifetimes, which allow more efficient membrane permeation by free molecules of peptide and FITC.
In contrast, lower hydrophobic volumes are expected to yield more transient pores with shorter lifetimes,
and thus, facilitate rapid translocation of the peptide across a membrane.

Figure 7.5. Membrane insertion of a metaphilic peptide results in a less negative Gaussian modulus. (A)
We characterize a lipid molecule in terms of the cross-sectional area ai at the hydrocarbon chain-headgroup
interface, the cross-sectional headgroup area ah (measured at a surface parallel to the hydrocarbon chain-
headgroup interface at distance lh away), and the effective thickness b of the hydrocarbon chain region. The
volume vL occupied by the lipid’s two hydrocarbon chains is conserved. The polar headgroup is represented
by a light-shaded circle. (B) The Gaussian modulus (measured in units of the thermal energy unit kBT )
as a function of the peptide-to-lipid ratio P/L. The full molecular model (solid line) accounts for both the
increase in the hydrophobic volume of the membrane core upon peptide insertion and electrostatic interac-
tions of the anionic lipid head groups with the cationic terminal groups of the metaphilic peptide side chains.
This is contrasted with ignoring either the hydrophobic peptide volume (vP = 0, dashed line) or electrostatic
interactions (dash-dotted line).
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7.4. Conclusions and Prospects

Membrane-permeating peptides such as AMPs and CPPs are usually composed of linear sequences

of amino acids and have simple architectures. By using a class of peptides with a chemically adaptive

metaphilic architecture, which have quasi- liquid surfaces and highly deformable shapes, we showed that

it is possible to interact with the membrane in unexpected ways, and significantly enhance the membrane-

permeating activity of linear arginine-based peptides. The root causes of this enhancement are explored

using a combination of computer simulations, X-ray diffraction, and mean-field theory. Since the metaphilic

architecture allows for permeation and translocation mechanisms not available for most peptides, these

results here suggest that it may be possible to engineer nanoscopic molecular architectures optimized for

applications such as antimicrobial agents for multidrug-resistant bacteria and drug delivery systems.

7.5. Methods

7.5.1. Synthesis of Polypeptides

All peptides (P1, P4P6, P10P14) were previously synthesized and characterized elsewhere[238].

The synthesis procedures are outlined in Scheme S1 of the Supporting Information. Typically, L-glutamic

acid (1 equiv) was monoesterified using various chloroalkyl alcohols (1.5 - 2 equiv) under the catalysis of

H2SO4. The resulting -chloroalkyl-L-glutamic acid was purified by recrystallization in deionized water/2-

propanol (1:1, v/v) and lyophilized (yield 30- 70%). The lyophilized amino acid (1 equiv) was then reacted

with phosgene (80% solution in toluene, 1.2 - 1.5 equiv) in anhydrous tetrahydrofuran (THF) at 50◦C for

2 h to yield γ-chloroalkyl-L-glutamate based N-carboxyanhydrides (NCAs), which were further purified

through recrystallization in THF/hexane (1:1, v/v, three times) (yield 60-70%). The dried NCA monomers

were transferred into a glovebox and stored at −30◦ C. To obtain the target polypeptides, hexamethyld-

isilazane was used to initiate the controlled ring-opening polymerization of NCAs in hydrous dimethyl-

formamide (DMF)[236, 283, 284] where the degree of polymerization was predetermined by the feeding

monomer-to-initiator ratio. After > 99% monomer conversion (monitored by Fourier transform infrared

spectroscopy), an aliquot of the DMF solution was transferred to a new vial, diluted, and injected into gel

permeation chromatography (GPC) for the determination of degree of polymerization and polydispersity
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(polydispersity < 1.26 for all polymers). NaN3 was then added (10 equiv compared with side chain chloro

groups) and the mixture was stirred at 60◦C for 48 h. The resulting azide-functionalized polypeptide was

purified through extraction with chloroform, and subsequent precipitation in hexane/diethyl ether (1:1, v/v)

(yield 7085%). For the final copper-catalyzed click chemistry step, azide-functionalized polypeptide (1

equiv of azido groups) was mixed with propargyl guanidine (1.5 equiv), N,N,N,N,N-pentamethyldiethyl-

enetriamine (0.10 equiv), and CuBr (0.01 equiv) in DMF in a glovebox. The mixture was stirred at room

temperature for 24 h, and the final guanidine-functionalized metaphilic peptide was purified by dialysis

against deionized water followed by lyophilization (yield 6070%). To incorporate additional hydrophobic

moieties (P10P14), long chain alkynes were added together with propargyl guanidine for coconjugation.

Azide-functionalized polypeptides were characterized by nuclear magnetic resonance (NMR) and GPC for

their chemical structures and molecular weights. The polypeptides post click chemistry side chain modifi-

cation were analyzed by NMR to verify the efficiency of side chain modifications and by circular dichroism

to analyze their conformation[238].

7.6. Simulation Procedure

We performed molecular dynamics simulations using the Lammps package to investigate the land-

ing and subsequent insertion process of prototypical metaphilic peptides on and into a membrane. In

our coarse-grained model, all molecules were represented as assemblies of spherical beads (diameter σ =

8.5Å[285] the size of a lipid headgroup). Specifically, the membrane was modeled as a bilayer of 4- bead

long lipids and spanned an entire cross-section of the system. 20% of the lipids carried a 1e charge on their

headgroup. The peptide possessed a helical core of 55 beads (corresponding to 55 amino acids), onto each

of which was grafted a 4-bead long, flexible side chain. Either 50% or 100% of the side chains carried a ter-

minal +1e charge. Both the membrane and the peptide were embedded in a 100mM salt solution mimicking

physiological conditions. A relatively large system of size 60×60×60σ3 was chosen, giving rise to 7200

lipids and over 17 000 ions. Periodic boundary conditions were applied in all three dimensions.

The beads in the peptide core were grouped as a rigid body, whereas those in the side chains or in

the lipids were stiffly bonded by a harmonic potential

Ubond(r) = kbond(r− r0)
2 (7.1)
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with equilibrium bond length r0 = σ and strength kbond = 300kBT/σ2. For lipids, a strong angle potential

was introduced between two adjacent bonds to maintain a linear structure,

Uangle(θ) = kangle(θ −θ0)
2 (7.2)

with θ0 = 180◦ and kangle = 10kBT/rad2. All nonbonded beads were subject to excluded-volume effects and

Coulomb interactions. The former were implemented via a shifted-truncated Lennard-Jones (LJ) potential

with strength ε = 0.8kBT and cutoff rc = 21/6σ , while the latter was treated via Ewald summation with

a relative accuracy of 10−4. Moreover, we employed a widely used generic model with implicit solvent to

efficiently account for hydrophobicity[29]. Uncharged beads in the hydrophobic side chains and lipid tails

experienced an effective attraction,

Ucos(r) =−ε cos2[π(r− rc)/2wc], rc ≤ r ≤ rc +wc (7.3)

with wc = 1.6σ . Due to the soft attraction (strength ε = 0.8kBT ), side chains and lipids tended to display

moderate aggregation, remaining in the liquid state rather than forming a solid.

When studying the landing process via steered molecular dynamics, we confined the lipid head

groups of the outer leaflet of the membrane within the x− y plane, and simultaneously fixed the center of

mass of the peptide core but released all other degrees of freedom. By systematically varying the distance

between the peptide and the membrane, we could measure the free-energy change upon landing. Here

the system was examined in the NVT ensemble by applying a Langevin thermostat to introduce thermal

fluctuations. In the subsequent investigation of the insertion process, to allow the reconfiguration of the

membrane upon insertion, we also applied a Berendsen barostat and kept the system under constant pressure,

equal to the osmotic pressure of a 100 mM salt solution. All simulations were performed for more than 107

time steps, with time step dt = 0.002τ , where τ = (mσ2/ε)[1/2 (m the bead mass) was the LJ time unit.

7.7. SAXS Experiments

SUVs were prepared from lyophilized phospholipids DOPS (1,2-dioleoyl-sn-glycero-3-phospho-

L-serine (so- dium salt)) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanol- amine) purchased from

Avanti Polar Lipids. Briefly, individual lipid stock solutions were prepared by dissolving DOPS and DOPE
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in chloroform at 20 mg/mL. A model membrane composition was prepared from the lipid stock solutions as

a mixture of DOPS/DOPE at a 20/80 molar ratio. The lipid mixture was evaporated under N2 and desiccated

under vacuum overnight to form a lipid film, and then resuspended in aqueous 100 mM NaCl, 10 mM N-(2-

hydroxyethyl)- piperazine-N-ethanesulfonic acid (HEPES) (pH 7.4) to a concen- tration of 20 mg/mL. The

aqueous lipid suspension was incubated at 37◦C overnight, sonicated until clear, and extruded through a 0.2

µm pore Nucleopore filter (Whatman) to obtain SUVs.

Metaphilic peptides were solubilized in aqueous 100 mM NaCl, 10 mM HEPES (pH 7.4) and mixed

with SUVs at electroneutral P/L molar ratios, which are calculated based on 20 mol % of lipids having an-

ionic charge. Samples were hermetically sealed into quartz capillaries (Hilgenberg GmbH, Mark-tubes)

for SAXS experiments at the Stanford Synchrotron Radiation Lightsource (SSRL, beamline 4-2) using

monochromatic X-rays with an energy of 9 keV. Scattered radiation was collected using a Rayonix MX255-

HE detector (73.2 µm pixel size) and 2D SAXS powder patterns were integrated with Nika 1.50[286] pack-

age for Igor Pro 6.31 and FIT2D[287].

The integrated scattering intensity I(Q) was plotted against Q using Origin Lab software. Phases

present in each sample were identified by tabulating the measured peak positions, Qmeasured , and comparing

their ratios with those of the permitted reflections for different crystal phases. The lattice parameter of

each identified phase was calculated from the slope of the linear regression through points corresponding

to the peaks. For powder-averaged cubic and hexagonal phases, each point corresponding to a peak was

defined by coordinates of the assigned reflection (in terms of Miller indices h,k, l) and Qmeasured . For a cubic

phase, Q = (2π/a)
√

h2 + k2 + l2, and for a hexagonal phase, Q = (4π/(a
√

3))
√

h2 +hk+ k2, where a is

the lattice parameter. Therefore, the slopes of the regressions of Qmeasured vs
√

h2 + k2 + l2 and Qmeasured vs
√

h2 +hk+ k2 are 2π/a and 4π/(a
√

3), respectively, which can be used to calculate a. For a lamellar phase,

each point corresponding to a peak has coordinates of the order of the reflection, N, and Qmeasured with the

relation Q = 2/d. The regression of Qmeasured vs N then has a slope of 2π/d, which yields the periodic

spacing d.

7.8. Cellular Uptake Experiments

Cellular Uptake Experiments. Cellular uptake data were sourced from experiments conducted pre-

viously elsewhere[238] to be compared with findings from this study. Briefly, HeLa cells were seeded into
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96-well plates at a density of 1×104 cells/well and cultured for 24 h. The culture medium was then replaced

with serum-free Dulbecco’s modified Eagle’s medium (DMEM). Endocytosis inhibitors chlorpro- mazine

(10 µg/mL), genistein (200 µg/mL), methyl-β -cyclodextrin (50 µgM), and wortmannin (50 nM) were added

to the cells 30 min before the addition of peptide. To investigate the membrane permeability, each peptide

was labeled with rhodamine (RhB) and 2 µgg was added into each well containing HeLa cells. After incu-

bating the RhB-peptide with the cells for 2 h at 37◦C, the cells were washed with phosphate-buffered saline

(PBS) containing 20 U/mL heparin and then lysed using radioimmunoprecipitation assay (RIPA) buffer at

room temperature for 20 min. The intracellular content of the RhB- peptide in the cell lysate was quantified

using spectrofluorimetry and the cellular protein level was quantified using a bicinchoninic acid (BCA) kit,

such that the uptake level was expressed as the quantity (µg) of RhB-peptide per 1 mg of cellular protein.

Peptide-induced pore formation in cell membranes was studied by measuring the cellular internalization of

membrane-impermeable FITC. The procedures were the same as above, except 2 µg of peptide and 0.2 µg

of FITC were added into each well containing HeLa cells. Cells that were treated with only FITC served

as the control. FITC in the cell lysate was quantified using spectrofluorimetry and the uptake level was ex-

pressed as the quantity (µg) of FITC per 1 mg of cellular protein. The cellular uptake levels were compared

against those of HIV-TAT and R9 that had been fluorescently labeled with carboxytetramethylrhodamine

(TAMRA).

7.9. Calculation of Hydrophobic Volume for Metaphilic Peptide Comparisons

We defined the hydrophobic volume of a metaphilic peptide by the total number of methyl and/or

methylene groups present among its side chains. For uncharged side chains, this includes: (a) R, conjugated

alkyl chain with 4-6 hydrocarbons, (b) x+ 2, spacer between triazole and ester with 3, 6, or 8 methylene

groups, (c) spacer between backbone and ester with 2 methylene groups. For charged side chains, this

includes: (a) spacer between triazole and guanidine with 1 methylene group, (b) x + 2, spacer between

triazole and ester with 3, 6, or 8 methylene groups, (c) spacer between backbone and ester with 2 methylene

groups. For example, for metaphilic peptide P11 : (0.5)(69)(5+3+2)+ (0.5)(69)(1+3+2) = 552 total

methyl and/or methylene groups.
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7.10. Mean-Field Theory

We employ a molecular lipid model that was proposed and analyzed in previous work [281]. It

describes the free energy per lipid

f (ai,ah,b) = γai +
B
ah

+ τ(b− lc)
2 (7.4)

in a lipid bilayer as a function of three molecular quantities, ai, ah, and b; see Fig. 5a. The first contribution

to f corresponds to the interfacial energy of exposing the apolar hydrocarbon chains to the polar headgroup

region; ai is the cross-sectional area per lipid at this interface, and γ ≈ 12 kBT/nm2 is the corresponding

surface tension. The second term accounts for the repulsive interactions between lipid headgroups, here

described in terms of a single headgroup interaction surface of cross-sectional area ah per lipid, located a

fixed distance lh away from the hydrocarbon chain-headgroup interface. All headgroup interactions (steric,

dipolar, hydration, etc) are lumped into a single parameter, B. Finally, the third term in Eq. 7.4 describes the

stretching/compression energy of the hydrocarbon chain region, where b is the actual thickness and lc the

preferred thickness of the hydrocarbon core for each membrane leaflet. The prefactor τ and the preferred

thickness lc have been estimated previously using detailed molecular-level chain packing calculations [288],

resulting in τ = 7.9 kBT/nm2 and lc = 1.16 nm for lipids with two −(CH2)15−CH3 hydrocarbon chains.

We also employ the assumption that the hydrophobic volume per lipid, νL = 0.918nm3, is conserved for any

given conformation ai, ah, and b. The bending free energy per unit area of an initially planar and symmetric

lipid bilayer
4 fE

aE
+
4 fI

aI
=

κ

2
(c1 + c2)

2 + κ̄c1c2 (7.5)

can be expressed according to Helfrich [289] in terms of the two principal curvatures c1 and c2, measured

at the midplane, with κ and κ̄ denoting the bending stiffness and Gaussian modulus. The left-hand side of

Eq. 7.5 separates the free energy into contributions from the external (E) and internal (I) leaflet of the lipid

bilayer. We characterize the lipid conformation in the external leaflet by aE
i , aE

h , bE and in the internal leaflet

by aI
i , aI

h, bI . Knowing these quantities allows us to calculate the bending-induced change in free energy per

lipid,4 fE = f (aE
i ,a

E
h ,bE)− f (a0,a0,b0) and4 fI = f (aI

i ,a
I
h,bI)− f (a0,a0,b0), in the external and internal

leaflet, respectively, where a0 is the equilibrium cross-sectional area per lipid of a planar membrane. Note

126



that the conservation of the hydrophobic volume per lipid, νL, links a0 = νL/b0 to the equilibrium chain

extension in a planar membrane b0. More generally, for non-vanishing membrane curvatures, conservation

of νL links the cross-sectional areas aE = νL/{bE [1+(c1+c2)bE/2+c1c2b2
E/3]} and aI = νL/{bI[1−(c1+

c2)bI/2+ c1c2b2
I /3]} of the lipids in the external and internal leaflets, measured at the bilayer midplane, to

their respective chain lengths bE and bI . In fact, the molecular cross-sectional areas aE
i = aE [1+ (c1 +

c2)bE + c1c2b2
E ], aI

i = aI[1− (c1 + c2)bI + c1c2b2
I ], aE

h = aE [1+ (c1 + c2)(bE + lh) + c1c2(bE + lh)2], and

aI
h = aI[1− (c1 + c2)(bI + lh) + c1c2(bI + lh)2] can all be related to bE and bI through simple geometric

relations. Yet, the hydrophobic thicknesses, bE = b0[1+η(c1 + c2)] and bI = b0[1−η(c1 + c2)], of the

external and internal leaflets, respectively, may themselves be curvature-dependent. We account for the

curvature-induced adjustment of leaflet thickness through a yet unknown relaxation parameter η . The free

energy in Eq. 7.5 will adopt its minimum with respect to η . Force equilibrium of a planar membrane yields

the condition

B =
γν2

L

b2
0
−2τνL(b0− lc). (7.6)

for the equilibrium thickness b0. Typical values for the equilibrium cross-sectional area per lipid of a planar

membrane, a0 ≈ 0.70 nm2, are well known from both experiments [290] and MD simulations [291]. Hence,

we use b0 = νL/a0 = 1.31 nm as input in Eq. 7.6 to determine the headgroup repulsion parameter B.

Series expansion of the left-hand side of Eq. 7.5, minimization with respect to η , and comparison

with the right-hand side of that equation allows us to calculate the Gaussian modulus κ̄ , the relaxation

parameter η , and the bending stiffness κ . It is convenient to express the results in terms of the dimensionless

quantities B̄ = Bb2
0/(γν2

L), τ̄ = b3
0τ/(γνL), l̄c = lc/b0 and l̄h = lh/b0. Eq. 7.6 is then equivalent to B̄ =

1−2τ̄(1− l̄c). With that, our final results are

κ̄ =
2
3

b2
0γ
{

2(1− l̄c)[2+3l̄h(2+ l̄h)]τ̄−3l̄h(2+ l̄h)
}
.

η =
b0

2
1+2l̄h− (1− l̄c)(3+4l̄h)τ̄

1+ τ̄
, (7.7)

κ = γb2
0

{
(1+2l̄h)2[1+2(l̄c−1)τ̄]− [1+2l̄h +(l̄c−1)(3+4l̄h)τ̄]2

1+ τ̄

}
.

As introduced above, we use γ = 12 kBT/nm2, τ = 7.9 kBT/nm2, lc = 1.16 nm, νL = 0.918 nm3,

b0 = 1.31nm. With that we obtain the following values for κ̄ , η , and κ as function of the distance lh between

the headgroup interaction surface and the polar-apolar interface
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We note that a small headgroup, such as for lh = 0.1 nm, entails a positive Gaussian modulus and

thus instability with respect to negative Gaussian curvature. Growing headgroup size increases the bending

stiffness and decreases the Gaussian modulus to more negative values. In the following we use lh = 0.3 nm.

Metaphilic peptides insert into the hydrocarbon core of the host bilayer such that their hydrophobic

residues are buried into the hydrocarbon core whereas the charged moieties extend toward the polar-apolar

interface The burying of the peptide into the hydrocarbon core is described in our model by an effective

increase in the lipid’s hydrophobic volume νL → νL + ν
e f f
P P/L, where P/L is the peptide-to-lipid ratio.

Here, ν
e f f
P is the effective hydrophobic volume of the peptide. If the peptide’s residues were all hydrophobic,

ν
e f f
P = νP would correspond to the hydrophobic volume of the peptide, νL = 15 nm3 for P11. We expect

the effective value ν
e f f
P to be somewhat smaller than νP, depending on how much area the charged residues

occupy at the polar-apolar interface and at the headgroup interaction surface. The electrostatic interactions

of the cationic side chains with the anionic lipid headgroups can be described within Poisson-Boltzmann

theory. As pointed out by Israelachvili [279], the inverse 1/ah-dependence of the headgroup repulsion

free energy contribution is consistent with the linearized Poisson-Boltzmann model, which is applicable

for membranes with mole fractions of up to 20% of charged lipids at physiological conditions[36]. This

simply implies to replace the headgroup repulsion parameter in Eq. 7.4 by B−kBT 2πlBlD
[
φ 2− (φ − zcα)2

]
,

where lB = 0.7 nm is the Bjerrum length in water, lD = 1 nm is the Debye screening length at physiological

conditions, and zc = 35 is the number of cationic side chains of P11. We also recall φ = 0.2 is the mole

fraction of anionic lipids. Fig. 5b is then calculated for ν
e f f
L = 10nm3 and zc = 35 (solid line), ν

e f f
L = 10nm3

and zc = 0 (dashed line), and ν
e f f
L = 0nm3 and zc = 35 (dash-dotted line). A more systematic description of

the Gaussian modulus and the bending stiffness for variations of ν
e f f
L and zc is presented in Fig. S1 of the

Supporting Information, suggesting that insertion of metaphilic peptides into membranes generally tends to

shift the Gaussian modulus towards more positive values but has little effect on the bending stiffness.

Table 7.1. Values of κ̄ , η , and κ calculated for specific lh.

lh/nm κ̄/(kBT ) η/b0 κ/(kBT )
0.1 6.0 0.14 14.9
0.3 -3.1 0.18 23.3
0.5 -13.5 0.23 33.6
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8. POISSON-BOLTZMANN MODEL OF ELECTROLYTES

CONTAINING UNIFORMLY CHARGED SPHERICAL

NANOPARTICLES *

8.1. Introduction

Electrostatic interactions in aqueous solutions are omnipresent in biological and biotechnological

systems and are of fundamental importance for the stability of colloidal suspensions, association and ad-

sorption equilibria, and macroion complex formation [8]. One of the most fascinating aspects of interacting

macroions in electrolyte solutions is the possibility of attraction between like-charged particles. Attraction

is not predicted by the classical mean-field Poisson-Boltzmann (PB) theory [292], which assumes point-like

ions and neglects ion-ion correlations. However, attraction is frequently observed experimentally. For ex-

ample, small divalent metal cations induce condensation of DNA [293, 294], aggregation of rod-like M13

viruses [295] and bacteriophages fd [296], and network formation in actin solutions [297]. Multivalent ions

with charges that are spatially separated tend to exhibit a particulary pronounced tendency to induce ag-

gregation of like-charged macroions. Among the most notable examples are polyelectrolytes that are able

to coagulate colloidal suspensions [298, 299] or lipid vesicles [300, 301]. Virtually any sufficiently large

macroion that has spatially separated charges can serve as condensing agent: cationic peptides are able to

trigger aggregation of anionic vesicles [302, 303], charged colloids and cationic micelles condense DNA

[304], DNA condenses cationic lipid membranes [305] or lipid vesicles [306], and proteins aggregate heli-

cal filaments [307]. These macroions should be contrasted with large multivalent ions, yet with all charge

located at their center such as for example tungsten, which tightly adsorbs onto an oppositely charged sur-

face via electrostatic interactions [308] but is not particulary potent in mediating the attraction between

like-charged objects.

Efforts to model electrostatic correlations have focused on the limits of strong and weak electrostatic

*Reprinted from “K. Bohinc, G. V. Bossa, S. Gavryushov, S. May, Poisson-Boltzmann model of electrolytes containing uni-
formly charged spherical nanoparticles, J. Chem. Phys. 145 (23) (2016) 234901”, with the permission of AIP Publishing. Copy-
right 2016 IP Publishing. This paper can be accessed online at http://aip.scitation.org/doi/abs/10.1063/1.
4968210. The material in this chapter was co-authored by Klemen Bohinc, Guilherme V. Bossa, Sergei Gavryushov, and Sylvio
May. G. V. Bossa contributed to the mean-field modeling, figures preparation, writing and discussion of the results.
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coupling [309, 310, 311]. The former case, which becomes most relevant for multivalent ions, has been

elucidated by Shklovskii [312], who proposed an approximate method to describe inter-ionic correlations

through the formation of a Wigner crystal [313]. Models that target the weak correlation regime can typically

be viewed as some kind of modification of the classical PB theory. Examples include integral-equation

theories [314, 315], perturbative expansions around the classical PB model [316], modified PB theory [317],

local density-functional theory [318], and field theoretic methods [319, 320].

Besides correlations between the charges on distinct small mobile ions there are a number of other

mechanisms that can lead to the attraction of like-charged particles. Examples include surface charge fluc-

tuations of the like-charged particles [321] or depletion-mediated attraction due to the addition of an inert

co-solute to the colloidal system [322, 323]. When ions carry multiple charges that are spatially sepa-

rated, intra-ionic charge-charge correlations will be present in addition to inter-ionic correlations. These

intra-ionic correlations are manifested by and refer to the fixed mutual distances between all individual

charges that belong to a given ion. Intra-ionic correlations have been incorporated into the PB formalism

[324, 325, 326, 31, 327]; they too can give rise to attractive interactions between like-charged macroions.

In addition to intra- and inter-ionic correlations, the finite size of ions also contributes to the prop-

erties of the electric double layer. Consequently, PB theory has been modified in a number of approaches

so as to account for the steric repulsion between ions [328, 329]. For example, a lattice gas entropy has

been incorporated into the PB model [80, 330, 331], and spherical ion geometry was included based on the

Carnahan-Starling equation of state [90, 81]. Also, a density functional approach was modified by taking

into account finite ion sizes [332]. Finite-size effects are especially important close to charged surfaces.

Stern [333] argued that the closest approach of an ion to an oppositely charged surface is limited by the

ion’s steric size and thus proposed to model the structure of an electric double layer by a diffuse ion cloud

that is separated from the charged surface by a parallel-plate capacitor of molecular thickness. He showed

that the properties of the capacitor are determined by the degree of specific ion adsorption and by its much

lower dielectric constant as compared to bulk water. The molecular origin of the dielectric constant depends

on the polarization of interfacial water and reflects the hydrophobicity of the surface [334].

We have recently addressed the problem of incorporating into mean-field electrostatics spherical

nanoparticles with uniform surface charge density that are mobile and reside in a salt solution sandwiched

between two planar charged surfaces [335]. However, this task was only accomplished so far in the lin-

earized PB regime, which is valid for very small charge densities on both the extended planar surfaces and
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on the surfaces of the spherical nanoparticles. It was demonstrated that attraction between like-charged

surfaces arises above a critical nanoparticle size. An approximate analytic expression was derived for the

critical size above which attraction between like-charged surfaces starts to emerge.

In this work, we formulate a non-linear PB model for uniformly charged spherical nanoparticles,

sandwiched between two extended like-charged surfaces. Our model represents a mean-field approach in

the sense that correlations between different nanoparticles are neglected. Yet, intra-ionic correlations (i.e.,

the connectivity of the charges within each spherical particle) are fully incorporated into the model. In addi-

tion, we take into account the excluded volume interactions of the spherical nanoparticles with the charged

surfaces. Minimization of the free energy of the system through a variational procedure results in a modified

Boltzmann distribution for the local nanoparticle concentration. Insertion of this distribution into Poisson’s

equation results in an integral-differential equation that we have solved numerically. Our predictions for the

local charge density are compared to results from Monte Carlo simulations. We also calculate the pressure

that acts on the planar surfaces. Based on non-linear PB theory we predict a regime where the force between

like-charged surfaces is attractive. We demonstrate that increasing salt concentration weakens the attraction

between like-charged surfaces and ultimately reverses the attraction into a repulsion.

Our results for uniformly charged nanoparticles are compared to those for nanoparticles with their

entire charge located at the particle center. In order to assess what role the spatial separation of the charges

on the nanoparticles plays, we compare our results for uniformly charged nanoparticles to those for nanopar-

ticles with the entire charge located at the nanoparticle center. The latter (in contrast to the former) always

mediate a repulsive force between like-charged surfaces. Hence, our present work highlights the impor-

tance of properly accounting for the charge distribution of spatially extended multivalent ions in electrolyte

solutions.

8.2. Theory

The system we consider is schematically displayed in Fig. 8.1; it consists of two planar, like-charged

surfaces (both positively charged) of area A immersed in an aqueous solution containing negatively charged

spherical nanoparticles of radius R and valence z. The solution is in contact with a salt reservoir consisting

of small (in our model point-like) monovalent positive and negative ions, each with bulk concentration n0.

Because the present work focuses on the method of incorporating the electrostatic properties of particles
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Figure 8.1. Schematic illustration of two like-charged planar surfaces (located at positions x = 0 and x = D,
each of lateral area A and with surface charge density σ ), embedded in a solution of negatively charged
spherical nanoparticles (np). Each spherical nanoparticle has radius R and carries a uniform surface charge
density −z/(4πR2) (a) or has all z charges located at the center of the sphere (b). The system is in contact
with a reservoir of monovalent point-like positive and negative salt ions, each of concentration n0.

with spatially extended charge distributions into the nonlinear PB formalism, it is convenient to demand all

nanoparticles reside in between the two planar surfaces without being able to migrate into the bulk solution.

This approximation becomes exact in the two limits of small n0 or large z. We note that it is, of course, also

possible to fix the chemical potential of the nanoparticles instead of their number when analyzing concrete

applications. The two planar surfaces are parallel, and they are separated by a distance D (with D > 2R).

Our choice of a planar geometry for the macroions was made in order to keep the system simple; it ensures

that all average properties depend only on the normal direction x of the two surfaces. The two surfaces are

located at positions x = 0 and x = D of a Cartesian coordinate system; overall charge neutrality then requires

2σ +

D∫

0

dx ρ(x) = 0 , (8.1)
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where σ is the charge density at each of the two planar surfaces and ρ(x) the local volume charge density

in the aqueous solution. The surface charge density can be written as σ = e/a, where a is the surface area

occupied by one elementary charge e.

The electrostatic mean-field free energy of the system, F , measured per unit area A and in units of

the thermal energy kBT (here kB is Boltzmann’s constant and T is the absolute temperature) can be expressed

as

F
kBTA

=

D∫

0

dx

[
Ψ′2

8πlB
+ fmix(m,m0)+ fmix(n+,n0)

+ fmix(n−,n0)+Um

]
+µ

D∫

0

(m−m0)dx . (8.2)

The first term on the right hand side of Eq. 8.2 corresponds to the energy stored in the electrostatic field,

here expressed in terms of the commonly used dimensionless electrostatic potential Ψ = eΦ/kBT , instead

of the electrostatic potential Φ, and in terms of the Bjerrum length lB = e2/(4πεε0kBT ), instead of the

dielectric constant ε of the aqueous solution (ε0 is the permittivity of free space). At room temperature the

Bjerrum length in the aqueous solution is 0.7nm. We use a prime to denote the derivative with respect to x.

The function fmix(m,m0) = m ln(m/m0)−m+m0 in the second term describes the ideal mixing free energy

of the nanoparticles, where m(x) is the local concentration of the spherical nanoparticles (measured with

respect to their center) and m0 = (1/D)
∫ D

0 m(x)dx is the corresponding average concentration.

We note that using an ideal mixing free energy for the nanoparticles requires us to work in the limit

of small concentrations everywhere in the aqueous solution. One may go beyond this limit by adopting an

appropriate non-ideal mixing entropy, for example that of a lattice gas [80] or that implied by the Carnahan-

Starling [81] equation of state. However, these approaches are already well-established so that in the present

work we may focus entirely on incorporating spatially extended charge distributions into the non-linear PB

model, subject to an ideal mixing entropy.

The third and fourth term in Eq. 8.2, fmix(n±,n0) = n± ln(n±/n0)− n±+ n0, describe the ideal

mixing free energy of the monovalent salt ions, where n−(x) is the local concentration of counterions (ions

with their sign opposite to that of the charged surface) and n+(x) is the local concentration of coions (ions

with their sign equal to that of the surface charges). The fifth term introduces an external potential U(x)

(measured in units of kBT ) that we choose below so as to account for the steric repulsion between the
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spherical nanoparticles and the two planar surfaces. The last term in Eq. 8.2 ensures electroneutrality by

demanding the number of nanoparticles to equal m0AD = 2σA/(ze); the Lagrange multiplier µ must be

determined accordingly. We consider two types of spherical nanoparticles. One type has its z charges

uniformly distributed over the nanoparticle surface (Fig. 8.1a) whereas the second type has all z charges

located at its center (Fig. 8.1b).

8.2.1. Spherical Nanoparticles with Uniform Surface Charge Density

The local volume charge density ρ(x) at any point x between the two surfaces (0 < x < D) is

composed of a contribution from the point-like salt cations and anions located at position x and another

contribution from all nanoparticles residing in the region from x−R to x+R,

ρ(x) = e [n+(x)−n−(x)]−
ez
2R

R∫

−R

ds m(x− s). (8.3)

Note that it is the non-locality of last term on the right-hand side of Eq. 8.3 that accounts for the connectivity

of the charges on the nanoparticle and thus for intra-ionic charge correlations.

In thermal equilibrium, the free energy F = F(m,n+,n−) adopts a minimum with respect to the

local concentrations of nanoparticles (m) and point-like salt ions (n+ and n−). Upon calculating the first

variation δF(m,n+,n−) and demanding it equals zero, we find the equilibrium concentration distributions

for the spherical nanoparticles,

m(x) = m0 e
−U(x)−µ+ z

2R

R∫
−R

dsΨ(x+s)
, (8.4)

and for the monovalent point-like salt ions,

n+(x) = n0 e−Ψ(x) , n−(x) = n0 eΨ(x) . (8.5)

Inserting the equilibrium distributions m(x), n+(x) and n−(x) into Poisson’s equation Ψ′′(x)=−4πlB ρ(x)/e,
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with ρ(x) specified in Eq. 8.3, leads to a modified PB equation

Ψ′′(x)
4πlB

= n0 e−Ψ(x)−n0 eΨ(x)

+ m0 e−µ z
2R

R∫

−R

ds̄ e
−U(x−s̄)+ z

2R

R∫
−R

dsΨ(x+s̄−s)
. (8.6)

The Lagrange multiplier is calculated from the electroneutrality condition specified in Eq. 8.1,

e−µ =
2

zam0

1

D∫
0

dx̄ 1
2R

R∫
−R

ds̄e
−U(x̄−s̄)+ z

2R

R∫
−R

ds Ψ(x̄+s−s̄)
. (8.7)

We specify the external potential so as to account for steric interactions between the nanoparticles and the

two planar surfaces, U(x) = 0 if R < x < (D−R) and U(x)→∞ otherwise. Taking into account this external

potential yields our final result, a non-linear PB equation for a mixture of uniformly charged spherical

particles and monovalent point-like salt ions, which adopts the form of an integral-differential equation for

the dimensionless electrostatic potential,

Ψ
′′(x) =

1
l2
D

sinhΨ(x)+
8πlB

a

min(R,D−R−x)∫
−min(R,x−R)

ds̄ e
z

2R

R∫
−R

ds Ψ(x+s−s̄)

D∫
0

dx̄
min(R,D−R−x̄)∫
−min(R,x̄−R)

ds̄e
z

2R

R∫
−R

ds Ψ(x̄+s−s̄)
. (8.8)

Here, lD = 1/
√

8πlBn0 is the Debye screening length due to the presence of salt. Eq. 8.8 has to be solved

subject to the boundary conditions Ψ′(0) = −Ψ′(D) = −4πlB/a. Note that the integrals in Eq. 8.8 render

the differential equation non-local. This non-locality results from the connectivity of (or, equivalently, intra-

ionic correlations between) the nanoparticle charges. We have computed solutions of the integral-differential

equation 8.8 numerically based on employing a discretizaton scheme.

Once the potential in the region 0≤ x≤D is known, we can calculate the local concentration of the
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nanoparticles in the interval R < x < D−R through

m(x) =
2
az

e
z

2R

R∫
−R

ds Ψ(x+s)

D∫
0

dx̄
min(R,D−R−x̄)∫
−min(R,x̄−R)

ds̄e
z

2R

R∫
−R

ds Ψ(x̄+s−s̄)
, (8.9)

where we have made use of inserting the Lagrange multiplier from Eq. 8.7 into Eq. 8.4.

We also derive an expression for the pressure that acts on each of the two charged surfaces. Eq. 8.2

can be re-expressed as

F
kBTA

=

D∫

0

dx

[
− Ψ′2

8πlB
−Ψ

z
2R

R∫

−R

dsm(x− s)

+ fmix(m,m0)+Ψn+−Ψn−

+ fmix(n+,n0)+ fmix(n−,n0)

]
. (8.10)

Here, the local concentration m(x) is non-vanishing only in the region R < x < D−R. Inserting the equi-

librium distributions for m and n± into Eq. 8.10 yields a functional F [Ψ(x)] whose variation δF vanishes.

Hence, we obtain the pressure

P =−kBT
dF/(AkBT )

dD
(8.11)

that acts on the planar surfaces directly from the integrand of Eq. 8.10, namely

P
kBT

=
Ψ′2

8πlB
+ Ψ

z
2R

R∫

−R

ds m(x− s)− fmix(m,m0)

− Ψn++Ψn−− fmix(n+,n0)− fmix(n−,n0) . (8.12)

We conveniently evaluate Eq. 8.12 in the middle of the system at x = D/2. Due to the symmetry Ψ(x) =

Ψ(D− x), the first term in Eq. 8.12 equals zero at x = D/2. The relation n± f ′mix(n±,n0)− fmix(n±,n0) =

n±−n0 simplifies Eq. 8.12 to

P
kBT

= Ψ(D/2)
z

2R

R∫

−R

ds m(D/2− s)

− fmix[m(D/2),m0]+n+(D/2)+n−(D/2). (8.13)
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Note that for point-like ions (R = 0) the pressure becomes P/kBT = m(D/2)+n+(D/2)+n−(D/2)−2n0.

8.2.2. Spherical Nanoparticles with Charge Located in the Center

Now we collect all charges from the nanoparticle surface and relocate them into the center of the

nanoparticle. As a result of this process the integral
∫

ds can be written as
∫

dsδ (s), where δ is the Dirac

delta function. Eq. 8.8 then becomes

Ψ
′′(x) =

1
l2
D

sinhΨ(x)+
8πlB

a
ezΨ(x)h(x,R,D−R)

D−R∫
R

dx̄ezΨ(x̄)

, (8.14)

where

h(x,x1,x2) =

{ 0 x < x1

1 x1 < x < x2

0 x > x2 .

(8.15)

Similarly, the nanoparticle concentration can be calculated from Eq. 8.9 through

m(x) =
2
az

ezΨ(x)h(x,R,D−R)
D−R∫

R
dx̄ ezΨ(x̄)

. (8.16)

Finally, the pressure between the two like charged surfaces is

P
kBT

= m(D/2)+n+(D/2)+n−(D/2)−2n0 . (8.17)

There is no influence of the nanoparticle size on the pressure because we have used an ideal mixing free

energy fmix(m,m0) in Eq. 8.2.

8.2.3. Monte Carlo Simulations

The Monte Carlo simulation model included hard spherical particles of diameter 2R bearing point

charges on their surfaces. A homogeneous charge distribution was approximated by 30 point charges, dis-

tributed on the surface of the sphere such that each charge occupies roughly the same cross-sectional area.
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All particles were contained inside a rectangular box of dimension (Lxy×Lxy×D)nm3. The value Lxy varied

from 120 to 250 nm. Periodic boundary conditions along the x- and y-axis were applied. The external field

created by the charges of the spherical particles outside the cut off radius (from 60 to 180 nm) was included

according to a correction term. The temperature was T = 298 K throughout. The dielectric constant was

ε = 80. For each system, the productive run simulations, involving 1000×M trial moves per particle, were

performed after equilibration comprising 1000 trial moves. Typically, M was 10. All simulations were

carried out employing the MOLSIM package [336]. Note that all our simulations model salt-free systems

(n0 = 0).

8.3. Results and Discussion

Our theoretical model yields the ion concentrations, charge density profiles, and the pressure be-

tween two like-charged surfaces that sandwich a solution of monovalent salt and charged nanoparticles, the

latter either homogeneously charged or with all charges located at the nanoparticle centers. In the following,

we analyze these properties based on numerical solutions of the nonlinear integral-differential equations 8.8

and 8.14. Some of the theoretical predictions are compared with results from Monte Carlo simulations.

8.3.1. Salt Free System

We first consider a system that does not contain monovalent salt ions (n0 = 0). When a nanoparticle

of given size carries a small number of charges, we expect a diffuse and spatially extended electric double

layer near each of the two charged surfaces to form. In contrast, when the number of charges on each

nanoparticle is large, they will tend to adsorb tightly onto the surfaces. To illustrate the former of these two

limiting scenarios, we show in Fig. 8.2 the negative of the volume charge density, −ρ(x), for nanoparticles

with only one single charge (z = 1), distributed uniformly over the particle surface, and three different radii

R = 0.5nm (green), R = 1.0nm (blue), and R = 2.5nm (red). The remaining parameters are a = 60nm2 and

D = 20 nm. The inset of Fig. 8.2 displays the corresponding local particle concentrations m(x) calculated

according to Eq. 8.9. When moving away from either one of the two charged surfaces into the aqueous

solution, the magnitude of ρ(x) first increases, then passes through a maximum at x = 2R, and subsequently

decreases. The maximum results from the steric restriction of the spherical nanoparticles close to the charged
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Figure 8.2. Local volume charge density ρ(x) for homogeneously charged particles with z = 1, a = 60nm2,
n0 = 0, and D = 20 nm. Solid lines refer to our non-linear PB model (that is, solutions of Eqs. 8.8 and 8.9),
and the bullets to the prediction from Monte Carlo simulations. Different colors refer to different particle
radii: R = 0.5nm (green), R = 1.0nm (blue), and R = 2.5nm (red). The inset shows the corresponding local
particle concentration m(x). The dashed black curve in the main figure and in the inset corresponds to the
classical PB result for point-like ions.

wall. Comparison between Monte Carlo simulations (the bullets in Fig. 8.2 and its inset) and theory (the

solid lines in Fig. 8.2 and its inset) reveals good agreement for the volume charge density ρ(x) and particle

concentration m(x) produced by the smaller particles, where R = 0.5 nm (green) and R = 1.0 nm (blue). For

the large particles, where R = 2.5 nm (red), packing effects become important, which our theoretical model

ignores. We can rationalize the onset of packing effects by introducing the fractional surface coverage with

the nanoparticles

χ =
πR2

za
(8.18)

in the strong adsorption limit. Applicability of the ideal mixing assumption, see fmix(m,m0) in Eq. 8.2,

requires χ to be much smaller than the maximal value χmax = π/
√

12 ≈ 0.907 for dense packing in a

hexagonal array. For the examples in Fig. 8.1 we obtain: χ = 0.013 for R = 0.5 nm (green), χ = 0.052 for

R = 1.0 nm (blue), and χ = 0.33 for R = 2.5 nm (red).

In the limit of infinitesimally small radius R, Eq. 8.8 recovers the familiar classical PB result for

point-like ions

Ψ
′′(x) =

8πlB
a

ezΨ(x)

∫ D
0 ezΨ(x)dx

, (8.19)
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and Eq. 8.9 yields the local ion concentration

m(x) =
2
az

ezΨ(x)

∫ D
0 ezΨ(x)dx

. (8.20)

As is well known [337], the solution of Eq. 8.19 can be expressed as Ψ(x) = − ln{cos2[κ(x−D/2)]}/z,

where the constant κ must be determined from the transcendental equation κD = 2arctan[(2πlBz)/(aκ)].

This indeed fulfills the boundary conditions Ψ′(0) =−Ψ′(D) =−4πlB/a. In addition, the reference for the

potential is chosen as Ψ(D/2) = 0. For the local counterion concentration we obtain from Eq. 8.20

m(x) =
κ2

2πlBz2
1

cos2
[
κ
(
x− D

2

)] . (8.21)

With a = 60 nm2, D = 20 nm, lB = 0.7 nm, and z = 1 we find κ = 0.0764/nm. Charge density ρ(x) and

concentration m(x) =−ρ(x)/e according to this classical PB result for point-like ions are shown in Fig. 8.2

and its inset; see the dashed black curves.

0 5 10
0

0.5

1

x/nm

−ρ
e
2Ra

Figure 8.3. Normalized local volume charge density, −2Raρ(x)/e, for R = 3.5 nm, D = 50 nm, and z = 24.
Solid lines and filled symbols are computed using PB theory and Monte Carlo simulations, respectively.
Different colors correspond to different surface charge densities σ = e/a with a = 5nm2 (black), a = 10nm2

(red), a = 20 nm2 (green), and a = 60 nm2 (blue).

To illustrate the other limiting scenario, that of a multivalent nanoparticle with z >> 1, Fig. 8.3

shows the normalized volume charge density −2Raρ(x)/e for z = 24, D = 50 nm, and R = 3.5 nm. Solid

lines and filled symbols are computed using PB theory and Monte Carlo simulations, respectively. Different
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colors correspond to to different surface charge densities σ = e/a with a = 5 nm2 (black), a = 10 nm2 (red),

a = 20 nm2 (green), and a = 60 nm2 (blue). Nanoparticles that are all condensed to the charged surface

imply a step function, ρ(x) = −e/(2Ra) for 0 ≤ x ≤ 2R and ρ(x) = 0 for x > 2R, for their volume charge

density. Fig. 8.3 reveals that with increasing σ = e/a (or, equivalently, decreasing cross-sectional area a per

elementary charge on the planar surface) ρ(x) approaches the limit of complete nanoparticle adsorption. We

point out that even for the highest surface charge density, σ = e/(5nm2), the fractional surface coverage,

χ = πR2/(za) = π(3.5nm)2/(24× 5nm2) = 0.032, of the nanoparticles is so small that the ideal gas limit

for the mixing entropy is appropriate.

The transition between the two limiting scenarios, weak and strong adsorption, can be captured by

varying the nanoparticle valence from small to large values. To this end, Fig. 8.4 shows the volume charge

density ρ(x) for different valences z= 3 (blue), z= 6 (red), z= 12 (black), and z= 24 (green), all derived for

fixed nanoparticle radius R = 3.5 nm, surface charge density σ = e/(60nm2), and in the absence of added

salt (n0 = 0). Again, solid lines refer to PB theory and bullets to results from Monte Carlo simulations.

The upper and lower diagram of Fig. 8.4 are computed for D = 20 nm and D = 50 nm, respectively. The

results in Fig. 8.4 demonstrate how increasing the valence z shifts the volume charge density ρ(x) from that

of weakly to strongly surface-associated nanoparticles. We have indicated the limiting cases of uniform

particle distribution, where −ρ(x)/e = x/[2Ra(D−2R)] for 0≤ x ≤ 2R and −ρ(x)/e = 1/[a(D−2R)] for

2R ≤ x ≤ D/2, and that of complete surface association, where −ρ(x)/e = 1/(2Ra) for 0 ≤ x ≤ 2R and

−ρ(x)/e = 0 for 2R≤ x ≤ D/2; see the dashed lines in Fig. 8.4. Indeed, the charge distributions approach

these two limits if z becomes small or large.

8.3.2. Influence of Salt

In the following we consider the influence of added salt on the concentration profiles of nanoparti-

cles. Fig. 8.5 shows concentration profiles m(x) of nanoparticles for the two different radii R = 1 nm (black

curves) and R = 3.5 nm (red curves). Two types of nanoparticles are compared, one (solid lines in Fig. 8.5)

with uniformly distributed charge over the particle surface and another one (dashed lines in Fig. 8.5) with all

charge localized in the particle center. In all cases, m decreases with increasing distance x from the nearest

charged surface. Due to the excluded volume interaction with the wall, the concentration profile starts to

adopt non-vanishing values at x = R, as marked by the dotted lines in Fig. 8.5. Close to the charged sur-
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Figure 8.4. Local volume charge density ρ(x) for homogeneously charged particles of radius R = 3.5 nm
and surface charge density σ = e/a with a = 60 nm2. Solid lines and filled symbols are computed using PB
theory and Monte Carlo simulations, respectively. Different colors correspond to different particle valencies:
z = 3 (blue), z = 6 (red), z = 12 (black) and z = 24 (green). Upper and lower diagram refer to D = 20nm and
D = 50 nm, respectively. The two broken lines in each diagram indicate the two limiting cases of uniform
particle distribution and complete surface adsorption. No salt is present (n0 = 0).

faces the concentration of nanoparticles with uniform surface charge distribution is somewhat larger than

the concentration of nanoparticles with all charge located in their center; compare the corresponding bul-

lets in Fig. 8.5 which mark m(R). The different behaviors of the two particle types might seem surprising

because both produce the same potential distribution. However, their mutual interaction potential differs,

predominantly due to the presence of a quadrupole moment of the uniformly charged nanoparticle which is

absent for the particle with a central point charge. Specifically, when interacting with the non-homogeneous

electric field produced by the diffuse ion cloud of an electric double layer, the additional quadrupole moment

of the uniformly charged nanoparticles enhances the attraction with the oppositely charged surface and thus

implies a larger surface concentration. This is indeed what we observe in Fig. 8.5. The reason is that the
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non-homogeneous electric field produced by the diffuse cloud of mobile ions (consisting of both salt coun-

terions and nanoparticles) favors spatially extended charge distributions along the x-axis in a similar manner

as a quadrupole charge (as opposed to a monopole charge) is energetically biased along the direction of a

changing electric field.
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Figure 8.5. Nanoparticle concentration profiles m(x) for different radii R = 1 nm (black curves) and R =
3.5 nm (red curves) as well as for uniform surface charge density (solid lines) and all charge being localized
at the particle center (broken lines). The upper diagram refers to lD = 10 nm, the lower to lD = 1.0 nm.
All calculations correspond to lB = 0.7 nm, D = 20 nm, a = 60 nm2, and z = 24. The bullets mark the
concentrations m(R).

The upper and lower diagrams of Fig. 8.5 show the concentrations m(x) for lD = 10 nm and lD =

1 nm, respectively. Smaller Debye lengths correspond to higher salt concentration and thus stronger elec-

trostatic screening. As a result, magnitudes of surface potentials and concentrations are generally larger for

larger lD. Also, we observe larger variations of m(x) along the x-axis for uniformly charged particles as
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compared to particles with all charge at their center for both Debye lengths, lD = 10 nm and lD = 1 nm. In

order to verify that this is the case for all Debye lengths, we define an inhomogeneity parameter

η =

D∫
0

dx
(

m(x)
m0
−1
)2

[
D∫
0

dx
(

m(x)
m0
−1
)2
]

lD→∞

, (8.22)

which characterizes the overall degree of nonuniformity of m(x), scaled by its value in the absence of salt

(where n0 = 0 or, equivalently, lD→∞). Clearly, η→ 1 for large Debye lengths. Also, because the addition

of salt results generally in more uniform ion distributions along the x-axis, we expect the function η(lD) to

start from η(lD = 0) = 0 and increase monotonously. This is indeed the case, as Fig. 8.6 exemplifies for

D = 20 nm, a = 60 nm2, and z = 24, R = 3.5 nm. Here, and similarly for other parameter choices, η(lD)

is always larger for uniformly charged particles as compared to particles with all charge localized at the

particle center.
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Figure 8.6. Inhomogeneity parameter η as function of lD for fixed D = 20 nm, a = 60 nm2, and z = 24,
R = 3.5 nm. Solid line: uniform surface charge density. Dashed line: all z charges are located in the particle
center.

One of our central conclusions of this work is that the spatial separation of the charges on the surface

of nanoparticles leads to stronger surface adsorption and, generally, to a more non-uniform particle distribu-

tion. A second, and perhaps more important, consequence is related to the nature of the interaction between

two like-charged surfaces: uniformly charged nanoparticles, but not nanoparticles with all the charge lo-
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calized in their center, are able to induce an attractive interaction between two like-charged surfaces. We

demonstrate this by plotting the pressure P as a function of the surface-to-surface separation D; see Fig. 8.7,

which is calculated for R = 3.5 nm, z = 24, a = 60 nm2, and different amounts of salt as indicated by the

differently colored curves.
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Figure 8.7. Pressure P as function of the separation D between two like-charged surfaces for nanoparticles
with uniform surface charge density (solid lines) and for nanoparticles with all the charge localized in their
center (broken lines). Different colors correspond to different salt content: lD = 1nm (black), lD = 3.5nm
(orange) lD = 5nm (blue) and lD = 10nm (red), and lD → ∞ (no salt – green curve). All calculations
correspond to fixed R = 3.5 nm, z = 24, and a = 60 nm2.

If we locate the charge in the center of the nanoparticles then the interaction between the like-

charged surfaces is repulsive (Fig. 8.7, dashed line). The pressure decreases with increasing surface separa-

tions. The strict repulsiveness of the interaction is the result of the neglect of intra-ionic correlations. The

removal of salt generally tends to decrease the pressure P, which however remains always repulsive irre-

spective of the salt content. Note that in the limiting case of lD→ 0 all electrostatic interactions are screened.

The nanoparticles then behave as an ideal gas with a corresponding pressure P/kBT = 2/[(D−2R)az]. For

example, at D=20 nm, P/kBT = 0.1068/(10 nm)3.

If we relocate the nanoparticle charges from the center to the surface, the interaction between the

two like-charged surfaces may become attractive. The negative pressure is entirely the result of intra-ionic

correlations. Increasing the salt concentration (decreasing Debye length) diminishes the range of attraction.

For sufficiently large salt concentration the attraction is lost. For nanoparticles with radius 3.5 nm, valence

z = 24, and surface area a = 60 nm2, the transition between attraction and repulsion takes place at a Debye

length of about lD = 5nm. Attractive interactions between like-charged surfaces emerge at separations of

146



about the nanoparticle size (see Fig. 8.7). The charges on the nanoparticle surface link the two surfaces

together. This ”bridging” [338, 123, 325, 78] interaction is lost when we relocate the charges from the

nanoparticle surface to its center.

8.4. Conclusions

In this work, we have presented a modified PB theory for an electrolyte that contains besides point-

like monovalent ions also uniformly charged spherical nanoparticles, sandwiched between two parallel like-

charged surfaces. We performed Monte Carlo simulations for these systems in order to validate the pre-

dictions of the theory and found that for sufficiently small nanoparticle density there was good agreement

between both regarding ion concentration profiles. Our prediction of attractive interactions between like-

charged surfaces corroborates the possibility of macroion condensation induced by particles/molecules with

spatially distributed charges [339, 340, 341]. The attractiveness of the interaction is the result of intra-ionic

correlations introduced through the uniform surface charge density of the spherical nanoparticles. Inter-ionic

correlations will further enhance the degree of attraction, but they are not needed to explain its origin.
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9. SURFACE TENSION OF A YUKAWA FLUID ACCORDING TO

MEAN-FIELD THEORY *

9.1. Introduction

Introduced originally as a nuclear potential [342], the Yukawa interaction emerges in a variety of

additional physical subdisciplines such as plasma physics, condensed matter physics, and statistical physics.

In the physics of simple and complex fluids the Yukawa potential can appear as the result of effective in-

teractions. Examples include the screened electrostatic potential in ionic systems [343, 344, 345, 46, 346],

ion-specific hydration effects [65, 31], solvation forces [347, 348], and the stability of colloidal disper-

sions [349, 350, 351, 352]. Systems with weakly changing scalar or vectorial order parameters also exhibit

Yukawa-like interactions between their constituents [353, 354]. Moreover, due to its simplicity, the Yukawa

potential is often combined with other interaction potentials. Obviously, it may act in addition to the steric

repulsion between particles [355, 356, 348, 357, 358, 359, 360]. Another scenario that has received some

attention is the addition of the Yukawa potential to a Coulomb interaction [361, 74, 362, 31, 222, 363] to

model hydration effects of ionic fluids.

When a Yukawa fluid is confined inside a container, the presence of the impenetrable container walls

affects the particle distribution and thus creates a surface tension – an excess free energy (per unit area) with

respect to the bulk of the fluid [357, 360]. A surface tension also emerges at the boundary between the

two coexisting phases (liquid and vapor) of a Yukawa fluid. A multitude of studies have addressed the

thermodynamic stability of Yukawa fluids [364, 365, 366, 367] using methods such as density functional

theory [368, 369, 4], perturbation approaches [370], and a field theoretic description [357, 359]. Density

functional theories [371, 372, 373, 6] and virial expansions [5] have also been employed to predict the

surface tension between the coexisting phases of attractive Yukawa fluids with added excluded volume

repulsion. However, most of the available results for the surface tension are derived from Monte Carlo

*Reprinted from “G. V. Bossa, J. Norris, S. May, Surface tension of a Yukawa fluid according to mean-field theory, J. Chem
Phys. 146 (13) (2017) 134701”, with the permission of AIP Publishing. Copyright 2017 AIP Publishing. This paper can be accessed
online at http://aip.scitation.org/doi/abs/10.1063/1.4979203. The material in this chapter was co-authored
by Guilherme V. Bossa, Joseph Norris, and Sylvio May. G. V. Bossa contributed to the project design and manuscript writing.
G.V.B. was responsible for the mathematical development, numerical and analytical solution of the equations, figures preparation,
and discussion of the results.
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simulations [374, 375, 376, 3, 377, 367, 378]. These simulations typically focus on the regime of a small

(as compared to the particle size) screening length and, depending on the simulation method, often differ

notably in their predictions of the surface tension [365, 379]. We note that the other limit, that of large

screening length, is also interesting as a model for hydration-mediated interactions between small ions in an

aqueous solution [361, 65, 74], but has not been studied in the past.

Mean-field theories often result as lowest order approximations of perturbation approaches; their

range of applicability is limited, but their simplicity and transparency still renders them valuable [380].

One example is the field theoretic approach by di Caprio, Holovko, and coworkers, who have investigated

Yukawa [357] and closely related [359, 360] fluids near system boundaries (the walls of the container in

which the Yukawa fluid resides). The mean-field limit of their theory applies only to point-like particles,

but it is non-local and, hence, does not assume that spatial changes in particle density are small. This, in

fact, is the basis to investigate the step-like particle densities at system boundaries. Another example is

the virial expansion from Weiss and Schröer [5], which models the fluid on the level of the second virial

coefficient and calculates the surface tension of coexisting phases using the square gradient theory. This

mean-field approach does not rely on assumptions about particle size and interaction range of the Yukawa

potential, but it assumes that changes in particle density are small. Hence, the model is suitable to predict

the surface tension of coexisting phases but cannot be applied to calculate the excess energy of a fluid near

a system boundary. The present work represents an attempt to include into the field-based description of a

Yukawa fluid [357] a non-vanishing particle size. To this end, we employ a field variable to describe the

Yukawa-interactions between all particles, which renders our model non-local and allows us to investigate

any type of interface, like those between coexisting phases as well as boundary walls. Including the particle

size recovers the virial expansion approach [5] only in the limit of high temperature and large interaction

range, yet goes beyond the square gradient theory by not assuming small changes of the particle density.

We calculate the surface tension γ of a Yukawa fluid on the mean-field level for particles that exhibit

Yukawa and excluded-volume interactions. The Yukawa interaction can be repulsive or attractive. In the

former case, the fluid is thermodynamically stable, and a surface tension will be associated with the presence

of a system boundary (that is, a container wall). In the latter case, an attractive Yukawa fluid, macroscopic

phase separation may occur. We calculate the corresponding surface tension associated with the phase

boundary. Non-vanishing particle size is incorporated into our mean-field model by a nonideal contribution

to the free energy, in addition to the Yukawa interaction energy between all particles and the free energy of
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an ideal gas. We exemplify this nonideal contribution using two different models based on either a lattice

gas or the Carnahan-Starling equation of state. The mean-field character in both cases implies the pair

correlation function is gc ≡ 1. The main result of this work is the prediction of γ on the mean-field level,

completely in terms of two (or even one, in case of a phase boundary) appropriately defined parameters.

Besides numerical results we derive a number of simple analytic expressions for the surface tension, valid

for any choice of the additional nonideal free energy contribution and in the limit of either small particle

density or close to the critical point for a phase-separating Yukawa fluid.

9.2. Mean-Field Model

We consider an ensemble of spherical particles, in which any given two particles that are separated

by a center-to-center distance r interact though the Yukawa potential

u(r) =
l
r

e−κr. (9.1)

Here, 1/κ is a characteristic decay length and l the interaction strength. The sign of l determines whether

the interaction is repulsive (for l > 0) or attractive (for l < 0). Note that in Eq. 9.1 and everywhere else in

this work we express energies in units of the thermal energy unit kBT , where kB is the Boltzmann constant

and T the absolute temperature. It is convenient to define a dimensionless potential

Ψ(r) = l
∫

d3r̄
e−κ|r−r̄|

|r− r̄| n(r̄) (9.2)

at any location r, where the integration runs over all space. The potential Ψ(r) is produced by all particles,

which are present with local concentration (or, equivalently, number density) n(r̄) at a point r̄. We can

express Eq. 12.3 as a local differential equation using the Green’s function G(r) = −e−κ|r|/(4π|r|) that

corresponds to the operator A = ∇2− κ2 (where ∇2 denotes the Laplacian) and thus fulfills the relation

A G(r) = δ (r). The result is a Helmholtz equation with a source term and complex wave number iκ ,

∇
2
Ψ(r)−κ

2
Ψ(r) =−4πl n(r). (9.3)
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The potential Ψ(r) allows us to readily calculate the total interaction energy of all particles through

U =
1
2

∫
d3r Ψ(r)n(r) =

∫
d3r

[∇Ψ(r)]2 +κ2Ψ2

8πl
, (9.4)

where ∇ denotes the gradient.

In this work we study a Yukawa fluid that forms a planar interface, which either arises due to the

presence of a container that confines the fluid or as the result of a phase separation. The properties of the

Yukawa fluid depend in both cases only on the distance to the interface, which we measure along the x-

axis of a Cartesian coordinate system. Hence, we conveniently use the x-coordinate instead of the position

vector r as argument in all spatially varying functions; i.e., Ψ(r)→ Ψ(x) and n(r)→ n(x). For example,

the Helmholtz equation now reads Ψ′′(x)−κ2Ψ(x) =−4πl n(x) (where here and below a prime denotes the

derivative with respect to the argument; i.e., Ψ′ = dΨ/dx) or, without an explicit account of the arguments,

Ψ
′′−κ

2
Ψ =−4πl n. (9.5)

We express the entropic contribution −T S to the mean-field Landau free energy F =U−T S−µN

of the Yukawa fluid in terms of the local volume fraction φ(x) = vn(x) of the particles, where v = 4πR3/3 is

the volume per particle. (We assume the spherical particles all have the same radius R, and we also note that

in liquid-state theory the term “packing fraction” is often used instead of “volume fraction”.) Specifically,

we write
F
A
=

∞∫

−∞

dx
[

Ψ′2 +κ2Ψ2

8πl
+

φ lnφ −φ +g(φ)−µφ

v

]
, (9.6)

where A is the (sufficiently large) lateral area of the interface. Evidently, the first two contributions to the

integral express the interaction energy U specified in Eq. 9.4. We identify the next two contributions in

Eq. 9.6, those involving the terms φ lnφ − φ , as the free energy of an ideal gas. The following term, that

containing g(φ), introduces an additional nonideal contribution, which appears in the thermal equation of

state of a homogeneous fluid (liquid or gas) with N particles confined in a volume V at pressure P and

temperature T as PV/(NkBT ) = 1+g′(φ)−g(φ)/φ , where g′(φ) denotes the derivative with respect to the

volume fraction φ = vN/V . Finally, µ , which appears in the last contribution to the integral in Eq. 9.6, is a

chemical potential that can be used to constrain the concentration of the particles. In the most general case

of accounting for an x-dependent constraint, µ = µ(x).
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We will focus in this work on three specific equations of state. The first is that characterized by

g(φ) = 0, which corresponds to a Yukawa fluid with an ideal gas entropy contribution to the free energy.

We refer to this case as ideal Yukawa fluid. The second is the lattice gas equation of state, for which we

introduce

g(φ) = φ

(
1+ ln

6
π

)
+
(

π

6
−φ

)
ln
(

1− 6
π

φ

)
. (9.7)

Eq. 9.7 describes a lattice gas, where each particle occupies a fraction (4/3)πR3/(2R)3 = π/6 of a lattice

site. We refer to a Yukawa fluid with a nonideal contribution to the free energy according to Eq. 9.7 as lattice

Yukawa fluid. The third is the Carnahan-Starling equation of state [81] for which we define

g(φ) =
φ 2(4−3φ)

(1−φ)2 . (9.8)

We refer to the corresponding Yukawa fluid as Carnahan-Starling Yukawa fluid.

Note that Eqs. 9.7 and 9.8 indeed give rise to the familiar lattice gas equation of state, PV/(NkBT ) =

−[π/(6φ)] ln(1−6φ/π), and the Carnahan-Starling equation of state PV/(NkBT ) = (1+φ +φ 2−φ 3)/(1−

φ)3, respectively. For later use we recall the expansion PV/(NkBT ) = 1+B2N/V up to linear terms in N/V .

The second virial coefficient B2 = vg′′(0)/2 is B2 = 3v/π for the lattice gas equation of state and B2 = 4v

for the Carnahan-Starling equation of state.

In thermal equilibrium, the free energy F becomes minimal with respect to Ψ and φ , subject to

these two quantities satisfying the Helmholtz equation Ψ′′−κ2Ψ =−(4πl/v)φ . This implies the variation

of Eq. 9.6,
δF
A

=
ΨδΨ′

4πl

∣∣∣∣∣

∞

−∞

+
1
v

∞∫

−∞

dx δφ
[
Ψ+ lnφ +g′(φ)−µ

]
, (9.9)

will vanish. The first term on the right-hand side of Eq. 9.9 is zero if we demand the system to adopt bulk

properties far away from the interface, entailing a constant (possibly vanishing) potential Ψ(x→±∞) and

thus δΨ′(x→±∞) = 0. From the requirement that also the second term in Eq. 9.9 vanishes, we obtain the

equilibrium distribution

φ = e−Ψ−g′(φ)+µ (9.10)

that specifies the local particle volume fraction φ(x) as function of the potential Ψ(x) at any given point x in

the region −∞ < x < ∞. Generally, Eq. 9.10 constitutes a transcendental relation.
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In a bulk system (say, for x→+∞), where the potential Ψ = Ψb is constant, the volume fraction of

the particles adopts the constant value φ = φb, which is based on the choice µ = Ψb + g′(φb)+ lnφb. The

Helmholtz equation, when applied to a bulk system, implies the relation

Ψb =−2χφb, with χ =−2πl
vκ2 . (9.11)

Note that an attractive Yukawa potential (l < 0) entails χ > 0. Conversely, χ < 0 for a repulsive Yukawa po-

tential (l > 0). The Helmholtz free energy per particle f = F/N + µ in a bulk system is then f (φb) =

−χφ 2
b + φb lnφb − φb + g(φb), giving rise to the thermal equation of state PV/(NkBT ) = 1 + g′(φb)−

g(φb)/φb− χφb. Obviously, the Yukawa potential enters only through the parameter χ in the last term,

and positive χ decreases the pressure. The second virial coefficient predicted by our free energy in Eq. 9.6

is B2 = vg′′(0)/2+2πl/κ2. This is the large temperature (u(r)� kBT ) and large screening length (κR� 1)

limit of the virial coefficient B2 = vg′′(0)/2− 2π
∫

∞

2R drr2(e−u(r)/kBT − 1). We note that the general ex-

pression for B2, valid for any temperature and screening length, has been used by Weiss and Schröer [5]

in conjunction with a small gradient approximation to predict the surface tension between two coexisting

phases. Our present approach uses the simple B2 = vg′′(0)/2+2πl/κ2 but is non-local and hence operates

without assuming small gradients of the particle density.

Using the bulk free energy f (φb), we can investigate the thermodynamic stability of a Yukawa

fluid through the familiar common-tangent construction (binodal) and determination of the inflection points

(spinodal). This also yields the critical point, χ = χc at φb = φc, from the two equations

φ
2
c g′′′(φc) = 1, χc =

1
2

[
1
φc

+g′′(φc)

]
. (9.12)

The results are displayed in Fig. 9.1 for the lattice Yukawa fluid (red lines) and for the Carnahan-Starling

Yukawa fluid (blue lines). Note, first, that for the lattice Yukawa fluid the predicted phase behavior is

described by the familiar Bragg-Williams approximation of a lattice gas with attractive interactions [63].

Second, the two models give rise to critical points χc = 12/π and φc = π/12 for the lattice Yukawa fluid

as well as χc = 10.60 and φc = 0.130 for the Carnahan-Starling Yukawa fluid [365]. Third, above volume

fractions close to φb = 0.5, a fluid-solid transition sets in [381]; this transition is outside the scope of the

present work.
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Figure 9.1. Binodal (solid lines) and spinodal (dashed lines) as function of the bulk volume fraction,
φb, of the spherical particles. The red and blue pairs of curves apply to the lattice Yukawa fluid and the
Carnahan-Starling Yukawa fluid, respectively. The critical points χ = χc at φb = φc are χc = 12/π ≈ 3.82 at
φc = π/12≈ 0.262 for the lattice Yukawa fluid (marked by a red bullet), as well as χc = 10.60 at φc = 0.130
for the Carnahan-Starling Yukawa fluid (marked by a blue bullet).

9.3. Stable Yukawa fluid in a container

In this section we consider a homogeneous Yukawa fluid that is thermodynamically stable and

confined to reside in the region x > 0 due to the presence of a planar rigid wall at x = 0. This, together

with the qualitative behavior of the local particle concentration n(x) and corresponding potential Ψ(x), is

schematically illustrated in Fig 9.2. Our goal is to calculate the boundary-induced surface tension γ .

The absence of particles for x < 0 can be enforced by setting the chemical potential µ to −∞ in that

region. Eq. 9.10 then reads φ(x) = 0 for x < 0, and the resulting Helmholtz equation Ψ′′−κ2Ψ = 0 implies

the potential Ψ(x) = Ψ(0) eκx. At the specific position x = 0, the potential and its slope are thus related

according to
1
κ

Ψ
′(0) = Ψ(0). (9.13)

Consider now the region x > 0 and recall that the Yukawa fluid has a bulk volume fraction φb and a bulk

potential Ψb =−2χφb. With our choice µ = Ψb +g′(φb)+ lnφb for the chemical potential we can express
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Figure 9.2. Schematic illustration of a Yukawa fluid confined to the region x > 0 due to the presence of a
planar rigid wall at x = 0. The concentration profile n(x) (with bulk value nb) and corresponding potential
Ψ(x) (with bulk value Ψb) along the x-axis are plotted qualitatively for the case l > 0 (thus implying χ < 0).

the local volume fraction of the particles, Eq. 9.10, and the Helmholtz equation, Eq. 9.5, as

φ

φb
= e−Ψ+Ψb−g′(φ)+g′(φb),

−Ψb
φ

φb
=

1
κ2 Ψ

′′−Ψ.

(9.14)

The second equation (the Helmholtz equation) is an ordinary second-order differential equation that must

be solved based on the relation between φ as function of Ψ, as defined by the first equation. Solutions are

needed for x > 0 subject to the boundary conditions Ψ(x→ ∞) = Ψb and Ψ′(0) = κΨ(0); see Eq. 9.13.

Analytic solutions will generally not exist, but we may nevertheless formally express the solution of the first

equation by defining a function

h(φ) = φ eg′(φ). (9.15)

We then isolate φ using the inverse function φ = h−1(φ eg′(φ)) and Eq. 9.14 (the first equation), resulting in

φ = φ(h) = h−1(φb e−Ψ+Ψb+g′(φb)). (9.16)

Depending on the nature of g(φ), we compute the inverse h−1 of the function h either analytically, numer-

ically, or through a series expansion. More specifically, the lattice Yukawa fluid leads to a closed form
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expression for h−1 whereas a numerical representation will be employed for the Carnahan-Starling Yukawa

fluid. As further outlined below, series expansions of h−1 can be found without specifying g(φ).

We can carry out the first integration of the Helmholtz equation in Eq. 9.14, subject to the condition

Ψ = Ψb when Ψ′ = 0, immediately. The result is

1
κ

Ψ
′ =

√√√√√Ψ2−Ψ2
b−2

Ψb

φb

Ψ∫

Ψb

dΨ̄ h−1(φb e−Ψ̄+Ψb+g′(φb)). (9.17)

The second integration must satisfy the boundary condition in Eq. 9.13. Alternatively, we can integrate

Eq. 9.17 for fixed surface potential Ψ(0). The surface potential follows from combining Eq. 9.13 and

Eq. 9.17 at x = 0, yielding the relation

Ψb =−
2
φb

Ψ(0)∫

Ψb

dΨ h−1(φb e−Ψ+Ψb+g′(φb)). (9.18)

Eq. 9.18 constitutes an algebraic relation that can be solved for Ψ(0).

Our next step is to calculate the free energy per unit area, F/A, in Eq. 9.6. Using the equilibrium

distribution of the local volume fraction, φ , and the Helmholtz equation (as well as the chemical potential

µ = Ψb + g′(φb)+ lnφb and the definition of the bulk potential Ψb = −2χφb) allows us to re-express the

free energy as
F
A
=−1

v

∞∫

0

dx
[(

Ψ

2
+1
)

φ −g(φ)+φg′(φ)
]
. (9.19)

The same free energy,
Fb

A
=−1

v

∞∫

0

dx
[(

Ψb

2
+1
)

φb−g(φb)+φbg′(φb)

]
, (9.20)

calculated for bulk conditions, φ = φb and Ψ = Ψb, serves as a reference to calculate the surface tension of

the Yukawa fluid

γ =
F−Fb

A
. (9.21)

Hence, the surface tension is the interface-induced excess free energy per unit area. We can calculate γ even

without explicit knowledge of the functions Ψ(x) and φ(x). To this end, we change the integration variable

156



in Eqs. 9.19 and 9.20 from x to Ψ using dx = dΨ/Ψ′. Eqs. 9.19 and 9.20 then read

F
A
=− 1

vκ

Ψb∫

Ψ(0)

dΨ

(
Ψ

2 +1
)

φ −g(φ)+φg′(φ)
1
κ

Ψ′
(9.22)

and

Fb

A
=− 1

vκ

Ψb∫

Ψ(0)

dΨ

(
Ψb
2 +1

)
φb−g(φb)+φbg′(φb)

1
κ

Ψ′
, (9.23)

where φ and Ψ′/κ are replaced by the expressions in Eqs. 9.16 and 9.17 and where the surface potential

Ψ(0) follows from Eq. 9.18. Given the function g(φ) is known, we can thus use Eqs. 9.22 and 9.23 to

numerically calculate the surface tension γ in Eq. 9.21.

In the limit of a small bulk volume fraction φb� 1 we can calculate the surface tension analytically.

To this end, we expand the inverse of the function h(φ) (see Eq. 9.15) in terms of h at position h = 0

up to fourth order, yielding φ = φ(h) = ∑
∞
i=1 bihi with b1 = e−g′(0), b2 = −g′′(0)e−2g′(0), b3 = [3g′′(0)2−

g′′′(0)] e−3g′(0)/2, and b4 = [12g′′(0)g′′′(0)− 16g′′(0)3− g′′′′(0)] e−4g′(0)/6. That allows us to also expand

the surface potential Ψ(0) in terms of φb at φb = 0; up to third order we find Ψ(0) = −χφb + χ2φ 2
b /2+

χ2[2χ − 3g′′(0)]φ 3
b /6. With this we obtain our final result (correct up to fourth order in φb) for the scaled

surface tension,

γvκ =
1
2

χφ
2
b −

1
4

χ
2
φ

3
b −

7
36

χ
3
φ

4
b +

1
4

χ
2g′′(0)φ 4

b . (9.24)

Note that the additional nonideal free energy contribution g(φ) in Eq. 9.6 (and hence, the particle size) enters

only through the final term. In fact, g′′(0) = 2B2/v is related to the second virial coefficient B2 of a bare

hard sphere fluid. The first three terms in Eq. 9.24 represent an ideal Yukawa fluid, which we discuss in the

following.

9.3.1. Ideal Yukawa Fluid

We apply our formalism of calculating γ to the most simple case, the ideal Yukawa fluid, where

g(φ) = 0 in Eq. 9.6. Note that ideality assumes point-like particles. Hence, we expect none of the physical

quantities, including the surface tension γ , to depend on the particle volume v.

For an ideal Yukawa fluid, h(φ) = φ (see Eq. 9.15) and thus φ(h) = h, implying that the particles are
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Boltzmann-distributed, φ = φbe−Ψ+Ψb . With this, the Helmholtz equation in Eq. 9.14 becomes a differential

equation, Ψ′′/κ2−Ψ=−Ψbe−Ψ+Ψb , that we refer to as Helmholtz-Boltzmann equation. Its first integration,

see Eq. 9.17, reads
1
κ

Ψ
′ =
√

Ψ2−Ψ2
b +2Ψb (e−Ψ+Ψb−1). (9.25)

This equation must be solved numerically in the region x > 0, subject to fixed surface potential

Ψ(0) = Ψb− ln
(

Ψb

2
+1
)
, (9.26)

which follows from Eq. 9.18. Based on Eqs. 9.21-9.23 and Eqs. 9.25-9.26, we can compute the scaled

surface tension through

γκ

nb
=−

Ψb∫

Ψ(0)

dΨ

(
Ψ

2 +1
)

e−Ψ+Ψb−
(

Ψb
2 +1

)

√
Ψ2−Ψ2

b +2Ψb(e−Ψ+Ψb−1)
, (9.27)

where we recall that nb = φb/v is the particle bulk concentration. Eq. 9.27 specifies a relation γκ/nb as func-

tion of Ψb = (4πl/κ2)nb, which completely defines the surface tension γ = γ(l,κ,nb) of an ideal Yukawa

fluid and, as expected, does not involve the particle volume v. The integration in Eq. 9.27 can be carried out

numerically; the result is shown by the solid line in Fig. 9.3.

ideal Yukawa fluid

−1 0 1 2
−1

−0.5

0

Ψb

γκ

nb

Figure 9.3. Scaled surface tension γκ/nb versus bulk potential Ψb = (4πl/κ2)nb for an ideal Yukawa fluid
calculated on the level of mean-field theory. The solid curve shows the result according to a numerical
integration of Eq. 9.27. The dashed curve corresponds to a series expansion, γκ/nb = −Ψb/4−Ψ2

b/16+
7Ψ3

b/288, valid up to third order in Ψb. The fluid is locally unstable for Ψb <−1.
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We complete our analysis of the ideal Yukawa fluid by four comments:

First, the surface tension γ is negative for l > 0 and positive for l < 0. Indeed, particles in a repulsive

Yukawa fluid (l > 0) exhibit more favorable interactions close to an interface as compared to the bulk. Hence,

the particle concentration increases close to the interface until the chemical potential adopts a uniform

value across the fluid. The adjustment in concentration can be studied conveniently in the limit |Ψb| � 1,

where the linearized Helmholtz-Boltzmann equation, Ψ′′/κ2−Ψ=−Ψb, subject to the boundary conditions

Ψ(0) =Ψb/2 (see Eq. 9.26 in the limit |Ψb|� 1) and Ψ(x→∞) =Ψb, is solved by Ψ(x) =Ψb(1−e−κx/2).

A positive sign of l renders Ψb = (4πl/κ2)nb positive, implying Ψ(x) ≤Ψb and thus an increased particle

concentration n = n0e−Ψ+Ψb > n0 close to the container wall. This is schematically illustrated in Fig. 9.2.

Second, an attractive Yukawa fluid (for which l < 0 and thus Ψb < 0) may or may not be unstable

with respect to phase separation. The onset of a local (that is, spinodal) instability imposes the restriction

Ψb >−1 on the bulk potential. This limit follows from the presence of a point of inflection at φb = 1/(2χ)

in the Helmholtz free energy per particle f (φb) =−χφ 2
b +φb lnφb−φb. Without information about the free

energy of the high density phase we cannot determine the binodal line. Hence, metastability of the fluid may

start anywhere in the region −1 < Ψb < 0.

Third, for a sufficiently small bulk concentration of the particles, |Ψb| = |(4πl/κ2)nb| becomes

small, and so do |Ψ(0)| and |Ψ|. The integral in Eq. 9.27 can then be carried out in powers of Ψb. Up to

third order we find γκ/nb =−Ψb/4−Ψ2
b/16+7Ψ3

b/288, which is displayed in Fig. 9.1 as a dashed curve

and indeed recovers Eq. 9.24 with g′′(φb) = 0. In the limit of very small particle concentration nb, the first

nonvanishing term of Eq. 9.24 is

γ =− πl
4κ3 n2

b. (9.28)

This is the low-density limit of the surface tension of a Yukawa fluid induced by a system boundary. Let

us rationalize Eq. 9.28. Linearity of the Yukawa interaction implies γ ∼ l, and symmetry demands γ ∼ n2
b.

The surface tension must therefore scale as γ ∼ l n2
b/κ3. Our analysis, leading to Eq. 9.28, adds to that the

numerical prefactor −π/4.

Finally, note that γ diverges as κ approaches zero. Indeed, for l > 0 the limit κ → 0 turns the

Yukawa potential into a Coulomb repulsion, thus inducing all particles to migrate to the system boundary

(as for mobile excess charge carriers in a conducting material) and decreasing γ to a negative value of infinite

magnitude.
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9.3.2. Lattice Yukawa Fluid

Using a lattice model is perhaps the most simple approach to account for finite particle volume.

Recall that the nonideality of the lattice gas is expressed by g(φ) according to Eq. 9.7. Each lattice site can

host one or no particle. Fitting one spherical particle of radius R into a single cubic lattice site of volume

(2R)3 limits the maximal volume fraction of the particles to π/6 ≈ 0.52. Because particles are tagged to

lattice positions, the number of available states is vastly underestimated, which leads to a smaller pressure

as compared to more accurate approaches. Its simplicity still renders the lattice model a widely used and

instructive approach, for example, in the mean-field modeling of ionic fluids [382].

Using g(φ) according to Eq. 9.7 yields h(φ) = φ/[(π/6)− φ ] for the function h(φ) defined in

Eq. 9.15. The inverse function is thus φ(h) = (π/6) h/(1+ h). With our identification h−1 → φ and h→

φb e−Ψ+Ψb+g′(φb) we obtain for the equilibrium distribution function (Eqs. 9.14, the first equation)

φ =
φb

6
π

φb +
(
1− 6

π
φb
)

eΨ−Ψb
. (9.29)

Note that this Fermi-Dirac distribution enforces the condition 0 ≤ φ ≤ π/6. For sufficiently small φ , we

recover the Boltzmann distribution, φ = φbe−Ψ+Ψb , of the ideal Yukawa fluid.

Inserting φ = φ(Ψ) from Eq. 9.29 into the Helmholtz equation (Eqs. 9.14, the second equation)

yields a Helmholtz-Fermi-Dirac equation

1
κ2 Ψ

′′−Ψ =− Ψb
6
π

φb +
(
1− 6

π
φb
)

eΨ−Ψb
. (9.30)

From its first integration

1
κ

Ψ
′ =

√
Ψ2−Ψ2

b +
π

3
Ψb

φb
ln
[

1+
6φb

π
(e−Ψ+Ψb−1)

]
, (9.31)

taken at position x = 0, and the boundary condition Ψ′(0) = κΨ(0) (see Eq. 9.13) we can calculate an

explicit expression for the surface potential

Ψ(0) = Ψb− ln
[

1+
π

6φb

(
e

3
π

φbΨb−1
)]

. (9.32)
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This result can also be obtained directly from Eq. 9.18. Again, this serves as the lower integration limit for

our calculation of γ according to Eqs. 9.21-9.23. The final expression for the scaled surface tension can be

written as

γvκ =−
Ψb∫

Ψ(0)

dΨ

[
1
2(Ψφ −Ψbφb)− π

6 ln
(

π−6φ

π−6φb

)]

√
Ψ2−Ψ2

b +
π

3
Ψb
φb

ln[1+ 6φb
π
(e−Ψ+Ψb−1)]

, (9.33)

where φ is specified in Eq. 9.29 and Ψ(0) in Eq. 9.32. Note that γvκ depends on two parameters, Ψb and

φb. Because of Ψb = −2χφb we can consider γvκ to be a function of φb for any fixed χ = −2πl/(vκ2).

Fig. 9.4 shows numerical results (solid red lines) for γvκ according to Eq. 9.33 as function of φb for four

different choices of χ . We also display in Fig. 9.4 (dashed red lines) the prediction of Eq. 9.24, with

g′′(0) = 6/π according to Eq. 9.7. In order to observe the influence of the finite particle size, we have

also added the predictions for the ideal Yukawa fluid according to Eq. 9.27 (solid black lines) and the

corresponding fourth-order expansion (see Eq. 9.24 with g′′(0) = 0; dashed black lines) to Fig. 9.4. Note

that, as expected on thermodynamic grounds, the finite particle volume always increases the surface tension

as compared to treating the entropy contribution to the free energy in Eq. 9.6 on the level of an ideal gas.

lattice Yukawa fluid

χ = 0.75

χ = 1.5

χ = −1.5

χ = −0.75

0 0.1 0.2 0.3 0.4

−0.1

0

0.1

φb

γκv

Figure 9.4. Scaled surface tension γvκ versus bulk volume fraction φb for a lattice Yukawa fluid (red
lines) with different choices of χ = −2πl/(vκ2) as marked. The solid red lines correspond to numerical
solutions of Eq. 9.33. The dashed red lines represent the fourth-order expansion according to Eq. 9.24
with g′′(0) = 6/π . We compare these results with our findings for the ideal Yukawa fluid: the numerical
prediction according to Eq. 9.27 (solid black lines) and the fourth-order expansion (Eq. 9.24 with g′′(0) = 0;
dashed black lines).
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9.3.3. Carnahan-Starling Yukawa Fluid

The Carnahan-Starling equation of state [81, 83, 90, 82], which is characterized by g(φ) = φ 2(4−

3φ)/(1−φ)2, see Eq. 9.8, provides a more realistic description of a hard sphere fluid than the lattice model.

However, there is no analytic expression for the inverse φ(h) of the function h(φ) = φeg′(φ) defined in

Eq. 9.15. We therefore have represented that function numerically and used it in Eqs. 9.16-9.18 (with the

identification h−1→ φ ) to compute the surface tension according to Eqs. 9.21-9.23. The results for γκv are

shown in Fig. 9.5 (solid blue lines) as function of φb for different values of χ as marked. We also show

in Fig. 9.5 (dashed blue lines) the fourth-order series expansion result for γvκ according to Eq. 9.24, with

g′′(0) = 8 for the Carnahan-Starling Yukawa fluid. As already in Fig. 9.4, we re-display the results for the

ideal Yukawa fluid (solid black lines for the prediction of Eq. 9.27 and dashed black lines for Eq. 9.24 with

g′′(0) = 0).

Carnahan-Starling
Yukawa fluid

χ = 0.75

χ = 1.5

χ = −1.5

χ = −0.75

0 0.1 0.2 0.3 0.4

−0.1

0

0.1

φb

γκv

Figure 9.5. Scaled surface tension γvκ versus bulk volume fraction φb for a Carnahan-Starling Yukawa
fluid (blue lines) with different choices of χ = −2πl/(vκ2) as marked. The solid blue lines correspond to
numerical solutions of Eqs. 9.21-9.23. The dashed blue lines represent the fourth-order expansion according
to Eq. 9.24 with g′′(0) = 8. We compare these results with our findings for the ideal Yukawa fluid: the
numerical prediction according to Eq. 9.27 (solid black lines) and the fourth-order expansion (Eq. 9.24 with
g′′(0) = 0; dashed black lines).

The larger value of the second virial coefficient B2 for the Carnahan-Starling equation of state (B2 =

4v) as compared to the lattice gas equation of state (B2 = 3v/π), together with the fourth-order expansion

of γvκ according to Eq. 9.24, already suggest that the surface tension is generally larger in the former case.
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From Figs. 9.4 and 9.5 we observe that this is indeed the case for all bulk volume fractions φb (compare the

corresponding red and blue solid curves).

9.4. Phase-Separated Yukawa Fluid

In this section we consider an attractive Yukawa fluid that is thermodynamically unstable (χ > χc)

and thus has undergone phase separation into a low-density (vapor, indexed “1”) and a high-density (liquid,

indexed “2”) phase. Let us denote the particle concentrations in the bulk of each phase by nb,1 and nb,2 and

the corresponding bulk potentials by Ψb,1 and Ψb,2. Given the interface between the two phases is planar, we

place the origin of the x-axis (which points normal to the interface) somewhere inside the transition region.

We refer to the position x = 0 as dividing surface. Fig. 9.6 illustrates the two coexisting phases as well as

the concentration profile n(x) and potential Ψ(x). Our goal is to calculate the surface tension γ due to the

presence of the interfacial region between the two phases. Recall that the mean-field properties of a Yukawa

fluid are expressed by the parameter χ = −2πl/(vκ2). For any given χ > χc we can numerically extract

from the binodal line the particles’ bulk volume fractions φb,1 = vnb,1 and φb,2 = vnb,2 of the two coexisting

phases in thermal equilibrium. As a result, the scaled surface tension γvκ is a function of only χ (and not a

function of both χ and φb as in Section III).

It is straightforward to apply the general formalism introduced in Section III to the case of an

interfacial region that separates two coexisting phases. We simply apply that formalism individually to the

two regions of the Yukawa fluid located at x < 0 and x > 0. We point out, however, that the position of the

dividing surface, x = 0, is arbitrary and, thus, will not affect the surface tension γ . Based on Eqs. 9.21-9.23,

we can thus calculate the scaled surface tension directly from

γvκ = −
Ψb,2∫

Ψb,1

dΨ

(
Ψ

2 +1
)

φ −g(φ)+φg′(φ)
1
κ

Ψ′

+

Ψb,2∫

Ψb,1

dΨ

(
Ψb
2 +1

)
φb−g(φb)+φbg′(φb)

1
κ

Ψ′
(9.34)
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with φ = h−1(φb e−Ψ+Ψb+g′(φb)) and

1
κ

Ψ
′ =

√√√√√Ψ2−Ψ2
b−2

Ψb

φb

Ψ∫

Ψb

dΨ̄ h−1(φb e−Ψ̄+Ψb+g′(φb)). (9.35)

The bulk volume fraction φb and corresponding bulk potential Ψb =−2χφb in Eqs. 9.34-9.35 can be chosen

according to φb = φb,1 and Ψb = Ψb,1 for Ψb,1 > Ψ > Ψ(0), as well as φb = φb,2 and Ψb = Ψb,2 for Ψ(0)>

Ψ > Ψb,2, where Ψ(0) is an arbitrary potential with Ψb,1 > Ψ(0)> Ψb,2.

(x)Ψ

b,1n

b,2n

Ψb,1

Ψb,2

n(x)

x

x

Figure 9.6. Schematic illustration of an attractive Yukawa fluid (with l < 0 and thus χ > 0) that phase sepa-
rates into two macroscopic phases with bulk concentrations nb,1 and nb,2 and corresponding bulk potentials
Ψb,1 and Ψb,2. The concentration profile n(x) and corresponding potential Ψ(x) along the x-axis are both
plotted qualitatively.

The fact that Ψ(0) is arbitrary follows from the freedom to choose the position of the dividing

surface (that is, the origin x = 0) anywhere along x-axis. Specifically, at the position of the dividing surface,

the potential Ψ(x) must be continuous and smooth. Using Eq. 9.17 we can extract from those two conditions

an equation for the potential Ψ(0)

Ψ
2
b,1−4χ

Ψ(0)∫

Ψb,1

dΨ̄ h−1(φb,1 e−Ψ̄+Ψb,1+g′(φb,1)) = Ψ
2
b,2−4χ

Ψ(0)∫

Ψb,2

dΨ̄ h−1(φb,2 e−Ψ̄+Ψb,2+g′(φb,2)). (9.36)
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It is straightforward to demonstrate that a choice of Ψ(0) anywhere between the two bulk potentials satisfies

Eq. 9.36.

As in the previous section we exemplify our general result for the surface tension using the lattice

Yukawa fluid and the Carnahan-Starling Yukawa fluid. In Fig. 9.7A we display the mean-field prediction

for the scaled surface tension γνκ as function of χ for the lattice Yukawa fluid (solid red line) and for the

Carnahan-Starling Yukawa fluid (solid blue line). Both curves are calculated numerically based in Eq. 9.34,

with the corresponding choice for g(φ) for each model. Note that at the critical point, for χ = χc, the surface

tension vanishes.

As discussed above, the mean-field result for γνκ is completely determined by the choice of χ =

−2πl/(vκ2); there is no additional parameter to be specified. The binodal line maps any value of χ (with

χ > χc) to the two coexisting bulk volume fractions φb,1 and φb,2. Fig. 9.7B shows γνκ also as a function

of half the difference of the bulk volume fractions, 4φ = (φb,2−φb,1)/2; the solid red and solid blue lines

correspond to the lattice Yukawa and Carnahan-Starling Yukawa fluids, respectively. While Eq. 9.34 yields

numerical values for the surface tension, we can also extract from that equation an analytic expression

for γvκ close to the critical point. To this end, we express all quantities that enter into Eq. 9.34 in terms of

4φ = (φb,2−φb,1)/2 and then expand γvκ up to third order in4φ . Using Eq. 9.12, χ = χc+(4φ)2[2/φ 3
c +

g′′′′(φc)]/12, Ψb,1 = −2χφb,1, Ψb,2 = −2χφb,2, φb,1 = φc−4φ , and φb,2 = φc +4φ , we find after some

algebra

γvκ =
1

15
√

3
(4φ)3

φ 3
c

√
1/φc +g′′(φc)

2/φ 3
c +g′′′′(φc)

×
[
2+10φ

3
c g′′′′(φc)+3φ

4
c g′′′′′(φc)

]
, (9.37)

or, equivalently, when expressed as function of χ ,

γvκ =
2
√

2
5 φ 3

c

(
χ−χc

χc

)3/2( 1/φc +g′′(φc)

2/φ 3
c +g′′′′(φc)

)2

×
[
2+10φ

3
c g′′′′(φc)+3φ

4
c g′′′′′(φc)

]
. (9.38)

The expressions in Eqs. 9.37 and 9.38 apply to any choice of the function g(φ) as defined in Eq. 9.6.

Recall that the critical volume fraction φc represents the solution of the algebraic equation φ 2
c g′′′(φc) = 1,

and with that χc = [1/φc + g′′(φc)]/2 follows; see Eq. 9.12. Note that the mean-field scaling in Eq. 9.38,
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γ ∼ (χ−χc)
3/2, is consistent with the prediction γ ∼ (Tc−T )3/2 from Landau-Ginzburg theory [383] where

T ∼ 1/χ is the temperature and Tc ∼ 1/χc its critical value.
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Figure 9.7. Scaled surfaced tension γνκ as function of χ (diagram A) and as function of 4φ = (φb,2−
φb,1)/2 (diagram B). Red (for the lattice Yukawa fluid) and blue (for the Carnahan-Starling Yukawa fluid)
solid lines correspond to numerical solutions of Eq. 9.34; the dashed lines display γνκ according to Eq. 9.39
(red) and Eq. 9.40 (blue). The gray symbols in diagram A re-display Monte Carlo results reported by
Galicia-Pimentel et al [3] for 2Rκ = 3.0 (gray diamonds), 2Rκ = 2.5 (gray triangles), 2Rκ = 2.0 (gray
bullets), and 2Rκ = 1.8 (gray squares). Diagram C: Critical value χc as function of 2Rκ reported by El
Mendoub et al [4] (green), Weiss and Schröer [5] (orange), and Duh and Mier-y-Terán [6] (black symbols).
The horizontal solid blue line shows the mean-field prediction for the Carnahan-Starling Yukawa fluid,
which is independent of Rκ .

If we specify g(φ) according to lattice Yukawa fluid, we obtain from Eqs. 9.37 and 9.38

γvκ =
64
π2

√
6 (4φ)3 =

√
2

3
π

(
χ−χc

χc

)3/2

, (9.39)

and for the Carnahan-Starling Yukawa fluid we find

γvκ = 25.39 (4φ)3 = 0.848
(

χ−χc

χc

)3/2

. (9.40)
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The results in Eqs. 9.39 and 9.40 are displayed in Fig.9.7A and 9.7B as dashed lines (red for the lattice

Yukawa fluid and blue for the Carnahan-Starling Yukawa fluid). As expected, they approximate the general

mean-field results close to the critical points.

Our prediction of the surface tension γ of a phase boundary is subject to the mean-field approxima-

tion. We cannot expect such a model to quantitatively predict correct values for the surface tension. But we

do expect good agreement of the Carnahan-Starling Yukawa fluid (which is based on a reasonably accurate

equation of state for a hard-sphere fluid) in the limit of small κ , where each particle interacts with many

other particles. To support this assertion we re-display in Fig. 9.7A (gray lines) predictions from Monte

Carlo simulations reported by Galicia-Pimentel et al [3] for 2Rκ = 3.0 (gray diamonds), 2Rκ = 2.5 (gray

triangles), 2Rκ = 2.0 (gray bullets), and 2Rκ = 1.8 (gray squares). Unfortunately, we are not aware of

simulation results for smaller κ; yet, we expect good agreement in the limit Rκ � 1. Note that the critical

point χc (that is, the value of χ at which γ→ 0 in Fig. 9.7A), is predicted in simulation studies and in density

functional theory to explicitly depend on Rκ whereas in the present mean-field theory it is invariant. We

display this dependence in Fig. 9.7C, which shows how the critical point χc depends on 2Rκ according to

results from density functional theory [4, 5, 6]. For example, at 2Rκ = 1.8 density functional theory pre-

dicts χc ≈ 20, which indeed agrees with the Monte Carlo simulation results [3] in Fig. 9.7A. Our mean-field

model appears to reproduce the critical point in the limit Rκ � 1; see Fig. 9.7C. It will thus be interesting

in future work to produce simulation results in this limit.

9.5. Conclusions

Mean-field results for the surface tension γ of fluids can serve as useful references for more advanced

theoretical models and for simulation results. Yet, to the best of our knowledge, no mean-field predictions

for γ of a Yukawa fluid based on a non-local field-based representation were available so far. Our present

work demonstrates how to compute γ for a wide range of nonideal contributions to the free energy. Simple

analytic predictions for γ are calculated for small particle density and close to the critical point of a phase-

separating Yukawa fluid.

Two specific cases, the lattice Yukawa fluid and the Carnahan-Starling Yukawa fluid, are analyzed

in some detail. The former is particularly simple while the latter provides a more realistic description of the

underlying hard sphere fluid. Of course, other models can be used. For example, the van der Waals fluid
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has a nonideality contribution g(φ) = φ [1− ln(1−φ)], implying a critical point χc = 27/8 at φc = 1/3 and

according to Eq. 9.38 a scaled surface tension γvκ = (7/5)
√

2 [(χ−χc)/χc]
3/2 of a phase boundary.

Besides a comprehensive set of numerical results for γ , our work also presents the limiting expres-

sion γ = −πln2
b/(4κ3) for small particle concentrations nb of a homogeneous Yukawa fluid near a system

boundary. In addition, we argue that our mean-field prediction for the surface tension of a phase boundary

works best in the limit of a large screening length 1/κ � R, when the function g(φ) is accounted for on the

basis of the Carnahan-Starling equation of state. In this case, the second virial coefficient of our underlying

free energy is B2 = 4v+ 2πl/κ2. Weiss and Schröer [5] have used the full expression of the second virial

coefficient B2 = 4v− 2π
∫

∞

2R drr2(e−u(r)/kBT − 1) to predict the surface tension γ of two coexisting phases

using a small gradient approximation. It is interesting to ask if a non-local mean-field model can be con-

structed that is based on the general expression for B2 instead of B2 = 4v+2πl/κ2. One method would be

to use a function g(φ) in Eq. 9.6 that has the property

g′′(0) = 8− 4π

v


 l

κ2 +

∞∫

2R

drr2
(

e−u(r)/kBT −1
)

 . (9.41)

The second virial coefficient of the homogeneous Yukawa fluid B2 = vg′′(0)/2+ 2πl/κ2 is then accurate,

whereas interactions are still accounted for on a non-local level and without assuming small gradients of the

particle density. Working this out could be the subject of a future study.
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10. EMERGENCE OF A STERN LAYER FROM THE INCORPORA-

TION OF HYDRATION INTERACTIONS INTO THE GOUY-

CHAPMAN MODEL OF THE ELECTRICAL DOUBLE LAYER*

10.1. Introduction

It is generally accepted that the specific nature of the electrolyte ions in aqueous solutions plays

a vital role in dictating the electrical properties of charged interfaces. Both the surface charge densities

[384, 385] and the electrical potentials [386, 387] regularly depend on the identity of the co- and counte-

rions in the electrolyte solution. These general observations are often termed specific ion effects [388, 66]

and their ramifications are, for example, evident in colloidal [389] and biological [390] settings. The micro-

scopic origins of specific ion effects are, however, complex and poorly understood and therefore continue to

fascinate the experimental and theoretical communities alike.

There exist several different models for the structure of the electrical double layer (EDL) but the

Gouy-Chapman-Stern (GCS) model [333] has proved most successful in fitting experimental results for a

variety of different solid-electrolyte interfaces [391, 392]. The GCS model is an elementary extension of the

Gouy-Chapman (GC) model that inserts a Helmholtz capacitor of thickness dStern, termed the Stern layer,

between the charged surface and the diffuse ion cloud [393]. Because no electrolyte ions reside within dStern

the potential drop to the surface is like that of a capacitor (a linear function in the case of a smooth planar

surface). Outside the Stern layer the potential profile and ion distributions of the GCS model are given by

the solution of the classical Poisson-Boltzmann equation. The combination of capacitor and diffuse layer

regions in the GCS model results in an (often substantial) increase of the predicted magnitude of the surface

potential relative to models that have only one or the other.

*Reproduced with permission from “M. A. Brown, G. V. Bossa, S. May, Emergence of a Stern layer from the incorporation
of hydration interactions into the Gouy–Chapman model of the electrical double layer, Langmuir 31 (42) (2015) 11477–11483”.
Copyright 2015 American Chemical Society. This paper can be accessed online at http://pubs.acs.org/doi/abs/10.
1021/acs.langmuir.5b02389. The material in this chapter was co-authored by Matthew A. Brown, Guilherme V. and
Sylvio May. G.V.B. was responsible for the mathematical development, numerical solution of the equations, figures preparation,
and discussion of the results.
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From a theoretical standpoint the Stern layer does not emerge naturally from the solution of the

classical Poisson-Boltzmann equation, but appears after accounting for the finite sizes of the ions in the

electrolyte through excluded volume interactions [90, 91, 394, 395, 396]. This places the charge of each ion

at the center of a sphere of well defined radius, typically chosen to match the hydrated ion size. The finite-

size modification limits the concentration of counterions near the surface, an obvious improvement over

the solution of the classical Poisson-Boltzmann equation, while at the same time creating a thin, charge-

depleted region close to the surface. The width of this uncharged region is set by the imposed excluded

volume potential and is equal to dStern. Computer simulations suggest, however, that the non-electrostatic

contributions to the ion-ion interaction potentials in aqueous solutions are soft and decay over the length

scale of a few water molecules [65], and are therefore not best modeled by the hard-core potential of the

excluded volume interaction. A few attempts have been made to incorporate additional soft interaction

potentials into the Gouy-Chapman model [397, 73, 398, 78], but the predictions were not analyzed in terms

of Stern layer formation.

In the approach put forward here the non-electrostatic interactions of the counterions with the

charged surface, and that between the counterions themselves, are modeled as soft interactions, namely

repulsive Yukawa potentials that mimic the structural forces due to ion- and surface-induced hydration ef-

fects [353]. We describe these hydration-mediated interactions on the same level as the electrostatic inter-

actions by introducing a hydration potential in addition to the electrostatic potential. Our approach, which

retains the conceptual simplicity of the GC model, yields properties reminiscent of the Stern layer, with

a charge-depleted region and corresponding linear behavior of the electrostatic potential. In addition, the

inter-ionic hydration repulsion limits the counterion concentration close to the surface. The maximal value

of the counterion concentration close to the surface reflects the packing of the counterions including their

hydration shells: it decreases with the effective counterion size but remains largely independent of the bulk

salt concentration.

10.2. Theory

Consider a planar solid surface with a fixed, uniform and sufficiently high negative surface charge

density σe. The surface is in contact with an aqueous solution containing a symmetric 1:1 electrolyte of

bulk concentration n0. The electrostatic potential in the aqueous solution, Φ(x), at distance x away from
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the surface fulfills the Poisson equation εW ε0Φ′′(x) = −ρ(x), where a prime denotes the derivative with

respect to the argument; ε0 = 8.85× 10−12 F/m is the permittivity of free space and εW = 78 the dielectric

constant of water. The local volume charge density within the electrolyte ρ(x) = e[n+(x)− n−(x)] reflects

the difference of concentrations between mobile electrolyte cations (n+) and anions (n−); the elementary

charge is e = 1.6×10−19 C. It is common to re-express the Poisson equation

Ψ
′′(x) =−4πle[n+(x)−n−(x)] (10.1)

in terms of the dimensionless electrostatic potential Ψ = eΦ/kBT = Φ/(25mV) and the Bjerrum length in

water le = e2/(4πεW ε0kBT ) = 0.7 nm, where kB is the Boltzmann constant and T = 300 K the absolute

temperature. The classical GC model combines the Poisson equation with Boltzmann distributions for the

local ion concentrations, n+ = n0e−Ψ and n− = n0eΨ, yielding the classical Poisson-Boltzmann equation

Ψ′′(x) = κ2
e sinh[Ψ(x)] with

κ
2
e = 8πlen0. (10.2)

The length 1/κe is known as the Debye screening length [130]. We point out that the Poisson equa-

tion expresses interactions through the Coulomb potential with electrostatic energies Ue/kBT = le/r and

Ue/kBT = −le/r between elementary charges of the same and different signs, respectively, that are sepa-

rated by a distance r. Consequently, the classical GC model accounts only for purely electrostatic ion-ion

and ion-surface interactions.

Ions and surfaces induce water molecules to form hydration shells, which mediate hydration inter-

actions [399, 400, 401]. A negatively charged surface attracts mobile cations (the counterions) that reside in

close proximity at elevated concentrations as compared to the bulk, whereas the mobile anions (the coions)

are depleted from the surface. Hence, close to a highly negatively charged surface we expect hydration in-

teractions to be relevant for the mobile cations and negligible the mobile anions. To model these interactions

we assume cations to produce not only an electrostatic but also an additional hydration interaction that we

model as a Yukawa potential Uh/kBT = eκ(lh−r) lh/r, where 1/κ = 0.3 nm is the decay length of the ordered

water layers [399] and r the distance between two cations. The length lh denotes the ion-to-ion separation

at which the hydration interaction is equal to the thermal energy unit kBT . Hence, we expect lh reflects

the effective ion size, namely the crystallographic size plus the thickness of a soft hydration shell [402].
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The choice of a Yukawa-like interaction ∼ e−κr/r is motivated by a phenomenological model of hydration

forces due to Marcelja and Radic [353] and ensures the cations remain fully hydrated near the charged sur-

face. Detailed Molecular Dynamics (MD) simulations [67, 403, 270] and continuum solvation models [404]

predict a similar decay, yet with an additional oscillatory component that under specific conditions would

allow cations near the charged surface to get trapped in a local minimum state that may involve (partial) de-

hydration and the formation of an inner-sphere complex. The inclusion of an oscillatory component into the

present model is possible but mathematically more involved. For this reason we have omitted its inclusion

in the present work. Hence, the total cation-cation interaction energy in our model is

Utot

kBT
=

Ue

kBT
+

Uh

kBT
=

le
r
+

lh
r

eκ(lh−r), (10.3)

whereas cation-anion and anion-anion interactions remain purely Coulombic (Utot/kBT = le/r for the anion-

anion interaction and Utot/kBT =−le/r for the cation-anion interaction). Here we note again that there is no

need to include hydration interactions involving the anions as long as their local concentration is sufficiently

small everywhere in the aqueous solution. Fig. 10.1 shows the cation-cation interaction energy Utot(r)/kBT

for lh = 0.2 nm (black solid line), lh = 0.4 nm (blue line), lh = 0.6 nm (red line), and lh = 0.8 nm (green

line). These are the values on which our analysis in the Results and Discussion section will focus. The first

three of these effective cation sizes are representative of the hydrated alkali metal cations [402] (Cs+hyd ∼ 0.2

nm, Na+hyd ∼ 0.4 nm, and Li+hyd ∼ 0.6 nm).

Similarly to translating the Coulomb interaction Ue/kBT = ±le/r between two ions to the Poisson

equation for the associated dimensionless electrostatic potential Ψ in Eq. 10.1, we can also translate the

hydration interaction Uh/kBT = eκ(lh−r)lh/r to a local differential equation for an associated (dimensionless)

hydration potential Ψh(x). The result is the inhomogeneous Helmholtz equation [78]

Ψ
′′
h(x)−κ

2
Ψh(x) =−4πlh eκlh [n+(x)−n0]. (10.4)

Eq. 10.4 does not contain n−; this is a consequence of focusing exclusively on hydration interactions between

cations (counterions) in the aqueous solution. The local cation and anion concentrations fulfill Boltzmann

distributions

n+(x) = n0e−Ψ(x)−Ψh(x), n−(x) = n0eΨ(x), (10.5)
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where, again, the hydration potential Ψh(x) is only associated with the mobile cations. The Boltzmann

distributions in Eq. 10.5 can be derived rigorously by minimizing an appropriate mean-field free energy

functional [78].

Figure 10.1. Total cation-cation interaction energy Utot(r) according to Eq. 10.3 with le = 0.7 nm and κ−1 =
0.3 nm. The different solid lines correspond to lh = 0.2 nm (black), lh = 0.4 nm (blue), lh = 0.6 nm (red),
and lh = 0.8 nm (green). At these values for lh (marked by dotted vertical lines) the hydration interaction
energy Uh(r = lh) equals the thermal energy kBT . The dashed line shows the electrostatic contribution
Ue/kBT = le/r.

Inserting the Boltzmann distributions into Eqs. 10.1 and 10.4 yields two second-order, coupled

differential equations for the two fields Ψ(x) and Ψh(x),

Ψ
′′(x) =

κ2
e

2

[
eΨ(x)− e−Ψ(x)−Ψh(x)

]
,

Ψ
′′
h(x)−κ

2
Ψh(x) =

κ2
h

2

[
1− e−Ψ(x)−Ψh(x)

]
, (10.6)

where κe (the inverse of the Debye screening length) is defined in Eq. 10.2 and

κ
2
h = 8πlheκlhn0. (10.7)

In the absence of the hydration potential we identify the first line in Eqs. 10.6 as the classical Poisson-
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Boltzmann equation. Prior to solving the coupled system in Eqs. 10.6 we need to specify four boundary

conditions. Two of them,

Ψ
′(0) =−4πle

σe

e
, Ψ

′
h(0) =−4πlheκlhσh, (10.8)

reflect the surface charge density σe and the density of sources for the hydration interaction of the cations

with the surface, respectively. Regarding the latter, each ordered water molecule on the surface can be

expected to act as a source; a reasonable choice is therefore the surface density of water molecules σh =

5/nm2. The remaining two boundary conditions, Ψ(x→ ∞) = 0 and Ψh(x→ ∞) = 0, render the surface to

be isolated. We treat the two parameters κ−1 = 0.3 nm and σh = 5/nm2 as fixed constants throughout this

work. (However, this does not exclude them from being adjusted in order to fit experimental data.)

The two coupled second-order differential equations for Ψ(x) and Ψh(x), specified in Eqs. 10.6, can

be solved numerically by employing a Newton Raphson iteration procedure. To this end, the two nonlinear

equations are re-expressed as a two linear second-order differential equations,

2
κ2

e
Ψ
′′ =

(
eΨ̃e + e−Ψ̃e−Ψ̃h

)
(Ψ− Ψ̃e)

+ e−Ψ̃e−Ψ̃h(Ψh− Ψ̃h)+ eΨ̃e− e−Ψ̃e−Ψ̃h ,

2
κ2

h
(Ψ′′h−κ

2
Ψh) = e−Ψ̃e−Ψ̃h(Ψ− Ψ̃e +Ψh− Ψ̃h) (10.9)

+ 1− e−Ψ̃e−Ψ̃h ,

whose solutions Ψ(x) and Ψh(x) are used as input Ψ̃e and Ψ̃h for the next iteration. Convenient starting func-

tions are Ψ̃e = Ψ̃h = 0. Once the solutions have become stationary, Ψ(x) = Ψ̃e(x) and Ψh(x) = Ψ̃h(x), the

nonlinear system is solved. The computational effort to solve Eqs. 10.9 is marginal and, in fact, comparable

to numerically solving the classical Poisson-Boltzmann equation.

10.3. Results and Discussion

The combination of electrostatic and hydration-mediated interactions in the EDL can lead to struc-

tural properties similar to the Stern layer extension of the GC model. We illustrate this behavior by present-

ing in Fig. 10.2 the potentials Ψ(x) and Ψh(x) (upper diagram) as well as n+(x) and n−(x) (lower diagram),
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derived for κ−1 = 0.3 nm, σe/e =−1/nm2, σn = 5/nm2, and κ−1
e = 1 nm. The four solid lines in each dia-

gram (and the insets) correspond to lh = 0.2 nm (black), lh = 0.4 nm (blue), lh = 0.6 nm (red), and lh = 0.8

nm (green).

Fig. 10.2 is a manifestation of Stern-like EDL properties: Each electrostatic potential Φ(x)=Ψ(x)×

0.025 V (solid lines in the upper diagram) exhibits linear behavior within a region 0 ≤ x . dStern of the

charged surface, prior to decaying to zero. Both the magnitude of the surface potential Φ(0) and the width

dStern of the linear region grow with the effective counterion size lh. (Recall that lh is the distance at which

the hydration repulsion equals the thermal energy kBT .) The linearity of Φ(x) suggests to identify the

region from the surface to dStern as a Stern layer. Consistent with this notion, the counterion concentrations

(lower diagram in Fig. 10.2) adopt their maximum value n+(dStern) at the Stern plane x = dStern, whereas

counterions (and coions, see inset) are depleted from within the Stern layer, x. dStern. The locations dStern

and n+(dStern) are marked by a filled circle in the lower diagram of Fig. 10.2. We also note that unlike

the classical Gouy-Chapman model for point-like ions, the addition of a hydration repulsion confines the

maximal counterion concentrations n+(dStern) to physically reasonable values. For a surface charge density

σe/e =−1/nm2 and a 0.1 M bulk salt concentration (which implies a Debye screening length κ−1
e = 1 nm)

the classical Gouy-Chapman model (see the dash-dotted lines in Fig. 10.2) predicts a surface potential of

Φe(0) = −110 mV and a corresponding counterion concentration of 8 M at the surface. In contrast, with

the hydration repulsion included we find maximal counterion concentrations n+(dStern) in the range of 1 to

2 M. We also make the physically reasonable observation that a larger effective ion size (growing lh) results

in decreasing n+(dStern), If we again reference the hydrated alkali metal cations, to which our values of ln

are most directly compared [402], this result is directly supported by experiment [386].

To obtain a better physical understanding of how hydration interactions affect EDL properties, we

switch off the mutual hydration repulsion between cations while retaining the hydration repulsion of the

cations with the surface. Mathematically this is accomplished by setting the right-hand side of the second

equation of Eqs. 10.6 to zero, yielding Ψ′′h(x)−κ2Ψh(x) = 0, while keeping the boundary condition for the

hydration potential Ψh in Eq. 10.8. We obtain the simple exponential decay

Ψh(x) =
4πlhσh

κ
eκ(lh−x), (10.10)

which enters the Boltzmann distribution of the counterions n+(x) in Eq. 10.4 as a fixed potential. Hence,
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counterions interact with the charged surface not only electrostatically but also via the external, surface-

generated hydration potential in Eq. 10.10. A related approach of incorporating ion-surface hydration forces,

mediated through dielectric saturation, was developed by Gur et al [405]. The predictions of the model based

on Eq. 10.10 are shown in Fig. 10.2 as dashed lines. Solid and dashed lines of the same color correspond to,

respectively, including and ignoring cation-cation hydration repulsion for fixed effective cation size (fixed

lh). The dashed lines in the inset of the upper diagram in Fig. 10.2 correspond to Ψh(x) according to

Eq. 10.10. Recall that a more positive hydration potential Ψh(x) reduces the local counterion concentration

n+ = n0e−Ψ−Ψh . Indeed, close to the surface Ψh(x) adopts large positive values. Without accounting for

cation-cation hydration repulsion, Ψh(x) originates only from the surface and decays exponentially. With

cation-cation hydration repulsion being present, Ψh(x) develops an additional tail that extends further into

the EDL (solid lines in the inset of the upper diagram) and thus decreases the counterion concentration

even more. This decrease is more pronounced for larger effective cation sizes lh. We contrast this to the

absence of cation-cation hydration repulsion, where a Stern layer still forms but the maximal counterion

concentration n+(dStern) remains unaffected by the counterion size, a finding that is physically unreasonable.

This highlights the importance of accounting for hydration interactions of counterions not only with the

surface but also among each other.

Varying the salt concentration in the bulk of the aqueous solution affects the Debye screening length

and thus the diffuse part of the EDL but has virtually no effect on the counterion concentration profile close

to the Stern layer. This is illustrated in Fig. 10.3 for fixed κ−1 = 0.3 nm, σe/e = −1/nm2, σn = 5/nm2,

and lh = 0.4 nm. Different curves correspond to different salt concentrations in the bulk: 1 mM (red), 4 mM

(green), 100 mM (blue), and 400 mM (black).

Saturation of the counterion concentration due to steric (that is, excluded volume) repulsion is pre-

dicted by various recent models [80, 406, 396, 407]. One prominent example is to replace the ideal gas that

forms the basis of the classical GC model by a lattice gas with a cell volume a3 that represents the effec-

tive (including a hydration shell of fixed extension) ion size. This simple modification does not only enforce

counterion saturation, it also leads to a non-monotonic dependence of the differential capacitance on the sur-

face potential [408]. Fedorov and Kornyshev [406] have pointed out that the approach has been introduced

independently by multiple authors starting already in 1942 [79]; it leads to the modified Poisson-Boltzmann
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equation [80]

Ψ
′′ = κ

2
e

sinhΨ

1−φ0(1− coshΨ)
, (10.11)

where φ0 = 2a3n0 is the volume fraction of the salt ions in the bulk. The inset of Fig. 10.3 shows the

local counterion volume fraction a3n+ ∼ 1/(1+2eΨ(1−φ0)/φ0) calculated from the solution of Eq. 10.11

with the boundary conditions Ψ′(0) = −4πleσe/e and Ψ(x→ ∞) = 0. The two sets of curves in the inset

correspond to the two surface charge densities σe/e = −1/nm2 (solid lines) and σe/e = −2/nm2 (dashed

lines). Similar to our present model, the lattice gas GC model predicts counterion saturation that is largely

independent of the bulk salt concentration. However, the model does not produce a Stern layer with its

ion depletion zone, large magnitude of the surface potential Ψ(0), and capacitor-like properties close to the

surface.

The GCS model of the EDL places a Stern adsorption plane at distance dStern away from the charged

surface. In addition to the fixed charge density σe at the surface, the Stern adsorption plane is assumed to

carry a surface charge density σStern that originates from ion adsorption. The GCS model does not specify

the origin of the ion adsorption; it may reflect exclusively electrostatic attraction or a combination of elec-

trostatic interactions and non-electrostatic binding [401]. It is also common to assume a uniform dielectric

constant εStern within the Stern layer (that is in the region 0≤ x≤ dStern), which may be significantly smaller

than the dielectric constant of bulk water, εW . Mathematically, the dimensionless electrostatic potential

according to the GCS model is

Ψ(x) =





Ψ(dStern)− 4πle
εrel

σe
e (x−dStern)

2ln
[

1− 2
1+eκe(x−dStern) coth Ψ(dStern)

4

]
,

(10.12)

where the upper line describes the parallel-plate capacitor in the region 0 ≤ x ≤ dStern and the lower line

the diffuse ion layer for x ≥ dStern. Also, εrel = εStern/εW is the relative dielectric constant within the Stern

layer, and

Ψ(dStern) = 2 arsinh
[

2πle
κee

(σe +σStern)

]
(10.13)

is the dimensionless electrostatic potential at the Stern adsorption surface. Note that σStern is a phenomeno-

logical parameter that can in principle take on any value, but the two limiting cases of significance are

σStern =−σe and σStern = 0. The former reduces the problem to that of a simple parallel-plate capacitor–the
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Helmholtz model, while the latter implies no specific ion adsorption at the Stern plane. In Fig. 10.4 we com-

pare the prediction of the present GC model with hydration repulsion to the GCS model of the EDL. The

blue solid and dashed lines show Ψ(x) for lh = 0.4 nm with and without cation-cation hydration repulsion

included (these are the same blue curves as already shown and discussed in the upper diagram of Fig. 10.2).

Recall that we identify the position x = dStern of the counterion concentration maximum n+(dStern) with

the position of the Stern layer; x = dStern = 0.77 nm for the case displayed in Fig. 10.4 (marked by the

dashed vertical line). To compare our present model with the GCS model of the EDL, we also plot in

Fig. 10.4 the potential Ψ(x) according to Eq. 10.12, derived for σe/e =−1 nm2, κ−1
e = 1 nm, and εrel = 1.

The five different solid lines correspond to different values of the surface charge density σStern at the Stern

plane: σStern = −σe, σStern = −0.75σe, σStern = −0.5σe, σStern = −0.25σe, and σStern = 0 (from top to

bottom). Note there is a discontinuous change in slope for Ψ(x) at x = dStern for all σStern 6= 0. When

σStern = −σe = 1 e/nm2 the potential profile Ψ(x) corresponds to that of a parallel-plate capacitor. The

surface potential Φ(0) = Ψ(0)×0.025 V (plotted as function of σStern in the inset of Fig. 10.4) is −0.15 V,

and the potential outside the Stern layer (that is, for x > dStern) is zero. When σStern = 0 the surface potential

is significantly more negative (−0.26 V) than in the Helmholtz model, but remains less negative than the

prediction of our present GC model with hydration repulsion (−0.31 V). The origin of this behavior is that

the additional repulsive hydration interactions between cations tend to widen the width of the EDL. This

renders the surface potential more negative as compared to the GCS model. We note that the similarity of

our present model and the GCS model of the EDL also leads to similar values of the differential capacitance

C = dσe/dΦ(0). For the parameters used in Fig. 10.4 (namely, σe/e = −1 nm2, κ−1
e = 1 nm, εStern = 78,

dStern = 0.77 nm, and σStern = 0, which corresponds to the bottom solid black line in Fig. 10.4) we obtain

C =CSternCGC/(CStern+CGC) = 0.70F/m2, where CStern = εSternε0/dstern = 0.90F/m2 is the capacitance of a

parallel-plate capacitor and CGC = εW ε0κe cosh[Ψ(dstern)/2] = 3.11 F/m2 the differential capacitance of the

EDL according to the classical GC model. This compares well with our present GC model with hydration

repulsion (the solid blue line in Fig. 10.4), for which we obtain C = 0.72 F/m2.

Our final discussion addresses the dielectric constant. The model put forward in the Theory section

assumes a uniform dielectric constant throughout the aqueous phase. A more elaborate model could attempt

to couple the dielectric constant to the hydration potential or could include dielectric saturation effects

[409, 410], but this is beyond the scope of the present work. Instead, we investigate the influence of a fixed

drop in the local dielectric constant ε(x) as the distance x to the solid surface decreases. This modification
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is straightforward to implement in our model by replacing the left-hand side, Ψ′′(x), of the first equation in

Eqs. 10.6 by (εrel(x)Ψ′(x))′, where εrel(x) = ε(x)/εW is the local relative dielectric constant with respect to

water. Using MD simulations Wander and Clark [411] have recently predicted a drop in ε(0) to about 50%

of its bulk value ε(x→∞) = εW = 78 at a charged oxide-electrolyte interface; see Figure 5 in Ref. wander08.

An exponential decay with a characteristic length κ−1 = 0.3 nm appears to be a reasonable approximation

to these simulation results. A similar exponential decay of ε(x) was also predicted by Podgornik et al [412]

using nonlocal dielectric response theory. We therefore use the function εrel(x) = εrel(0)+ (1− e−κx)[1−

εrel(0)] with εrel(0) = 0.5. Fig. 10.5 shows the influence of modifying the dielectric constant close to the

surface. The solid lines in Fig. 10.5, which apply to a uniform dielectric constant (εrel(x)≡ 1), replot results

from the upper diagram of Fig. 10.2 (which were calculated for σe/e=−1/nm2). The corresponding results

with εrel(0)= 0.5 are shown as dashed lines. As expected, the surface potential Ψ(0) becomes more negative

for the lower dielectric constant near the surface, but the differences between the two models (for εrel(0) = 1

and εrel(0) = 0.5) are minor and do not invalidate the findings of this work. This conclusion remains valid

if the surface charge density σe is varied; see the inset of Fig. 10.5, which shows the relation between the

dimensionless surface potential Ψ(0) and surface charge density σe both for uniform (εrel(0)= 1, solid lines)

and exponentially decaying (εrel(0) = 0.5, dashed lines) dielectric constants. The corresponding relation

according to the classical GC model, Ψ(0) = 2 arsinh(2πleκ−1
e σe/e), is known as the Grahame equation.

The inset of Fig. 10.5 suggests that the relation between Ψ(0) and σe is strongly influenced by the inter-

ionic and ion-surface hydration interactions. For surfaces of equal surface charge density our model predicts

the surface potential becomes more negative as the size of the hydrated cation (ln) increases. This result

is qualitatively supported by electrophoretic mobility experiments (colloidal silica in aqueous solutions of

LiCl, NaCl and CsCl) that report on the potential at the start of the diffuse layer (zeta-potentials) [386], but

direct comparison with experimentally determined surface potentials is not, at present, possible because of

a lack of data.
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Figure 10.2. Ψ(x) and Ψh(x) (upper diagram), and n+(x) and n−(x) (lower diagram). Different curves
correspond to different hydration repulsion strengths: lh = 0.2 nm (black), lh = 0.4 nm (blue), lh = 0.6 nm
(red), lh = 0.8 nm (green). The solid lines account for cation-cation hydration repulsion whereas the dashed
lines ignore it. The dashed lines in the inset of the upper diagram follow Eq. 10.10. The filled circles in the
lower diagram mark the maximum counterion concentration n+(dStern) at position dStern. The black dash-
dotted line corresponds to the electrostatic potential (upper diagram) and counterion concentration (lower
diagram) according to the classical GC model. All results are derived for fixed κ−1 = 0.3 nm, σe/e =
−1/nm2, σn = 5/nm2, and κ−1

e = 1 nm. The Debye screening length κ−1
e = 1 nm corresponds to a bulk salt

concentration of n0 = 0.057/nm3; for large x all curves in the lower diagram (including the inset) converge
to this value.
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Figure 10.3. Counterion concentration profile n+(x) for κ−1 = 0.3 nm, σe/e =−1/nm2, σn = 5/nm2, and
lh = 0.4 nm. Different curves correspond to different salt concentrations in the bulk: n0 =1 mM (red), 4
mM (green), 100 mM (blue), and 400 mM (black). The inset shows predictions of the lattice gas GC model
with a cell size of a = 2lh = 0.8 nm according to Eq. 10.11 for the same set of salt concentrations as in
the main diagram. Solid and dashed lines in the inset correspond to σe/e =−1/nm2 and σe/e =−2/nm2,
respectively.

Figure 10.4. The two blue lines (one solid and one dashed) replot the potential profiles from the upper
diagram in Fig. 10.2 for lh = 0.4 nm. The vertical dashed line marks the position x = dStern = 0.77 nm of
the Stern plane (see the blue bullet in the lower diagram of Fig. 10.2). The five black solid lines show Ψ(x)
according to Eq. 10.12 (the GCS model) for σe/e = −1 nm2, κ−1

e = 1 nm, εrel = 1, and different values
of the surface charge density σStern at the Stern layer: σStern = −σe, σStern = −0.75σe, σStern = −0.5σe,
σStern =−0.25σe, and σStern = 0 (from top to bottom). The surface potential Φ(0) is plotted in the inset as
function of σStern.
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Figure 10.5. The dimensionless electrostatic potential Ψ(x) for σe/e =−1/nm2. The solid lines replot the
results for uniform dielectric constant, εrel(x) ≡ 1, from the upper diagram in Fig. 10.2, where lh = 0.2 nm
(black), lh = 0.4 nm (blue), lh = 0.6 nm (red), lh = 0.8 nm (green). The dashed lines show the corresponding
results for an exponentially decaying dielectric constant with a relative surface value εrel(0) = 0.5. The
inset shows the relation between the dimensionless surface potential Ψ(0) and the surface charge density
σe for uniform (solid lines) and exponentially decaying (dashed lines) dielectric constants, the latter with
εrel(0) = 0.5.
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10.4. Conclusions

By simply adding a non-electrostatic hydration repulsion in the form of a Yukawa potential to the

electrostatic interaction inherent in classical Gouy-Chapman theory (the solution of the Poisson-Boltzmann

equation) a picture of the EDL that resembles very closely the GCS model emerges naturally. A thin

counterion-free region develops at the charged surface whose thickness increases with the effective size of

the counterion (crystallographic size plus the thickness of a soft hydration shell). We bound the Stern-like

layer by the maximum in counterion concentration, which our model predicts to be physically reasonable,

and furthermore, to decrease as the size of the counterion increases. Within the Stern-like region the poten-

tial drop to the charged surface is (nearly) linear, again in resemblance to the GCS model of the EDL. We

make a direct comparison to the GCS model and conclude that the two models predict effectively the same

surface potential only when σStern is assumed 0. Finally, we note that the simplicity of our model (both

conceptually and mathematically) makes it a convenient tool to fit experimental data or to use it as starting

point in further refinements of modeling the EDL. Possible examples regarding the latter include (1) the

incorporation of hydration-mediated interactions involving coions (instead of only counterions), (2) the ad-

dition of oscillations to the hydration potential between mobile ions (which then can capture different ionic

hydration states), and (3) the application of the model to different geometries (where a Laplacian replaces

the second derivatives in Eq. 10.6).

10.5. Acknowledgments

M.A.B. acknowledges the Swiss National Science Foundation for an International Short Visit travel

grant to North Dakota State University. G.V.B. acknowledges a doctoral scholarship from CAPES Founda-

tion/Brazil Ministry of Education (Grant No. 9466/13-4).

183



11. ROLE OF ION HYDRATION FOR THE DIFFERENTIAL

CAPACITANCE OF AN ELECTRIC DOUBLE LAYER *

11.1. Introduction

The presence of an electrode in an electrolyte solution changes the way ions are distributed. Mobile

ions rearrange so as to screen the charge at the electrode surface, thus forming an electrical double layer

(EDL) in this process. The EDL has great importance in biological, colloidal and polyelectrolyte sciences

[413, 414, 415, 416, 417], surface conductivity [418], renewable energy systems [419, 420], new methods

for oil recovery [421], and in electrical double layer capacitors, a device that stores electrochemical energy

through the EDL [422, 423]. The electrode is often approximately described by a perfectly planar charged

surface, but other geometries have also been taken into account [424]. The most simple model of an EDL is

a parallel-plate capacitor, where one plate corresponds to the charged surface while the other plate represents

the diffuse ion cloud formed by the mobile counter- and co-ions. Based on this, an EDL can be characterized

by three quantities: the electrostatic potential at the surface Φ(0), the surface charge density σe, and the

differential capacitance Cdi f f = dσe/dΦ(0), which embodies the relationship between σe and Φ(0).

The differential capacitance Cdi f f is often observed to initially increase and then pass through a

maximum as |σe| increases. Yet, no maximum is predicted by the most simple and widely used theoretical

model, which is based on the classical Poisson-Boltzmann (PB) theory [425, 426]. This discrepancy, which

has motivated the advancement of theoretical models and the application of computer simulations, appears

to be related to two approximations that are inherent in the classical PB theory [427, 428, 429, 430]: First, it

treats the mobile ions as being point-like instead of accounting for their non-vanishing sizes and, second, it

ignores the structure of the solvent by assuming a structureless medium of uniform dielectric constant [431].

The most simple yet widely used approach to account for the finite size of the mobile ions goes

*Reprinted from “ D. L. Z. Caetano, G. V. Bossa, V. M. de Oliveira, M. A. Brown, S. J. de Carvalho, S. May, Role of ion
hydration for the differential capacitance of an electric double layer, Phys. Chem. Chem. Phys. 18 (40) (2016) 27796–27807”.
Reproduced by permission of The Royal Society of Chemistry. Copyright 2016 The Royal Society of Chemistry. This paper can be
accessed online at http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp04199j. The material in this
chapter was co-authored by Daniel L. Z. Caetano, Guilherme V. Bossa, Vinicius M. de Oliveira, Matthew A. Brown, Sidney J. de
Carvalho, and Sylvio May. G. V. Bossa contributed to the project design and manuscript writing. G.V.B. was responsible for the
mathematical development, numerical and analytical solution of the equations, mathematical processing of simulation data, figures
preparation, and discussion of the results.
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back to Stern [333], who assumed that some of the mobile counterions adsorb onto the flat surface, thus

creating a region that separates the charged surface from the diffuse part of the EDL. Stern proposed to treat

that region as a planar capacitor with a constant thickness equal to the effective ion radius. The incorpo-

ration of steric effects directly into the diffuse ion layer on the basis of a lattice gas model dates back to

Bikerman [79]. Since then, several other approaches have been developed to include steric effects, such

as different modified Poisson-Boltzmann equations [432, 433, 408], lattice-based models [434, 382, 435],

integral equations theories [436, 437, 438], equations of state based on liquid-state theory for hard spheres

mixtures [82, 83, 90, 439] and Monte Carlo simulations [440, 441, 442, 443].

Steric effects render the structure of the EDL ion-specific. However, ion specificity is also man-

ifested by the formation of a hydration shell consisting of ordered water molecules in the vicinity of the

mobile ions [66]. Previous experimental [413, 280] and simulation studies [65, 67] have demonstrated

that hydration-mediated ion-ion and ion-surface interactions are soft with a characteristic decay length cor-

responding to the size of a water molecule and can exhibit oscillatory behavior [92, 93]. For example,

Baimpos et al. [94] have observed that, depending on the type of salt and its concentration, the measured

force between two mica surfaces becomes oscillatory when the plates approach each other.

Reducing the non-electrostatic ion-ion and ion-surface interaction in an EDL to steric repulsions

between hard spheres can therefore not be expected to capture the full scope of ion specificity [444, 445]. In

line with this, some efforts have been made recently to incorporate soft potentials as models for hydration-

mediated ion-ion interactions into PB theory [446, 397, 73]. One approach employs a Yukawa potential [31,

78], which represents not only the most simple approximation to the soft ion-ion potentials extracted from

recent simulations [65, 67] but is also consistent with the measured exponential decay of the hydration force

between two planar surfaces as demonstrated by Israelachvili and Sornette [447]. The Yukawa potential

also emerges from the phenomenological hydration model of Marcelja and Radic [353]. Based on this it

was shown that a thin charge-depleted region similar to that proposed originally by Stern emerges naturally

from the presence of a repulsive Yukawa potential between the surface and counterions [8].

The present study pursues two objectives. First, we present a theoretical approach of incorporat-

ing hydration-mediated ion-ion interaction potentials into the PB formalism. We extend previous works

[31, 78] by adding independent hydration-mediated cation-cation, cation-anion, and anion-anion potentials

to the electrostatic Coulomb interactions. Moreover, we incorporate into our theoretical approach two fre-

quently used methods of accounting for excluded volume interaction between ions. One is based on the
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Carnahan-Starling equation of state [81], and the other on the above-mentioned lattice gas model [79, 382].

Our second objective is to investigate how hydration-mediated interactions and their interplay with finite

ion size effects affect the differential capacitance Cdi f f . To this end, we have performed Monte Carlo sim-

ulations for different combinations of hydration-mediated and excluded volume interactions and compared

their predictions with the corresponding mean-field approaches. We find our simulations and mean-field pre-

dictions to agree remarkably well when both include soft, hydration-mediated ion-ion interactions (but not

in their absence), which suggests the importance of ion-ion correlations to be diminished by the additional

soft hydration potential. Specifically, for low surface charge densities |σe| the agreement is best if excluded

volume effects are modeled based on the Carnahan-Starling equation of state. For large |σ |, however, better

agreement is obtained when accounting for excluded volume effects using the lattice gas model.

We point out that the present study focuses on symmetric hydration-mediated interactions, where

Cdi f f (σ) =Cdi f f (−σ), leaving the analysis of asymmetric cases to a forthcoming study. In addition, while

we include hydration-mediated interactions in the form of non-electrostatic potentials, we ignore changes in

the dielectric constant through dielectric saturation [431] and polarization effects [448].

11.2. Theory

We consider an extended planar surface with surface charge density σe in contact with a symmetric

1 : 1 electrolyte of bulk cation and anion concentrations n0 and dielectric constant εW ≈ 80. The planar

surface, which represents a flat electrode, is located at position x = 0 of a Cartesian coordinate system

that has its x-axis point into the electrolyte; see Fig. 11.1 for a schematic illustration. Mobile ions interact

with each other through their excluded volume and through a combination of electrostatic and hydration-

mediated interactions. Hydration interactions reflect the formation of hydration shells around ions and

water structuring in the vicinity of charged surfaces. Inspired by a phenomenological approach developed

by Marcelja and Radic [353], Molecular Dynamics simulations [67, 270], and previous mean-field models

[31], we represent hydration-mediated interactions by a Yukawa potential. Specifically, we use for the

combined Coulomb and Yukawa pair potentials the expressions Uaa = kBT (lB+ae−κ(r−a))/r (for the anion-

anion interaction), Uac = kBT (−lB + be−κ(r−b))/r (for the anion-cation interaction), and Ucc = kBT (lB +

ce−κ(r−c))/r (for the cation-cation interaction). Here r denotes the center-to-center distance between two

ions, kB the Boltzmann constant, T the absolute temperature, and 1/κ a characteristic length associated with
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the hydration interaction potential. The Bjerrum length lB = e2/(4πεW ε0kBT ) corresponds to the separation

at which the electrostatic interaction energy between two water-immersed elementary charges e equals the

thermal energy kBT (ε0 is the permittivity of free space). Analogously, the hydration interaction strength

equals kBT at distance a between two anions, at distance b between an anion and a cation, and at distance

c between two cations. In the following, we develop a mean-field formalism that consistently incorporates

Uaa, Uac, and Ucc.
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Figure 11.1. Schematic illustration of a planar surface with surface charge density σe in contact with an
aqueous solution containing monovalent ions of bulk cation and anion concentrations n0 and dielectric con-
stant εW ≈ 80. Mobile ions interact with each other through their excluded volume, through a Coulomb
potential, and through a Yukawa potential. The latter two account for electrostatic and hydration-mediated
interactions, respectively. They are specified by the relationships Uaa(r), Uac(r), and Ucc(r) for anion-anion,
anion-cation, and cation-cation interactions, respectively, where r is the ion-to-ion distance; see the text for
details. The strength of the electrostatic interaction equals kBT if two ions are separated by a distance lB.
Similarly, the strength of the hydration interaction equals kBT for an anion-anion pair at distance a, for an
anion-cation pair at distance b, and for a cation-cation pair at distance c away from each other.

11.2.1. Mean-Field Theory

Our model starts with the total free energy,

Ftot =Uel +Uhyd +Fmix, (11.1)

that accounts for electrostatic interactions (Uel), for hydration interactions (Uhyd) and for an ideal or non-

ideal mixing entropy contribution (Fmix) of the ions in solution. We discuss each term individually.
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The electrostatic energy (in units of kBT ) of the electrolyte can be expressed as

Uel

kBT
=

1
2

∫

V

d3r
∫

V

d3r′
1

|r− r′|




n+(r)−n0

n−(r)−n0




T

Me




n+(r′)−n0

n−(r′)−n0


 , (11.2)

where n+(r) and n−(r) are the local concentrations of cations and anions, respectively, as function of the

position vector r. The two integrations are carried out over the volume V that contains the ions. The

electrostatic interaction matrix in Eq. 11.2,

Me = lB




1 −1

−1 1


 , (11.3)

specifies the prefactors for the 1/r-Coulomb potential between two cations and two anions (the diagonal

elements), and between an anion and a cation (the non-diagonal elements). Recall that both ions are mono-

valent. The Bjerrum length is lB = 0.7 nm for an aqueous medium (εW ≈ 80) at room temperature. From

Eq. 11.2 we define a dimensionless electrostatic potential Ψ through




Ψ(r)

−Ψ(r)


=

∫

V

d3r′
1

|r− r′|Me




n+(r′)−n0

n−(r′)−n0


 . (11.4)

The reason why only one single electrostatic potential appears in Eq. 11.4 is the vanishing determinant

of Me. We note the relation Ψ = eΦ/kBT between the dimensionless electrostatic potential Ψ and the

electrostatic potential Φ. As is well known, applying the Laplace operator ∇2 to Eq. 11.4 and using Green’s

function G(r) =−1/(4π|r|) yields the Poisson equation

∇
2
Ψ(r) =−4πlB[n+(r)−n−(r)]. (11.5)

When expressed in terms of the dimensionless electrostatic potential, the electrostatic interaction energy

reduces to the familiar expression
Uel

kBT
=
∫

d3r
(∇Ψ)2

8πlB
, (11.6)

where the integration runs over all space. The energy due to Yukawa-like interaction potentials can be
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expressed in analogy to Eq. 11.2 by

Uhyd

kBT
=

1
2

∫

V

d3r
∫

V

d3r′
e−κ|r−r′|

|r− r′|




n−(r)−n0

n+(r)−n0




T

Mh




n−(r′)−n0

n+(r′)−n0


 (11.7)

with a hydration interaction matrix

Mh =




aeκa beκb

beκb ceκc


 . (11.8)

Recall that the constants a, b, and c represent the distances where the interaction between an anion-anion,

anion-cation, and cation-cation pair, respectively, equals kBT . The values for a, b, and c embody the speci-

ficity of the ion-ion interaction. In our present work we do not attempt to determine these parameters.

Instead, we simply assume a = b = c, thus leaving the analysis of asymmetric interactions and the identifi-

cation with specific ions to be worked out in future studies. We also note that the parameter 1/κ = 0.3 nm

accounts for the characteristic decay length of ordered water layers [413]. Based on Eq. 11.7, we define two

non-electrostatic (hydration) potentials Ψa and Ψc via




Ψa(r)

Ψc(r)


=

∫

V

d3r′
e−κ|r−r′|

|r− r′| Mh




n−(r′)−n0

n+(r′)−n0


 . (11.9)

Generally, there are indeed two independent hydration potentials because the determinant of the hydra-

tion interaction matrix, det(Mh), may be non-vanishing. Special cases with det(Mh) = 0 have been in-

troduced and discussed in previous works. Specifically, Bohinc et al [78] have used Mh = lneκln {{(1−

α)2,−(1−α2)},{−(1−α2),(1+α)2}} with fixed constants ln and α . Brown et al [8] have used Mh =

lheκln {{0,0},{0,1}} with a single fixed constant lh. As already exercised for the electrostatic interaction,

see the transition from Eq. 11.4 to Eq. 11.5, we can find an operator that produces a Yukawa-like Green’s

function. The operator is ∇2−κ2 and the corresponding Green’s function G(r) = −e−κ|r|/(4π|r|). With

that we can cast Eq. 12.3 into the local form



(∇2−κ2)Ψa(r)

(∇2−κ2)Ψc(r)


=−4π Mh




n−(r)−n0

n+(r)−n0


 . (11.10)

We refer to Eqs. 11.10 as Helmholtz equations (with complex wavenumber and a source term). When
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expressed in terms of the potentials Ψa and Ψc, the energy associated with hydration-mediated interactions

becomes

Uhyd

kBT
=

1
8π

∫
d3r

[


∇Ψa

∇Ψc




T

A −1
h




∇Ψa

∇Ψc


+κ

2




Ψa

Ψc




T

A −1
h




Ψa

Ψc



]
, (11.11)

where the integration runs over all space and where A −1
h is the inverse of Ah.

Consider finally the mixing entropy contribution Fmix in Eq. 11.1. We express Fmix as the sum of an

ideal mixing contribution of the mobile anions and cations and a non-ideal contribution that depends only

on the total concentration n−+n+ but is otherwise general

Fmix

kBT
=

∫

V

d3r

[
n− ln

(
n−
n0

)
−n−+n+ ln

(
n+
n0

)
−n+

+ g(n−+n+)− (n−+n+)g′(2n0)

]
. (11.12)

The function g(n) appears in the thermal equation of state pV/(NkBT ) = 1− (V/N)g(N/V )+g′(N/V ) of a

gas that exerts a pressure p at fixed particle number N, volume V , and temperature T . The choice g(n) = 0

leads to an ideal gas. Note that a prime denotes the first derivative; for example g′(n0) = [dg(n)/dn]n=n0
.

The function g(n) can be used to account for finite ion sizes. We consider two different choices, g = gCS(n)

and g = gLG(n). The first one,

gCS(n) =
gCS

0 n2(4−3gCS
0 n)

(1−gCS
0 n)2

, (11.13)

employs the Carnahan-Starling (CS) equation of state [81, 82, 90], which treats all mobile ions as identical

spherical particles of radius R and corresponding volume gCS
0 = 4πR3/3. The second one,

gLG(n) =
gLG

0 n+(1−gLG
0 n) ln(1−gLG

0 n)
gLG

0 n
, (11.14)

has been introduced by Bikerman and others [79, 382]; it embodies a lattice gas model in which each cell

occupies a volume gLG
0 = (2R)3 that hosts no more than one single ion of spatial extension 2R.

With all three contributions to the free energy in Eq. 11.1 being specified (see Eqs. 11.6, 11.11, and

11.12), we can carry out the first variation δFtot [Ψ(n−,n+),Ψa(n−,n+),Ψc(n−,n+),n−,n+], subject to the
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potentials Ψ, Ψa, Ψc being related to the ion concentrations through Eqs. 11.5 and 11.10. This results in

δFtot

kBT
=
∫

V

d3r

{
δn−

[
−Ψ+Ψa + ln

n−
n0

+g′(n−+n+)−g′(2n0)

]

+ δn+

[
Ψ+Ψc + ln

n+
n0

+g′(n−+n+)−g′(2n0)

]}
. (11.15)

Thermal equilibrium demands δFtot = 0, which can only be fulfilled if each of the two expressions enclosed

by square brackets in Eq. 11.15 vanishes identically,

−Ψ+Ψa + ln
n−
n0

+g′(n−+n+)−g′(2n0) = 0,

Ψ+Ψc + ln
n+
n0

+g′(n−+n+)−g′(2n0) = 0. (11.16)

These two, generally transcendental, equations define the two relations n− = n−[Ψ(r),Ψa(r),Ψc(r)] and

n+ = n+[Ψ(r),Ψa(r),Ψc(r)] which upon insertion into the Poisson and Helmholtz equations, Eqs. 11.5 and

11.10, yield a system of three differential equations that define the mean-field potentials Ψ(r), Ψa(r), and

Ψc(r).

Previous models that include hydration-mediated interactions [78] have focused on an ideal mixing

free energy, Fmix, which results from setting g(n) = 0 in Eq. 11.12. This implies the Boltzmann distributions

n−(r) = n0eΨ(r)−Ψa(r) and n+(r) = n0e−Ψ(r)−Ψc(r). We refer to this specific case as the Poisson-Helmholtz-

Boltzmann (PHB) approach [31]. The corresponding PHB equations result from inserting the Boltzmann

distributions into the Poisson and Helmholtz equations.

Because for our geometry (see Fig. 11.1) all system properties depend only on the x-coordinate,

we replace the argument r by x. That is, Ψe/a/c(r)→ Ψe/a/c(x), and n±(r)→ n±(x). Eqs. 11.16 then

define the relations n− = n−[Ψ(x),Ψa(x),Ψc(x)] and n+ = n+[Ψ(x),Ψa(x),Ψc(x)] that enter the Poisson

and Helmholtz equations

Ψ
′′(x) = −4πlB(n+−n−),


Ψ′′a(x)−κ2Ψa(x)

Ψ′′c (x)−κ2Ψc(x)


 = −4π Mh




n−−n0

n+−n0


 . (11.17)

where a prime denotes the derivative with respect to x. These three second-order differential equations
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must be solved subject to appropriate boundary conditions, which follow from applying the Poisson and

Helmholtz equations to an infinitely small region in the vicinity of x = 0. The boundary conditions for solv-

ing Poisson’s equation are Ψ′(x)|x=0 =−4πlBσe/e and Ψ′(x)|x→∞ = 0, and those for solving the Helmholtz

equations are

−κ




Ψa(0)

Ψc(0)


+




Ψ′a(x)

Ψ′c(x)




x=0

=−4πMh




σ−

σ+


 (11.18)

and Ψ′a(x)|x→∞ = Ψ′c(x)|x→∞ = 0. The quantities σ+ and σ− represent the surface densities of the sources

responsible for the hydration-mediated interaction with mobile cations and anions, respectively. In our

present work we identify the sum σ−+σ+ with the density of ordered water molecules in immediate contact

to the electrode. Because the hydration-mediated ion-surface interaction is of non-electrostatic origin, it may

be viewed as one contribution (among others, such as dispersion forces) to specific ion adsorption. We note

the presence of the first term on the left-hand side of Eq. 11.18. It originates in the absence of mobile ions

for x < 0, which implies the exponential functions Ψa(x) = Ψa(0)eκx and Ψc(x) = Ψc(0)eκx in this region.

Once the potentials Ψ(x), Ψa(x), and Ψc(x) are known, we can compute the relation between the

surface charge density σe and the surface potential Φ(0) = kBT Ψ(0)/e, and from that, the differential ca-

pacitance

Cdi f f ≡ dσe

dΦ(0)
. (11.19)

Recall that studying the influence of hydration-mediated interactions on Cdi f f is one of the main objectives

of the present work. Below we discuss Cdi f f based on seven different mean-field models that emerge as

special cases from the formalism presented so far. Based on the identification P-Poisson, B-Boltzmann, H-

Helmholtz, CS-Carnahan-Starling, and LG-lattice gas, we refer to these models as: classical PB, PB-Stern,

PCS-Stern, PLG-Stern, PHB, PHCS, and PHLG. The first four models all ignore the presence of hydration-

mediated interactions. The most simple case, the classical PB model, emerges upon assuming g(n) = 0 in

Eq. 11.12. The ensuing differential capacitance is

Cdi f f
PB =

εW ε0

lD

√
1+ p2

0, (11.20)

where we have introduced the definition p0 = 2πlBlDσe/e. Here, lD = (8πlBn0)
−1/2 is the Debye screening

length of the electrolyte. Adding a Stern layer (that is, a planar capacitor of capacitance CStern = εW ε0/dStern,
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where the Stern layer thickness dStern = R equals the ion radius R) to the classical PB model produces a

differential capacitance Cdi f f
PB CStern/(C

di f f
PB +CStern). We refer to this as the PB-Stern model. Adding a Stern

layer to the Carnahan-Starling model (that is, g(n) = gCS(n) in Eq. 11.12) yields a differential capacitance

Cdi f f
CS CStern/(C

di f f
CS +CStern). We refer to this as the PCS-Stern model. Note that no closed-form expression

for Cdi f f
CS is available. Adding a Stern layer to the lattice gas model (that is, g(n) = gLG(n) in Eq. 11.12)

yields a differential capacitance Cdi f f
LG CStern/(C

di f f
LG +CStern). We refer to this as the PLG-Stern model.

Here, a closed-form expression for the differential capacitance in the absence of a Stern layer is available

[382, 431],

Cdi f f
LG =

εW ε0

lD

√(
e2gLG

0 n0 p2
0−1

) (
e2gLG

0 n0 p2
0−1+2gLG

0 n0

)

2gLG
0 n0 p0 e2gLG

0 n0 p2
0

, (11.21)

where we recall gLG
0 = (2R)3 and p0 = 2πlBlDσe/e. The final three models all include the presence of

hydration-mediated interactions but they differ in the expressions for Fmix. Using g(n) = 0 (that is, ideal

mixing for Fmix) gives rise to the PHB model. Similarly, the choices g(n) = gCS(n) and g(n) = gLG(n) are

referred to as the PHCS and PHLG models, respectively. Note that the inclusion of hydration-mediated

interactions removes the need to explicitly add a Stern layer [8].

11.2.2. Monte Carlo Simulations

We have also carried out Metropolis Monte Carlo simulations in the canonical ensemble for a 1 : 1

electrolyte of bulk concentration n0 confined between two perfectly smooth and impenetrable walls placed

at x = 0 and x = H. In order to describe the same system as in our mean-field approach, the surface located

at x = 0 carries uniform surface densities of electric charges, σe, and of sources for the hydration-mediated

interaction, σ+ and σ−. All simulations were performed in a rectangular simulation cell of dimensions

H×L×L, with H = 30 nm and L = 10 nm. Periodic boundary conditions are applied in the L directions,

and overall electroneutrality is ensured by the addition of neutralizing counterions. The electrolyte solu-

tion is modeled within the framework of the primitive model [449], where all ions are treated as charged

hard spheres of radius R immersed in a continuum medium of uniform dielectric constant εW . Hence, the

electrostatic interaction energy between two distinct ions i and j is given by

Uel(ri j)

kBT
= ziz j

lB
ri j

(11.22)
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if ri j ≥ 2R and Uel(ri j)→ ∞ otherwise. Here, zi and z j are the respective valencies and ri j is the nearest-

image distance between ions i and j. The electrostatic interaction energy of a given ion i at distance xi away

from the charged surface is

Uel(xi)

kBT
= zilBσeL

[
2ln

(
di +L
di−L

)
− 4xi

L
arctan

(
L2

2xidi

)]
(11.23)

if xi ≥ R and Uel(xi)→ ∞ for xi < R. In Eq. 11.23 we have defined di ≡
√

2L2 +4x2
i .

Due to the long-range nature of the Coulomb potential, the total electrostatic energy of our system

is not only given by the sum of Uel(ri j) in Eq. 11.22 over interactions of ions in the central cell with each

other, but also with ions in the image cells. The same argument applies to the interaction of an ion with the

fixed charges on the surface; see Eq. 11.23. In order to include these contributions, we used the so-called

External Potential Method (EPM) developed by Torrie and Vallue [440]. According to this method, each

ion in the central cell interacts with the image cells by means of the usual minimum image convention and

with an external electrostatic potential given by the average ionic distributions in the image cells, including

the charges located at the surface (we assume that the ionic distributions in the image cells are identical to

those evaluated in the central cell) [440, 450, 438, 443].

To incorporate hydration-mediated interactions into our simulations, we added the Yukawa-like

interaction energies Uhyd(ri j)/kBT = ae−κ(ri j−a)/ri j for an anion-anion pair, Uhyd(ri j)/kBT = be−κ(ri j−b)/ri j

for an anion-cation pair, and Uhyd(ri j)/kBT = ce−κ(ri j−c)/ri j for a cation-cation pair. Similarly, for an anion

interacting with the charged surface at distance xi away, we added the hydration-mediated interaction energy

Uhyd(xi)

kBT
= 2π

(
aσ−eκa +bσ+eκb

) ∞∫

0

dr r
e−κ

√
r2+x2

i
√

r2 + x2
i

=
2π

κ

(
aσ−eκa +bσ+eκb

)
e−κxi . (11.24)

The expression for a cation that interacts with the surface is analogous, Uhyd(xi)/kBT = 2π(bσ−eκb +

cσ+eκc) e−κxi/κ . We point out that the total interaction potentials used in the Monte Carlo simulations

between anion-anion, anion-cation, and cation-cation pairs are identical to the respective interactions Uaa,

Uac, and Ucc as introduced in Fig. 11.1, supplemented by an additional excluded volume repulsion.

For each value of σe, our simulations yield the ionic distributions, n−(x) and n+(x). We used
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the corresponding charge density e[−n−(x)+n+(x)] to numerically solve the Poisson equation and thus to

obtain the electrostatic potential Ψ(x). In order to compute the differential capacitance (Cdi f f as defined

in Eq. 12.7), we first created a set of discrete points representing the surface charge density, σe, and the

corresponding electrostatic surface potential, Ψ(0) (see inset of Fig. 11.2). Then, the values of Cdi f f are

determined using the algorithm developed by Lamperski and Zydor [443]. In Fig. 11.2, the results obtained

from this algorithm and those predicted by obtaining the derivative simply through the slope of two neigh-

boring data points (i.e., the two-point derivative) are shown as black bullets and blue-colored bar chart,

respectively. We note that the Lamperski-Zydor algorithm is able to smoothen fluctuations resulting from

the simulations and provides a reliable continuous derivative.
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Figure 11.2. Monte Carlo simulation results for the differential capacitance Cdi f f = dσe/dΦ(0) as function
of the surface charge density σe, obtained by two different methods: the Lamperski-Zydor algorithm (black
bullets) and the two-point derivative (blue-colored bar-chart). The inset shows the variation of the dimen-
sionless electrostatic surface potential, Ψ(0) = eΦ(0)/kBT , as function of σe. (Abscissa labels in the inset
and main figure are identical.) The blue-colored bar-chart illustrates the intervals used for the two-point
derivative. The displayed example is based on an ion radius of R = 0.2 nm and the absence of hydration
interactions (a = b = c = 0).
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11.2.3. Parameter Selection

The present work focuses on hydration interactions that are symmetric. That is, the distance at

which the hydration interaction strength equals kBT is the same for anion-anion, anion-cation, and anion-

cation pairs, implying a = b = c in Eq. 11.8. We also assume the ion-surface hydration interactions do not

distinguish between anions and cations; this entails σ+ = σ−. The total source density σ−+σ+ = 5.0/nm2

reflects the area density of water molecules that are bound to a flat surface [8]. Throughout this work (with

the exception of Fig. ??) we consider a 0.1 M salt concentration; this corresponds to a bulk concentration

of n0 = 0.057/nm3 or, equivalently, to a Debye screening length of lD = 1.0 nm. As already pointed out

above, we fix the Bjerrum length lB = 0.7 nm and the characteristic decay length of the hydration potential

κ−1 = 0.3nm.

11.3. Results and Discussion

In the following, we present and discuss Monte Carlo simulation and mean-field results for the

differential capacitance Cdi f f as function of the surface charge density σe, first in the absence and then in

the presence of hydration interactions.

11.3.1. Absence of Hydration Interactions

We first investigate the joint presence of electrostatic and excluded volume interactions, yet in the

absence of hydration interactions. Fig. 11.3 shows Cdi f f as function of the surface charge density σe for

a fixed ion radius R = 0.2 nm. Monte Carlo simulation results are displayed by bullets in Fig. 11.3. We

observe a characteristic camel-like shape, the origin of which has been discussed intensively in the past

[427, 429, 428, 430, 431]. The initial growth of Cdi f f (|σe|) as function of increasing magnitude of σe is

captured by the classical PB model (see Eq. 11.20), which is shown by the dotted line in Fig. 11.3. Note that

for σe = 0, Eq. 11.20 predicts Cdi f f = εW ε0/lD = 0.71F/m2. After passing through a maximum, Cdi f f (|σe|)

decreases roughly according to Cdi f f ∼ 1/|σe|. The decrease results from packing of the counterions due to

their finite size. We capture the 1/σe-dependence by a simple model in which the counterions are forced to

adopt a uniform density 1/(2R)3, leading for a surface with charge density σe to a counterion layer thickness
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d = (2R)3σe/e. This implies a differential capacitance Cdi f f = 2ε0εW/d = 2ε0εW/[(2R)3(σe/e)], which is

shown in Fig. 11.3 by the gray solid lines in the large |σe|-region. The formation of counterion layers for

large |σe| is also demonstrated in the inset of Fig. 11.3, which displays Monte Carlo simulation results of

n−(x) for the three specific values: σe = 1.6e/nm2 (blue curve), σe = 3.2e/nm2 (green), and σe = 6.4e/nm2

(red). A second layer of counterions in the latter case is visible at x = 3R = 0.6 nm.
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Figure 11.3. Differential capacitance Cdi f f as function of the surface charge density σe. Filled circles are
results obtained by Monte Carlo simulations. The dotted, solid, dashed, and dash-dotted black lines cor-
respond to the PB, PB-Stern, PCS-Stern, and PLG-Stern models, respectively. The thickness of the Stern
layer, dStern = R, is equal to the ion radius R = 0.2 nm. The solid gray line is the result predicted by the
approximation of dense ion packing, Cdi f f = 2ε0εW/[(2R)3(σe/e)]. The inset shows Monte Carlo simu-
lation results of the counterion concentration profiles n−(x) for various charge densities: σe = 6.4 e/nm2

(red), σe = 3.2 e/nm2 (green), and σe = 1.6 e/nm2 (blue). The same color scheme is used to mark the
corresponding values of Cdi f f in the main plot.

One striking feature of Fig. 11.3 is the inability of the classical PB model (dotted line, calculated

according to Eq. 11.20) to reproduce the simulation results of Cdi f f in the limit of small |σe|. Even upon

the addition of a Stern layer of thickness dStern = R (the PB-Stern model – indicated by the solid line in

Fig. 11.3), the discrepancy between simulation and theoretical model persists. Combining the Stern layer

with a modified Poisson-Boltzmann model – namely the PCS-Stern model (the dashed line in Fig. 11.3)

or the PLG-Stern model (the dash-dotted line in Fig. 11.3) – does produce a maximum in Cdi f f for large

|σe| but does not alter the prediction for Cdi f f at small |σe|. The inability of the PB-Stern, PCS-Stern,

and PLG-Stern models to reproduce Cdi f f for small |σe| originates in the ad hoc assumption of adding a
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Stern layer whose thickness does not adjust as function of σe. We demonstrate below that our approach of

incorporating hydration-mediated interactions in a consistent manner into the ion-ion interaction potential

removes the need to invoke a Stern layer and leads to excellent agreement of mean-field predictions with the

Monte Carlo simulation results. In particular, unlike for the exclusive presence of Coulomb and excluded

volume interactions, where density functional theory is an established method to predict the differential

capacitance [448, 451], the additional presence of a soft hydration potential empowers mean-field models to

successfully capture the behavior of Cdi f f .

While Fig. 11.3 applies to a fixed ion radius of R = 0.2 nm, in Fig. 11.4 we show Cdi f f (σe) for

the three different choices R = 0.2 nm (black triangles), R = 0.4 nm (red diamonds), and R = 0.6 nm (green

bullets), in each case together with a color-matching solid and dashed line that correspond to the PCS-

Stern and PLG-Stern approaches, respectively. We first note that our simulations predict the maximum

of Cdi f f (|σe|) to move from a nonvanishing value of σe at low volume density density of the ions (small

R) to σe = 0 for high volume density (large R). This transition from a “camel”-shape to a “bell”-shape

[452] is consistent with predictions from theoretical modeling such as density functional theory [453, 452],

modified Grahame equations [431], and Monte Carlo simulations performed by Lamperski and coworkers

[454, 451, 448, 455].

For |σe| � 1 the two mean-field predictions coincide, and they are identical to the PB-Stern model.

Due to the varying thickness dStern = R of the Stern layer, the differential capacitance of the PB-Stern model

varies with R according to Cdi f f = εW ε0/(R+ lD) for σe = 0. However, our simulation results suggest

Cdi f f (σe = 0) = 0.5F/m2, virtually independent of R. Here again, as in Fig. 11.2, the Stern layer approach is

not capable of reproducing the simulation results in the limit of small |σe|. To rationalize for why Cdi f f (σe =

0) = 0.5 F/m2 remains independent of R we refer to our discussion in Fig. 11.7 below. From there it

will become apparent that the predicted decrease of Cdi f f for growing R according to the Stern model is

counteracted (and effectively compensated) by a compression of the EDL due to a larger osmotic pressure

exerted by the larger ions. Only when hydration interactions are accounted for does mean-field modelling

appear to capture this mechanism.

In the other limit, that of large |σe|, we observe smaller Cdi f f for larger ion radius R. In addition,

while the PCS-Stern model qualitatively but not quantitatively agrees with the predictions of our simulations,

the PLG-Stern model exhibits remarkably good agreement, and even better so with growing of ion radius R.
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Figure 11.4. Differential capacitance Cdi f f as function of the surface charge density σe for various ion radii R
when only electrostatics and finite ion size effects (but no hydration-mediated interaction, a = b = c = 0) are
taken into account. Symbols mark results obtained from Monte Carlo simulations. Solid and dashed lines
correspond to the PCS-Stern and PLG-Stern models, respectively. The Stern layer thickness is dStern = R.
Different colors correspond to R = 0.2 nm (black), R = 0.4 nm (red), and R = 0.6 nm (green).

11.3.2. Presence of Hydration Interactions

In the following, we discuss the influence of including hydration-mediated interactions on the dif-

ferential capacitance Cdi f f . Recall that we model hydration interactions as a soft, Yukawa-like, pair potential

that is added to the Coulomb potential between any two mobile ions and between mobile ions and the sur-

face. Fig. 11.5 displays Cdi f f as function of σe for fixed R = 0.2 nm. The three differently colored sets

of data points represent predictions from Monte Carlo simulations: a = b = c = 0.2 nm (black bullets),

a = b = c = 0.4 nm (red diamonds), and a = b = c = 0.6 nm (green triangles). Clearly, growing hydra-

tion repulsion leads to larger ion-surface and ion-ion distances; this decreases Cdi f f irrespective of σe. In

the limit of large |σe|, all simulation results approach the limiting behavior Cdi f f ≈ 2ε0εW/[(2R)3(σe/e)]

(marked by the gray curve in Fig. 11.5), where hydration interactions become irrelevant because ions are

densely packed. Note that the soft nature of the hydration interactions shifts the maximum of Cdi f f (σe) to

larger |σe|.

Fig. 11.5 also shows results derived from the PHB (color-matching solid lines), PHCS (dashed

lines) and PHLG models (dash-dotted lines). For |σe| � 1, the different mean-field models (PHB, PHCS,
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Figure 11.5. Differential capacitance Cdi f f as function of the surface charge density σe for R = 0.2 nm and
different values of a = b = c = 0.2 nm (black bullets), a = b = c = 0.4 nm (red diamonds), and a = b = c =
0.6 nm (green triangles). Monte Carlo simulation results are marked by the different symbols as indicated.
The color-matching solid, and dash-dotted lines correspond to the PHB and PHLG models, respectively. For
R = 0.2 nm we have also added a broken line (in black), which displays the prediction of the PHCS model.
The solid gray line marks the limiting behavior Cdi f f = 2ε0εW/[(2R)3(σe/e)].

and PHLG) coincide with each other and agree well with the Monte Carlo simulation results. We emphasize

that no Stern layer is added. Instead, an ion depletion zone emerges naturally from the hydration-mediated

repulsion between the ions and the surface [8]. The effective thickness of the ion depletion zone adjusts so as

to minimize the total free energy. As a result, the PHB model reproduces the trends of the simulation results

for |σe| � 1 quite accurately. For large |σe|, ion-ion correlations and ion packing effects become important.

They can be described approximately by the PHLG model (the dash-dotted lines in Fig. 11.5), which predicts

the function Cdi f f (|σe|) to pass through a maximum. With growing a = b = c the maximum shifts to larger

surface charge density |σe|. In other words, for stronger hydration-mediated interactions, Cdi f f continues

to grow up to higher |σe|. This indicates that the soft, hydration-mediated interactions render the diffuse

counterion cloud more compressible, thus allowing its effective thickness to decrease as function of |σe|.

However, for sufficiently large σe, Cdi f f becomes independent of our choices for a = b = c, thus evidencing

the saturation of counterion packing near the surface. Fig. 11.5 also shows the prediction of the PHB model

(solid lines) and for R = 0.2 nm the prediction of the PHCS model (black dashed line).

In Fig. 11.6 we study how changing the ion radius R affects Cdi f f at fixed a = b = c = 0.6nm. Here

again, Monte Carlo simulation results are marked by symbols as indicated in the figure legend. The color-
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Figure 11.6. Differential capacitance Cdi f f as function of the surface charge density σe when hydration-
mediated interactions are present with a = b = c = 0.6 nm. Different colors correspond to different ion size
R according to R→ 0 nm (blue), R = 0.2 nm (black), R = 0.4 nm (red), R = 0.6 nm (green), and R = 0.8 nm
(orange). Monte Carlo simulation results are marked by the different symbols as indicated. The color-
matching solid, and dashed lines correspond to the PHCS and PHLG models, respectively.

matching solid and dashed lines display Cdi f f according to the PHCS and PHLG models, respectively. It is

notable that in the limit of small |σe| our Monte Carlo simulations predict Cdi f f to increase with growing

ion radius R. Based on the simple Stern layer model, one would expect Cdi f f ∼ 1/R, which is in contrast

of what is observed in the simulations. The PHLG model (dashed lines) predicts virtually no dependence of

Cdi f f on R for small |σe|, again in contrast to the simulation results. However, the PHCS model correctly

captures the increase of Cdi f f as function of R. The mechanism that explains why Cdi f f increases with

R for small |σe| originates in the increasing osmotic pressure of the ions in the bulk. The larger bulk

pressure due to larger ion radius R tends to compactify the EDL and thus increases Cdi f f . This assertion is

supported by the upper diagram of Fig. 11.7, which shows the local anion concentration distribution n−(x)

for fixed σe = 0. The black symbols correspond to R = 0.2 nm with a = b = c = 0 (filled circles) and

a = b = c = 0.6 nm (open circles). The green symbols correspond to R = 0.6 nm with a = b = c = 0 (filled

circles) and a= b= c= 0.6nm (open circles). Note that anion and cation profiles are identical for σe = 0; no

excess charge is present in this case at any point in the electrolyte. Clearly, the larger ions tend to accumulate

more near the wall. In the absence of hydration-mediated interactions, the enhanced concentration of the

larger ions compensates with the larger distance of the ion center to the wall so that Cdi f f remains virtually

unchanged (see Fig. 11.4). In the presence of soft, hydration-mediated interactions, the increase of the
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concentration n−(x) near the surface for larger R causes Cdi f f to increase.

We address the question why for small and fixed |σe| the PHCS model, but not the PHLG model,

captures the increase of Cdi f f as function of R. The PHCS model is based on the Carnahan-Starling equation

of state for a bulk fluid of spherical particles of radius R; it describes the bulk osmotic pressure of the

finite-sized ions quite accurately. This is in contrast to the more restrictive PHLG model, which confines

the number of states by introducing a lattice model where each cell can host exactly one or no particle.

This results in a larger osmotic pressure of the particles in the PHCS model as compared to the PHLG

model. More specifically, expanding the Carnahan-Starling equation of state [82, 83, 90] pV/(NkBT ) =

(1+η +η2−η3)/(1−η)3, with η = (4/3)πR3N/V , in powers of the particle density N/V up to second

order yields
pV

NkBT
= 1+

16π

3
N
V

R3. (11.25)

The same expansion for the lattice gas equation of state pV/kBT = −(V/v) ln(1−Nv/V ), with v = (2R)3,

leads to
pV

NkBT
= 1+4

N
V

R3. (11.26)

Hence the osmotic pressure exerted by the ions in the bulk is greater by roughly a factor of 4 when the PHCS

model is compared to the PHLG model. This provides a rationale for the PHCS model being preferable over

the PHLG model when predicting Cdi f f in the limit of small surface charge density |σe|. Indeed, the black

(in the limit R→ 0) and green (for R = 0.6 nm) dashed lines in the upper diagram of Fig. 11.7, which both

refer to the PHCS model, differ only slightly, but they qualitatively follow the trends of the Monte Carlo

simulations (larger counterion concentration close to the surface for larger ion radius R).

We also discuss the behavior of Cdi f f (σe) in Fig. 11.6 for large |σe|. In the limit R→ 0 both

the Monte Carlo simulations (filled blue squares) and the PHB model (blue solid line) predict Cdi f f (|σe|) to

monotonically increase. This is reminiscent of the classical PB model (see Eq. 11.20). Indeed, as σe grows to

large positive values, the anion-to-anion distances in the EDL decrease until they are small compared to 1/κ ,

turning the Yukawa into a Coulomb interaction. The total anion-anion pair interaction is then lB/r+ a/r,

which implies similarity of the simulation data and the PHB prediction to the classical PB model, yet with

a rescaled Bjerrum length lB → lB + a for large σe. As R grows, the simulation data predict Cdi f f (|σe|)

to pass through a maximum, which is captured better by the PHLG model than by the PHCS model. For

R = 0.8 nm (the orange star symbol in Fig. 11.6), Cdi f f (|σe|) decreases monotonously, which the PHLG
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model, but not the PHCS model, is able to reproduce. To understand the reason, we display in the middle

and lower diagrams in Fig. 11.7 the local anion distribution n−(x) as predicted by Monte Carlo simulations

(with R = 0.2 nm for the open black circles and R = 0.6 nm for the open green circles) and according to

the PHLG model (dash-dotted lines in the middle diagram) and PHCS model (dashed lines in the lower

diagram). The black and green colors refer to R = 0.2 nm and R = 0.6 nm, respectively. In addition, all data

in the middle and lower diagrams of Fig. 11.7 refer to a = b = c = 0.6nm and to σe = 1.0e/nm2. Regarding

the Monte Carlo simulation data, we observe that the larger counterions are more condensed onto the surface

and form a second layer near x = 2nm. The more pronounced condensation of the larger counterions results

from the larger osmotic pressure of the ions in the bulk. Because at high ion concentrations in the EDL,

ion-ion correlations become important, mean-field theory cannot be expected to even qualitatively capture

the structural details of the counterion distribution n−(x). This is indeed not the case in Fig. 11.7, neither for

the PHLG (middle diagram) nor the PHCS (lower diagram) model. However, the broader and more smeared

out distribution for n−(x) predicted by the PHLG model appears to better account for the formation of a

second (and other subsequent) ionic layers, thus placing the prediction for Cdi f f closer to the Monte Carlo

simulation data than the PHCS model is able to accomplish.
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Figure 11.7. Counterion concentration profile n−(x) near the charged planar surface, located at x = 0, for
σe = 0 (upper diagram) and σe = 1.0 e/nm2 (middle and lower diagrams). Black and green circles/curves
refer to R = 0.2nm and R = 0.6nm, respectively. Monte Carlo simulation data are indicated by filled circles
for a = b = c = 0 and by open circles for a = b = c = 0.6 nm. Note that the Monte Carlo simulation results
in the middle and lower diagrams are identical. In the upper and lower diagrams, dashed lines refer to the
PHCS model. In the middle diagram, dash-dotted lines correspond to the PHLG model. Dotted horizontal
lines at n = n0 = 0.057/nm3 in the upper diagram correspond to the PB-Stern model.
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11.4. Conclusion

In this work we have expanded our theoretical approach of incorporating hydration-mediated inter-

actions into the mean-field Poisson-Boltzmann formalism. We have not only incorporated distinct hydration-

mediated interactions for each pair of interacting ions, i.e., anion-anion, anion-cation and cation-cation, but

we have also taken into account the finite size of the ions by using two different mean-field approaches: the

Carnahan-Starling equation of state and the lattice gas model.

We have studied the influence of hydration-mediated interactions on the differential capacitance us-

ing Monte Carlo simulations and compared them with our mean-field models. When hydration interactions

are accounted for, a thin charge-depleted region that separates the surface from the diffuse part of the EDL

emerges naturally [8]. The electric potential in this thin region drops linearly, as it does in a Stern layer.

However, unlike the thickness of the classical Stern layer, the charge-depleted zone is able to adjust its spa-

tial extension. As a result we find good agreement of our simulation results with the mean-field predictions,

for small surface charge density if a non-ideal mixing entropy according to the Carnahan-Starling equation

is employed and for large surface charge density on the basis of the lattice gas approach.

Thus far, we have applied our mean-field model to symmetric hydration-mediated interactions,

where all ion pairs exhibit the same interactions irrespective of their chemical nature. We plan to also

investigate asymmetric systems with three independent interaction parameters, a, b, and c. Note that, so far,

no dielectric saturation effects are taken into account in our model; the assumption of a uniform dielectric

background is, in fact, what enabled us to perform Monte Carlo simulations conveniently. Dielectric satu-

ration effects further decrease the differential capacitance [448]. In the most simple case, for the PB-Stern

model, the differential capacitance Cdi f f
PB CStern/(C

di f f
PB +CStern) with CStern = εSternε0/dStern obviously de-

creases if the dielectric constant εStern inside the Stern layer is reduced. In the future, the combined effects

of hydration-mediated ion-ion interactions and concomitant changes in the local (or non-local) dielectric

constant should also be addressed.
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12. DIFFERENTIAL CAPACITANCE OF AN ELECTRIC DOUBLE

LAYER WITH ASYMMETRIC SOLVENT-MEDIATED

INTERACTIONS: MEAN-FIELD THEORY AND MONTE CARLO

SIMULATIONS *

12.1. Introduction

The interaction of small mobile ions with electrodes and other macroions in an aqueous solution

leads to the formation of an electric double layer (EDL), a diffuse cloud of counter- and co-ions that screen

the surface charge of the macroion. The important role played by EDL in biology [456, 8, 457, 458],

physico-chemical systems [459, 416, 460], and in technological applications [461, 462, 463, 464] continues

to inspire the development of experimental methods and theoretical models. Clearly, the structure of the

EDL is affected not only by bare electrostatic ion-ion and ion-macroion interactions, but also by structural

features of the mobile ions, including their size, shape, polarizability, and the propensity to form hydration

shells [64, 465, 66, 466, 68]. Although the study of these ion specific effects dates back to the pioneering

works of Franz Hofmeister in the late 19th century [69], the influence of non-electrostatic interactions on

EDL properties remains an area of active research. This concerns, for example, the questions how the

electrostatic potential [467, 468, 469] and charge density [384, 385] on the surface of an electrode (or any

type of macroion) is affected by hydration shells formed around the mobile ions in the EDL and how ion

and surface hydration influence each other, especially how they modify the exponentially decaying force

between two flat surfaces [65, 92, 93, 470].

The simultaneous presence of electrostatic and solvent-mediated interactions has been investigated

in previous studies using theoretical models [446, 471, 472] and computer simulations [473, 474, 475,

*Reprinted from “D. L. Z. Caetano, G. V. V. Bossa, V. M. de Oliveira, M. Brown, S. J. de Carvalho, S. May, Differential capac-
itance of an electric double layer with asymmetric solvent-mediated interactions: Mean-field theory and Monte Carlo simulations,
Phys. Chem. Chem. Phys. (19) (2017) 23971-23981.”. Reproduced by permission of The Royal Society of Chemistry. Copy-
right 2016 The Royal Society of Chemistry. This paper can be accessed online at http://pubs.rsc.org/-/content/
articlelanding/2017/cp/c7cp04672c/unauth#!divAbstract The material in this chapter was co-authored by
Daniel L. Z. Caetano, Guilherme V. Bossa, Vinicius M. de Oliveira, Matthew A. Brown, Sidney J. de Carvalho, and Sylvio May.
G. V. Bossa contributed to the project design and manuscript writing. G.V.B. was responsible for the mathematical development,
numerical and analytical solution of the equations, mathematical processing of simulation data, figures preparation, and discussion
of the results.
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476, 477]. One specific theoretical approach is the incorporation of solvent-mediated interactions into the

mean-field Poisson-Boltzmann framework. Classical Poisson-Boltzmann theory accounts exclusively for

Coulomb interactions between any pair of mobile ions in a uniform dielectric background. Hydration effects

result from the ordering of solvent molecules near the mobile ions and macroion surfaces. This ordering,

which is of non-electrostatic origin and is thus not captured by the classical Poisson-Boltzmann approach,

can be described by an additional non-electrostatic ion-ion interaction potential. Monte Carlo simulations

suggest that this potential is short-ranged and exhibits damped oscillations [65, 67]. An approximate but

nevertheless appealing representation of solvent-mediated interactions is the Yukawa potential. Although

it ignores the presence of damped oscillations, the short-ranged nature of the interaction is described in a

manner that is mathematically straightforward to be included into the Poisson-Boltzmann formalism. In ad-

dition, the Yukawa potential is consistent with the phenomenological hydration model suggested by Marc̆elja

and Radić [353] and introduces the hydration-specificity of given ion-ion interactions through just one sin-

gle parameter. It is hardly a surprise that variants of this idea have appeared frequently in the literature

[361, 446, 73, 74, 222]. A systematic characterization of the corresponding mean-field formalism and a

comparison with simulation results is, however, still missing.

The differential capacitance Cdi f f is an experimentally accessible quantity that reflects the properties

of the EDL and has recently attracted considerable attention regarding new applications such as supercapac-

itors, which have applications, for example, in regenerative braking and as a source of backup power with

long-term reliability [478]. Two of the experimentally observed features of Cdi f f have inspired a cascade of

theoretical modeling efforts [428, 454, 454, 453]: the first is the camel-shape to bell-shape transition [479],

where the minimum of the function Cdi f f (σe) at small surface charge density σe switches to a maximum

as a function of the salt concentration or ion size. The second is the asymmetry Cdi f f (σe) 6= Cdi f f (−σe),

which is a manifestation of how ion-specific interactions affect the structure of the EDL [480, 481]. The

latter is the focus of the present work.

Most of the attempts to rationalize and model the asymmetry Cdi f f (σe) 6=Cdi f f (−σe) have focused

on excluded volume effects, where monovalent cations and anions of different steric sizes form EDLs with

distinct properties. Specifically, there are multiple approaches to incorporate steric interactions of size-

asymmetric electrolytes into extended versions of mean-field electrostatics based on a suitable equation of

state for the uncharged system (often based on a lattice gas instead of an ideal gas). Examples include the

addition of a volume exclusion term to the Boltzmann distribution [482], the adjustment of Stern layer thick-
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ness to the ionic radius [483], the generalization of the lattice gas approach to size-asymmetric ionic mixtures

by using a voltage-dependent packing parameter [406, 484], the introduction of sublattices [485, 486], and

the usage of the Flory-Huggins equation of state [487], the Boublik-Mansoori-Carnahan-Starling-Leland

equation of state [90, 487], and a van der Waals equation of state for a mixture of size-asymmetric hard

spheres [88]. Other models to study the implications of ionic size asymmetry on Cdi f f employ density

functional theory [488, 489, 452, 490] or self-consistent field theory [491]. Besides excluded volume in-

teractions, there are additional physical mechanisms that can render Cdi f f asymmetric: one is the presence

of different excess polarizabilities for mobile cations and anions [88] and another one results from solvent-

mediated ion-ion interactions that are different for cation-cation and anion-anion pairs [222].

We have recently proposed [9] a mean-field formalism that incorporates both excluded volume in-

teractions into the translational entropy of the mobile ions and a combination of Coulomb and Yukawa

potentials [31, 78] to model the ion-ion pair interaction. Ion specificity in the model arises from assigning

distinct cation-cation, anion-anion, and cation-anion interaction strengths to the Yukawa potential. Predic-

tions of the model for the differential capacitance Cdi f f (σe) as function of the surface charge density σe

of a planar electrode were compared with Monte Carlo simulations. The additional soft Yukawa potential

greatly improves the degree of agreement with Monte Carlo simulations and removes the need to add a

Stern layer. Although a mean-field theory was developed in our previous work [9] for the most general case

of an asymmetric electrolyte, only the symmetric case, Cdi f f (σe) = Cdi f f (−σe) was analyzed so far. In

the present work, we therefore focus on the case of asymmetric solvation-mediated interactions that lead to

Cdi f f (σe) 6=Cdi f f (−σe) even for a symmetric 1:1 electrolyte with spherical ions of the same steric size.

12.2. Theoretical Model

Consider a flat electrode that carries a fixed density σe of electric surface charges and is immersed

in a symmetric 1 : 1 electrolyte of cation and anion bulk concentrations n0. We represent the electrode by

an extended planar surface, located normal to the x-axis of a Cartesian coordinate system. The electrolyte

extends from the electrode (x = 0) along the positive x-direction into the bulk and is modeled as an aqueous

solvent with uniform dielectric constant εw = 80.

We assume all mobile ions in the electrolyte are spherical, with the same radius R, and hence volume

ν = 4πR3/3 for each individual ion. Ions interact with each other through a composite pair potential: an
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excluded volume potential, a Coulomb potential, and a Yukawa potential. Denote the pair potential between

two anions as Uaa(r), that between an anion and a cation as Uac(r), and that between two cations as Ucc(r).

All three potentials are infinitely large when the center-to-center distance r between two ions is smaller than

2R. For r > 2R, we express the potentials as

Uaa(r)
kBT

=
lB
r
+

a
r

eκ(a−r),

Uac(r)
kBT

= − lB
r
+

b
r

eκ(b−r), (12.1)

Ucc(r)
kBT

=
lB
r
+

c
r

eκ(c−r),

where kB denotes Boltzmann’s constant and T the absolute temperature. The first contribution – the Coulomb

interaction – involves the Bjerrum length in water, lB = e2/(4πε0εwkBT ) = 0.7 nm, where e is the elemen-

tary charge and ε0 the permittivity of free space. The plus and minus signs in front of each Coulomb term

specify electrostatic ion-ion repulsion and attraction, respectively. The second contribution – the Yukawa

interaction – is expressed in terms of the spatial decay length 1/κ ≈ 0.3nm of the water ordering [492]. The

three parameters a, b, and c characterize the strengths associated with the hydration interactions. For later

use, we cast these parameters into a hydration interaction matrix

Mh =




aeκa beκb

beκb ceκc


 . (12.2)

The 1 : 1 electrolyte, which is symmetric with respect to the electrostatic and excluded volume interactions,

becomes asymmetric with respect to hydration interactions when a 6= c at any arbitrary b. Our preceding

work [9] has presented a mean-field theory for the general case with arbitrary choices of a, b, c, but has then

compared the prediction of the theory with Monte Carlo simulations only for the specific case a = b = c.

Other earlier mean-field approaches [31, 78] have focused entirely on the case det(Mh) = 0, where the

underlying theory simplifies significantly. The present work is the first one to systematically investigate

electrolytes that acquire their asymmetry through an arbitrary set of parameters a, b, c, and to compare

mean-field predictions with Monte Carlo simulations.

The presence of an electrolyte with asymmetric hydration interactions generally leads to Cdi f f (σe) 6=

Cdi f f (−σe). Asymmetry of Cdi f f (σe) can also arise – even with a = c – through different solvent-mediated
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interactions of the mobile anions and cations with the electrode. This possibility is also covered by our two

modeling approaches. In the following, we briefly recapitulate our mean-field model for an electrolyte with

ion-ion interactions according to Eq. 12.1 and outline our Monte Carlo simulation method.

12.2.1. Mean-Field Model

To calculate the differential capacitance, we employ a mean-field model for a 1 : 1 electrolyte with

ion-ion interactions according to Eq. 12.1. The underlying theoretical framework was developed in previous

work [9] but has only been used so far to calculate Cdi f f for the specific case a = b = c. Briefly, the model

introduces three different potentials, the commonly used dimensionless electrostatic potential Ψe = eΦ/kBT ,

where Φ is the regular electrostatic potential (measured in Volt), and two hydration potentials, Ψa and Ψc,

that describe the presence of the solvent-mediated interaction. The two hydration potentials are defined at

any given position r according to




Ψa(r)

Ψc(r)


=

∫
d3r′

e−κ|r−r′|

|r− r′| Mh




n−(r′)−n0

n+(r′)−n0


 , (12.3)

where n− and n+ denote the local anion and cation concentrations. The matrix Mh is specified in Eq. 12.2,

and the integration in Eq. 12.3 runs over the entire electrolyte. For the present geometry of a single planar

surface, the three potentials Ψe = Ψe(x), Ψa = Ψa(x) and Ψc = Ψc(x) as well as the local concentrations

n− = n−(x) and n+ = n+(x) are all functions of only their distance x from the surface. The local concentra-

tions can be computed from the three potentials via

n−(x)=
[π/(6ν)] eΨc(x)+Ψe(x)

eΨc(x)+Ψe(x)+ eΨa(x)−Ψe(x)−
(

2− π

6νn0

)
eΨa(x)+Ψc(x)

,

n+(x)=
[π/(6ν)] eΨa(x)−Ψe(x)

eΨc(x)+Ψe(x)+ eΨa(x)−Ψe(x)−
(

2− π

6νn0

)
eΨa(x)+Ψc(x)

. (12.4)

The three potentials must be determined in the region 0 < x < ∞ from the following set of three differential

equations,

Ψ
′′
e (x) =−4πlB [n+(x)−n−(x)],
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Ψ′′a(x)−κ2Ψa(x)

Ψ′′c (x)−κ2Ψc(x)


=−4π Mh




n−(x)−n0

n+(x)−n0


 , (12.5)

and six boundary conditions: Ψe(x→ ∞) = Ψa(x→ ∞) = Ψc(x→ ∞) = 0, Ψ′e(x)|x=0 =−4πlBσe/e, and




Ψ′a(x)

Ψ′c(x)




x=0

−κ




Ψa(0)

Ψc(0)


=−4πMh




σ−

σ+


 . (12.6)

In Eqs. 12.5-12.6, a prime denotes the derivative with respect to the argument (for example, Ψ′′e (x) =

d2Ψe/dx2, etc); σ− and σ+ are two surface densities that determine the strength of the solvent-mediated

interaction of the mobile anions and cations, respectively, with the electrode. In other words, analogously to

σe being the density of charges on the surface, σ− and σ+ are the densities of the sources on the surface for

the solvent-mediated interaction. We finally note that Eq. 12.4 accounts for the excluded volume interactions

between the mobile ions on the basis of a lattice gas equation of state [79, 80], where each ion’s diameter 2R

equals the lattice size so that that maximal volume fraction is (4/3)πR3/(2R)3 = π/6. Numerical solutions

of Eqs. 12.5-12.6 yield the surface potential Φ0 = Φ(x = 0) from which, when being determined as function

of the surface charge density σe, we can compute the differential capacitance (measured in F/m2)

Cdi f f ≡ dσe

dΦ0
. (12.7)

The differential capacitance will then be a function of σe, σ−, σ+, a, b, c, κ , lB, n0. Note that the bulk ion

concentration n0 determines the Debye screening length lD = (8πlBn0)
−1/2.

12.2.2. Monte Carlo Simulations

As in our previous work [9], we have carried out Metropolis Monte Carlo simulations in the NVT

ensemble for a symmetric 1 : 1 electrolyte of bulk concentration n0, confined between two planar impene-

trable surfaces placed at x = 0 and x = H. The surface located at x = 0 carries not only a uniform surface

charge density, σe, but also uniform surface densities of sources for solvent-mediated interaction, σ− and

σ+. All simulations were performed in a rectangular cell of dimensions H × L× L, with L = 10 nm and

H = 30 nm. Periodic boundary conditions were applied in the perpendicular directions to the x-axis, and
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overall electroneutrality was ensured by the addition of neutralizing counterions. A modified restricted

primitive model is used to describe the electrolyte solution. That is, all ions are treated as charged hard

spheres, each with radius R = 0.2 nm (and in some cases with R = 0.6 nm), immersed in a medium of

uniform dielectric constant εw = 80 or, equivalently, Bjerrum length lB = 0.7 nm. Electrostatic and solvent-

mediated ion-ion pair interactions are modeled according to Eq. 12.1. The solvent-mediated anion-surface

and cation-surface interaction energies (with the surface being a distance x away) are 2πkBTaσ−eκ(a−x)/κ

and 2πkBT cσ+eκ(c−x)/κ , respectively. In addition, the electrostatic ion-surface interaction energy (again,

with the surface being a distance x away from the ion) is

±kBT lBσeL

[
2ln
(

d +L
d−L

)
− 4x

L
arctan

(
L2

2xd

)]
, (12.8)

with d =
√

2L2 +4x2. The plus and minus signs in Eq. 12.8 refer to cations and anions, respectively. To

account for the long-range nature of the Coulomb interaction, we used, as in our previous work [9], the

so-called External Potential Method (EPM), developed by Torrie and Valleau [440]. In this method, which

is also known as Charged Sheet Method (CSM) [493, 494], each ion is allowed to interact with the image

cells by means of the usual minimum image convention and with an external electrostatic potential, given

by the ionic distributions in the image cells, including the charges located at the electrode (we assume that

the ionic distributions in the image cells are identical to those evaluated in the central cell) [440, 495, 443].

This method is equivalent to considering the electrostatic potential generated by a set of infinite sheets

of thickness dx and surface charge density e[−n−(x) + n+(x)]dx from which the central square hole of

dimensions L× L is removed. Computationally, this method can be summarized into calculating, in the

first simulation, the charge density in the central cell considering the external electrostatic potential equal

to zero. In the next simulation, the charge density obtained in the previous simulation is assigned to the

image cells and the external electrostatic potential is calculated. Then a new charge density in the central

cell is determined and this procedure is repeated self-consistently until there are no significant variations in

the charge density in the central cell.

For each value of σe, our simulations yield the local ion concentrations, n−(x) and n+(x). We used

the corresponding volume charge density e[−n−(x)+n+(x)] to numerically solve the Poisson equation (the

first of the equations in Eq. 12.5), resulting in the dimensionless electrostatic potential Ψe(x). In order to

determine the differential capacitance Cdi f f = dσe/dΦ0, we first created a list {σe,Φ0} that represents the
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surface charge density, σe, and the corresponding electrostatic surface potential, Φ0 = kBT Ψe(x = 0)/e.

The numerical values of Cdi f f are then determined using the algorithm developed by Lamperski and Zydor

[443].

12.3. Results

We present Monte Carlo simulation and mean-field results for distinct combinations of interaction

strength parameters (a, b, c) and surface source densities (σ− and σ+). In all scenarios analyzed here, we

use a bulk salt concentration n0 = 0.056/nm3 (equivalent to 100 mM), corresponding to a Debye screening

length of lD = 1.0 nm. Recall that we also use 1/κ = 0.3 nm and lB = 0.7 nm.

σe [e/nm
2
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Figure 12.1. Differential capacitance, Cdi f f , as function of the surface charge density, σe. The dotted
black line is the classical Poisson-Boltzmann result Cdi f f = εwε0

√
1+w2/lD with w = 2πlBlDσe/e. Curves

colored red and green are calculated for a = b = c = 0, with ion radius R = 0.2 nm (red) and R = 0.6 nm
(green) in the absence (dash-dotted lines) and presence (solid lines) of a Stern layer of thickness dS = R. The
color-matching bullets are corresponding results from Monte Carlo simulations. The black dashed line and
the black bullets are mean-field and Monte Carlo simulation results, respectively, obtained for R = 0.2 nm,
a = b = c = 0.6 nm, and σ− = σ+ = 5.0 nm−2.

We first present results in Fig. 12.1 for a = b = c = 0 (colored red and green) and show that when

solvent-mediated interactions are ignored, mean-field theory fails qualitatively in describing our Monte

Carlo simulation results. The red and green bullets in Fig. 12.1 display Monte Carlo results for an ion radius

of R = 0.2 nm and R = 0.6 nm, respectively. The color-matching dash-dotted lines (red for R = 0.2 nm and
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green for R= 0.6nm) show the corresponding mean-field prediction. In fact, for a= b= c= 0 the lattice gas

model, which we use to account for excluded volume interactions, yields the analytic expression [80, 431],

Cdi f f =
εwε0

lD

√(
1− ey w2) (1− ey w2− y

)

y w ey w2 , (12.9)

with y = 4× (2R)3n0 and w = 2πlBlDσe/e. The dash-dotted red and green lines are thus given by the

expression in Eq. 12.9. Note that we prefer to display Cdi f f as nonlinear function of σe so as to highlight

the regime of small |σe|. The function arsinh[2 arsinh(w)] is a convenient choice. For small |σe|, the finite

ion size becomes irrelevant and the lattice gas model reproduces the prediction Cdi f f = εwε0
√

1+w2/lD of

the classical Poisson-Boltzmann model, which is shown by the black dotted line in Fig. 12.1. We note that

the lattice gas model, but not the classical Poisson-Boltzmann model (which is based on an ideal gas instead

of a lattice gas entropy for the mobile ions), predicts a camel-shape of Cdi f f , with two maxima that result

from ion packing effects due to the non-vanishing ion size. More specifically, the camel-shape emerges

from Eq. 12.9 (and also from Eq. 12.10 below) for sufficiently small ions R < R? with 2R? = (6n0)
−1/3.

For R > R? the differential capacitance exhibits a bell-shape, with only a single maximum. Recall that in

Fig. 12.1 we used n0 = 0.056/nm3, implying R? = 0.72 nm. Hence, the green dash-dotted line, which is

derived for R = 0.6 nm < R? is still in the camel-shape regime.

In order to account for the steric interaction between the flat surface and the mobile ions, it is

common to add a Stern layer of fixed thickness dS = R. This corresponds to adding in series a capacitor of

fixed capacitance CStern = εwε0/R, resulting in the total capacitance

Cdi f f = εwε0
1

R+ lD
y w ey w2

√
(1−ey w2)(1−ey w2−y)

. (12.10)

The prediction for Cdi f f according to Eq. 12.10 is shown in Fig. 12.1 by the solid red (R = 0.2 nm) and

solid green (R = 0.6 nm) lines. Consider the specific point σe = 0: the thicker Stern layer for the larger ion

leads to a smaller value of Cdi f f . More specifically, Cdi f f (R= 0.6nm)= 0.44F/m2 and Cdi f f (R= 0.2nm)=

0.59F/m2. However, the Monte Carlo simulations predict opposite behavior: Cdi f f (R= 0.6nm)= 0.52F/m2

and Cdi f f (R= 0.2nm) = 0.48F/m2. Clearly then, a mean-field model that is based on only excluded volume

and Coulomb interactions is not able to qualitatively predict the behavior of Cdi f f .
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We also display in Fig. 12.1 a mean-field prediction (black dashed line) and the corresponding

Monte Carlo simulation results (black bullets), calculated in the presence of solvent-mediated interactions

with a = b = c = 0.6 nm, σ− = σ+ = 5.0 nm−2, and R = 0.2 nm. Note that because a = c and σ− = σ+, the

profile Cdi f f (σe) must be symmetric so that Cdi f f (σe) =Cdi f f (−σe). The choice a= b= c= 0.6nm implies

that all mobile ions exhibit the same Yukawa-like solvent-mediated repulsion among each other irrespective

of their electric charge, with an interaction strength of kBT when the ion-ion distance is r = 0.6 nm. This

widens the width of the EDL and thus decreases Cdi f f . In addition, each mobile ion experiences the same

solvent-mediated repulsion with the electrode surface, as determined by σ− = σ+ = 5.0 nm−2. The ion-

surface repulsion leads to a charge-depleted region that separates the electrode surface from the diffuse

ion cloud and further decreases Cdi f f . Unlike a Stern layer, the charge-depleted region emerges naturally

from the inclusion of solvent-mediated interactions and has a self-adjusting thickness that minimizes the

free energy [8]. The presence of the additional solvent-mediated interaction greatly improves the level of

agreement between mean-field theory and Monte Carlo simulations. Fig. 12.1 exemplifies this for R =

0.2 nm: compare the mean-field and Monte Carlo simulation results with (the black dashed line and black

bullets) and without (the red solid line and the red bullets) solvent-mediated interactions.

Asymmetric profiles of the differential capacitance, Cdi f f (σe) 6= Cdi f f (−σe), emerge from asym-

metric solvent-mediated interactions, where a 6= c. Fig. 12.2 demonstrates this for a = c = 0.6 nm (black

color), a = 0.8 nm and c = 0.4 nm (red color), as well as a = 1.0 nm and c = 0.2 nm (blue color). Dashed

lines refer to mean-field prediction and the color-matching bullets to Monte Carlo simulations. All cal-

culations apply to fixed R = 0.2 nm, σ− = σ+ = 5.0 nm−2 and b = 0.6 nm. Increasing a and decreasing

c renders anion-anion repulsion stronger and cation-cation repulsion weaker. Concomitantly, anions are

repelled more strongly from the electrode, and cations are repelled less strongly from the electrode, irre-

spective of σe. For σe > 0, where the mobile anions are enriched in the diffuse part of the EDL, larger a

leads to smaller Cdi f f . Conversely, for σe < 0, mobile cations accumulate near the electrode, implying an

increase in Cdi f f for smaller c. Mean-field results agree well with Monte Carlo simulations, even better so

when solvent-mediated interactions become stronger and thus decrease Cdi f f . For weak solvent-mediated

interactions, when either a or c is comparable or smaller than R, excluded volume interactions continue

to dominate at medium and large ion densities, implying no or only minor improvement (as compared to

the absence of solvent-mediated interactions) in the ability of mean-field theory to describe Monte Carlo

simulation results.
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Figure 12.2. Differential capacitance, Cdi f f , as function of the surface charge density σe, for different
combinations of the solvent-mediated interaction parameters a and c: a= b= c= 0.6nm (black), a= 0.8nm
and c = 0.4nm (red), and finally a = 1.0nm and c = 0.2nm (blue). Dashed lines and color-matching bullets
refer to mean-field predictions and corresponding Monte Carlo simulation results. All results are derived for
fixed R = 0.2 nm, σ− = σ+ = 5.0 nm−2, and b = 0.6 nm. The gray dotted line marks the limiting expression
Cdi f f = 2εwε0/[(2R)3σe/e], valid for large |σe|. The inset displays model predictions for Cdi f f as function
of arsinh[2arsinh(2πlBlDσe/e)] according to Eq. 12.12, with dS = da

S = 0.2 nm (black), dS = 0.132 nm and
da

S = 0.266 nm (red), as well as dS = 0.066 nm and da
S = 0.332 nm (blue), all derived for lD = 1 nm.

We can qualitatively understand the emergence of the asymmetry Cdi f f (σe) 6=Cdi f f (−σe) for a 6= c

based on the ion-surface interaction only while ignoring any non-electrostatic ion-ion interactions (includ-

ing excluded volume interactions). To this end, recall the prediction of the classical Poisson-Boltzmann

approach Cdi f f = εwε0
√

1+w2/lD with the scaled surface charge density w = 2πlBlDσe/e. Adding a Stern

layer of thickness dS� lD reduces the differential capacitance according to

Cdi f f = (εwε0/lD)
[√

1+w2− (dS/lD)(1+w2)
]

(12.11)

while preserving the symmetry Cdi f f (σe) =Cdi f f (−σe). The asymmetry a > c can approximately be trans-

lated into the existence of a region 0 < x < dS where all ions are excluded and another region dS < x < da
S

where only anions (but not the cations) are excluded from. In this case, we obtain for the differential capac-

itance (valid up to first order in dS/lD and da
S/lD) the expression

Cdi f f =
εwε0

lD

{√
1+w2−

(
dS

lD

)
(1+w2)−

(
da

S −dS

lD

)[
1+w2−

2+ w√
1+w2

4(w+
√

1+w2)2

]}
. (12.12)
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The Appendix, which derives Eq. 12.12, also shows a plot (Fig. 12.7) of both perturbation contributions,

demonstrating that the additional zone of anion-exclusion further reduces Cdi f f , but does so in an asymmet-

ric manner, giving rise to Cdi f f (σe) < Cdi f f (−σe) as we observe in Fig. 12.2. To further demonstrate the

usefulness of Eq. 12.12, we show in the inset of Fig. 12.2 the prediction of Cdi f f according to Eq. 12.12 as

function of arsinh[2arsinh(w)] for dS = da
S = 0.2nm (black), dS =(0.2−0.066)nm and da

S =(0.2+0.066)nm

(red), as well as dS = (0.2− 2× 0.066) nm and da
S = (0.2+ 2× 0.066) nm (blue). Apparently, our simple

phenomenological model gives rise to a similar asymmetry pattern for Cdi f f as that observed in the main

figure. Note that the abscissa in the inset is the same as that in the main figure, yet extending only from −1

to +1 because the validity of Eq. 12.12 is confined to small |σe|.

We notice from Fig. 12.2 that for large |σe| all predictions, mean-field and Monte Carlo, merge

into a single line, irrespective of the solvent-mediated potential. This behavior reflects a state of dense ion

packing due exclusively to their excluded volume interactions. If the maximal ion density is approximated

by (2R)−3, a differential capacitance Cdi f f = 2εwε0/[(2R)3σe/e] in the limit of large |σe| emerges. This

expression describes the limiting behavior well; see the gray dotted line in Fig. 12.2.

The parameter b determines the strength of the solvent-mediated interaction between anions and

cations. For large |σe| (or, more accurately, when |2πlBlDσe/e| � 1) the EDL consists predominantly of

ions of one type, either anions or cations, rendering b irrelevant for Cdi f f . However, for |2πlBlDσe/e| � 1

both anions and cations will be present and b will affect Cdi f f . In Fig. 12.3 we compare mean-field prediction

and Monte Carlo results for various values of b as indicated in the diagram, all for fixed R = 0.2 nm, σ− =

σ+ = 5.0nm−2, a= 0.8nm, and c= 0.4nm. As expected, b influences Cdi f f only in the vicinity of small |σe|.

Larger b leads to larger Cdi f f in that region. Recall from Fig. 12.2 that a larger a widens the width of the EDL

near a positively charged electrode surface and thus decreases Cdi f f . Similarly, a larger c widens the width of

the EDL near a negatively charged electrode surface and thus also decreases Cdi f f . In view of that, it might

be unexpected that a larger b increases Cdi f f of a weakly charged electrode. To understand this finding, we

display in Fig. 12.4 Monte Carlo simulation results (and the corresponding mean-field predictions) for the

local concentrations of anions, n−(x), and cations, n+(x), as function of the distance x from the electrode

surface, using the same set of values for b as in Fig. 12.3 and the specific choice σe = −0.01 e/nm2. All

other parameters are the same as in Fig. 12.3 (that is, R = 0.2 nm, σ− = σ+ = 5.0 nm−2, a = 0.8 nm,

and c = 0.4 nm). Because the value of a is twice that of c, the anion-depleted region close to the surface

is about twice as wide as the cation-depleted region. Cations are thus able to form a layer on their own
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Figure 12.3. Differential capacitance, Cdi f f , as function of the surface charge density, σe, for different
values of the anion-cation interaction strength b as indicated. Dashed lines and color-matching bullets refer
to mean-field predictions and corresponding Monte Carlo simulation results. All results are derived for fixed
R = 0.2 nm, σ− = σ+ = 5.0 nm−2, a = 0.8 nm, and c = 0.4 nm.
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Figure 12.4. Ion concentration profiles n−(x) (open circles) and n+(x) (open diamonds) near the charged
electrode as predicted by Monte Carlo simulations for σe =−0.01 e/nm2. Different colors refer to different
values of b as specified in Fig. 12.3: b = 0 (black), b = 0.6 nm (red), b = 0.9 nm (blue), and b = 1.2 nm
(green). The color-matching solid lines [for n−(x)] and broken lines [for n+(x)] display the corresponding
mean-field predictions. All fixed parameters are the same as in Fig. 12.3, namely R = 0.2 nm, σ− = σ+ =
5.0 nm−2, a = 0.8 nm, and c = 0.4 nm.

close to the surface, followed by a region of slightly enhanced anion concentration. With increasing b

anion-cation interaction becomes more unfavorable. More cations then migrate into the anion-depleted

layer and more anions accumulate in the region next to that. In other words, with increasing b cations and
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anions tend to get more separated from each other, implying a larger response of the dimensionless surface

potential Ψe(x = 0) to changes in σe. Note that besides our Monte Carlo simulation results, Fig. 12.4

also displays the corresponding mean-field predictions (color-matching solid and broken lines for anions

and cations, respectively). With the exception of the oscillating behavior that emerges with growing b, the

mean-field predictions agree with the qualitative trends of the simulation results. This includes, in particular,

the depletion zones for anions and cations as well as the concentration changes as function of b.

In order to further rationalize the increase of Cdi f f with b we follow up on the simple model that

gave rise to Eq. 12.12. Recall that based on the classical Poisson-Boltzmann model (thus assuming point-

like ions that exhibit only Coulomb interactions), we assumed the existence of a region 0 < x < dS where all

ions are excluded from and another region dS < x < da
S where only anions are excluded from. This, in fact,

is what we approximately observe in Fig. 12.4, with a and c translating into dS and da
S . As b increases, more

cations migrate to the region dS < x < da
S . In our simple theoretical model we can enforce this migration

by a Lagrangian multiplier λ , defined in such a way that λ > 0 induces the migration of additional cations

from the region x > da
S into the region dS < x < da

S . Conversely λ < 0 leads to a depletion of cations from

the region dS < x < da
S . In other words, growing λ mimics the effect of growing b in Fig. 12.3. As we detail

in the Appendix, the resulting differential capacitance of our model up to first order in dS/lD and da
S/lD is

Cdi f f =
εwε0

lD

{√
1+w2−

(
dS

lD

)
(1+w2) (12.13)

−
(

da
S −dS

lD

)
1+w2−

eλ

(
2+ w√

1+w2

)

4(w+
√

1+w2)2



}
.

For λ = 0 no constraint is imposed and we recover Eq. 12.12. For λ →−∞ all cations are forced to leave

the region dS < x < da
S , which recovers the simple Stern layer result

Cdi f f = (εwε0/lD)
[√

1+w2− (da
S/lD)(1+w2)

]
(12.14)

with an ion-depleted region x < da
S . Most importantly, growing λ in Eq. 12.13 increases Cdi f f , irrespective

of the surface charge density σe (as expressed through w = 2πlBlDσe/e). This behavior clearly illustrates

the mechanism of how the interaction parameter b increases Cdi f f , as observed in Fig. 12.3.

Asymmetric profiles of the differential capacitance, Cdi f f (σe) 6=Cdi f f (−σe), can also emerge from
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asymmetric solvent-mediated interactions between the ions and the surface as expressed through σ− 6= σ+.

We illustrate the implications of such a mismatch in Fig. 12.5, which shows Cdi f f as function of σe for

different choices of σ+ as indicated in the legend. Mean-field predictions are displayed by broken lines

and Monte Carlo simulations by the color-matching bullets. All cases are based on fixing R = 0.2 nm,

a = b = c = 0.6 nm, and σ− = 5 nm−2. Increasing σ+ decreases Cdi f f in the region σe < 0 while leaving

Cdi f f unchanged for σe > 0. Indeed, larger repulsion between the cations and the electrode surface increases

the width of the ion charge-depleted region between the surface and the diffuse part of the EDL. This reduces

Cdi f f . For σe > 0, the cation-surface interaction becomes increasingly irrelevant, leaving Cdi f f unaffected.

Agreement between mean-field theory and Monte Carlo simulations is satisfying and becomes better for

larger σ+ (and analogously for σ−). Here again we conclude that our mean-field approach qualitatively

reproduces all Monte Carlo simulation results and does so even quantitatively when the additional solvent-

mediated interactions are sufficiently large.
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Figure 12.5. Differential capacitance, Cdi f f , as function of the surface charge density, σe, for different
values of σ+ as indicated in the figure legend. Dashed lines and color-matching bullets refer to mean-field
predictions and corresponding Monte Carlo simulation results. All results are derived for fixed R = 0.2 nm,
a = b = c = 0.6 nm, and σ− = 5 nm−2.

Experimental data for the differential capacitance typically display a notable asymmetry Cdi f f (σe) 6=

Cdi f f (−σe). Fig. 12.6 shows a data set from Hamelin [7], obtained for a sodium fluoride (NaF) electrolyte

of varying concentrations exposed to the 210 crystal face of a gold electrode, that exhibits both an asym-
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Figure 12.6. Differential capacitance, Cdi f f , as function of the electrostatic surface potential Φ0, for dif-
ferent concentrations n0 of a the electrolyte: n0 = 0.01 M (black), n0 = 0.02 M (red), n0 = 0.05 M (green),
n0 = 0.1 M (blue), and n0 = 0.5 M (purple). Experimental data points reported by Hamelin [7] are marked
by crosses; solid lines represent mean-field results obtained for a = 0.4 nm, b = 0.04 nm, c = 0.53 nm,
σ+ = 2.25 nm−2, σ− = 2.5 nm−2, and R = 0.72 nm.

metry and the camel-shape to bell-shape transition. Experimental data points are marked by crosses, with

different colors corresponding to n0 = 0.01 M (black), n0 = 0.02 M (red), n0 = 0.05 M (green), n0 = 0.1 M

(blue), and n0 = 0.5 M (purple). The color-matching solid lines were calculated for a= 0.4nm, b= 0.04nm,

c = 0.53 nm, σ+ = 2.25 nm−2, σ− = 2.5 nm−2, and R = 0.72 nm. The mean-field results clearly reproduce

the qualitative trends of the experimental data sets, including the asymmetry and camel-shape to bell-shape

transition as function of growing salt concentration. We note that Minton and Lue [88] have fitted the same

experimental data set based on a mean-field model that introduces the asymmetry Cdi f f (σe) 6=Cdi f f (−σe)

through a combination of a van der Waals equation of state for a mixture of size-asymmetric hard spheres

(supplemented by a Stern layer) and the account of excess polarizabilities for mobile cations and anions. As

the authors have pointed out, additional effects like ion-ion correlations, field-induced dielectric decrement,

and specific interactions can further modify the differential capacitance. While our present model continues

to neglect changes in the local dielectric constant and also neglects ion polarizabilities (in contrast to the

work of Minton and Lue [88]), it does account for specific interactions both between ion pairs and between

ions and the surface through our use of Yukawa potentials. As a consequence, our model removes the need

to add a Stern layer. The approaches by Minton and Lue [88] and ours thus complement each other in their

ability to fit experimental data sets like the one in Fig. 12.6. Future work could merge both approaches.
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12.4. Conclusions

In this work we have used our previously introduced mean-field formalism [9] to investigate how

asymmetric solvent-mediated ion-ion and ion-surface interactions, modeled as Yukawa pair potentials, affect

the differential capacitance Cdi f f of an EDL. In addition, we also carried out Metropolis Monte Carlo simu-

lations and compared the results with our mean-field predictions. We demonstrate that in addition to asym-

metries in ion valencies [496, 497] and sizes [482, 485, 486, 487], solvent-mediated non-electrostatic ion-ion

interactions (modeled as Yukawa potentials) are also able to induce asymmetric profiles of the differential

capacitance. Most significantly, the presence of the additional Yukawa potentials greatly improves the ability

of mean-field theory to reproduce the simulation results, including the asymmetry Cdi f f (σe) 6=Cdi f f (−σe)

and the camel-shape to bell-shape transition. The improved agreement between mean-field model and sim-

ulation results from the softening of the composite ion-ion and ion-surface interaction potentials due to

their additional Yukawa component. Softer potentials diminish the role of ion-ion correlations, which are

accounted for in our Monte Carlo simulations but are neglected in mean-field theory.

Larger solvent-mediated anion-anion repulsion decreases Cdi f f of a positively charged electrode and

shifts its maximum to more positively charged surfaces. Similarly, larger solvent-mediated cation-cation

repulsion decreases Cdi f f of a negatively charged electrode and shifts its maximum to more negatively

charged surfaces. Larger solvent-mediated anion-cation repulsion increases Cdi f f at small surface charge

densities σe. We rationalize the latter finding using a simple phenomenological ion-depletion model that is

based on the classical Poisson-Boltzmann model supplemented by two distinct Stern-like depletion layers

for anions and cations.

In order to facilitate comparison of mean-field theory with Monte Carlo simulations, we have used a

uniform dielectric background in both the mean-field model and Monte Carlo simulations. Imposing a uni-

form dielectric constant is one among a number of approximations in our work, including the neglect of ion

polarizabilities and treating solvent-mediated interactions as simple Yukawa pair potentials. Nevertheless,

we expect our findings about the role of solvent-mediated anion-anion, cation-cation, and anion-cation inter-

actions to also apply for more detailed models of the EDL. This includes modeling the combined presence

of asymmetries in steric size, ionic valence, and solvent interactions.
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12.6. Appendix

To derive Eq. 12.13 we consider the familiar functional [36] for the Poisson-Boltzmann free energy

F , expressed in units of the thermal energy kBT and unit area A

F
AkBT

=

∞∫

0

dx

[
Ψ′e

2

8πlB
+n− ln

n−
n0
−n−+n+ ln

n+
n0
−n+

]

+

∞∫

0

dx(U−n−+U+n+)−λ

da
S∫

dS

dx n+, (12.15)

where the charged electrode (modeled as a planar surface of surface charge density σe) is located at position

x = 0 and where the mobile anions (of local concentration n−) and cations (of local concentration n+)

are assumed to be point-like, interacting only through the Coulomb potential. The first line in Eq. 12.15

represents the electrostatic energy as function of the dimensionless electrostatic potential Ψe(x) and ideal

gas entropy contribution of all mobile ions. The external potentials U− = ∞ if x≤ da
S and U− = 0 for x > da

S

as well as U+ = ∞ if x≤ dS and U+ = 0 for x > dS (with da
S ≥ dS) ensure that anions and cations are excluded

from the region x < dS, whereas anions (but not the cations) are also excluded from the region dS < x < da
S .

Finally, λ is a constant Lagrangian multiplier that can be used to fix the number of cations in the region

dS < x < da
S . For λ > 0 additional cations must enter that region. Minimization of Eq. 12.15 subject to

Poisson’s equation yields the Boltzmann distributions n− = n+ = 0 for x < dS, n− = 0 and n+ = n0eλ−Ψe
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for dS < x < da
S , as well as n− = n0eΨe and n+ = n0e−Ψe for da

S < x. Inserting these distributions into

Poisson’s equation Ψ′′e = 4πlB(n−− n+) results in Ψ′′e = 0 for x < dS, l2
DΨ′′e = −eλ−Ψe/2 for dS < x < da

S ,

and l2
DΨ′′e = sinhΨe for da

S < x. The potential Ψe(x) must be continuous and smooth for x > 0, and it must

fulfill Ψ′e(0) =−2w/lD (with w = 2πlBlDσe/e) and Ψe(x→ ∞) = 0.
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Figure 12.7. The two perturbation contributions fS(w) and f a
S (w) as function of w = 2πlBlDσe/e.

To find the differential capacitance we express the potential in the region dS < x < da
S as

Ψe(x) = ln
{

1
a2 cos2

[
a(x−dS)

2lD
eλ/2 + arctan

(
2w
a

e−λ/2
)]}

(12.16)

with a =
√

e−Ψ̃e− (2we−λ/2)2. The potential Ψe(x) in Eq. 12.16 then fulfills Ψe(dS) = Ψ̃e and Ψ′e(dS) =

−2w/lD. Note that the potential is linear for 0 < x < dS, implying Ψ̃e = Ψe(0)−2wdS/lD. Integration of the

classical Poisson-Boltzmann equation in the region da
S < x yields the relation lDΨ′e(d

a
S)=−2sinh[Ψe(da

S)/2].

Inserting Ψe(x) from Eq. 12.16 into that relation results in a transcendental relationship for the scaled sur-

face charge density w = 2πlBlDσe/e as function of the surface potential Ψe(0). However, up to linear order

in dS/lD and da
S/lD we find the explicit relation

w = sinh
Ψe(0)

2
− da

S
lD

1
2

sinhΨe(0)−
da

S −dS

lD

1
4

eλ−Ψe(0), (12.17)
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from which we can compute the differential capacitance Cdi f f = (εwε0/lD)d(2w)/dΨe(0). This leads to

Cdi f f =
εwε0

lD

[
cosh

Ψe(0)
2
− da

S
lD

coshΨe(0)+
da

S −dS

lD

1
2

eλ−Ψe(0)
]
. (12.18)

We reiterate that Eq. 12.18 is valid up to linear order in dS/lD and da
S/lD. Hence, to express Cdi f f as function

of w in that order, we only need to solve the relationship in Eq. 12.17 for Ψe(0) as function of w up to linear

order in dS/lD and da
S/lD and insert it back into Eq. 12.18. This then results in Eq. 12.13.

Clearly, for λ = 0 no constraint is imposed and Eq. 12.13 reduces to Eq. 12.12. The two perturbation

contributions in Eq. 12.12, fS(w) =−(1+w2) and

f a
S (w) =−(1+w2)+

2+ w√
1+w2

4(w+
√

1+w2)2
(12.19)

are both negative for any choice of w, as shown in Fig. 12.7
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[370] E. Schöll-Paschinger, A. L. Benavides, R. Castañeda-Priego, Vapor-liquid equilibrium and critical

behavior of the square-well fluid of variable range: A theoretical study, J. Chem. Phys. 123 (23)

(2005) 234513.

[371] D. Fu, J. Wu, A self-consistent approach for modelling the interfacial properties and phase diagrams

of Yukawa, Lennard-Jones and square-well fluids, Mol. Phys. 102 (13) (2004) 1479–1488.

[372] M. Ginoza, Simple MSA solution and thermodynamic theory in a hard-sphere Yukawa system, Mol.

Phys. 71 (1) (1990) 145–156.

[373] M. Ginoza, Solution of the Ornstein-Zernike equation in a hard-sphere Yukawa liquid containing

an arbitrary-size hard sphere: a simple mean-spherical-approximation solution and free energy of

forming a cavity, J. Phys.: Condens. Matter 6 (8) (1994) 1439.

[374] M. Gonzalez-Melchor, A. Trokhymchuk, J. Alejandre, Surface tension at the vapor/liquid interface

in an attractive hard-core Yukawa fluid, J. Chem. Phys. 115 (8) (2001) 3862–3872.

[375] C. Tapia-Medina, P. Orea, L. Mier-y Terán, J. Alejandre, Surface tension of associating fluids by

Monte Carlo simulations., J. Chem. Phys. 120 (5) (2004) 2337–2342.

[376] Y. Duda, A. Romero-Martı́nez, P. Orea, Phase diagram and surface tension of the hard-core attrac-

tive Yukawa model of variable range: Monte Carlo simulations, J. of Chem. Phys. 126 (22) (2007)

224510.

[377] P. Orea, Y. Duda, On the corresponding states law of the Yukawa fluid, J. Chem. Phys. 128 (13)

(2008) 134508.

[378] S. K. Singh, Effect of surface-screening parameter of the Yukawa potential model on vapour–liquid

phase coexistence and critical-point properties of confined Yukawa fluid, Mol. Simul. 42 (5) (2016)

413–419.
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