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ABSTRACT

Crosslinked thermoset polymers are used heavily in industrial and consumer products,

as well as in infrastructure. When used as a protective coating, a thermoset’s net-like struc-

ture can act as a barrier to protect an underlying substrate from permeation of moisture,

salt, or other chemicals that otherwise weaken the coating or lead to substrate corrosion.

Understanding how such coatings degrade, both at microscopic and macroscopic scales, is

essential for the development and testing of materials for optimal service life. Several nu-

merical and computational techniques are used to analyze the behavior of model crosslinked

polymer networks under changing conditions at a succession of scales. Molecular dynamics is

used to show the effects of cooling and constraints on cavitation behavior in coarse-grained

bulk thermosets, as well as to investigate dynamical behavior under varying degradation

conditions. Finite-element analysis is applied to examine strain distributions and loci of

failure in several macroscopic coated test panel designs, discussing the effects of flexure and

coating stack moduli. Finally, the transport of moisture through model coatings under cy-

cled conditions is examined by lattice Boltzmann numerical techniques, considering several

common concentration-dependent diffusivity models used in the literature and suggesting an

optimal behavior regime for non-constant diffusivity.
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1. GENERAL INTRODUCTION

Polymeric materials are ubiquitous in daily life. Formed of chain-like structures,

polymers are used heavily for industrial, infrastructure, and consumer applications because

of their desirable properties for a host of applications. Broadly speaking, polymeric materials

are divided into two classes, thermoplastics and thermosets.

Thermoplastics are polymeric materials consisting of chains that are not chemically

bonded together. Instead, structural and material integrity is provided through chain entan-

glement. Many consumer and industrial plastics are thermoplastics, such as polyethylene,

polypropene, and polystyrene materials.

Thermosets, on the other hand, are comprised of chains that are chemically bonded

together. This crosslinking between chains offers several advantages to thermoplastics; for

example, they are often tougher, more chemical resistant, and offer better environmental

protection. The network structure formed as a result of the crosslinking process can act as

a barrier against the passage of moisture and other invasive species. These include common

coating materials like polyurethanes, epoxies, and polyesters.

1.1. Crosslinked polymer networks

In general, performance requirements often dictate or assume that the polymer net-

work of a coating system is completely cured and homogeneous throughout. In the case of a

coating that may be only tens or a hundred micrometers thick, it is difficult to experimentally

determine the structure of such a network through its bulk.

In practice, crosslinked polymers are produced from two or more reactive liquid pre-

cursors. A huge variety of compositions are available to maximize performance of coatings in

many different service conditions. Although the individual structure formed by a particular

choice of reactive species is always of interest, it is also necessary to understand in more gen-
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eral ways how molecular architecture and topology affect the properties of three-dimensional

polymer networks.

Crosslinking reactions in organic polymers result in a final solid material that is denser

than the initial liquid reactants. Shrinkage during polymer network formation is almost

universal. Not only is a solid generally denser than a liquid, but many crosslinking reactions

eliminate part of the original reactants as small, volatile reactants; it is also common for the

initial liquid system to contain solvent that evaporates during the film formation. Thermal

shrinkage may occur since many industrial applications involve curing at a temperature

much higher than use temperature in order to assure the required chemical reactions are

complete and occur within a reasonable time. Most coating polymers adhere to a substrate

or pigments that are much more rigid. After crosslinking has proceeded to the extent that

a molecular network spans its volume, it gels and acquires solid-like properties. At that

point, the rigid substrate, or included particles, constrains densification and further reaction

leads to internal strains within the network in the plane of the substrate. In cases where

the polymer forms without such rigid external constraints, it will be free to shrink, but even

then it is common to find internal stresses and heterogeneities.

1.2. Modeling techniques

Approaches to modeling polymeric materials vary greatly, and continue to evolve in

complexity with advances in mathematical and computational technique. Early statistical

approaches to linking structure and mechanical properties relating to conversion and gelation

took advantage of topologies that are assumed to be ideal [2, 3], but are insensitive to network

flaws that inevitably arise during the crosslinking process [1].

Explicit modeling of dynamical behavior became possible with early availability of

computing, where groups of atoms at the Kuhn length are treated as a single charge-free mass

that interacts according to Newtonian physics with appropriate potentials applied to impose

bonding. This arose as a natural extension of early work on simpler Lennard-Jones fluids

[4, 5] to thermoplastic chains [6, 7], but only recently has this been applied more broadly to
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thermosets despite the relative simplicity of including the bonding of chains via crosslinkers.

Molecular dynamics is used to examine structural properties, curing and cooling processes,

multi-atom kinetics and rearrangement behavior, and the results of mechanical changes.

At macroscale lengths, Monte Carlo simulations yield data about stochastic processes

like effects of radiation on surface properties and topology [8], and dynamical processes of

bulk materials [4]. Other statistical models are used to link degradation to surface property

changes [9]. Structural finite-element modeling provides insight into stress and strain distri-

butions in idealized coatings, especially relating to engineering scenarios involving particular

substrate geometries like joints and layerings [10, 11].

Moisture transport modeling occurs at several scales. In molecular dynamics, per-

colating paths can be observed where moisture and other aggressive species might enter a

polymer network, either with or without consideration for charge distributions. More indi-

rect mathematical modeling of diffusion typically assumes idealized conditions about density

and uniform bonding, and may or may not provide for physical changes like swelling that

affect diffusive behavior.

1.3. Environmental testing

The testing of protective coatings depends on the environment in which the coatings

are expected to be used. For coatings and paints intended for automotive or aerospace

use, for example, near-constant exposure to the natural elements introduces a substantial

number of environmental stressors [12]. These include parameters like temperature, air

humidity, salt, moisture exposure from rain or dew, ultraviolet (UV) radiation from the sun,

and possibly aggressive chemicals contained in cleaners, oil, or fuel. Interactions between

different exposure parameters, like acid rain and ultraviolet radiation, further compound

the challenges with such testing [13]. Further, mechanical stresses from scratching, moving

components, or flexing (e.g. when an aircraft takes off or lands) may be present.

The goals of artificial weathering are often twofold. On one hand, it is often desired

to have a rather short test protocol accurately reproduce coating degradation or failure that
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would occur during longer-term natural exposure in the environment. On the other hand,

it may simply be enough to produce a test protocol that will initiate failure modes (often

in a way that allows multiple candidate coatings to be compared) to ensure that improper

coatings are rejected from further consideration. Despite many years of comparative study,

it is well established that commonly-accepted test protocols are often unable to faithfully

mimic natural results over time [14]. For many conditions, only tenuous correlations between

certain environmental factors and degradation metrics are established [15, 16].

Methods for quantifying the results of coating degradation are varied. After surface

pitting and material loss, gloss is often reduced and a coating begins to yellow or otherwise

change its coloring. These are easily quantifiable in the laboratory and even somewhat with

the eye. Bulk moisture transport can be measured using gravimetric or electrochemical

techniques like electrochemical impedance spectroscopy [17, 18].

Most weathering protocols use fairly short times, on the order of four to eight hours,

for cycling of parameters. These short times are chosen both for convenience (to scale neatly

to the workday) and in an attempt to accelerate the appearance of a diurnal cycle over

a shorter total test time. In particular, tests involving UV radiation chambers frequently

change temperature, water exposure, and radiation simultaneously in an attempt to repro-

duce diurnal cycles. However, this likely does not permit a good barrier coating to become

sufficiently saturated, and the presence of underlying base coat materials can further com-

plicate this. More recent analyses have suggested the use of longer cycles on the order of

half a day, but even this was found not to reproduce the extent of field weathering [19].

Notably absent from common protocols is any type of mechanical stress. This is likely

due both to a lack of understanding of the precise relationship between mechanical strain

and many other weathering parameters, as well as the practical challenges of stressing a test

panel inside a test chamber. Much analysis of the fracture mechanics of a coating is done

using free films and stacks, and even then the behavior can be quite complex [20]. This is

perhaps to be expected; after all, imparting a large strain to a thin coating on a flat test
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panel would likely serve only to fatigue the panel into its plastic regime and make further

cycling testing impractical.

1.4. Moisture transport

As is known, most coatings permit, to some degree, moisture ingress [21]. This can

be due to imperfections in the preparation process [22], the formation of void space during

curing or cooling [23], or because of damage in service. Most accelerated test protocols

include moisture cycling since the cycled appearance of atmospheric moisture is present in

nature, despite there being no complete and predictive model that accurately correlates a

coating’s performance in such testing, performance in field testing, and failure modes or

lifespan that is likely to occur in service [24]. Since corrosion is linked to moisture reaching

the substrate in sufficient quantities, understanding the nature of substrate exposure and

coating saturation over time is essential to designing better weathering testing. Some tests

do not permit most barrier coatings to reach saturation within a cycle due to the short time

scales used [25]. In general, cyclic testing does not provide a complete picture of the failure

modes or service life of a system under test [24].

In the field, overall moisture uptake has been observed to enhance photooxidation and

hastens degradation processes that decrease service life [25], both alone and in the presence

of ultraviolet radiation from the sun [26]. Transport of moisture, and especially the time

scales at which it occurs, has broad effects on the thermal and mechanical properties of

coating systems over time [27], as well as on the adhesion of a coating to other layers or a

substrate [28]. Moisture permeation has also been linked to the presence of pores [29] and

pathways [21] within a coating that are often the result of the statistics and chemistry of the

crosslinking process [22] both before and after gelation [1, 30], and of cavitation [23].

Several methods exist to model idealized diffusion. Early work on diffusion through

coatings focused primarily on precise mathematical modeling and numerical solutions to

boundary-matched differential equations governing diffusion [31, 32]. Modern approaches

include network connectivity models [29], Monte Carlo simulations [33], and finite-element
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analysis [34] for more complex structures like porous media where an effective diffusivity is

desired. However, approaches dealing with pore structures may depend on the structure and

porosity of the material in question, quantities that most often unknown a priori. Addition-

ally, finite-element models tend to be computationally complex and often rely on commercial

closed codes. As a whole, there is comparatively little known about the precise dynamics of

diffusion through polymeric coatings [35].

Additionally, different approaches exist when multiple layers are considered. In the

case of multiple hydrophobic barrier coatings, solutions that apply particular boundary-

matched conditions on flux or concentration can be used [32] and matched to experiment

via electrochemical methods. When a base coating is hydrophilic, as may happen in some

primers, an alternative approach couples Fickian diffusion for any overlying barrier coatings

with the assumption of an instantaneous reservoir for the base layer [36]. In either case,

different coatings in a multi-layer stackup differ in their effective diffusivity.

Modeling the kinetics of moisture transport through a coating or stack permits a fine-

grained approach to examining water content throughout the system over time, which is diffi-

cult to achieve in the laboratory [37]. Experimental methods like electrochemical impedance

spectroscopy are well suited to examine bulk properties like diffusivity and uptake during

cycled exposure [38], but have the disadvantage of requiring consistent preparation, applica-

tion, and measurement conditions. However, it is straightforward to gain information about

the diffusion process. Fickian diffusion has been shown to provide a good basis for water

transport through a variety of barrier and underlying base coatings with different chemistries

[28, 38, 25, 39]. Other work has examined bilayer systems where an instantaneous reservoir

model was used for a hydrophilic base coat [36]. Multilayer systems provide additional mod-

eling challenges, since additives like pigments can lead to a variety of unexpected changes

in diffusivity [40] and boundary conditions must be carefully considered [32]. However, an

assumption of generally Fickian behavior provides good matching to experiment under a

variety of setups.
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1.5. Organization

This dissertation is organized into four major topics, each comprising a different, but

related, computational application of numerical modeling to crosslinked polymer networks.

Each topic is provided its own introduction that introduces the particular method used, as

well as providing a discussion of important results in the area of study.

The second chapter presents a molecular dynamics study of coarse-grained bulk

thermoset heterogeneity, in order to better understand the internal structure of general

crosslinked networks. Using a fully periodic system with different crosslinker functionalities,

a stochastic crosslinking process results in regions of variable network formation. This setup

leads to cavitation depending on the curing procedure, the temperature relative to the glass

transition, and the functionality of the network.

The third chapter presents a computational study of short-time network cage behavior

using molecular dynamics, in which it is shown that crosslinked networks exhibit molecular

transitions between cage regions imposed by their neighbors. The statistics of this behavior

are investigated in detail and shown to exhibit dependence on temperature and crosslinker

functionality. Structural degradation is imposed on the system via the removal of bonds

and compared to the fully-formed network results, noting comparisons to traditional bulk

network models and properties.

The fourth chapter examines coatings on a macroscale and investigates structural

properties of coating strain over common geometries. Since mechanical stress is not typically

studied in laboratory coating testing, the origins of adhesive or cohesive failure are not well

understood in engineering or structural situations. Structural finite-element analysis is used

to examine the strain distributions in a coating over a gap sealant under various substrate

geometries and displacements, and comment on the corresponding results for a countersunk

rivet. Possible loci of failure, as well as a dependence on coating moduli, are discussed

throughout.
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The fifth and sixth chapters use discrete lattice Boltzmann numerical methods to

model moisture transport through a finite single-layer coating adhered to a substrate and

exposed to a cycled moisture reservoir. The numerical framework is developed and verified

alongside an analytical derivation. Since the lattice diffusion equation is typically derived

only up to a second-order Taylor approximation, its validity is confirmed across a wide

parameter space, such that further refinement of the approximation is unnecessary for this

application. The numerical method is used to study the effects of moisture cycling under

different concentration-dependent diffusivity functional forms over time. While constant

diffusivity leads to a simple scaling argument for concentration at a substrate, non-constant

forms yield much different behavior. Applications to laboratory test protocols are discussed.

The seventh chapter extends the lattice Boltzmann model to the case of multiple

coating layers, where the diffusion rate and maximal saturation of each layer are varied

independently. An application of Henry’s law is used to account for differences in relative

saturation layers. This is shown to result in a filling effect as maximal saturation increases,

delaying the passage of moisture to subsequent layers.

Together, these studies show the broad range of numerical techniques that provide

insight into polymeric coatings at a variety of length and time scales, and provide frameworks

for future study, design, and testing of coating materials.
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2. CAVITATION IN CROSSLINKED POLYMERS:

MOLECULAR DYNAMICS SIMULATIONS OF

NETWORK FORMATION

2.1. Introduction

The protective qualities of a polymer depend on its strength and whether it allows

foreign species to permeate and attack a substrate. It is usually assumed that a higher degree

of crosslinking leads to stronger, less permeable materials because the network structure is

denser and will not allow foreign species to percolate. However, it is also recognized that

aggressive species from the environment do, in fact, permeate through crosslinked polymers.

The mechanisms involved are not well understood [21], making it difficult, a priori, to design

a completely successful composition. A better understanding of the molecular and nanoscale

causes of this permeability is needed in order to design materials with improved protective

properties. However, traditional approaches to understanding crosslinked network formation

focus on the overall crosslinked network, not on the possibility of void formation or other

local variations [41, 42, 43, 44]. In particular, an interest in possible pore formation in

crosslinked polymers that are formed from liquids is supported by simulations that show

pores can arise by cavitation in amorphous liquids [45, 46] and even metals [47].

Molecular dynamics is a computational technique that tracks the state of a system of

particles through time. Once set in an initial configuration and assigned velocities, interpar-

ticle interactions are used in the computation of forces, which then give rise to accelerations

that are used for position evolution of each particle. The models we use for thermosets

The work of this chapter was completed by the author and collaborators M. Zee, D.M. Kroll, and
S.G. Croll in a published paper [23]. Zee investigated many material parameters associated to a range of
coarse-grained precursors that established the cavitation phenomenon. Simulations and data analysis were
conducted by the author, Zee, and Kroll. Three-dimensional visualizations were produced by the author and
Kroll, with additional analysis from Croll and Zee.
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are subject to a coarse-graining process in which no charges are considered; instead, inter-

particle interactions will be governed by potentials that model van der Waals interactions,

short-range repulsion, and strong covalent bonding. The use of any barostats or thermostats

to control pressure or temperature are included in the velocity Verlet algorithm used in each

timestep.

Although molecular dynamics was developed decades ago, there have been few studies

applying it to highly crosslinked polymer networks. The use of a coarse-grained bead-and-

spring model, previously used to examine bulk polymer melts consisting of single chains,

was also used to examine adhesion and fracture mechanics in model thermosets [48, 49, 50].

The coarse-graining process, which removes atomistic effects by treating groups of atoms as a

single functional unit, is useful since it both generalizes the results and decreases computation

time. We are able, for example, to simulate such materials on time scales on the order of

microseconds and lengths on the order of tens of nanometers. Atomistic simulations, which

include chemical and other specific interactions, require far higher resource levels to achieve

the same scale, and may provide results that are limited in scope.

Crosslinked polymer networks are created from a wide range of molecules with dif-

ferent numbers and types of reactive sites. Early studies investigated crosslinked rubbers

[51, 52], but typical coating or composite network polymers are more rigid and more densely

crosslinked. Here, we use two selected systems to exemplify a range of possibilities within

the realm of highly-crosslinked polymers. One is formed from a 3-functional “crosslinker”

that reacts with a 2-functional chain extender. The resulting network consists of 3-fold co-

ordinated nodes, the minimum required to form a three-dimensional crosslinked network,

connected by chains containing four beads. This is representative of networks formed from

a wide variety of crosslinking chemistries that are used in coatings technology. The other

system type employs a 6-functional crosslinker that reacts with the same chain-extender and

produces a much more densely crosslinked network. These two systems represent coatings

and composites that are typically much more highly crosslinked than rubber networks, and
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thus complement the prior work of Grest and co-workers [51, 52] that described rubber-like

networks.

Networks were formed by crosslinking at high temperatures to simulate the mobility

of liquid reactants, and at low densities characteristic of liquids in order to simulate the

formation from liquid precursors. A volatile solvent is very common in coating formula-

tions, but was not included here for simplicity. The temperature of the resulting networks

was subsequently varied and they were investigated well into their glassy, solid state. Two

scenarios were considered. In the first, the size of the simulation cell was held fixed as the

network was cooled so that it suffered overall shrinkage strain, similar to what would occur

in a network attached to a rigid substrate on curing. In the second, the system was cooled

under zero-load conditions, which corresponds to a bulk polymer that is free to shrink. In

practice, a polymer can flow and accommodate shrinkage while it is crosslinking, but still in

the liquid, sol state, so most practical situations will fall in between the two procedures used

here. In this work, the emphasis is on understanding the general features of pore formation

and obtaining an understanding of the network features that control or permit them.

2.2. Models

The simple coarse-grained models used here are generated from precursors consisting

of a 2-functional chain extender of two beads (“dimer” for brevity) and a “crosslinker”. In

coarse-grained models such as these, one bead represents not one atom but, rather, a group of

atoms with the convenient result that network precursors have only a few beads per strand.

Following earlier work [48], the minimal case of two beads linked by a single spring is

used for one of the reactants where each bead has one reactive site. The other reactants are

two types of crosslinkers that consist of several beads with different functionalities, in order

to span a range of crosslinking densities and structures. Figure 2.1 shows the precursors

along with examples of maximal network formation.

Beads are allowed to bond together according to the rule that black (as shown in

Figure 2.1) must react with colored; no colored–colored or black–black reaction is allowed.
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Figure 2.1. Precursors and sample networks for 3-4 (left) and 6-2 (right) systems

Table 2.1. Numbers of dimers, crosslinkers, and total beads in each system

System Dimers Crosslinkers Total beads
3-4 2448 1632 11424
6-2 3264 1632 11424

The middle (open) beads do not react. So for the 3-functional system, a crosslinker molecule

cannot react directly with another crosslinker molecule. For stoichiometry and 100% conver-

sion, in the 3-functional system each crosslinker (four beads) shares three dimers (two beads

each) with other crosslinker molecules, as shown in Table 2.1.

In the other system type, the 6-functional bead has one functionality already occupied

by a two-bead tail, and that tail has a black bead that can react with one functionality on a

separate crosslinker. Thus, this system needs only enough dimers for sharing between four

functionalities of each crosslinker, i.e. 1632× 4/2 = 3264 dimers.

A small number of simulations were performed using systems containing 1,428,000

beads in order to check for finite size effects and verify the results obtained using smaller

networks, which was the case. Because of this, results presented here are for simulations

consisting of 11,424 beads; these systems were found to be large enough to produce results

characteristic of the bulk, yet small enough to allow us study a large range of parameters in

a reasonable amount of time. Other studies of the same coarse-grained models with different

simulation sizes support this [1, 30].

12



Periodic boundary conditions and a rectangular parallelepiped simulation cell geom-

etry were used to avoid boundary effects. All non-bonded beads interact via the cut-off and

shifted Lennard–Jones (LJ) potential

U(r) =

 ULJ(r)− ULJ(rc) (r ≤ rc)

0 (r > rc)
(2.1)

with a cutoff at rc = 2.5σ [51], where

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (2.2)

Here σ is the length scale in the LJ potential, r the distance between bead centers, and

ε the energy parameter. This potential models the van der Waals attractive forces between

all the beads and a strong repulsive core that defines the extent of the bead. “Covalent”

bonds between beads that were pre-existing or formed during reaction are described using

a potential that prevents chain crossing [51]. This bond potential is the sum of the Weeks-

Chandler-Anderson potential, which is the purely repulsive LJ interaction with a cutoff at

21/6σ (the minimum of the LJ potential), and a finite-extensible nonlinear elastic (FENE)

attractive potential [52]

UFENE =


−R2

0k

2
ln

[
1−

(
r
R0

)2]
(r < R0)

∞ (r ≥ R0)

(2.3)

where k = 30ε/σ2 and R0 = 1.5σ. Here, k controls the strength of the spring (bond) potential

and R0 is the maximum bond extension. This choice of parameters introduces incompati-

ble length scales in the inter- and intra-polymer interactions which inhibits crystallization,

allowing us to study solely amorphous materials. This choice also ensures relatively strong

bonds and avoids chain crossing. The average bond length for these parameter choices is
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Figure 2.2. Unbonded (LJ) and bonded (WCA+FENE) potentials

narrowly distributed around 0.961σ. A comparison of the two potentials is shown in Figure

2.2.

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) soft-

ware, developed at Sandia National Laboratories, was used for simulations. It iteratively

solves equations of motion to analyze the kinetic behavior of our systems using these poten-

tials, and is particularly useful due to its efficiency over parallel processing units [53].

All dimer and crosslinker beads have identical LJ parameters. Before crosslinking,

the mixture of dimers and crosslinkers is equilibrated at a high temperature T = 1.0ε at zero

load using a Nosé–Hoover thermostat and barostat with a time step of 0.005τ , where τ =

σ(m/ε)1/2 is the Lennard–Jones unit of time. After equilibration, the network is dynamically

crosslinked under the same conditions.

To form the network, every 2000 time steps (10τ), potential bonding partners that

have open bond sites and are separated by a distance less than 1.3σ are identified, and the

nearest potential bonding partners are crosslinked with a probability of 10%. A detailed

description of the crosslinking procedure can be found elsewhere [48, 49, 54]. This low

probability allows the network to form slowly and evenly. Crosslinking continues until a

conversion ∼ 98% is achieved.

Both system types were replicated five times, each with a different random seed, to

ensure that the behavior reported was typical and did not depend on a particular random
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arrangement. There proved to be only negligible differences between replicas for each system,

confirming that they were of sufficient size to produce consistent results characteristic of a

bulk system [48]. Results for the larger simulation size were consistent with the behavior of

the 11,424 bead simulations.

In one case, 3-functional crosslink nodes are connected by chains consisting of four

beads. This system emulates many coating polymers with typical properties. The other

system has a crosslinker of much higher functionality with only two beads between junctions

and, in this form, has been used elsewhere [48, 49, 54]; it may also be thought of as being a

very compact crosslinker with a functionality f = 6 that has already reacted with one dimer.

The notation for these two systems in discussion here is “3-4” and “6-2”. Additionally, 4-

functional systems, with both 2 and 4 beads between nodes, have also been investigated;

they exhibit behavior intermediate between the systems reported here and do not provide

additional insight into the phenomena discussed here.

2.3. Results and discussion

Our focus is on the formation of voids within crosslinked polymer networks. However,

understanding how and where the voids arise requires some background on the nature of the

networks and their properties. These are dealt with first.

2.3.1. Crosslinking

Crosslinking reactions were continued until approximately 98% of all possible bonds

were formed. This is higher than is generally achieved in practice or in the laboratory, but

this value provides an easily repeatable reference point for further studies. The number

density of the initial “liquid” mixture is ρ = 0.8σ−3. Because of the comparatively short

FENE bond length, the density of the systems increases while crosslinking, with ρ = 0.91σ−3

for the 3-functional system and 0.95σ−3 for the 6-functional system, at T = 1.0 and 98%

conversion.
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Figure 2.3. Fraction of dangling ends, loops, scaled effective functionality, and conversion
for both network types

2.3.2. Network defects

A loose or dangling end occurs when a reactive site remains unused: for example, a

dimer bound to a crosslinker at only one end. Loose ends do not contribute to the modulus

of a network. Another network defect considered is a minimal loop, which occurs when

a dimer makes both bonds to a single crosslinker molecule. Although minimal loops may

contribute to elastic and barrier properties in compression (and by entanglements in less

densely crosslinked systems), this is improbable here because of the short length of the

dimers. To a first approximation, minimal loops are probably not network effective at all,

in a manner analogous to dangling ends. To characterize the effective connectivity of each

crosslink site, the numbers of bonds, minimal loops, and loose ends were determined for each

crosslinker. The effective functionality was then determined using the following relation:

[effective functionality] = [bonds made] - 2[minimal loops] - [loose ends]

The effective functionality is essentially the number of crosslinks to larger network fragments

at each node, as a fraction of the nominal functionality. The effect of network defects in

the 3-4 and 6-2 networks is shown in Figure 2.3. While the incidence of dangling ends

was small for both models, the occurrence of loops increases with the functionality of the

crosslinker, as might be expected. For this reason, the 3-4 model has a relatively larger

effective functionality than the 6-2 model.
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Figure 2.4. Position and size of fragments in (a) 3-4 and (b) 6-2 networks after crosslinking.
In each case, fragments with between 2 and 14 beads are shown. Colors only differentiate
separate clusters.

Further examination showed that there were a few fragments of material that were not

incorporated into the main network during crosslinking. Figure 2.4 contains representative

diagrams of the network showing only the fragments. Crosslinking requires that reactive

functionalities can approach each other closely enough to react. Statistically, there will

always be a small number that will not diffuse to encounter a suitable co-reactant, so that

there will be a small number of clusters not connected to the network backbone, especially in

stoichiometric systems. This mirrors practical experience since a small amount of material

can often be leached out of crosslinked polymer networks using a suitable solvent [55, 56].

For the systems described in the figure, 0.58% of the nodes in the 3-4 model and 0.6% of the

nodes in the 6-2 model were not linked to the network backbone.

2.3.3. Glass transition

To determine the glass transition temperature Tg, simulations were performed at zero

load using a Nosé–Hoover thermostat and barostat. The temperature was lowered incre-

mentally from T = 1.0 at a rate of 0.1 reduced units per 400,000 time steps (2000τ). Data

collected during the last 100,000 time steps of each stage were averaged in order to create

the plots shown in Figure 2.5 from which the glass transition temperature was determined

at the intersection of the straight lines fitted to the high and low temperature results.
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Figure 2.5. Specific volume during cooling for 3-4 and 6-2 systems, with linear intersection
fit

Table 2.2. Glass transition temperature and Young’s modulus for both system types; value
for Young’s modulus is at T = 1.0

System Tg (ε/kB) E (ε/σ3)
3-4 0.448 0.17
6-2 0.502 1.02

The glass transition temperature was found to be close to Tg ≈ 0.5 for both systems,

and is shown in Table 2.2. As expected, the glass transition for the more constrained 6-

2 network is higher than for the 3-4 system. From this value, these simulations provide

distinct, broad rubbery and glassy regimes. The results for the 6-2 system agree with results

obtained elsewhere [48].

2.3.4. Elastic moduli

Calculations of elastic moduli above Tg were made at T = 1.0 in order to confirm

that the simulations of these two networks conform to expectations for crosslinked polymers.

Some results are listed in Table 2.2.

It can be seen that the higher functionality and shorter chains between crosslinks

resulted in the 6-2 system having a larger rubbery modulus than the 3-4 system, consistent

with the predictions of rubber elasticity theory.
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Figure 2.6. Pores in crosslinked (a) 3-4 and (b) 6-2 systems at T = 1.0, with isosurfaces
showing the locus of points a distance 0.8σ away from the nearest bead

2.3.5. Void formation

It is not possible in a random dense network for all the beads to be positioned in

their potential minimum. While many are, there will be a distribution of unoccupied, “free”

volume where it is not the case. In the crosslinked networks at T = 1.0, (i.e. in the initial,

hot, rubbery state), there are many small pores distributed randomly across the volume of

the network. Figure 2.6 shows this free volume as the locus of points a distance 0.8σ away

from the nearest bead. In the 3-4 system, the maximum neighboring bead separation is

1.08σ; in the 6-2 system, it is 1.11σ.

There appears to be little difference between free volume distributions in these two

systems, with the more highly functional system having slightly fewer but larger pores.

Images in the figure conform to what might be conventionally expected when the term “free

volume” is used in discussions; there is no sign of cavitation under these conditions. Our

interest here is to understand how the free volume distribution changes as the systems are

cooled from the rubbery state into the glassy state.

We use two distinct protocols during cooling in order to identify parameters which

may influence both the distribution and magnitude of free volume. They represent limiting

cases of what occurs in industrial thermosets which may be first oven-cured to obtain high

conversions and then cooled to ambient temperatures for use. Coatings formed in this
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Figure 2.7. Pore distribution Pdist at various temperatures after ramped cooling for (a) 3-4
system and (b) 6-2 system, with visualization of pore space at the lowest temperature used
for each

manner are confined in lateral dimensions by adhesion to their substrates, and shrinkage in

the direction of thickness may also be restricted because it requires cooperative motion of

polymer chains across long distances. Similarly, in composites, extensive shrinkage of the

matrices is inhibited by the rigid, densely packed reinforcement fibers, and in pigmented

coatings by rigid pigment particles. Such constraints are represented here by cooling at

fixed volume (i.e. fixed cell dimensions). The second scenario is cooling at zero load (the

simulation cell is allowed to shrink), which models a bulk polymer with no rigid constraints

that is free to relax the strains caused by cooling and covalent bond formation. We expect

the behavior of real systems to be bracketed by the results for the two cases used here. We

also study the evolution of the pore space when the networks, cooled at constant volume

(constrained), are then allowed to relax under zero load. The effect of cooling rate in the

various circumstances will be explained as the results are discussed.

To quantify the distribution and size of pores, we divide the simulation box volume

into a fine mesh of equally spaced nodes. At each node, we compute the distance to the

nearest bead, accounting for periodic boundary conditions. We aggregate these node-bead

data into a probability distribution Pdist that a randomly selected node is a given distance

from the nearest bead. Figure 2.7 shows the size distribution for the ramped cooling scheme,

along with the corresponding pore isosurfaces.
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Figure 2.8. Pressure (left) and van der Waals energy per particle (right) for both 3-4 and
6-2 systems during cooling at fixed volume

Initially, at high temperatures, Pdist(d/σ) has a narrow peak near d ≈ 0.5σ, which

is expected for nodes between beads that are close to the minimum in the FENE (bonded)

potential (0.961σ) or the minimum for the LJ potential for non-bonded beads (1.12σ). These

pore spaces at high temperature were shown in Figure 2.6. The distribution changes little as

the temperature is lowered until, at a cavitation temperature T ∗ ≈ 0.673 for the 3-4 system

and T ∗ ≈ 0.658 for the 6-2 system, a large-separation tail in the distribution suddenly

appears, indicating that a larger open spaces have formed. The tail in the distribution for

the 6-2 system, for example, indicates that a void has formed that has a radius greater than

4σ at T = 0.619. The tail in the distribution is somewhat larger in the 3-4 system, and

in both cases, the tail increases in size upon further cooling, as expected. Visualizations of

this pore space, shown as insets in the figure, indicate that the pores are globular in form.

Pores are present, even though there is no possibility, in these simulations, of spaces being

left behind by the escape of volatile material.

Figure 2.8 shows the variation of the pressure and van der Waals energy per particle

as a function of temperature for ramped cooling at fixed volume. As the temperature is

lowered from T = 1.0, the network shrinks and the pressure becomes increasingly negative

(tensile) until the tensile strength of the van der Waals network is reached. At this point it

ruptures and a void is formed, relieving some of the stress.
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Table 2.3. Density ρ, cavitation temperature T ∗, and cavitation onset pressure P ∗ for 3-4
and 6-2 systems during temperature ramp from T = 1.0 to T = 0.3 at fixed volume over six
million timesteps.

System Density (ρ) T ∗ (ε/kB) P ∗ (ε/σ2)
3-4 0.9075 0.673 -1.53
6-2 0.9480 0.658 -1.71

The fact that the surrounding crosslinked network does not rupture limits the possible

stress relaxation. The pressure then stays relatively constant (and the void size increases) as

the temperature decreases until the low temperature glassy phase is reached and the pressure

starts to become more negative again. The behavior of the van der Waals energy per node as

a function of temperature is consistent with this picture. In particular, it initially decreases

linearly with temperature until dropping discontinuously at the void-formation transition

T ∗. Below the transition, the density of the coherent regions of van der Waals network is

greater than above the transition, resulting in significantly stronger binding energies. We

find a transition temperature for each system consistent with the onset of void formation.

Because of the higher density of the 6-2 network, the critical pressure for the 6-2 network

(P ∗ = −1.71ε/σ2) is larger in magnitude than for the 3-4 network (P ∗ = −1.53ε/σ2).

Note that these transition temperatures are significantly higher than the glass transition

temperatures for these networks. The results are summarized in Table 2.3.

The pore size and morphology depend heavily on the rate of cooling. Figure 2.9

compares the pore size distributions at T = 0.3 after a rapid quench (blue) and slow ramped

cooling (red) starting from the same T = 1.0 crosslinked configuration. To generate the

quenched configuration, velocity rescaling was used to quench the network to T = 0.3. The

simulation was then continued for 400,000 time steps using a Langevin heat bath algorithm.

For the ramped cooling, the temperature was more slowly lowered to T = 0.3 over six

million time steps using the Langevin heat bath algorithm. In both cases the simulations

were performed at fixed volume. As might be expected, the resulting pore space is larger
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Figure 2.9. Pore distributions for (a) 3-4 and (b) 6-2 systems, comparing ramped and
quenched cooling methods to T = 0.3

for ramped cooling, since the void had a longer time to anneal and grow above the glass

transition temperature.

An interesting result is that the pore morphology is very different for the two cooling

scenarios.

2.3.6. Pore morphology

Figure 2.10 shows the pore space isosurfaces for the 3-4 and 6-2 networks at T = 0.3

after a rapid quench. The globular pore shape for a slow ramped cooling from T = 1.0, at

fixed volume, was already shown previously. The isosurfaces are again the locus of points a

distance 0.8σ from the nearest bead. After a quench to below Tg, several pores have formed,

and although their total volume is less than was found after a slow temperature ramp, the

pores have a ramified structure that almost reaches across the simulation cell. It may not

have been appreciated that such void structures were possible in a crosslinked network,

but it is very important because the protective qualities of polymers used in coatings and

composites, such as permeability as well as other properties, are obviously related to any

such structural imperfections.

A convenient measure of pore size is the reduced pore volume vp quantified using

the pore distribution functions, with values greater than the given threshold values, and

normalized by the simulation cell size. Results for vp at T = 0.3 for pores formed using both

cooling protocols are shown in Table 2.4.
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Figure 2.10. Ramified pore structure in 3-4 (left) and 6-2 (right) systems after quenched
cooling to T = 0.3

Table 2.4. Reduced pore volume vp at T = 0.3 for 3-4 and 6-2 systems after either ramped
or quenched cooling for varying thresholds (in parentheses; units of d/σ)

System Ramped (0.8) Ramped (1.0) Quenched (0.8) Quenched (1.0)
3-4 0.123 0.109 0.110 0.091
6-2 0.084 0.072 0.074 0.057

What happens to the pores when the constant volume constraint is relaxed? Figure

2.11 compares the pore space distribution function Pdist(d/σ) after ramped cooling along an

isochore (lines) and subsequent relaxation over one million time steps at zero load, with the

fixed volume constraint removed (symbols). Data for T = 0.529, T = 0.442, and T = 0.347

are shown.

Above the glass transition, the network relaxes on this time scale and the pore van-

ishes. Below Tg, relaxation slows as expected. Figure 2.12 collects these results and shows

the reduced pore volume as a function of temperature. Again, we see that the 3-4 system

Figure 2.11. Pore distributions for (a) 3-4 and (b) 6-2 systems at various temperatures,
showing constant-volume (solid lines) and zero-load (symbols) phases of the cooling process
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Figure 2.12. Pore volume fraction before and after zero-load relaxation as a function of
temperature for 3-4 (left) and 6-2 (right) systems, using two different node-bead threshold
distances

permits larger void volume than does the more densely functional 6-2 system. Below the

glass transition, decreased mobility results in greater residual pore volume. Correspondingly,

the pores may persist below Tg in real crosslinked polymer networks even in the absence of

external mechanical constraints. Further, the voids are up to several bead diameters in size.

Corresponding pores in an actual polymer network might be up to several nanometers in

diameter and could contribute to the permeability of water and ions and serve as initiation

sites for larger scale mechanical failure.

2.3.7. Cavitation in thermosets

Void formation by cavitation has been explored in a variety of simulations of liquids

and materials in which there is only a single, general interaction between the components,

e.g. polymer cavitation and crazing during deformation of thermoplastic polymers [45, 47,

57, 58, 59, 60, 61]. However, we find that pores appear even in a highly connected network

of strong covalent (FENE) bonds in addition to Lennard–Jones forces between all the beads.

This appearance of the large pores is not a gradual consolidation of pore volume

over a range of temperature, but a sudden occurrence at a particular temperature and

pressure. For our current choice of models and parameters, pores form above the glass

transition temperature; while this may not be a universal feature of crosslinking systems,

it is important because many crosslinked polymers are used in a temperature range around

or below Tg. Pore formation was seen in previous simulations of the 6-2 polymer system
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[49, 50], but unexplored there because the focus was on the mechanical properties of the

crosslinked network. Void formation and cavitation in LJ liquids has been extensively studied

[45, 46, 62, 63, 64, 65, 66] where it was found that void formation generally occurs at the

spinodal and is held to be characteristic of liquids. Experiments using positron annihilation

spectroscopy confirm the formation of void structures in a variety of materials [67, 68, 69].

Qualitatively, the cavitation in these systems is easy to understand. As the tem-

perature is lowered, the specific volume becomes smaller as the particles relax toward their

potential minimum. At fixed volume, this causes the pressure to become negative, which

can cause local cavitation when the tensile stress exceeds the mechanical strength of the ma-

terial, resulting in a reduction of the total free energy. The density–pressure–temperature

parameters at which cavitation voids form in van der Waals fluids [64, 70] are very similar

to what we find in these crosslinked rubbery networks, which confirms that the voids in

these crosslinked networks are indeed the result of cavitation. This, and the fact that the

network backbone remains intact through the transition, indicates that the failure of the ho-

mogeneous Lennard–Jones (van der Waals) bonding is responsible for void formation, even

in crosslinked networks.

It may be difficult to imagine how such cavitation could occur in an homogeneously

crosslinked network. However, the crosslinking process results in a network in which many

nodes, that are spatial neighbors, are not bonded together. Thus there are potential fissures,

of varied extent, across which only Lennard–Jones (i.e. van der Waals) forces are present. In

addition, the internal pressure is not homogenously distributed, but stress is concentrated at

the crosslink nodes; cavitation appears to nucleate at such nodes next to a potential fissure.

These few, irregular fissures are where voids can form in these networks, in close analogy to

what happens in pure Lennard–Jones systems.

These results indicate van der Waals network failure and void formation should occur

in a wide range of materials as they are cooled under conditions where local stresses cannot

relax. We find voids form during network formation and solidification, prior to any in-
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service stresses. If that is true, they are likely initiation sites for larger failures during

service, especially if the system cannot relax to eliminate the voids because the prevailing

temperature is below the glass transition temperature. This would also be true of their likely

impact on permeability in protecting the reinforcing elements of a composite or the substrate

of a coating. It is notable that significant voids appear even in the highly crosslinked system

modeled here. Solely increasing network density may not diminish permeability enough to

improve barrier properties, but controlling the glass transition temperature and compatibility

of the network with the possible permeants must also be considered.

2.4. Conclusions

In studying crosslinked networks using a typical coarse grained molecular dynamics

approach, void formation and growth is found that initiates above the glass transition tem-

perature of the network as it cools through its rubbery to its glassy low temperature state.

It is somewhat surprising that these cavitation voids occur in simulations of crosslinked

polymers where the network is supported by strong directional, FENE (covalent) bonds as

well as the much weaker, non-directional Lennard–Jones (van der Waals) interactions. Such

voids have been noted and studied in simulations of liquids and amorphous solids with only

Lennard–Jones forces, at very similar values of pressure, temperature and density. These

voids are not a consolidation of “free volume”, nor due to a loss of volatiles, but are caused by

cavitation, happening as the solidification/cooling stresses exceed the local tensile strength

of the material. The voids first appear in the rubbery state while the network has substantial

mobility. That voids occur during the formation of crosslinked networks seems to be a new

observation that has consequences for the end-use properties of such materials and their long

term performance. Although these finding are very consistent with previous simulations of

liquids, the time scales of all such simulations is very brief and it may be that the pores will

disappear in real liquids and solids if they are well above their glass transition temperature

and are not constrained by adhesion to, or between, more rigid material bodies. This is

currently under study, where these effects in much larger and more extended simulations
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are investigated. However, pores are much more likely to persist if the polymer network is

maintained near or below the glass transition, and constrained by adhesion. This is the case

for most polymer coatings.

The simulations show that the network connectivity, network strength and internal

pressure are all heterogeneous. Polymers formed from mobile reactive precursors produce

clusters of reacted material as the network grows toward the gel point. It follows that

there can be adjacent regions that are not connected by covalent bonds and are weak points

where voids can form to reduce the internal tensile strain caused by the solidification/cooling

process. These voids, depending on circumstances, may comprise a significant fraction of the

simulation volume, and their dimensions would scale to the order of nanometers in a physical

system. This suggests that there may be regions of lowered density, as seen in recent results

[71]. These would occur especially in polymers that are confined by adhesion to substrates,

reinforcing fibers or pigment particles, and are in use around or below their glass transition

temperature. Not only may the voids be the initiation sites of larger scale mechanical failure,

but they are likely to contribute to the permeability of the polymer, especially if degradation

in service acts to enlarge such features.
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3. STRUCTURE AND DYNAMICS OF

DEGRADED THERMOSET NETWORKS

3.1. Introduction

Below the glass transition temperature Tg in a variety of material types, individual

particle motion takes place that characterizes a “cage jump” behavior. In this phenomenon,

individual particle trajectories exhibit longer periods of localized thermal motion that are

interrupted by rapid shifts in position, often in cooperative regions [72]. This behavior has

been observed experimentally in colloidal suspensions [73] and numerically in bulk super-

cooled Lennard-Jones liquids [74, 75, 76, 77] and thermoplastic polymer chains [78, 79, 75].

This links to physical aging [75], diffusivity [73, 80], and effects on the glass transition

[79]. However, no such analysis is known for model thermosets to determine the extent to

which this behavior occurs in the presence of crosslink bonding, nor whether the occurrence

or statistics of caged jump behavior are affected by network degradation that reduces the

overall bonding.

Polymer networks may degrade via the destruction of chemical bonds. When a coating

is exposed to the sun, high-energy photons cause the scission of bonds and eventually of small

material fragments, which can be modeled as a stochastic process [8]. Since the removal of

bonds from a thermoset network reduces the dynamic constraints applied to the immediately

surrounding material, there is interest in the extent to which this process might affect the

caging of beads in our coarse-grained model, and whether such a stochastic model requires

modification given molecular dynamics data.

The gel point of bulk networks with 3-functional and 6-functional crosslinkers has

been investigated previously [1]. Usually, the criterion is that an aggregated cluster (defined

as a maximal set of beads linked by bond paths) spans one or more Cartesian dimensions in
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the network. A useful approximation is that the size of the second-largest cluster is maxi-

mized, assuming this occurs immediately before it merges to form a giant component. Other

definitions involve network percolation through one or more dimensions, or the spanning of

the largest cluster. It was found that among these definitions, a 3-functional topology gels

between 74.7 − 79.6% conversion, and a 6-functional topology gels between 50.2 − 55.7%

conversion [1]. A topologically-dense network forms from clusters that aggregate fairly sud-

denly into a backbone (defined as the largest cluster in the network) that ideally comprises

all constituent beads. Since not every bead is placed such that it is within bonding distance

to enough neighbors, it is far more likely that the backbone consists of most, but not all,

beads.

In this chapter, we examine possible rearrangement in crosslinked thermoset polymer

networks prior to an after degradation in thin film models consisting of a featureless substrate,

bulk region, and free surface. Model thermosets with different functionalities are constructed

using a coarse-grained model and cooled above and below the glass transition. The particle

trajectories are examined to determine the dynamics of the jump phenomena and compared

to earlier thermoplastic and Lennard-Jones simulations. After network degradation imposed

by the removal of bonds, we examine the resulting topology and make comparisons to the

jump dynamics.

3.2. Model and setup

3.2.1. Potentials and bonding

We consider two different variants of a coarse-grained model thermoset system, as

before. The two systems differ only in the crosslinker functionality and associated precur-

sor bonding, which affect the density of the resulting three-dimensional network and the

constraints under which such particles interact. These systems form crosslinked thermoset

bead-and-spring networks, where beads interact via a Lennard-Jones potential, and may be

additionally bonded together using a spring-like nonlinear elastic potential, also described be-

low. These models have been examined in terms of adhesion, fracture, and other mechanical

30



properties as a generic model of a variety of polymeric systems with a single polymerization

reaction [81, 82, 83].

All units in the model are scaled; σ is the length scale, ε the energy scale, and τ the

time scale. As a result, temperature is measured in ε/kB and time in
√
σ2/ε. Coarse-graining

is applied to model a monomer group as a single bead with no charge at its surface. Beads

that are not bonded together interact with a shifted Lennard-Jones potential U(r) with a

cutoff at r = rc:

U(r) =

 ULJ(r)− ULJ(rc) (r ≤ rc)

0 (r > rc)
(3.1)

In this case,

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(3.2)

is the standard Lennard-Jones 12/6 potential. This potential combines a van der Waals long-

tail attraction between beads with a short-range Pauli repulsion, with exponents chosen for

computational efficiency. The cutoff is set at rc = 2.5σ since the potential dies off quickly at

this range, consistent with other studies involving this potential.

Beads in the crosslinked systems that are bonded, either as precursors or during

later crosslinking, have an interaction that is the sum of the purely repulsive portion of the

Lennard-Jones potential (with a cutoff at r = 21/6 at the Lennard-Jones minimum) and a

spring-like finite-extensible nonlinear elastic (FENE) potential:

UFENE =


−R2

0k

2
ln

[
1−

(
r
R0

)2]
(r < R0)

∞ (r ≥ R0)

(3.3)

Here R0 is the maximum bead separation and k acts as a spring constant that controls the

bond strength, with R0 = 1.5σ and k = 30ε/σ2 [52]. The minimum of this bonded potential

is at approximately r = 0.961σ.
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Figure 3.1. Network precursors: chain extender (left), 3-functional crosslinker (center), and
6-functional crosslinker with chain extender pre-bonded (right)

One type of precursor used is two-functional and acts as a chain extender, consisting

of two beads bonded in a dimer formation. The second type, a crosslinker, is either 3-

functional and consists of four beads arranged in a cluster, or is 6-functional and consists

of three beads arranged in a line [84, 81]. The system consists of 11,424 monomer beads at

stoichiometry, so there are no leftover beads that do not start as part of either a dimer or

crosslinker molecule. Figure 3.1 shows the chain extender and crosslinkers. The 3-functional

system consists of dimers and crosslinkers, in which the white beads of a chain extender

are allowed to bond with the red beads of a crosslinker. The 6-functional system consists of

dimers and crosslinkers, in which the white chain extender beads (including those pre-bonded

within a crosslinker) are allowed to bond only with a blue crosslinker bead.

After initial random placement of precursor beads, a soft cosine potential is applied

to gently remove any residual overlap, and each thermoset system is crosslinked by randomly

linking dimers to crosslinker molecules if they are within bonding distance; this procedure

takes place until at least 99% conversion is reached. As examined elsewhere [22], there is

no guarantee of homogeneous crosslinking throughout the entire system, and regions where

bond gaps exist are likely to occur, even in systems of this size. In particular, imperfections

in the form of dangling ends and larger pendants are present in such networks both before

and after gelation [1, 30, 85, 86].
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Simulations are performed by integrating the Newtonian equations of motion for each

bead using the LAMMPS software package [53] with timestep ∆t = 0.005τ . We generated

five equivalent replicates of both crosslinked network types, each with a different random seed

value for initialization, and verified that the resulting network topologies used subsequently

are consistent and not dependent on a particular initial random particle arrangement.

3.2.2. Simulation box

Each network is set up in a simulation box with periodic boundary conditions in the

x- and y-directions. At the lower z-boundary, we establish a fixed modified Lennard-Jones

potential:

Uwall(r) =

 ULJ 93(r)− ULJ 93(rc) (r ≤ rc)

0 (r > rc)
(3.4)

Here

ULJ 93(r) = ε

[
2

15

(σ
r

)9
−
(σ
r

)3]
(3.5)

is the Lennard-Jones 9/3 potential. It is derived by integrating over a three-dimensional half

lattice of standard Lennard-Jones particles, and is less repulsive than the original Lennard-

Jones 12-6 potential used for unbonded bead interactions. This potential was examined by

Abraham and Singh [87] and been used extensively to model the interaction between hard

spheres and a soft wall. It mimics the behavior of an idealized featureless substrate.

We place the upper z-boundary sufficiently far from the collection of monomers and

make it a reflective wall. Monomers that attempt to cross this wall have their velocity

vector reflected, similar to billiard balls striking the bumper of the table. Because the wall is

positioned far enough above the monomers, it does not play a role in the resulting dynamics

after the system is fully prepared. After the subsequent cooling process (described below),

this results in a free surface in the upper z-direction. Hence the system contains three zones

of interest: the featureless substrate, the bulk, and the free surface. We investigate each in

detail throughout our results.
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Figure 3.2. Specific volume of 3-functional thermoset during cooling, with linear least-squares
fit indicating Tg = 0.448

3.2.3. Cooling and glass transition

To determine the glass transition temperature Tg of each resulting thermoset, we

slowly cool the system at fixed volume using a Langevin thermostat ramp to T = 0.2 over a

period of 5× 106 timesteps. We compute the specific volume as a function of temperature;

since the slope of this curve changes discontinuously at the glass transition, the intersection

point of the resulting piecewise linear curve is interpolated to determine Tg, shown in Figures

3.2 and 3.3. We find that Tg = 0.448 for the 3-functional system and Tg = 0.500 for the

6-functional system. These values are consistent with earlier analysis of bulk thermosets

with the same functionality [84].

After determining the glass transition temperature, we restart the simulation at T =

1.0 and cool the system. This method is a ramped cooling, where we apply a Langevin

thermostat to decrease the temperature from T = 1.0 to one of several temperatures T =

0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 to ensure values both below and above Tg for each of the

functionality types. We then apply a new Langevin bath to hold the temperature at this

final value for the remainder of the simulation. During the Langevin cooling and subsequent
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Figure 3.3. Specific volume of 6-functional thermoset during cooling, with linear least-squares
fit indicating Tg = 0.500

temperature hold, we periodically zero the aggregate linear momentum every 100 timesteps

in order to prevent drift. This is needed since the substrate is featureless and offers no

resistance to thermal drift, but does not affect the relative velocities of any pair of beads.

Initial testing indicated that this thermal drift occurs on timescales at least two orders

of magnitude greater than the analysis intervals for which we examine particle dynamics,

described below.

3.3. Jump detection

To determine the extent to which caging behavior can influence short-time particle

mobility in these networks, we use a jump detection method similar to that of Helfferich et al

[88, 89]. After cooling, the position of each bead is recorded at intervals of 20 timesteps. We

partition the simulation time of 5× 106 timesteps into window intervals of size w = 2× 104

timesteps each; hence each interval contains 1000 bead position samples, and there are 250

intervals in the simulation.

For a given fixed bead, let rα(i, j) be the position component corresponding to the

jth sampling point in the ith interval, where α is one of x, y, or z. We compute the average
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position of the bead component-wise as

rα(i) =
1

w

w∑
j=1

rα(i, j). (3.6)

We also compute the interval variance of the bead as

σ2
α(i) =

1

w

w∑
j=1

[rα(i, j)− rα(i)]2 (3.7)

where again α is one of the position components x, y, or z. The total variance is given as

σ2(i) =
√

(σ2
x(i))

2 + (σ2
y(i))

2 + (σ2
z(i))

2. (3.8)

To avoid detecting small movements within the interval that are attributed solely

to localized motion near a temporary equilibrium position, we say that a jump occurred in

interval i if σ2(i) exceeds some nominal value. Other work involving thermoplastic systems

of monomer chains uses the Lindemann criterion, which holds that a solid melts if bead dis-

placement near equilibrium positions is on the order of one-tenth the nearest-neighor distance

[90, 88]. Although a thermoset network cannot melt due to its tightly crosslinked structure,

we appropriate this criterion for comparison to Lennard-Jones fluids and thermoplastics,

and say that a jump has occurred when σ2(i) > 0.1; that is, if the interval variance exceeds

one-tenth the bead diameter within a single interval. Other jump criteria and thresholds

have been used that find behavior that is qualitatively independent of the precise variance

cutoff chosen [75, 91, 92].

When a jump occurs for a particular bead in interval i, we define the jump length to

be l(i) ≡ |r(i + 1) − r(i − 1)| using the average positions in the surrounding intervals. In

case the jump occurs in the first or last interval of the simulation, we replace i− 1 or i + 1

with i, respectively.
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Figure 3.4. Mean-square displacement 〈∆r2〉 for 3-functional system in σ reduced units, with
variance threshold (dashed line)

To better understand the dynamics of particles relative to the time scales of the

detection process, we compute the mean-square displacement for both functionalities. To

do so, 1000 particles are selected at random from each system. For values 0.1 < ∆t < 100,

we average the displacement of those particles during the Langevin temperature hold where

jump detection takes place. A duration ∆t = 100 corresponds to the length of each jump

detection interval. Figures 3.4 and 3.5 show these results at each temperature, with a dashed

line indicating the variance cutoff from the detection algorithm. For temperatures below Tg, a

smaller slope is more clearly defined. Further, the displacement curve at longer time scales is

flatter in the more constrained 6-functional network. Notably, the well-defined intermediate

plateau observed in thermoplastic simulations caused by chain entanglement is not evident

in these thermoset systems.

3.4. Intact network

3.4.1. Jump rate

It is natural to assume that the dynamics of short-time bead motion in model ther-

moset systems might differ from that of bulk Lennard-Jones fluids or thermoplastics due to

the added constraints imposed by network formation. In particular, while Lennard-Jones
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Figure 3.5. Mean-square displacement 〈∆r2〉 for 6-functional system in σ reduced units, with
variance threshold (dashed line)

fluids exhibit short-time ballistic motion and longer-term diffusive regimes, bulk thermo-

plastics exhibit an intermediate plateau regime where chain bonding and reptation impede

diffusion [88]. The cages formed by neighbors (whether bonded to a given bead or not) set

the stage for jump motion behavior. Cages in thermosets are even more prevalent due to

the much higher bonding density and lack of chain motion.

It is instructive to investigate the dependence of jump dynamics on the z-position

of the monomer (hereafter referred to as the depth), since our three-zone system imposes

heterogeneous constraints that differ throughout. In particular, behavior within the network

bulk might differ from that near the substrate or free surface. We slice the simulation box

into 1σ-thick slices in the z-direction and average the number of jumps per particle within

each slice, scaled by the total number of intervals used in the analysis. We denote this

average jump rate by R(z), where z is the lower integer bound within a given slice. For

example, a value R(2) = 0.1 means that in the slice 2σ ≤ z ≤ 3σ, a particle in this slice

jumped, on average, once every ten intervals during the simulation analysis period. Figures

3.6 and 3.7 show the depth dependence of R(z) for both functionalities; note the logarithmic

scale used.
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Figure 3.6. Jump rate R(z) as a function of depth for 3-functional system (in σ reduced
units), with dotted line indicating Tg
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Figure 3.7. Jump rate R(z) as a function of depth for 6-functional system (in σ reduced
units), with dotted line indicating Tg
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The jump rate R(z) suggests three distinct regions whose behavior differs by up to

two orders of magnitude, indicating a natural but continuous split in jump behavior between

the substrate, bulk, and free surface zones of the simulation box. We use an estimate of the

split points to define these three zones for subsequent analysis. This determination is clear

at lower temperatures, but less obvious above Tg.

In the bulk region, behavior below the glass transition is nearly identical for both the

systems, suggesting that the constraints of the 3-functional crosslinking density are sufficient

to limit the jump rate, and that additional crosslinking density in the 6-functional system

does not appreciably affect this behavior. Above the glass transition, apparent jump behavior

increases substantially as thermal activity dominates both the jump detection process and

the overall motion of beads in this region. In the case of the 3-functional system, the increased

thermal activity is sufficient to nearly eliminate the effects of zone position altogether at high

temperatures. This behavior is also consistent with determination primarily by Lennard-

Jones forces acting between beads.

In the substrate and free surface regions, jump rate is also temperature dependent,

with higher rates occurring at the surface than at the substrate for any given temperature.

Since the free surface offers no resistance to lateral particle motion and crosslinking density

is less here, beads are free to move more easily and rapidly. That the surface jump rate

shows less temperature dependence both above and below the glass transition in the 6-

functional system (especially compared to the 3-functional system) suggests that the effects

of crosslinking density are more important here. This difference in behavior is not present

in the substrate zone.

A more global way to examine the jump rate behavior and compare to thermoplastic

models uses the approach of Helfferich [88]:

ν(T ) =
J(T )

Ntm
(3.9)
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Figure 3.8. Jump rate ν(T ) for 3-functional and 6-functional systems

Here J(T ) is the total number of jumps measured in the simulation, N is the total num-

ber of monomers, and tm is the total simulation time. The authors in [88] found that in

thermoplastic chains at low temperatures, ν(T ) followed an Arrhenius decay of the form

ν(T ) ∼ exp(−1/T ); after additional filtering of certain types of jumps, the resulting behav-

ior followed the Vogel-Fulcher-Tamman equation. It was noted that non-filtered jumps may

include those which include correlated forward-backward motion that does not contribute to

overall network relaxation, and only a small temperature range was examined. Figure 3.8

shows a logarithmic plot of ν(T ). The simulations here are performed over a much wider

temperature range above and below Tg and do not apply the filtering used in [88]. The

behavior does, however, exhibit a decay in 1/T . The 3-functional system jump rate is of

the same order as found in bulk thermoplastic chains, while the more densely restricted

6-functional system rate is substantially lower.

3.4.2. Jump length

We next compute the jump length l(i) for each monomer in each interval i. Aggre-

gating these values, we denote by L(z) the average jump length of beads contained in the
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Figure 3.9. Average jump length L(z) as a function of depth for 3-functional system (in σ
reduced units)

depth slice z, averaged by the number of monomers in the slice. Figures 3.9 and 3.10 show

the depth dependence of L(z) for the 3-functional and 6-functional systems.

There is increased noise in the overall jump length plots at lower temperatures, due

primarily to the far lower jump rate making the averages less uniform. However, of note

is that the average jump length shows little overall dependence on zone position at lower

temperatures; this is to be expected, since crosslinking implies substantial constraints on

motion. However, there is a small increasing tail at the free surface that is especially visible

at higher temperatures where thermal activity becomes apparent. This is more evident in

the 3-functional system than the denser 6-functional, and is also consistent with the lower

Tg materials exhibit near a free surface.

When comparing the 3-functional and 6-functional systems at the same temperatures,

the average length increases as crosslinking functionality decreases, with a nearly 25% in-

crease in average jump length between 3-functional and 6-functional systems at T = 0.6.

Below the glass transition, the two functionality types result in average jump lengths that

are nearly identical, spanning a range of about 0.5-0.7σ.
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Figure 3.10. Average jump length L(z) as a function of depth for 6-functional system (in σ
reduced units)

It is natural to ask whether the distribution of jump lengths within a particular zone is

normally distributed, since the frequency of jumps is tightly related to the relative degrees of

freedom of monomers based on their zone. The distribution for each temperature is plotted

in Figure 3.11 for the 3-functional system and in Figure 3.12 for the 6-functional system. An

exponential long tail exists in both cases at higher temperatures, but bond constraints are

evident for shorter jump lengths.

There is both a clear overall dependence on temperature in the jump length distri-

bution, as well as a plateau behavior exhibited at short lengths that depends on the glass

transition. Below the glass transition in both the 3-functional and 6-functional systems,

jumps up to 1.0σ in length have nearly equal probability, indicating the extent of caged

behavior that is not affected by crosslinking density or temperature in this regime. This

correlates well to an average bond length of nearly 0.97σ.

Above the glass transition, there is a more smooth distribution that, at longer jump

lengths, is consistent with the distribution below the glass transition. The extent of the

long-range tail differs at high temperatures between functionality types, but such behavior

at lower temperatures shows remarkably little dependence on functionality. Examination of
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Figure 3.11. Jump length distribution for 3-functional system (in σ reduced units)

the long jump behavior shown by the distribution tail at higher temperatures was found to

correspond to small mobile fragments consisting of only one or two free beads not connected

to the bulk of the network.

3.4.3. Bead connectivity

In these coarse-grained thermosets, beads are bonded differently. To examine the

effect of crosslinking and bonds on jump dynamics, we consider the fraction of jumping

beads with various bond numbers.

In an idealized complete 3-functional network, every bead has either two bonds (chain

extenders) or three bonds (crosslinker centers). In an idealized complete 6-functional net-

work, every bead has either two bonds (chain extenders) or six bonds (crosslinker centers).

However, since there is no guarantee of complete conversion in this model (or in any poly-

meric system in practice), it is natural to wonder if jump behavior depends on the extent to

which bonds, or lack thereof, affect jump constraints.

The leftmost data column of Tables 3.1 and 3.2 list the fraction of beads in the 3-

functional and 6-functional systems (respectively) of each bond count. In the case of the

3-functional system, at least 2.3% of beads are incompletely bonded; there may be crosslinker
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Figure 3.12. Jump length distribution for 6-functional system (in σ reduced units)

centers with only two bonds that are also not fully bonded. In the 6-functional system, at

least 3.6% of beads are incompletely bonded, with similar reasoning.

The remaining data columns of the tables show, for each temperature, the fraction of

beads of each bond count that jump in at least one interval, ignoring in the total any beads

in the system that do not jump at all. If the jump behavior were to be totally independent

of bond density, these values would match those of the total bead count in the first column.

In the 3-functional system, the bond count distribution is extremely close to the

overall bead distribution; however, below the glass transition there is a trend toward higher

jump likelihood in beads with fewer bonds. Since the overall jump rate rises so rapidly above

the glass transition, it is expected that the bond count distribution approaches the ideal case

since all beads effectively have more freedom to move at higher temperatures.

In the 6-functional system, the dependence on bond count is far more apparent. While

nearly 13% of all beads in the system are six-bonded, the fraction of such beads that jump

is an order of magnitude lower below the glass transition (and not much higher above the

glass transition). Similarly, beads with only a single bond jump far more frequently than

the overall system distribution, often to a remarkable extent.
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Table 3.1. Bond distribution of all beads in the 3-functional system (left column) and of all
beads that jumped in any interval (right columns)

All beads Jumping beads
T = 0.3 T = 0.35 T = 0.4 T = 0.45 T = 0.5 T = 0.55 T = 0.6

1 bond 0.023 0.027 0.042 0.033 0.028 0.024 0.023 0.023
2 bonds 0.834 0.868 0.835 0.849 0.849 0.842 0.834 0.834
3 bonds 0.143 0.104 0.123 0.118 0.123 0.133 0.143 0.143

Table 3.2. Bond distribution of all beads in the 6-functional system (left column) and of all
beads that jumped in any interval (right columns)

All beads Jumping beads
T = 0.3 T = 0.35 T = 0.4 T = 0.45 T = 0.5 T = 0.55 T = 0.6

1 bond 0.021 0.163 0.107 0.083 0.066 0.049 0.036 0.026
2 bonds 0.837 0.830 0.885 0.902 0.915 0.925 0.938 0.932
3 bonds 0.001 0.007 0.000 0.003 0.001 0.002 0.000 0.001
4 bonds 0.004 0.000 0.000 0.001 0.000 0.003 0.002 0.003
5 bonds 0.010 0.000 0.002 0.004 0.005 0.004 0.003 0.004
6 bonds 0.128 0.000 0.005 0.007 0.012 0.018 0.020 0.034

3.5. Degraded network

Because networks are formed using precursors (chain extenders and crosslinkers) that

are already bonded, it should not be expected that the distribution of small fragments during

degradation should simply reverse that of the crosslinking process. Degradation can produce

single-bead fragments that are smaller than the dimer precursor used to form the 3-functional

and 6-functional networks. This suggests that a study of fragment distribution in degraded

networks is nontrivial.

3.5.1. Bond removal algorithms

Bond removal is performed after each system is crosslinked and cooled, but imme-

diately before equilibration and jump analysis. We consider two algorithmic approaches to

gradual network bond destruction. In each case, we use five independent realizations of

the 3-functional and 6-functional networks with different random seeds to verify that the

network topology is consistent.
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The first method is commonly used in LAMMPS molecular dynamics simulations.

Each bead that contains at least one bond to a neighbor identifies the longest such bond (by

considering bead center distances) and, if the neighboring bead makes a similar identifica-

tion, the bond is marked as a candidate. Each candidate bond is then removed with some

probability. This procedure is iterated until enough bonds are removed to reach a desired

conversion. This algorithm permits each bead to be part of at most one bond removal. After

removal, the system continues to equilibrate at its cooled temperature. This is similar to a

physical process where the most strained and “fragile” bond is broken first.

The second method is purely stochastic, and is used only for network topology and

cluster analysis for comparison to the LAMMPS algorithm. In this method, we choose a

bead at random and, if it is bonded to a neighbor, choose a bond at random to remove. We

iterate this process until conversion is reduced to the desired level.

3.5.2. Network structure

The network backbone is defined as the largest connected cluster in the system. This

is determined by using a depth-first graph search algorithm to partition the system into

spanning trees, which we identify as clusters [93]. Figure 3.13 shows the fraction of beads

in the network backbone for representative replicates of the 3-functional and 6-functional

systems during the stochastic degradation process. This process is done at the same high

temperature used for the initial crosslinking process during system preparation. There were

no appreciable differences between any of the replicates, nor between the stochastic method

and LAMMPS algorithm. Conversion is computed as the fraction of bonds in the network

relative to the maximal number possible.

As expected, the backbone breaks down more quickly in the 3-functional network

due to the lower crosslinking density afforded by the crosslinker functionality than in the 6-

functional network. To identify the degraded equivalent of the gel point more quantitatively,

we use two independent criteria. The first criterion identifies the degraded gel point as the

conversion where the size of the second-largest cluster is maximized. The second criterion
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Figure 3.13. Fraction of beads in backbone by conversion

Table 3.3. Comparison of bulk [1] gel point and film degraded gel point by network type;
criterion 1 requires the maximization of the second largest-cluster, and criterion 2 requires
that the network span the simulation box

Network type Bulk gel average Criterion 1 Criterion 2
3-functional 0.770 0.909 0.894
6-functional 0.525 0.723 0.712

identifies the degraded gel point as the conversion when the network no longer spans the

simulation box in all periodic Cartesian directions. Table 3.3 shows the degraded gel point

for each of our thin film systems using these criteria, and compares them to the bulk gel

point averages computed in [1] that used fully-periodic systems.

Earlier work on hydrogels gives a prediction of the conversion required to reach the

degraded gel point in a bulk network [94]. The theory predicts that this occurs at a conversion

1/
√
N − 1 for a bulk hydrogel network where each bead has an average of N bonding sites.

In our non-bulk model films, this predicts a degraded gel point for the 3-functional network of

0.935 conversion, and 0.798 conversion for the 6-functional network. Our observed results are

slightly lower in both cases, but the theory is notably far more accurate to our results than

a simple comparison to the bulk computations in [1] for the “standard” gel point measured

during the crosslinking process.
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Figure 3.14. Beads in 3-functional backbone during degradation: slightly above gel (93%
conversion, left), near gel point (91% conversion, center), and slightly below gel (89% con-
version, right)

The gel points for both functionality types in these thin-film models are far higher

than in the equivalent bulk systems. In bulk system analysis, periodic boundaries in all three

dimensions allow for faster aggregation of otherwise distant clusters, and the presence of two

planar surfaces means there are fewer potential bonding regions. During the degradation

process, fewer bonds need to be broken to cause the rapid breakdown of the backbone.

It is instructive to visualize the degradation process near the gel point, since the

network breaks down rapidly over a short conversion range. Figures 3.14 and 3.15 show

the beads comprising the backbone slightly above, near, and slightly below the gel point

conversion for the 3-functional and 6-functional networks at high temperature prior to cool-

ing. Each simulation box is periodic horizontally, but not vertically. The substrate is at the

bottom, with the free surface at the top.

We are also interested in the distribution of small fragment clusters. These are small

sol regions that would be likely candidates for evaporative removal or leaching in the presence

of moisture in the environment. Table 3.4 shows the fraction of beads in such fragments at

the gel point.

In the 3-functional network, only a small portion of the network is in small fragments

due to the high conversion at the gel point. However, in the 6-functional network where the

gel point is much lower, a significant fraction of the network (nearly 10%) is degraded into
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Figure 3.15. Beads in 6-functional backbone during degradation: slightly above gel (80%
conversion, left), near gel point (74% conversion, center), and slightly below gel (68% con-
version, right)

Table 3.4. Fraction of beads in small fragments at the gel point for each network functionality
type

Beads in fragment 3-functional 6-functional
≤ 3 0.0157 0.0917
≤ 2 0.0119 0.0932
1 0.0077 0.0654

small clusters that could leach out. The distribution of beads in small clusters is similar in

the 6-functional network due to the larger number of bonds per bead, on average. It is easier

for larger fragments in the 3-functional network to break free due to the lower average bond

density.

To show the evolution of these clusters during the degradation process, Figure 3.16

shows the fraction of beads in clusters of 3 beads or fewer as a function of degraded conversion.

Since the results were nearly identical for all independent replicates, only one such replicate

is shown for each functionality type.

Unlike the backbone, which exhibits a sharp breakdown at the gel point, the distribu-

tion of small clusters changes continuously due to the stochastic nature of the bond removal

process. Bulk properties like adhesion, permeability, and mechanical durability depend heav-

ily on the structure of the network remaining intact. However, other local properties like

color and gloss depend on the average measured over a substantial area, and are consistent

with a slower fragment loss.
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Figure 3.16. Fraction of beads in clusters of 3 beads or fewer at varying degraded conversion

Figures 3.17, 3.18 and 3.19 break down the fragment distribution into those fragments

with exactly three, two, and one bead, respectively. The rate of single bead and 2-cluster

formation initially proceeds identically regardless of crosslinker functionality, indicating these

arise primarily from chain extenders. For the 3-functional network, all small clusters begin

forming simultaneously, with the rates diverging at the gel point. This behavior is not

exhibited by the more densely-formed 6-functional network. In this network, the larger

3-cluster emergence coincides with the gel point.

These results confirm that little degradation is required before volatile single beads

emerge in a manner independent of the crosslinker functionality, caused by the common 2-

functional dimer. The distribution of fragments larger than a single bead depends highly on

the structure of the crosslinking, however, confirming that dense crosslinking helps to avoid

material leaching.

3.5.3. Jump rate

In order to examine the effects of degradation on jump dynamics, intact 3-functional

and 6-functional networks cooled to temperatures T = 0.3, 0.4, 0.5, and 0.6 undergo the

LAMMPS semi-stochastic bond scission algorithm until the networks are degraded to the
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Figure 3.17. Fraction of beads in clusters of exactly three beads at varying degraded con-
version
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Figure 3.18. Fraction of beads in clusters of exactly two beads at varying degraded conversion
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Figure 3.19. Fraction of single beads at varying degraded conversion

corresponding degraded gel point from Table 3.3. The observed fragment distribution indi-

cates the resulting network is more complex than a simple Lennard-Jones fluid, but is not

expected to retain gel-like properties. We then run the same bond detection and analysis

processes used for the intact networks. This provides directly comparable results at high gel

conversion and degradation to the sol-gel transition.

The jump rate R(z) as a function of depth is shown for the degraded 3-functional

and 6-functional systems in Figures 3.20 and 3.21, respectively.

The qualitative behavior of R(z) is similar between these degraded networks and

the intact networks in Figures 3.6 and 3.7. However, the degraded rates are markedly

greater than the corresponding intact networks. This indicates a greater propensity for

short-time subdiffusive motion corresponding to fewer bond restrictions. This effect is far

more pronounced in the 6-functional system, where the gel point is much lower than the

3-functional system. However, the results indicate that below the glass transition, bead

motion is still extremely limited.
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Figure 3.20. Jump rate R(z) as a function of depth for degraded 3-functional system (in σ
reduced units), with dotted line indicating Tg
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Figure 3.21. Jump rate R(z) as a function of depth for degraded 6-functional system (in σ
reduced units), with dotted line indicating Tg
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Figure 3.22. Average jump length L(z) as a function of depth for degraded 3-functional
system (in σ reduced units)

3.5.4. Jump length

Also of interest is the length. The average jump length L(z) by depth is shown in

Figures 3.22 and 3.23 for the networks degraded to the gel point.

Compared to the corresponding data for the intact networks in Figures 3.9 and 3.10,

the degraded average jump length is greater in both network types, primarily due to the

presence of smaller mobile fragments that are not constrained by the backbone structure after

the bond scission process. These beads are part of separated fragments that are distributed

throughout the network. The corresponding jump length distributions are shown in Figures

3.24 and 3.25.

The effects of mobile fragments are evident in the longer distribution tail in both

3-functional and 6-functional networks, while the flat region for lengths below the nearest-

neighbor distance persists below the glass transition, albeit with greater frequency due to

the higher jump rate after degradation.

Even near the free surface in the degraded network, it is unlikely that a bead will

move fully to a neighboring position below the glass transition. Reducing the cage constraints
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Figure 3.23. Average jump length L(z) as a function of depth for degraded 6-functional
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Figure 3.24. Jump length distribution for degraded 3-functional system (in σ reduced units)
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Figure 3.25. Jump length distribution for degraded 6-functional system (in σ reduced units)

through bond scission is therefore not enough to permit substantial motion. If a fragment

were to be removed from the network entirely below the glass transition, the vacancy is

unlikely to be filled. Above Tg, the relaxation of bond constraints couples with thermal

activity to allow for higher jump lengths.

To illustrate the local behavior in a region of bond scission, example instances of the

3-functional and 6-functional network were cooled to T = 0.3 and T = 0.6, after which all

bonds within a small region near the free surface were removed. The average displacement

per timestep of the beads within the region were examined before and after bond scission.

Results are shown in Figures 3.26 and 3.27.

Even under the rather extreme condition of full bond removal, network response is

limited to the time period immediately surrounding the removal event as beads immediately

find local equilibrium positions. The extent of this response is limited to a length much

smaller than the nearest-neighbor bead distance.

3.6. Conclusions

We have investigated the caged jump dynamics of model thermosets before and af-

ter stochastic bond scission, where coarse-grained particles exhibit localized thermal motion
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Figure 3.26. Average displacement per timestep near bond removal event in 3-functional
network, at temperatures T = 0.3 (lower) and T = 0.6 (upper)
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Figure 3.27. Average displacement per timestep near bond removal event in 6-functional
network, at temperatures T = 0.3 (lower) and T = 0.6 (upper)
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within neighbor cages that is interrupted by rapid jump motion out of the cage. This be-

havior has been previously observed numerically in simulations of Lennard-Jones fluids and

entangled thermoplastic chains, and experimentally in colloidal fluids. Two model ther-

mosets, used in other work to examine a variety of crosslinked polymer network phenomena,

were examined: a 3-functional and 6-functional densely-crosslinked network in thin-film con-

figurations with a free surface and substrate.

After crosslinking to high conversion, each network was cooled to one of several tem-

peratures ranging from the glassy to the rubbery state in order to observe the effects of

thermal activity and the glass transition. Dynamical jump behavior similar to fluid and

thermoplastic systems was observed despite the constraints imposed by the dense crosslink-

ing process. This behavior was observed to depend heavily on temperature, and was par-

ticularly evident through the glass transition. The propensity of beads to jump is orders of

magnitude higher near the free surface and substrate than in the bulk region. Bulk jump

behavior is relatively independent of crosslinker functionality, but is more evident near the

surface and substrate. The distribution of jump lengths is equiprobable for lengths below

the nearest-neighbor distance, but shows an exponential tail at longer lengths.

An analysis of network topology was conducted, examining both the backbone behav-

ior of the model thin films and the distribution of volatile fragments formed during stochastic

bond scission, modeling the effects of damage by radiation or hydrolysis. The degraded gel

point in the thin film case was observed to be far higher than the measured gel point of equiv-

alent bulk networks studied elsewhere, with a non-trivial fraction of the network present as

single particles or small fragments that may be at risk of leaching during environmental

exposure. The network backbone begins to fail with even small levels of bond scission.

The jump behavior of networks at the degradation gel point was examined. Com-

pared to the intact systems, degradation behavior was seen to increase both the frequency of

neighbor cage jumps and the lengths of such jumps. Small fragments formed during degra-

dation are particularly susceptible to jumps due to the lack of connectivity to the network
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backbone. However, jump behavior in the bulk region of the networks is still extremely

low, suggesting that particles are generally unable to rearrange to the extent needed to fill

damaged regions that may form in service.

In the case of coating systems used in the laboratory or in the field, this suggests that

the caged motion observed in fluids and thermoplastics is present even in densely-crosslinked

materials, offering a link to previous work. Further, material degradation enhances this be-

havior and confirms that volatile fragments formed during hydrolysis or exposure to radiation

are highly mobile even at the extremely short time scales considered here, and are likely can-

didates to be quickly leached from the material. Constrained motion due to bonding of the

remaining network is unlikely to allow such vacated regions to be filled by rearrangement of

the network.
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4. STRAIN CONCENTRATIONS IN COATINGS

OVER JOINTS AND AROUND RIVETS:

FINITE-ELEMENT MODELS

4.1. Introduction

It is common to fill or seal joints and gaps with grouts, sealants, caulks, and similar

materials, and to paint over the result. One has only to look around to see that painting

over the gaps around screws, bolts, rivets, and other fasteners is ubiquitous. The many types

of traditional joints studied in the literature, for example, single and double lap joints, are

often painted in practice.

Adhesive bonding has seen continued interest in many industries and areas of study,

as noted by [96]. Joining materials adhesively reduces the need for reliance on precise

machining associated with rivets and other mechanical joints, while helping to distribute

loads and stresses across a broader joint area. Adhesive bonding can save weight over a large

application and can help to control corrosion of the underlying substrate.

A quick glance at an aged coated gap system on an automobile or within a building

indicates that temperature cycling, flexing, and general environmental exposure pose long-

term hazards. The process of using a coated and sealed gap presents inherent difficulties for

field service. Thermal expansion and contraction of adherents introduces stresses both within

the sealed gap and to coatings painted on top. Mechanical flexing abounds in aerospace and

automotive applications due to frequent movement and vibrations which force the gap open

and closed and introduce tensile and compressive strains that may cause adhesive or cohesive

failure in a number of locations over time. Taken together, this means an understanding of

Work in this chapter was completed by the author with assistance from collaborator S.G. Croll, in a
paper to appear [95].

61



the presence of strain within a sealed and coated gap or joint is essential for the design of

systems intended for long service life.

Much research in the literature has been devoted to the analysis of stress and strain

distributions; such work, as by [10], has primarily focused on single and double lap joints

under tension and, to a lesser extent, bending loads. Work by [11] has been conducted

to determine the role of gaps in stress concentrations. Relatively little attention, however,

has been paid to other types of joints like butt joints, presumably because of the geometric

simplicity. At the other extreme, the geometric complexity of a traditional rivet precludes

much study in favor of lap joints where loads can be more easily controlled and experimental

setups more easily machined. It is recognized and understood that coatings that must stretch

over joints often fail due to large strains, but has proved difficult to find quantitative analysis

of the geometry that is directly relevant. However, inexpensive high-powered computing

now allows for much more complicated models to study a large array of cases in structural,

electrical, and hydrodynamic fields that had been too difficult in the past.

The study of adhesion and joint strength via finite-element analysis (FEA) is a fairly

recent development, due in no small part to a growing understanding of the role of meshing

and stress singularities on failure regimes of models under study. Recent work of [10] sug-

gests that an analysis of peak stress singularities across similarly-meshed models can provide

useful information about relative strengths of adhesive-adherend joints. Several techniques

exist to model the progression of failures like cracks through an FEA model over time. Co-

hesive zone modeling, thoroughly reviewed by [97], and peridynamics, whose role in FEA

was investigated by [98], are the most common methods. However, instead assuming perfect

adhesion has the advantage of analytical simplicity and no a priori knowledge of areas where

failure is expected to occur, as noted by [99]. Essentially, the locations of stress concentra-

tions indicate areas where cracks begin and will propagate, and provide the starting point

for more comprehensive study of the dynamics of crack advancement.
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In this paper, we analyze the strain distributions of gap and joint systems, beginning

with geometrically simple models and progressing to more complex setups. In particular,

we examine sealed and coated two-dimensional tensile and hinged butt joints. Analysis is

presented of how the gap opens around a conventional countersunk rivet in a flexed mate-

rial in three dimensions. The analyses include the addition of a coating layer played over

each two-dimensional model, and we examine how the strain distributions are affected by

the Young’s modulus of the coating and gap sealant. In the models that involve bending,

the relationship between coating strain and substrate yielding is explicitly considered since

the method of load application often determines in which layer failure occurs first, observed

by [10]. Indications are considered for which models might be suitable for use in conven-

tional laboratory accelerated exposure apparatus for future study of candidate materials for

coatings and gap sealants.

4.2. Methods

4.2.1. Adhesive joint models

Two different two-dimensional coated joints and a three-dimensional uncoated coun-

tersunk rivet joint were modeled using the ANSYS R© Academic Research Mechanical (release

17.2) finite-element software package. In each model, all substrate panels use material param-

eters typical of aircraft-grade aluminum alloys to represent the situation where the substrate

is much more rigid than the other materials. Properties of gap sealants and coatings used

vary only in modulus. The sealant modulus was chosen to be 10 MPa in all models, with

the ratio of top coating modulus to sealant modulus varying as 1:1, 1.5:1, 10:1, 100:1, and

1000:1 in each coated joint. Such a sealant is common in consumer and industrial caulks and

sealants that have rubbery properties. Thus this range of coating types spans from one with

flexibility like the rubbery gap sealant to one with a modulus of 10 GPa, which is probably

somewhat more rigid than a typical topcoat, even below its glass transition temperature. A

listing of parameters is shown in Table 4.1.
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Table 4.1. Material parameters

Substrate Sealant Top coating
Modulus 71.7 GPa 10 MPa variable

Poisson ratio 0.33 0.45 0.45
Density (g/cm3) 2.81 1.20 1.20

In each coated joint model, perfect adhesion is assumed between the material types to

allow for close examination of strain concentration points without assuming any particular

type or magnitude of adhesive or cohesive failure in the system. However, locations found

to have high values of strain are where such failure may be expected. Gap and coating

dimensions are chosen larger than might be used in practice initially; they are used in order

to clearly observe how strain varies across a gap in each system. However, we also discuss

the effects of coating thickness.

The first two-dimensional model, a coated tensile butt joint, has geometric simplicity

but general applicability to a range of more complicated joints typically seen on automobiles,

airframes, and the like. It consists of two substrate adherends separated by a small gap that

is filled with a rubbery sealant and painted over the top. The model has symmetry axes

vertically through the center of the gap and along the bottom for ease of computation. The

two ends of the substrate panels are pulled apart in-plane a distance up to 15% of the original

gap width. The substrate panels and the coating are long compared to the gap, so that all

variations in strains on either side of the gap can be calculated. A diagram of the coated

tensile butt joint is shown in Figure 4.1. Although these geometries may be used in any

orientation in practice, for convenience, terms like ”up” and ”down” will refer to how the

models appear in these diagrams.

The second two-dimensional model examines the same initial geometry but in simple

flexure rather than tension, as though there were a hinge at the midpoint. It is visualized

here, symmetrically, as though the joint is curved upward, applying non-constant strain

across the gap. Thus the gap sealant is in tension at the top and may either be in compression

or tension at the bottom, depending on where the hinge is considered. In this model, there
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Figure 4.1. Coated tensile butt joint, with sealant (red) and top coating (blue); not to scale

Figure 4.2. Coated two-point bend hinged butt joint after flexing, with sealant (red) and
top coating (blue); not to scale

may be no neutral axis. The bend is imposed with the two ends of the substrate panels

being moved toward each other a distance 15% of the original gap width, so the result is a

tenting upwards. This approach offers a compact geometry and is thus a suitable candidate

for testing such coated joints within a standard accelerated weathering cabinet, but the gap

opening between the rigid substrates varies from top to bottom and is on average much less,

so the overall deformations will be less. Bending motions usually require much less powerful,

and hence less bulky, actuators and the length of the substrate panels was chosen suitably

compact so that a number would fit within an exposure chamber. This joint is shown in

Figure 4.2.

4.2.2. Countersunk rivet model

Many coated gaps arise when a screw or rivet is embedded within a substrate, resulting

in a very small gap around the circumference of the fastener. This is extremely common.

In such arrangements, coatings tend to fail on and around rivets before elsewhere on the
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Figure 4.3. Countersunk rivet (black) in single panel; not to scale

substrate, noted by [100] and [101]. This can be seen on aircraft and other riveted structures;

similar failure can unfortunately often be observed around the bolts used in large bridges

and other structures. To exemplify these possibilities, a three-dimensional model is used

consisting of a single panel with a countersunk rivet embedded within it. This is more

complex than the simple geometries modeled here but is probably the most common example,

by far, of a coated gap that is stretched or flexed. Since only the strains across the small gap

between the rivet head and countersink are of interest for this work, we assume the walls

of the rivet shaft freely touch the walls of the hole, and that the bottom of the rivet shaft

is flush with the underside of the panel. This permits any tensile panel flexing to separate

the shaft and hole, with the consequence of a gap opening at the top. In this model, no

coatings are included (for simplicity), but the opening of the gap is mapped as the overall

piece is flexed in one direction. This will demonstrate where the problems are severe for a

coating that has been used to paint over such a rivet. The panel ends are bent toward each

other a distance of 1 mm, giving a bending radius of 0.38 m that is more severe than most

applications but perhaps suitable for accelerated testing. Diagrams of this model are shown

in Figures 4.3 and 4.4.

4.3. Results

Throughout this paper, strain distributions and values are provided. In each model,

fixed displacements mean that input strain is assumed to be precisely controlled. We use

two strain types, uniaxial strain and von Mises uniaxial equivalent strain. Uniaxial strain

is chosen when examining the sealants and coatings because their properties are usually

established in terms of elongation to break, and adhesion strength is often measured as a

uniaxial stress to failure. As commonly defined by [102], typical aluminum substrates reach

the limit of proportionality (i.e. they yield and possibly fail) at or even below 0.5% strain;
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Figure 4.4. Rivet model dimensions, with vertical axis of rectangular symmetry shown; not
to scale

depending on the geometry, von Mises equivalent uniaxial strain, first rigorous formulated

by [103] is commonly used to determine when this point is reached. The von Mises strain εv

is defined as in [104] in terms of Cartesian normal strain components ε and shear strains γ:

εv ≡

√
1

2

[
(εx − εy)2 + (εy − εz)2 + (εz − εx)2 +

3

2
(γ2xy + γ2yz + γ2zx)

]
(4.1)

4.3.1. Tensile butt joint

The uniaxial strain in the horizontal direction (i.e. along the tensile or bending

direction) was examined in both the two-panel tensile and hinged butt joints. This strain

distribution is indicated in Figure 4.5 for the tensile joint on one side of the axis of symmetry

that is in the middle of the gap filler.

In the case of the tensile model, only the top half of the joint is displayed since the

strain distribution in the gap sealant in consistent below that point. There is a concentration

of the strain, and stress, at the stop corner of the metal panel that extends into the coating

as well as the sealant. This is the locus of potential failure in either adhesion of the materials

to the metal, or in elongation of the coating or sealant. In either case, failure of one type

would weaken the coating or sealant towards the other type. The coating is drawn downward

into the gap because the sealant must contract in that direction as dictated by its Poisson

ratio value. This contributes to the strain in the coating at the corner of the metal substrate.
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Figure 4.5. Examples of uniaxial horizontal strain distribution for tensile butt joint, with
1:1 (left) and 1000:1 (right) modulus ratio of top coating to gap sealant
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Figure 4.6. Horizontal uniaxial strain in tensile butt joint at the center vertical axis (left)
and at the gap sealant wall position (right), from the bottom of the joint through the coating;
modulus ratios are given as top coating to sealant

The strain in the middle of the joint is quantified in the left of Figure 4.6 for the

various ratios of coating modulus to that of the gap sealant. This is the uniaxial strain in

the horizontal direction (i.e. parallel to the substrate panel displacement) within the sealant

and top coating from the bottom of the system upward.

Throughout most of the depth of the sealant, the strain is approximately constant,

except close to the interface with the topcoat. The externally applied displacement would

correspond to a strain of 15%, but the more flexible topcoat permits the strain in the gap to

be almost 18%. One can see in Figure 4.5 and the right of Figure 4.6 that the strain near the

walls is lower than in the middle of the gap since adhesion to the rigid walls constrains the
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strain there. Hence the strain in the middle of the gap is a little higher in order to comply

with the overall 15% opening imposed on the gap. For more typical coatings (like those with

a modulus several orders of magnitude greater than the sealant), the effect is less and so

the strain in the middle of the sealant is much closer to the expected 15%. The strain in

the top coating in the center of the gap, beyond the interface, diminishes but stays large. If

the coating is very flexible, it can deform and the strain even becomes compressive at the

exterior surface as the coating is drawn down towards the gap sealant.

The right of Figure 4.6 quantifies the strain in the tensile direction at the interface

of (and above) the metal and gap sealant. The concentration at the corner causes not only

the strain to be large enough to cause possible mechanical failure of the coating and sealant,

but the stresses at the metal wall corner may be large enough to risk adhesive failure. Good

adhesion between a coating and metal substrate is often found in pull-off measurements to

be 20 MPa. This corner is where the tensile butt joint will fail and corrosion and other

problems will start. In stiffer coatings, the strains at this corner will be lower because the

modulus is higher, but unfortunately stiffer coatings will be more brittle and hence likely to

fail.

4.3.2. Effect of coating thickness

The models shown above were chosen to have very thick top coatings in order to more

clearly observe the distribution of strain. In practice, a coating might be orders of magnitude

thinner, depending on the application.

The thickness of the top coating over the tensile butt joint gap was varied over several

orders of magnitude from 50 micrometers up to the thickness used above. For this compari-

son, the panels of the joint were separated a distance of 5% of the gap width, since it proved

difficult to construct a mesh that was not excessively distorted when the thinner coatings

were stretched over the gap to 15% displacement. Since many aerospace materials may fail

at low deformations, as cautioned in [105], a 5% opening of the gap may be considered more

realistic in engineered structures. The strain distributions within the joint were qualitatively
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Figure 4.7. Horizontal uniaxial tensile strain in overlying coating of varying thickness at the
top of the tensile butt joint over the gap edge, with 5% gap opening

similar to the thicker models and showed a large magnification of the strain at the corner of

the substrates. The horizontal uniaxial strain experienced at the top surface of the coating

at the edge of the gap, over the corner of the substrate, was computed for both a rubbery

coating (with modulus equal to that of the gap sealant) and stiff coating (with modulus ratio

1000:1 to the gap sealant). Figure 4.7 shows these values.

When the coating and sealant have similar moduli, the strain at the top of the coat-

ing over the edge of the gap increases strongly in the thinner coatings and becomes much

larger than the overall fractional opening of the gap. In fact, the results follow a power

law relationship in the thickness variation considered here. The effect of the corner of the

substrate cannot diminish so much through the thickness of such thin coatings, as shown in

the strain distributions for the 50 um and 100 um models with equal coating and sealant

modulus shown in Figure 4.8.

When the coating is much stiffer than the sealant, however, the increase in thinner

coatings is not so large; the strain remains below the 5% gap opening value, approaching it as

the coating becomes thinner. For each coating thickness, the stiffer coating experienced lower

strain, as expected, and is consistent with previous models. Very often, thicker coatings are
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Figure 4.8. Horizontal uniaxial strain distribution zooms for tensile butt joint at 5% gap
opening, with 50 um (left) and 100 um (right) coating thickness

used to provide a greater barrier to the transport of moisture and salt to the substrate. These

results show that thicker coatings may provide a better barrier because they experience less

strain over a gap that opens, and thus may be less prone to crack.

4.3.3. Flexed butt joint

In the flexed hinge joint, the two metal panels move toward each other at the bottom

of the gap, while the top corners move away. Figure 4.9 shows that at the bottom of the gap,

the strain along the direction of bending is compressive. The consequence is that from the

Poisson ratio effect, the gap sealant bulges out at the bottom. Although for simplicity there

is no coating over the bottom of the gap, it is easy to appreciate that the bulging would tend

to push such a coating away from the substrate and possibly cause adhesive failure.

Figure 4.10 shows the strain in the flexing direction at the vertical axis of symmetry

moving upward, both within the gap and at the substrate wall.

The neutral axis, where the sealant is neither in tension nor compression, depends

heavily on the relative modulus between the coating and sealant. If the coating is as flexible

as the sealant, the neutral axis is slightly above the midpoint of the gap depth, as expected. If

the coating is much stiffer, it does not undergo much strain and the neutral axis moves up into

the coating, leaving most of the sealant in compression. Figure 4.11 shows the displacement
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Figure 4.9. Examples of uniaxial horizontal strain distribution for hinged butt joint in
flexure, with 1:1 (left) and 1000:1 (right) modulus ratio of top coating to gap sealant
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Figure 4.10. Horizontal uniaxial strain in hinged butt joint at the center vertical axis (left)
and at the gap sealant wall position (right), from the bottom of the joint through the coating;
modulus ratios are given as top coating to sealant
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Figure 4.11. Horizontal displacement (relative to gap width) at top and bottom corners of
gap in hinged butt joint; modulus ratios are given as top coating to sealant

of the top and bottom corners of the gap in the directional of flexing (horizontally in the

models above).

Because the joint is flexed and the gap closes at the bottom while the top opens,

the strains in the gap sealant and coating are not so high. Within the gap, the strain is

not as high as within the corresponding tensile joint, so a suitable gap sealant may readily

survive the deformation. If the coating is equally soft, it may also survive. If the coating is

stiff, however, the neutral axis is within it and the strains may well be low enough that the

coating does not suffer a cohesive failure over the middle of the gap (as in the left of Figure

4.10); however, there is still a stress concentration at the upper corner of the metal substrate

(as in the right of Figure 4.10), so the materials may fail there. In flexure, this joint is less

demanding overall of the properties of the gap filler and the coating than if the same joint

were in tension.

The flexed joint, depending on the circumstances, produces a noticeable bulging at

the bottom. This effect of the Poisson ratio is seen more readily in the expanded view of the

uncoated underside of the joint in Figure 4.12.
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Figure 4.12. Compressive effect of Poisson ratio in underside of hinged butt joint (zoom of
Figure 4.9, right)

The right of Figure 4.10 shows a small increase in the strain of the bottom of the

gap regardless of the modulus ratio. The absolute value of this strain is unlikely to cause a

failure of the gap sealant. However, the bulge might cause any coating there to be peeled

away from its contact with the metal at the corner, causing a problem.

If the coating over the gap has a modulus similar to that of the sealant, any adhesion

between them is likely to survive since the strain will be fairly continuous across the interface,

especially here where the Poisson ratios are the same (chosen for simplicity). However, in

both the tensile and the flexed joints, a problem will occur if the moduli are substantially

different because in both joints, the sealant tends to shrink into the gap away from the

coating as the gap opens. Figures 4.13 and 4.14 show how the strain in the vertical direction

varies across the interface between the gap filler and the coating along the middle of the gap

and at the gap wall as their relative properties change.

In both the tensile and flexed joints, the coating bends into the joint with the sealant,

as indicated by Figure 4.13. In the tensile joint, the filler and coating are both in substantial

compression due to the Poisson ratio, so this strain pulls them away from each other. As

stated earlier, this modeling does not extend to the complexity of including adhesive strength,
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Figure 4.13. Vertical uniaxial strain along center vertical axis for tensile (left) and hinged
(right) butt joints
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Figure 4.14. Vertical uniaxial strain along substrate wall for tensile (left) and hinged (right)
butt joints
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but the stress in a stiff coating corresponding to a strain of a few percent could be enough to

overcome the adhesion with the gap filler. In flexure, these vertical strains at the boundary

are much less, and thus less threatening.

At the wall, the vertical strain is limited in the gap filler by adhesion to the wall, as

shown in Figure 4.14. As the boundary is approached, the coating which extends beyond

the gap tends to exert a force on the gap filler, increasing the vertical component of the

strain. Even close to the wall of the gap, in the tensile joint, both materials experience a

force that tends to make them thinner and thus may cause adhesive failure. In flexure, the

vertical compression at wall is due not only to the stretching in the flexure direction, but the

turning of the metal panels pushes the coating towards the metal and alleviates its potential

for disbonding. Nevertheless, at the corner, the component of the strain in the flexing or

stretching direction can be more than sufficient to cause failure.

It is interesting that the arrangement has considerable potential for failure between

the gap filler and coating, so the protection for the underlying metals is much reduced. A

single application of one continuous material, instead of layers, may bring benefits.

Finally, we examine the horizontal uniaxial strain distribution across the top of the

overlying coating. Since this coating is very thick and without ends, the strain field has

decayed from the corner and transition effects. The strain is plotted from the center of this

zone outward to the location of the substrate corner in Figure 4.15.

In the very thick coating modeled here, the material at the top of the coating can

move substantially and the strain is a fraction of the gap opening ratio of 15%. For the tensile

joint, the very stiff coatings have a moderate strain that is fairly consistent with position,

whereas the more flexible coatings permit the middle of the span to have an even further

diminished strain that is compensated somewhat at the edge of the gap. The flexed joint,

with the displacement as imposed in this situation, does not suffer so much strain anywhere

across the top of the coating and it does not vary so much across the gap.
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Figure 4.15. Horizontal uniaxial strain along top of overlying coating for tensile (left) and
hinged (right) butt joints

4.3.4. Countersunk rivet model

The primary interest in this model is how a gap may open around the rivet when

flexed. However, since we are examining a structure that has only metals and it is important

to know whether any gaps will close when the flexing is removed, we observe the possibility

of plastic deformation in the metals by also calculating the von Mises equivalent uniaxial

strain. An elastic limit of 0.5% is typical of many metals. The flexure here amounted to a

bending radius of 0.38 m, which is more severe than might be typical of many applications.

Figure 4.16 shows the von Mises strain, with axes of symmetry along the left and front faces

of the model.

When the panel is flexed, the rivet head experiences negligible strain since it does not

adhere to the substrate panel.

In the left of Figure 4.17, we plot the longitudinal uniaxial and von Mises strains along

the top long edge of the panel in the direction of bending curvature, from the center of the

rivet towards the end of the panel (left to right in the above model diagram), indicating the

location of the transition from rivet cap to substrate panel. The uniaxial strain perpendicular

to the flexure direction and the von Mises strain are also plotted from the center of the rivet

across the long axis of the panel (front to back in the diagram) in the right of Figure 4.17.
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Figure 4.16. Example of von Mises equivalent uniaxial strain distribution for countersunk
rivet model, with rivet head at lower left
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the direction of curvature (left) and perpendicular to the direction of curvature (right)
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Figure 4.18. Computed strain across rivet gap as a function of circumferential angle, with
best sinusoidal fit

The von Mises strains are little different from the uniaxial strains here. The bending

imposed here does not produce strains that cause plastic deformation in most metals, so the

gap around the rivet would close if the flexure were released in most circumstances.

Of particular interest is the strain experienced across the small gap between the outer

circumference of the rivet head and the substrate. Since this gap is initially very small, any

opening due to flexing necessarily imparts large strain to any coating placed over it or gap

sealant within it. The nature of flexing is such that the strain must vary around the rivet

head, being largest at the point along the flexing longitudinal axis and smallest at the point

along the lateral axis. There are no coatings or gap fillers used here, as we instead compute

the overall strain of the gap dimension using the displacements at the top of the rivet cap

from the edge of the metal panel. This is shown in Figure 4.18, along with a sinusoidal curve

fit.

As anticipated, the gap strain follows a sinusoidal variation around the circumference

due to the simple nature of the flexing here. The peak value along the longitudinal axis

is nearly 40% in this case, and so is well above the elongation to break for many types of

coatings. However, most of the periphery of the rivet has a gap that opens and thus anywhere
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may strain a coating or gap sealant beyond their cohesive or adhesive limits. Although there

are other designs of rivets, the analyses of the gap opening in tension and bending above

shows the likely routes to failure of the protective gap filler and coating, with the most

likely practical consequence being corrosion of the fastener and the substrate. The presence

of a rubbery sealant between the rivet head and surrounding substrate is unlikely to have

a marked effect on these strain values, since the metals used are far stiffer and still force

the gap open. Additionally, layering coatings above the rivet-substrate interface results in a

Poisson ratio effect, as seen in the two-dimensional models, which draws the coatings inward.

It is clear that when one sees evidence of corrosion or other failure around a rivet, or other

type of fastener, the opening of the gap could have been a major contributor to the failure,

especially if it happens many times in the service of the structure.

4.4. Conclusions

Gaps are very common in structural elements for a wide variety of reasons, and many

may be filled with a sealant, grout, or caulk and then painted over. Simple coated butt joints

have been examined to understand how deformation around gaps may cause failure in the

protection afforded by the gap sealant and coating. The behavior of a gap around a typical

rivet was calculated in order to provide context for the results from the simpler geometries.

This work was done not only to better understand material failure around such joints, but

also to explore how a test piece could be designed for use in accelerated laboratory testing.

Two-dimensional strain distributions for the opening, in either tension or flexure, of

a filled and coated gap were calculated. The modulus of the gap sealant was chosen to

represent a rubbery material and the coating above had a modulus varying from the same

as the sealant to 1000 times greater.

The calculations show that not only does the opening of a narrow gap threaten the

elongation to break of a coating across that gap, but also that the adhesion of the gap

sealant to the walls of the gap at the corner of the substrate, and between the coating and

gap filler, may fail. In tension, there is a natural tendency of the sealant and the coating
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to shrink laterally, so the effect of having a layered structure is that the layers may pull

apart perpendicular to the overall deformation. Although to a macroscopic view the failure

is obviously around the fastener, in detail there are multiple loci of failure.

One method of imposing flexure was examined and found that bending the joint

imposes fewer demands than linear tension on the gap sealant and the coating. Due to the

more complex flexing of the hinged butt joint, since there is no continuous substrate, there

is no simple neutral axis of the system. As a result, regions of tension and compression

with the gap vary. However, this approach may prove to be the basis of a device to use in

accelerated weathering so that mechanical stresses are imparted as well as the more standard

environmental stresses.

A simple three-dimensional model of a countersunk rivet was examined to map how

the gap around it opens in simple flexure. Rivets are an extremely common type of fastener

and exemplify gaps that are commonly filled and painted over. Flexing of the substrate can

produce very large strains across the gap where the strain changes sinusoidally around the

circumference. The overlying coating may well fail first where the gap opens most, but the

failure is likely to propagate all the way around the fastener. The two-dimensional analyses

of simple coated butt joints may provide insight in how to better design fasteners or chose

materials to fill the gap or paint over it.

While it has been long appreciated that a gap that opens is likely to cause the

coating over the gap to fail, probably less appreciated are the additional problems that a

layer of coating over a different material in the gap brings. Depending on the strain and any

difference in Poisson ratio, in tension the sealant may pull away from an overlying coating.

In compression, the sealant may push an overlying coating away from the metal on either

side of the joint. Thus, a layered structure has several possible ways to fail, introduced solely

due to there being different materials in the sealant compared to the overlying coating.
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5. ANALYSIS OF A DIFFUSIVE LATTICE

BOLTZMANN METHOD FOR BARRIER

COATINGS

5.1. Introduction

In test, coatings are often prepared on a metal or composite substrate and exposed

to moisture, either in a test chamber or complete saturation. Experimentally, techniques

like electrochemical impedance spectroscopy and simple mass measurements can be used to

understand the rate of diffusion of moisture over time, as well as the total uptake into the

coating [107, 108]. In the case of single coating layers, Fickian diffusion is well-suited to

model behavior over a range of material types.

The situation is more complex for systems consisting of multiple layers, since appli-

cations in industry most often require applications of different coating types in succession:

for example, a highly-adhesive epoxy primer with a urethane protective topcoat. Each of

these layers may have different diffusion properties that can vary by orders of magnitude.

Because of the necessity of understanding the behavior of such systems, it is useful to model

the effects of moisture exposure and cycling over long times in order to predict the time

scales and uptake behavior used in test protocols and field exposure. A variety of techniques

are available for such analysis, ranging from analytical solutions to finite-element approaches

[32, 34, 109]. Such approaches, particularly finite-element analysis, are often computationally

intensive, may not incorporate all desired phenomena, and are often closed-source software

packages using methods and algorithms that are not open to verification and analysis.

The work in this chapter was conducted by the author and collaborators K.T. Strand and A.J. Wagner
in a published paper [106]. Mathematical derivations were completed by the author and Strand. Simulations
were designed and analyzed primarily by the author, with assistance in the convergence analysis from Strand.
Fourier analysis was completed mainly by Strand and Wagner.
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Any numerical technique used to model the progression of moisture in such a stackup

must stably account for a wide range of diffusion constants. Since laboratory testing of

candidate barrier coating systems typically includes cyclic exposure to moisture and dry

ambient air over long periods of time, simulations of cyclic processes must maintain numerical

stability over correspondingly longer time scales.

In order to flexibly incorporate a range of uptake phenomena (like concentration-

dependent diffusion) efficiently, we first derive and analyze the error introduced in the tra-

ditional second-order approximation to the diffusion equation used in lattice Boltzmann

approaches. To investigate the nature of this error, we introduce a fourth-order correction

and perform a Fourier component analysis to confirm the correctness of our results. We show

that the bulk of the second-order error in such a system arises from the boundary conditions

used, and comment on the proper use of periodic systems to remove this error. Applications

to multi-layer systems with variable diffusivity are discussed in the context of our analysis,

and investigated in further detail in a later chapter.

5.2. Lattice Boltzmann methods

The dynamics of fluid density ρ obey the continuity equation

∂tρ+∇j = 0, (5.1)

where j is the mass current. Assuming an isotropic coating, mass current will be in the

direction of negative density gradient. We denote the proportionality between this current

and negative gradient by D, which in the simplest case is a constant. Later, we consider a

more general D(ρ). We therefore have j = −D∇ρ. With this constitutive relation for the

mass current, we recover the well-known diffusion equation.

The lattice Boltzmann numerical method tracks the evolution of a generalized particle

distribution on a lattice. The generalized lattice densities change over time under the influ-

ence of localized collisions that redistribute the particles to neighboring lattice sites. The
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approach is quite general, and has been used extensively to model hydrodynamic behavior

[110, 111, 112], diffusion [113, 114], electrostatics [115], and similar systems with high accu-

racy and computational efficiency. Unlike the use of a partial differential equation solver, the

equations underlying the dynamics of a particular system are not the starting point for the

method, but rather a natural emergence from it. The particular form of the collision terms,

which relax the system toward a local equilibrium at each lattice point, and the moments of

the local equilibrium distribution determine the governing equations for the chosen system,

as we show below.

We wish to use a lattice Boltzmann approach to model diffusion through a one-

dimensional medium, the boundary conditions of which will be defined later. In this case,

the generalized particle distribution has three components at each lattice site: flow in the

negative-x direction f−1(x, t), a stationary component f0(x, t), and flow in the positive-x

direction f1(x, t). A velocity constant accompanies each component. This is the minimal

velocity set to recover the desired diffusion equation, as described below.

A commonly-selected collision term defines a local equilibrium that only depends

on conserved quantities and relaxes the actual density towards the local equilibrium; it is

spatially and temporally independent. In this form, the lattice Boltzmann equation can be

written as

fi(x+ vi, t+ 1) = fi(x, t) +
∑
j

Λij

[
f 0
j (ρ(x, t))− fj(x, t)

]
. (5.2)

Here f 0
j is the local equilibrium density, Λij is a collision matrix, and ρ(x, t) is the local

density of the system, defined by

ρ(x, t) =
∑
i

fi(x, t). (5.3)

For diffusive systems like the one considered here, the advantages of a more complex matrix

form are less well established (See Ginzburg [116]), so we will employ a collision matrix of
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the form

Λij =
1

τ
δij (5.4)

that was originally proposed by Qian [110]. It establishes a relaxation time constant τ .

Using this form, the lattice Equation 5.2 becomes

fi(x+ vi, t+ 1) = fi(x, t) +
1

τ

[
f 0
i (ρ(x, t))− fi(x, t)

]
. (5.5)

We now show how this equation, coupled with distribution moments that will be defined

shortly, leads to the diffusion equation. First perform a Taylor expansion of the left side of

Equation 5.5 to second order:

fi(x+ vi, t+ 1) = fi(x, t) + (∂t + vi∂x) fi(x, t) +
1

2
(∂t + vi∂x)

2 fi(x, t) +O(∂3) (5.6)

Comparison of the first-order portion of this expansion with Equation 5.5 gives a recursive

expression for each distribution component:

fi(x, t) = f 0
i (ρ(x, t))− τ(∂t + vi∂x)fi(x, t) +O(∂2) (5.7)

Another substitution, after discarding terms of quadratic order, gives the distribution com-

ponents only in terms of the local equilibrium distribution:

fi(x, t) = f 0
i (ρ(x, t))− τ(∂t + vi∂x)f

0
i (ρ(x, t)) +O(∂2) (5.8)
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In order to recover the diffusion equation, it is necessary to impose moments on the

equilibrium distribution:

∑
i

f 0
i = ρ (5.9)∑

i

f 0
i vi = 0 (5.10)∑

i

f 0
i v

2
i = ρθ (5.11)

Here θ is a parameter. The first two moments ensure local density conservation and no net

velocity at equilibrium, and the third imposes a term analogous to an ideal gas pressure.

(A more general approach toward advection-diffusion could be followed by allowing nonzero

velocity.) Following [117], we use these moments with our previous analysis. We combine the

expansion in Equation 5.6 with the lattice Equation 5.2, dropping the explicit dependence

on x and t for brevity:

fi + (∂t + vi∂x)fi +
1

2
(∂t + vi∂x)

2fi +O(∂3) = fi +
1

τ
(f 0
i − fi) (5.12)

We can then substitute the distributions fi on the left side of this equation using Equation

5.8:

(∂t + vi∂x)
[
f 0
i − τ(∂t + vi∂x)f

0
i

]
+

1

2
(∂t + vi∂x)

2
[
f 0
i − τ(∂t + vi∂x)f

0
i

]
=

1

τ
(f 0
i − fi) (5.13)

We then drop all terms higher than second order (including second-order time derivatives,

which are fourth-order in x) and sum over all velocities i, using the moments introduced

above, to obtain

∂tρ = ∂x

(
τ − 1

2

)
∂x(ρθ) (5.14)

that establishes the lattice diffusion equation. In the case where both parameters τ and θ

are constant in space and time, this gives a diffusion constant D = θ(τ − 1/2).
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Notice that this derivation has not yet specified the form of the equilibrium dis-

tribution, but rather its constraints via moments. There is a rather simple form for this

distribution that uses the parameter θ as a weight applied to the local density ρ:

f 0
−1 = ρ

θ

2
(5.15)

f 0
0 = ρ(1− θ) (5.16)

f 0
1 = ρ

θ

2
(5.17)

Notice that this distribution trivially satisfies the given moments. It allows for a full and

self-contained simulation method for a one-dimensional diffusive system. It is worth noting

that the choice of distribution moments and equilibrium distribution leads to the governing

diffusion equation, despite the generality of the lattice Boltzmann equation itself.

Despite the derivation needed to obtain Equation 5.14, the integration of this tech-

nique in code is extremely straightforward. At each timestep in a simulation, there are two

steps: collision and streaming. In the collision step, the local density is computed at each

lattice site as the sum
∑
fi. Then, the Bhatnagar-Gross-Krook collision operator (from

above) is applied using the known local equilibrium distribution.

In the streaming step, generalized densities fi are redistributed. Each f−1 compo-

nent is distributed in the negative-x direction, and each f1 component is distributed in the

positive-x direction. Any f0 component is left unchanged. We discuss boundary conditions

in the subsequent section.

5.3. Application to water content of coatings

We wish to model the wetting of a single-layer coating via Fickian diffusion. Since

coatings are frequently examined in the laboratory on test panels using weathering chambers

that subject the coating to moisture, we will consider the case where the coating, represented

by a lattice from 0 ≤ x ≤ Lx, is exposed to a reservoir of varying concentration ρb(t) at

x = 0 and an impermeable substrate at the right end of the simulation lattice. The meaning
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of ρb is the amount of water that will be absorbed just inside the coating as it is exposed to

the environment. For an immersion in water, this corresponds to the maximal water content

the coating can absorb, and we scale the density so that this value corresponds to ρ = 1.

We must account for these two boundary conditions in our numerical simulation. We

implement the source term by setting

fi(0, t) = f 0
i (ρb(t)) (5.18)

(replacing Equation (5.2) at the boundary) and by replacing the streaming step at the right

end by a bounceback algorithm, where the right-moving f1(Lx) is reinserted as an f2 in the

streaming step. The result for a step function ρb(t) = Θ(t) in the exposure is shown in

Figure 5.1. We used a system with Lx = 100 lattice points, τ = 1, θ = 0.5, ρ0 = 1, and

ran the simulation for a variable number of iterations T . As expected, moisture is at first

located closely to the surface and then penetrates the sample.

To verify the correctness of the simulation results, we construct an analytical solution

for the concentration over time, using linear combinations of the well-known error function

solution [31]. These are solutions of the diffusion equation for the initial condition of a step

function in an infinite system. If the initial step goes from 2ρ0 to zero, then the solution is

ρth,1(x, t) = ρ0

(
1− erf

(
x√
4Dt

))
. (5.19)

This solution has a fixed point ρth,1(0, t) = ρ0 at x = 0, which corresponds to our boundary

condition. So ρth,1(x, t) for x ≥ 0 and t > 0 is the analytical solution for an infinite dry

coating exposed to a reservoir starting at time t = 0. Note that the long-time behavior gives

ρth,1(x, t→∞) = ρ0 as expected.

Suppose now that we have a finite one-dimensional coating extending from 0 ≤ x ≤

Lx. At x = 0, the coating is exposed to a reservoir with fixed concentration ρ(x = 0, t) = ρ0.

At x = Lx is an impermeable substrate where ∇ρ(x = Lx, t) = 0.
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Figure 5.1. Concentration profile at τ = 1, θ = 0.5, ρ0 = 1 at various times (symbol), with
analytical solution ρ(x, t) (solid line), where the diffusion constant is D = 10−14 m2/s.

To account for the vanishing current at the substrate, we use an image source reservoir

at x = 2Lx. This will ensure a vanishing gradient at x = Lx and, by symmetry, a vanishing

current. However, when the reflected concentration becomes nonzero at the reservoir again,

we must subtract another image source reservoir at x = −2Lx to maintain the correct

boundary condition. Repeating this process infinitely, we arrive at the final solution that

includes both reservoir and substrate:

ρth(x, t) = ρ0

∞∑
i=0

(−1)i
[
2 + erf

(
x− 2(i+ 1)Lx√

4Dt

)
− erf

(
x+ 2iLx√

4Dt

)]
(5.20)

For practical purposes, we find ten terms of the infinite sum in Equation (5.20) are entirely

sufficient for most cases.

It is instructive to determine the correspondence between these numerical parameters

and a laboratory case. A typical barrier coating might have thickness X = 50 µm, diffusion

constant in water D ∼ 10−14 m2/s, and be exposed to moisture in a weathering chamber for

T = 4 hours at a time for testing. We can introduce reduced time, length, and density scales
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t′, x′, ρ′ such that

t = Tt′ (5.21)

x = Xx′ (5.22)

ρ = ρ0ρ
′ (5.23)

and 0 ≤ {t′, x′, ρ′} ≤ 1. Since the unit relationship T = X2/D holds by dimensional analysis,

for any given experimental setup the quantity

F ≡ TD

X2
(5.24)

is dimensionless and we have the scaled diffusion equation ∂t′ρ
′ = −∇x′F∇ρ′. Using the

experimental parameters suggested above gives F = 5.76 × 10−2. In our simulations, we

use total length X = Lx = 100 lattice sites, reservoir concentration ρ0 = 1, θ = 0.5,

and τ = 1. Since this gives a time scale T ≈ 2300 iterations, this means one hour of

equivalent macroscopic exposure corresponds to approximately 575 simulation iterations.

Further, the choice of τ = 1 yields immediate relaxation of local distributions, so we would

expect excellent agreement to theory.

We are now in a position to comment on the accuracy of this simulation method in

comparison to the analytical solution ρth in Equation (5.20). For each of the exposure times

in Figure 5.1, we compute the absolute error

ε(x) ≡
∣∣ρ(x, t)− ρth(x, t)

∣∣ (5.25)

across the lattice space profile. The result is plotted logarithmically in Figure 5.2, showing

excellent agreement. It is interesting to observe how the error changes over time; initially,

the error drops substantially since moisture has not yet permeated through the entire coating

lattice. This tail increases as the entire lattice becomes wet, but then uniformly decays as
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Figure 5.2. Absolute error profile ε between numerical and analytical concentration for
exposure over time.

the numerical solution approaches saturation and agrees with the corresponding analytical

solution.

While this method provides efficient and stable numerical modeling of a single coating,

a given coating system might consist of two or more barrier layers in a stackup, each with a

different diffusion constant that permits moisture ingress and egress at different rates from its

neighbors. To extend this method to the simplest multi-layer case, we might wish to model

a two-layer stackup consisting of idealized barrier coatings with different physical properties.

To do so, our reservoir model is modified slightly, with the outer barrier coating represented

at lattice sites 0 ≤ x ≤ Lx/2 and the inner barrier coating at Lx/2 ≤ x ≤ Lx. Since the

diffusion constant is controlled by the parameter τ , the presence of two diffusion constants

requires that τ be position-dependent:

τ = τ(x) ≡

 τout , 0 ≤ x ≤ Lx/2

τin , Lx/2 ≤ x ≤ Lx

(5.26)

Incidentally, changing the value of θ between the two regions will lead to different maximum

water uptake in the layers, an important relationship that will be explored later.

Although such a two-layer system is not investigated here, it is essential to determine

the range of τ values for which numerical and analytical solutions agree sufficiently over
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Table 5.1. Values of τ and θ used in simulations, with corresponding diffusion constant
D and time scale T corresponding to four hours of macroscopic equivalent exposure with
F = 5.76× 10−2 (all in lattice units).

τ θ D T
0.55 0.5 0.025 23040
0.70 0.5 0.10 5760
1.0 0.5 0.25 2304
1.5 0.5 0.50 1152
2.0 0.5 0.75 768
10.0 0.5 4.75 121
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Figure 5.3. Absolute error profile ε between numerical and analytical concentration at var-
ious τ . All simulations were run to the same scaled time, corresponding to four hours of
macroscopic equivalent time.

time. For efficient simulations, it is advantageous to choose τ as large as feasible, since

this corresponds to a large diffusion constant and hence a shorter simulation time. For

a quick initial evaluation, we run a series of lattice Boltzmann simulations with varying

values of τ to the same macroscopic equivalent time of four hours of exposure. After that

time, we compute the absolute error ε between numerical and analytical solutions across

the entire lattice profile. Results are shown in Figure 5.3. The choices of τ , along with the

corresponding time scale T , are shown in Table 5.1.

As shown earlier, the solutions agree very well for τ = 1. However, the error may

be orders of magnitude larger for τ 6= 1. Depending on the particular application, we may
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require ratios of diffusion constants that vary significantly (such as in multi-layer systems);

however, the errors indicated here may cause the numerical method to appear less than ideal.

We discuss the lower asymptotic limit τ → 0.5 later.

We therefore wish to examine the origin and nature of the τ -dependent error. Of

note is that the derivation of the lattice diffusion equation given above (and used heavily

in the literature) is done with only a second-order Taylor approximation. To determine the

degree to which this approximation leads to the errors shown, we next perform a fourth-order

correction to Equation (5.2).

5.4. Fourth-order limit of diffusion equation

In order to introduce a correction to the diffusion equation, we perform a Taylor

expansion of the lattice Equation (5.2) to account for higher orders. As shown by Wagner

[118], the one-dimensional equation expanded to the fourth order takes the form

(∂t + vi∂x)f
0
i −

(
τ − 1

2

)
(∂t + vi∂x)

2f 0
i +

(
τ 2 − τ +

1

6

)
(∂t + vi∂x)

3f 0
i

−
(
τ 3 − 3

2
τ 2 +

7

12
τ − 1

24

)
(∂t + vi∂x)

4f 0
i ≈

1

τ
(f 0
i − fi). (5.27)

Since we have now introduced higher-order powers into this expansion, we must utilize

moments up to the fourth-order. Using the equilibrium distribution, we include the higher-

order moments, which must repeat [118]:

∑
i

f 0
i = ρ (5.28)

∑
i

vif
0
i = 0 (5.29)

∑
i

v2i f
0
i = ρθ (5.30)

∑
i

v3i f
0
i = 0 (5.31)

∑
i

v4i f
0
i = ρθ (5.32)
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Summing over all indices of Equation (5.27) using these revised moments, we are left

with

∂tρ− A(τ)
(
∂2t ρ+ ∂2xρθ

)
+B(τ)

(
∂3t ρ+ 3∂t∂

2
xρθ
)
− C(τ)

(
∂4t ρ+ 6∂t∂

2
xρθ
)

(5.33)

where we have defined the τ -dependent prefactors

A(τ) ≡ τ − 1

2
(5.34)

B(τ) ≡ τ 2 − τ +
1

6
(5.35)

C(τ) ≡ τ 3 − 3

2
τ 2 +

7

12
τ − 1

24
(5.36)

for brevity.

This form is not particularly useful since there are mixed spatial and temporal deriva-

tives in the higher-order powers. We use the diffusion equation to write the temporal deriva-

tives in terms of the spatial derivatives as

∂tρ ≈
(
τ − 1

2

)
∂2xρθ. (5.37)

It immediately follows that

∂2t ρ ≈
(
τ − 1

2

)2

∂4xρθ
2. (5.38)

We can then introduce these two substitutions into Equation (5.33) and we have

∂tρ−
(
τ − 1

2

)
∂2xρθ −

(
τ − 1

2

)3

∂4xρθ
2 +

(
τ 2 − τ +

1

6

)(
τ − 1

2

)
3∂4xρθ

2

−
(
τ 3 − 3

2
τ 2 +

7

12
τ − 1

24

)
∂4xρθ = 0. (5.39)
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Figure 5.4. Density field representation of α(τ, θ)/D(τ, θ), with contour lines at values of
α(τ, θ)/D(τ, θ) = 0 (solid), −1/π2 (dotted, predicted instability), 1/π2 (dashed, shown for
symmetry).

We then obtain the form of a corrected diffusion equation

∂tρ = D∇2ρ+ α∇4ρ (5.40)

with corrections up to the fourth power in spatial derivatives, where we define

α = α(τ, θ) ≡
(

2τ 3θ − τ 3 − 3τ 2θ +
3

2
τ 2+

5

4
τθ − 7

12
τ − 1

8
θ +

1

24

)
θ. (5.41)

This definition of α represents the expected error between the second-order diffusion equation

and the corrected fourth-order equation. For certain parameter values, such as τ = 1 and

θ = 1/3, we have α = 0, which accounts for higher accuracy observed for such parameters.

We plot a density field representation of the relative error quantity α(τ, θ)/D(τθ) in Figure

5.4. We indicate a contour where this quantity vanishes, as well as additional contours whose

numerical importance will be explained in later sections. It is worth noting here that this

derivation is performed only for the case of constant τ ; however, we do not address variable

τ in our applications.
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The correction term has a similar form to a surface tension term in a Cahn-Hilliard

equation. In this case, positive values of α would correspond to a negative surface free

energy. This implies that simulations with positive α should be unstable for high frequency

perturbations. This equation can be solved in Fourier space, allowing us to verify our

analytical predictions with lattice Boltzmann simulations. In the subsequent section, we

perform this analysis.

5.5. Fourier analysis of correction term

A Fourier transform of Equation (5.40) yields

∂tρ̂(k, t, α) = −Dk2ρ̂(k, t, α)− αk4ρ̂(k, t, α). (5.42)

Here k is any specific Fourier mode and ρ̂(k, t) is the k-space density represented by

ρ̂(k) =
1

2π

∫ Lx

0

ρ(x)e
2πikx
Lx dx, (5.43)

where Lx is the system size in the x-direction. Even though x is continuous, the finite

periodicity of 2π causes k to be discrete. This allows for our system to contain a finite

number of k modes which can be now examined independently. The form of Equation (5.42)

is simple since different k modes do not couple. In k-space, the initial profile at t = 0 is

chosen by defining ρ(x, 0), which for ρ̂(k, 0) gives Equation (5.43) and

ρ̂(k, t, α) = ρ̂(k, 0)e−(Dk
2t+αk4t). (5.44)

We reproduce the uncorrected diffusion equation by setting α = 0, obtaining

ρ̂(k, t, 0) = ρ̂(k, 0)e−Dk
2t. (5.45)
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These predictions are implemented on a discrete lattice which implies that there will be a

finite number of k modes. From Equation (5.43), we have

k =
2π

Lx
(5.46)

which implies a maximum allowed k mode when k = π and a minimum lattice dimension of

Lx = 2. In this finite system, we have the back transform

ρ(x, t) =
∑
k

eikxρ̂(k, t, α). (5.47)

It is now possible to verify this theoretical prediction by examining the decay of

specific Fourier modes by imposing an initial profile

ρ(x, 0) = sin(kx). (5.48)

Using this profile, the uncorrected and corrected k-space densities become, respectively,

ρ̂(k, t, 0) = sin(kx)e−tDk
2

ρ̂(k, t, α) = sin(kx)e−t(Dk
2+αk4). (5.49)

In practice, we change k by varying the system size Lx. An interesting point to note is that

when α < − D
π2 , it is predicted that the numerical simulations would be unstable. This is

predicted due to the fact that in Equation (5.49), the negative α term leads to a positive

exponent and causes ρ̂(k, t, α) not to decay.

5.6. Numerical verification of correction term

To determine the validity of the prediction for the correction term shown in Equation

(5.41), we define a ratio between the two forms of k-space density in Equation (5.49) in a

97



0 2000 4000 6000 8000 10000
Iterations

-0.00025

0

0.00025

0.0005

0.00075

0.001

ln
 R

(k
,t

)

τ = 0.6
τ = 0.8
τ = 1
τ = 1.2
τ = 1.5

Figure 5.5. A plot of lnR(k, t) as a function of discrete time steps for various values of τ
and θ = 1/3 and Lx = 200. It is observed that there is an initial offset in lnR(k, t). As the
system evolves, we see that the behavior does decay as expected. Since there is this initial
offset, we cannot use these early times when calculating the derivative in Equation (5.51).

simple form such that

R(k, t, α) ≡ ρ̂(k, t, 0)

ρ̂(k, t, α)
= eαk

4t. (5.50)

We can use this relation to measure α from numerical simulations. We do this by

initializing our probability distributions by fi(x, 0) = f 0
i (sin(2πx/Lx)) and then varying Lx.

Our first prediction is that ln(R(k, t)) is a linear function of t. We can find α from the time

evolution of the density through

αexp =
1

k4
d

dt
lnR(k, t) (5.51)

where we numerically calculate the temporal derivative using a finite difference method.

The numerical evaluation of Equation (5.50) using the numerical results is shown in

Figure 5.5. At t = 0 we have R = 1 by construction, but for all τ 6= 1 we observe a rapid

transient change which manifests itself as a near instantaneous jump in Figure 5.5. After

this transient period, the behavior of ln(R) is indeed linear, as expected. We then calculate

d

dt
lnR(k, t) ≈ lnR(k, t2)− lnR(k, t1)

t2 − t1
, (5.52)
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Figure 5.6. Logarithmic representation of d
dt

[lnR(k, t)] as a function of k from simulation
data for τ = 1 and θ = 0.1. Good agreement is observed between the simulation and the
curve fit for up to Lx = 200.

where we take t1 when ρ̂(k, t, α) = 0.5 and t2 when ρ̂(k, t, α) = 0.01 to avoid any difficulties

with the offset. Equation (5.51) gives our correction polynomial as a function of any Fourier

mode k. Using this form, we can compare our predicted correction term in Equation (5.41)

to a numerical representation. Figure 5.6 shows simulation data for d
dt

[lnR(k, t)] for τ = 1

and θ = 0.1. We see a good fit for all k modes between simulation and the prediction in

Equation (5.51).

We first test the prediction comparing αexp in Equation (5.51) to our theoretical

prediction for α from Equation (5.41). Figure 5.7 shows a comparison between αexp and

our theoretical prediction for α for various values of τ and θ as a function of Lx. For this

analysis, we chose a known stable value for either τ or θ and set the other parameter as a

more extreme value. For a choice of θ = 1/3, we set τ = 0.51 as the extreme value. In these

cases, we see very good agreement between αexp and our prediction. In the cases of θ = 1/3

with τ = 1.5 and θ = 0.9 and τ = 1 we observe good agreement for Lx > 40, but as Lx

becomes smaller, deviations begin to increase. This suggests that there is a discrepancy in

αexp for large k modes.

In the case where α = 0, it is interesting to note that the results match a 1
k6

rather

than the predicted 1
k4

fit. This implies that there are additional correction terms which may
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Figure 5.7. Comparison of αexp (symbol) to theoretical prediction for α from Equation (5.41)
(solid line) for various values of θ and τ as a function of Lx. It is observed that for τ = 0.51
and θ = 1/3 that αexp matches the theoretical α well for all Lx. For sets of values τ = 1
with θ = 0.9 and τ = 1.5 with θ = 1/3, there is a good match for Lx > 40 but deviations
are observed for small values of Lx.

be relevant at specific values of τ and θ. These higher-order corrections are not considered

in the present analysis.

As discussed previously, Equation (5.49) predicts numerical instability when α < − D
π2 .

The density representation shown in Figure 5.4 implies that this will happen as we increase

τ and decrease θ to extreme values (τ & 4 and θ . 0.3 simultaneously). A contour showing

α(τ, θ)/D(τ, θ) = −1/π2, the start of the region of instability, is shown in that figure.

It is instructive to examine α while holding either τ or θ fixed. Setting θ = 1
3
, we

examine α as a function of τ alone in Figure 5.8, which shows excellent agreement to theory

over 100 independent k modes. We set τ = 1 and examine α as a function of θ alone in

Figure 5.9, with similarly excellent agreement.

5.7. Application of correction to reservoir diffusion

With the fourth-order correction term in hand and its correctness assured, we next

determine its applicability to our reservoir coating system. Figure 5.10 shows the absolute

error profile between lattice Boltzmann simulation results and a fourth-order corrected an-

alytical solution. This solution is produced by first setting up an appropriate initial step
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Figure 5.9. Comparison of numerical results and theoretical α as a function of θ, with τ = 1.
Results are collected over 100 independent k modes.
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Figure 5.10. Absolute error profile ε between numerical and fourth-order Fourier analytical
concentration at various τ . All simulations were run to the same scaled time, corresponding
to four hours.

function

ρ(x, 0) =


2 , Lx < x < 3Lx

1 , x = Lx or x = 3Lx

0 , else

(5.53)

in a periodic lattice. This is entirely equivalent to the boundary conditions implied by the

derivation of the second-order error function solution in Equation (5.20). We transform this

step function into k space via a discrete Fourier transform, use the fourth-order correction

to perform a time evolution, and then transform the result back into real space. Strictly

speaking, the method of Equation (5.20) generates a continuous solution, while the Fourier

transform approach yields a discrete solution. We discuss the ramifications of this difference

later and conclude that the difference in solution discretization is very small and of the same

order as the error produced in our best numerical results.

We note no consistent improvement over the second-order shown in Figure 5.3 from

the introduction of the fourth-order correction. However, the magnitude of the error, es-

pecially for high values of τ , is not negligible. The nature of the finite simulation lattice

is such that the boundaries are treated independently of other lattice sites. In particular,

the reservoir density ρ is set manually and not strictly determined by local distributions.
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Since we have seen that τ -dependent errors tend to accumulate near the reservoir boundary

over an order of magnitude higher than at the substrate boundary, the nature of using such

a finite lattice is suspect. The case when τ = 1 yielded excellent agreement throughout

the finite lattice, but this is consistent with the immediate relaxation of local equilibrium

distributions.

This τ -dependent error is consistent with the jump observed in Figure 5.5, where

setting fi(x, 0) = f 0
i (ρ(x)) led to deviations. Indeed, Equation (5.27) implies that

fi = f 0
i − τ(∂tf

0
i (ρ) + viα∇αf

0
i (ρ)) +O(∂2), (5.54)

which suggests an approach that would allow us to increase the accuracy of our boundary

conditions.

In our current case, however, we can avoid the cumbersome issue of the boundary

condition altogether by simply embedding the system into the periodic lattice used for estab-

lishing the initial step function condition of the analytical Fourier solution. This permits a

more standard lattice Boltzmann approach that does not rely on manual density adjustment

at the reservoir (here at x = 3Lx) and uses symmetry to establish the substrate (at x = 4Lx)

with no bounceback. We therefore expect that the τ -dependent error should be substantially

reduced, especially at the reservoir boundary. Figure 5.11 shows a diagram of the periodic

step function from Equation 5.53 used for this analysis.

We again run two sets of simulations for our range of τ values to the same scaled time,

both using the periodically-embedded lattice simulation. The first set of simulations uses

only the traditional second-order approximation and is shown in Figure 5.12. The second

set applies our fourth-order correction and is shown in Figure 5.13.

As was hoped, the error at the reservoir is reduced by orders of magnitude when

compared to the finite system with imposed boundaries. This confirms that the accumulated

error from the finite system is due to the presence of boundary conditions that are only
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Figure 5.11. Periodic step functon from Equation 5.53, with reservoir at x = 3Lx and
substrate at periodic boundary x = 4Lx
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Figure 5.12. Periodic system absolute error profile ε between numerical and second-order
Fourier analytical concentration at various τ . All simulations were run to the same scaled
time, corresponding to four hours.
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Figure 5.13. Periodic system absolute error profile ε between numerical and fourth-order
Fourier analytical concentration at various τ . All simulations were run to the same scaled
time, corresponding to four hours.

guaranteed to match at τ = 1 when relaxation is immediate during collisions. However,

contrary to expectation, there is almost no benefit from the fourth-order α(τ, θ) correction,

even though its validity was verified via Fourier analysis.

It is of value to mention here the effects of using a progressively lower of τ , since our

results suggest that errors increase with τ , regardless of the choice of boundary conditions

considered. Of course, a lower choice of this parameter leads to increasingly long simulations,

which must be balanced with the desired numerical accuracy. We examined a range of τ

values as low as τ = 0.5001 and found essentially no change in error from the τ = 0.55 lower

limit presented throughout this paper. This suggests that (to within machine accuracy),

there is likely no theoretical limit to the ratio of diffusion constants possible. This implies

that a study of a multi-layer coating stack, which fixes the diffusivity ratio through a selection

of τ values, is possible for a situation where one coating’s diffusion constant is orders of

magnitude higher than the other.

It is natural at this point to wonder if there are any choices of parameters τ and θ

for which the fourth-order correction provides substantial benefit in our reservoir problem,

especially since its use in simulations incurs additional computational burden. Naturally,

any such error analysis depends heavily on the particular problem of interest, and therefore
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Figure 5.14. Error ratio ε, indicating bands comparing the second- and fourth-order Fourier
solution accuracy. All simulations were run to the same scaled time, corresponding to a
macroscopic system time of 3.5 seconds. Also shown is the α(τ, θ) = 0 contour (black line).

on the initial profile and desired time evolution. For our system, we examine the parameter

space 0.5 < τ ≤ 2.5 and 0.1 ≤ θ ≤ 1.0. For each point in this space, we run a lattice

Boltzmann periodic reservoir system simulation to the same scaled time. After this time, we

compute the ratio

ε ≡ ε4(τ, θ)

ε2(τ, θ)
, (5.55)

where

ε2,4 ≡

√√√√ 1

Lx

Lx∑
x=1

[ρ(x)− ρ2,4(x)]2 (5.56)

is the root mean square error between numerical concentration ρ and second- or fourth-

order Fourier analytical concentration ρ2,4. If ε ≈ 1, there is no appreciable correction from

using the fourth-order solution; as ε → 0, the correction becomes more substantial. From

a computational perspective, there is a trade-off between the computational burden of the

correction and the benefit (if any) from using it. We do not comment on the appropriate

balance for any particular situation.
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Figure 5.15. Absolute error between numerical simulation results and second-order Fourier
(circles) and fourth-order Fourier (squares) analytical solutions. Simulation was run with
τ = 0.55 and θ = 0.15 to the macroscopic equivalent time of 3.5 seconds.

Contrary to expectation, there are no regions of the given parameter space where

ε < 0.9 during long times, indicating no appreciable benefit to the correction. Further, the

fourth-order analysis predicts numerical instability in the bulk region of parameter space

where α < −1/π2, although the numerical simulations and second-order analysis remain

stable. This is a surprising result overall: a fourth-order correction is not only unhelpful in

increasing the accuracy of these solutions at long times, it is often worse than the second-

order approximation and predicts numerical problems incorrectly.

If we instead run the same analysis for a much shorter time (in the equivalent macro-

scopic system, just 3.5 seconds), the results are more promising and shown in Figure 5.14.

For small values of both τ and θ, the fourth-order correction increases accuracy by an order

of magnitude. This is largely due to the fact that the fourth-order theory accurately predicts

some early time oscillations at the sharp reservoir interface, as shown by the error reduction

in Figure 5.15. This discussion of higher-order effects gives the rather surprising result that

for our barrier coating application, there is no noticeable improvement. This may also arise

because even the second-order results are accurate enough that any resulting errors are of

the same order of magnitude as the difference between continuous and discrete analytical

solutions, as shown in Figure 5.17 in the Appendix.
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Figure 5.16. Convergence of our simulation results for different lattice sizes. For pairs (τ, θ)
for which we have α = 0, we obtain fourth-order convergence, whereas we obtain second-order
convergence where α 6= 0 as predicted by our theory.

There is another prediction we can obtain from our derivation of the correction term.

In Figure 5.14, we see bold black lines indicating the domain for α(τ, θ) = 0. For these

values, our theory predicts that the original method (derived only to second order) is actually

a fourth-order method. To test this prediction, we choose τ = 1 and θ = 1/3 for which we

have α = 0, and examine the convergence of the method to the Fourier term analytical

solution ε2 of Equation (5.56). In particular, we examine the same periodic system as before

by choosing F = 0.0576 for different lattice sizes. Keeping F constant implies that the

number of iterations scales as the square of the lattice size, which is sometimes known as

diffusive scaling. This is shown in Figure 5.16, where we see that we indeed find fourth-order

convergence when α = 0. For pairs of τ and θ for which we have nonzero correction terms

(e.g. we show the case τ = 0.55 and θ = 1/3), we see that we have a second-order convergence

instead.

5.7.1. Continuous and discrete solutions

The error function solution in Equation (5.20) solves the second-order diffusion equa-

tion with the given boundary conditions in continuous real space (see [31] for a basic form of

the derivation). However, we later compute a solution by transforming the appropriate initial

condition into Fourier space, performing a second-order time evolution, and then transform-
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ing back into real space. This process uses a finite number of k modes in each transform, and

necessarily implies a discrete lattice sampling of both the initial condition in real space and

the time-evolved form in Fourier space. We therefore expect a discrepancy when directly

comparing the two solutions: the first is a solution to the continuous diffusion equation that

is examined at discrete lattice points for comparison to the simulation, while the second is

a sampled solution to the discrete lattice diffusion equation, the continuous form of which

would require (in theory) an infinite number of k modes to match the continuous case.

To examine the extent to which these solution forms differ from each other, we com-

pute both at the same scaled four-hour time at each lattice site, and plot the absolute value of

the difference, ε, in Figure 5.17. The two solutions agree to within 10−5 of each other. Since

this error is on the order of the remaining error for the periodically-embedded simulation,

we conclude that any further correction of simulation results renders any error obscured by

differences between the discrete and continuous solutions to the diffusion equation, and is of

no practical consequence.

5.7.2. Algorithm efficiency

For a given dimensionless constant F , it is natural to question the efficiency of the

algorithm over a range of scaled real-world parameters. In this work, a value F = 0.0576 was

chosen for a representative coating sample with diffusion constant D = 10−14 m2/s. With
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this value set and our choice of 100 lattice spaces in the simulation, the parameters τ and θ

set the time scale. A higher value of τ allows for a smaller number of timesteps for a given

real-world time interval, but introduces more error. Conversely, a smaller τ yields lower

error but increases the number of timesteps required. For a single coating, parameter scaling

makes the choice of τ arbitrary for analytical purposes, but a multiple-layer arrangement

may require this.

By way of example, a choice of τ = 1.0 sets the time scale at approximately 576

timesteps per hour of corresponding laboratory time. On the author’s office computer, the

simulation running on a single core of an Intel Core i3-4150 3.50 GHz processor is able to

process one year of laboratory time in 6 seconds.

If we set τ = 0.55 (much closer to its lower limit), the timescale is set to 5760 timesteps

per hour of laboratory time, and the same one-year test takes approximately 84 seconds to

run.

5.8. Conclusions

We have examined whether a diffusive lattice Boltzmann method is an effective tool

for examining problems related to Fickian water diffusion in barrier coatings. This validation

was assisted by our ability to derive an analytical solution for a simple, but not trivial,

coatings problem. In Section 5.3 we presented a real-space solution for the water content

of a dry coating that is initially exposed to a constant moisture reservoir on the surface. A

second analytical solution in terms of Fourier components was presented in Section 5.5 that

can be used both for the standard Fickian diffusion case already examined in Section 5.3,

as well as the more complex fourth-order diffusion equation we derived as part of a higher-

order hydrodynamic limit of the lattice Boltzmann equation. The two equivalent analytical

solutions differ slightly because our Fourier series corresponds to a discrete system with only

a finite number of Fourier terms.

For a simple initial implementation of the inlet boundary, we found excellent agree-

ment only for a relaxation time τ = 1. Our analysis revealed that the disagreement for τ 6= 1
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was caused by assuming an equilibrium distribution as the reservoir boundary condition.

Eventually we were able to define a “perfect” boundary condition by doing away with the

boundary altogether through an embedding of the system in a large periodic system that

only requires periodic boundary conditions.

Along the way of our examination, we discovered that we can indeed identify a fourth-

order accurate hydrodynamic limit of the diffusion equation. However, this higher-order

correction was found to be irrelevant for the coatings problem considered here, as we could

only identify a small region in parameter space where the fourth-order predictions were

significantly more accurate. This may act as a cautionary tale that validating a higher-order

correction does not guarantee that such predictions will always be more accurate for specific

applications.

However, for the best cases, the numerical solutions agree with our analytical solutions

almost as well as the two analytical solutions agree with each other, suggesting that the

proposed method is indeed an excellent candidate to be applied to coatings problems.

In the future we expect to extend this from one-dimensional coatings problems, cor-

responding to full immersion of the coating, to the more complicated problem of droplets

sitting on a coating. This case will require a full three-dimensional simulation, and wetting

and drying problems then occur in one and the same simulation, spatially separated. Fur-

thermore a droplet sitting on a coating would add a pressure gradient caused by the Laplace

pressure in the drop. This may lead to an additional transport mode of advection, driven by

the pressure gradient. This will require an extension of the current model to allow for some

amount of advection as well. This advection would be expected to be highly overdamped, so

that the local advection velocity would be simply proportional to the local pressure gradi-

ent. Technically doing this will require a replacement of the equilibrium distribution to one

which allows for a non-zero first moment. Such simulations will significantly extend the cur-

rent state of the art for coatings research which remains firmly focused on one-dimensional

problems.
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6. EFFECT OF CONCENTRATION-DEPENDENT

DIFFUSIVITY ON CYCLIC MOISTURE

EXPOSURE

6.1. Introduction

An idealized coating is modeled that is adhered to an impermeable substrate and

exposed to either a moisture reservoir or to air. This models the common use case where

a coating might be applied to an airframe or automobile, and thereafter be exposed to

the elements in a cycled fashion [108]. Additionally, it models the cycled environmental

exposure that most coating systems undergo in test chambers during laboratory testing,

where the coating might experience repeated cycles of water misting followed by dry exposure

to ultraviolet radiation. Parameters like temperature, timing, and radiation intensity of each

cycle segment vary depending on the testing protocol; perhaps unsurprisingly, most protocols

align cycle times with the workday (e.g. 8, 12, or 24 hours) to more easily accommodate

predictable personnel availability.

In this chapter, we extend the lattice Boltzmann method of the previous chapter to

the problem of a single-layer coating exposed to a variable reservoir and perfectly adhered

to an impermeable substrate. We use Fickian diffusion to examine the kinetics of wetting

and drying over time, and provide a simple scaling argument that permits us to extend the

model to a variety of experimental setups and parameters. We introduce reservoir cycling

to determine the effects on substrate wetting and eventual oscillatory steady-state behavior.

It is understood that in many polymeric materials, the diffusion coefficient is not

constant with concentration, often with large deviations [37]. Under the influence of moisture

The work in this chapter was completed by the author and A.J. Wagner in a published paper [119].
Mathematical analysis was completed by the author. Simulations were designed and completed by the
author, with additional analysis from Wagner.
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(like water), the material swells and permits penetrants to diffuse more quickly than in

the non-swollen state. Models for this phenomenon range from a “sharp front” model to

a more gradual increase in diffusion coefficient. Due to the lack of a unified theory of

concentration dependence, several common cases are considered for this dependence of the

diffusivity: idealized constant diffusivity, a step function induced by instantaneous network

swelling, and a linear dependence induced by gradual swelling. Variable cycle time ratios

are considered throughout. We conclude by proposing material properties for coatings that

may be particularly beneficial to limit corrosion.

6.2. Theory

In this section, we show the derivation of an analytical solution to the diffusion

equation with correct boundary conditions. We then outline the numerical lattice Boltzmann

method used for subsequent results.

6.2.1. Analytical

As in the previous chapter, the coating panel is modeled as a simple one-dimensional

system bounded by an infinite reservoir and impermeable reflecting substrate. We initially

examine constant diffusivity, a detailed examination of which has been presented. As we

discuss later, however, polymer network swelling under the influence of a solvent may lead

to concentration-dependent diffusivity, where such a simplification to the diffusion equation

is no longer possible.

The model one-dimensional coating system extends in the range 0 ≤ x ≤ L for coating

thickness L. At x = 0 is a reservoir whose concentration may vary with time. At x = L

is an impermeable substrate where the concentration gradient is always zero. No particular

assumptions are made regarding the adhesion of the coating to the substrate, and the coating

is assumed to have uniform density and saturation capacity.

The concentration solution used in the previous chapter assumes the reservoir remains

at fixed concentration, modeling the case where the coating undergoes constant exposure and

is eventually saturated to concentration ρexp(0 ≤ x ≤ L, t→∞) = ρ0. Suppose that instead,
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Figure 6.1. Construction of single-cycle concentration at lattice position x = L/2, showing
constant-exposure ρexp(x, t) (dashed blue), time-shifted constant-exposure ρexp(x, t − Tw0 )
(dot-dashed red), and resulting difference (solid black)

the reservoir is removed at some time Tw0 and the coating is allowed to dry. We may express

the concentration over time by modifying the result. If we let ρexp(x, t < 0) = 0, then the

concentration at any time (before or after the reservoir is removed) may be expressed by the

superposition

ρ1(x, t) ≡ ρexp(x, t)− ρexp(x, t− Tw0 ). (6.1)

Figure 6.1 shows the construction of this expression at a representative position over time

(arbitrary units). This is the correct solution to the linear partial differential diffusion

equation since it is a superposition of known solutions that matches the required boundary

conditions in space and time:

ρ1(x, t = 0) = 0 (6.2)

∇ρ1(x = L, t) = 0 (6.3)

ρ1(x = 0, t < 0) = 0 (6.4)

ρ1(x = 0, 0 ≤ t < Tw0 ) = ρ0 (6.5)

ρ1(x = 0, t ≥ Tw0 ) = 0 (6.6)

114



In the general case where the wet and dry timings are arbitrary and not necessarily

constant between cycles, let Tw0 , T
w
1 , . . . be the lengths of each wet period, and T d0 , T

d
1 , . . . the

lengths of each dry period. That is, the reservoir turns on at times t = 0, (Tw0 + T d0 ), (Tw0 +

T d0 + Tw1 + T d1 ), . . . according to the given timings. The solution then becomes

ρcycle(x, t) = ρexp(x, t) +
∞∑
i=1

[
ρexp(x, t− twi )− ρexp(x, t− tdi )

]
(6.7)

where we define the partial sums twi =
∑i

j=0(T
w
j + T dj ) and tdi = twi − T di . This is the correct

solution if we add additional boundary conditions for each cycle:

ρcycle(x = 0, Tw0 ≤ t < Tw0 + T d0 ) = 0 (6.8)

ρcycle(x = 0, Tw0 + T d0 ≤ t < Tw0 + T d0 + Tw1 ) = ρ0 (6.9)

ρcycle(x = 0, Tw0 + T d0 + Tw1 ≤ t < Tw0 + T d0 + Tw1 + T d1 ) = 0 (6.10)

...

6.2.2. Lattice Boltzmann

The analytical theory gives the precise concentration throughout the coating at any

time for the case of constant diffusivity, regardless of the reservoir cycling used. However,

it does not easily accommodate the scenario where diffusivity within a coating layer varies

with concentration due to polymer network swelling under the influence of a solvent.

To incorporate polymer swelling, we employ the diffusive lattice Boltzmann method

previously introduced. Because boundary conditions were shown to have a large effect on

overall error, these are discussed in more detail below.

6.2.3. Boundary conditions

The substrate underlying the coating in our model is assumed to be impermeable,

so we use a reflection condition for lattice density evolution there. After each collision,

any f1 outflow attempting to pass through the substrate at x = L is reflected back as f−1
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inflow to the adjacent lattice site. Since this means the boundary is effectively located half

a lattice space outward, the corresponding analytical solution is slightly modified to assume

the system is correspondingly longer.

In the previous chapter, it was shown that the choice of reservoir boundary condition

is critical for determining the overall numerical error, especially near the boundary and at

early times. In particular, manually setting the reservoir boundary lattice densities {fi} to

the equilibrium distribution value at each timestep resulted in substantially larger errors.

One proposed solution, that of embedding of the system into a periodic lattice where such

boundary conditions are replaced by symmetric initial conditions (as in the previous chapter),

removes such error almost completely.

Extending this embedding to time-dependent boundary conditions (such as reservoir

cycling) is possible, but we found an even simpler way of defining an inflow boundary con-

dition in the finite lattice that retains the accuracy of the periodic embedding and keeps the

system size smaller for computational efficiency. The reservoir boundary condition is mod-

ified to reflect f−1 outflow densities about the current reservoir concentration to f1 inflow,

instead of using the equilibrium distribution value:

f1(x = 0) = 2ρ0
θ

2
− f−1(x = 0) (6.11)

It was found that this boundary condition retains the same numerical accuracy as a periodic

embedding.

Due to parameter scaling, a single coating layer whose diffusivity is constant is trivial

to model, since any choice of parameters τ and θ is analytically equivalent. However, the

previous chapter showed that straying from τ = 1.0 to higher values introduces rapidly

increasing error, suggesting that τ = 1.0 is a reasonable choice for this application. For this

work, we use τ = 1.0 and θ = 0.5 when constant diffusivity is assumed, and scale to values

τ ≤ 1.0 when working with non-constant diffusivity.
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Many barrier coatings exhibit swelling, where the presence of solvent causes the

crosslinked polymer network to expand and permit faster moisture ingress and egress. Con-

versely, one might imagine a metamaterial designed such that increased concentration reduces

the effective diffusivity. Analytically, either case corresponds to defining D = D(ρ) accord-

ing to some functional form. There is no known unified model for this swelling behavior

from first principles [37], but two common models of polymer swelling are a step function

front and linear diffusivity [35]. In the step function model, the coating is assumed to be

in a dry state when at low moisture concentration until a critical concentration is reached,

above which it is in a wet state and at a different diffusivity. This means D(ρ) takes the

form of a step function. The other common functional form is that of a linear function,

such that diffusivity varies monotonically with concentration. We consider both cases in the

subsequent analysis.

6.3. Results and discussion

6.3.1. Constant diffusivity

A typical single-layer barrier coating might be applied with thickness 50 µm to a test

panel, have a diffusion constant in water of D ∼ 10−14 m2/s, and be exposed to moisture

in an environmental chamber for four hours (14400 s). This corresponds to a dimensionless

constant F = 5.76 × 10−2, as in the previous chapter. For simulations, we choose a lattice

of size L = 100 lattice points, reservoir concentration ρ0 = 1, relaxation time τ = 1.0,

and θ = 0.5. This means that four hours of moisture exposure in the macroscopic system

corresponds to T ≈ 3500 timesteps in the lattice Boltzmann system. It should be noted that

diffusion constants for water through barrier coatings may vary greatly, with values that

may range as low as 10−16 m2/s; due to the ease of scaling the problem, this does not pose

a significant issue for our analysis.

We previously showed that this setup results in excellent numerical accuracy for

moisture exposure over long times, typically on the order of 0.01% of the predicted theory

value, several orders of magnitude better than typical experimental measurements. To verify
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Figure 6.2. Numerical (symbols) and theoretical (Equation 6.7) (lines) concentration at the
end of wet cycles over simulation lattice

that cycling the reservoir, which introduces large concentration gradients near the reservoir,

retains the desired numerical accuracy to theory, we run a lattice Boltzmann simulation with

the given parameters, cycling the reservoir on and off every T timesteps for a total cycle

period of 2T timesteps. Snapshots of the lattice and corresponding theory from Equation

6.7 are shown in Figure 6.2 for the end of wet cycles (just before the reservoir turns off), and

in Figure 6.3 for the end of dry cycles (just before the reservoir turns on). Even at longer

times when the coating concentration reaches full saturation, the numerical solution shows

excellent matching to theory.

The onset of corrosion is commonly expected once the substrate becomes sufficiently

wet. However, it remains an open question at what moisture content corrosion onset is

expected. We examine the substrate concentration as it evolves toward a periodic late-time

regime by fixing the total wet-and-dry cycle length at 2T = 7000 timesteps (equivalent to

eight hours in the corresponding macroscopic system) and varying the wet-to-dry cycle time

ratio. In the periodic late-time regime, the inflow and outflow at any point in the lattice

occur at the same rate. The concentration averaged over a period is the same throughout the

lattice. Since the concentration oscillates about a value that is determined by the relative

time-averaged concentration at the reservoir, we also know that this will be the same average
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Figure 6.3. Numerical (symbols) and theoretical (lines) concentration at the end of dry
cycles over simulation lattice

value at the substrate. That is, for a wet-to-dry cycle ratio of 1:Rt for some ratio Rt, the

late-time average concentration value should be 1/(Rt + 1).

For simulations, we divide the time evolution into windows of length 10T , where for a

given set of simulation parameters T depends on τ and θ, which in turn are set by the choice

of diffusion constant D; we say the system has reached a steady state when the maximum

and minimum values within a window are within 0.01 of the values in the next window. For

reference, with a 1:1 cycle time ratio, the system comes within 2% of the asymptotic value

after about 13 full moisture cycles, corresponding in our equivalent macroscopic system to

slightly over four days of cycled exposure. We then compute the average substrate concentra-

tion from that point. Results are shown in Figure 6.4. Reassuringly, the final concentration

scales precisely with the cycle time ratio.

6.3.2. Variable diffusivity: step function

Diffusion of water through some polymeric coatings may be modeled by an instan-

taneous change in diffusivity that occurs at a particular critical concentration ρc. The dif-

fusivity D(ρ) takes on a constant value Ddry below ρc, and another value Dwet above ρc.

When examining a single-layer coating in this way, we therefore have a three-parameter step
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Figure 6.4. Constant diffusivity steady-state average substrate concentration (symbols) with
varying wet-to-dry cycle timings and total cycle length 2T = 7000 timesteps, with compari-
son to 1/(Rt + 1) theory (line)

function:

D(ρ) =

 Ddry, ρ < ρc

Dwet, ρ ≥ ρc

(6.12)

However, for our choice of dimensionless constant F in which oscillations at the substrate

are small, we need only be concerned with wet and dry diffusion constant ratios due to

parameter scaling. It suffices to reduce to a two-parameter function where the saturated

diffusivity is scaled

R ≡ Dwet

Ddry

(6.13)

from the dry value. Most polymeric materials swell under the influence of solvent and permit

faster moisture transport, so in this model such coatings would have R > 1. We also present

results for R < 1, and discuss the implications in Section 6.4.

In simulations, we set the diffusion constant for one concentration range using τ = 1.0

and θ = 0.5, and set the value for the other τ lower to achieve the proper diffusion constant

for that ratio R:

τ =
D

θ
+

1

2
=

4D + 1

2
(6.14)
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Figure 6.5. Three-parameter step function D(ρ), indicating two diffusivity values and critical
concentration

As discussed previously, this minimizes numerical error. Figure 6.5 shows a diagram of such

a step function.

Unlike in the constant diffusivity case, we now have two regimes of interest: dry

and wet. It is instructive to consider the expected behavior of extreme values for the step

function D(ρ). First, in the asymptotic (but nonphysical) case where ρc → 0, the polymer is

always in the wet state, and exhibits the same behavior as in the case of constant diffusivity;

the long-time periodic substrate concentration must therefore scale with the cycle timings.

Similarly, if ρc → ρ0 = 1, the polymer is always in the dry state, with the same result.

The only difference between the two scenarios lies in the constant diffusivity value in the

regime of interest, which reduces to a scaling problem corresponding to a different value of

the dimensionless constant F , and therefore provides no new information about the system.

In the range 0 < ρc < 1, the behavior is less obvious. One expects a higher periodic

substrate concentration in this range for R > 1 due to the presence of variable timescales,

but it is not immediately clear what form the effect should take. We examine a range of

diffusivity ratios R numerically. For each, we ran a series of lattice Boltzmann simulations

that vary the critical concentration 0 < ρc < 1 and determine the substrate concentration

oscillatory behavior at long times for cycle wet-to-dry ratios of 1:1, 1:2, 1:3, and 1:4, with
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Figure 6.6. Concentration at substrate ρsub versus step function critical concentration ρc for
selected diffusivity ratios R; all simulations use 1:1 cycle timing ratio. Peaks occur on the
solid line ρsub = ρc, and dashed lines represent the asymptotic values for R→∞ and R→ 0

the cycle timescale set by the fixed lower diffusivity. Since oscillations were found to be

sufficiently small for the constant diffusivity case with τ = 1.0, scaling to a lower value of τ

does not pose any problems. While we ran the simulations for many diffusivity ratios, we

plot the time-averaged steady-state results for only a representative few in Figure 6.6 for the

1:1 cycle ratio to illustrate the behavior.

The results for ρc → 0 and ρc → ρ0 = 1 are clear; when the coating is either

always dry or always wet, the resulting concentration scales precisely with the cycle timings

regardless of the actual value of the diffusion constant used. Interestingly, the intermediate

behavior shows two distinct linear regimes. For any given diffusivity ratio (i.e. on one of the

curves in Figure 6.6), there is a maximal time-averaged substrate wetting for R > 1, and

a minimal wetting for R < 1. Further, these extreme values lie on the solid line ρsub = ρc

shown in the figure, implying that this occurs precisely at the corresponding swelling critical

concentration.

An interesting asymptotic case occurs when either R → ∞ or R → 0. This corre-

sponds to the coating having extremely low (resp. high) diffusivity before reaching the critical

concentration; that is, when Ddry → 0 (resp. Dwet → 0). Effectively, this is equivalent to

a scaled system whose concentration is allowed to vary only in the range ρc ≤ ρ ≤ ρ0 = 1
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Figure 6.7. Step function model extreme concentration at substrate ρsub versus diffusivity
ratio R, given for multiple cycle timing ratios; values at R = 1 (dashed) follow cycle timing
ratio

for R → ∞, or in the range 0 ≤ ρ ≤ ρc for R → 0. In such a system, the eventual periodic

concentration at the substrate must follow the dashed lines ρsub = ρ0
2

(1 + ρc) for R→∞, or

ρsub = ρ0
2
ρc for R→ 0, shown in Figure 6.6.

What is unclear from first principles, however, is how the extreme substrate concen-

tration value varies with either the diffusivity ratio or the cycle timing ratio. Figure 6.7 plots

the location of these extrema as a function of diffusivity ratio.

The values for R = 1, corresponding to the constant-diffusivity case, exhibit the cycle

timing ratio scaling discussed earlier. When the coating is allowed to dry for increasing time

intervals relative to wetting, the extreme substrate wetting is reduced for all R; however,

this reduction is far less effective farther from R = 1. In any case, both the step function

magnitude and cycle time ratio play a large role in the “worst-case” substrate wetting that

can arise for larger diffusivity ratios. We discuss the range R < 1 in Section 6.4.

6.3.3. Variable diffusivity: linear

While a step function represents a simple and useful model for concentration-dependent

diffusivity arising from polymer network swelling, it is not the only such model. Most poly-

mer networks exhibit a more gradual swelling behavior, making a step function only an

approximation to physical behavior.
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Figure 6.8. Linear model concentration at substrate ρsub versus diffusivity ratio R, given for
multiple cycle timing ratios; values at R = 1 (dashed) follow cycle timing ratio

We consider here the effect of a linear change to diffusivity. In this model, the

completely dry coating permits the slowest (but nonzero) moisture transport rate, which

increases linearly to the fastest rate when fully saturated:

D = D(ρ) = (Dwet −Ddry)ρ+Ddry (6.15)

= Ddry [(R− 1)ρ+ 1] (6.16)

Materials for whichR < 1 result in a negative slope, discussed further in Section 6.4. Analysis

of this linear model is in some sense a simpler process, since it reduces to a single parameter

R.

Similarly to the step function case, we run a series of lattice Boltzmann simulations

that fix the dry diffusivity using Equation 6.14 and vary the saturated diffusivity (effectively

setting the slope of the linear dependence). The simulations run cycle time ratios of 1:1, 1:2,

1:3, and 1:4, with the overall cycle time fixed and the timescale set by the average of the two

diffusivity values. We allow the system to reach long-time periodic behavior and examine

the substrate time-averaged concentration. Figure 6.8 shows the time-averaged value of the

substrate long-time oscillations for varying diffusivity and cycle time ratios.
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Even though the diffusivity values at the dry and saturated extremes are chosen to

be the same for both the step function and linear models for any given ratio R, the behavior

is markedly different. For any given diffusivity ratio, the resulting concentration values in

the linear model are more closely clustered near the R = 1 value than their step function

extreme value counterparts.

6.4. Application to optimal material properties

We have so far discussed the effects of a diffusivity ratio R > 1; that is, when a swollen

coating permits faster moisture transport, either by an instantaneous increase in diffusivity

at a critical concentration or more gradually in a linear manner. However, it is insightful to

consider the symmetric case when R < 1. This corresponds in the step function model to

reversing the roles of the wet and dry constant values, and in the linear model to a negative

slope. This would represent the behavior of a material that inhibits moisture transport at

higher concentration levels.

In Figure 6.6, bilinear curves for R < 1 lie below the line ρsub = 0.5, and by symmetry

each exhibits a distinct minimum value that lies on the line ρsub = ρc and decreases as R→ 0.

Hence, for any given diffusivity ratio, there is a choice of critical concentration that minimizes

the long-time saturation of the substrate below the value dictated by the cycle time ratio.

This is in sharp contrast to materials for which R > 1, where the cycle time values represent

the “best” case for wetting, and any other critical concentration results in greater substrate

wetting over time. Of course, any cycle time ratio that increases the relative dry time will

also reduce the overall substrate wetting, even for R < 1 materials.

We see the same effect in the linear R < 1 case in Figure 6.8. There, the model

provides no critical concentration to vary, and the mechanics of diffusion are set solely by

the slope of D(ρ). Any choice of R < 1 results in eventual substrate saturation lower than

otherwise dictated by the cycle time ratio, and is further affected by the relative wet and

dry times of that cycle structure.
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These results have implications for possible research into optimal single-layer ma-

terials for inhibiting corrosion. A metamaterial designed to slow diffusive processes with

concentration leads to a far lower long-time substrate saturation than would otherwise be

possible for an idealized material that allowed constant, and even extremely low, diffusivity.

6.5. Summary and conclusions

A discrete lattice Boltzmann method was used to model a finite coating test system

consisting of an infinite moisture reservoir, a finite idealized barrier coating, and an imperme-

able substrate. The reservoir may be set to any concentration at any time. This models both

natural environmental exposure and the common scenario when a coating is prepared on a

test panel and placed into an environmental chamber for cyclic testing, where it is exposed

to different moisture levels for long periods of time in order to determine its robustness for

later use in service. An analytical solution for the concentration over time was presented,

allowing for arbitrary cycling under the assumption of constant diffusivity. The numerical

simulations matched the analytical solution with excellent accuracy.

We used the lattice Boltzmann simulations to determine the effects of moisture cycling

at different cycle time ratios on the oscillatory concentration ρ at the substrate after long

times. Since the onset of corrosion of a panel system is commonly linked to exposure of

the substrate to moisture, it is important to understand how ρ evolves and stabilizes under

different exposure regimes.

In the case where diffusivity is constant with concentration (as in the idealized Fickian

case often used for barrier coatings), the steady-state behavior scales as expected with the

cycle time ratio due to simple time averaging. However, many types of polymeric materials

swell in the presence of sufficient solvent, increasing the rate of diffusivity. We considered two

simple forms for the concentration-dependent diffusivity D(ρ): a step function, where the

polymer network is collapsed until a critical concentration is reached and swollen thereafter,

and a linear model, where the dry network has a nominal diffusivity that increases until it

reaches a maximal level when the coating is fully saturated.
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Under the step function model, all parameters in the model affect the long-time

oscillatory concentration. Regardless of the step function parameters (critical concentration

and diffusivity change after wetting), increasing the relative dry time in a cycle protocol

leads to a lower steady-state substrate concentration. As the critical concentration varies

from very low (where the coating is almost always in the wet state) to very high (where it is

almost always in the dry state), the long-time value increases linearly, reaches a peak whose

location is fixed by the wet diffusivity, and thereafter decreases linearly.

Using the linear model, the behavior is similar, but much different in extent. As in

the step function model, the cycle timing ratio has an effect on the overall behavior, but it

is minimal compared to the overall saturation.

In either model, the results indicate that there is a second very different, but sym-

metric, regime that inverts the wet and dry diffusivity values. For traditional materials that

permit faster transport under saturation, the choice of material properties can minimize sub-

strate wetting to a value that will be greater than the constant diffusivity case for any cycle

protocol. However, a metamaterial structurally designed to inhibit transport under satu-

ration would permit an optimization of properties allowing for substrate wetting far lower

than under constant diffusivity, even under cycle protocols with high relative wet periods.

These results imply that moisture cycling can play a large role in understanding the

timescales and concentrations that may lead to corrosion, especially when considering the

types of environmental tests that are regularly performed on candidate coating systems.

Whether or not a particular type of polymeric system is subject to swelling, as in the case of

a good urethane barrier topcoat versus an epoxy primer, plays a much larger role in the long-

time behavior, and the parameters and form of the swelling lead to large variations. Since

electrochemical means of determining diffusion and uptake behavior, such as impedance

spectroscopy, rely on constant electrolyte exposure so that a useful equivalent circuit is

applicable, controllable simulations such as these offer unique insight into variations caused
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by moisture cycling, and offer a path toward the design of better coating systems and test

protocols.
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7. MULTI-LAYER LATTICE BOLTZMANN

DIFFUSION

7.1. Introduction

In the previous chapters, the diffusion of water through a single coating layer was

investigated in detail. We considered the effect of diffusion rate on substrate wetting during

constant exposure using efficient lattice Boltzmann numerical simulations. Additionally, we

considered the implementation of concentration-dependent diffusion, modeling two different

simplified models of polymer swelling under the influence of moisture.

Earlier work on the modeling of moisture through multiple coating layers is limited

[120], focusing primarily on mathematically simpler single layers [109]. Some experimental

work has been done using electrochemical methods on bilayer coated panels [108, 107]. Cor-

responding numerical models typically solve the Fickian diffusion equation with appropriate

boundary conditions, and assume an idealized interface between coating layers [32]. It has

recently been shown that this simplification may not correctly predict wetting behavior at

longer times due to the complexity of moisture pathways between layers, but no satisfactory

corrections to the assumption have been studied [120]. Some experimental research indi-

cates that layer interface effects are important [121]. Such analyses notably do not model

concentration-dependent diffusion that may have effects on this phenomenon [122], but this

is not specifically examined here.

We extend our single-layer lattice Boltzmann models to examine multiple layers that

adjoin each other. We allow for the layers to have different diffusion coefficients and, through

a modification to the imposed chemical potential, different saturation. As in earlier work,

we assume instantaneous equilibration across the idealized interface, as well as uniform and

homogeneous layers. We provide a brief outline of methods used for such modeling, and
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provide a selection of examples. We comment on areas of future research, including the

integration of more complex potential forms and swelling behavior.

7.2. Theory

We consider a modification to the equation of motion modeled using our lattice Boltz-

mann technique, writing

∂tρ = ∇M∇µ (7.1)

for mobility M ≡ Dρ
θ

and potential µ ≡ θ ln ρ. This equation of motion implies that the

potential µ is spatially continuous. Here D is the diffusion coefficient, ρ is the moisture

concentration, and θ is a unitless parameter that we will use to control relative saturation

between layers.

As before, we consider a one-dimensional finite system bounded at one end by a

moisture reservoir, and at the other end by a reflective substrate. In this chapter, we will

allow the interior of the system to contain either a single layer or multiple layers of idealized

coating through which moisture diffuses according to Fickian diffusion.

In the simplified case of a single coating layer, saturation is achieved by our simplifi-

cation of the effective chemical potential µ, since during moisture exposure the coating fills

with water to a maximal level defined by coating material properties. Despite the logarith-

mic ideal gas potential given above, we approximate the potential by a linear function, and

account for saturation by imposing an arbitrarily large slope above a set concentration:

µ = µ(ρ) ≡

 ρθ (ρ ≤ 1)

∞ (ρ > 1)
(7.2)

This is necessary to properly model saturation differences between layers, discussed below.

Because our system of interest consists of a reservoir with a fixed maximum concen-

tration, the reservoir boundary condition can be considered a potential boundary condition,
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with an equivalent density boundary condition ρ(x = 0) = 1. This has the effect of forcing

a saturation of the coating at ρ = 1, the reservoir concentration.

Recall from our earlier work that our derivation of the lattice Boltzmann diffusion

equation resulted in a diffusion coefficientD = (τ− 1
2
)θ, where τ > 1

2
is a timescale parameter.

The potential form given above means that the choice of θ is therefore somewhat arbitrary in

a single layer, as we showed previously a range of θ values that provide excellent numerical

stability. In this case, the diffusion coefficient D is effectively controlled solely by the choice

of τ .

In the more general case of multiple layers, the interfaces between the layers require

more careful treatment. We may be interested in variations of the diffusion rate between

the layers. In typical usage, a barrier coating system consists of a topcoat that permits low

ingress of moisture, with an underlying primer that provides good substrate adhesion but

may have a diffusion coefficient orders of magnitude higher than the topcoat. Such a scenario

may be easily modeled by choosing a fixed θ between layers and varying the timescale τ at

the interface (say, x = x′) to achieve the desired diffusion coefficient, D, for each layer:

τ = τ(x) ≡

 τ1 (x < x′)

τ2 (x ≥ x′)
(7.3)

To model the effect of saturation differences between the layers, the chemical potential

form is similarly established piecewise by first varying θ between the layers:

θ = θ(x) ≡

 θ1 (x < x′)

θ2 (x ≥ x′)
(7.4)

This yields a piecewise potential

µ = µ(ρ, x) ≡

 ρθ1 (x < x′)

ρθ2 (x ≥ x′)
(7.5)
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Since µ is spatially continuous, it must be constant across the layer interface. The

result of this formation is a discontinuity in concentration across the interface determined

by the ratio of θ values in the adjoining layers:

ρ(x = x′+, t) =
θ1
θ2
ρ(x = x′−, t) (7.6)

Here we slightly abuse notation and let x′+ and x′− be the values of x approaching the layer

interface from the right and left, respectively. This is a statement of Henry’s law, which

relates concentration to partial pressures of gases. It has been applied in other multilayer

mathematical and numerical work on water-polymer interactions, and is used here [32, 109].

At long constant exposure times (t → ∞), each layer in a multi-layer system becomes

saturated according to the θ ratio of its adjoining layers.

7.3. Lattice Boltzmann model

Our redefinition of the equation of motion, while equivalent to our earlier work on

single-layer Fickian diffusion, requires a modification in the lattice Boltzmann numerical

algorithms. The distribution equation

fi(x+ vi, t+ 1) = fi(x, t) +
1

τ

[
f 0
i (ρ(x, t))− fi(x, t)

]
(7.7)

introduced in the previous chapters has the equilibrium distributions {f 0
i } modified and

expressed in terms of the potential:

f 0
−1 =

µ(ρ)

2
(7.8)

f 0
0 = ρ− µ(ρ) (7.9)

f 0
1 =

µ(ρ)

2
(7.10)

This construction can also accommodate more general potential forms than the linear sim-

plification we use. Indeed, choosing the linear potential µ(ρ) = ρθ recovers the equilibrium
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distributions from the previous chapters. Within each layer, we set τ and θ spatially in

simulations before each lattice site undergoes the collision step that modifies the local dis-

tributions toward the equilibrium values.

We note that this lattice Boltzmann construction, like that of the previous chapters,

models diffusion with no advection effects. It is possible to model advection-diffusion, and

even the full Navier-Stokes equation, by modifying the moments of the equilibrium distribu-

tion (introduced in an earlier chapter) to include imposed velocity terms. The derivations

from such constructions are technical and can be found elsewhere [123]. Our construction

effectively sets any such imposed velocities to zero to exclude advection.

7.4. Simulations

The appearance of both parameters τ and θ in the computation of the diffusion

coefficient D = (τ− 1
2
)θ implies an interplay between these parameters for each coating layer

under consideration. Since τ sets the diffusion timescale, varying it alone will affect the

diffusion rate through a corresponding variation of D. To illustrate the effect of a τ variation

between layers, we consider an example three-layer system similar to those in industrial and

laboratory test environments. We consider the outermost and innermost layer (relative to

the substrate) to be a barrier coating with low diffusion coefficient D = 10−16 m2/s, while

the layer in the middle is a coating with higher diffusion coefficient D = 10−15 m2/s. Each

layer has thickness 50 µm.

Such coatings might model, for example, certain urethane barrier topcoats and epoxy

primers that are common in industrial applications, though the diffusion coefficient values

may vary widely among different materials. We do not assume any particular material types

or chemistry here. For this initial example, all layers are assumed to saturate equally. This

somewhat arbitrary constraint ensures that θ is kept constant among all layers while the

timescale τ is varied, as shown in Table 7.1.
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Table 7.1. Simulation parameters τ and θ used for each layer, with diffusion coefficient in
simulation units (Dsim) and scaled to laboratory units (Dlab)

Layer τ θ Dsim Dlab(m2/s)
Outer 0.6 0.5 0.05 10−16

Middle 1.5 0.5 0.5 10−15

Inner 0.6 0.5 0.05 10−16

In this table, Dsim is the diffusion coefficient in simulation units, while Dlab is the

corresponding diffusion coefficient in laboratory units. This value is obtained through the

scaling argument used in the previous chapters.

As an example, the lattice simulation is run for the laboratory equivalent of 376 days.

The fractional spatial concentration profile (relative to saturation) is shown in Figure 7.1.

As expected from the interface boundary condition, the profile is continuous but has a slope

discontinuity corresponding to the different diffusion rates.
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Figure 7.1. Spatial concentration profile for simulated three-layer coating system with low-
diffusivity outer and inner layers (leftmost and rightmost regions) and higher-diffusivity
middle layer (center region) after 376 days of moisture exposure

.
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The physical representation of a θ variation between layers is more subtle, since the

parameter affects both saturation and the value of the diffusion coefficient D. To examine

differences in saturation using the Henry’s law approach, we consider a three-layer system as

before. The innermost and outermost layers have the same θ and τ (and therefore diffusion

coefficient) as before. However, we choose several different θ values for the middle layer in

order to change its saturation relative to the neighboring layers. Because this also changes

the diffusion coefficient, we adjust the value of τ such that D = 10−15 m/s2 in laboratory

units regardless of the relative saturation. Table 7.2 shows the different parameters used for

the middle layer.

Table 7.2. Parameter choices for τ and θ used in middle layer for different saturation ra-
tios (inner : middle), with corresponding diffusion constant in lattice units (Dsim) and in
laboratory units (Dlab)

Ratio θ τ Dsim Dlab

1 : 1 0.5 1.5 0.5 10−15 m2/s
1 : 2 0.25 2.5 0.5 10−15 m2/s
1 : 3 0.167 3.49 0.5 10−15 m2/s
1 : 4 0.125 4.5 0.5 10−15 m2/s

Qualitatively, decreasing θ should produce a filling effect that delays the transport of

moisture by a saturation effect. To confirm this, we run a simulation for each of the listed

saturation ratios for the same laboratory time of 376 days. Figure 7.2 shows the spatial

concentration profile of these simulations.

The results confirm that increasing a layer’s saturation, even at the same diffusion

rate, delays the passage of moisture to neighboring layers through a “fill-up” effect. For the

choices of parameters used here, setting the middle layer’s saturation to twice that of its

neighboring layers decreased the final substrate concentration by 26%, for example.

To better understand the effects of the saturation fill-up on the substrate, a simulation

for each of the layer saturation ratios is run until the entire three-layer system reaches

equilibrium. The substrate moisture concentration is tracked and plotted for the entire
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Figure 7.2. Spatial concentration profile for simulated three-layer coating system for varying
layer saturation ratios, each run for 376 days of moisture exposure

.
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Figure 7.3. Substrate concentration over time for simulated three-layer coating system for
varying layer saturation ratios, each run to equilibrium

.

time period in Figure 7.3. Higher middle-layer saturation produces a delay in moisture

reaching the substrate that corresponds to the filling effect observed in Figure 7.2. Since the

concentration gradients become very small as the system nears full saturation, there is an

appreciable difference between the equilibrium times.
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7.5. Conclusions

We have demonstrated that the diffusive lattice Boltzmann numerical method pre-

viously used to study single-layer coatings undergoing both constant and cycled moisture

exposure can be extended to an arbitrary number of layers undergoing Fickian diffusion.

Within each layer, the rate of diffusion and layer saturation can be controlled independently,

matching the Henry’s law behavior other authors have used to account for saturation differ-

ences in different material types. For example, many protective coating systems consist of a

low-saturation outer barrier layer with low diffusion coefficient, and a higher-saturation base

or primer layer with high diffusion coefficient. More complex systems, like in automotive or

aerospace applications, may have additional intermediate layers.

We introduced a simple three-layer system consisting of an outer and inner layer with

low diffusion rate and saturation, a rough approximation to common barrier urethanes. The

middle layer has a higher diffusion rate and saturation, which could model materials like

epoxies. This system was chosen in order to better examine how the middle layer fills and

acts as a source that feeds the inner layer. A Henry’s law interface saturation discontinuity

results in qualitatively expected behavior, in that the middle layer feeds the inner layer, but

with a delay; an increase in the layer’s saturation means it exhibits a “filling-up” effect that

delays the passage of moisture to its neighboring layer.

Unlike other finite-element simulations and those using differential equation solvers,

this lattice method exhibits no interface instabilities, even in the presence of high gradients.

Further, it is possible to introduce concentration-dependent diffusion rates using this method,

which we investigated in detail for single-layer systems. However, we leave such analysis for

future work. With this numerical approach, it is possible to input exposure parameters

like diffusion coefficient, layer saturation, coating thickness, and exposure time and model

quantities like moisture uptake and concentration spatial profiles, providing useful data on

moisture transport and the effects of different exposure regimes over time.
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8. FUTURE WORK

In this brief chapter, we outline areas of interest for future work and research.

8.1. Molecular dynamics

As discussed, molecular dynamics has been used to successfully model a variety of

behaviors in representative models of physical systems. Originally used to examine Lennard-

Jones fluids, it has seen wide interest in glass-forming thermoplastic chain models of simple

coarse-grained polymeric systems. Only recently, however, have molecular dynamics simu-

lations been applied to models of densely-crosslinked thermosets.

Recent work by collaborators has investigated the heterogeneity present in model

crosslinked networks, since mathematical approaches using broader statistics originally as-

sumed generally homogeneous bonding [22]. Since not every chemical precursor will be

optimally placed for bonding at all crosslinking sites, imperfections will exist even well into

the gel state during a thorough crosslinking process [1, 30]. The types and relative occur-

rence of small fragments, loops, cycles, and dangling ends in a thermoset network have been

examined for the select representative 3- and 6-functional systems considered here, and these

results are assumed to represent the extrema of networks whose functionality distribution

lies between them.

A complete analysis of the structure of networks undergoing degradation remains

open. In this work, we examined the distribution of network fragments in model thin films

during stochastic degradation, as well as the effect of bond scission on network percolation

that is linked to the gel point. However, it has not been demonstrated whether the statistics

of more complex imperfections in network structure during the crosslinking process should

be mirrored during degradation. While the crosslinking process is influenced by the types

of network precursors and spatial distribution needed for bond formation, bond scission is

treated as a random process that is not simply the reversal of crosslinking. A full treatment
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of network heterogeneity during stochastic bond scission can provide a more complete picture

of network behavior in service as a polymeric system ages.

We previously showed that network imperfections couple with spatial constraints of

rapid cooling to produce bulk void structures as a sudden occurrence [23]. This implies

that an apparently well-formed crosslinked network at high conversion may eventually form

percolating paths through a film structure to permit the ingress of moisture and other ag-

gressive species. The requirements for such a path over a broad coating system are not well

understood, nor is the precise dependence on conversion or more complex imperfections that

may result from non-ideal formation or application. Future work may extend our cavitation

analysis to a more comprehensive set of simulations that examine percolating path forma-

tion, both as a result of incomplete conversion and the types of degradation we examined in

model films.

8.2. Finite-element analysis

The cohesive zone model (CZM) is a numerical approach to computing the onset and

growth of material fractures [124, 125]. Earlier linear elastic crack growth models assumed

the existence of a crack or flaw in a material, and that the nonlinear plastic region ahead

of the crack was negligible. While this approach is useful when modeling brittle materials

where the location and magnitude of an existing crack is known a priori, it breaks down

when applied to more pliant materials or any time a preexisting crack is not assumed. The

approach has been used to successfully model crack formation and propagation in materials

as varied as concrete and poly(methyl methacrylate).

For normal separation, debonding is established using a bilinear normal traction func-

tion as in Figure 8.1. Here Γ0 is the debond energy, σu the maximum normal stress at the

start of debonding, and δr is the gap separation when debonding is complete.

Many experimental adhesion tests commonly used to characterize materials are known

to be problematic in accurately measuring the critical strain energy release rate. In one such

method, the peel test, work done in the test is often dissipative as the material undergoes
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Figure 8.1. Bilinear CZM traction separation curve, with debonding energy Γ0, maximum
stress at start of debonding σu, and contact gap after debonding δr

plastic yielding [126]. Another method, the lap shear test, assumes materials undergo small

strains and precludes nonlinear behavior [127].

Recently, a novel adhesive test method has been developed to more accurately mea-

sure debonding energies [128]. This method requires only a tensile testing apparatus. To

apply it, a substrate-film bilayer is formed with a small portion of the film debonded during

construction. The bilayer is subjected to a pressure P ; as a result, the bonded portion of

the bilayer stretches a fraction λ′′ of its original length, and the debonded portion stretches

a fraction λ′. The elastic energy stored in the bonded bilayer divided by its undeformed area

is computed as

Ub(λ
′′) =

∫ λ′′

1

Pb(λ) dλ (8.1)

where Pb(λ) is the force-stretch curve of the bilayer, measured before the experiment. We

define the same quantity for the substrate alone, Us(λ
′), analogously. The useful result is

that of the strain energy release rate, given to be G ≡ Ub(λ
′′)−Us(λ′)+P (λ′−λ′′). When the

pressure P is sufficient for the advancement of debonding, the energy release rate G reaches

the value of the debonding energy Γ0.

Future work may use such methods to determine material parameters needed to

implement accurate CZM modeling of joint types discussed previously. Additionally, the
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extension of our models to complete three-dimensional systems will permit a more thorough

and careful analysis of possible edge effects that are necessarily ignored in two-dimensional

models.

8.3. Lattice Boltzmann modeling

We developed a one-dimensional lattice Boltzmann model of moisture diffusion through

a coating system. The technique remained stable through a wide parameter range that ac-

commodates the large gradients present during cycled exposure in the presence of a reservoir.

The model included adjustments for material parameters like diffusion rates, swelling behav-

iors, and maximal saturation. A natural extension of this work is to permit the use of two-

and three-dimensional systems. Our one-dimensional system necessarily excludes edge effects

and assumes a uniform distribution of moisture at the coating surface. This assumption is

reasonable for the case of a coated panel immersed into a bath of water. However, in testing

and the environment, sprays and dew formation are more likely to produce a distribution

of localized droplets on the coated surface, leading to evaporation and diffusion more com-

plex than can be included in our existing model. Lattice Boltzmann numerical techniques

have previously been employed to successfully examine droplet behavior under evaporation

[129] in two dimensions. An extension of our diffusive work to a full three-dimensional model

would permit the study of similar droplet behavior, but with the addition of inward diffusion

as well as evaporation. Pressure distribution may be explicitly considered in such a model

as a function of droplet shape over time. Comparison to the idealized reservoir case that we

examined could determine whether a given application or study requires the complexity of

droplet modeling at all.

For single-layer coatings, we examined two forms of concentration-dependent diffusion

coefficient D(ρ) and showed that substrate concentration depends heavily on the interplay

between the form of D(ρ) and the time parameters used in moisture cycling. The numerical

method was then extended two multi-layer coating systems, but assuming constant diffusion

coefficient within each layer. Future work could include non-constant D(ρ) in the multi-layer
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model. This would permit a more complete numerical characterization of each layer under

consideration for a particular material stack.

Finally, new advances in lattice Boltzmann theory provide intriguing applications to,

for example, coarse-grained molecular dynamics [130]. Investigations into possible applica-

tions of efficient lattice Boltzmann setups to other types of polymeric systems, traditionally

modeled with much more complex molecular dynamics simulations, would be useful. Such

studies provide useful connections between the different numerical techniques employed in

our broader work.
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U. Krupp. Investigation of surface pre-treatments for the structural bonding of tita-

nium. International Journal of Adhesion and Adhesives, 34:46 – 54, 2012.

[101] T. Mertens and H. Kollek. On the stability and composition of oxide layers on pre-

treated titanium. International Journal of Adhesion and Adhesives, 30(6):466 – 477,

2010.

[102] ASTM E8 / E8M-16a. Standard test methods for tension testing of metallic materials.

Technical report, ASTM International, 2016.

[103] R Von Mises. Mechanics of solid bodies in the plastically-deformable state. Nachr.

Ges. Wiss. Goettingen, Math.-Phys. Kl, 1:582–592, 1913.

[104] Magd Abdel Wahab. The Mechanics of Adhesives in Composite and Metal Joints.

DEStech Publications, 2014.

[105] FAA. MMPDS-10: Metallic materials properties development and standardization.

Technical report, Federal Aviation Administration, 2015.

154



[106] Kyle T. Strand, Aaron J. Feickert, and Alexander J. Wagner. Fourth-order analysis

of a diffusive lattice Boltzmann method for barrier coatings. Phys. Rev. E, 95:063311,

Jun 2017.

[107] P. Carbonini, T. Monetta, L. Nicodemo, P. Mastronardi, B. Scatteia, and F. Bellucci.

Electrochemical characterisation of multilayer organic coatings. Progress in Organic

Coatings, 29(1):13 – 20, 1996. Proceedings of the 21st International Conference in

Organic Coatings Science and Technology.

[108] J.H Park, G.D Lee, H Ooshige, A Nishikata, and T Tsuru. Monitoring of water uptake

in organic coatings under cyclic wet–dry condition. Corrosion Science, 45(8):1881 –

1894, 2003.

[109] Brian R. Hinderliter and Erik D. Sapper. Water concentration distribution in coatings

during accelerated weathering protocols. Journal of Coatings Technology and Research,

12(3):477–487, May 2015.

[110] YH Qian, Dominique d’Humières, and Pierre Lallemand. Lattice BGK models for

Navier-Stokes equation. EPL (Europhysics Letters), 17(6):479, 1992.

[111] Michael R. Swift, W. R. Osborn, and J. M. Yeomans. Lattice Boltzmann simulation

of nonideal fluids. Phys. Rev. Lett., 75:830–833, Jul 1995.

[112] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes

equation. Phys. Rev. Lett., 56:1505–1508, Apr 1986.

[113] Dieter Wolf-Gladrow. A lattice Boltzmann equation for diffusion. Journal of Statistical

Physics, 79(5-6):1023–1032, 1995.

[114] Xiaowen Shan and Gary Doolen. Diffusion in a multicomponent lattice Boltzmann

equation model. Phys. Rev. E, 54:3614–3620, Oct 1996.

155



[115] A.J. Wagner and S. May. Electrostatic interactions across a charged lipid bilayer. Eur

Biophys J, 36:293–303, April 2007.

[116] Irina Ginzburg. Prediction of the moments in advection-diffusion lattice Boltzmann

method. i. truncation dispersion, skewness, and kurtosis. Phys. Rev. E, 95:013304, Jan

2017.

[117] Alexander J. Wagner and Kyle Strand. Fluctuating lattice Boltzmann method for the

diffusion equation. Phys. Rev. E, 94:033302, Sep 2016.

[118] A. J. Wagner. Thermodynamic consistency of liquid-gas lattice Boltzmann simulations.

Phys. Rev. E, 74:056703, Nov 2006.

[119] Aaron J. Feickert and Alexander J. Wagner. Optimizing coating performance for

diffusion under cyclic moisture exposure. Phys. Rev. Materials, 1:033804, Aug 2017.

[120] K. N. Allahar, B. R. Hinderliter, D. E. Tallman, and G. P. Bierwagen. Water transport

in multilayer organic coatings. Journal of The Electrochemical Society, 155(8):F201–

F208, 2008.

[121] A. Miszczyk and T. Schauer. Electrochemical approach to evaluate the interlayer

adhesion of organic coatings. Progress in Organic Coatings, 52(4):298 – 305, 2005.

AETOC 2003.

[122] N.L Thomas and A.H Windle. A theory of case II diffusion. Polymer, 23(4):529 – 542,

1982.
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