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ABSTRACT

Mixed lipid membranes play a crucial role in numerous cellular processes and

pharmaceutical applications. Fully understanding the interactions between membranes

and biomacromolecules is not possible without gaining insight into underlying physical

concepts. In this thesis we develop theoretical models that aim to rationalize a

number of experimental findings, all involving lipid layers and their interaction with

macromolecules. Our models are phenomenological and employ a minimal set of order

parameters, thus focusing on essential physical interactions. We address four major

subjects:

First, certain mixed model membranes containing cholesterol are able to undergo

macroscopic phase separation. Based on a previously suggested thermodynamic model

we demonstrate that peripherally adsorbed membrane proteins tend to further facilitate

phase separation, especially when they exhibit attractive interactions.

Second, we show that the coupling between the two leaflets of a mixed

lipid bilayer can influence its phase behavior. To this end, we calculate detailed

phase diagrams and argue that their predictions are in principal agreement with

experimental observations. Specifically, the coupling can trigger or inhibit phase

separation, depending on lipid compositions in each leaflet and coupling strength.

Third, we investigate the fundamental question if physiological pH-changes

are sufficient — and can this be employed by cellular processes — to trigger the

adsorption of peripheral proteins. Proposing a model for the previously suggested

electrostatic-hydrogen bond switch mechanism, we show that protein adsorption based

on electrostatic interactions alone has a weak pH dependence but is rendered pH

sensitive by the electrostatic-hydrogen bond switch.
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Finally, the transfer of hydrophobic drug molecules in model systems from

donor liposomes to a target carrier is known from experimental work to typically

exhibit a first-order kinetics, sometimes also sigmoidal behavior. We develop a

detailed kinetic model for drug transfer that is based on a statistical description of

drug occupation numbers in liposomes and includes both drug diffusion and liposome

collision mechanisms.
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1. INTRODUCTION

Lipid membranes are amongst the most fascinating multi-molecular structures

known at present [193, 278]. This fascination results perhaps not so much from only

one single membrane property but from its many facets and inter-disciplinary nature

that intrigue scientists of very different backgrounds.

Biologists have recognized long ago that life, as we know it, does not exist

without lipid membranes [2]. Every living cell is surrounded by a biomembrane that

is composed of lipids and hosts numerous proteins. Biomembranes also enclose the

nucleus and other cell organelles of eukaryotic cells. Although biomembranes typically

contain tens, often hundreds, of different lipid species, their composition is tightly

regulated [56]. Even more, biomembranes in different cells – say a mitochondrial

membrane [200] or a bacterial membrane [45] (for example a thermophile, which is

an archaea that can withstand large temperatures [46]) – are composed of vastly

different lipids. And yet, most of these lipids share the same basic structural motif,

a hydrophilic headgroup that is linked to one, two, or even more hydrocarbon tails.

Molecules with two spatially separated hydrophilic (water-loving) and hydrophobic

(water-hating) parts are known as amphiphiles [60]. All lipids are amphiphiles.

Amphiphilicity can be the result of many different chemical structures; this not

only forms the basis behind the vast richness of naturally occurring lipid structures, it

also has provided a playground for chemists to synthesize a plethora of new lipids for

medical and technological applications such as the design of lipid-based drug carriers

[64]. Chemists have also coined the term self-assembly, which describes the ability

of amphiphilic molecules (such as lipids) to form complex ordered structures. In

order to prevent their exposure to the aqueous phase, the hydrophobic lipid tails

arrange themselves into close proximity, forming a hydrocarbon core that is shielded
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by the headgroups from direct contact to water molecules. This process occurs

spontaneously and is driven by the hydrophobic effect [266]. Unlike in an oil-water

mixture, where the oil completely segregates into a macroscopic and homogeneous

bulk phase, a pure lipid-water mixture must always form structures that are “thin”

along at least one spatial direction. Here, the notion “thin” refers roughly to twice

the molecular length of a lipid. Despite this constraint, lipids are able to form a

large variety of structures [241], including globular and worm-like micelles, inverse

phases, bicontinuous structures, sponge phase, and membranes [137, 138, 248]. Lipid

membranes can interact with each other to form multilamellar membrane stacks, or

they can interact with a flat or curved substrate to form a supported bilayer [35]. Most

frequently, however, membrane-forming lipids arrange – or are made to arrange – into

vesicles, which range from small (starting with a diameter of about 30nm) unilamellar

vesicles to large (up to micrometer sizes) uni- or multilamellar vesicles.

Pharmaceutical scientists refer to vesicles as liposomes [145] and use them

routinely as delivery vehicles for drug molecules [247]. For example, a water-soluble

drug that is captured inside the inner aqueous region of a liposome would travel

together with its host after injection into the blood stream [204]. A prominent

example is small interfering RNA (siRNA), a 20–25 base pairs long double-stranded

RNA molecule that can be used to silence gene expression in a specific manner [257].

However, most drug molecules are poorly water-soluble. They tend to self-aggregate

in an aqueous solution, which limits their bioavailability [153]. If these drugs are

sufficiently small, they will spontaneously partition into the hydrocarbon region of

a liposome’s lipid bilayer [110]. Liposomes as carriers for poorly water-soluble drugs

are of great promise, with about a dozen clinically approved systems currently [37].

Examples include doxorubicin, paclitaxel, and amphotericin B. Significant progress

has been made in designing specific targeting devices, in triggering the release of the
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drug [8, 284, 150], and in protecting liposomes during their journey through the blood

by a polymeric coat (stealth liposomes [187]).

Physicists too have embraced the unique properties of lipid membranes [242, 26].

On sufficiently large length scales, an extended lipid bilayer can be viewed as a

two-dimensional system with correspondingly interesting physics. Moreover, lipid

membranes, when in their fluid state, can undergo bending deformations of very low

energy cost, implying an important role of curvature fluctuations [154]. For example,

membrane-inserted inclusions interact through Casimir forces, which arise from the

confinement on the membrane’s fluctuation spectrum [86, 124, 55, 165]. The shapes of

lipid vesicles are determined by the membrane’s bending energy [101], subject to the

conservations of the vesicle’s volume and lateral membrane area (in fact, the lateral

areas of both monolayers individually); this leads to a surprisingly rich catalog of

shapes and transitions between them [53]. Also composite structures or phases of

membranes with polymers and colloids have attracted considerable attention among

physicists [198, 20].

One of the major conceptual ideas in molecular cell biology is related to the

lateral organization of biomembranes. Instead of merely forming a permeability barrier

and passively hosting integral proteins (which is what the “fluid-mosaic” model of

Singer and Nicolson had postulated in 1972 [254]), the lipids in a biomembrane are

thought to be actively involved in the formation of dynamic patches, called “rafts”

[251], that are of some tens or even hundreds of nanometers in size and serve as

platforms for signaling events and trafficking [252, 211]. Until now, some controversy

remains about the nature of rafts [194, 253] and the mechanisms that stabilize and

regulate their finite size [74, 28, 69]. However, it is known from numerous studies on

model membranes that certain lipid mixtures tend to form domains or even undergo

lateral phase separation [51, 279, 57, 252]. More specifically, certain ternary mixtures

of lipids with two saturated hydrocarbon chains (especially sphingolipids [75]), at
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least one unsaturated chain, and cholesterol have been found to phase separate into

two coexisting phases, referred to as liquid ordered (Lo) and liquid-disordered (Ld)

[216, 105]. The Lo phase is enriched with both cholesterol and the saturated lipid

whereas the Ld phase contains mainly the unsaturated lipid. What underlies the phase

separation on a molecular level is the favorable interaction of saturated hydrocarbon

chains with the rigid backbone of cholesterol [252]. In contrast, the double bond

of an unsaturated chain introduces a kink that appears to render the interaction

with cholesterol more unfavorable. Lipid mixtures containing significant fractions

of sphingolipids, cholesterol, and unsaturated phosphatidylcholine are present, for

example, in the extracellular leaflet of a plasma membrane, where they could form

domains similar to the Lo and Ld phases. Despite the appeal of this model, basic

questions remain: What role do proteins play in the formation of rafts [58]? Why do

rafts not coalesce into macroscopically large domains as seen for model membranes

[74, 28, 69]? Do rafts form in both membrane leaves, and if so how do they interact

with each other across the membrane [215]? Each of these questions is important

from a biological perspective. Yet our ability to answer them will likely require some

physical understanding of these lipid mixtures as well.

Model membranes are an important research subject not only in their role as

a simple model for biomembranes but also because they are employed in numerous

pharmaceutical and biotechnological applications. Besides their above-mentioned use

as liposomes for drug delivery they serve as host systems for the reconstitution and

crystallization of membrane proteins [240, 30], as supported membranes for surface

patterning and functionalization [255], as monolayers at the air-water interface to study

phase transitions and adsorption processes [122], or in composite phases to induce the

condensation of polymers [305]. Many of these applications involve interactions of lipid

membranes with various other molecules such as drugs, peptides, proteins, polymers,

or colloids. Because lipid membranes are self-assembled [112] and flexible structures,
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with additional compositional degrees of freedom for mixed membranes, they are

able to respond when interacting with other molecules. For example, increasing the

concentration of the peptide gramicidin A (gA) in a planar lipid membrane composed

of a long-chain phosphatidylcholine ultimately induces the formation of an inverse

hexagonal phase [126]. In this specific case, the planer membrane is only to a certain

extent able to accommodate gA. Of course, any practical application that involves

high concentrations of gA in a model membrane may face this instability. To gain

control over this process requires insights into the physical mechanisms that determine

the structures of membrane-peptide complexes.

Much of our current understanding about lipid membranes and their interactions

with biomacromolecules results not exclusively from experimental studies but has been

arrived at in conjunction with modeling work, either phenomenological mathematical

models [17] or computer simulation studies [271, 283, 171]. Indeed, the lipid membranes

can be considered as a prime example for the mutual inspiration between experiment

and theory [242]. Theoretical models have often introduced new conceptual ideas,

suggested new experiments, or rationalized experimental findings [175]. This is one

reason for the abundance of phenomenological modeling studies that involve lipid

membranes. A key contribution to the modeling of membranes was introduced in 1973

by Helfrich [101], who realized the importance of membrane bending and proposed a

corresponding free energy expression. This curvature elastic free energy has entered

into the modeling of many specific systems [229], sometimes even systems where the

bending of a lipid layer is not immediately apparent. A prominent example is the

deformation of a membrane by an integral membrane protein or peptide that does not

match the hydrophobic thickness of the host bilayer [192, 163, 127]. This “hydrophobic

mismatch” gives rise to a deformation of the membrane in the vicinity of the protein,

which can be described reasonably well by accounting for curvature and compression

contributions to the free energy of the membrane [9, 162]. For the particular case of the
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hydrophobic mismatch, phenomenological models have rationalized many experimental

findings [7].

Some naturally occurring lipids such as phosphatidylserine (PS), phosphatidic

acid (PA), or phosphatidylglycerol (PG), carry a negative excess charge (PA in fact

can carry one to up to four charges), whereas others, like phosphatidylcholine (PC)

or phosphatidylethanolamine (PE), are zwitterionic. A number of cationic lipids

have been synthesized for specific purposes, especially for the design of cationic

lipid-DNA complexes that are used as delivery vehicles in non-viral gene transfer

[29, 305]. Charged lipids are abundant in each biomembrane and many model

bilayers. However, membranes where all lipids are charged are rare because the

electrostatic headgroup-headgroup repulsion tends to render the membrane unstable

with respect to the formation of micellar structures [113]. Hence, charged membranes

usually consist of a mixture of zwitterionic and charged lipids. The adsorption of

many peripheral membrane proteins is mediated, at least partially, by electrostatic

interactions [99, 18], examples also include certain cationic antibacterial peptides [220]

such as mellitin [190] or magainin [172]. Modeling of electrostatics is challenging

because salt ions in the aqueous phase tend to screen electric charges and thus modify

electrostatic interactions between macroions [94, 89, 25]. A convenient approach to

model electrostatic interactions in electrolytes that contain macroions is the mean-field

Poisson-Boltzmann theory [73]. This approach has also been used frequently for

charged lipid membranes [6, 176].

To summarize this introduction, the study of lipid membranes represents an

inter-disciplinary research field that targets biotechnological/pharmaceutical applica-

tions and aims at elucidating cellular processes on biomembranes. Lipid membranes

and their interactions with biomacromolecules are a supreme example for a soft matter

system, where physical concepts are indispensable to fully understand the system
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behavior. Lipid membranes also exemplify the beneficial relationship between experi-

ment-driven research and concomitant modeling. Indeed, phenomenological modeling

and computer simulations have frequently played a central role in understanding

experimental results. The present thesis follows up on this approach. It develops

theoretical models that aim to rationalize specific experimental findings, relating to

phase behavior of a lipid bilayer, to the electrostatic adsorption of proteins, and to

the kinetics of drug release from liposomes.
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2. IMPORTANCE AND ROLE OF THE PRESENT WORK

2.1. Modeling approaches: Methods and strategies

As outlined in the Introduction, the interplay of experiment and modeling

has played an important role in understanding the behavior of lipid membranes and

their interactions. From a physical point of view, lipid membranes constitute complex

fluids (often multicomponent) that are immersed in water. In contrast to simple fluids,

where rigorous theoretical approaches are available [95], complex fluids have to rely

on phenomenological modeling, mean-field theories, and computer simulations. Each

method has its own scope and limits of applicability.

Phenomenological models start with order parameters. These are scalar or

vectorial (occasionally tensorial) quantities that determine the behavior of a system.

For a lipid membrane, this can be the curvature at a given point in space, the local

cross-sectional area per lipid, the average direction into which the lipid tails point,

the local lipid composition, the concentration of ions in the vicinity of charged lipids,

or a tensorial dielectric constant. Which ones to chose is often a non-trivial question

and depends on the problem. Herbert Callen’s textbook “Thermodynamics and an

Introduction to Thermostatistics” provides an excellent discussion on how a small

number of order parameters emerges from a very large number of degrees of freedom

of a macroscopic system [33]. Once a set of order parameters λi is identified, a set of

relations is needed that describes the equilibrium values or the dynamic behavior of

the order parameters. For systems in thermodynamic equilibrium, it is often most

convenient to find an expression for the relevant free energy F of the system. For

phenomenological models, free energy expressions are typically obtained based on

symmetry considerations. The free energy generally depends on the order parameters
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λi, which are free to adjust, and on a number of fixed parameters λ̃i (for example,

the temperature T ). The presence of two types of variables, unconstrained (λi) and

constrained (λ̃i), is the defining feature of equilibrium thermodynamics. Clearly, in

thermal equilibrium F (λi, λ̃i) adopts a minimum with respect to all unconstrained

variables. The minimization typically leads to algebraic or differential equations that

can be solved either analytically or numerically. Inserting the solutions λi = λi(λ̃j)

for the λi’s back into the free energy expression F = F (λi(λ̃j), λ̃i) provides access

to the free energy as function of all constrained parameters λ̃i. This then yields all

thermodynamic information; i.e., all equations of state follow from the derivatives

∂F/∂λ̃i. For systems not too far away from thermal equilibrium, derivatives of the free

energy can be used according to Onsager’s reciprocity relations to set up equations

of motion [33]. For example, the Cahn-Hilliard [31] equation ∂φ/∂t = M∇2µ(φ) for

a constant mobility M relates the time derivative of the local composition φ to the

Laplacian ∇2 applied to the chemical potential µ = µ(φ). The chemical potential

µ = ∂F/∂φ follows from a phenomenological Landau-Ginzburg expression of the free

energy F = F (φ).

Mean-field models work along similar lines as phenomenological models. The

difference is that the free energy is obtained from a mean-field approximation of a

statistical mechanics model of the system, instead of being obtained from symmetry

considerations. An example is the mean-field chain packing model developed by

Ben-Shaul [17]. This approach starts from a molecular lipid chain model and adopts a

mean-field approximation to derive a self-consistency relation that yields statistical

properties of a lipid chain in a fluid membrane. The signature of a mean-field model

is the neglect of correlations – this is often a reasonable approach, especially when

far away from second order phase transitions. Mean-field approaches generally give

rise to self-consistency relations; these are often algebraic or differential equations.

The present thesis makes use of the Poisson-Boltzmann model, which is a mean-field
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description of electrostatic interactions in aqueous solutions. Here, the self-consistency

relations appear as the Poisson-Boltzmann equation [6, 176].

Computer simulation methods are widely used for complex fluids and soft

matter systems, including lipid membranes. They range from atomistic molecular

dynamics simulations with classical interaction potentials [271] to various levels of

coarse grained models [202, 283], including molecular dynamics [169, 170, 70, 27, 41],

Monte Carlo [83], and dissipative particle dynamics [282]. Atomistic simulations can

typically be performed in boxes of several tens of nanometers in size. This is certainly

sufficient to study the local structure of a single lipid bilayer, which is about 5 nm thick,

but insufficient for extended membranes, ensembles of vesicles, protein adsorption

equilibria, and charged bilayers at low salt content. The objective of simulations

is often (but not always) different from that of phenomenological models. While

phenomenological models aim to describe a system’s behavior on the basis of its most

essential interactions (described in terms of only a few order parameters), simulations

typically include many degrees of freedom. Model simplifications are intentional in

phenomenological modeling, in simulations they are only implemented because of

computers speed restrictions. This different scope makes computer simulations a

hybrid approach between theory and experiment, sometimes referred to as “in-silico”

experiment. Computer simulations can also be useful to test theoretical concepts

or to calculate material parameters. An example are elastic membrane properties

such as the bending stiffness or the Gaussian modulus that are difficult to measure

[292, 107, 108]. Here, simulations provide tools to understand the molecular origin of

these quantities.

We finally recall some of the fundamental interactions that determine the

energetics of lipid membranes and their interactions with other molecules. The driving

force for the self assembly of a lipid membrane is the hydrophobic effect [266]. This

effect is of entropic nature and results from the unfavorable perturbation of the water
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structure close to a hydrophobic surface, especially the disruption of the water’s

hydrogen bond network. This disruption leads to an ordered water layer that bridges

between the bulk water and the hydrophobic surface. The entropy loss is caused by the

ordered water molecules. From a fundamental point of view, also the surface tension

of water with air (γ = 0.072N/m2 at room temperature) is a result of the hydrophobic

effect. There are a number of theoretical models for the hydrophobic effect [214, 36];

particularly simple and instructive is the two-dimensional Mercedes-Benz model from

Dill and coworkers [276, 256]. Another important contribution to the free energy of

a lipid membrane is related to the packing of the lipid tails [17]. In the fluid-like

state the hydrocarbon tails change their conformation about 1010 times per second,

where different conformations correspond to different trans (t) and gauge (g+ and g−)

isomers along the chain [72]. The packing of the lipids in a bilayer or other aggregation

geometries affects the probabilities with which certain chain conformations are adopted.

The packing properties are important for the structural morphology of lipids [16, 241]

and for the partitioning of hydrophobic molecules into a lipid bilayer [304]. A third

interaction that is relevant for lipid membranes is the electrostatic interaction between

charges. All important classes of biomolecules – lipids, proteins, and nucleic acids –

are (or can be) charged. If charges are present, their spatial arrangement follows the

same fundamental pattern: A biomacromolecule (lipid membrane, DNA, or protein)

has an interior part of low dielectric constant, and the charges are attached exclusively

to the surface, where they are in contact with water [2]. This pattern suggests that

it is generally too costly to place charges inside a medium of low dielectric constant

[19]. We point out that electrostatic interactions include higher moments; i.e. charged-

dipole, dipole-dipole etc. For example, van der Waals interactions, which originate

from permanent or induced dipolar forces are essentially of electrostatic nature.
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Cholesterol
Reactive lipid
Unreactive lipid

Ternary membrane, complex formation Trans-monolayer coupling

Binary membrane, protein-protein interaction pH regulation of protein adsorption

Transfer kinetics

Figure 2.1. Aspects of lipid membranes and their interactions with other molecules.
All illustrated systems are modeled in the present thesis. Top left: Ternary lipid
membranes containing cholesterol, and interactions with peripheral proteins. Top right:
The phase behavior of a bare binary bilayer is influenced by the coupling between the
two membrane leaflets. Bottom left: A phase separating binary membrane interacts
with peripherally adsorbed proteins allowing for the coupling between local protein
and lipid compositions. Lipid-lipid, lipid-protein, and protein-protein interactions will
influence the onset of instability with respect to lateral phase separation. Bottom
right: Electrostatic macromolecule adsorption onto a binary membrane consisting of
zwitterionic lipids and lipids with the ability to deprotonate. Middle: Transfer kinetics
of hydrophobic macromolecules from one liposomal membrane to another.

2.2. Specific systems addressed in this thesis

Motivated by recent experimental findings, we investigated five specific systems,

all containing bare mixed lipid membranes or mixed lipid membranes interacting with

macromolecules; see the schematic illustration in Fig. 2.1.

First, in Chapter 4, we consider ternary model membranes consisting of

unsaturated lipids, saturated lipids and cholesterol, where macroscopic separation
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into a lipid-ordered (Lo) and lipid-disordered (Ld) phase has been reported [280]. We

employ a simple generic thermodynamic model that rationalizes the two critical points

of the closed loop phase behavior observed in experiments [281] and predict changes

in stability due to membrane-adsorbed macromolecules.

The second subject (see Chapter 5) of this thesis is the influence of trans-

monolayer interactions on the stability of lipid membranes with respect to lateral

phase separation. We develop a thermodynamic model accounting for lateral lipid

interactions and the coupling between the two apposed monolayers to predict the

phase behavior of the lipid bilayer.

In the third part of this work (see Chapter 6), we investigate the influence

of peripherally adsorbed model proteins on the thermodynamic stability of binary

mixed membranes. Proteins and other macromolecules often interact specifically with

only one of several lipid species. Yet, this specific interaction competes with other

unspecific interactions. Our focus is to explicitly include into a thermodynamic model

the presence lipid-lipid, lipid-protein, and protein-protein interactions, to investigate

protein-induced local lipid sequestration, and predict the thermal stability of this

model [104].

While the developed models alluded to so far incorporate the interplay of

proteins and lipids with generic interaction parameters, we investigate in the fourth

part of this thesis (see Chapter 9) the influence of hydrogen bond formation and

pH value of the aqueous solution surrounding the membrane on the adsorption of

proteins onto mixed lipid membranes by modeling electrostatic interactions. These

are incorporated in a mean field thermodynamic approach which explicitly accounts

for electrostatic effects, deprotonation of a specific phospholipids, conformational

freedom of dipolar lipid headgroups, and protein binding domains under presence of a

monovalent electrolyte.
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The fifth and final part of the thesis (see Chapters 7 and 8) leaves the equilibrium

approach behind and investigates the time evolution toward thermal equilibrium.

The transfer kinetics of poorly water soluble macromolecules between liposomes,

specifically the interior of the liposomal lipid membranes, are modeled based on

a detailed distribution function of drug molecules among the individual liposomes,

accounting for both diffusion and collision transfer mechanisms.

In the following we briefly introduce each of the five specific projects.

2.2.1. Modeling the phase behavior of protein-decorated ternary lipid

layers

Membrane rafts in biomembranes are dynamic, short lived and on sub-micron

level in size. Although the raft model can be related to a multitude of cellular

processes from cell signaling to viral entry entry, the discussion of rafts has been

controversial. Rafts have never been observed directly; in fact the measurement

itself can create raft-like heterogeneities [149]. Macroscopic phase separation into two

lipid phases, liquid-ordered (Lo) and liquid-disordered (Ld), is observed for model

membranes of appropriate ternary lipid mixtures [280]. In terms of composition,

cholesterol-enriched (Lo) domains are reminiscent of membrane rafts in biomembranes

[152]. When saturated lipid chains are in extended (all-trans) conformation their

affinity to reside next to the tetracyclic ring of cholesterol is enhanced as compared

to unsaturated hydrocarbon chains. Consequently, instead of being randomly mixed,

such a membrane can adopt an energetically more favorable configuration by phase

separating into one phase dominated by cholesterol and highly ordered saturated lipids

the other phase being enriched with unsaturated lipids.

Because of the favorable interaction of saturated lipids with cholesterol, it has

been suggested that these two molecules bind each other as in a chemical reaction [179].

In this context, saturated and unsaturated lipids are therefore sometimes referred
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to as “reactive” and “unreactive” lipids. Ternary mixtures of reactive (saturated)

lipids, unreactive (unsaturated) lipids, and cholesterol can exhibit closed loop phase

coexistence region with an upper and lower critical point [281]. This means multiple

phases coexist only in the presence of all three components and the depletion of one

component below a critical value or an increase above it (thereby depleting another

component) results in a system that does not show phase separation. Examples of such

systems are model membranes consisting of unsaturated 1,2-diphytanoyl-sn-glycero-

3-phosphocholine(diPhyPC), saturated 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

(DPPC) , and cholesterol [281].

McConnell and co-workers [179, 217] proposed a model for the interaction of

cholesterol in lipid membranes. It is based on the formation of complexes between

cholesterol and the reactive lipid, where either all cholesterol or all saturated lipids will

be engaged in complex formation. The ternary mixture can be viewed as consisting of

unreactive lipids and complexes as well as the excess of either cholesterol or reactive

lipids. We consider the free energy of such a ternary mixture within the mean-field

framework of a lattice gas, with only one additional parameter accounting for non-

ideal interactions between (and amongst) complexes and unreactive lipids, thereby

allowing for multiple phases. Numerical analysis reveals similarities in compositional

differences of the two coexisting phases, for various initial compositions. We employ

these symmetries and introduce them as an additional thermodynamic constraint.

This enables us to specify the two critical points of the closed-loop phase boundary

analytically.

Typically, proteins bind preferentially to one lipid species. This introduces a

mechanism to accumulate these lipids in the vicinity of the protein binding site [42],

leading to a tendency to enhance domain formation [128]. Hence, specific lipid-protein

interactions in conjunction with interactions among adsorbed proteins can be expected

to influence the phase behavior of the membrane. We describe protein adsorption
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onto such a ternary membrane by introducing an appropriate composition-dependent

incentive into the free energy. This model, which is detailed in Chapter 4, was

presented at the 51st Annual Meeting of the Biophysical Society in Baltimore in

March 2007.

2.2.2. Trans-monolayer coupling in binary bilayers

As described above, each leaflet of a bilayer can individually exhibit separation

into phases with different composition. Experimental results demonstrate the matching

of macroscopically large domains [280, 136] across the upper and lower monolayer.

That is, in a symmetric bilayer the domains of the apposed leaflets are observed to be

in perfect registration. This effect implies some sort of inter-leaflet coupling which is

sensitive to the compositional differences.

Biomembranes are typically asymmetric. For example the plasma membrane

contains predominantly phosphatidylcholine, sphingomyelin, cholesterol and glycolipids

in the outer leaflet and phosphatidylethanolamine, phosphatidylserine, cholesterol

and other charged lipids in the inner leaf [143]. It is known that the composition

of the outer monolayer favors phase-separation, whereas the composition of the

inner leaflet does not exhibit a tendency for domain formation when investigated in

similar model membranes [290, 125]. Without a coupling mechanism, only the outer

leaflet would form domains whereas the inner monolayer would remain homogeneous.

Transmonolayer coupling can explain processes – including phase separation – that

mitigate though the bilayer.

Experimental studies of ternary cholesterol-containing membranes show close-

loop phase behavior of only two distinct phases under certain conditions (concentration

of cholesterol and temperature range [280]), and are supported by theoretical models,

including our model of ternary membranes. This gives rise to approximate three-

component mixtures as pseudo-binary mixtures [217]. Existing theoretical models
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consider several order parameters, for instance compositional and curvature degrees of

freedom [96], or composition and monolayer thickness [3].

We have developed a thermodynamic model of a bilayer consisting of two

binary monolayers, composed of the same lipid species, but not necessarily the same

composition. It accounts for lateral lipid interactions in each monolayer and the

coupling between the apposed monolayers, and only uses one single-order parameter,

the composition of the binary monolayer. Each of the two monolayers is treated as a

lattice gas on the mean field level that can phase-separate individually in the absence

of monolayer-monolayer coupling. The local coupling between the two monolayers

is introduced by an energy penalty proportional to the square of the compositional

differences, which is accurate in the limit of small compositional differences. A coupling

constant accounts for the strength of this energy penalty. The use of only one order

parameter allows us to perform a simple complete thermodynamical analysis of this

model as function of the coupling strength. Our model predicts that phase separation

in one monolayer can induce or suppress domain formation in the apposed monolayer.

Paper 1 (see Chapter 5) reproduces this work. It was published December 15, 2007 in

the Biophysical Journal 93 [286].

2.2.3. Protein decorated mixed lipid membranes and protein-protein

interactions

In Section 2.2.1 we considered the influence of protein adsorption onto ternary

membranes, where proteins did not interact directly with each other. In the present

section we focus on a system of a binary lipid layer with peripherally adsorbed proteins,

including not only lipid-lipid and lipid-protein but also protein-protein interactions.

Peripheral adsorption of proteins onto mixed lipid membranes generally influ-

ences the lateral stability of the membrane. Among a large number of examples is the

ability of cytochrome P450 2B1 to induce lateral demixing in ionic phospholipids [128].
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If proteins bind preferentially to one lipid species, it will lead to a local sequestration

of that membrane species close to the protein adsorption sites [104]. That is, in the

vicinity of each individual protein the membrane composition differs from the average.

This difference depends on the difference in affinity of the protein with the high-

affinity lipid and has been observed experimentally in certain cases [103, 104, 289, 82].

Molecular simulations support these findings [160]. Local segregation of lipids is distinct

from macroscopic phase separation. Yet, attractive protein-protein interactions can

trigger phase behavior [5]. Experimental results suggest proteins colocalize within

membrane domains or at the domain interface [185, 106, 102, 201, 167] and cause

phase separation in biomembranes [151] and model membranes [93, 208]. Several

theoretical research efforts aim to explain the influence of proteins on domain sizes,

for instance by limiting domain sizes due to protein immobilization [300], or through

induced elastic membrane deformations [236].

A previous model suggested a combination of lipid-lipid and lipid-protein

interactions can suffice to cause not only local lipid sequestration but also macroscopic

phase separation [174]. The driving force for phase separation originates in the energy

associated with local compositional differences. This leads to a line tension that

tends to merge smaller domains into larger ones, resulting ultimately in macroscopic

phase separation. We extend this preceding thermodynamic model to include direct

protein-protein interactions. Our goal was to explore to what extent additional

attractions between proteins further enhance the tendency to phase separate. This

modified tendency is manifested in phase diagrams. We have thus calculated phase

diagrams of binary membrane-protein systems with and without direct protein-protein

interactions. These diagrams demonstrate an enhanced tendency to phase separate,

including cooperative behavior between membrane mediated phase separations (due to

lipid-protein interactions) and direct protein-protein attraction. Clearly, the interplay

between lipid-protein and protein-protein interactions facilitates the membrane to
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regulate its limits of stability. Chapter 6 presents this work as paper 2. It was

originally published in The Journal of Chemical Physics on January 23, 2009 [157].

2.2.4. Modeling pH regulation of protein adsorption onto lipid

membranes

Interactions between proteins and lipids at the interface between the lipid

head-groups and the electrolyte are often of electrostatic nature. This effect can be

emphasized by specific structural characteristics of proteins which let the protein

match the membrane surface structure [140, 148]. Phosphatidic acid (PA) is a

signaling lipid located in the inner leaf of the plasma membrane, coexisting with

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylcholine (PC),

and other lipids. The monoester headgroup of PA can carry one or two negative

charges at physiological conditions. The dissociation state of PA is governed by the

competition between proton binding and formation of a hydrogen bond through the

so-called electrostatic-hydrogen bond switch [132]. The physiological significance of the

electrostatic-hydrogen bond switch has been discussed in detail [134]. This mechanism

may form the basis for the specific recognition of PA by membrane-binding proteins.

Charged proteins are electrostatically attracted to the membrane. Their

binding regions, mainly consisting of cationic amino acids, bind transiently to anionic

phospholipids. Tight docking, however, only occurs when the PA binding domain

locates the phosphomonoester of PA and creates a specific and strong electrostatic

interaction based on two negative charges that is further strengthened by hydrogen

bond interactions. A dependence of protein binding to PA on the intracellular pH and

the protonation state of PA has recently been shown [302]. In yeast, the protein Opi1

binds to the endoplasmic reticulum at neutral pH values and is released due to a drastic

pH decrease (by about two units) caused by glucose starvation. A theoretical model

of the electrostatic-hydrogen bond switch on bare membranes has been developed
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previously [184]. It is based on the classical Gouy-Chapman theory which describes the

electric potential of charged surfaces in salt-containing solutions on a mean field level.

This model focuses on the dissociation state of PA and how this state is influenced by

the membrane composition.

Following a similar approach, we develop an extended theoretical model of the

influence of the pH value in the electrolyte on the energetics of macroion adsorption

onto membranes containing PA. The electrostatic interactions between lipid charges,

solvent, and macroion binding sites are treated on a mean-field level, incorporating

a modified Poisson-Boltzmann model. The membrane is represented as a three-

component lattice gas (PC, PA−, and PA2−). To account for the conformational

freedom of PC headgroups we model the zwitterionic headgroups as dipoles of fixed

length. The negative charge of the dipole is located at the membrane interface,

allowing the positive charge to move freely on a hemisphere inside the electrolyte.

Proteins are modeled as extended bodies of small inner dielectric constant with flexible

charges attached to their surface; see the schematic illustration in Fig. 2.2. Our model

allows for the sequestration of PA under the proteins, which changes the local pH

value. So does the presence of binding sites of membrane adsorbed proteins. This

change in local pH will affect the formation of hydrogen bonds. The short range

attraction caused by the hydrogen bond has been modeled as a non-electrostatic

square-well potential. Besides the rather crude approximations of the structure of

involved molecules, we further assume all charges are point-like, all lipids occupy the

same cross-sectional area of the membrane interface, changes in dielectric properties

are laterally uniform, and drop instantly at the edge of the headgroup-region. These

approximations, among others, do not allow this model to be quantitatively predictive,

but demonstrate qualitative effects of changes in pH value of the electrolyte. We

show that the combination of such non-electrostatic attractions and electrostatic

interactions can greatly enhance the pH-sensitivity of protein adsorption and can
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Figure 2.2. Schematic illustration of a bare membrane and isolated macroion (top),
and adsorbed macroion (bottom). The membrane consists of PC and PA. PA can be
found in two dissociation states, PA− and PA2−. The negative lipid charges of the
membrane reside in a interface plane. The electrolyte consists of positive and negative
salt ions and protons. Positive poles of PC can move freely on a hemisphere around
the negative pole which resides on the polar-apolar interface. Charged amino-acids of
macromolecules form the PA-binding sites and can also move on a hemisphere around
their anchor on the macromolecule surface.

render the regulation of protein adsorption processes under physiological conditions

feasible. Chapter 9 reproduces the original paper which appeared in April 2013 in the

journal Chemistry and Physics of Lipids [159].

2.2.5. Kinetic modeling of macromolecule transfer between liposomes

Thus far we have considered interactions of macromolecules with lipid mem-

branes in thermodynamic equilibrium. Yet, the time evolution toward the equilibrium

state – that is, the kinetic behavior – is of fundamental importance, including numerous

pharmaceutical applications. In example, for poorly water soluble drugs, liposomes

are a widely used means of delivery to the target site [65]. An “good” drug delivery

vehicle should keep the drug load on the way to the target and release it only after

arrival at the target. Understanding the kinetics and mechanisms of drug release from
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liposomal (and other) nanocarriers is thus a prerequisite to systematically improving

drug delivery systems.

In recent experimental work on the transfer of the poorly water soluble drug

temoporfin between two different types of liposomes (i.e. from donor liposomes to

acceptor liposomes), subsequent separation of donor and acceptor liposomes allowed

for observation of the time dependence of the drug transfer. The work revealed that

the time dependence of the transfer kinetics is typically a simple exponential with a

characteristic time of several hours [98]. Due to the hydrophobic nature of temoporfin

it preferably resides in the hydrophobic compartment formed by the hydrocarbon tails

of the liposomal lipids. Transfer can occur via collisions between acceptors and donors

as well as directly through diffusion across the aqueous phase. Despite a large number

of experimental studies addressing the kinetics of lipid and drug transfer between

liposomes and other nanocarriers, there is little theoretical work available that targets

the physical nature of the transfer kinetics. During collisions between liposomes, drug

molecules can transfer directly, avoiding the unfavored aqueous solution and allow

for a partial equilibration of drug content. This process has been used to explain

lipid transfer between vesicles [117]. Drugs can also transfer by diffusion through

the aqueous solution [180]. Both transfer processes can be utilized in lipid-transfer

between vesicles [298].

We introduce a detailed kinetic model for the release kinetics of poorly water-

soluble drug molecules from liposomal carriers, based on a detailed distribution

function of drug molecules among the individual liposomes, accounting for both

transfer mechanisms. This model is generic and is, in principle, applicable to a number

of different carrier systems, including liposomes, micelles [272], colloids [186], and

nanoparticles [32]. Our model predicts the experimentally observed simple exponential

behavior and shows collision-dominated transfer for small liposome concentrations

and diffusion dominating the drug exchange for higher liposome concentrations.
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Furthermore, we extend this model to explain transfer curves that show a sigmoidal

time-dependence of drug concentration in acceptor liposomes, which also have been

reported in experiments [98]. Our studies on the transfer kinetics of macromolecules

between liposomes were published in March 30, 2011 in the Journal of Controlled

Release [98]; see Chapter 7. A detailed version of the model is reproduced and extended

in Chapter 8. It was originally published on March 22, 2011 in the Journal of Drug

Delivery [158].

2.3. Summary of the main results of this thesis

The results of this thesis are theoretical models that help to rationalize a

multitude of experimental findings. All models relate to lipid membranes and their

interactions with macromolecules such as proteins and drug molecules. Highlights

among our results include:

• Protein adsorption onto binary lipid membranes tends to facilitate domain

formation, even more so in the presence of attractive protein-protein interactions.

The facilitation is a result of protein-induced compositional differences and the

ensuing line tension. That is, domain formation can become favorable due to

the reduction of compositional gradients within the membrane.

• The coupling between the two monolayers in a bilayer affects the tendency of the

bilayer to phase separate. It can trigger or inhibit phase separation, depending

on the lipid compositions in the monolayers and the coupling strength.

• pH-induced adsorption of proteins onto charged lipid membranes cannot be

rationalized by electrostatic interactions alone. Yet, the interplay between lipid

dissociation and hydrogen bond formation – the so-called electrostatic-hydrogen

bond switch – renders the adsorption strength of charged proteins more sensitive
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and allows for the regulation of protein adsorption under physiologically occurring

pH changes.

• Transfer kinetics of poorly water soluble drug molecules such as temoporfin

typically follows a simple exponential behavior. This behavior can be rationalized

on the basis of a detailed kinetic model with drug exchange rates that are

proportional to concentration differences of drugs in liposomes. Interactions

between drug molecules can give rise to sigmoidal instead of exponential behavior.
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3. MODELING METHODS

This section introduces the major modeling methods the present thesis employs.

We focus on providing a background and framework that helps to understand Chapters

4–9.

3.1. Thermodynamic modeling

The present work contains multiple applications of thermodynamics, including

the use of various thermodynamic potentials and their transformation, the calculation

of elastic moduli, and the computation of phase diagrams and critical points. All

calculations are carried out on the mean field level, and a central role is played by the

lattice gas model [228]. We therefore introduce the lattice gas model and analyze its

thermodynamic behavior.

3.1.1. Mean field lattice gas

For lipid species of roughly the same cross-sectional area, a planar binary

lipid layer can be treated as a two-dimensional incompressible fluid and described,

as a first order approximation, as a lattice gas on the mean field level [228]. The

corresponding free energy per lattice site, measured in units of the thermal energy kB

can be expressed as function of the lipid mole fractions φA = φ and φB = 1− φ via

f

kBT
= φ lnφ+ (1− φ) ln(1− φ) . (3.1)

Note that Eq. (3.1) follows from counting the Ω = M !/(N !(M −N)!) distin-

guishable states of N particles on a lattice of size M using Stirling’s approximation
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lnx! = x lnx − x and the free energy Mf = F = −kBT ln Ω. We also note that

Eq. (3.1) can be generalized to n components with compositions φi

f

kBT
=

n∑
i=1

φi lnφi . (3.2)

The free energy in Eq. (3.1) does not account for interactions and thus cannot predict

phase separation. We assume that interactions only occur between nearest neighbors,

and (on the mean field level) neglect correlations, meaning the number of nearest

neighbors is determined solely by the average composition and not by the exact

occupancy of neighboring sites [228]. This leads to the non-ideal mixing free energy

[228]

f

kBT
= φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ) (3.3)

with the non-ideality parameter

χ = z

(
ωAB −

ωAA + ωBB
2

)
, (3.4)

where ωAA, ωAB, ωBB denote, respectively, the A-A, A-B, and B-B pair interaction

strengths (measures in units of kBT ), and z is the coordination number of the lattice.

Positive χ means that energy penalties between different lipid species are larger than

between lipids of the same kind; this models net attractive interactions between alike

lipids. The total free energy F can be found by summing over all A/a lipids of the

lipid layer,

F =
1

a

∫
A

f dA , (3.5)
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where A is the total area of the layer and where each lipid occupies a lattice site of

size a, the cross-sectional area per lipid. We assume this area to be the same for all

considered lipid types as well as for membrane-embedded cholesterol. In Chapters 5

and 6 we use this free energy to describe the energetics for each individual monolayer

when examining transmonolayer coupling of membrane leaflets (Chapter 5), and for

modeling a protein-decorated membrane (Chapter 6) in our study of the effects of

direct protein-protein interactions on membrane stability.

3.1.2. Equilibrium thermodynamics and stability

In equilibrium, a thermodynamic system will reside in a state in which the

free energy adopts a minimum. We consider our binary lattice gas system with a

total number of N = NA0 +NB0 lipids distributed into two subsystems 1 and 2 with

respective energies F1(NA1, NB1) and F2(NA2, NB2). The overall free energy of such a

system of two phases would be

F (NA, NB) = F1(NA1, NB1) + F2(NA2, NB2) . (3.6)

The numbers of particles in the individual phases are not freely adjustable, they are

constrained by the conservation relations NA0 = NA1 +NA2 and NB0 = NB1 +NB2.

Denoting the size of the first phase relative to the system size as θ, it follows that the

second phase covers a relative area of θ2 = (1− θ). We can express the free energy

per lipid of the whole system, f0, as the coexistence equation, a weighted sum of the

per-lipid energies of the individual phases,

f(φ0) = θf(φ1) + (1− θ)f(φ2) . (3.7)
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The thermodynamic constraint of conservation of lipids has to be fulfilled and can be

expressed as the lever rule

φ = θφ1 + (1− θ)φ2 . (3.8)

To determine when a system separates into distinguishable phases, we can analyze the

shape of the free energy. Fig. 3.1 shows a graph of the free energy per lipid of a certain

system (in fact, it is the accessible free energy of a ternary mixture of cholesterol,

saturated and unsaturated lipids under the assumption that the membrane separates

along parallel tie lines, see Eq. (4.20)).

Let us look in the graph at a membrane with average composition ϕ0 = ϕu0 ,

where, as we will see shortly, the membrane is unstable. Eq. (3.8) tells us that

θ =
ϕ2 − ϕ0

ϕ2 − ϕ1

, (3.9)

which we will use to rewrite the coexistence equation Eq. (3.7). For clarity we shall

use f1 = f(φ1) and f2 = f(φ2), and find the free energy of the separated system to be

f(φ0) =
f2 − f1

ϕ2 − ϕ1

(ϕ0 − ϕ1) + f1 , (3.10)

which is the equation of a line connecting the points (ϕ1, f1) and (ϕ2, f2). As evident

in Fig. 3.1 this energy is below f(ϕ0) at ϕ0 = ϕu0 and will reach a minimum if the

connecting line becomes tangent to f . This graphical method of finding the equilibrium

state of a system is known as the common tangent construction and can be expressed

by the two equations

df

dϕ

∣∣∣∣
ϕ1

=
df

dϕ

∣∣∣∣
ϕ2

=
f(ϕ2)− f(ϕ1)

ϕ2 − ϕ1

. (3.11)
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Figure 3.1. Illustration of thermodynamic stability and common tangent construction
using a free energy function (thick curve) of one variable. A system with composition
ϕu0 in the unstable region has the shown free energy fu0 = f(ϕu0) when homogeneous. If
this system separates into two phases with compositions ϕu1 and ϕu2 , respectively, its free
energy (denoted by×) will be along the common tangent between the points connecting
the free energies of the individual phases (ϕu1 , f

u
1 ) and (ϕu2 , f

u
2 ). In thermodynamic

equilibrium a minimal free energy is achieved when the compositions of the phases
are at the binodal points ϕbin. This minimal energy is lower than the energy of the
homogeneous system if the free energy is convex. The inflection points where the
curvature changes from negative to positive are the spinodal points ϕsp denoted by
•. If the total composition ϕ0 is between the spinodal points (the spinodal region),
any slight change from homogeneity will result in a lower free energy. A composition
outside the binodal region is stable. Shown for f s0 = f(ϕs0), separation into phases
with different composition will result in an energy increase and in equilibrium the
system will be homogeneous. For the free energy function plotted in this graph see
Eq. (4.20) with χ = 5.25 and o = −.74.

The first equation states that the lipid’s chemical potential is the same in both phases.

The second equation expresses the common tangent. The compositions of the two

phases at which this occurs are known as the binodal points ϕbin.

We see that when f is convex at ϕ0 the system is unstable, any infinitesimal

local fluctuation in composition will result in a lower free energy which will result in

two distinct phases in equilibrium. On the other side, at a composition ϕ0 = ϕs0 the
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free energy is concave and the energy of a separated system is larger than that in the

homogeneous state. Here the system is stable. Convexity is ensured between the two

inflection points of f , known as the spinodal points ϕsp and shown as large circles

in Fig. 3.1. These points span the spinodal region and are defined by the spinodal

condition
∂2f

∂φ2
= 0 . (3.12)

For an average composition of a system outside the spinodal region phase separation

can still occur if ϕo is inside the binodal region spanned by the binodal points. Here

f is concave and the homogeneous system would represent a local minimum. Local

fluctuations in composition can overcome the energy increase and drive the system

into a separated state. A composition outside the binodal region is stable. Shown

for f s0 = f(ϕs0), separation into phases with any composition will always result in an

energy increase and in equilibrium the system will be homogeneous.

For a system with two free variables ϕ and ψ the condition for convexity is

∂2f

∂φ2

∂2f

∂ψ2
−
(
∂2f

∂φ∂ψ

)
≥ 0 . (3.13)

The second term here ensures that besides the derivatives along the ϕ and ψ axis the

free energy also curves downward along the diagonals. The spinodal line enclosing the

region where f is convex hence is found by solving the spinodal condition

∂2f

∂φ2

∂2f

∂ψ2
−
(
∂2f

∂φ∂ψ

)
= 0 . (3.14)

Here, three physically distinct phases are possible. Mathematically, these points lie on

a surface tangential to the surface described by f . The number of possible different

phases is predicted by the Gibbs phase rule[33]. In general, the free energy of any

system consisting of r components will be a function of the r+2 variables, temperature,
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pressure and r numbers of particles. A system separated in m phases is fully described

by 2 + m(r − 1) variables. The composition of the last phase is determined by the

total amount of particles per species. The common tangent condition states that the

chemical potentials must be the same in all phases, resulting in r(m− 1) additional

equations. The number of variables which can be arbitrarily chosen is thus

f = r −m+ 2 , (3.15)

where f is the thermodynamic degree of freedom. The system is completely determined

for f = 0. A binary mixture at fixed temperature and pressure is over-determined with

more than two phases, a ternary mixture or system with two independent compositions

such as a binary bilayer where upper and lower leaflet have independent compositions,

can exhibit three-phase coexistence under fixed temperature and pressure. We consider

all our models as incompressible systems and at constant temperature.

For the binary mixture with composition ϕ and non-ideality parameter χ as

described by Eq. (3.3) we find the spinodal region by solving Eq. (3.12),

χ =
1

2ϕsp(1− ϕsp) , (3.16)

which predicts a minimal χ. This means above a critical non-ideality parameter

χcrit = 2 the free energy has a convex region and the spinodal points are

ϕsp1/2 =
1

2
± 1

2

√
χ− 2

χ
. (3.17)

Fig. 3.2 shows the free energy for several interaction parameters χ as well as the

spinodal region. We see that a common tangent exists and connects the binodal points

which coincide with the two minima of f . The relevant definition of the binodal

points stems from Eqs. (3.11). Finding the binodal points can be done by minimizing
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Figure 3.2. Free energy of a binary mixture according to Eq. (3.3). From bottom to
top χ = 2, χ = 2.1, χ = 2.2, χ = 2.3, χ = 2.4, and χ = 2.5. The red dashed line
encloses the spinodal region.

the coexistence equation Eq. (3.7) for an average composition ϕ0 within the spinodal

region, a function of the three variables ϕ1, ϕ2, θ. Only two of these are independent,

the third is fixed by the lever rule Eq. (3.8), yet introduces limitations since

0 ≤ ϕ1 ≤ 1 , (3.18)

0 ≤ ϕ2 ≤ 1 , (3.19)

0 ≤ θ ≤ 1 . (3.20)

Effectively this is a constraint global minimization with respect to two variables which

can be carried out only numerically for most of the systems we consider in the present

work.

Information about stability is usually visualized in a phase diagram as seen in

Fig. 3.3. A system with composition φ and interaction parameter χ on a tie line will

separate into two phases with compositions corresponding to the ends of that tie-line.

The relative sizes of the phases can be calculated from the lever rule (Eq. (3.8)). The
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Figure 3.3. Phase diagram for the free energy f of a binary mixture in Eq. (3.3). The
red dashed line represents the spinodal line, tie-lines (black) connect the two states in
which a system on a corresponding tie-line separates. All dots form the binodal line
outside the spinodal line.

tie lines cover the binodal region, their end points describe the binodal line. Outside

of this area the system is stable, that is it shows no phase separation. The point where

binodal and spinodal meet is referred to as a critical point. In case of binary mixture

coexistence, at the critical point the third derivative of f with respect to ϕ is also

zero.

3.2. Mean-field electrostatics

In this work we model electrostatic interactions between membrane lipids,

proteins, and the solvent. Specifically we calculate the adsorption free energy of a

protein onto a lipid bilayer by comparing free energies of the adsorbed and desorbed

states. We account for the presence of mobile salt ions in the aqueous solution, mobility

of the charges on the lipids and protein, dielectric discontinuities, lipid dissociation

equilibria, and compositional changes within the lipid layer as a consequence of protein

33



adsorption. The complexity of the system demands significant simplifications. We

shall therefore employ here the mean field Poisson-Boltzmann model [6]. In the present

section we present some details of Poisson-Boltzmann theory for the case of one (or

more) macroions immersed in a symmetric 1:1 electrolyte, each macroion with fixed

surface charge density σ. Additional levels of complexity, including mobile charges

on the surface, surface-surface interactions, and dissociation equilibria, are taken into

account in Chapter 9.

The electrostatic energy of a distribution of charges with charge density ρ can

be expressed as

U =

∫
ρΦ

2
dV , (3.21)

where Φ denotes the electrostatic potential, from which one can compute the local

electrical field via ~E = −∇Φ. The integration in Eq. (3.21) extends over all space.

The fundamental equation of electrostatics is Poisson’s equation

ρ = −εεo∆Φ , (3.22)

here written for a dielectric medium of uniform dielectric constant ε and vacuum

permittivity εo. Note that the Poisson equation is a local representation of the 1/r-

Coulomb potential [114]. It is convenient to work with the dimensionless potential Ψ =

eΦ/kBT , where e denotes the elementary charge. Note that that Ψ = 1 corresponds

to a potential of about 25 mV at room temperature. The dielectric constant of the

medium is commonly expressed by the Bjerrum length `B = e2/4πεεokBT , namely

the distance at which the electrostatic interaction energy of two elementary charges

equals kBT . The Bjerrum length in water is approximately `B = 0.7 nm, and for air it
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is `B = 56 mm. We can express the electrostatic energy as

U

kBT
= − 1

8π`B

∫
Ψ∆Ψ dV =

1

8π`B

∫
(∇Ψ)2 dV , (3.23)

where we have used the relation Ψ∆Ψ = ∇(Ψ∇Ψ)−∇Ψ∇Ψ and Gauss’ law with the

assumption of a vanishing electric field at infinity.

The Poisson-Boltzmann model treats the solution of mobile co- and counter-

ions as a mixture of two ideal solutions that each are in contact with a reservoir of

given concentration n0. Note that electroneutrality for a symmetric 1:1 electrolyte

requires n0 to be the same for the co- and counter-ions. Close to the charged surface,

the local concentrations, n+ and n− of of salt cations and anions, respectively will

vary. This implies the entropy of mixing S to be the sum of the mixing entropies for

cations (index “+”) and anions (index “−”)

S = S+ + S−

= −kB

∫ [
n+ ln

n+

n0

− n+ + n0

]
dV − kB

∫ [
n− ln

n−
n0

− n− + n0

]
dV . (3.24)

The constant n0 in each integral is added to set the reference state such that S = 0

for n+ = n− = n0. The free energy F = U − TS of the system is thus

F

kBT
=

1

8π`B

∫
(∇Ψ)2 dV +

∫ [
n+ ln

n+

n0

− n+ + n− ln
n−
n0

− n+ + 2n0

]
dV . (3.25)

The free energy F still depends on the unconstrained variables n+ and n−. We thus

find the equilibrium state by minimizing F (n+, n−). Because n+ and n− are functions

of space, we determine the extremum of F by carrying out the first variation

δF

kBT
=

∫ [∇Ψδ∇Ψ

4π`B

+ δn+ ln
n+

n0

+ δn− ln
n−
n0

]
dV . (3.26)
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Recall the Poisson equation ∆Ψ = −4π`Bρ/e, here written in terms of the scaled

potential Ψ and Bjerrum length `B, and note the volume charge density ρ = e(n+−n−)

in the electrolyte. Thus, the variation of Poisson’s equation is ∆δΨ = −4π`B(δn+ −

δn−). With this and using Gauss’ law, Eq. (3.26) reads

δF

kBT
= −

∮
Ψ

4π`B

δ
∂Ψ

∂~n
dA+

∫ [
δn+

(
ln
n+

n0

+ Ψ

)
+ δn−

(
ln
n−
n0

−Ψ

)]
dV , (3.27)

where the integration in the first integral runs over all involved macroion surfaces

and ~n denotes the surface normal (pointing into the electrolyte). Poisson’s equation

applied to the surfaces of the involved macroions yields the boundary condition

∂Ψ

∂~n
= −4π`Bσ/e , (3.28)

where σ is the local surface charge density. We point out that Eq. (3.28) assumes

the macroions to have a dielectric constant much smaller than that of water. For

biologically relevant macroions such as membranes, DNA, or proteins this assumption

is generally fulfilled. We thus find Ψδσ/e for the integrand of the first integral in

Eq. (3.27). In fact, if σ is fixed everywhere on the macroion surfaces, that integral

vanishes. Vanishing of the first variation in Eq. (3.27) then implies the Boltzmann

distributions

n± = no e∓Ψ . (3.29)

Combining the Boltzmann distributions with Poisson’s equations yields the nonlinear

Poisson-Boltzmann equation

∆Ψ = κ2 sinh Ψ , (3.30)
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where we have defined the inverse Debye screening length κ = 1/`D = 1/
√

8πn0`B.

Indeed the Debye screening length `D = 1/κ appears as the characteristic length in

the solutions of the linearized Poisson-Boltzmann equation ∆Ψ = κ2Ψ. For example,

in the one-dimensional case Ψ′′(x) = κΨ(x) with Ψ(0) = Ψ0 and Ψ(x→∞) we find

Ψ(x) = Ψ0e
−xκ.

In the model we develop in Chapter 9 we treat the lipid layer as a flat surface

and utilize the corresponding free energy. Here, we derive the free energy for a single

charged surface. The corresponding calculation forms the basis for the more complex

situation (involving mobile macroion charges and dissociation equilibria) in Chapter 9.

The one-dimensional Poisson-Boltzmann equation Ψ′′(x) = κ2 sinh Ψ(x) adopts the

boundary conditions Ψ′(0) = −4π`Bσ/e and Ψ(∞) = 0 for a single flat surface with

surface charge density σ. A first integration of the Poisson-Boltzmann equation yields

Ψ′(x) = −2κ sinh[Ψ(x)/2]. At x = 0 this can be combined with the corresponding

boundary condition, resulting in the relation

Ψ0 = 2 asinh(2π`B`Dσ/e) (3.31)

between the surface potential Ψ0 = Ψ(x = 0) and surface charge density σ. Note that

a second integration of the Poisson-Boltzmann equation yields an explicit expression,

expressed in terms of the surface potential Ψ0,

Ψ(x) = −2 ln
eκx− tanh Ψo

4

eκx + tanh Ψo

4

. (3.32)

In order to calculate the free energy F we note that if the ion concentrations n+ and

n− fulfill the Boltzmann distributions in Eq. (3.29), the variation of the free energy in
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Eq. (3.27) reads

δF

kBT
=

∫
Ψ
δσ

e
dA . (3.33)

Note that the free energy in Eq. (3.25) is defined such that F = 0 for Ψ ≡ 0 and thus

n± = n0. Hence, integrating Eq. (3.33) yields an expression for the free energy

F

kBT
=

∫
dA

σ∫
0

Ψ0(σ̄)
dσ̄

e
, (3.34)

which only requires to know the relation Ψ0 = Ψ0(σ) at the macroion surface. The

free energy in Eq. (3.34) can be interpreted as a charging process, starting with σ̄ = 0

(implying F = 0) and then increasing the surface charge density σ̄ to the final value σ.

For our example of a single charged surface we have already determined the relation

Ψ0 = Ψ0(σ); see Eq. (3.31). Inserting it into Eq. (3.34) yields the charging free energy

of a single planar surface

F

AkBT
=

1

π`B`D

2π`B`Dσ/e∫
0

dp asinh p . (3.35)

In the limit of the linearized Poisson-Boltzmann model (the Debye-Hückel model)

Eq. (3.35) reads F/(AkBT ) = 2π`B`Dσ
2/e. At physiological conditions n0 = 0.1 M =

0.06/nm3; this implies a Debye screening length of about `D = 1 nm. Then, the

linearized free energy is a reasonable approximation of the nonlinear expression in

Eq. (3.35) for |σ| ≤ 0.1 e/nm2. Typical charge densities in lipid membranes can easily

exceed this value. For example, a fully charged anionic membrane with lipids of cross-

sectional value a = 0.65 nm2 has a charge density σ = −e/a = −1.5 e/nm2. Other

biomacroions such as DNA and proteins can have similarly hight local surface charge

densities. Clearly then, the nonlinear Poisson-Boltzmann equation should be used
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when modeling typical charged biomacromolecules. If the system contains additional

degrees of freedom their corresponding free energy contribution is added to F and

the resulting total free energy is again minimized with respect to all unconstrained

degrees of freedom. Chapter 9 details that approach for three additional degrees of

freedom: conformationally flexible lipid headgroups, variable lipid composition, and

charge regulation of the anionic lipid phosphatidic acid.

3.3. Kinetics of solute transfer between carrier systems

Interactions between biomembranes and macromolecules are of great importance

in pharmaceutical applications. Liposomal carrier systems are routinely used to

deliver hydrophobic substances to the target site (and ideally only to the target site)

[13, 187, 64]. Optimizing drug administration requires understanding of the kinetics

of such processes. The transfer of drugs from drug-donating liposomes into accepting

target sites can be formally viewed [117] as a chemical reaction of donor drugs D to

acceptor drugs A, D 
 A. The experimental studies described in Chapter 7 employ

liposomes not only as donors but also as acceptors.

The kinetics of chemical reactions are commonly studied by expressing the

reaction rates as function of reactant concentrations. The rate of change of concen-

tration d[D]/ dt can depend in various ways on the concentration [D] of substance D.

The exponents with which the concentrations enter the rate equation describing this

dependence is the order of reaction and is used to classify reactions [11].

In first-order reactions the reaction rate shows a linear relationship to the sub-

stance concentration. For example, during the decomposition 2N2O5 → 2NO2 + O2 of

dinitrogen pentoxide into nitrogen dioxide and oxygen, its concentration change is pro-

portional to the concentration, d[N2O5]/ dt = −k[N2O5]. Here, k is a time-independent

rate constant. This differential equation determines the time dependence of the
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reactant concentration as an exponentially decaying function [N2O5] = [N2O5]0 e−kt,

with [N2O5]0 expressing the initial concentration. Radioactive decay can also be

viewed as a first-order reaction.

A reaction that requires two freely moving particles to collide is often of second

order. The dimerization of iodine 2I→ I2 takes place with highest probability when

two atoms are in close vicinity to each other. The rate of change is thus proportional

to the square of the iodine concentration, d[I]/ dt = −k[I]2. The concentration in this

reaction, [I] = [I]0/(1 + kt), is proportional to 1/t in the long time limit. This is much

slower that the exponential behavior for first order reactions.

We have observed in experiments that transfer of hydrophobic drugs between

donor and acceptor liposomes often exhibit first-order kinetics with a simple exponential

behavior, in some cases they show sigmoidal time dependence. Considering the fact

that poorly water soluble drugs are unlikely to diffuse through the aqueous solution,

the transfer mechanism likely involves collisions between donor and acceptor liposomes.

It is therefore not obvious why the observed kinetics is exponential. The model we

present in Chapters 7 and 8 accounts for collision and diffusion, and starts with a

detailed distribution of drug molecules among the individual liposomes.

Let us focus on the transfer by the collision mechanism only, exclude any

attractive or repulsive interactions among the drug molecules inside the liposomes

and develop a kinetic model. We consider an aqueous solution (of fixed volume V )

that contains a number of N liposomes. Each liposome can hold maximally m drug

molecules. Since each of the N vesicles can carry any number i < m of drug molecules,

there will be at any time a certain number of vesicles ai = a(i) that hold i drugs,

a(i) can be interpreted as a discrete distribution function. We assume only one drug

molecule at a time could be exchanged at a collision of two vesicles, and for now

consider only exchanges from a higher loaded to lower loaded vesicle. The probability

for this exchange is proportional to the difference in drug load of two colliding vesicles.
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The probability for a collision between two vesicles with loads i1 and i2 is proportional

to the product of the two vesicle concentrations, hence proportional to a(i1)a(i2)/V .

The rate of change in the number of vesicles with drug i can proceed in four distinct

ways:

• Decrease

1. a vesicle of load i collides with a vesicle of load j < i − 1 and donates a

drug molecule, with probability proportional to (i− j)

2. a vesicle of load i collides with a vesicle of load j > i + 1 and accepts a

drug molecule, with probability proportional to (j − i)

• Increase

1. a vesicle of load i − 1 collides with a vesicle of load j > i and accepts a

drug molecule, with probability proportional to (j − i+ 1)

2. a vesicle of load i + 1 collides with a vesicle of load j < i and donates a

drug molecule, with probability proportional to (i− j − 1)

The amount of liposomes holding i drugs does not change in a collision with a liposome

that has either one more or one less drug, since either of the resulting liposomes will

carry i drugs in the end. In a collision between a liposome with i− 1 drugs and one

with i+ 1 drugs both resulting partners carry i drugs, so it seems intuitive to count

these twice, and in fact we do as we consider for this collision an increase of types 1

and 2.

We assign a rate constant Kc of drug transfer through collisions between two

chemically equivalent liposomes and can find the rate of change of the amount of

liposomes holding i drugs, dai/ dt, by performing a sum over all collision partners,
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distinguishing these four scenarios.

V

Kc

dai
dt

= −
i−2∑
j=0

aiaj(i− j)−
m∑

j=i+2

aiaj(i− j) (3.36)

+
i−1∑
j=0

ai+1aj(i+ 1− j) +
m∑

j=i+1

ai−1aj(j − (i− 1)) . (3.37)

The elements needed (or in excess) to synchronize the limits of these sums cancel each

other out. If we formally allow non-physical elements, namely liposomes holding less

than zero or more than m drugs, we can rewrite these sums to

V

Kc

dai
dt

=
i∑

j=0

aj[ai+1(j − i+ 1)− ai(i− j)] +
m∑
j=i

aj[ai−1(i+ 1− j)− ai(i− j)] .

(3.38)

The distributions ai are not an experimentally accessible quantity. As described in

Chapter 7, acceptor vesicles are chemically labeled to be separable from donors (for

instance by charge) and then the total amount of drug molecules in the separated

population is measured. To match the results and to be able to extend this model,

we introduce a second distribution, Analogous to the amount of acceptor liposomes

holding i drugs, ai, the amount of donor liposomes holding i drugs is denoted by di.

The sums in the above equations can easily be extended to consider the “j” collision

partners to be either donors or acceptors by replacing aj → aj + dj. We assume the

rate constants for acceptor-acceptor, donor-donor, and donor-acceptor collisions are

equal. To allow for chemically distinct liposome donor and acceptor species, we adjust

the transfer probability from |i − j| to |i − j + k|, where the integer k generically

models a difference in drug affinity in acceptors or donors. A donor holding i + k

drugs is in equilibrium with an acceptor holding i drugs. Mathematically, k is merely

an index shift which we account for by adjusting the sum limits. This leads to two
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equations

V

Kc

dai
dt

=
i∑

j=0

aj[ai+1(j− i+1)− ai(i−j)] +
m∑
j=i

aj[ai−1(i+1−j)− ai(i−j)]

i∑
j=−k

dj+k[ai+1(j− i+1)− ai(i−j)] +
m−k∑
j=i

dj[ai−1(i+1−j)− ai(i−j)] , (3.39)

V

Kc

ddi
dt

=
i∑

j=0

dj[di+1(j− i+1)− di(i−j)] +
m∑
j=i

dj[di−1(i+1−j)− di(i−j)]

i∑
j=k

aj−k[di+1(j− i+1)− di(i−j)] +
m+k∑
j=i

aj[di−1(i+1−j)− di(i−j)] . (3.40)

We note the experimentally observable quantities are the total number of donor

liposomes Nd =
∑m

j=0 dj and the total number of acceptor liposomes Na =
∑m

j=0 aj

(both of which are conserved) and the total numbers Md =
∑m

j=0 jdj and Ma =∑m
j=0 jaj of drugs residing in donor and acceptor liposomes, respectively. The latter

two are not conserved, but the total amount of drugs in the system M = Md +Ma

is. By carrying out the summations we find the differential equations we present and

solve in Chapter 8

Ṁd =
K

N
(Ma Nd −Md Na + kNaNd) , (3.41)

Ṁa =
K

N
(Md Na −Ma Nd − kNaNd) . (3.42)

It is worth noting that introducing different rate constants for acceptor-acceptor or

donor-donor transfer does not affect these equations, thus the kinetics of the transfer

are independent of these. We further extend this model in Chapter 8 by incorporating

diffusion transfer and attractive interactions between the drug molecules when residing

in a liposome.
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4. MODELING THE PHASE BEHAVIOR OF

PROTEIN-DECORATED TERNARY LIPID LAYERS

4.1. Introduction

The existence of inhomogeneities in lipid membranes is known for more than

five decades but a truly remarkable increase in research efforts has occurred since the

formulation of the membrane raft hypothesis [251]. Macroscopic phase separation

into two lipid phases (liquid-ordered Lo and liquid-disordered Ld) is observed for

appropriate ternary lipid mixtures [280]. The saturated hydrocarbon chains of lipids

such as dipalmitoylphosphatidylcholine (DPPC) can, when in its extended all-trans

conformation, interact favorably with the rigid backbone of cholesterol. They are

commonly referred to as reactive or saturated lipids. On the other hand, unsaturated

or unreactive lipids, i.e. diphytanoylphosphatidylcholine (DiPhyPC), are not able to

interact in such a way with cholesterol due to a kink in the chain introduced by one

or more double-bonds between the carbon atoms. As a consequence there exist two

energetically favorable states, one for highly ordered saturated lipids in contact with

cholesterol, and the other for a disordered mixture of unsaturated and saturated lipids.

This results in the formation of macroscopically observable domains, liquid-ordered

phases enriched with cholesterol and reactive lipids, and liquid-disordered with a

higher than average concentration of unreactive lipids. While probing rafts in in vivo

membranes is difficult, domains are observed in model membranes [280].

Ternary mixtures of reactive lipids, unreactive lipids, and cholesterol can exhibit

a closed-loop phase coexistence region with an upper and lower critical point [281].

That means only a ternary system, not a binary mixture can be unstable. A remarkably

simple theoretical model for the interactions of cholesterol in lipid membranes has
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A Complex
C Cholesterol
R Reactive lipid
U Unreactive lipid

Complex formation

Figure 4.1. Formation of complexes (A) between cholesterol (C) and reactive lipid(R).
Unreactive lipids (U) do not form complexes. We assume the complex formation to
be complete, so that the membrane is a mixture of unreactive lipids, complexes, and
either excess cholesterol or excess reactive lipids.

been proposed by McConnell and co-workers [179, 217]; it suggests the formation of a

condensed complex between cholesterol and a reactive lipid. This complex is treated

as an individual species in a lattice gas model.

If we assume that the complex formation is complete, either all cholesterol or

all saturated lipids will be bound in complexes. The ternary mixture therefore consists

of unsaturated lipids, complexes and the excess of either cholesterol or saturated lipids.

The free energy f per lipid cross-sectional area in the limit of complete reaction,

written in terms of the compositions of unreactive lipid (ϕU), reactive lipid (ϕR),

cholesterol (ϕC), and complex (ϕA), entails the mixing free energies of the three

components according to Eq. (3.2) as well as a non-ideal energy contribution as derived

in Eq. (3.3).

f

kBT
=ϕU lnϕU + |ϕR − ϕC | ln |ϕR − ϕC |+ ϕA lnϕA + χϕUϕA (4.1)

with a ϕA =

{
ϕC for ϕC < ϕR
ϕR for ϕR < ϕC .

(4.2)

The constant χ accounts for nonideal interactions between the complexes (A) and the

unreactive lipid (U). This only contributes in the presence of all three species and is

effectively a three-body interaction, which is necessary to model a closed-loop phase

behavior.
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4.2. Phase behavior and critical points

The Gibbs phase rule (Eq. (3.15)) predicts the coexistence of three phases. We

find the binodal region by minimizing the corresponding coexistence equation

f3(ϕR1, ϕC1, ϕR2, ϕC2, θ1, θ2) = θ1f(ϕR1ϕC1, ϕU1)

+ θ2f(ϕR2ϕC2, ϕU2)

+ θ3f(ϕR1ϕC3, ϕU3) (4.3)

as a function of four variables with the constraints

1 =θ1 + θ2 + θ3 , (4.4)

1 =ϕR1 + ϕC1 + ϕU1 , (4.5)

1 =ϕR2 + ϕC2 + ϕU2 , (4.6)

1 =ϕR1 + ϕC3 + ϕU3 , (4.7)

ϕU =θ1ϕU1 + θ2ϕU2 + θ3ϕU3 , (4.8)

ϕR =θ1ϕR1 + θ2ϕR2 + θ3ϕR3 , (4.9)

ϕC =θ1ϕC1 + θ2ϕC2 + θ3ϕC3 , (4.10)

and ensure that all variables are between 0 and 1. These constraints are actually over-

determined and one equation is redundant. The numerically calculated phase diagram

as shown in Fig. 4.2 is obtained by performing a constrained global minimization

of Eq. (4.3) for χ = 4 for many points of average compositions ϕR and ϕC . The

phase diagram exhibits no three-phase coexistence and the tie-lines connecting the

two existing phases are almost parallel. We see a closed loop phase behavior. This

unstable region grows with increasing χ, and vanishes if χ is smaller that a certain

critical χcrit. We will determine this critical value analytically.
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Figure 4.2. Phase diagram for ternary mixture of cholesterol (C), reactive (R) and
unreactive(U) lipids, according to Eq. (4.1) with χ = 4. The model is based on
complete complex formation between reactive lipid and cholesterol as introduced by
McConnell. The blue dotted straight lines represent the approximate location of the
upper and lower critical points, comparable to the exact values (black dash dotted).
Phase separation occurs above χcrit = 2.91.

The symmetry of f along the line ϕR = ϕC suggests we can limit our analysis to

the case ϕR < ϕC , the other case follows from simple variable substitution. Together

with the constraint

ϕU + ϕR + ϕC = 1 (4.11)

we can write f as a function of two variables

f(ϕR, ϕC)

kBT
=(1− ϕR − ϕC) ln(1− ϕR − ϕC) + (ϕC − ϕR) ln(ϕC − ϕR)

+ ϕC lnϕC + χϕR(1− ϕC − ϕR) (4.12)
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with domain limitations 0 ≤ ϕR ≤ 1/2 and ϕR ≤ ϕC ≤ 1− ϕR. This means we are

restricted to the upper half of the phase diagram. The exact spinodal line follows

from solving the spinodal condition, Eq. (3.14), to

ϕsp±C (ϕR) =
(χ− 4)

2χ
±
√
ϕR(2ϕR − 1)(χ2ϕR(2r − 1)− 8χϕR + 4)

2χϕR
. (4.13)

Only parts of these solutions are above ϕC ≥ ϕR and the upper critical point lies on

the ϕsp−C solution. To find the minimal χcrit we note that the two intersections of the

spinodal line and ϕC = ϕR converge. We can solve ϕsp−C = ϕR to

χ =
2ϕR + 1

2ϕR − 8ϕ2
R

(4.14)

and minimize this expression with respect to ϕR. This leads to the composition ϕR,crit

at which phase separation first occurs. ϕC,crit will have the same value. Eq. (4.13) now

defines to the χcrit and we see that phase separation starts to occur at the minimal

critical values

χcrit =
3

2
+
√

2 = 2.91 , (4.15)

ϕR,crit =

√
2− 1

2
= 0.207 , (4.16)

ϕC,crit = ϕR,crit . (4.17)

This point is apparent in Fig. 4.2 at the intersections of the lines describing the upper

and lower critical points, which we will derive next.

We find the upper and lower critical points for any given χ by noting that

a tie-line at this point is tangential to the spinodal line and the inflection points of

f along the tie-line converge here. This leads to two more conditions which can be

solved numerically. The second derivative of f along the tangential to the spinodal
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has to be zero and minimal. Denoting with prime derivatives with respect to ϕR this

reads

∂2f(ϕR + δ, ϕspC + δϕsp
′

C )

∂δ2
= 0 , (4.18)

∂3f(ϕR + δ, ϕspC + δϕsp
′

C )

∂δ3
= 0 , (4.19)

and while the derivatives can be found analytically, the roots of these equations leading

to ϕR,crit can only be found numerically. The position of this exact upper critical

point is also shown in Fig. 4.2.

Noting that all tie-lines are nearly parallel, we can approximate them to be

perfectly parallel to ϕC = ϕR. We can restrict the system to only be capable of

changing compositions along a line described by ϕC = ϕR+o+1, where o is a negative

fixed offset. This reduces the free energy to a function of only one variable.

f(ϕR)

kBT
=(1 + o) ln(1 + o) + ϕR lnϕR + (−2ϕR − o) ln(−2ϕR − o)

− χϕR(2ϕR + o) . (4.20)

This function is plotted for χ = 5.25 and o = −.74 in Fig. 3.1. The spinodal condition

Eq. (3.12) and its solution are

0 =
1

ϕR
− 4

2ϕR + o
− 4χ , (4.21)

ϕsp±R (ϕR) =
−(2χo+ 1)±

√
(3 + 2χo)2 − 8

8χ
. (4.22)

These two spinodal points have to degenerate into one at the critical point, which

determines o at this point. Inserting this expression back into the spinodal equation
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Figure 4.3. Proteins adsorb on a ternary membrane, interacting differently with
unreactive lipids, complexes, and uncomplexed lipids. This leads to different protein
decorations in phases with different composition.

we determine the upper critical point to

ϕR =
1

4χ
(1 +

√
2) =

0.603

χ
, (4.23)

ϕC = 1− 1

4χ
(5 + 3

√
2) = 1− 2.31

χ
. (4.24)

Fig. 4.2 shows this approximation in comparison to the numerically calculated exact

behavior of the critical points as well as the approximated spinodal line.

4.3. Protein adsorption

The influence of proteins adsorbing on such a ternary membrane is illustrated

in Fig. 4.3. Proteins interact differently with the individual lipid species and their

binding affinity will depend on the local compositions, changing the energetics of the

different phases. This can influence the phase behavior. The effect of proteins can be

described in an analytical way by adding a term that accounts for the free energy of

adsorbed proteins onto the membrane to Eq. (4.1).
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We accomplish this by modeling the energy contribution on the mean field

level to f that accounts for the presence of membrane-adsorbed proteins

fp
kBT

=
1

σ
[ϑ lnϑ+ (1−ϑ) ln(1−ϑ) + ϑ ln c]

− ϑ(αUϕU + 2αAϕA + αRC |ϕR − ϕC |) . (4.25)

The first line describes the ideal gas entropic contribution of the protein layer to the

system, where ϑ is the area fraction of the membrane covered by proteins. A scaled

bulk concentration c of proteins in the surrounding solution relates to the chemical

potential of the proteins. σ is the protein-to-lipid cross-sectional area ratio, scaling

the protein contribution on a per-lipid site level. The interaction of adsorbed proteins

with the unreactive lipids (ϕU), lipid-cholesterol complexes (ϕA), and uncomplexed

lipids (|ϕR − ϕC |) is characterized by the parameters αU , αA and αRC , respectively.

Complexes cover twice the area of lipids, which is accounted for by the factor 2.

The optimal protein coverage can be found by minimizing the free energy per

lipid area fT = f + fP with respect to ϑ as

ϑeq =
1

1 + c e−σ[αRC |ϕR−ϕC |+ αUϕU+2αAϕA]
. (4.26)

For analysis of stability criteria we can fix ϑ to this value. Numerically minimizing the

coexistence equation however becomes more involved because the local protein coverage

at the individual phases can deviate from the equilibrium value. This introduces three

new variables (two of which are independent), the coverage of the three individual

phases and an additional constraint in form of the lever rule

ϑeq =θ1ϑ1 + θ2ϑ2 + θ3ϑ3 . (4.27)

51



.25 .5 .75

.75

.5

.25

.25

.5

.75

ϕU ϕR

ϕC
Proteins
χ =4
αA =1
αU =0
αRC =0
c =1
σ =5

tie lines
spinodal
renormalized

binodal (outer)
spinodal (inner)

Figure 4.4. Phase diagram for a protein-decorated ternary membrane. The exact
spinodal (solid curve) is shown as well as the exact spinodal of a renormalized membrane
(with χeff = 5.25, inner dashed curve). The exact binodal line of the renormalized
system is represented by the outer dashed curve and the upper and lower critical
points of both actual and renormalized system are circled.

The free energy of a three-phase system now has to be minimized with respect to

eight variables.

fT3(ϕR1, ϕC1, ϑ1, ϕR2, ϕC2, ϑ2, θ1, θ2) = f3(ϕR1, ϕC1, ϕR2, ϕC2, θ1, θ2)

+ θ1fp(ϕR1, ϕC1, ϑ1)

+ θ2fp(ϕR2, ϕC2, ϑ2)

+ θ3fp(ϕR1, ϕC3, ϑ3) (4.28)

The phase diagram showing the obtained tie-lines for χ = 4 is shown in Fig. 4.4.

Clearly, protein adsorption has a destabilizing effect on the membrane. Determination

of the critical points follows the same procedure as above.
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Assuming again parallel tie-lines in a manner as described above, we obtain

the spinodal line analytically, using ϑ = ϑeq. For weak protein-lipid interaction, that

is small α’s, we can express these parameters as

αU → δαU , (4.29)

αA → δαA , (4.30)

αRC → δαRC , (4.31)

and approximate fT by a Taylor expansion up to second order around δ = 0. The

spinodal condition reveals

0 =
1

ϕR
− 4

2ϕR + o
− 4χ+ 4σ

c

(1 + c)2
(αA − αU)2 , (4.32)

which we can compare with the spinodal condition for the bare membrane, Eq. (4.21).

We see that that proteins effectively rescale the interaction parameter

χeff = χ+ σ
c

(1 + c)2
(αA − αU)2 . (4.33)

This effective increase in χ corresponds to a destabilization of the membrane, as seen

in Fig. 4.4.

4.4. Conclusion

The model from McConnell and co-workers [179, 217] predicts the observed

closed-loop phase behavior of ternary lipid-cholesterol mixtures. We note that this

model is minimal; it employs a single compositional order parameter. The critical

value for the interaction strength χ can be specified analytically. Below χcrit domain

formation does not occur. We have predicted an approximative analytical expression
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for χcrit which compares well with the numerically derived values. Fig. 4.2 shows a

comparison between the exact and approximate locations. The closed-loop behavior

of the coexistence region as well as the near-parallel orientation of the tie-lines in the

phase diagram agree with experimental findings [281]. Only two-phase coexistence is

predicted by the theoretical model, in concurrence with experimental results. This is

the basis for approximating a ternary membrane as a pseudo-binary mixture. The

major result of this chapter is the demonstration that proteins merely need to interact

differently with the unsaturated lipid and the saturated lipid-cholesterol complexes in

order to substantially lower the stability of the ternary membrane. In fact, proteins

simply shift the spinodal surface χ(ϕR, ϕC) to larger values.

Experimentally gathered evidence of the phase behavior suggests more com-

plexity. Most notable is the existence of a gel phase in the lower part of the phase

diagram [84]. Our model is not designed to predict non-fluid phases. After this work

was developed and presented, Michael Schick and his group presented an especially

noteworthy approach utilizing chain order and composition as order parameters [78].

Closed loop behavior as well as the transition to the gel state are predicted.
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5. PAPER 1 : INFLUENCE OF

MONOLAYER-MONOLAYER COUPLING ON THE

PHASE BEHAVIOR OF A FLUID LIPID BILAYER1

ABSTRACT: We suggest a minimal model for the coupling of the lateral phase

behavior in an asymmetric lipid membrane across its two monolayers. Our model

employs one single order parameter for each monolayer leaflet, namely its composition.

Regular solution theory on the mean-field level is used to describe the free energy in

each individual leaflet. Coupling between monolayers entails an energy penalty for any

local compositional differences across the membrane. We calculate and analyze the

phase behavior of this model. It predicts a range of possible scenarios. A monolayer

with a propensity for phase separation is able to induce phase separation in the apposed

monolayer. Conversely, a monolayer without this propensity is able to prevent phase

separation in the apposed monolayer. If there is phase separation in the membrane, it

may lead to either complete or partial registration of the monolayer domains across

the membrane. The latter case which corresponds to a three-phase coexistence is only

found below a critical coupling strength. We calculate that critical coupling strength.

Above the critical coupling strength, the membrane adopts a uniform compositional

difference between its two monolayers everywhere in the membrane, implying phase

coexistence between only two phases and thus perfect spatial registration of all domains

on the apposed membrane leafs. We use the lattice Boltzmann simulation method to

also study the morphologies that form during phase separation within the three-phase
1 Sylvio May (S.M.) provided the initial plan for the research presented in this paper. The free energy
model development and Landau expansion was done jointly by S.M. and Alexander Wagner (A.W.).
Theoretical analysis of the model and determination of critical points were done jointly by S.M. and
Stephan Loew (S.L.). Phase diagrams for three-phase coexistence were developed by S.L. Lattice
Boltzmann simulation and morphologies were executed by A.W. This paper is published in [286].
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coexistence region. Generally, domains in one monolayer diffuse but remain fully

enclosed within domains in the other monolayer.

5.1. Introduction

One of the most challenging problems in membrane bio-physics is to understand

the influence of lipids on the lateral organization of biomembranes. Numerous

experimental results point at the existence of lateral domains–membrane rafts–and

their various functional roles [252, 57]. Yet, size, stability, and dynamic behavior of

domains in biomembranes remain poorly characterized. This is in contrast to model

membranes, consisting of only a few lipid species at well-characterized conditions,

for which a wealth of detailed information on structural and phase behavior exists.

Especially the ability of cholesterol to induce phase coexistence between two fluidlike

lateral phases, the more condensed liquid-ordered (lo) and the less condensed liquid-

disordered (ld) phase, has been well-characterized experimentally and through various

subsequent modeling attempts [109, 179, 130].

An interesting problem concerns the coupling of coexisting liquid-like domains

between the two leaflets of a lipid bilayer [50]. Current evidence suggests matching of

like-phase domains across a symmetric bilayer [136, 14, 123, 280]. That is, domains

are observed to be in perfect registration, implying that some degree of composition-

sensitive structural coupling must exist between the two apposed monolayers. The

strength of this coupling could possibly be of importance for biomembranes. This is

because the plasma membrane generally has an asymmetric lipid distribution, with

domain-forming lipids enriched in the extracellular monolayer but depleted from the

cytoplasmic monolayer [290]. Indirect evidence (the colocalization of raft proteins

with inner leaflet proteins [215] and the presence of inner leaflet proteins in detergent-

resistant membranes [12]) could suggest the presence of domains in the cytoplasmic
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monolayer [215]. The question arises whether domains in one monolayer can be

imposed (imprinted) by the presence of domains in the other monolayer.

An experimental method to produce asymmetric membranes and to study their

phase behavior is provided by combining the Langmuir-Blodgett/Schäfer method with

fluorescence-based imaging. As the domains within the monolayer facing the solid

support are immobile, they do not register with domains in the apposed monolayer

[262, 44]. Yet, complete registration can be recovered by introducing a polymer cushion

that sufficiently increases the substrate-membrane distance [79, 125]. The study by

Garg et al.[79] clearly shows that domains in one monolayer can induce registered

domains in the other monolayer, even if the latter monolayer has an insufficient

tendency to phase-separate on its own. Kiessling et al. [125] also report cases where

the domain-forming monolayer was unable to induce formation of registered domains

in the apposed monolayer. In summary, present experimental evidence points to a

composition dependence of a monolayer’s ability to imprint its phase structure onto

the apposed monolayer.

A number of recent theoretical studies have addressed consequences of a

coupling between the two monolayers in a membrane [287, 144]. Two studies directly

address the coupling of thermodynamic phase formation across the two membrane

leaflets [96, 3]. Hansen et al. [96] have considered the coupling of two monolayers

where each individual monolayer was modeled as having both a compositional and

curvature degree of freedom. Based on Landau theory, the formation of a number of

different phases, some of them flat and others with shape modulations, are predicted.

In another study, Allender and Schick [3] also used Landau theory with two order

parameters; again one was a compositional order parameter (an effective cholesterol

concentration) but the other one described the thickness of a monolayer. The choice

of this second-order parameter is common [233, 288] and is well-motivated by the

different chain ordering in the lo and ld phases [209]. Monolayer-monolayer coupling
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was assumed to emerge only from a coupling between the thickness order parameters in

each leaflet. Allender and Schick have specifically analyzed a situation where, without

coupling, the outer leaflet of a membrane is unstable, whereas the inner one is stable.

The coupling between the two monolayers then leads to a transition (though a weaker

one) in the inner monolayer as well.

In this work, we analyze a minimal model of the coupling between monolayers

and its influences on the phase behavior of a lipid bilayer. To this end, we shall employ

only one single-order parameter, the composition of a binary monolayer. (Note that

by merging two lipid species into a single effective one, we may, in principle, apply our

results to a ternary lipid mixture that contains cholesterol; similar to Allender and

Schick [3].) Each of the two individual monolayers will be described by the familiar

regular solution model on the mean-field level [228, 47]. Without coupling between

the two monolayers, each leaflet can independently undergo a lateral phase transition.

We may, somewhat arbitrarily, refer to the two phases as condensed and uncondensed.

Monolayer-monolayer coupling acts on the difference between the local compositions

across the membrane. To suggest a physical mechanism we consider Figure 5.1. It

schematically displays two (initially symmetric) membranes that have undergone

phase separation in both monolayers. Only in the lower membrane are the phases of

the same type in registration. Despite being entropically unfavorable and creating

a thickness mismatch (and corresponding line tension [141]) between the condensed

and uncondensed regions, this is the experimentally observed scenario in a symmetric

membrane [136, 14, 123, 280]. Various mechanisms such as van der Waals interactions

or cholesterol flip-flop might contribute to the coupling [3]. However, we speculate the

main contribution has entropic origin and results from the conformational confinement

of the lipid chains in the uncondensed phase when being opposite to a condensed

monolayer. This confinement would concern predominantly the terminal segments

of the lipid chains in the uncondensed monolayer. Facing a more condensed (i.e.,
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Figure 5.1. Schematic illustration of two mixed bilayer membranes. The two
membranes have the same average composition in both monolayers. Each monolayer
separates into two fluidlike phases, a condensed and an uncondensed one. A practical
realization of this scenario could contain cholesterol and additional lipid species (in
this case the phases would correspond to the lo and ld phases). In the upper membrane
the condensed domains in one monolayer face the uncondensed ones in the apposed
monolayer. We argue that this mismatch entails an energy penalty that is proportional
to the square of the local compositional difference across the bilayer. The coupling
between the two monolayers leads to complete registration of domains of the same
kind, as illustrated for the lower membrane. Note that domain registration can be
incomplete if the membrane is asymmetric; i.e., if there is a mismatch in composition
between the two monolayers (this case is not shown but is part of our analysis).

more rigid) monolayer makes it more difficult for these segments to explore their

conformational degrees of freedom by dynamically interpenetrating into the apposed

monolayer. Note that the strength of this type of coupling would increase with the

local compositional difference between the monolayers. This consideration motivates

the simple expression for the coupling (see below in Eq. (5.2)) that we use in this

work.

We shall provide a complete thermodynamic analysis of our model as a function

of the coupling strength. The results will be presented in phase diagrams. In addition,

we analyze our model in terms of a Landau expansion which connects the present with

previous work [96]. The Landau expansion allows us to express the phase behavior in

the limiting cases of small and large coupling analytically. Our model, despite being
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simple, would explain a range of possible observations, including the induction or

suppression of phase separation due to the presence of monolayer-monolayer coupling

and the formation of three-phase regions; i.e., incomplete spatial registration of domains

between the monolayers. We finally use the lattice Boltzmann method to simulate

possible morphologies during the process of phase separation in the three-phase region.

5.2. Free energy model

Consider a planar, binary lipid membrane with the same lipid species but

possibly different compositions in each of its two apposing monolayers. Assume the

two lipid species exhibit non-ideal mixing, with a tendency toward phase separation.

We model this tendency using regular solution theory on the mean-field level

which is also referred to as the Bragg-Williams or random mixing approximation

[228, 47]. The free energy per lipid fBW of a single two-component lipid monolayer

can then be written as a function of its composition φ,

fBW (φ) = φ lnφ+ (1− φ) ln(1− φ) + χφ(1− φ) . (5.1)

Note that here and in the following, all energies are expressed in units of kBT

(Boltzmann’s constant × absolute temperature). The nonideality parameter chi

describes the effective strength of nearest-neighbor interactions. For chi > 0 this

interaction is attractive, and for χ > χc it is able to induce phase separation. Mean-

field theory predicts the critical pointχc = 2. We note that in a more general approach

each monolayer would have its own nonideality parameter. In view of our objective to

formulate a minimal model, we assume that both monolayers have the same underlying

energetics (namely, the same χ). What may be different are the average compositions

of the two monolayers.
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The main focus of this work is to investigate the consequences of the energetic

coupling between the two apposed monolayers of a lipid bilayer. The coupling is

local and likely reflects the dependence on composition of interactions between lipid

tails across the bilayer midplane, such as interdigitation or, more accurately, dynamic

interpenetration, as outlined in the Introduction. That is, any local compositional

differences across the bilayer give rise to an extra energy penalty. If the compositional

difference is sufficiently small this energy penalty must be proportional to (φ− ψ)2

where φ and ψ denote the local compositions in the upper and lower monolayers,

respectively. (Note that invariance of the free energy with respect to exchanging the

upper and lower monolayer excludes the presence of the linear term φ− ψ.) Denoting

the coupling strength by Λ (with Λ > 0), we can write for the local free energy of a

lipid bilayer

f(φ, ψ) = fBW (φ) + fBW (ψ) + Λ(φ− ψ)2 . (5.2)

The first two terms describe the free energies of each monolayer leaflet individually,

and the last term accounts for the coupling between the apposed monolayers. To

obtain the overall free energy F of a lipid bilayer we integrate f(φ, ψ) over the total

lateral area A of the membrane,

F =
1

a

∫
A

daf(φ, ψ) , (5.3)

where a denotes the cross-sectional area per lipid (which we assume to be the same

for both species). Equations (5.1)–(5.3) form the basis of the present work. In the

following, we theoretically analyze and discuss the implications of a nonvanishing

coupling strength Λ.
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5.3. Phase behavior

We characterize the phase behavior as a function of the two membrane

compositions, φ and ψ, in the upper and lower monolayers, respectively. Let us

first calculate the spinodal line that separates locally stable and unstable regions in

the phase diagram. At the spinodal line, the determinant

∂2f

∂φ2

∂2f

∂ψ2
−
(
∂2f

∂φ∂ψ

)2

= 0 (5.4)

of the stability matrix corresponding to f(φ, ψ) vanishes. Carrying out the derivatives

using Eqs.(5.1) and (5.2) gives rise to the relation

0 =

(
1

2φ(1− φ)
− χ

)(
1

2ψ(1− ψ)
− χ

)
+ Λ

[
1

2φ(1− φ)
+

1

2ψ(1− ψ)
− 2χ

]
. (5.5)

Solutions of that equation specify the spinodal lines for any given χ and Λ. Fig. 5.2

displays a number of representative examples of spinodals, derived for χ = 2.2 and

different choices of the coupling parameter Λ. We note that sets of spinodals for values

of χ different to χ = 2.2 (but with χ > 2) appear qualitatively equivalent to those

shown in Fig. 5.2. Let us discuss the behavior of the spinodal lines: First, all spinodal

lines exhibit fourfold symmetry about the two axes φ = ψ and φ = 1−ψ. Second, the

smallest χ for which Eq. (5.5) can be fulfilled is χ = χc = 2 with the corresponding

compositions φ = ψ = 1/2. Hence, the coupling parameter does not affect the critical

point. Also, close to the critical point, the behavior of the spinodals is independent of

Λ. This becomes evident from an expansion of the spinodal up to quadratic order in
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Figure 5.2. Spinodal lines for χ = 2.2 and Λ = 0.02 (a), Λ = 0.2 (b), Λ = 0.275 (c),
and Λ = 5 (d). The spinodals represent solutions of Eq. (5.5).

φ and ψ in the vicinity of the critical point, leading to

(√
χ− 2

4

)2

=

(
φ− 1

2

)2

+

(
ψ − 1

2

)2

, (5.6)

which describes a circle of radius
√
χ− 2/2, independent of Λ. Third, for vanishing

coupling parameter, Λ = 0, the spinodals consist of the two sets of straight lines,

φ =
1

2

(
1±

√
χ− 2

χ

)
, ψ =

1

2

(
1±

√
χ− 2

χ

)
. (5.7)

The four points where these lines cross each other are part of the entire set of spinodals

for fixed χ but variable Λ (see Fig. 5.2). What changes at these four points as a

function of Λ (but fixed χ) is the curvature of the spinodal. For small Λ the spinodal

is convex, and for large Λ it is concave. For the discussion below we note that the
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curvature vanishes at Λ = ΛV with

ΛV = χ
χ− 2

2χ− 3
. (5.8)

For example, for χ = 2.2 this is the case at Λ ≈ 0.31 (a spinodal close to that, namely

for Λ = 0.275, is shown in Fig. 5.2. And finally, note that for small Λ each spinodal

(for fixed χ and Λ) consists of four individual segments. For sufficiently large Λ, the

spinodal is described by a single closed curve in the φ, ψ-plane. The smallest Λ for

which this appears to be the case is

Λ = χ− 2 . (5.9)

For example, χ = 2.2 leads to Λ = 0.2; shown in Fig. 5.2. To summarize, a growing

coupling parameter Λ restricts the regions of local instability of the bilayer but does

not affect the critical point.

Let us now calculate the binodal phase behavior, with all multiphase regions

and representative tie-lines included. To this end, we need to minimize the overall

free energy F of the bilayer, defined in Eq. (5.3). Because the local free energy f(φ, ψ)

depends on a single compositional degree of freedom in each of the two monolayers,

the membrane can for any nonvanishing coupling Λ > 0, at most, separate laterally

into three phases. (Of course, in each individual phase, the compositions of the upper

and lower monolayer need not be the same.) Allowing for the coexistence of three

homogeneous phases we may rewrite Eq. (5.3) as

aF

A
= θ1f(φ1, ψ1) + θ2f(φ2, ψ2) + θ3f(φ3, ψ3) , (5.10)

where θ1, θ2, θ3 are the area fractions of the three phases, φ1, φ1, φ1 are the corre-

sponding compositions of the upper monolayer, and ψ1, ψ2, ψ3 are the corresponding
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Figure 5.3. Phase diagrams for Λ = 0.02 (top, left), Λ = 0.2 (top, right), Λ = 0.275
(bottom, left), and Λ = 5 (bottom, right). Three-phase regions are indicated by
triangles. Representative tie-lines are displayed in regions of two-phase coexistence.
Also shown are the spinodal lines (see also Fig. 5.2). Note that χ = 2.2 in all four
diagrams. The points marked a− f in diagram A indicate systems for which we have
carried out simulations of their morphological phase structure; see below in Fig. 5.4,
A− F .

compositions of the lower monolayer. Area fractions and compositions must fulfill the

three conservation conditions θ1 + θ2 + θ3 = 1, φ1 +φ2 +φ3 = φ, and ψ1 +ψ2 +ψ3 = ψ

where φ and ψ are the fixed average compositions in the upper and lower monolayer,

respectively, thus specifying a point {φ, ψ} in the phase diagram (see Fig. 5.3). (For

brevity, we shall use the same symbols φ and ψ to denote local and average compositions;
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everywhere below the concrete meaning of φ and ψ is uniquely determined by its

context).

Owing to the three conservation conditions, only six variables in Eq. (5.10) are

independent. In thermal equilibrium, the free energy F adopts its global minimum

with respect to these six variables. The minimization can be carried out numerically;

results of phase diagrams as functions of the fixed average compositions φ and ψ are

shown in Fig. 5.3, derived for χ = 2.2 and various choices of Λ. Again, changing χ

does not affect the qualitative features of the phase diagrams. Let us discuss the

influence of the coupling parameter Λ.

In the absence of coupling, Λ = 0, the two monolayers, if unstable, phase-

separate independently from each other. For example, if only the upper monolayer

is unstable, then a tie-line parallel to the φ-axis of the phase diagram indicates

the two coexisting compositions φ1 and φ2 = 1 − φ1, which solve the equation

ln[φ/(1 − φ)] = χ(2φ − 1). This last equation corresponds to the familiar common

tangent construction. Instability of both monolayers would lead to a phase coexistence

with compositions φ1, φ2 = 1 − φ1 and ψ1 = φ1,ψ2 = φ2 in the upper and lower

monolayer, respectively. Morphological phase structure and dynamic evolution toward

the equilibrium structure in one monolayer is entirely independent from that in the

apposed monolayer. Therefore phase morphologies in both monolayers are spatially

uncorrelated in the limit Λ→ 0.

For nonvanishing but still sufficiently small coupling parameter, Λ, we find

both two-phase and three-phase coexistence regions. Let us first discuss two-phase

coexistence. Consider, for example, Λ = 0.02 which is shown in Fig. 5.3 A. If only

the upper monolayer is unstable, say at φ = 0.5 and ψ = 0.1, it will split into two

phases. Yet, the corresponding tie-line is tilted with respect to the φ-axis, implying

that a compositional difference is also induced in the lower monolayer. (The tilt of

the tie-lines grows with the coupling parameter Λ.) Hence, if without coupling one
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monolayer is unstable and the other monolayer is stable, the coupling between them

may induce phase-separation in both monolayers. In this scenario, the phases in both

monolayers are in complete registration.

The phase diagrams in Fig. 5.3 also predict another possibility. A membrane

with its two monolayers–one being stable and the other unstable without coupling–may

not phase separate at all if coupling is present. This is evident from the decrease in

size of the four symmetric two-phase regions with increasing Λ (see Fig. 5.3 B) for

Λ = 0.2 and, even more pronounced, for Λ = 0.275 (see Fig. 5.3 C).

Three-phase coexistence is equivalent to incomplete phase registration across

the bilayer. Yet, regions of three-phase coexistence only exist below a certain coupling

strength Λ?. Above this maximal coupling strength, the membrane no longer exhibits

three-phase coexistence. We can calculate Λ? by noting that along the spinodal ψ(φ)

two critical points merge at position φ = φm with φm = (1 +
√

(χ− 2)χ)/2 (see

Eq. (5.7)). This can be written as

(
d

dφ

(
d3f(φ+ δ, ψ(φ) + δψ′(φ))

d3δ

)
δ=0

)
φ=φm

= 0 , (5.11)

where the prime in ψ′(φ) denotes the first derivative with respect to the argument.

Solving Eq. (5.11) leads to the maximal coupling strength

Λ? =
3

2
χ
χ− 2

2χ− 3
, (5.12)

above which three-phase coexistence does not exist. (It is interesting to note that

Λ? = 3ΛV /2; see Eq. (5.8).) For χ = 2.2, three-phase coexistence thus ceases to exist

for Λ > 0.47.

The sizes of the three-phase regions shrink with growing coupling parameter,

as is evident from Fig. 5.3, A–C. In fact, the three-phase regions are replaced by an
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additional two-phase region (absent for Λ = 0) that has all its tie-lines parallel to the

diagonal φ = ψ, implying a constant compositional difference across the monolayers

everywhere in the membrane. T his is the most restrictive effect that the coupling

between the monolayers can have. Hence, the additional two-phase region represents

the strong coupling limit. Indeed, for large coupling parameter, Λ ≥ Λ?, the phase

diagram has all its tie-lines with slope of 1 in the φ, ψ-diagram. Fig. 5.3 D displays

this limiting case of large coupling.

Our final comment concerns the phase behavior of a membrane that has one

of its two monolayers being a binary mixture whereas the other one contains only a

single component. Assume the mixed monolayer is unstable for Λ = 0. Our phase

diagrams show that with increasing coupling parameter the region of instability of

the bilayer decreases until, eventually, a phase transition is completely absent. The

strength of the coupling parameter beyond which phase separation ceases is Λ = χ− 2,

corresponding to Eq. (5.9), for which the spinodal line starts forming a single closed

curve in the phase diagram. With χ = 2.2, this happens for Λ = 0.2; shown in Fig. 5.3

B.

5.4. Landau expansion

Close to the critical point it is convenient to expand the free energy into a

series up to fourth-order in the order parameters. This often provides a means to

characterize the phase behavior in terms of analytical expressions. Here, we shall

also demonstrate the use of such a Landau expansion. The order parameter of the

binary lipid membrane is the composition, φ in the lower monolayer and ψ in the

upper monolayer. The critical point is adopted at φ = ψ = 1/2. It will be convenient
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to define the two new scaled compositions,

φ̄ =
φ− 1/2√

(3/8)(χ− 2)
, ψ̄ =

ψ − 1/2√
(3/8)(χ− 2)

. (5.13)

We then expand the free energy fL = (4/3)f(φ, ψ)/(χ− 2)2 up to fourth-order in φ̄

and ψ̄ at position φ̄ = ψ̄ = 0. The result can be written up to an irrelevant constant

term as

fL(φ̄, ψ̄) =
1

4
(φ̄4 + ψ̄4)− 1

2
(φ̄2 + ψ̄2) +

Λ′

2
(φ̄− ψ̄)2 , (5.14)

where we have defined the normalized coupling strength Λ′ = Λ/(χ− 2). The reason

for introducing scaled compositions is now evident: fL(φ̄, ψ̄) depends on Λ and χ

only through the normalized coupling strength Λ′. Hence, close to the critical point

(where the Landau expansion is valid), the phase behavior only depends on one

single parameter. This justifies presenting a sequence of phase diagrams in Fig. 5.3

as function of Λ for only one single value χ. Different choices of χ do not lead to

qualitatively different behavior in the phase diagrams.

It is obvious that for Λ′ = 0 the free energy fL(φ̄, ψ̄) decouples into two

additive contributions. In this case, the binodal lines (representing solutions of the

common tangent construction) are located at φ̄ = ±1 f and ψ̄ = ±1 with constant ψ̄

and constant φ̄, respectively. The corresponding spinodal lines are φ̄ = ±1/
√

3 and

ψ̄ = ±1/
√

3, which agrees with Eq. (5.7) for small χ− 2.

Let us first investigate the limit of small coupling Λ′. Here, the phase diagram

contains both three-phase and two-phase regions. Using the case Λ′ = 0 as a

reference state, we can perform an expansion of the phase coexistence equations

with respect to small Λ′. For the three-phase region we then obtain the triangle,

{φ̄1, ψ̄1}, {φ̄2, ψ̄2}, {φ̄3, ψ̄3} of coexisting (scaled) compositions in the upper and lower

monolayer. Our calculation yields φ̄1 = −ψ̄3 = 1 + Λ′/2, and φ̄2 = ψ̄1 = −φ̄3 = −ψ̄2 =
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1−Λ′/2. This indeed describes the shift in the lower phase triangle (ψ > φ in Fig. 5.3)

as a function of Λ. Analogous expressions are valid for the upper phase triangle (where

ψ < φ).

A similar expansion of the coexistence equations with respect to the coupling

parameter can be performed to obtain the tie-lines of the two-phase region in the

limit of small Λ′. More specifically, we calculate the lower set of almost horizontal

tie-lines in the phase diagram (see Fig. 5.3 A). Here the resulting two coexisting bilayer

compositions {φ̄1, ψ̄1} and {φ̄2, ψ̄2} define an almost horizontal tie-line (φ̄1 ≈ φ̄2) that

crosses through the point {φ̄, ψ̄} of given (scaled) average compositions of the two

monolayers. Our calculation leads to φ̄2 = −φ̄1 = 1− Λ′/2 and

φ̄1 = φ̄− Λ′
1 + φ̄

3ψ̄2 − 1
; φ̄2 = φ̄+ Λ′

1− φ̄
3ψ̄2 − 1

. (5.15)

Analogous expressions can be derived for the other almost horizontal and two almost

vertical sets of tie-lines (see next paragraph for the remaining set of tie-lines that are

parallel to the ψ = φ-diagonal of the phase diagram).

Let us now investigate the limit of large coupling parameter. (This analysis

is valid for all tie-lines at Λ > Λ?, and also applies to the set of tie-lines parallel to

the ψ = φ-diagonal of the phase diagram for 0 < Λ < Λ?.) As argued above, no

three-phase coexistence region exists in this regime. Hence, the membrane can only

exhibit two-phase coexistence. Whenever this is the case, the two monolayers have

the same compositional difference between their respective phases. This fact can

be used to solve the coexistence equations for any point of given (scaled) average

compositions {φ̄, ψ̄} within the two-phase region. The result for the two coexisting
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bilayer compositions {φ̄1, ψ̄1} and {φ̄2, ψ̄2} is

φ̄1 =
φ̄− ψ̄

2
−
√

1− 3

4

(
φ̄− ψ̄

)2

φ̄2 =
φ̄− ψ̄

2
+

√
1− 3

4

(
φ̄− ψ̄

)2

ψ̄1 = − φ̄− ψ̄
2
−
√

1− 3

4

(
φ̄− ψ̄

)2

ψ̄2 = − φ̄− ψ̄
2

+

√
1− 3

4

(
φ̄− ψ̄

)2
. (5.16)

Again, it can be verified that the corresponding tie-lines cross the point {φ̄, ψ̄}. The

tie-lines described by Eq. (5.16) are indeed parallel to the diagonal ψ = φ of the phase

diagram. In the φ, ψ-phase diagram, there are two critical points where the binodal

and spinodal lines merge (see Fig. 5.3 D). These points are {φ̄, ψ̄} = {1,−1}/
√

3

and {φ̄, ψ̄} = {−1, 1}/
√

3. The longest tie-line, extending along the ψ̄ = φ̄-diagonal,

connects the two points {φ̄, ψ̄} = {1, 1} and {φ̄, ψ̄} = {−1,−1}. We thus see that the

binodal region in the regime Λ > Λ? corresponds to an ellipse with ratio
√

3 between

its long and short axis (see Fig. 5.3).

5.5. Morphologies

We also simulated the dynamic phase-separation process using a lattice Boltz-

mann method (see Appendix (Section 5.8) for details) based on the Landau expansion

of the free energy, Eq. (5.14). We simulated the following equations of motion. For

the total density ρ we have the continuity equation

∂tρ+∇(ρu) = 0 , (5.17)
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where u denotes the mean fluid velocity, and the Navier-Stokes equation for the total

momentum

∂t(ρu) +∇(ρuu) = ∇P +∇{η[∇u + (∇u)T ]} . (5.18)

Here P is the pressure tensor given by Eq. (5.24) and η is the viscosity. For the order

parameters φ̄ and ψ̄ the drift diffusion equation reads

∂tφ̄+∇(φ̄u) = ∇(M φ̄∇µφ̄) , (5.19)

∂tψ̄ +∇(ψ̄u) = ∇(M ψ̄∇µψ̄) , (5.20)

where M φ̄ and M ψ̄ are Onsager coefficients. The chemical potentials, µφ̄ and µψ̄ ; are

derived from the Landau free energy, Eq. (5.14), with the additional interfacial energy

term, (κ/2)[(∇φ̄)2 + (∇ψ̄)2], given by Eq. (5.28) and Eq. (5.29).

Simulations for parameters leading to a two-phase region give rise to the usual

morphologies seen for coarsening of two-phase systems [285]. More interesting are the

three-phase regions on which we focus here. In the following, it is sufficient to consider

the case where the initial value of φ̄ (that is, the scaled average composition of the

upper monolayer) is larger than the corresponding initial value of ψ̄ (the scaled average

composition of the lower monolayer). The three equilibrium phases are then φ̄-rich

and ψ̄-rich domains (condensed-condensed), φ̄-rich and ψ̄-poor domains (condensed-

uncondensed), and φ̄-poor and ψ̄-poor domains (uncondensed-uncondensed). In

Fig. 5.4 these domains are shown as bright, gray, and dark domains, respectively. We

initialized our simulations with homogeneous compositions φ̄ and ψ̄; modulated with

small spatial disturbances to initiate spinodal decomposition.

Six examples of typical morphologies are shown in Fig. 5.4 for Λ′ = 0.1. Note

that for χ = 2.2 the choice Λ′ = 0.1 corresponds to Λ = Λ′(χ− 2) = 0.02. We thus

simulate morphologies in the three-phase region of Fig. 5.3 A. The corresponding
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(A) φ̄ = 0.7, ψ̄ = 0.05 (B) φ̄ = 0.6, ψ̄ = −0.05

(C) φ̄ = 0.2, ψ̄ = −0.2 (D) φ̄ = 0.6, ψ̄ = −0.6

(E) φ̄ = −0.1, ψ̄ = −0.6 (F) φ̄ = −0.1, ψ̄ = −0.7

Figure 5.4. Dynamically formed membrane domain morphologies for different
compositions of the upper and lower monolayers for parameters in the three-phase
region of the phase-diagram. The three equilibrium phases are φ̄-rich and ψ̄-rich
domains (bright, condensed-condensed), φ̄-rich and ψ̄-poor domains (gray, condensed-
uncondensed) and φ̄-poor and ψ̄-poor domains (dark, uncondensed-uncondensed).
Generally, domains are in complete registration. That is, domains in one monolayer
are fully contained in the domains of the other monolayer. Or, equivalently expressed,
domain boundaries never cut each other. Simulations A–F correspond to the points
a–f of the phase diagram shown in Fig. 5.3 A.
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points are indicated in the phase diagram of Fig. 5.3 A. That is, point a in Fig. 5.3 A

corresponds to the system simulated in Fig. 5.4 A, and analogously for points b–f .

Note that for values of Λ′ an order-of-magnitude smaller (Λ′ ≤ 0.01) the domains

begin to decouple dynamically, implying that domain boundaries start crossing each

other. Morphologically, this is reminiscent of recent observations in solid-supported

lipid bilayers where domains are not registered because domains in the substrate-facing

monolayer are immobilized ([262, 44, 79]). In all simulations displayed in Fig. 5.4, the

coupling parameter Λ′ = 0.1 is sufficiently high so that domains of one monolayer

are always fully contained within domains of the other monolayer. In other words,

the domains in the apposed monolayers are in full registration. All of the displayed

morphologies are time-dependent and they continue to coarsen through the coalescence

of domains (viscous hydrodynamic growth) and the occasional evaporation of very

small domains (Oswald ripening).

If both average (scaled) compositions are larger than zero (φ̄ > 0 and ψ̄ > 0)

the membrane will form predominantly the condensed phase in both monolayers. This

is the case in Fig. 5.4 A, derived for φ̄ = 0.7, ψ̄ = 0.05 where we indeed observe a large

and continuous bright domain, enclosing gray domains that themselves each enclose

one or more small dark domains. Recall that the upper monolayer, present with large

composition, forms the uncondensed phase only within the dark domains. Decreasing

both φ̄ and ψ̄ (see Fig. 5.4 B) derived for φ̄ = 0.6, ψ̄ = −0.05, favors formation of the

gray phase; this phase then becomes the majority phase and contains distinct sets of

bright and dark domains.

Symmetric systems, φ̄ = −ψ̄ are displayed in Fig. 5.4, C and D. For small

absolute values of φ̄ = −ψ̄ the system resembles a familiar two-phase fluid where the

gray phase decorates the interface of the dark and bright domains (see Fig. 5.4 C).

For larger absolute values, the area fraction of the gray domains increases until there

is a mixture of dark and bright domains suspended in a gray matrix (see Fig. 5.4 D).
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If both φ̄ < 0 and φ̄ < 0 the membrane tends to form mostly the uncondensed

phase in both monolayers (of course, more of it in the lower monolayer because we

have assumed φ̄ > ψ̄). This is seen in Fig. 5.4, E and F, where we indeed observe

mostly the dark phase. Because of the φ̄ → −φ̄ and ψ̄ → −ψ̄ symmetries this is

roughly the complementary morphology to Fig. 5.4 A. Note for Fig. 5.4 E that we find

only one single white domain enclosed in each gray one. The coarsening dynamics

provides the reason for this observation: If the gray domains coarsen more slowly than

the domains dispersed in them we will always end up with only one single domain

suspended. If the gray domains coarsen faster than the domains dispersed in them we

will end up with gray domains that contain an increasing number of smaller domains.

Examples of the latter are shown in Fig. 5.4, A and F.

To discuss the dynamics of this simple model in relation to that observed in

experiments it is important to compare several timescales. The first timescale refers

to the phase-separation process which is roughly given by the time it takes to de-mix

an initially homogeneous lipid layer and form small domains. The next two timescales

are related to the coarsening of the domains. There are two coarsening mechanisms

present: a diffusive coarsening mechanism dominating at small length scales and a

hydrodynamic coarsening mechanism dominating for large domains. This is the case

for all fluid mixtures.

In our special case there is an additional timescale involved. This timescale

specifies the coupling of the hydrodynamics between the domains in both leafs of

the membrane. If this coupling is small, or if one monolayer is prevented from

hydrodynamic motion by being immobilized on a solid substrate, the domains may

become spatially decoupled and registration of the domains can be lost. This is seen

in experiments [262, 44] using supported membranes where the hydrodynamic motion

of the support-facing monolayer is inhibited or recovered by an additional polymer

cushion [79, 125].

75



5.6. Conclusions

This study investigates how the coupling between the two monolayers of a

lipid membrane affects the phase behavior in each of the two membrane leaflets. Our

model employs only one order parameter. In this respect it is simpler than previous

theoretical studies [96, 3]. Still, it makes a number of nontrivial and experimentally

verifiable predictions. First, if one monolayer leaflet is unstable it may induce phase

separation in the apposed monolayer, even if this monolayer would be stable otherwise.

A stable monolayer may also suppress phase separation in the apposed intrinsically

unstable monolayer. If phase separation occurs, it always occurs in both monolayers,

but is generally weaker in the more stable monolayer. This might be of relevance

for the plasma membrane for which the extracellular leaflet typically contains a raft-

forming lipid mixture whereas the cytoplasmatic one does not. Somewhat surprisingly,

our simple model predicts that for low coupling strength the domains in the two

monolayers are not always in registration. This is manifested by the presence of

three-phase coexistence in the phase diagram. Here, each monolayer contains three

phases of different compositions. The compositions of the two monolayers can be

different but the three phases in each monolayer must be in perfect registration for

thermodynamic reasons. Morphologically, the three-phase coexistence appears as two

sets of domains, one contained in the other. Above a critical coupling strength (which

we have calculated analytically; see Eq. (5.12)) three-phase coexistence is no longer

possible, and the membrane can only split into two phases in each monolayer that are

always in perfect registration.

As our model is based on one single order parameter it should be the simplest

model to investigate intermonolayer coupling. The simplicity of the model implies

a considerable number of approximations. In particular, all effects related to other

degrees of freedom beyond compositional changes are neglected. This includes
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curvature degrees of freedom [96], thickness changes of the membrane [3], and flip-

flop (which could be particularly relevant for cholesterol [92].) In addition, we have

considered a two-component system, thus neglecting the three components that

are commonly used to produce fluid-phase coexistence (cholesterol and two lipid

species with one of which cholesterol interacts more favorably). Note also that the

coupling parameter between the two monolayers, Λ (see Eq. (5.2)), was introduced

phenomenologically; hence, it does not reveal the molecular origin of the coupling. At

this point, further modeling studies might be useful to extract the source(s) of the

coupling and to estimate the actual magnitude of Λ. Finally, we have assigned the

same nonideality parameter, χ, to both leaflets of the membrane. A more general

approach would allow for different free energy functions (and thus two different χ)

in both monolayers. Still, the surprising variety of predicted phenomena makes us

confident that our model captures some essential features of the coupling between the

apposed monolayers and its thermodynamic implications.
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5.8. Appendix: Lattice Boltzmann

The application of the lattice Boltzmann method to the coupled leaflets of a

lipid bilayer is presented here for the first time. It is based on a free energy in the

spirit of the original Swift model [207, 265] and consists of evolution equations for the

densities f ci for component c associated with a lattice velocity vi

f ci (x + vi, t+ ∆t) = f ci (x, t) +
∆t

τ c
(f c0i (nc(x, t),u(x, t))− f ci (x, t)) , (5.21)
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where the density is nc =
∑

i f
c
i and u denotes the mean fluid velocity. The equilibrium

distribution is given by

f c0i = wi(n
cδi,0 + 3u.vi +

9

2
Πc : vivi −

3

2
trΠc) . (5.22)

We will use a standard D2Q9 velocity set of

{vi} =

{(
0

0

)
,

(
1

0

)
,

(
−1

0

)
,

(
0

1

)
,

(
0

−1

)
,

(
1

1

)
,

(
−1

1

)
,

(
−1

−1

)
,

(
1

−1

)}
. (5.23)

For this velocity set the weights are w0 = 1, w1−4 = 1/9, and w5−8 = 1/36. We use

three lattice Boltzmann equations to represent the total density ρ and the two order

parameters φ̄ and ψ̄. The first density can then be used to define the mean fluid

velocity through ρi =
∑

i f
1
i vi. The pressure tensor is given by

Pαβ =

{
− 1

2
(φ̄2 + ψ̄2) +

3

4
(φ̄4 + ψ̄4) +

Λ′

2
(φ̄− ψ̄)2

+
κ

2
[φ̄∇2φ̄+ ψ̄∇2ψ̄ − (∇φ̄)2 + (∇ψ̄)2]

}
δαβ

+ κ(∇αφ̄∇βφ̄+∇αψ̄∇βψ̄) , (5.24)

and we choose

Πρ = ρuu + P . (5.25)

For the other two Π we choose

Πφ̄ = φ̄uu + µφ̄1 , (5.26)

Πψ̄ = ψ̄uu + µψ̄1 , (5.27)

78



where the chemical potentials are given by

µφ̄ = −φ̄+ φ̄3 − κ∇2φ̄− Λ′(φ̄− ψ̄) , (5.28)

µψ̄ = −ψ̄ + ψ̄3 − κ∇2ψ̄ − Λ′(ψ̄ − φ̄) , (5.29)

A Taylor expansion method can then be used to derive the hydrodynamic equations

simulated by this lattice Boltzmann method [285]. The resulting equations are

Eqs. (5.17)–(5.20)17 with η = n0(τ ρ − 1/2)/3, M φ̄ = τ φ̄ − 1/2, and M ψ̄ = τ ψ̄ − 1/2.

We performed our simulations on a 2502 lattice. The simulation parameters were

κ = 0.5, τ ρ = τ φ̄ = τ ψ̄ = 1, ∆t = 0.1, and Λ′ = 0.1.
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6. PAPER 2 : STABILITY OF PROTEIN-DECORATED

MIXED LIPID MEMBRANES: THE INTERPLAY OF

LIPID-LIPID, LIPID-PROTEIN, AND PROTEIN-PROTEIN

INTERACTIONS1

ABSTRACT: Membrane-associated proteins are likely to contribute to the

regulation of the phase behavior of mixed lipid membranes. To gain insight into

the underlying mechanism we study a thermodynamic model for the stability of a

protein-decorated binary lipid layer. Here, proteins interact preferentially with one

lipid species and thus locally sequester that species. We aim to specify conditions

that lead to an additional macroscopic phase separation of the protein-decorated

lipid membrane. Our model is based on a standard mean-field lattice-gas description

for both the lipid mixture and the adsorbed protein layer. Besides accounting for

the lipid-protein binding strength, we also include attractive lipid-lipid and protein-

protein interactions. Our analysis characterizes the decrease in the membrane’s

critical interaction parameter as a function of the lipid-protein binding strength. For

small and large binding strengths we provide analytical expressions, numerical results

cover the intermediate range. Our results reiterate the crucial importance of the line

tension associated with protein-induced compositional gradients and the presence

of attractive lipid-lipid interactions within the membrane. Direct protein-protein

attraction effectively increases the line tension and thus tends to further destabilize

the membrane.
1 Sylvio May (S.M.) and Anne Hinderliter provided the initial plan for the research presented in this
paper. The free energy model development and analytical analysis was done by S.M. and verified
by Stephan Loew (S.L.) Phase diagrams were developed by S.L. This paper is published in [157].
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6.1. Introduction

Peripheral adsorption of proteins (as well as for peptides) onto mixed lipid

membranes is an ubiquitous phenomenon in cellular biology. Typically, proteins bind

preferentially to one (or more) lipid species while there is no preferential interaction

with other lipids. Among a plethora of examples for the dependence of protein binding

on membrane composition are phospholipase A2 [295, 147], lysozyme [85], α-synuclein

[261], cytochrome c [99], various cytoskeletal proteins [203], and antimicrobial peptides

[199]. A direct consequence of preferential binding is the sequestration of the favored

lipid species by the proteins. That is, in the vicinity of each individual protein the

membrane composition is shifted from the average value towards that preferred by

the protein. The degree of sequestration depends on the differences in affinity of the

protein for the various lipid species. In some cases the sequestration may be small so

that it is difficult to detect [82]; yet, in other cases it has been observed experimentally

[103, 104, 289, 82] and in molecular simulations [160].

Even in the absence of associated proteins, lipid membranes are able to form

lateral domains or to macroscopically phase separate. Most of the current interest to

study domain formation in model membranes is motivated by the discovery of lipid

rafts in biological membranes and their various functional roles [252, 181]. It is well

documented that many binary lipid membranes exhibit non-ideal mixing properties

[146, 80, 221]. In presence of cholesterol, appropriate ternary lipid mixtures undergo

lateral phase-separation [280, 123]. For a number of mixtures lipid-lipid interaction

parameters have been extracted based on fluorescence resonance energy transfer, by

means of cross-linking of individual lipids, and heat capacity measurements (reviewed

in Ref. [5]).

An unresolved question is how proteins modulate the phase propensity of

a mixed bilayer. As discussed recently, proteins may participate in the process of
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domain formation actively through attractive protein-protein interactions or passively

by interacting preferentially with one lipid species or with the domain interface [5, 59].

Clustering of proteins within lipid domains (or at domain boundaries) has been

suggested based on experimental results for a large number of systems, including

lipid monolayers [301, 224], model membranes [185, 106, 102, 212, 201, 85, 261, 167]

and lipid mixtures from the plasma membrane [15], the latter at sufficiently low

temperature. There is also experimental evidence that proteins are able to induce

phase separation in both model [93, 208] and biological [151] membranes. Yet, the

mechanisms how membrane-associated proteins influence domain formation and phase

behavior of the lipid bilayer remain elusive. Current theoretical approaches suggest a

role of immobile proteins in the restriction of domain sizes [300], domain formation

through wetting of proteins by lipids [81, 1], and a dynamic membrane remodeling

through nonequilibrium lipid transport and interactions with membrane proteins

[68]. Other models are based on inclusion-induced elastic membrane deformations

[245, 235, 236]. Here, proteins are described as rigid inclusions that induce elastic

deformations in the host membrane. If that deformation is coupled energetically

with one lipid species, an inclusion-induced macroscopic phase transition can result.

Still another mechanism, based on the experimentally observed repartitioning of

streptavidin protein coats from the liquid-disordered to the liquid-ordered phase upon

forming an ordered structure, was suggested by Manley et al.[167]. Here, protein

ordering is associated with an entropic penalty that is smaller in the liquid-ordered

phase and thus may drive the repartitioning. This mechanism could contribute, quite

generally, to the tendency of proteins to repartition into more ordered phases upon

their oligomerization [244]. Finally, Monte-Carlo simulations [258, 81, 100, 103] have

played a pivotal role in studying the ability of proteins (and also flexible polypeptides

[274, 275]) to induce lipid sequestration and domain formation. We note that Monte-

Carlo simulations typically employ a lattice model for the mixed membrane. For
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Figure 6.1. Schematic illustration of local lipid segregation (A) versus global phase
separation (B). In the former case, proteins (shaded rectangles) bind to a preferred
lipid species (lipids with shaded headgroups) without causing the formation of large
domains. Even though the membrane compositions, φP and φL, within the protein-
covered regions and bare membrane, respectively, may differ from each other, the
membrane remains homogeneous on a macroscopic scale. In the latter case, there
is macroscopic phase separation into a protein-dense and protein-dilute phase. The
ability of proteins to induce phase separation depends on the lipid-protein binding
strength (α), lipid-lipid interaction (χ), and protein-protein interaction (Λ). The
only structural parameter that enters our model is the protein’s number of binding
sites or, equivalently, protein-to-lipid size ratio σ = aP/a where aP and a denote the
cross-sectional areas per protein and lipid, respectively.

example, Almeida et al.[5] have recently reviewed the quantitative determination of

lipid-lipid interaction parameters by modeling fluorescence measurements of protein-

induced membrane reorganization through Monte-Carlo simulations. As we shall

see below, our present work is based on a similar lattice model, analyzed through

mean-field level calculations of phase boundaries.

Proteins that locally sequester lipids of one species do not necessarily induce

phase separation of the host membrane. The sequestration is a local process that

must be distinguished from macroscopic, global, phase separation. Fig. 6.1 displays

schematically two protein-decorated lipid layers; both sequester lipids underneath

the proteins but only layer (B) exhibits macroscopic phase separation whereas layer

(A) does not. A theoretical study [174] has addressed the question what interactions
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are needed to render a mere sequestration into macroscopic phase separation. It was

shown that the presence of attractive interactions among lipids of the same species in

the host membrane can be sufficient. In this case, phase separation is driven solely by

the line tension between the two regions of different composition (that at the protein

adsorption sites and that of the bare membrane). The line tension between coexisting

fluid-like macroscopic phases in a lipid membrane is on the order of ≈ 1pN [270]. It

has been suggested to result (at least partially) from the thickness mismatch between

the coexisting phases [141, 273]. More generally, the line tension in a non-ideally

mixed binary fluid simply results from compositional gradients [228]. Thus, if the host

membrane exhibits attractive lipid-lipid interactions, then a line tension appears as a

consequence of lipid sequestration at the boundary between a protein adsorption site

and bare membrane. Reduction of the line tension contribution is the driving force for

protein clustering and phase separation. In a related study [177] detailed electrostatic

calculations were presented for a number of generic model proteins adsorbed onto a

mixed membrane, corroborating the importance of the line tension for the ability of

proteins to induce membrane phase separation.

We note that the above-mentioned previous modeling studies [174, 177] have

focused on indirect, membrane-mediated, interactions between adsorbed proteins.

That is, the presence of attractive interactions between membrane lipids (and the

corresponding line tension) can be sufficient to induce phase separation. The influence

of direct attraction between the adsorbed proteins on the stability of the membrane

was not considered. The objective of the present work is thus to include direct protein-

protein interactions into the model of Ref. [174]. Specifically, we shall employ a two-

state model (see also Ref. [91]) where lipids can reside either at the protein adsorption

region or within the bare (protein-free) membrane. The model is investigated on the

mean-field level, thereby allowing for (i) a preferential binding of one lipid species

with adsorbed proteins, (ii) lipid-lipid attraction within the host membrane, and (iii)
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direct protein-protein attraction. Below, we shall characterize these interactions by

the three parameters, α (lipid-protein), χ (lipid-lipid), and Λ (protein-protein). In the

limits of both small and large lipid-protein binding strength α we shall derive simple

analytical expressions that show how attractive interactions among lipids and among

proteins can act together to destabilize the composite membrane.

It should be noted that the model employed in the present study is a minimal

model; it is simple enough to reveal a number of analytical results and a clear

understanding of the underlying physics. At the same time it employs various

approximations such as its lattice-character, mean-field treatment, and the neglect of

membrane-mediated elastic forces. The latter ones act also between proteins adsorbed

on a single-component lipid membrane and have been studied extensively in that

context [87].

6.2. Theory

We consider a large planar lipid layer of lateral area A = Na that contains

N lipids, each of cross-sectional area a. The lipid layer is composed of two different

lipid species with molar compositions φ and 1− φ. Let a number M of proteins be

peripherally adsorbed on the lipid layer. The extent of protein coverage on the lipid

layer can be characterized by the fraction θ = M/Mmax where Mmax is the maximal

number of adsorbed proteins. Note that usually the cross-sectional area per adsorbed

protein aP will be considerably larger than a, implying the size ratio σ = aP/a� 1.

In the following we analyze a simple two-state model that is based on a lattice gas

description of an incompressible fluid. Here, both the lipid layer and the adsorbed

proteins are described as two, energetically coupled, lattice gases. For simplicity,

we treat the number of protein adsorption sites to be dictated by area conservation,

aPM
max = aN , implying Mmax = N/σ. In the two-state approximation lipids can
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reside in only two energetically distinct states, within either the bare lipid layer or

protein-covered regions. We denote the molar compositions corresponding to these

two states by φL and φP , respectively. On the mean-field (Bragg-Williams) level, we

write for the total free energy f = F/N of the protein-decorated lipid layer, measured

per lipid,

f = θfP (φP ) + (1− θ)fL(φL) +
fpr(θ)

σ
+ λ(∆φ)2θ(1− θ) , (6.1)

where here and in the following all energies are expressed in units of the thermal

energy kBT . In Eq. (6.1), the functions fP (φP ) and fL(φL) denote the free energies per

lipid in protein-covered and protein-free regions of the lipid layer, respectively. The

function fpr(θ), appearing in the third term of Eq. (6.1), accounts for the free energy

contribution of the adsorbed protein layer, measured per protein. The additional factor

1/σ converts to measuring f in units of “per lipid”. Finally, the last term in Eq. (6.1)

describes the additional line tension between the bare lipid layer and its protein-covered

regions. The presence of this term is a consequence of the compositional changes in

the lipid layer [228]; within the present two-state model these changes are expressed

in terms of the compositional difference ∆φ = φP − φL between the protein-covered

and protein-free regions. Moreover, the line tension contribution is proportional to

the total length of the boundary between the two regions and thus, on the mean-field

level, contains the pre-factor θ(1 − θ). Note that λ is a material constant that is

independent of φ and θ.

The free energy f = f(φ, θ) (see Eq. (6.1)) is a function of the two independent

compositional variables φ and θ. Note that ∆φ = ∆φ(φ, θ) is not an independent

variable but must be determined from the equilibrium condition ∂f/∂∆φ = 0. Hence,

the equation describing breakdown of local thermodynamic stability (the spinodal

86



equation)
∂2f

∂φ2

∂2f

∂θ2
−
(
∂2f

∂φ∂θ

)2

= 0 , (6.2)

depends on the second derivatives of f with respect to the two degrees of freedom φ

and θ. Even without specifying the structure of the functions fP (φP ), fL(φL), and

fpr(θ) one may transform Eq. (6.2) into the equivalent expression

0 = [f ′′L(φL) + 2λ] [f ′′P (φP ) + 2λ]

[
σ(∆φ)2

f ′′pr(θ)
− 1

2λ

]
+ 2λ+ (1− θ)f ′′P (φP ) + θf ′′L(φL) . (6.3)

The derivation of Eq. (6.3) is sketched in the appendix (Section 6.6). Note that this

form of the spinodal equation is expressed entirely in terms of the second derivatives of

the unspecified functions fP (φP ), fL(φL), fpr(θ) and as a function of ∆φ. That is, no

derivative of ∆φ is involved which will prove valuable for a numerical determination

of the spinodal (see below). We also remark that in the limit of vanishing line tension,

λ → 0, Eq. (6.3) is fulfilled if f ′′L(φL) = 0 or f ′′P (φP ) = 0. Here, the stability of the

lipid and adsorbed protein layers is independent of each other. In the opposite limit,

that of large line tension (λ→∞), all compositional changes are suppressed implying

∆φ = 0 in Eq. (6.3). Hence, in this case the lipid layer remains laterally homogeneous

on a microscopic scale.

We note that the free energy in Eq. (6.1) has been considered in a previous

study [174] subject to the condition of fixed chemical potential µP = ∂f/∂θ of the

membrane-adsorbed proteins. Clearly, by appropriately choosing µP we may adjust

the protein coverage θ = θ(φ, µP ) to any desired value. The relevant thermodynamic

potential is then f̄ = f − µP θ. The corresponding spinodal can be written in the form

dθ

dφ
=

2σλ∆φ

f ′′pr(θ)
, (6.4)
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as previously presented in reference [174]. The appendix (Section 6.6) of the present

work outlines the derivation of Eq. (6.4).

Let us specify the functions fP (φP ), fL(φL), and fpr(θ). In order to include,

on the mean-field level, interactions within the lipid layer, between the proteins, and

between lipids and proteins, we chose

fL(φL) = fmix(φL) + χφL(1− φL) ,

fP (φP ) = fL(φP )− αφP , (6.5)

fpr(θ) = fmix(θ) + Λθ(1− θ) ,

where fmix(x) = x lnx + (1 − x) ln(1 − x) is the free energy (per site of a lattice

gas) of ideal mixing. The free energy of the bare, protein-free, lipid layer, fL(φL), is

given by the familiar Bragg-Williams expression for an incompressible binary lattice

gas with nearest-neighbor interactions where the effective interaction strength is

characterized by the parameter χ. Note that χ depends on the mutual molecular

interactions ω11, ω22, and ω12, among and between the two lipid species, through

χ = z[ω12 − (ω11 + ω22)/2] where z is the coordination number of the lattice. The

spinodal of a bare lipid layer is χ = 1/[2φ(1− φ)], implying the critical interaction

parameter χc = 2 and the corresponding critical composition φc = 1/2. That is, for

χ > χc there is a compositional range where the membrane is unstable with respect

to macroscopic phase separation.

The second equation, that for fP (φP ), is identical to the one for fL(φP ) apart

from an additional favorable interaction of the protein with one lipid species. Assuming

that each bound high-affinity lipid contributes the same amount to the protein binding

energy renders the interaction term in this equation proportional to φP , the composition

at the protein adsorption site. The prefactor α > 0 (the binding strength per high-

affinity lipid, measured in units of kBT ) thus provides the driving force for the
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adsorption. We note that our model treats the protein-to-lipid size ratio σ to be

equal to the number of lipid-protein binding sites thus rendering B = ασ the maximal

protein adsorption strength (which becomes equal to the actual protein adsorption

strength in the limit of complete lipid sequestration, φP → 1).

Finally, the free energy, fpr(θ), of the adsorbed proteins is again given by the

Bragg-Williams expression for a binary lattice gas. (Alternative expressions based

on the van der Waals gas or scaled particle theory yield more involved expressions

for the mixing entropy of membrane-adsorbed proteins [38, 99] – using them would

not alter the physical mechanism of protein-induced phase separation studied in the

present work.) The interaction strength Λ that appears in fpr(θ) accounts for direct

interactions between the adsorbed proteins. We shall assume that these interactions

alone are insufficient to induce phase separation of the adsorbed protein layer, implying

Λ < 2. This assumption focuses our attention on the influence of the lipid layer in

inducing lateral phase separation. We note that the present study extends previous

work [174] by including the protein-protein interaction constant Λ.

We also note that our assumption of a constant Λ will not be fulfilled if protein

conformation changes as function of coverage θ. Yet, even with constant Λ the total

interaction between proteins includes not only a direct but also an indirect, membrane-

mediated, contribution which depends on membrane composition and protein coverage

as shown below in Eq. (6.11).

To sum up, we have introduced in Eqs. (6.5) mean-field expressions for the

functions fL(φL), fP (φP ), and fpr(θ). They involve the three material constants χ,

α, and Λ, describing the strengths of lipid-lipid, lipid-protein, and protein-protein

interactions, respectively.

The line tension term in Eq. (6.1) represents the excess free energy penalty due

to the presence of compositional changes within the lipid layer. Our two-state model

involves compositional changes (of magnitude |∆φ|) only at the boundaries between
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the bare lipid layer and the protein covered regions. The total length of all boundaries

is L =
√
aP θ(1− θ)Mmax on the mean-field level (where √aP is the spatial extension

of a single protein). On the other hand, the lipid’s excess free energy per unit length

of the boundary – the line tension – can be written as Ft/L = bχ(∆φ)2/
√
a where b is

a numerical prefactor and
√
a is the spatial extension of a single lattice site (which

represents a lipid). Note that the line tension depends on the compositions of the two

phases through ∆φ; it vanishes for ∆φ→ 0 as would be the case when approaching a

critical point. The line tension contribution to the total free energy per lipid is thus

ft = Ft/N = (bχ/
√
σ) (∆φ)2θ(1− θ). Comparing this expression with the last term

in Eq. (6.1) yields

λ = b
χ√
σ
. (6.6)

We note that the numerical prefactor is generally b ≈ 1; its exact magnitude depends

on the geometry of the protein species or, equivalently, on the curvature of the domain

boundary. More specifically, it is b = 1 for a perfectly straight boundary. That value

would somewhat increase for a curved boundary (as will be the case for finite-sized

proteins) and would decrease if the constraint of a sharp, step-like, compositional

change between bare lipid layer and protein-covered region was relaxed. In the present

work it is convenient and sufficient to simply use b = 1.

Let us finally verify consistency of the expression for the line tension, Ft/L =

bχ(∆φ)2/
√
a, with experiment. For example, Tian et al.[270] obtained Ft/L ≤ 3.3pN,

inside the fluid-fluid coexistence region of a ternary lipid mixture containing cholesterol.

That value was observed to decrease towards zero when approaching the critical point.

Using reasonable values such as a = 0.65 nm2, χ = 1, b = 1, our present model

predicts Ft/L = 4(∆φ)2pN, in agreement with both the magnitude and pronounced

composition dependence measured by Tian et al.[270].
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6.3. Results and discussion

Eq. (6.1) together with Eqs. (6.5) and (6.6) define the free energy f =

f(φ, θ;χ, α,Λ) as functions of the two degrees of freedom, φ and θ, and in terms

of the molecular interaction constants χ, α, and Λ. The region of spinodal stability

within the φ, θ-phase diagram is determined by Eq. (6.2) (or, equivalently, by Eq. (6.3)

or Eq. (6.4)). A spinodal curve will only exist for χ < χc. Any choice χ > χc

corresponds to a membrane that is stable with respect to lateral phase separation. For

the specific choice χ = χc the spinodal degenerates to a point φc, θc in the φ, θ-phase

diagram. The corresponding critical interaction parameter χc = χc(α,Λ) can thus be

expressed in terms of α, and Λ. Recall, that for a bare (protein-free) membrane χc = 2.

An interesting question is thus to what extent protein adsorption (α > 0) is able to

reduce χc below the value of 2. For Λ = 0 this question has been addressed in previous

work [174]. The main objective of the present study is to study the influence of direct

protein-protein interactions as expressed through Λ. The full relation χc = χc(α,Λ)

can only be calculated numerically (see below). However, in the limits of small and

large lipid-protein binding strengths α analytical solutions are available.

In the limit of small binding strength (α� 1) the solution of the equilibrium

condition ∂f/∂∆φ = 0 for the compositional difference ∆φ = ∆φ(φ, θ) can be

calculated, yielding

∆φ =
α

1
(1−φ)φ

− 2(χ− λ)
. (6.7)

Using this expression in the spinodal equation, we obtain for the critical interaction

parameter

χc = 2− α2

8
σ

[
1

1− Λ/2
− 1

]
. (6.8)
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The corresponding critical compositions are φc = θc = 1/2. Eq. (6.8) shows that

adsorbed proteins are able to reduce the critical interaction parameter χc of the lipid

layer even in the limit of small α if direct protein-protein attraction (Λ > 0) is present.

The other limit, that of large interaction strength α� 1, is most conveniently

analyzed for fixed chemical potential µP of the membrane-adsorbed proteins; see

Eq. (6.4). In this case, the coverage θ adjusts until all lipids that interact favorably

with the proteins are localized within the protein-covered regions. This implies φL = 0

and θφP = φ. Hence, dθ/dφ = 1/φP and ∆φ = φP . Eq. (6.4) now is equivalent to

χ =
1

2
√
σ

1

φ2
P

(
1

θ(1− θ) − 2Λ

)
, (6.9)

and adopts its minimum for φP = 1 and θ = 1/2. Thus, for α→∞ the critical point

is specified by φc = θc = 1/2 and

χc =
2√
σ

(
1− Λ

2

)
. (6.10)

In the special case of vanishing protein-protein interactions, Λ = 0, this coincides with

the previously derived result χc = 2/
√
σ [174]. The presence of direct protein-protein

attraction further destabilizes the membrane.

For intermediate α the critical interaction parameter χc must be determined

numerically. This is most conveniently accomplished using Eq. (6.3) because no

derivatives of ∆φ(φ, θ) appear in that equation. Specifically, we first determine ∆φ

from solving the equilibrium condition ∂f/∂∆φ = 0. With that, we minimize the

spinodal, χ = χ(φ, θ), in Eq. (6.3) with respect to φ and θ . The minimum specifies

the critical interaction parameter, χc, and the corresponding critical compositions, θc

and φc, for any given α and Λ.
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Figure 6.2. The critical interaction parameter χc plotted as a function of α. The
different curves correspond to Λ = 0 (a), Λ = 1.0 (b), and Λ = 1.5 (c). In all cases
σ = 25. Dashed lines indicate the approximation for large α in Eq. (6.10). The inset
shows the same graphs for small α. Here the dashed lines correspond to the limiting
behavior for small α according to Eq. (6.8). The circle corresponds to the parameters
used to calculate the phase diagrams in Fig. 6.4.

Fig. 6.2 shows numerical results for χc as a function of α; the three different

curves correspond to different choices of Λ. All curves are calculated for σ = 25.

The prediction for large α according to Eq. (6.10) is indicated by the corresponding

horizontal dashed lines. The inset of Fig. 6.2 redisplays the small-α region and shows

(dashed lines for curves (b) and (c)) χc(α) according to the analytical result for small

α; see Eq. (6.8). The numerical results confirm the trend predicted by the analytical

expressions in the limits of small and large α: Direct protein-protein attraction further

destabilizes the membrane.

Let us discuss Fig. 6.2. As reported previously [174] protein-induced phase

separation of the lipid bilayer does not require the presence of direct protein-protein
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interaction. Indeed, even for Λ = 0 the critical membrane interaction parameter χc

is reduced below its bare-membrane value χc = 2; see curve (a) in Fig. (6.2). The

reason that phase separation can occur even in the absence of direct protein-protein

interactions is the line tension contribution to the membrane’s free energy – the

last term in Eq. (6.1). That is, adsorbed proteins induce a compositional difference

∆φ between the protein-covered and protein-free regions. The corresponding energy

penalty can be diminished by protein clustering (thus reducing the total length of the

boundary between protein-covered and protein-free regions). Hence, phase separation

of the protein-decorated lipid layer is – for Λ = 0 – mediated entirely by the lipid’s line

tension. We note that the role of the line tension contribution can also be illustrated by

setting λ = 0 in Eq. (6.1). The result for the critical membrane interaction parameter

is then χc = 2, irrespective of Λ and α. Thus, in the absence of line tension (λ = 0),

protein adsorption does not affect the stability of the underlying lipid layer. The

presence of direct protein-protein attraction, 0 < Λ < 2, adds another energy penalty

in addition to the line tension contribution of the membrane which leads to a further

reduction of χc. Indeed, both the lipid’s line tension contribution in Eq. (6.1) and

the protein’s nonideal mixing contribution in fpr(θ) (see Eqs. (6.5)) provide terms

∼ θ(1 − θ). The excess free energy per unit length L of the boundary between the

bare lipid layer and protein-covered region is thus

Ft
L

= [Λ
√
σ + bχ(∆φ)2]

1√
a
, (6.11)

which explicitly shows the two contributions. In particular, because of ∆φ = ∆φ(φ, θ)

the line tension depends on lipid compositions and protein coverage.

Increasing the number of binding sites σ on the protein reduces the stability

of the membrane. This can be seen from our analytical expressions, Eqs. (6.8) and

(6.10), in the limits of small and large α respectively. Fig. 6.3, which shows χc = χc(α)
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Figure 6.3. The critical interaction parameter χc plotted as a function of α. Curves
marked (a) and (b) correspond to σ = 9 and σ = 36, respectively. Solid curves are
calculated for Λ = 0, dashed curves for Λ = 1.5. The two open circles mark the critical
interaction parameters for Λ = 1.5 at fixed maximal adsorption strength B = 18,
calculated for α = 0.5 and α = 2; see discussion in the text.

for different combinations of σ and Λ, corroborates this behavior for intermediate α.

Increasing the number of binding sites σ on the protein, while conserving the maximal

adsorption strength B = ασ, does not usually (unless α� 1) reduce χc, but it yields

a larger slope χ′c(α). For example, compare the behavior of χc at the points indicated

by the two open circles in Fig. 6.3. Both cases correspond to the same maximal

adsorption strength B = 18. The larger protein species (σ = 36 and α = 0.5) implies

a more stable membrane but increased sensitivity of χc with respect to changes in

α. This larger sensitivity may be one advantage of having many weak (instead of a

single or a few strong) binding sites of a protein with membrane lipids. Many weak

binding sites increase the impact of small variations in lipid binding strength on lateral

membrane organization.
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So far, our analysis has only addressed the behavior of the critical interaction

parameter χc. For any χ > χc the protein-decorated lipid layer is unstable in a certain

region within the φ, θ-diagram. Stronger direct protein-protein attraction increases

the size of that region. As an illustration Fig. 6.4 presents two phase diagrams, both

calculated for χ = 1.9, α = 0.4, and σ = 25. At this particular point (marked by

a circle in the inset of Fig. 6.2) it is χ > χc for any choice of Λ (with Λ > 0). The

two phase diagrams in Fig. 6.4 correspond to the specific values Λ = 0 and Λ = 1.

Displayed are the spinodal lines, which represent solutions of Eq. (6.2), and a number

of tie-lines. The tie-lines correspond to solutions of the four familiar coexistence

equations

(
∂f

∂φ

)
A

=

(
∂f

∂φ

)
B

,

(
∂f

∂θ

)
A

=

(
∂f

∂θ

)
B

,

fA − fB =(φA − φB)

(
∂f

∂φ

)
A

+ (θA − θB)

(
∂f

∂θ

)
A

, (6.12)

φ =
φA(θ − θB)− φB(θ − θA)

(θA − θB)
,

for the two points φA, θA and φB, θB (with fA = f(φA, θA) and fB = f(φB, θB) and

given φ and θ for any given tie-line). Comparison of the two phase diagrams in Fig. 6.4

corroborates our notion of reduced stability of the protein-decorated lipid layer in the

presence of direct protein-protein attraction.

Let us discuss the context of our present model and its possible implications for

the interpretation of experimental results. As mentioned in the introduction, protein-

induced elastic membrane deformations provide an alternative theoretical concept to

explain lateral remodeling of lipid membranes. These models account for proteins

that impose elastic deformations onto the mixed host membrane. Examples include

transmembrane proteins that have a cone-like shape [39], a mismatch in hydrophobic

thickness with respect to their host bilayer [48], or are incorporated into a membrane
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Figure 6.4. Phase diagrams for Λ = 0 (top) and Λ = 1 (bottom). In both cases
χ = 1.9, α = 0.4, and σ = 25. (The point χ = 1.9 and α = 0.4 is marked in the inset
of Fig. 6.2 by an open circle.) The closed loops correspond to the spinodal lines. The
endpoints of the tie-lines form the binodal region.
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that is subject to substantial bending deformations [246]. Similar models have also

been applied to mixed membranes [245, 235, 236, 1]. Note that non-elastic interactions

are usually ignored in order to extract elasticity-based physical mechanisms. Our

present model adopts a complementary approach. It ignores elastic deformations but

accounts for specific interactions (lipid-lipid, lipid-protein, and protein-protein). As we

demonstrate in the present work, membrane-mediated protein-protein interactions may

be strong enough to induce macroscopic phase separation, even in the absence of elastic

membrane deformations. Of course, the presence of elastic membrane deformations

may further enhance the tendency to phase separate.

Our model is likely to be relevant in a number of situations: First, membrane-

matching transmembrane proteins and peripherally-adsorbed proteins are unlikely to

evoke significant elastic deformations. For example, membrane reorganization induced

by the C2 protein motif in various peripheral proteins has been modeled using Monte-

Carlo simulations that employ the same lattice description as we use in the present

study [103, 104]. Second, supported membranes and lipid monolayers have reduced

capacity to undergo bending deformations. Hence, our model could be relevant for

the observed ability of the peripheral protein α-synuclein to induce macroscopic phase

separation on supported phosphatidylcholine/phosphatidylglycerol membranes [208].

Similarly, it may be used to describe annexin A2-induced formation of large domains in

supported bilayers composed of phosphatidylcholine/phosphatidylserine [185]. Finally,

recent experiments demonstrated that cross-linking of the minor membrane component

ganglioside GM1 by CTB (cholera toxin subunit B) can induce macroscopic phase

separation in model [93] and biological [151] membranes. Here, the membrane is

primed to undergo phase separate which is initiated by the CTP-induced cross-linking.

In terms of our present model the membrane resides close to the phase boundary prior

to the cross-linking. Addition of CTP effectively induces sequestration of GM1. The
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fact that sequestration may give rise to macroscopic phase separation is exactly the

subject of our present model.

6.4. Conclusions

We have studied the stability of a protein-decorated, mixed lipid layer with

respect to lateral phase separation. The proteins are assumed to preferentially interact

with only one species of a binary membrane. Starting with the assumption that both

the isolated lipid layer and the adsorbed protein layer each on their own are stable

(χ < 2 and Λ < 2), we have addressed the question whether the coupled system is able

to undergo phase splitting. The energetics of the protein-decorated lipid layer depends

generally on three effective interaction strengths, lipid-protein (α), lipid-lipid (χ), and

protein-protein (Λ). Our present model is complete in the sense that it accounts for

all these interactions; it extends a previous study [174] in which only the interaction

constants α and χ were taken into account. As in that study, we find that protein

adsorption onto a stable binary membrane can induce lateral phase separation as

expressed by the reduction of the critical interaction parameter χc even for Λ = 0.

The driving force for the phase transition is the membrane line tension contribution to

the free energy. Beyond that we quantify the role of direct protein-protein attraction

(Λ > 0). These generally enhance the destabilization of the lipid layer. That is, both

χc is further reduced and the region of instability in the φ, θ-phase diagram widens as

a function of growing Λ.
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6.6. Appendix: Derivation of equations (6.3) and (6.4)

Eq. (6.2), the spinodal equation, defines the boundary between local thermody-

namic stability and instability in the φ, θ-diagram. (For a numerical calculation of the

spinodal see the phase diagrams in Fig. 6.4.) To calculate the spinodal based solely

on Eq. (6.1) we point out that the two compositions φP and φL in, respectively, the

protein-covered and protein-free regions of the lipid layer are connected through the

lever rule φ = θφP + (1− θ)φL. Together with the definition of ∆φ = φP − φL this

implies

φP = φ+ (1− θ)∆φ , φL = φ− θ∆φ . (6.13)

In thermal equilibrium, the compositional difference ∆φ adjusts so as to minimize f ,

implying the equilibrium condition ∂f/∂∆φ = 0 must be fulfilled. Using Eq. (6.1)

this is equivalent to

f ′P (φP )− f ′L(φL) + 2λ∆φ = 0 , (6.14)

which defines the relation ∆φ = ∆φ(φ, θ). Hence, the free energy f = f(φ, θ)

in Eq. (6.1) depends only on the two compositional degrees of freedom, φ and θ.

Furthermore, partially differentiating the equilibrium condition, Eq. (6.14), with

respect to θ and φ leads to two equations that can be combined to yield the relation

∂φP
∂θ

∂φL
∂φ

=
∂φL
∂θ

∂φP
∂φ

. (6.15)

Together with Eq. (6.13) this becomes

∂∆φ

∂θ
= −∆φ

∂∆φ

∂φ
. (6.16)
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Using Eqs. (6.13)-(6.16) allows us to calculate the first derivatives

∂f

∂φ
=f ′L(φL)− 2λ∆φ θ ,

∂f

∂θ
=fP (φP )− fL(φL)−∆φf ′L(φL) + λ(∆φ)2 +

f ′pr(θ)

σ
, (6.17)

and from that the second derivatives

∂2f

∂φ2
=
∂φL
∂φ

[f ′′L(φL) + 2λ]− 2λ ,

∂2f

∂θ2
= (∆φ)2∂φL

∂φ
[f ′′L(φL) + 2λ] +

f ′′pr(θ)

σ
,

∂2f

∂φ∂θ
= −∆φ

∂φL
∂φ

[f ′′L(φL) + 2λ] . (6.18)

Inserting these relations into the spinodal, Eq. (6.2), gives rise to

− ∂φL
∂φ

[f ′′L(φL) + 2λ]

[
σ(∆φ)2

f ′′pr(θ)
− 1

2λ

]
= 1 . (6.19)

The derivative ∂φL/∂φ can be obtained by differentiating the equilibrium condition

for ∆φ, Eq. (6.14), with respect to φ. The result is

∂φL
∂φ

=
2λ+ f ′′P (φP )

2λ+ (1− θ)f ′′P (φP ) + θf ′′L(φL)
. (6.20)

Together with Eq. (6.20), the spinodal in Eq. (6.19) yields the final result in Eq. (6.3).

Let us also outline the derivation of Eq. (6.4). The (fixed) chemical potential

µP = ∂f/∂θ of the membrane-adsorbed proteins is given in Eq. (6.17). Taking the

full derivative of µP with respect to θ results in

dµP
dθ

= −∆φ
dφL
dθ

[f ′′L(φL) + 2λ] +
1

σ
f ′′pr(θ) = 0 . (6.21)
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Using Eq. (6.21) we eliminate f ′′L(φL) from Eq. (6.19). The spinodal, Eq. (6.19), then

becomes
dφL
dθ
∂φL
∂φ

=
f ′′pr(θ)

2σλ∆φ
−∆φ . (6.22)

But (dφL/dθ)/(∂φL/∂φ) = −∆φ + (dφ/dθ) and we thus obtain Eq. (6.4). We note

again that the calculations in this appendix are valid irrespective of the structure of

the functions fP (φP ), fL(φL), and fpr(θ).
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7. PAPER 3 : TRANSFER MECHANISM OF

TEMOPORFIN BETWEEN LIPOSOMAL MEMBRANES1

ABSTRACT: The transfer kinetics of temoporfin, a classic photosensitizer,

was analyzed by investigating the influence of total lipid content, temperature, as

well as charge, acyl chain length, and saturation of the lipids in donor vesicles using

a mini ion exchange column technique. The obtained results are consistent with an

apparent first order kinetics in which the transfer proceeds through both liposome

collisions and through the aqueous phase. We present a corresponding theoretical

model that accounts for the detailed distribution of drug molecules in donor and

acceptor liposomes and predicts the transfer rates as a function of drug concentration

and number of donor and acceptor liposomes. The experimentally observed transfer

rates depended strongly on the temperature and comply with the Arrhenius equation.

Thermodynamic calculations indicate the transfer process to be entropically controlled.

In terms of the charge of donor liposomes, positively charged liposomes showed

transfer rates faster than negatively charged liposomes whereas the maximum amount

transferred was almost the same. A more rigid structure of the donor liposomes

increases the transfer rate of temoporfin, which is caused by expelling the drug from

the membrane interior, as proposed in former work. In summary, our combined

theoretical/experimental approach offers a systematic way to study the mechanism of

drug release from liposome-based delivery systems.
1 Experiments were planned, executed and evaluated by Hossam Hefesha, Xiangli Liu, and Alfred
Fahr. The theoretical modeling was developed by Stephan Loew and Sylvio May. This paper is
published in [98].
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7.1. Introduction

Unilamellar phospholipid vesicles (liposomes) are often used as drug delivery

vehicles for hydrophobic drugs such as cyclosporine A, paclitaxel, amphotericine B

or photosensitizers. Poorly water soluble drugs are most likely located within the

lipophilic interior of the liposomal membrane as shown e.g. for cyclosporine A [237]

and paclitaxel [293]. When transported via liposomes or other nanocarriers, the drug

typically accumulates after an i.v. injection at tumor sites because of the “enhanced

permeation and retention” (EPR) effect [76]. To become pharmacologically active,

the drug must be either endocytosed by the target cells or, as is the case for the

lipophilic drugs described earlier, transferred from the liposomal membrane to the

tumor cell membranes via collisional or diffusional processes (i.e. without the need to

be endocytosed by the tumor cells). However, the drug – while being transported in

the liposomal membrane through the blood stream – may also change binding places

with blood components like albumin or erythrocytes on the way to the tumor site.

Therefore, a balance between losing drug molecules prior to reaching the target site

and releasing drugs at the target site must be established by designing the drug-carrier

system accordingly.

Early in vitro studies have already shown [43], that porphyrins administered in

liposomes to HeLa-cells are more efficient than conventionally administered porphyrin,

even if serum is present in the cell culture medium. Furthermore, results from in vivo

studies in tumor-bearing rats indicate [120], besides an enhanced therapeutic efficiency,

that porphyrins administered in liposomes are to a large extent not complexing

with serum albumin. The authors conclude, that these differences “imply a different

mechanism of interaction with receptors and/or serum proteins”. Clearly, an analysis

of the transfer mechanism of drug molecules from liposomes to a target site is likely

to help optimizing the delivery system. In addition, such transfer studies may also
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Figure 7.1. Chemical structure of temoporfin.

elucidate the pathway of the drug from the target cells to the place of action inside

the cell, as liposomal membranes also serve as model systems for cell membranes. In

the present study, we focused on temoporfin (mTHPC) as one of the few approved

porphyrins in cancer therapy to date. Temoporfin belongs to the second generation

photosensitizers clinically used under the trade name of Foscan R© [24]; its structure is

depicted in Fig. 7.1.

Besides being a therapeutically used drug, its high lipophilicity (X. Liu,

unpublished: logPlipid membrane/water = 9.25), its fluorescence properties, and its

availability as a 14C derivative predestine it for the investigations described in the

present work. Specifically, using mTHPC and the radiolabeled [14C]mTHPC as tracer,

the kinetics of temoporfin transfer between unilamellar vesicles was measured by a

previously optimized method [67] and analyzed. The influence of total lipid content,

temperature, charge of donor vesicles, and fatty acyl chain structure of phospholipids

in donor vesicles was investigated.
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7.2. Experimental procedure

7.2.1. Materials

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-

glycero-3-phosphocholine (DSPC) were purchased from Sygena LTD (Switzerland). 1,2-

Dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dibehenyl-sn-glycero-3-phos-

phocholine (DBHPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-

oleoyl-sn-glycero-3-phosphocholine (SOPC) and 1,2-dioleoyl-3-trimethylammonium-

propane sodium salt (DOTAP) were purchased from Avanti Polar Lipids (Alabaster, AL,

USA). 1-Palmitoyl-2-oleoyl-3-sn-glycero-3-phosphocholine (POPC) was purchased from

Genzyme Pharmaceuticals (Liestal, Switzerland). Meta-tetrahydroxyphenylchlorin

(14C-temoporfin; [14C]mTHPC) was kindly provided as a gift from Biolitec AG (Jena,

Germany). Cholesterol (Chol), dicetylphosphate (DCP), pre-set crystals and sodium

azide were obtained from Sigma Chemical Co. (St. Louis, MO. USA). Diethy-

laminoethyl (DEAE) SepharoseTM CL-6B and Carboxymethyl (CM) SepharoseTM

Fast Flow preserved in 20% ethanol were purchased from GE Healthcare Bio-Sciences

AB (Uppsala, Sweden). Sucrose was purchased from Carl Roth GmbH (Karlsruhe,

Germany). Radioactive substances 3H-cholesteryl-oleate (1 mCi/mL) and 14C-choles-

teryl-oleate (100 Ci/mL) were purchased as a stock solution in the toluene solvent

from GE Healthcare UK Ltd (Amersham radiochemicals) (Buckinghamshire, UK).

Sodium chloride was purchased from Merck KgaA (Darmstadt, Germany).

7.2.2. Methods

Preparation of donor and acceptor liposomes: Liposome preparation was carried

out by a well-established thin-film hydration method. Chloroform solution of lipids

and [14C]mTHPC was dried at a temperature at least 10◦ above the gel-to-liquid

crystalline phase transition (Tm) of the lipid used by using a Rotavapor R© R114 (Büchi,
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Essen, Germany) at 60 rpm and escalating vacuum (200 mbar for 15 min, 100 mbar for

15 min and 50 mbar for 60 min) and finally under a stream of N2, till no chloroform

could be detected. The dried film was hydrated by Trizma buffer saline (pH7.4; 10

mM). The resulting film was completely dispersed by vortexing for 10 min. The

suspension was equilibrated for 2 h. The resulting liposome suspension was extruded

through a polycarbonate membrane filter with a pore diameter of 100 nm [164]. The

final donor vesicle composition was 70 mol% phospholipid, 10 mol% DCP, 20 mol%

of Chol loaded with an appropriate amount of mTHPC and appropriate amounts

of [14C]mTHPC. Acceptor vesicles comprised 80 mol% POPC and 20 mol% of Chol.

Particle size analysis and Zeta-potential measurements of the vesicles were determined

by photon correlation spectroscopy (PCS) using a Zetasizer Nano ZS (Malvern, UK).

The samples were diluted with Milli-Q water and measured at 25◦C. Liposomes

were routinely checked for lamellarity by Cryo-Transmission Electron Microscopy

(Cryo-TEM).

Production of micro-columns and separation of vesicles and drug transfer

measurements are described in [67] in great detail, therefore we refer to this publication

for the description of the whole methodology. The principal method of vesicle

population separation is depicted in Fig. 7.2. The samples were analyzed by liquid

scintillation counting (LSC) using a Liquid Scintillation Analyzer Tri-Carb 2800TR

(PerkinElmer, USA).

7.2.3. Method validity

In a series of validation experiments, the recovery of the acceptor vesicles and

the retention of the donor vesicles in the separation columns were investigated. An

appropriate amount of donor vesicles containing 3H-cholesteryl-oleate and acceptor

vesicles containing 14C-cholesteryl-oleate as non-exchangeable markers [64] and a
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Figure 7.2. Methodology of temoporfin transfer measurement between liposomal
membranes. Micro-columns made of Perspex R© were filled with DEAE SepharoseTM

CL-6B or CM SepharoseTM Fast Flow equilibrated in iso-osmolar sucrose (modified
from [67]).
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mixture of them were applied to each of the six micro-columns. The marker amount

in the eluates was examined by LSC.

7.2.4. Effect of total lipid content on [14C]mTHPC transfer kinetics

For the investigation of the [14C]mTHPC transfer mechanism regarding the total

lipid concentration, the rate of the [14C]mTHPC transfer was examined over a wide

range of total lipid concentrations at 37 ± 1◦C. The donor vesicle (DMPC:Chol:DCP;

7:2:1) concentrations were 0.1, 1, and 2 mg/mL, while the acceptor vesicle (POPC:Chol;

8:2) concentrations were 1, 10, and 20 mg/mL keeping the ratio between donor and

acceptor lipid constant at 1:10.

7.2.5. Effect of temperature on [14C]mTHPC transfer kinetics

The temperature dependence of mTHPC transfer kinetics between large

unilamellar liposomes was investigated at four different temperatures 15, 22, 30, and

37◦C (±1◦C). Vesicles were mixed at a concentration of 0.1 mg of donor vesicle lipid/mL

(DMPC:Chol:DCP; 7:2:1) and 5.0 mg of acceptor vesicle lipid/mL (POPC:Chol; 8:2).

The activation energy for this process between 15 and 37◦C was calculated according

to the Arrhenius equation. Enthalpy, entropy, and free energy were calculated from

the van’t Hoff equation.

7.2.6. Effect of donor liposomes charge on mTHPC transfer kinetics

The influence of the donor liposome charge on mTHPC transfer kinetics was

investigated by using positively and negatively charged vesicles as donors at 37

±1◦C. Positively charged vesicles comprised (DOPC/DOTAP/Chol; 5:3:2) while

negatively charged vesicles were composed of (DOPC/DCP/Chol; 7:1:2). Acceptor

vesicle composition was (POPC:Chol; 8:2). Vesicles were mixed at a concentration of

1 mg of donor vesicles (lipid/mL) and 10 mg of acceptor vesicles (lipid/mL).
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7.2.7. Effect of donor lipid saturation on mTHPC transfer kinetics

To further evaluate the inner bilayer structure influencing the transfer kinetics

of mTHPC, the sensitivity of transfer to variation in the lipid acyl chain saturation was

examined. While keeping the phosphocholine head group and chain length constant,

the fatty acids for 1,2-diacyl species were varied in terms of the degree of saturation.

The donor vesicle composition was 70 mol% of (DOPC or SOPC or DSPC), 20

mol% Chol, and 10 mol% DCP. Acceptor vesicles comprised 80 mol% POPC and 20

mol% Chol. The donor lipid concentration was 1 mg/mL while the acceptor lipid

concentration was 10 mg/mL and the temperature was kept at 37±1◦C.

7.2.8. Effect of acyl chain length of donor vesicles on mTHPC transfer

kinetics

This experiment was an extension to the aforementioned one in order to

investigate the influence of acyl chain length (rigidity) of donor liposomes on the

mTHPC transfer between liposomal membranes. The phospholipid head groups were

kept constant, while the 1,2-diacyl fatty acids were varied in terms of acyl chain

length. The donor vesicle composition was 70 mol% of [DMPC (14:0/14:0) or DPPC

(16:0/16:0) or DSPC (18:0/18:0) or DBHPC (22:0/22:0)], 20 mol% Chol, and 10 mol%

DCP. Acceptor vesicles comprised 80 mol% POPC and 20 mol% Chol. The donor lipid

concentration was 1 mg/mL while the acceptor lipid concentration was 10 mg/mL at

a temperature of 37±1◦C.

7.2.9. Calculations

The transfer curves of the percentage mTHPC transferred over time were fitted

using Microcal Origin 6.0 software (OriginLab Corporation, US-Northampton) using
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the exponential function:

y =y∞

(
1− e−K(t−t0)

)
. (7.1)

Here, y is the percentage of mTHPC transferred to the acceptor vesicles at time t,

and y∞ denotes the final percentage of mTHPC transferred, corresponding to the

height of the plateau. Conducting the experiments involves a small time offset t0 that

is incorporated in Eq. (7.1). The constant K is the apparent rate constant of the

transfer.

In the appendix (Section 7.7) we derive Eq. (7.1) from a simple kinetic

transfer model that accounts for two different transfer mechanisms, collisions between

liposomes (characterized by a rate constant Kc) and diffusion of mTHPC through

water (characterized by a rate constant Kd). The apparent rate constant is then

K = Kd+cKc where c is the total concentration of liposomes (both donor and acceptor)

in the aqueous solution. For further details we refer to the appendix (Section 7.7).

The dependence of the measured rate constants K on the concentration of donor and

acceptor liposomes suggests the transfer mechanism to be controlled either by diffusion

or collisions.

Half life corresponding to Eq. (7.1) can be calculated from K as

t1/2 = (ln 2) /K . (7.2)

The apparent transfer coefficient (KD→A) of mTHPC between donor vesicles and

acceptor vesicles was calculated from the following equation:

KD→A =CA/CD (7.3)
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with CA being the concentration of mTHPC in the acceptor vesicles at equilibrium

and CD the concentration of mTHPC in the donor vesicles at equilibrium at a given

temperature. Note that KD→A is simply the equilibrium constant corresponding to

the reaction D−⇀↽−A of transferring drug molecules from donors (D) to acceptors (A).

The temperature dependence of KD→A is given from a van’t Hoff plot of ln(KD→A)

versus T−1:

lnKD→A =−∆H/RT + ∆S/R (7.4)

where, −∆H/R refers to the slope of this linear dependence, and ∆S/R is the intercept.

∆H (J mol-1) is the enthalpy of the transfer, ∆S (J mol-1 K-1) is the entropy of the

transfer, T is the absolute temperature, and R = 8.3145 J mol-1 K-1. Once ∆H and

∆S are known, the Gibbs free energy ∆G of the transfer can be calculated from the

expression:

∆G =∆H − T∆S . (7.5)

7.3. Results

The average diameter of donor and acceptor liposomes prepared by extrusion

exhibited a polydispersity index less than 0.10 indicating a narrow vesicle size

distribution. More than 93% of the donor liposomes were unilamellar, the remaining

small fraction showing only bilamellarity. In order to evaluate the validity of the

method in terms of donor retention and acceptor recovery, a control experiment was

carried out using non-exchangeable markers. With pre-equilibrated columns, 99% of

donor liposomes (charged vesicles) were retained. For the acceptor liposomes (neutral

vesicles), 91 − 99% were recovered in the eluate. The measured acceptor recovery

is a significant improvement over the recoveries reported (40% − 70%) by van den
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Table 7.1. Total lipid, rate constants, half-life, and maximum percent transferred of
temoporfin transfer depending on total lipid content. Donor liposomes (DMPC/DCP/
Chol=7:1:2) were 110 nm (PDI 0.06), Zeta-potential -33.4 mV, and preloaded with
temoporfin. Acceptor liposomes (POPC/Chol= 8:2) were 115 nm (PDI 0.04) and
Zeta-potential -0.36 mV. The ratio of donor lipid to acceptor lipid was 1:10 mg/mg,
the temoporfin: lipid ratio in donor liposomes was 0.01:10 mg/mg.

Total lipid mg/mL K/h-1 t1/2/h Max.% transferred

1.1 0.19 ± 0.02 3.65 74.70
11 0.28 ± 0.03 2.48 79.39
22 0.40 ± 0.04 1.73 86.34

Besselaar et al. [277] and recoveries (80 − 95%) obtained by McLean and Phillips

[180].

To gain insight into the mTHPC transfer mechanism, the rate of transfer was

examined over a range of total lipid concentrations. Table 7.1 and Fig. 7.3 report the

results of mTHPC transfer experiments in which the donor:acceptor vesicle ratio was

kept constant, while the total lipid concentration was varied. The transfer (Fig. 7.3a)

can be described very well by a simple exponential function (see Eq. (7.1)). To

compare with the transfer model presented in the appendix (Section 7.7) we have

plotted in Fig. 7.3b the rate constant K as a function of the total lipid concentration

(as stated in Table 7.1). Also shown in Fig. 7.3b is a linear fit, which relates the

experimental data to the theoretically predicted relation for K. The fit exhibits both

a finite slope and a finite intercept, suggesting that transfer through both diffusion

and collision mechanisms contributes to the experimentally observed data. However,

the reliability of this interpretation is weakened by the small number of data points

and by the simplifying assumptions of the model in the appendix (Section 7.7). In

particular, the non-ideality of the mixture of drug molecules in donor and acceptor

vesicles (including self-assembly and aggregation phenomena) is not accounted for by

the theoretical model in the appendix (Section 7.7) or by any other previous modeling
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Figure 7.3. a) Temoporfin transfer between liposomes at three different lipid
concentrations at 37◦C (±1◦C). Donor liposomes (DMPC/DCP/Chol= 7:1:2) were
110 nm (PDI 0.06), Z-potential -33.4 mV, and preloaded with temoporfin. Acceptor
liposomes (POPC/ Chol= 8:2) were 115 nm (PDI 0.04) and Zeta-potential -0.36 mV.
The ratio between donor and acceptor was 1:10. Error bars represent ±SEM (n= 6).
The molar drug: donor lipid ratio was 1:867. b) Calculated total lipid content plotted
versus transfer constants (see Table 7.1).
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Table 7.2. Rate constants, half-life and maximum percent transferred of temo-
porfin transfer regarding temperature and donor vesicle’s charge. Donor liposomes
(DMPC/DCP/Chol=7:1:2) were 90 nm (PDI 0.08), Zeta-potential -33.4 mV, and
preloaded with temoporfin. Acceptor liposomes (POPC/Chol= 8:2) were 115 nm (PDI
0.04) and Zeta-potential 0.36 mV. For the comparison between oppositely charged donor
liposomes (at 37◦C), the negatively charged ones were composed of DOPC/DCP/Chol;
7:1:2, while positively charged ones were prepared from DOPC/DOTAP/Chol 5:3:2.
Acceptor liposomes (POPC/Chol= 8:2) were 115 nm with (PDI 0.04) and Zeta-
potential -0.36 mV. Donor lipid concentration was 1 mg/mL while acceptor lipid
concentration was 10 mg/mL. The molar drug:donor lipid ratio was 1:867. The ratio
between donor and acceptor was 1:50 in order to achieve sink conditions.

Temperature-dep. Charge-dep.

Temp/◦C 15 19 22 25 30 37 Donor charge − +

K/h-1 0.05 0.07 0.09 0.12 0.17 0.24 K/h-1 0.26 0.43
SDev/h-1 0.01 0.01 0.06 0.04 0.04 0.03 SDev/h-1 0.03 0.06
t1/2/h 13.9 9.9 7.7 5.8 4.1 2.9 t1/2/h 2.67 1.61
Max trans./% 24.35 34.32 51.5 60.2 70.44 88.41 Transf24 h/% 65.31 72.29

attempt [117]. There clearly is a need to develop and make available more realistic

modeling approaches. Our model also does not account for the small offset at t = 0

(for example visible in Figs. 7.3 and 7.5). In our experience this is due to drug bound

to the surface, which can be transferred fast to the acceptor liposomes.

The obtained results of the experiments designed to examine the sensitivity of

transfer rate constants to temperature are presented in Table 7.2 and Fig. 7.3a. The

sensitivity of the transfer rate on the phase transition temperature (22◦C) for DMPC

can be easily seen. In the chosen temperature range (15–37◦C), an increase in the

transfer rate constants and the maximum amount transferred can be easily noticed.

A plot of log K over 1/T (see the right diagram in Fig. 7.4) suggests two

different linear regimes, separated by the main phase transition temperature (22◦C) of

DMPC which is the major lipid in the donor liposomes. The corresponding fits to the

Arrhenius equation yield activation energies of 56 kJ/mol below the main transition

temperature and 44 kJ/mol above the main transition temperature. The somewhat
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Figure 7.4. a) Temoporfin transfer between liposomes at four representative tempera-
tures 15, 22, 30, and 37◦C(±1) from Table 7.2. Donor liposomes (DMPC / DCP /
Chol= 7:1:2) were 90 nm (PDI 0.08), Zeta-potential -33.4 mV, and preloaded with
temoporfin. Acceptor liposomes (POPC/Chol = 8:2) were 115 nm (PDI 0.04) and
Zeta-potential -0.36 mV. Error bars represent ±SEM (n = 9). The molar drug:donor
lipid ratio was 1:867. b) Arrhenius plot of all temperature points from Table 7.2 and
piecewise fit to the Arrhenius equation.

smaller activation energy in the fluid phase state may reflect a less severe perturbation

of the lipid matrix upon transferring mTHPC from the hydrocarbon core of the lipid

bilayer into the aqueous region outside the membrane.

We note, that the transfer kinetics for the higher temperatures, 30 and 37◦C,

exhibits a point of inflection, thus implying sigmoidal behavior. This generally is the
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result of some kind of cooperativity in the transfer process. We do not know what

molecular mechanism causes cooperative behavior in our experiments. A possible

scenario is the presence of attractive interactions between mTHPC molecules in the

liposomes. This would make the inter-liposomal transfer of mTHPC more favorable

if a target liposome already contains mTHPC. Another possibility is that mTHPC

molecules residing in acceptor liposomes generate defects (particularly at higher

temperatures) that increase the probability of additional mTHPC molecules to be

transferred from donor to acceptor liposomes. If this cooperative enhancement is

sufficiently strong, it leads to an inflection point (i.e., sigmoidal behavior) in the

corresponding kinetics.

To investigate the role of donor liposome charge on the mTHPC transfer

rate, we used binary lipid mixtures as compiled in Table 7.2. These mixtures are

composed of DOPC either with DOTAP or with DCP, yielding positively and negatively

charged vesicles, respectively. From Table 7.2 and Fig. 7.5 we conclude that positively

charged liposomes exhibit faster transfer rates than negatively charged liposomes.

The observed transfer rate of positively charged liposomes (0.43±0.06 h-1) was about

1.7-times larger than that of the negatively charged liposomes (0.26±0.03 h-1). In

terms of the maximum amount transferred, the measured percentages 65.3% and

72.3% for negatively and positively charged liposomes, respectively, do not indicate a

significant difference. The influence of the degree of saturation of the phospholipid

fatty acid chains used in donor liposomes is presented in Table 7.3. It is evident

that there is no significant difference between the transfer rate constants of DOPC

(18:1/18:1, Tm = −20◦C) and SOPC (18:0/18:1, Tm = +6◦C), whereas for DSPC

(18:0/18:0, Tm = +55◦C) about 4-fold higher value (1.0 h-1) was observed. Since

membrane rigidity is increased with the increase in hydrocarbon saturation, a potential

relationship between transfer rate and rigidity is evident.
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Figure 7.5. Temoporfin transfer between negatively and positively charged donor
and neutral acceptor liposomes at 37◦C (±1◦C). Donor liposomes formulated
as (DOPC/DCP/Chol = 7:1:2) and (DOPC/DOTAP/Chol = 5:3:2) loaded with
temoporfin. Acceptor liposomes (POPC/Chol = 8:2) were 114.8 nm (PDI 0.04) and
Zeta-potential -0.36 mV. The ratio between donor and acceptor was 1:10, being below
sink conditions in order to detect additional processes easier. Error bars represent
±SEM (n = 6). The molar drug:donor lipid ratio was 1:867.

Table 7.3. Phase transition temperatures, rate constants, half-life and maximum
percent transferred of temoporfin transfer regarding donor lipid saturation and donor
lipid acyl chain length at 37◦C. Donor liposomes (PhL/DCP/Chol = 7:1:2) preloaded
with temoporfin had PDIs less than 0.10. Acceptor liposomes (POPC/Chol = 8:2)
were 115 nm (PDI 0.04) and Zeta-potential -0.36 mV. The donor and acceptor lipid
concentrations were 1 mg/mL and 10 mg/mL, respectively.

Lipid type DOPC SOPC DSPC DMPC DPPC DBHPC

Tm/◦C -20 +6 +55 +22 +41 +75
Liposome size/nm 88.0 89.0 100.9 110 100.8 168.3
K/h-1 0.26±0.03 0.18±0.01 1.00±0.11 0.28±0.03 0.35±0.03 1.24±0.30
Max. % transf. 65.31 83.63 82.01 79.39 86.38 75.51
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As an extension of the former experiment, the influence of fatty acyl chain

length was examined. With the four di-saturated phospholipids used [(DMPC 14:0/

14:0, Tm=+22◦C), (DPPC 16:0/16:0, Tm=+41◦C), (DSPC 18:0/18:0, Tm=+55◦C),

and (DBHPC 22:0/22:0, Tm=+75◦C)] the transfer rate was faster for the phospholipids

having longer chains; the temperature (37◦C) in these experiments was either below or

above their respective phase transition temperatures (Table 7.3 and Fig. 7.6).We find

that there is no significant difference between the transfer rate of DMPC(0.28±0.03 h-1)

and DPPC (0.35±0.03 h-1). The transfer rate constants for DSPC and DBHPC

increased to about 4-fold (1.00±0.11 h-1 and 1.24±0.30 h-1 respectively). The maximum

amount transferred was almost the same as the plateaus were reached at 79%, 86%,

82%, and 75% for DMPC, DPPC, DSPC, and DBHPC respectively.

7.4. Discussion

The assessment of inter-membrane transfer properties yields valuable informa-

tion about the use of liposomes as solubilisers or as targeting devices for lipophilic drugs.

In addition, the transfer properties may be predictive to some extent for the distribution

and retention kinetics of drugs in biomembranes after parenteral administration [64].

It is well known that with increasing incubation time, photosensitizers (temoporfin)

can migrate from the plasma membrane to the more sensitive stores within the cell

[189].

The inter-membrane transfer phenomenon was first described as part of mem-

brane biochemistry studies with liposomes as model systems for biological membranes

[64]. Previously, two different models have been suggested to explain the transfer of

lipophilic or amphiphilic membrane components between two lipid domains (either

inter-membrane transfer or transfer from membrane to, e.g. plasma components).

The first model proposes a collision mechanism for, e.g. phosphatidylcholine [117] and
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Figure 7.6. a) Temoporfin transfer between liposomal membranes regarding hydro-
carbon chain length (DMPC, DPPC, DSPC, and DBHPC) at 37◦C (±1). Donor
liposomes were formulated as (PhL/DCP/Chol = 7:1:2) and loaded with temoporfin.
Acceptor liposomes (POPC/Chol = 8:2) were 115 nm (PDI 0.04) and the Zeta-
potential -0.36 mV. The ratio between donor and acceptor liposomes was 1:10. Error
bars represent ±SEM (n = 6) for DMPC and DPPC; for DSPC and DBHPC ±SEM
(n = 9). The molar drug:donor lipid ratio was 1:867. b) Rate constants as a function
of the phase transition temperature of the donor liposome composition (data taken
from Table 7.3).
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cholesterol transfer [260]. The second model postulates transfer through the water

phase as demonstrated by cholesterol transfer [180] and [142] and phosphatidylcholine

transfer studies [180]. Other studies suggest that both mechanisms may simultaneously

play a role, as indicated by the transfer of monoacylglycerols from SUV’s to brush

border membrane vesicles [239]. The kinetic equations describing both transfer

mechanisms (through liposome collisions and through diffusion via the water phase)

are derived in the appendix (Section 7.7). Our derivation is based on a detailed

distribution function of drug molecules among donor and acceptor vesicles. A similar

derivation, although without considering the distribution of drug molecules among

donor and acceptor liposomes, was suggested previously by Jones and Thompson [117].

In both models, lipid transfer between liposomes via desorption from the bilayer and

subsequent diffusion through the aqueous phase is described by a “First Order Model”.

In contrast, the transfer upon collisions of liposomes (donor–donor, donor–acceptor,

or acceptor–acceptor) corresponds to a “Second Order Model”. As we show in the

appendix (Section 7.7), both lead to a simple exponential transfer kinetics with an

apparent rate constant K = Kd + cKc where Kd and Kc are constants and c is

the total liposome concentration. (We note that there is an additional dependence

of K on the ratio between the total number of drug molecules in the system and

the maximal number of drug molecules that all liposomes are able to carry; see

appendix (Section 7.7) for details. This dependence is only relevant for liposomes

with maximal, or near maximal, drug loading. The molar drug:donor lipid ratio was

1:867 in all experiments described, sufficiently far away from the maximal ratio 1:10

[139].) We emphasize that only the collision mechanism leads to a dependence on the

total liposome concentration c. Fig. 7.3b shows the dependence of the apparent rate

constant K on the total lipid concentration. The finite slope and the finite intercept

of the linear fit suggest that both the diffusion and collision mechanisms are involved

in the transfer process.
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Comparison of the linear fit in Fig. 7.3b with the relation K = Kd + cKc yields

Kd=0.18/h and Kc=0.01 mL mL/(mg h) where mL is the mass of a single liposome.

The vesicles in our experiments have a radius of approximately R=50 nm. Assuming

a cross-sectional area a=0.7 nm2 per lipid, this implies a number of 2·4·π·R2

a
=90,000

lipids per liposome (where the additional factor of 2 accounts for the two leaflets of

the liposomal membrane). The molar mass per lipid is roughly 700 g/mol. Hence,

mL=700 g/mol 90,000 = 10-13 mg. Our estimate for Kc then becomes Kc= 10-3µm3/h.

The liposome concentration c in K = Kd + cKc can be stated conveniently as “number

of liposomes/µm3”. Our estimates for Kd and Kc imply that up to a liposome

concentration of c = Kd/Kc = 180/µm3 the transfer is dominated by the collision

mechanism. In other words, once the average center-to-center distance between

neighboring liposomes is larger than about 200 nm, diffusion through the aqueous

phase becomes the predominant transfer mechanism. It should be noted that our final

estimates Kd=0.18/h and Kc = 10−3µm3/h are subject to the assumptions of our

underlying theoretical model, namely that the mixture of mTHPC in each individual

liposome is ideal. This neglects other possible rate limiting physical mechanisms such

as aggregation and self-assembly of mTHPC inside the liposomes. Hence, our study

suggests the transfer of mTHPC via both a diffusion and collision mechanism, subject

to the (yet not verified) assumption that interactions among drug molecules inside

the liposomes do not limit the rate of transfer.

Molecular motion in general and acyl chain mobility in particular increase

with temperature resulting in a more fluid membrane environment. Although a drug

apparently favors a more fluid bilayer arrangement, the rate of transfer and the

maximum amount transferred increased when the lipid membranes were heated (see

Table 7.2 and Fig. 7.4). Moreover, the transfer rate constant of mTHPC at 37◦C is

about 5-fold higher than at 15◦C which might lead to the rapid release of mTHPC

at body temperature. This may be ascribed to the decrease of the hydrophobic
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interaction strength between the lipid and the drug when the temperature is increased,

thus resulting in a higher aqueous solubility of mTHPC. In agreement with the

study of Wenk et al. [293] regarding paclitaxel (Taxol R©) partitioning into lipid

bilayers, the binding of paclitaxel to liposomes is four times stronger at 20◦C than at

37◦C. In contrast, the aqueous solubility of cyclosporine A increases with decreasing

temperature. This might cause problems in stability-related issues of cyclosporine A

liposomal formulations, as cyclosporine A can partition out of the liposomal membrane

and form crystals in the suspending medium (Fahr, unpublished results). Another

explanation for the temperature-related effects may be provided by the thermally-

induced changes in the conformation of the head group. It has been suggested that

the N+ end of the phosphocholine headgroup of PC, which lies parallel to the bilayer

surface, becomes increasingly submerged into the hydrocarbon chain region with

increasing temperature, resulting in lateral head group repulsion and decreasing

surface pressure. The reduction of surface pressure may be expected to favor transfer

[52].

With regard to the equilibrium properties we conclude from the much larger

value of entropic contribution −T∆S as compared to the change in enthalpy ∆H

(see Eq. (7.5)) that the transfer of mTHPC over the temperature range of 15–37◦C is

dominated by entropy. It is interesting to also discuss the prediction of our kinetic

model, presented in the appendix (Section 7.7), for the Gibbs free energy of transfer

∆G (see Eq. (7.5)). To this end, we note that our model assumes all liposomes to be

equivalent (i.e. mTHPC is assumed to have the same standard chemical potential in

donor and acceptor vesicles). The enthalpic contribution ∆H to ∆G therefore vanishes.

On the other hand, the equilibrium constant KD→A = Na/Nd is given in our model

by the ratio of the numbers of acceptor to donor liposomes. Then, with Eqs. (7.4)

and (7.5) and using the experimentally fixed ratio Na/Nd = 10 (see Table 7.1), we

find ∆G = −RT ln(Na/Nd) = −5.7kJ/mol, which is in reasonable agreement with
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the experimentally determined value ∆G = −4.46kJ/mol. Although our experiments

reveal the presence of a non-vanishing enthalpic contribution to ∆G, the transfer is

still dominated by entropy. This provides a major justification for the assumption of

constant standard chemical potential in our kinetic model.

The effect of the donor liposomes charge was investigated by using negatively

and positively charged donor liposomes. In the case of positively charged liposomes,

the rate of transfer was faster than for negatively charged liposomes as presented

in Table 7.2 and Fig. 7.5. A possible reason for this finding may be the influence

of charged lipids on physical membrane properties. Binary anionic/zwitterionic and

cationic/zwitterionic lipid mixtures exhibit characteristic differences in terms of their

average cross-sectional area per lipid, headgroup orientation, and interaction strengths

as evidenced by experiments [234], [303] and [121], molecular dynamics simulations

[90], and mean-field electrostatic modeling [178] and [183]. Generally, cationic lipids

are found to electrostatically interact more strongly with zwitterionic lipids due to

the typically close proximity of the cationic charge to the phosphate group of the

zwitterionic lipid. Hence, mixed cationic/zwitterionic membranes tend to be more

condensed than their anionic counterparts, which suggests a less favorable packing

environment of drug molecules inside the membrane and a larger driving force for the

transfer out of the membrane interior.

The overall affinity of the porphyrin for the vesicles is largely dominated by

hydrophobic interactions between the macrocycle core and the phospholipid chains.

Two of the chain’s characteristic structural properties are the degree of unsaturation

and acyl chain length. A sharp increment in mTHPC transfer rates was observed

for DSPC and DBHPC, suggesting a potential relationship between transfer rate

and rigidity below the phase transition temperature. Specifically, as presented in

Table 7.3 and Fig. 7.6b, there is no significant difference between transfer rate constants

for DOPC (Tm =−20◦C), SOPC (Tm = +6◦C), DMPC (Tm = +22◦C), and DPPC
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(Tm = +41◦C), whereas for DSPC (Tm = +55◦C) and DBHPC (Tm = +75◦C) the

transfer rate was increased by about a factor of 4. The experiments were conducted

at a temperature of 37◦C at which DOPC, SOPC, and DMPC reside in the fluid

phase state whereas DPPC tends to form the “ripple” phase. In contrast, membranes

containing DSPC and DBHPC exhibit the gel phase, where the fully stretched and

tightly packed fatty acyl chains give rise to a more rigid membrane architecture. This

could cause the drug molecules to be squeezed out of the bilayer interior and to

accumulate near the liposome surface [64]. At the same time, this would increase

the probability of being transferred to another membrane, as desorption of the drug

from the liposomes becomes easier. A rapid release of a hydrophobic drug (Vitamin

A) was also observed for solid lipid nanoparticles [115], the classic example of a rigid

lipidic matrix. It was shown for these rigid carriers ([119], see also the review in

Ref. [66]), that the mere lipophilicity of carrier and drug does not necessarily cause a

retardation effect. Only if there is a structural fit between carrier assembly and drug

is a retardation effect to be expected [66]. For less rigid carriers such as liposomes in

their fluid state, the structural fit may be provided by the ability of the fluid-like lipid

tails to adapt to the shape of the hydrophobic drug molecule. Such accommodation

would be expected to be weakly dependent on chain length, as observed. However,

this effect is overridden by the rigidity of the membrane, as exemplified by the case of

DBHPC.

Maman and Brault [166] report, that varying the bilayer thickness by using

C14-C22 unsaturated phospholipids at pH 6.5, a profound decrement in dicarboxylic

porphyrin transfer rate was observed. They ascribed this influence to the length of the

hydrocarbon chain since all of unsaturated lipids used in their report are liquid at their

experimental temperature 25◦C, thereby the degree of burying porphyrin within the

bilayer will be high. In a study of anticancer teniposide partitioning into membranes

using different lipids regarding unsaturation and acyl chain length at 37◦C, Wright et
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al. found that the partitioning coefficient was decreased when the membrane rigidity

increased having the lowest partitioning coefficient recorded for DSPC [297], which is

also supporting our notion.

Of course, these in vitro experiments of drug transfer presented here are not

sufficient to describe the in vivo situation. However, attempts to explain e.g. mean

residence time of a lipophilic drug showed for example a clear relation of lipid dose

to AUC in blood after injection [61]. The used drug here, cyclosporine A, however,

does not fit as well as temoporfin into the lipid bilayer, as demonstrated by the fast

transfer rate (time constant about 4 min) in similar experimental setups [62] and [63].

Further work will address the localization and aggregation of mTHPC in the

liposomal bilayer as well as a general kinetic model that accounts for aggregation.

7.5. Conclusions

In this study we have investigated the kinetics of transfer of the hydrophobic

drug temoporfin from donor to acceptor liposomes. We showed that the transfer rates

depend on thermodynamic parameters such as temperature and concentrations of

donor and acceptor vesicles as well as on liposomal material properties. The observed

transfer kinetics generally follows a simple exponential behavior with a corresponding

rate constant that contains information about the mechanism of transfer. We present

a theoretical model that analyzes the transfer based on a detailed distribution function

of drug molecules in liposomes. The model accounts for drug transfer through

liposome collisions and via diffusion through the aqueous phase. Comparison of

the theoretically predicted with the measured rate constants suggests that both

mechanisms contribute to the transfer. The collision mechanism dominates for large

overall liposome concentration (larger than about 1/(200nm)3). Our model gives also
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reasonable agreement for the (entropy-dominated) free energy of transfer of temoporfin

from the donor to the acceptor liposomes.
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7.7. Appendix: Supplementary data

This appendix describes a kinetic model that predicts an exponential transfer

curve and includes both a diffusion-based and a collision-based transfer mechanism.

The model is microscopic in the sense that it explicitly accounts for the distribution

of mTHPC in donor and acceptor liposomes. Specifically, we introduce the numbers

dj = dj(t) and aj = aj(t) of, respectively, donor and acceptor liposomes that contain

j molecules of mTHPC. The index j varies in the region 0 ≤ j ≤ m where m is the

maximal number of mTHPC that can be incorporated into a single liposome. The

total number of donor liposomes Nd =
∑m

j=0 dj and the total number of acceptor

liposomes Na =
∑m

j=0 aj are both conserved. All N = Nd +Na liposomes are enclosed

in a volume V at fixed temperature T . The total numbers Md =
∑m

j=0 jdj and

Ma =
∑m

j=0 jaj of mTHPC residing in, respectively, donor and acceptor liposomes are

not conserved, but the sum M = Md + Ma is. A simple kinetic model of mTHPC
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transfer among all different donor and acceptor liposomes can be written as

d

dt
dj =

Kc

V

{
j∑
i=0

(di + ai)
[
dj+1(j + 1− i)− dj(j − i)

]
+

m∑
i=j

(di + ai)
[
dj−1(i− j + 1)− dj(i− j)

]}

+Kd

[
(j + 1)dj+1 − jdj +

m− (j − 1)

m(N/M)− 1
dj−1 −

m− j
m(N/M)− 1

dj

]
d

dt
aj =

Kc

V

{
j∑
i=0

(ai + di)
[
aj+1(j + 1− i)− aj(j − i)

]
+

m∑
i=j

(ai + di)
[
aj−1(i− j + 1)− aj(i− j)

]}

+Kd

[
(j + 1)aj+1 − jaj +

m− (j − 1)

m(N/M)− 1
aj−1 −

m− j
m(N/M)− 1

aj

]
. (7.6)

This model accounts for two different transfer mechanisms, transfer upon

collisions between liposomes and transfer through diffusion via the aqueous phase.

The collision and diffusion mechanisms are accounted for by the first and second lines,

respectively, in the expressions for the time derivatives of dj and aj. Specifically, the

first line accounts for all possible collisions that increase (terms with positive sign)

or decrease (terms with negative sign) the number dj (and analogous for aj). Each

term is proportional to the concentration difference of mTHPC between the colliding

liposomes. The rate constant Kc for transfer through collisions is assumed to be

constant, irrespective of the nature of the collision (donor-donor, acceptor-acceptor,

or donor-acceptor). The third line describes a diffusive transport through the aqueous

phase; Kd is the rate constant for the transfer of a single mTHPC from a vesicle into

the aqueous phase or vice versa. Note, that the set of Eqs. (7.6) treat all liposomes

to be structurally and chemically equivalent; i.e. with donor and acceptor liposomes

to have the same equilibrium concentration of mTHPC. Moreover, Eq. (7.6) assume
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that due to its low solubility mTHPC is present in the aqueous phase with negligible

concentration.

Eq. (7.6) can be expressed as kinetic equations in terms of Md = Md(t) and

Ma = Ma(t) only. Using the above definitions for Md and Ma we find

dMd

dt
=
K

N
(NdMa −NaMd),

dMa

dt
=
K

N
(NaMd −NdMa) (7.7)

with the rate constant

K =
Kd

1− M
mN

+Kc

N

V
(7.8)

where c = N/V is the total liposome concentration. Note that the factor M/mN is

the ratio between the total number of drug molecules in the system and the maximal

number of drug molecules that all liposomes (donor+acceptor) are able to carry.

It usually is M � mN unless the loading of liposomes with drugs approaches its

maximum (at a drug: lipid ratio of 1:10 for temoporfin). The set of Eqs. (7.7)

effectively describes the reversible chemical reaction D 
 A of mTHPC bound

to donor (D) and acceptor (A) liposomes, with on and off rate constants KNd/N

and KNa/N , respectively. The kinetics of this net reaction strictly follows a first

order kinetics, despite the fact that the transfer via liposome collisions is based on

a bimolecular reaction, namely the collision between two liposomes. However, the

number of liposomes does not change with time, leaving the rate of collisions between

liposomes constant. This absence of a depletion of the reactants renders the transfer

first order. The present model predicts an equilibrium constant, defined in Eq. (7.7),

of KD→A = Na/Nd. With the initial conditions Md(t = 0) = M and Ma(t = 0) = 0

the predicted time dependence is given by a simple exponential function

Ma(t)

M
= 1− Md(t)

M
=
Na

N

(
1− e−Kt

)
(7.9)
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where Na/N is the fraction of acceptor liposomes in the system. Eqs. (7.8) and (7.9)

represent an exact solution of the model introduced through Eqs. (7.6). Clearly, there

are two different regimes, corresponding to diffusion-dominated ((N −M/m)/V �

Kd/Kc) and collision-dominated ((N −M/m)/V � Kd/Kc) transport. The observed

time dependence for the mTHPC transfer from donors to acceptors does not depend

on the overall concentration of liposomes in the diffusion-dominated regime. In

the collision-dominated regime the transfer becomes faster with increasing liposome

concentration. On the other hand, a dependence of K on total number of drug

molecules, M , is only encountered in the diffusion-dominated regime. Here, K

increases with M until all donor liposomes initially contain their maximal amount of

drug molecules M = mNd.

We again point at the simplistic level of the present model. First, it does not

account for the chemical specificity of the donor and acceptor liposomes. That is, the

standard chemical potential of drug molecules is the same in donors and acceptors.

Consequently, in equilibrium all individual liposomes (donor and acceptor liposomes)

carry the same number of drug molecules (as expressed by KD→A = Na/Nd), and

there is no enthalpic contribution to the free energy of transfer ∆G; see Eq. (7.8).

Second, our model does not account for nonideal mixing of drug molecules in liposomes,

including possible aggregation phenomena or self-assembly. Including the difference

in affinity for drug molecules of donors and acceptors as well as aggregation of drug

molecules within liposomes will be the subject of future theoretical work.
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8. PAPER 4 : MODELING THE RELEASE KINETICS OF

POORLY WATER-SOLUBLE DRUG MOLECULES FROM

LIPOSOMAL NANOCARRIERS1

ABSTRACT: Liposomes are frequently used as pharmaceutical nanocarriers

to deliver poorly water soluble drugs such as temoporfin, cyclosporine A, amphotericin

B, and paclitaxel to their target site. Optimal drug delivery depends on understanding

the release kinetics of the drug molecules from the host liposomes during the journey to

the target site and at the target site. Transfer of drugs in model systems consisting of

donor liposomes and acceptor liposomes is known from experimental work to typically

exhibit a first-order kinetics with a simple exponential behavior. In some cases, a fast

component in the initial transfer is present, in other cases the transfer is sigmoidal. We

present and analyze a theoretical model for the transfer that accounts for two physical

mechanisms, collisions between liposomes and diffusion of the drug molecules through

the aqueous phase. Starting with the detailed distribution of drug molecules among

the individual liposomes, we specify the conditions that lead to an apparent first-order

kinetic behavior. We also discuss possible implications on the transfer kinetics of

(1) high drug loading of donor liposomes, (2) attractive interactions between drug

molecules within the liposomes, and (3) slow transfer of drugs between the inner and

outer leaflets of the liposomes.

8.1. Introduction

Poor solubility in water is a well-recognized obstacle for efficient oral or

parenteral drug administration [153, 65]. Liposomes are among the most widely
1 Sylvio may and Stephan Loew developed and evaluated the model in close cooperation. This paper
is published in [158].
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used type of pharmaceutical nanocarriers for small and poorly water-soluble drug

molecules [66].These drugs preferentially partition into the hydrophobic compartment

that is formed by the hydrocarbon tails of the liposomal lipids. Liposomes have

been used in their first generation (conventional liposomes) predominantly as long-

circulating transport vehicles [213, 247], followed by a second generation that improved

the circulation time further by decorating the surface with PEG-chains (STEALTH

liposomes [111]). Third generation liposomes are now being engineered to contain

targeting ligands [230] and to carry out stimuli-sensitive triggering of the drug release

[232].

An important property of liposome-based drug delivery is the release kinetics

of the drug from the host, which has been investigated for a number of model systems

[223, 168, 227, 188]. Experimental investigations of the transfer of temoporfin between

two different types of liposomes (i.e. from donor liposomes to acceptor liposomes)

have recently been carried out using a mini ion exchange column technique [98]. The

column separates donor from acceptor liposomes and thus allows to monitor the time

dependence of the drug transfer. It is observed that, typically, the transfer follows an

apparent first-order behavior, characterized by a single exponential function. This is

remarkable given the complexity of the system, with the drug molecules being able to

migrate from the donor to the acceptor liposomes via different physical mechanisms.

In fact, there are two mechanisms that, in general, act simultaneously. The first

mechanism is the transfer of drugs upon collisions between two liposomes. In this

case the drug molecules directly migrate from one liposome to another with minimal

exposure to the aqueous phase. The second mechanism refers to the transfer of drugs

via diffusion through the aqueous phase. We note that the collision mechanism has

been invoked, for example, to explain the transfer of lipids [117] and cholesterol [260]

between vesicles, and the transfer of fatty acids between vesicles and fatty acid binding

proteins [296]. Also the diffusion mechanism was found to be consistent with the
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transport of lipids [180]. In some cases, both mechanisms were suggested to contribute

to the transport of lipids between vesicles [298] and to the transport of lipophilic drugs

from oil-in-water emulsions to cells [49] and from plasma proteins to lipid vesicles

[231]. In our preceding experimental work, where we have investigated the kinetics

of temoporfin transport from donor to acceptor liposomes [98], we found that below

a certain concentration (corresponding to a liposome-to-liposome distance of about

200 nm for our specific system) the transfer was dominated by collisions; for larger

concentrations transport through diffusion was prevalent.

The objective of the present work is to introduce and discuss a detailed kinetic

model for the release properties of poorly water-soluble drug molecules from liposomal

nanocarriers. Despite a large number of experimental studies about the kinetics of lipid

and drug transfer between liposomes and other nanocarriers, there is little theoretical

work available that addresses the nature of the transfer kinetics. Our theoretical

formalism is based on a detailed distribution function of drug molecules among the

individual liposomes. Kinetic rate equations for that distribution function account for

two transport mechanisms: collisions between liposomes and drug diffusion through

the aqueous phase. We specify a set of conditions at which our microscopic model

produces an apparent first-order kinetics with simple exponential behavior, as used in

previous work [117, 49]. We point out that our kinetic model can be applied to any

kind of small mobile pharmaceutical nanocarrier, including liposomes, micelles [272],

colloids [186] and nanoparticles [32].

In the second part of our work we discuss conditions that lead to deviations from

simple exponential behavior: First, for the diffusion mechanism, high drug loading

tends to increase the transfer rate. The kinetics remains exponential only if donor

and acceptor liposomes are chemically similar. Second, the presence of attractive

interactions between drug molecules within the liposomes (which can result in the

formation of aggregates [222]) is expected to slow down the transfer kinetics. We
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note that not much molecular detail is presently known about how poorly water-

soluble drug molecules inside a lipid bilayer interact. However, modeling studies of

rigid membrane-embedded inclusions such as transmembrane proteins or peptides

suggest a general tendency of the host membrane to mediate attractive interactions

between inclusions that may lead to the formation of aggregates [294]. These attractive

interactions may be driven by elastic deformations of the host membrane [129], by

depletion of the flexible lipid chains from the region in between rigid inclusions

[22], and by fluctuations via the Casimir effect [86]. Our analysis for the collision

mechanism suggests that aggregate formation can give rise to sigmoidal behavior of

the transfer kinetics. Third, drug molecules (even if they are poorly water-soluble)

do not necessarily reside predominantly in the innermost region of the membrane’s

hydrocarbon region. For example, some aromatic compounds such as indole are

well known for their preference of the membrane’s interfacial region between the

headgroups and the hydrocarbon chains [210, 206]. Other aromatic compounds such

as benzene are distributed throughout the hydrocarbon chain region without a bias

toward the polar/apolar interface [206]. Among the various reasons for the preferential

partitioning of indole are electrostatic interactions, hydrogen bond formation, and

the steric shape of the molecule. For lipid monolayers there is evidence that drug

partitioning also depends on the lateral pressure [54]. Generally, whenever a drug

molecule interacts more favorably with the interfacial or headgroup region than with

the hydrocarbon tail region, the corresponding partitioning preference can be lumped

into at least two energetically preferred states that correspond to the inner and outer

leaflet of the membrane. Transfer between the two states (i.e., flip-flop) then introduces

an additional characteristic time [23]. We note that two- or multiple state modeling

has been invoked previously to model the partitioning of amino-acid analogues in

membranes [243] and the permeation of drug molecules through membranes [34, 13].
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8.2. Model

Consider an aqueous solution (of fixed volume V ) that contains a number of

Nd donor and Na acceptor liposomes. Donor and acceptor liposomes may be either

two chemically different types of liposomes (i.e., composed of different lipids), or

equivalent liposomes (i.e., containing the same lipid composition). In the latter case,

the distinction between donor and acceptor liposomes refers only to their initially

loading; at the end of the transport process (i.e., at thermal equilibrium) both types

would be indistinguishable.

The donor liposomes initially carry a total number of M poorly water-soluble

drug molecules. Transfer of drug molecules from donor to acceptor liposomes will

take place with time until, eventually, an equilibrium partitioning is reached. We can

describe the time dependence of this transfer by the number of drug molecules carried

by the donor liposomes,Md(t), and by the acceptor liposomes,Ma(t). It is then initially

Md(t = 0) = M and Ma(t = 0) = 0, as well as in equilibrium Md(t → ∞) = M eq
d

and Ma(t→∞) = M eq
a , where M eq

d and M eq
a denote the equilibrium number of drug

molecules carried by donor and acceptor liposomes, respectively. We point out that,

although we refer to the drug carriers as liposomes, our model is more general. That

is, it can be applied to different types of mobile carriers such as micelles, colloids,

nanoparticles, or polymeric aggregates, given the carrier possesses some capacity to

host poorly water-soluble drug molecules.

In the following we suggest a model for the time dependence of the transfer

process (i.e. for Md(t) and Ma(t)) that leads to a first-order kinetics, characterized

by a simple exponential function. We consider a “single-state model” where there is

only a single energetic state available for each drug molecule in a given liposome. The

single-state model excludes the presence of intra-liposomal kinetics. (The extension to

a two-state model will be discussed below.) We account for two different transport
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collision

diffusion

Figure 8.1. Transfer of a drug molecule (black bullets) from donor liposome (dark-
shaded) to acceptor liposome (light-shaded) upon the collision of the two liposomes or
upon diffusion of the drug molecule through the aqueous phase. The displayed scheme
refers to the special situation of initially empty acceptor liposomes but analogous
schemes apply to any other initial situation.

mechanisms, (i) transport through collisions between liposomes and (ii) transport

via diffusion of drug molecules through the aqueous phase. Both mechanisms are

schematically illustrated in Fig. 8.1.

Our transport model of drugs from donor to acceptor liposomes employs the

framework of chemical reaction kinetics. We note that due to the generally slow release

kinetics of poorly-water soluble drugs we can treat the aqueous solution as spatially

uniform at all times. Hence, no combined diffusion-reaction kinetics [88] needs to be

included in our model.

8.2.1. Transfer through collisions only

Our model for the collision-mediated drug transfer between liposomes starts

with the detailed distribution of drug molecules among all liposomes. We introduce

the number dj of donor liposomes that carry j drug molecules. An analogous definition

is used for the number aj of acceptor liposomes that carry j drug molecules. The

index j is confined to the region 0 ≤ j ≤ m where m is the maximal number of

drug molecules that a liposome can carry. The time-dependent distribution functions

dj = dj(t) and aj = aj(t) represent a full microscopic knowledge of the kinetics of

drug transfer. The total numbers of donor liposomes Nd, acceptor liposomes Na, drug
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molecules residing in donor liposomes Md, and drug molecules residing in acceptor

liposomes Ma, can be calculated on the basis of the distribution functions dj = dj(t)

and aj = aj(t) according to

Nd =
m∑
j=0

dj , Na =
m∑
j=0

aj , Md =
m∑
j=0

j dj , Ma =
m∑
j=0

j aj . (8.1)

Mathematically, Nd and Na are the zeroth-moments of the distributions functions

dj = dj(t) and aj = aj(t), whereas Md and Ma appear as the corresponding first

moments. We assume that Nd and Na are constant (i.e. independent of time), and so

then is the total number of liposomes N = Nd +Na. This is appropriate if fusion and

fission between liposomes can be ignored. Due to our focus on poorly water-soluble

drug molecules it is also justified to assume that the total number of drug molecules

carried by all liposomes, M = Md + Ma, is constant. That is, we neglect the small

fraction of drug molecules that reside in the aqueous phase without being bound to a

liposome. Fig. 8.2 schematically illustrates a specific exemplification of the system.

Collisions require two liposomes to come to close proximity. The magnitude of drug

transport between, say, donor liposomes di and dj is thus ∼ di × dj/V where V is the

volume of the aqueous solution. The underlying transfer process is thus second-order.

If a single drug molecule is transferred from a donor that carries initially i drug

molecules to a donor that carries initially j drug molecules, the distribution function

changes according to di → di − 1, di−1 → di−1 + 1, dj → dj − 1, and dj+1 → dj+1 + 1.

Hence the numbers di and dj decrease, whereas di−1 and dj+1 increase. Fig. 8.3 shows

an illustration of this scheme for i = 5 and j = 1. The transfer rate between the

populations di and dj will also depend on the corresponding numbers of drug molecules

i and j. We assume the drug molecules within each liposome form an ideal mixture

so that the transfer rate is directly proportional to |i− j|. In writing a rate equation

for donor population dj we have to account for all possible ways of collisions between
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acceptor
donor

V

Figure 8.2. Exemplification of our system: Nd = 6 donor liposomes (dark shaded)
and Na = 9 acceptor liposomes (light shaded) reside in an aqueous space of volume
V ; each liposome can carry at most m = 3 drug molecules (black bullets). For the
displayed hypothetical snapshot (taken at a certain time t) the distribution function
of drug molecules among the donor liposomes is: d0 = 1, d1 = 2, d2 = 2, d3 = 1,
leading to a total of Md =

∑m
j=0 jdj = 9 drug molecules residing in donor liposomes.

Analogously for the acceptor liposomes, the distribution function is a0 = 5, a1 = 3,
a2 = 1, a3 = 0, implying Ma =

∑m
j=0 jaj = 5.

Initial Final

Figure 8.3. Transfer of a drug molecule (black bullets) upon the collision of two
liposomes (here assumed to be two donor liposomes). The drug distribution function
changes from initially d1 = 1, d2 = 0, d3 = 0, d4 = 0, d5 = 1 to d1 = 0, d2 = 1, d3 = 0,
d4 = 1, d5 = 0. This represents an example (for i = 5 and j = 1) of the general scheme
di → di − 1, di−1 → di−1 + 1, dj → dj − 1, and dj+1 → dj+1 + 1.
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donor liposomes of index j with other liposomes (donors and acceptors) of index i.

These considerations lead us to

V

Kcoll

ḋj =

j∑
i=0

di [dj+1 g(j + 1, i)− dj g(j, i)]

+
m∑
i=j

di [dj−1 g(i, j − 1)− dj g(i, j)]

+

j∑
i=k

ai−k [dj+1 g(j + 1, i)− dj g(j, i)]

+
m+k∑
i=j

ai−k [dj−1 g(i, j − 1)− dj g(i, j)] , (8.2)

where we have defined the function

g(i, j) = i− j . (8.3)

In Eq. (8.2) Kcoll is the unit rate of drug transfer through collisions between two

chemically equivalent liposomes, and ẋ = dx/dt denotes the time derivative of a

physical quantity x(t). The first two lines in Eq. (8.2) account for collisions of donor

liposomes with other donor liposomes. The last two lines in Eq. (8.2) account for

collisions of donor liposomes with acceptor liposomes.

Note that Eq. (8.2) allows for a difference in the chemical nature of donor

and acceptor liposomes. This chemical mismatch is accounted for by the integer k in

the last two lines of Eq. (8.2), which expresses the difference in the number of drug

molecules between a donor and acceptor liposomes in thermal equilibrium. (That

is, for k = 0 each donor and acceptor liposome will contain the same number of

drug molecules in thermal equilibrium). We do not attempt to calculate k from a

microscopic model; yet below we show how k is related to the change in standard
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Gibbs free energy for the process of transferring drug molecules from donor to acceptor

liposomes.

Due to symmetry we obtain ȧj from ḋj by replacing di → ai, ai → di, and

k → −k,

V

Kcoll

ȧj =

j∑
i=0

ai [aj+1 g(j + 1, i)− aj g(j, i)]

+
m∑
i=j

ai [aj−1 g(i, j − 1)− aj g(i, j)]

+

j∑
i=−k

di+k [aj+1 g(j + 1, i)− aj g(j, i)]

+
m−k∑
i=j

di+k [aj−1 g(i, j − 1)− aj g(i, j)] . (8.4)

Eqs. (8.2) and (8.4) constitute a microscopic model for the kinetic behavior of drug

transport from donor to acceptor liposomes through the collision mechanism; it can

be verified that
m∑
j=0

ḋj =
m∑
j=0

ȧj =
m∑
j=0

j (ȧj + ḋj) = 0 , (8.5)

implying Ṅd = Ṅa = Ṁ = 0 and thus ensuring conservation of the number of donor

and acceptor liposomes (Nd and Na) as well as of the total number of drug molecules

(M = Md+Ma). To characterize the total numbers Md and Ma of drug molecules that

reside in donor and acceptor liposomes, respectively, we carry out the summations∑m
j=0 jḋj and

∑m
j=0 jȧj using Eqs. (8.2) and (8.4). The result are the two first-order

differential equations

Ṁd =
K

N
(Ma Nd −Md Na + kNaNd) ,

Ṁa =
K

N
(Md Na −Ma Nd − kNaNd) , (8.6)

140



where we have introduced the definition of the apparent rate constant

K = Kcoll

N

V
. (8.7)

Initially all drug molecules are incorporated in the donor liposomes, implying Md(t =

0) = M and Ma(t = 0) = 0. The solution of Eqs. (8.6) is then

Ma(t) = M −Md(t) =
(
1− e−Kt

) Na

N
(M − kNd) . (8.8)

Hence K indeed appears as the inverse characteristic time for the transfer process.

In contrast to previous models [117], K depends only on the total concentration

of liposomes N/V but not on the concentrations of donor or acceptor liposomes

individually. We also mention that Eqs. (8.6) (and the solution in Eq. (8.8)) are valid

for any number of donor and acceptor liposomes (i.e, any choice of Nd and Na). This

includes but is not restricted to sink conditions (where Na � Nd).

Thermodynamic equilibrium corresponds to the long-time limit, t → ∞, at

which we have Md = M eq
d and Ma = M eq

a with

M eq
d

M
=
Nd

N

(
1 + k

Na

M

)
,

M eq
a

M
=
Na

N

(
1− kNd

M

)
. (8.9)

From Eqs. (8.9) we obtain the difference between the numbers of drug molecules

per donor and acceptor liposome, (M eq
d /Nd)− (M eq

a /Na) = k. This agrees with our

interpretation of k in Eqs. (8.2) and (8.4). We note that for chemically identical

donor and acceptor liposomes it is k = 0 and all liposomes carry the same number

of drug molecules in equilibrium, implying M eq
d /Nd = M eq

a /Na = M/N . The largest

possible value of k is k = M/Nd for which we obtain M eq
a = 0 and M eq

d = M . The

smallest possible value of k is k = −M/Na implying M eq
a = M and M eq

d = 0. Hence

−M/Na ≤ k ≤M/Nd.
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The solution in Eq. (8.8) corresponds to a simple exponential decay of the

number of drug molecules in the donor liposomes. This suggests that we can express

the transfer kinetics of drug molecules from donor (D) to acceptor (A) liposomes as

the chemical reaction scheme

D
K1−⇀↽−
K2

A , (8.10)

with rate constants K1 and K2. The corresponding kinetic behavior is then governed

by the equations Ṁd = −K1Md+K2Ma and Ṁa = K1Md−K2Ma whereMd = Md(t)

and Ma = Ma(t) are the numbers of drug molecules carried by donor and acceptor

liposomes, respectively. With Md(t = 0) = M and Ma(t = 0) = 0 we obtain

Ma(t) = M −Md(t) =
(

1− e−(K1+K2)t
) ( K1

K1 +K2

)
Na

N
M , (8.11)

which has indeed the same structure as Eq. (8.8). Comparison of Eq. (8.8) with

Eq. (8.11) reveals K1 = (1− kNd/M)KNa/N and K2 = (1 + kNa/M)KNd/N . The

equilibrium constant Keq = K1/K2 of the reaction in Eq. (8.10) is thus

Keq =
Na

Nd

M − kNd

M + kNa

. (8.12)

Comparing this with Keq = exp(−∆g0/kBT ) (where kB is Boltzmann’s constant and

T is the absolute temperature) allows us to compute the change in standard Gibbs

free energy

∆g0 = kBT ln

(
M/Na + k

M/Nd − k

)
, (8.13)

for the transfer of a single drug molecule from a donor to an acceptor liposome. The

enthalpic and entropic contributions to ∆g0 will be influenced by k, which is, generally,

temperature-dependent (k = k(T )). Let us briefly discuss two cases. First, if donor

and acceptor liposomes are chemically identical, then k = 0 and ∆g0 = kBT ln(Nd/Na)
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has only an entropic contribution. Specifically, for Nd > Na we find ∆g0 > 0 because

a given drug molecule has more donor liposomes to reside in than acceptor liposomes.

Second, the limiting cases for k, namely k = −M/Na and k = M/Nd, yield ∆g0 → −∞

(thus with all drugs migrating to the acceptor liposomes) and ∆g0 →∞ (thus with

all drugs remaining in the donor liposomes), respectively.

We point out that our model predicts a simple exponential time behavior

despite the presence of drug transfer through a second-order two-body collision

process (i.e., collisions between two liposomes). Chemical reactions that deplete the

reactants through binary collisions generally display a long time tail c(t) ∼ 1/t in

their concentration dependence. For example, the kinetic behavior of the dimerization

reaction 2 monomer → dimer follows the equation ċ = −K̃c2 where c(t) is the

concentration of the reactant (i.e., the monomers) and K̃ the rate constant. With an

initial concentration c(t = 0) = c0 the time behavior becomes c(t) = c0/(1 + c0K̃t),

implying c(t) ∼ 1/t for long times. For our system, however, the numbers of donor and

acceptor liposomes remain unchanged. Thus, collisions do not deplete the reactants,

and the concentration dependencies of Md(t) and Ma(t) become exponential in time.

8.2.2. Transfer through diffusion only

Diffusion allows for transfer of drug molecules directly through the aqueous

phase, without the need of collisions between liposomes. Denoting the additional

state in the aqueous phase by W (in addition to donor (D) and acceptor (A)) the

corresponding transport scheme (again, as in Eq. (8.10), formally expressed as a

chemical reaction) can be written as [269, 117]

D
Krel

d−⇀↽−
Kupt

d

W
Kupt

a−⇀↽−
Krel

a

A , (8.14)
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with rate constants Krel
d , Krel

a , Kupt
d and Kupt

a for the drug release (“rel”) and uptake

(“upt”) in donor (“d”) and acceptor (“a”) liposomes. To formulate the rate equations

it is useful to first consider the drug distribution function dj(t). We assume the

probability of a drug molecule to leave donor liposomes of index j to be proportional

to the total number jdj of drug molecules in that liposome population. Similarly, the

probability of a drug molecule to enter donor liposomes of index j is assumed to be

proportional to the total number (m− j)dj of empty binding sites in that liposome

population. Because the uptake is based on collisions of liposomes with drug molecules

in the aqueous solution, the rate should also be proportional to the drug concentration

Mw/V in the aqueous phase (here Mw is the total number of drug molecules residing

in the aqueous phase). This leads to the following rate equations

ḋj =Krel
d

[
(j + 1)dj+1 − jdj

]
+Kupt

d

Mw

V

[
(m− (j − 1))dj−1 − (m− j)dj

]
, (8.15)

for 0 ≤ j ≤ m (with dj = aj = 0 for j < 0 or j > m). A similar equation can

be written for the acceptor liposomes. Based on Eq. (8.15) it can be verified that∑m
j=0 ḋj = 0 thus ensuring conservation of Nd (and similarly for Na). Carrying out

the summation Ṁd =
∑m

j=0 jḋj using Eqs. (8.15) leads to

Ṁd = −Krel
d Md +Kupt

d

Mw

V
(mNd −Md) . (8.16)

This equation simply expresses the proportionality of the release to the total number

of bound drug molecules and the proportionality of the uptake to the total number of

free binding sites. Consistent with Eq. (8.16) we complete the set of rate equations
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corresponding to the scheme in Eq. (8.14)

Ṁw = Krel
d Md −Kupt

d

Mw

V
(mNd −Md)

+Krel
a Ma −Kupt

a

Mw

V
(mNa −Ma) ,

Ṁa =−Krel
a Ma +Kupt

a

Mw

V
(mNa −Ma) . (8.17)

To obtain first-order behavior, we make three assumptions. The first is a steady state

approximation for the number of drug molecules in the aqueous phase, Ṁw = 0. The

solubility limit of poorly water-soluble drugs is small so that, effectively, any release of

drugs from one liposome is accompanied by an immediate uptake by another (or the

same [4]) liposome. The second assumption is weak drug loading of all liposomes; this

amounts to Md � mNd, Ma � mNa, and M � mN . We finally assume the same

rate for the uptake of drug molecules from the aqueous phase into donor and acceptor

liposomes, implying Kupt
d = Kupt

a . This is strictly valid only for chemically equivalent

donor and acceptor liposomes but should generally be a reasonable approximation.

That is, we expect the energy barrier for entering a liposome from the aqueous phase

to be small (as compared to the energy barrier for the release from a liposome),

irrespective of the liposome’s chemical structure. Subject to our three assumptions

Eqs. (8.16) and (8.17) become equivalent to

Ṁd =−Krel
d

Na

N
Md +Krel

a

Nd

N
Ma ,

Ṁa =Krel
d

Na

N
Md −Krel

a

Nd

N
Ma . (8.18)

Eqs. (8.18) are now identical to Eqs. (8.6) if we identify Krel
d = Kdiff(1 − kNd/M)

and Krel
a = Kdiff(1 + kNa/M) where Kdiff = K appears as the rate constant. Here

again, as for Eqs. (8.6), the validity of Eqs. (8.18) is not subject to a restriction with

respect to Nd and Na.
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8.3. Discussion

Both transfer mechanisms, through liposome collisions and via diffusion through

the aqueous phase, lead to the same first-order kinetic behavior; see Eqs. (8.6) and

(8.18). The rate constant of the combined process is

K = Kcoll

N

V
+Kdiff . (8.19)

Its dependence on the total liposome concentration allows the experimental determina-

tion of the transfer mechanism [98]. We note that the first order behavior predicted by

Eqs. (8.6) and (8.18) requires several assumptions to be fulfilled: low liposome loading

with drug molecules, rate constants that are strictly proportional to concentrations

of drug molecules, and no intra-liposomal kinetics with a rate similar to K. In the

following we discuss how the kinetic behavior is predicted to change if any of these

assumptions is not fulfilled.

8.3.1. Extension to high drug loading

While high drug loading obviously increases the number of available drug

molecules (and thus increases the efficiency of liposomal carriers [156]) it also affects

the kinetics of the drug release. Our present model predicts such a dependence

for the diffusion mechanism whereas the kinetics for the collision mechanism is not

affected. Recall that the transition from Eqs. (8.16) and (8.17) to Eq. (8.18) was

based on the approximation of weak drug loading, Md � mNd, Ma � mNa, and

M � mN . Without that approximation we obtain instead of Eqs. (8.18) a nonlinear
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set of differential equations

Ṁd =−Krel
d

Na

N
− Ma

M
M
mN

1− M
mN

Md +Krel
a

Nd

N
− Md

M
M
mN

1− M
mN

Ma ,

Ṁa = Krel
d

Na

N
− Ma

M
M
mN

1− M
mN

Md −Krel
a

Nd

N
− Md

M
M
mN

1− M
mN

Ma . (8.20)

For the special case that donor and acceptor liposomes are chemically similar, Krel
d =

Krel
a = Kdiff , we obtain a simple exponential behavior

Ma(t) = M −Md(t) =

(
1− e−

Kdiff t

1−M/(mN)

)
Na

N
M . (8.21)

Here, high drug loading simply increases the rate constant for the diffusion mechanism

by the factor 1/(1 − M/(mN)). In the general case Krel
d 6= Krel

a , and no simple

exponential decay is predicted for high loading of the liposomes with drug molecules.

Fig. 8.4 shows a numerical example, based on Eqs. (8.20) with Krel
d /Krel

a = 3 and

Nd/N = Na/N = 0.5. For M � mN (weak loading regime; broken lines in Fig. 8.4)

we observe the simple exponential behavior according to Eqs. (8.18) with equilibrium

values M eq
d /M = 1/4 and M eq

a /M = 3/4. For M/(mN) = 0.5 the initial loading of

the donor liposomes is maximal. This leads to both a faster decay and a shift in

the equilibrium distribution, reaching M eq
d /M = (

√
3− 1)/2 = 0.366 and M eq

a /M =

(3−
√

3)/2 = 0.634. The reason for the increased rate constant is the reduced ability

of highly loaded liposomes to take up drug molecules. Hence, if drug molecules are

released from initially highly loaded donor liposomes they will be taken up exclusively

by acceptor liposomes. The increase in the transfer rate at high loading also affects

the equilibrium values M eq
d /M and M eq

a /M . The equilibrium is shifted toward a more

uniform distribution of drug molecules between donor and acceptor liposomes (in

agreement with Fig. 8.4).
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Figure 8.4. Numerical solutions of Eqs. (8.20), derived for M/(Nm) = 0 (broken
lines) and M/(Nm) = 0.5 (solid lines). The remaining parameters are Krel

d /Krel
a = 3,

Nd/N = Na/N = 0.5. The time t is plotted in units of 1/Krel
a .

8.3.2. Sigmoidal behavior

Our model presented so far is unable to predict sigmoidal behavior. That is,

no inflection point can be observed in Md(t) and Ma(t). Behind this prediction is

our assumption that the transfer rates are strictly proportional to the concentration

difference of the drug molecules. For the collision mechanism this is expressed by our

definition of the function g(i, j) in Eq. (8.3). However, if drug molecules within a given

liposome interact with each other, the simple relation g(i, j) = i − j will no longer

be valid. More specifically, attractive interactions between drug molecules within

liposomes will increase the energy barrier to remove a drug molecule. This becomes

relevant at high drug loading. Hence, in the presence of attractive interactions it

will be more unlikely that a drug molecule is transferred from a highly loaded donor

liposome to an empty acceptor liposome.

We discuss the consequences of attractive interactions for the collision mecha-

nisms, which is described by Eqs. (8.2) and (8.4). To account for the decrease in the
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rate constant at high loading we replace Eq. (8.3) by

g(i, j) = (i− j)
(

1− i

m

) (
1− j

m

)
. (8.22)

Clearly, for weak loading (i� m and j � m) the original first-order model leading to

the exponential behavior in Eq. (8.8) is recovered. For large loading of either donor or

acceptor liposomes, the transfer rate becomes small. We note that using Eq. (8.22)

does not lead to a set of differential equations in terms of only Md(t) and Ma(t). Here,

we do not attempt to provide an analytical solution to the problem. Instead, we

illustrate its predictions by numerically solving Eqs. (8.2) and (8.4) with g(i, j) given

in Eq. (8.22).

Fig. 8.5 shows the behavior of Md(t) and Ma(t) as function of tK (with

K = KcollN/V ), derived for m = 100. For simplicity we have set k = 0 which

results in a equipartitioning of drug molecules between donor and acceptor liposomes

(Md/Nd = Ma/Na = M/N). We start with Nd = Na = 100 liposomes. The acceptor

liposomes are initially empty whereas each donor liposome contains initially l drug

molecules (out of a maximal number m = 100). Different curves in Fig. 8.5 correspond

to l = 2 (a), l = 10 (b), l = 50 (c), l = 90 (d), and l = 98 (e). As long as the drug

loading is weak (curves (a) and (b)), the solution is simply exponential, characterized

byMa/M = 1−Md/M = (1−e−Kt)Na/N (see Eq. (8.8) with k = 0). Here the kinetics

is independent of the total number of drug moleculesM = lNd (which is why curves (a)

and (b) virtually overlap). If the initial loading of the donor liposomes becomes larger

(curve (c)) the kinetics slows down. Eventually, once the initial loading approaches its

maximal value mNd, the behavior slows down even more and, in addition, becomes

sigmoidal. Attractive drug-drug interactions slow down the release from initially highly

loaded donor liposomes; at later times (when the donor liposomes are no longer highly

loaded) the release becomes faster. This leads to sigmoidal behavior.
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Figure 8.5. Fraction of drug molecules contained in donor liposomes (Md(t)/M ; upper
set of curves) and acceptor liposomes (Ma(t)/M ; lower set of curves) as function of
the scaled time Kt. The curves represent numerical solutions of Eqs. (8.2) and (8.4)
with Eq. (8.22), derived for k = 0 and m = 100 with the initial conditions dj(0) = 0
for j 6= l, dl(0) = 100, aj(0) = 0 for j > 0, a0(0) = 100. Different curves correspond to
l = 2 (a), l = 10 (b), l = 50 (c), l = 90 (d), and l = 98 (e).

8.3.3. Extension to a two-state model

In the final part of this work we briefly discuss an extension of our model to

account for two distinct states of the drug molecule inside each liposome. A simple

rationale for the presence of two distinct states is provided by the bilayer structure of

the liposomes. That is, a drug molecule may preferentially be bound to either the

inner or outer monolayer, having to flip-flop in order to change the host monolayer.

The typical flip-flop time can be large if the drug has some amphiphilicity or surface

activity instead of being strongly lipophilic [238]. Drug molecules residing in the

inner monolayer cannot be transported directly to another liposome; they first have

to migrate to the outer monolayer.

We denote by M I
d and MO

d the number of drug molecules residing in the inner

(DI) and outer (DO) leaflets of donor liposomes, respectively. Similarly, M I
a and MO

a

refer to the number of drug molecules residing in the inner (AI) and outer (AO) leaflets
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of acceptor liposomes. The reaction scheme in Eq. (8.10) can then be generalized to

account for the inter-leaflet transport in donor and acceptor liposomes

DI
Kd

1−⇀↽−
Kd

2

DO
K1−⇀↽−
K2

AO
Ka

2−⇀↽−
Ka

1

AI . (8.23)

Here, Kd
1 and Kd

2 are the two rate constants corresponding to the transfer of drugs

between the two leaflets of the donor liposomes (and similarly for Ka
1 and Ka

2 referring

to the acceptor liposomes). The rate constants K1 = (1 − kNd/M) KNa/N and

K2 = (1 + kNa/M)KNd/N are identical to those for the single-state model, where K

is given in Eq. (8.19). Based on Eq. (8.23) the rate equations can be written as

ṀO
d =

K

N
(MO

a Nd −MO
d Na + kNaNd)−Kd

2M
O
d +Kd

1M
I
d ,

Ṁ I
d =Kd

2M
O
d −Kd

1M
I
d ,

ṀO
a =

K

N
(MO

d Na −MO
a Nd − kNaNd)−Ka

2M
O
a +Ka

1M
I
a ,

Ṁ I
a =Ka

2M
O
a −Ka

1M
I
a . (8.24)

In the limit of a symmetric lipid bilayer the two rate constants for flip-flop of a

drug molecule from the inner to the outer leaf and from the outer to the inner leaf

are identical. (We note that the two leaflets of a liposomal bilayer are not strictly

equivalent which, in a more refined model, would entail two different rate constants

for flip-flop; this dependence on liposome curvature is neglected here.) If we assume

furthermore that donor and acceptor liposomes are chemically similar, we may write
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Kd
1 = Kd

2 = Ka
1 = Ka

2 = G as well as k = 0. In this case, the rate equations

ṀO
d =

K

N
(MO

a Nd −MO
d Na)−G(MO

d −M I
d ) ,

Ṁ I
d =G(MO

d −M I
d ) ,

ṀO
a =

K

N
(MO

d Na −MO
a Nd)−G(MO

a −M I
a ) ,

Ṁ I
a =G(MO

a −M I
a ) (8.25)

depend on only two parameters, the rate constants K and G. If we assume all

drug molecules initially reside in the donor liposomes, the initial conditions are

MO
d (t = 0) = M I

d (t = 0) = M/2, and MO
a (t = 0) = M I

a (t = 0) = 0, where M is the

total number of drug molecules in the system. The solution of Eqs. (8.25) can be

expressed as

M I
d (t) =

M

2

[
Nd

N
+
Na

N

ω2e
−ω1t − ω1e

−ω2t

ω2 − ω1

]
,

MO
d (t)−M I

d (t) =
M

2
K
Na

N

e−ω2t − e−ω1t

ω2 − ω1

,

M I
a (t) =

MNa

2N

[
1− ω2e

−ω1t − ω1e
−ω2t

ω2 − ω1

]
,

MO
a (t)−M I

a (t) =
M

2
K
Na

N

e−ω1t − e−ω2t

ω2 − ω1

. (8.26)

The solution is thus a combination of exponential decays with corresponding effective

rate constants ω1 and ω2. Such biexponential behavior has been observed for the

spontaneous transfer of certain lipids between phosphatidylcholine vesicles [118] and

also for the release behavior of an imidazole derivate from liposomes [155]. The

effective rate constants ω1 and ω2 can be calculated from G and K through

2G+K = ω1 + ω2 , 4G2 +K2 = (ω2 − ω1)2 . (8.27)
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Figure 8.6. Fractions of drug molecules in inner and outer leaflets of donor and
acceptor liposomes. The quantities MO

d (t), M I
d (t), MO

a (t), and M I
a (t) are plotted

according to Eqs. (8.26) for G/K = 1/10 and Na/N = Nd/N = 0.5. The broken lines
show the biexponential behaviors of the sums Md = MO

d +M I
d and Ma = MO

a +M I
a .

The time is plotted in units of the inverse rate constant K. Note also ω1 = 1.11K
and ω2 = 0.09K are the effective rate constants for the decay.

Hence, a measurement of ω1 and ω2 could be used to obtain the two model parameters

(K and G). Fig. 8.6 displays a plot of MO
d (t), M I

d (t), MO
a (t), M I

a (t), Ma(t), Md(t),

calculated for G/K = 1/10 and Na/N = Nd/N = 0.5. All drug molecules are initially

distributed equally among the two leaflets of the donor liposomes. Release of drug

molecules from the outer leaf of the donor liposomes is fast (K = 10G), the slow

process is the flip-flop of drug molecules between the two leaflets of the liposomes.

Hence, at intermediate times, say at t = 3/K, the outer leaflets have almost reached

their equilibrium values whereas the inner layers remain still fairly close to their initial

values. After reaching thermal equilibrium (t→∞), half of all drug molecules have

migrated to the acceptor liposomes. Clearly, the presence of the two different rate

constants (K and G) leads to the biexponential behavior of Md and Ma in Fig. 8.6.
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We briefly discuss two limiting cases for Eq. (8.26). First, for G = 0 the flip-

flop of drug molecules between the inner and outer leaves is infinitely slow, implying

M I
d (t) = M/2, M I

a (t) = 0, MO
a (t) = M/2 −MO

d (t) = (1 − e−Kt) (MNa)/(2N). In

this case, we recover the kinetics of Eq. (8.8), yet with only M/2 (instead of M) drug

molecules participating in the transfer and identical donor and acceptor liposomes

(k = 0). Second, for G → ∞ flip-flop becomes infinitely fast and Eqs. (8.26) read

M I
a (t) = MO

a (t) = M/2−M I
d (t) = M/2−MO

d (t) = (1−e−Kt/2)(MNa)/(2N). Because

50% of the drug molecules reside in the inner leaflets, they do not contribute to the

outer-leaflet-concentration-differences that drive the transfer kinetics. Hence, the

apparent rate constant is reduced from K to K/2.

8.4. Conclusions

In this work we have presented a detailed model for the transfer kinetics

of poorly water-soluble drug molecules between liposomal carrier systems. Apart

from liposomes, the scope of the model includes other types of small and mobile

pharmaceutical nanocarriers, such as micelles, colloids, and nanoparticles. Starting

from a microscopic distribution function of drug molecules among donor and acceptor

liposomes, we have specified the conditions that lead to an apparent first order kinetic

behavior. These include low drug loading of the liposomes, strict proportionality of

all rate constants to drug concentrations, no aggregation phenomena of drugs within

liposomes, and no overlap of the intra-liposomal flip-flop kinetics. Systems that do

not fulfill these conditions do, generally, not exhibit an apparent first order kinetics.

Instead the behavior may become biexponential or sigmoidal. High drug loading may

preserve the first order kinetics but with increased apparent rate constant.

An optimal drug delivery system should keep the drug load on the way to

the target and release it only after arrival at the target. Understanding the kinetics

154



and mechanisms of drug release from liposomal (and other) nanocarriers is thus a

prerequisite to systematically improving drug delivery systems.
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9. PAPER 5 : INCREASED PH-SENSITIVITY OF

PROTEIN BINDING TO LIPID MEMBRANES THROUGH

THE ELECTROSTATIC-HYDROGEN BOND SWITCH1

ABSTRACT: The signaling lipid phosphatidic acid (PA) is believed to

interact specifically with membrane-bound globular proteins through a combination

of electrostatic interactions and hydrogen bond formation known as the electrostatic-

hydrogen bond switch. PA, which adjusts its protonation state according to the

ambient pH, is able to regulate protein binding under physiological conditions in a

pH-dependent manner. We investigate the question if the electrostatic-hydrogen bond

switch contributes to the pH-sensitivity of protein binding. To this end, we propose a

theoretical model for the adsorption of a basic protein on a zwitterionic membrane

that contains phosphatidic acid as a minor component. Our model is based on an

extended continuum Poisson-Boltzmann approach that accounts for zwitterionic lipids,

the protonation/deprotonation equilibrium of PA, and the lateral mobility of the lipids

in the membrane. The electrostatic-hydrogen bond switch enters as an additional non-

electrostatic attractive interaction of deprotonated PA with basic protein residues. For

a generic model protein we calculate the adsorption free energy and its pH-dependence.

Our results suggest that the electrostatic-hydrogen bond switch not only increases the

affinity between PA and the protein but also its sensitivity with respect to changes in

pH. That is, the electrostatic-hydrogen bond switch helps enabling the membrane to

use physiological pH changes in order to trigger protein adsorption/desorption.
1 The model was developed in close cooperation of Sylvio May(S.M), Edgar Kooijman, and Stephan
Loew (S.L.). Numerical evaluation was done independently by S.M. and S.L. This paper is published
in [159].
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9.1. Introduction

Protein-lipid interactions are crucial for a host of physiological functions as

diverse as membrane transport and cell survival/cell death [191, 197, 299, 226, 40].

Peripheral membrane proteins bind to membranes which modulate protein function

often through a conformational change [249]. Alternatively, the function of trans-

membrane proteins is regulated via the binding of specific membrane lipids [219].

Fundamental understanding of how these proteins recognize (specificity) and bind

(affinity) their lipid binding partners should provide important insight into the function

of these proteins, and may lead to improved drug development strategies for a variety

of pathological conditions. We focus here on the signaling lipid phosphatidic acid (PA)

which is not only a crucial intermediate in phospholipid and triacylglycerol synthesis

but is also involved in multiple signaling processes [10]. Phosphatidic acid is a

unique glycerophospholipid in that it has only a phosphomonoester headgroup, located

close to the headgroup-acylchain interface, to regulate the binding of peripheral and

transmembrane proteins. Despite this seemingly insignificant headgroup many proteins

have evolved domains that are specific in their binding of PA [267, 268, 218, 259]. In

previous work, we and others, have investigated the origin of this specificity but very

little is known about how affinity of this binding is regulated. [132] have recently

proposed a model for the binding specificity, namely the electrostatic-hydrogen bond

switch model.

The electrostatic-hydrogen bond switch model describes the mode of binding of

PA-binding proteins and thus the unique ionization properties of the phosphomonoester

of PA. The basic principles of this model are valid for other phosphomonoester groups

(singly bonded phosphate group) [133, 135, 264]. In case of protein binding the switch

can be understood as follows. The initial interaction of a cytosolic PA binding protein

with a biomembrane is electrostatic in nature. When the protein binds the membrane
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it samples the local environment to locate PA which is present in a sea of more

abundant (e.g. phosphatidylserine) anionic lipids. If the protein does not locate PA it

diffuses away, but when it is able to interact with PA via hydrogen bonds between basic

[or other [116]] amino acids in its binding domain, the PA binding protein switches

from a loosely bound state to one where it is docked onto the membrane. During this

process the ionization of PA switches from −1 [the most probable ionization state

[131]] to −2, further anchoring the PA binding protein to the membrane.

In previous work we explored how this switch mechanism regulates the dissoci-

ation state of PA. We showed that the electrostatic-hydrogen bond switch regulates

the pKa of PA with much greater sensitivity than would be possible based on pure

electrostatics alone [184]. In addition, if divalent cations are present, electrostatic

correlations appear to play a key role in regulating the electric charge of PA; this was

observed experimentally and modeled by simulations and by incorporating binding

equilibria into mean-field electrostatics [71, 291]. However, a fundamental question

remains as to how the ionization mechanism modulates the affinity of membrane

(peripheral) proteins for binding to PA. Regulation of PA binding through (local)

changes of pH is one of the hypotheses of the electrostatic-hydrogen bond switch

model. Recently, work by Loewen and co-workers showed how membrane biogenesis

and general metabolism are linked through pH-modulated PA binding of the negative

transcriptional regulator Opi1 [302]. Here we explore how hydrogen bond formation

modulated pKa changes, as observed experimentally, affect the affinity of PA binding

proteins.

We propose a theoretical model to study how changes of the solution’s pH

value affect the binding energy of a basic protein with a PA-containing lipid membrane.

In our model the membrane is a binary mixture, consisting of the zwitterionic lipid

phosphatidylcholine (PC) and the minority component PA (typically present with no

more than a few mole percent). We model the binding as an adsorption process of
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a basic protein onto the binary (PA-containing) membrane. The binding process is

generally accompanied by migration of PA into the adsorption region. Within the

adsorption region, the local concentration of PA may be increased, and the degree of

deprotonation of PA may be altered. Both mechanisms act toward optimizing the

adsorption free energy of the protein. For PA it has been proposed that in addition to

the electrostatic interactions of the phosphomonoester with the protein’s basic residues

the formation of hydrogen bonds contribute to the protein-lipid interaction [132]. This

obviously can lead to a more favorable adsorption free energy. Yet, it is much less

obvious to what extent the additional, non-electrostatic, interaction (i.e., the ability

to form hydrogen bonds) also increases the sensitivity of the adsorption free energy

with respect to changes in pH. To demonstrate that the interplay of electrostatic and

non-electrostatic interactions can, in fact, be exploited to make pH-induced protein

adsorption more sensitive, is the main objective of the present work.

Mean-field electrostatics has frequently been used in the past to model protein

adsorption. Some approaches employ molecular-level representations of proteins and

membranes with discrete charges [195, 196, 289, 77], whereas others apply some form

of continuum electrostatics [225, 99, 173, 91, 306]. Charge regulation, including the

protonation/deprotonation equilibrium, has also been modeled extensively, both for

isolated membranes [205, 21] and with regard to protein adsorption onto membranes

[161] or solid surfaces [97]. Due to the complexity to include charge-charge correlations,

almost all approaches employ the mean-field level Poisson-Boltzmann model. Our

present approach too makes use of the Poisson-Boltzmann model, yet modified so as

to account for the presence of zwitterionic lipids. We aim to incorporate only the

dominating interactions into a generic model for the pH-regulation of protein adsorption

onto PA-containing membranes. This implies to make significant approximations

such as using continuum electrostatics, treating all involved charges as point-like,

ignoring differences in the lateral cross-sectional area of chemically different lipids,
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and assuming perfectly planar step-like dielectric boundaries at the polar/apolar

interfaces of membrane and protein. With that, our goal is not to quantitatively

predict adsorption free energies but to understand how the electrostatic-hydrogen

bond switch facilitates protein binding onto biomembranes being regulated through

pH changes.

9.2. Theory

We successively introduce our models and corresponding free energies of a bare

lipid layer (Section 9.2.1), a bare protein (Section 9.2.2), and the complex between

the two (i.e., a protein that is adsorbed onto the lipid layer, in Section 9.2.3).

9.2.1. Bare lipid layer

We consider a planar lipid layer that is part of a lipid membrane and consists

of a two-component mixture: a charged lipid that can adjust its dissociation state and

a zwitterionic lipid. For the charged lipid we specifically have in mind phosphatidic

acid (PA) with its deprotonation/protonation equilibrium PA2− + H+ � PA− (where

H+ denotes a proton)

close to physiological pH values. Note that only one of PA’s pKa values is

close to physiological conditions, allowing us to focus on only two charging states.

The zwitterionic lipid may simply be phosphatidylcholine (PC), which is abundant

in biomembranes. We denote the mole fractions of PA and PC by φ and 1 − φ,

respectively. Assume that of all PA lipids, a (yet unknown) fraction η is deprotonated

(PA2−) and a fraction 1− η is protonated (PA−). We can then view the lipid layer

as a ternary system of PA2−, PA−, and PC, with corresponding mole fractions φη,

φ(1− η), and (1− φ), respectively. Note that both φ and η can vary within 0 and 1

(i.e., 0 ≤ φ ≤ 1 and 0 ≤ η ≤ 1). Fig. 9.1 illustrates the lipid layer with the different

lipids and corresponding mole fractions.
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Figure 9.1. Illustration of a mixed acidic-zwitterionic lipid layer, consisting of PA−,
PA2−, and PC with mole fractions φ(1− η), φη, and (1− φ), respectively. Each lipid
occupies the same cross-sectional area a. The direction normal to the lipid layer is
denoted by x. All lipid charges (apart from the positive charges of the zwitterionic
lipids) reside at the (step-like) polar/apolar interface x = 0; the corresponding surface
charge density is σ. The positive charges of the zwitterionic lipids are located within
the headgroup region, 0 < x < l, where l is the headgroup thickness. The electrolyte
contains monovalent salt ions and protons, with the concentration of the salt ions
everywhere much larger than that of the protons. The right-hand side of the figure
shows a schematic illustration of the involved lipids.

In the following we describe the electrostatic properties of the lipid layer

according to a modified Poisson-Boltzmann model. A detailed discussion of the model

and its application to a single lipid layer has been presented previously [184]. Assume

the polar/apolar interface of the lipid layer is step-like and coincides with the y, z-plane

of a Cartesian coordinate system. On the mean-field level, all physical properties (such

as electrostatic potential, ion concentrations, etc) then depend only on the normal

direction x to the lipid layer. We consider the mean-field free energy per lipid fb of a

single lipid layer. The index “b” stands for “bare” to distinguish it from a lipid layer

interacting with a protein; see below in Section 9.2.3. We decompose the free energy
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fb into three contributions,

fb = fmix + a

∞∫
0

dx f̂el + (1− φ)
kBT

l

l∫
0

dx Pl lnPl . (9.1)

They represent, respectively, the lipid’s mixing free energy, the electrostatic free energy

according to the classical Poisson-Boltzmann model [6], and an entropic contribution

due to the conformational degrees of freedom of the zwitterionic headgroups. We

discuss each contribution individually: Assuming the absence of non-electrostatic

lipid-lipid interactions within the lipid layer, we can express the mixing free energy

as ideal, implying for the first contribution (expressed in units of the thermal energy

kBT , where kB is Boltzmann’s constant and T the absolute temperature),

fmix
kBT

=φ

[
η ln

η

η0

+ (1− η) ln
1− η
1− η0

]
+ φ lnφ+ (1− φ) ln(1− φ) . (9.2)

Recall that φ is the mole fraction of PA and η describes its deprotonation state.

The latter is expressed subject to a conveniently chosen reference state η0. Here

η0 = 1/(1 + 10pK−pH) denotes the nominal (i.e., in the absence of external influences)

probability to find PA in its deprotonated state PA2−. This probability is related to

the difference of the local pH value and the lipid’s intrinsic pK. Only η0 but not the

individual values of pH and pK enter into our model. Because the intrinsic pK is a

constant, changes of η0 can simply be viewed as a measure for changes of the pH in

solution. This will guide our choices for η0 as discussed below.

The second contribution to fb in Eq. (9.1) integrates the volume density f̂el of

the electrostatic free energy over the aqueous solution (x > 0), where a denotes the
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cross-sectional area per lipid (see also Fig. 9.1). According to the classical Poisson-

Boltzmann model of a symmetric 1:1 electrolyte, f̂el can be written as [6, 60]

f̂el
kBT

=
Ψ′

2

8π`B

+ n+ ln
n+

n0

− (n+ − n0) + n− ln
n−
n0

− (n− − n0) . (9.3)

Here, the first term represents the electrostatic field energy, conveniently expressed

in terms of the dimensionless electrostatic potential Ψ = Ψ(x) (with Ψ = eΦ/kBT ,

where Φ is the electrostatic potential and e the elementary charge) and the Bjerrum

length `B = 0.7 nm in water. In the following we shall refer to Ψ simply as the

“potential”. The prime denotes the derivative with respect to x, that is Ψ′ = dΨ(x)/dx.

The remaining terms in Eq. (9.3) are ideal mixing free energies that account for

the demixing penalty of the local concentrations, n+ = n+(x) and n− = n−(x), of

positively and negatively charged salt ions, with respect to their bulk concentrations

n0. Hence, n±(x→∞) = n0. Note that, as we assume sufficiently small (as compared

to salt) local proton concentrations everywhere, Eq. (9.3) does not need to account

for an additional proton demixing penalty.

The third contribution to fb in Eq. (9.1) is related to the conformational entropy

of the zwitterionic headgroups. This term is based on a previously suggested model

[178], where the zwitterionic headgroup is approximated as two opposite elementary

charges separated by a fixed distance l. The negative charge represents the phosphate

group and the positive charge the choline moiety of PC (or the positively charged

terminal group for similar zwitterionic phospholipids). Since the phosphate group is

linked via a glycerol backbone to the two lipid tails, it is appropriate to assume the

negative headgroup charge is constrained to reside at the polar/apolar interface x = 0.

In contrast, the choline group benefits from the headgroup’s conformational degrees

of freedom. We represent this freedom by allowing the positive charge to move on the

surface of a hemisphere with x > 0 about the fixed negative charge. The density of
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states along the x-axis, corresponding to this hemisphere, is then constant within the

region 0 ≤ x ≤ l (we refer to l as the thickness of the headgroup region; see Fig. 9.1).

This can be seen by writing the surface area of a sphere of radius l in cylindrical

coordinates as 2π
∫ l
−l dx r(x)

√
1 + r′(x)2 = 2πl

∫ l
−l dx = 4πl2, where r(x) =

√
l2 − x2

is the distance to the x-axis and r′(x) denotes the first derivative of r(x). Alternatively

expressed, if a sphere is cut into slices of equal thickness, then each slice has the

same surface area of its rim. Each state is adopted with a yet unknown probability

Pl(x). We refer to the function Pl(x) as orientational distribution of the zwitterionic

headgroups; it is normalized according to
∫ l

0
dxPl(x) = l. The third term in Eq. (9.1)

then corresponds to the entropy-related free energy cost of changing the orientational

distribution away from Pl(x) ≡ 1.

We point out that the free energy fb of the bare lipid layer in Eq. (9.1) contains

four unconstrained quantities: n+(x), n−(x), Pl(x), and η. The first three are functions

of x whereas η is merely a number. In thermal equilibrium fb(n+, n−, Pl, η) adopts a

minimum. To find that minimum we point out that the potential Ψ too depends on

some of the unconstrained variables through Poisson’s equation, Ψ′′(x) = −4π`Bρ(x)/e,

with the local x-dependent volume charge density

ρ = e


n+ − n− + (1−φ)

al
Pl, 0 < x < l

n+ − n−, l ≤ x <∞ .

(9.4)

This accounts for the presence of salt ions outside the headgroup region (l ≤ x <∞),

and for the additional presence of the positively charged ends of the zwitterionic

headgroups inside the headgroup region (0 < x < l). Strictly, one would need to also

account for the local concentration of the protons. Yet, for local salt concentrations

much larger than local proton concentrations (which we consider in the present work)

we may ignore this additional contribution. Note that the negative lipid charges (i.e.,
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the charges carried by PA and those of the zwitterionic headgroups) enter into the

surface charge density σ = −(1 + ηφ) e/a at x = 0. The surface charge density is

related to the slope of the potential Ψ at x = 0 through Ψ′(x = 0) = −4π`Bσ/e. With

this we have provided all information needed to minimize fb(n+, n−, Pl, η). To this end,

it is sufficient to demand vanishing of the first variation δfb(n+, n−, Pl, η) = 0, yielding

(after some algebra) relations for the all unconstrained quantities. Specifically, we find

the Boltzmann distributions n± = n0 exp(∓Ψ) and Pl = exp(−Ψ)/ql for, respectively,

the salt ions and the orientational distribution of the zwitterionic headgroups (where

the partition sum ql = (1/l)
∫ l

0
dx exp(−Ψ) ensures proper normalization). In addition,

we find for the degree of deprotonation

η =
1

1 + 1−η0
η0

e−Ψ(0)
. (9.5)

Hence, large positive surface potential Ψ(0) � 1 strongly favors deprotonation,

whereas Ψ(0) = 0 leads to η = η0 at which the solution pH matches the intrinsically

preferred degree of deprotonation. To find the potential Ψ(x), we insert the Boltzmann

distributions into Poisson’s equation, leading to a modified Poisson-Boltzmann equation

Ψ′′ =
1

`2
D

sinh Ψ−


(1− φ)

4π`B

la

1

ql
e−Ψ, 0 < x < l

0, l ≤ x <∞ ,

(9.6)

where `D is the familiar Debye screening length, defined through 1/`2
D = 8π`Bn0.

Note that Eq. (9.5) enters into the boundary condition, Ψ′(x = 0) = 4π`B(1 + ηφ),

for Eq. (9.6); the second boundary condition is Ψ(x → ∞) = 0 thus ensuring

n±(x → ∞) = n0. We obtain Ψ(x) and η as the self-consistent numerical solutions

of Eqs. (9.5) and (9.6). To compute the solution, we have employed a Newton-

Raphson iteration scheme where the non-linear Eq. (9.6) was re-expressed as a sequence
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of linear differential equations that can be solved using standard methods. The

same method was applied throughout this work; see Eqs. (9.8) and (9.12) below.

Generally, a differential equation of the form Ψ′′(x) = g(Ψ) (where g can be a non-

linear function) is expressed as an iterative sequence of linear differential equations,

Ψ′′n+1 = g′(Ψn)(Ψn+1 −Ψn) + g(Ψn), that, if converging for sufficiently large n (i.e.,

yielding Ψn+1 = Ψn ), solves the original equation. Quantities like the partition sum

and protonation fraction can be updated after each iteration step. Knowing Ψ(x)

enables us to calculate n± and Pl. Inserting these quantities into Eq. (9.1) finally

yields the optimal free energy fb.

In all of the present work we fix l = 0.5 nm, a = 0.65 nm2, and `D = 1 nm. The

former two values represent typical structural parameters of a lipid layer, whereas the

latter corresponds to a physiological 0.1M salt solution. As discussed above, changes

in the solution’s pH value are described by choosing different values of η0. Typical

changes of the pH at physiological conditions are on the order of two units. For

example, entry of protons into endosomal vesicles lowers the pH from 7 to 5. How such

a change translates into different values of η0 = 1/(1 + 10pK−pH) depends on the lipid’s

intrinsic pK-value, which is typically unknown. What can be measured for PA are

apparent pK values [134]. However, it is fully sufficient to make a generic assumption

of the pK being somewhere close to pK= 7, where physiologically relevant changes

of the pH impact PA’s dissociation state. In the present work we find it convenient

to chose pK= 6, implying that a decrease from pH= 7 to pH= 5 also decreases the

nominal degree of deprotonation η0 from 1/(1 + 10−1) = 0.91 to 1/(1 + 10+1) = 0.091.

To model a pH-change of two units, it is thus appropriate to consider the two distinct

values, η0 = 0.1 and η0 = 0.9. We will focus on these two choices throughout the

present work.

We briefly discuss some basic structural properties of the bare lipid layer. A

more exhaustive analysis has been provided recently [184]. The left diagram of Fig. 9.2
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Figure 9.2. Left diagram: The potential Ψ(x) for φ = 0.03 and η0 = 0.1 (curve a), for
φ = 0.03 and η0 = 0.9 (curve b), for φ = 0.09 and η0 = 0.1 (curve c), and for φ = 0.09
and η0 = 0.9 (curve d). The dotted line marks the extension of the headgroup region
l = 0.5 nm. The inset shows the corresponding orientational distributions Pl(x) of the
zwitterionic headgroups; here, all curves corresponding to cases a-d overlap each other.
Right diagram: The degree of deprotonation η(φ) for η0 = 0.1 (curve a) and η0 = 0.9
(curve b).

shows Ψ(x) for φ = 0.03 and η0 = 0.1 (curve a), for φ = 0.03 and η0 = 0.9 (curve b),

for φ = 0.09 and η0 = 0.1 (curve c), and for φ = 0.09 and η0 = 0.9 (curve d).

We point out that for curve a the lipid layer contains only 3 mol% PA, of

which almost all carry a single negative charge (PA−) with very little PA2−. Because

the charge of PA− is the same as for the phosphate group of a zwitterionic lipid, the

lipid layer corresponding to curve a is structurally similar to a purely zwitterionic

one, where the potential outside the headgroup region almost vanishes. Increasing

the mole fraction of PA (curves c and d) and/or its deprotonation state (curves b

and d) renders the potential Ψ(x) more negative. The differences of the potentials

Ψ(x) between the different curves a-d are notable but have negligible influence on the

orientational distribution Pl(x), which is displayed in the inset of Fig. 9.2 (all four

curves overlap). Note that due to their electrostatic attraction it is far more likely to

find the zwitterionic headgroups tilted rather than pointing in the normal direction
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of the lipid layer. The right diagram of Fig. 9.2 displays the degree of deprotonation

η as function of the mole fraction of PA. Note that η is generally smaller than η0

because of the negative surface potential Ψ(0). Increasing φ further lowers the degree

of deprotonation η because of the more negative potential associated with the presence

of PA2− (see also Eq. (9.5)).

9.2.2. Bare protein

In the present work we study a basic protein that can adsorb onto the lipid

layer via electrostatic and, possibly, non-electrostatic interactions, the latter being a

manifestation of the electrostatic-hydrogen bond switch mechanism. We consider two

distinct states of the protein: bare (i.e., free in solution) and adsorbed (i.e., forming a

complex with the lipid layer). The two states are schematically illustrated in Fig. 9.3.

We assume the face of the protein that adsorbs onto the lipid layer is homogeneous,

flat, and carries one single positive charge per area a (recall that a = 0.65 nm2 denotes

the cross-sectional area per lipid). This choice is somewhat special but convenient for

the interpretation of our findings below. It does not restrict the general nature of our

model. In fact, any other area per charged protein residue could easily be incorporated

into the present model. In addition, the adsorbing face of the protein is assumed to be

sufficiently large so that finite-size effects are negligible. This renders the free energy

of the protein (and similarly of the membrane-protein complex) extensive with respect

to the lateral area of the protein’s adsorbing face. Hence, we only need to consider

the free energy per unit area, which we choose to be a.

We first consider the bare protein. As pointed out, its positive charges are

distributed on the protein’s adsorbing face with area density 1/a. We could model the

protein charge to be smeared at the protein surface. However, we choose to account in

a simplified manner for the conformational flexibility that basic amino acids such as

lysine typically possess [263]. Specifically, we model each protein charge to be attached
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Figure 9.3. Illustration of a mixed lipid layer onto which a protein can adsorb.
Displayed are the adsorbed state (left) and the desorbed state (right). The desorbed
state is characterized by a bare lipid layer (as illustrated in Fig. 9.1) and a bare protein.
The protein contains a flat face with attached basic residues of area density 1/a. Each
basic residue is able to move within a small region of thickness l next to the protein’s
flat face. This models the conformational freedom of the protein’s charged amino
acids.

to the protein surface through a rigid rod of length l = 0.5nm. The rod is free to rotate

about its anchoring point so that the distance of the positive charge to the protein

surface can vary between 0 and l. Note that this model is purposely made identical to

our model for the positive charge of a zwitterionic headgroup (the difference is the

presence of the negative charge at the anchoring point for the zwitterionic headgroup).

As for the zwitterionic lipid layer, we denote the distance to the protein surface by x

and associate a function Pp(x) with the probability distribution of finding the positive

charges of the protein at position x. We normalize Pp(x) according to
∫ l

0
dxPp(x) = l.

Note our use of the index “p” refers to “protein”. The free energy per charge of the
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bare protein can be written analogously to Eq. (9.1) as

fp = a

∞∫
0

dx f̂el +
kBT

l

l∫
0

dx Pp lnPp , (9.7)

where f̂el, given in Eq. (9.3), denotes the volume density of the electrostatic free

energy. Note that fp is a function of the unconstrained variables n+, n−, and Pp.

The local volume charge density ρ(x) close to the protein is given by Eq. (9.4)

with φ = 0 and the replacement Pl → Pp. Recall that ρ(x) enters into Poisson’s

equation, Ψ′′(x) = −4π`Bρ(x)/e. No charge is attached directly to the protein surface,

implying Ψ′(x = 0) = 0. Minimization of fp then yields the familiar Boltzmann

distributions n± = n0 exp(∓Ψ) and Pp = exp(−Ψ)/qp with the partition sum qp =

(1/l)
∫ l

0
dx exp(−Ψ). Inserting these distributions into Poisson’s equation results in a

modified Poisson-Boltzmann equation for the bare protein,

Ψ′′ =
1

`2
D

sinh Ψ−


4π`B

la

1

qp
e−Ψ, 0 < x < l

0, l ≤ x <∞ ,

(9.8)

to be solved subject to Ψ′(x = 0) = 0 and Ψ(x→∞) = 0. The solution yields Ψ(x)

from which we can calculate n+, n−, Pp, and thus fp. Fig. 9.4 displays the potential

Ψ(x) and the distribution Pp(x). Note that the positive potential Ψ(x) saturates inside

the region 0 < x < l within which the protein charges are distributed. The probability

distribution of finding the positively charged protein residues is non-uniform due to

the presence of the low dielectric interior of the protein. The corresponding image

charges lead to an effective repulsion that is manifested in the small but notable shift

of Pp(x) away from small and toward larger x. We also note that the free energy of

the bare protein according to Eq. (9.7) adopts the value fp = 2.438 kBT . This value

refers to a single protein charge or, equivalently, to a unit area a = 0.65 nm2.
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Figure 9.4. The potential Ψ as function of the distance x to the protein’s surface for
a bare protein. The inset shows the orientational distribution Pp(x) of the protein
charges. The parameters are a = 0.65 nm2, l = 0.5 nm, and `D = 1 nm.

9.2.3. Membrane-adsorbed protein

Next we consider the membrane-adsorbed state of the protein. The corre-

sponding membrane-protein complex is illustrated on the left-hand side of Fig. 9.3.

It is convenient and appropriate to assume the flat protein face locates on top of

the headgroup region; i.e., at position x = l. This leaves the positive charges of

both the zwitterionic lipids and the protein to reside within the headgroup region,

0 < x < l. As for the bare membrane and bare protein, we use the functions Pl(x)

and Pp(x) to describe the corresponding probability distributions. We also allow salt

ions to partition into the headgroup region of the membrane-protein complex (see

left diagram of Fig. 9.3). If the interaction between the protein and the membrane

was purely of electrostatic nature, we could write the free energy as a combination of

relevant terms in Eqs. (9.1) and (9.7). However, we make the additional assumption

of a non-electrostatic adsorption energy between the basic protein residues and the

deprotonated state of PA. This adsorption energy generally depends on the distance
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between a given basic protein residue and PA2− along the x-axis. Our aim is to model

a short-range attractive interaction as that arising from the formation of a hydrogen

bond. Such an interaction can, roughly, be approximated by a simple square-well

potential

U(x) =


−U0, 0 < x < l̃

0, l̃ ≤ x <∞
(9.9)

with l̃ ≈ 0.2 nm and a yet unspecified interaction strength U0 (with U0 > 0). For a

discussion how the square-well potential relates to the 10-12 potential that is frequently

used is molecular dynamics simulations see [184]. Below we study how the choice of

the well depth, U0, in Eq. (9.9) influences the pH-dependent sensitivity of protein

adsorption.

With this we write for the total free energy of the membrane-protein complex,

measured per lipid within the protein’s adsorption region

fc =fmix + a

l∫
0

dx f̂el + (1− φ)
kBT

l

l∫
0

dx Pl lnPl

+
kBT

l

l∫
0

dx Pp lnPp + ηφ
kBT

l

l∫
0

dx PpU , (9.10)

where the index “c” in fc stands for “complex”. Our expression for fc contains the

lipid’s mixing free energy (fmix according to Eq. (9.2)), the electrostatic free energy

as in the classical Poisson-Boltzmann model (fel according to Eq. (9.3)), two entropic

contributions due to the conformational degrees of freedom for both the zwitterionic

lipids (proportional to Pl lnPl) and the basic protein residues (proportional to Pp lnPp).

The final term in the last line of Eq. (9.10) describes the non-electrostatic interaction

energy as discussed above. The function U = U(x) is given in Eq. (9.9). The degrees of
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freedom pertaining to fc are n±, Pl, Pp, and η. To find their equilibrium values, we note

that the local volume charge density ρ(x) within the headgroup region can be expressed

as ρ/e = n+ − n− + [(1− φ)Pl + Pp]/(al). This together with Poisson’s equation (as

specified above) allows us to minimize fc. We again obtain the Boltzmann distributions

n± = n0 exp(∓Ψ), Pl = exp(−Ψ)/ql, Pp = exp(−Ψ−ηφU)/qp, with the corresponding

partition sums ql = (1/l)
∫ l

0
dx exp(−Ψ) and qp = (1/l)

∫ l
0
dx exp(−Ψ − ηφU) thus

ensuring the normalizations
∫ l

0
dxPl(x) = l and

∫ l
0
dxPp(x) = l. In addition to that,

we find for the optimal degree of deprotonation

η =
1

1 + 1−η0
η0

e
−Ψ(0)+ 1

l

l∫
0

dx UPp

. (9.11)

Note the presence of the non-electrostatic potential U = U(x) in the expressions for

Pp and η; this is a manifestation of the favorable interaction between basic protein

residues with PA2−. In fact, a more favorable interaction U (i.e, larger U0 in Eq. (9.9))

increases both the deprotonation fraction η and the probability of the basic protein

residues to reside closer to PA2−.

As for the bare lipid layer and bare protein, we obtain a modified Poisson-

Boltzmann equation by inserting the Boltzmann distributions into Poisson’s equation,

Ψ′′ =
1

`2
D

sinh Ψ− 4π`B

la
e−Ψ

[
1− φ
ql

+
e−ηφU

qP

]
. (9.12)

This equations must be solved within the headgroup region, 0 < x < l, subject to

the boundary conditions Ψ′(x = 0) = 4π`B(1 + ηφ) and Ψ′(x = l) = 0, reflecting the

presence and absence of charges at x = 0 and x = l, respectively. We point out that

both Eq. (9.12) as well as the boundary condition at x = 0 depend on η according

to Eq. (9.11). Hence, the solutions for Ψ(x) and η must be found self-consistently.
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Figure 9.5. Left diagram: Ψ(x) inside the headgroup region for the membrane-protein
complex. The different curves refer to η0 = 0.1 and U0 = 0 (curve a), η0 = 0.9 and
U0 = 0 (curve b), η0 = 0.1 and U0 = 2 (curve c), η0 = 0.9 and U0 = 2 (curve d).
All curves are derived for φ = 0.5 as indicated. Right diagram: The deprotonation
fractions as function of φ. Labeling of the four curves is as in the left diagram.

Once Ψ(x) and η are known, they can be used to calculate n±, Pl, Pp and thus the

free energy fc in Eq. (9.10).

As an example for solving the modified Poisson-Boltzmann equation for a

membrane-protein complex we show in Fig. 9.5 the potential Ψ(x) for the specific

choice φ = 0.5 (left diagram) and the degree of protonation η as function of φ (right

diagram) for the four combinations of U0 = 0 and U0 = 2 as well as η0 = 0.1 and

η0 = 0.9. The 50% mole fraction of PA in the left diagram of Fig. 9.5 may seem

unreasonably high, but we point out that proteins are able to sequester lipids that they

interact with favorably. That is, the local mole fraction of PA within the adsorption site

of a protein may be significantly larger than the average value in the bulk membrane.

Indeed, below (see Fig. 9.6) we find the present model to predict local PA mole

fractions of 50% and even higher. Due to the presence of the positive protein charges,

the potential becomes more positive as compared to the bare lipid layer (see Fig. 9.2).

Larger η0 implies a larger degree of deprotonation η and thus a more negative potential.

Increasing U0 to U0 = 2 (curves c and d) decreases Ψ(x) because the more favorable
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non-electrostatic interaction of the basic protein residues with PA2− further increases

the degree of deprotonation η.

9.3. Results and discussion

In Section 9.2 we have presented our models for the free energies of the bare

lipid layer fb, the bare protein fp, and the membrane-protein complex fc. All these

energies are measured with respect to the same lateral system extension a; i.e., with

respect to a single lipid for fb and fc as well as a single basic protein residue for fp.

One lipid occupies a cross-sectional area a = 0.65 nm2 and so does a single basic

protein residue. Our objective is to calculate the adsorption free energy of the protein

using fb, fp, and fc. In a typical experimental situation the molar fraction φ of PA

will be fixed in the bare membrane, we refer to that fixed value as φb. The molar

fraction of PA in a biomembrane is small, we only consider values with φb < 0.1. More

specifically, we first investigate the particular choice φb = 0.03 (below in Fig. 9.6),

and further on (in Fig. 9.7) we also derive results for two other choices, φb = 0.06 and

φb = 0.09.

As already indicated above, when the protein adsorbs onto the lipid membrane,

it can recruit additional PA within the adsorption region. Hence, PA’s mole fraction

φ within the membrane-protein complex (we refer to that mole fraction as φc) may

be larger than φb. The quantity that is kept constant during the adsorption is the

chemical potential

µ =

(
∂fb(φ)

∂φ

)
φb

. (9.13)

Here we have used the free energy of the bare lipid layer fb = fb(φ) as function of the

mole fraction φ of PA. Taking the derivative with respect for φ (where the internal

degrees of freedom n±, Pl, and η adjust) at fixed φb specifies the chemical potential µ

of PA. At equilibrium, the chemical potential of PA residing in either the bulk lipid
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layer or within the protein adsorption site must be equal. This implies equality of the

derivatives (
∂fb(φ)

∂φ

)
φb

=

(
∂fc(φ)

∂φ

)
φc

, (9.14)

taken at the coexisting mole fractions φb and φc. Eq. (9.14) constitutes a relation to

compute φc. Once φc is known we can calculate the adsorption free energy (measured

per lipid with cross-sectional area a) of the protein through

∆fads = fc(φc)− fb(φb)− fp − µ(φc − φb) . (9.15)

Here, we have also expressed fc = fc(φc) as function of the mole fraction of PA at

the protein adsorption site. (Note that fp does not depend on φ). To provide a

straightforward physical interpretation of Eq. (9.15), we simply write the adsorption as

a two-step process. The first is the demixing of the membrane adsorption site from φb to

φc without the protein yet adsorbed. This can be written as fb(φc)−fb(φb)−µ(φc−φb).

The second is the adsorption of the protein onto a lipid layer of pre-formed composition

φc. This part is fc(φc)− fb(φc)− fp. Adding the two contributions together indeed

yields ∆fads in Eq. (9.15).

To illustrate the calculation of ∆fads, we show in Fig. 9.6 the different free

energy contributions, fb(φ) and fc(φ) as function of φ (as well as fp, which is a

constant). Left and right diagrams in Fig. 9.6 refer to η0 = 0.1 and η0 = 0.9 as

indicated. The curve for fb(φ) is marked by the symbol ◦ at φb = 0.03, and the

corresponding derivative (i.e., the chemical potential) is indicated. For the three

different curves of fc(φ) (which refer to U0 = 0 in curve a, U0 = 2 in curve b, and

U0 = 4 in curve c), the positions with the same chemical potential are indicated (again

by the symbol ◦ for each curve and the corresponding slopes). We emphasize that the

coexisting mole fractions marked in Fig. 9.6 refer to φb = 0.03 (where 3% of the lipids

176



0.2 0.4 0.6 0.8 1.0
−1

0

1

2

3

4

fp

fb

a

fc

c

b

φb = 0.03 φ

η0 = 0.1

0.2 0.4 0.6 0.8 1.0
−1

0

1

2

3

4

fp

fb

a

fc

b

c

φb = 0.03 φ

η0 = 0.9

Figure 9.6. The different free energy contributions as function of the mole fraction φ of
PA. The dashed line shows fb, the dotted line shows fp (which is a constant), and the
three solid lines show fc, where curves a, b, c correspond to U0 = 0, U0 = 2, U0 = 4,
respectively. The position fb(φ = φb) with φb = 0.03 is marked by the symbol ◦; the
corresponding slope (indicated by a short solid line) signifies the chemical potential
µ. For each of the three functions fc(φ), the corresponding coexisting composition
φc within the protein’s adsorption site (i.e., with the same chemical potential) is also
indicated (and marked by the symbol ◦ with the corresponding slope). All energies
are plotted in units of kBT . Left and right diagrams refer to η0 = 0.1 and η0 = 0.9 as
indicated.

in the bulk lipid layer are PA); other choices can be analyzed analogously using the

same functions for the free energies. A few observations regarding Fig. 9.6 are worth

mentioning:

• The mole fraction of PA within the protein’s adsorption region (φc ≈ 0.5)

is much larger than that in the bulk (φb = 0.03). This is a result of the

favorable interaction of PA with the basic protein residues. For vanishing U0

this interaction is only electrostatic, whereas for U0 > 0 there is an additional

non-electrostatic contribution.

• With growing U0 the free energy fc becomes more negative. This is strictly

implied by the negative contribution of the non-electrostatic interaction term in

Eq. (9.10). Also, for growing U0 the degree of deprotonation η grows because
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the non-electrostatic attraction takes place selectively with PA2− and thus favors

the deprotonated state.

• All free energies (fc and similarly for fb) converge to the same value at φ = 0,

irrespective of η0 and U0. This is because the choice φ = 0 corresponds to a pure

zwitterionic lipid layer where η0 and U0 are irrelevant. The properties of a pure

zwitterionic lipid layer have been analyzed in previous work [182, 183].

We finally note that Fig. 9.6 provides all information to calculate the adsorption free

energy ∆fads according to Eq. (9.15). We have performed this calculation as function

of U0 for three different values of φb (namely φb = 0.03, φb = 0.06, and φb = 0.09).

The results are displayed in Fig. 9.7.

Here the left diagram shows the adsorption free energy ∆fads and the right

two diagrams display the corresponding degree of protonation η and mole fraction φc

of PA within the adsorption region. All diagrams show two sets of three curves. The

three curves refer to φb = 0.03 (solid), φb = 0.06 (dashed), and φb = 0.09 (dotted),

and the two sets to η0 = 0.1 and η0 = 0.9. The three points marked by the symbol

◦ correspond to the system in Fig. 9.6 (i.e., φb = 0.03 and the three choices U0 = 0,

U0 = 2, U0 = 4).

Fig. 9.7 is the main result of this work. It shows how the adsorption free

energy (measured per lipid within the adsorption region of the protein) is affected

by a change of two units in the pH (as expressed by changing η0 from 0.1 to 0.9).

Generally, ∆fads is on the order of a few kBT . It is always negative; i.e., the adsorption

process is energetically favorable. For example, for φb = 0.03 and U0 = 0, where

all interactions are electrostatic in nature, the adsorption free energy decreases from

∆fads = −0.92kBT for η0 = 0.1 to ∆fads = −1.97kBT for η0 = 0.9. Already this can be

a significant decrease that a real system could exploit to regulate the adsorption process.

Say, a peripheral protein has a total lateral contact area of 4 nm2 with a membrane,
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Figure 9.7. Protein adsorption free energy per lipid ∆fads (left diagram) and
corresponding degree of protonation η (right top diagram) and mole fraction φc
(right bottom diagram) of PA within the adsorption region, all plotted as function of
the strength U0 of the non-electrostatic interaction. Each of the diagrams shows two
sets of three curves. The three curves refer to φb = 0.03 (solid), φb = 0.06 (dashed),
and φb = 0.09 (dotted), and the two sets to η0 = 0.1 and η0 = 0.9 as indicated. The
symbols ◦ mark the values for φb = 0.03 to which the specific examples in Fig. 9.6
refers. Recall that η0 = 0.9 and η0 = 0.1 correspond to pH=7 and pH=5, respectively.

corresponding to about 6 ≈ 4/0.65 lipids within the protein adsorption region. The

total adsorption free energy would then amount to −0.92 × 6 kBT = −5.52 kBT

for η0 = 0.1, and −1.97 × 6 kBT = −11.8 kBT for η0 = 0.9. For small protein

coverage the binding constant K ∼ exp(−∆fads/kBT ) is exponentially related to

the adsorption free energy. Hence, the binding constant would grow by a factor of

exp(11.2)/ exp(5.2) = 730 upon a two-unit increase of the pH. In the presence of

non-electrostatic interactions this increase becomes substantially larger. For example,

for U0 = 4 we would obtain for the same system (i.e., 3% PA in the bulk membrane

and 6 lipid within the protein adsorption site) exp(3.5× 6)/ exp(1.77× 6) = 32, 000.

Similar increases are found for different φb.
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The question asked in the present work is to what extent the addition of a

non-electrostatic interaction energy (U0 in our case) affects the pH-sensitivity of the

adsorption process. A priory it is not evident that a non-electrostatic interaction has

any influence on pH-regulation, which is an electrostatic effect. However, Fig. 9.7

reveals that upon increasing U0 the adsorption free energy ∆fads decreases more for

η0 = 0.9 than for η0 = 0.1. For example, with 3mol% PA in the membrane (the

solid lines in Fig. 9.7) the loss in adsorption free energy (per lipid and in units of

kBT ) upon a 2-unit decrease of the pH value (i.e., from pH=7 down to pH=5) is

1.97− 0.92 = 1.05 for U0 = 0 whereas it is 3.55− 0.92 = 2.63 for U0 = 4. Hence, using

a pH decrease to release a protein from the membrane is much easier in presence of

non-electrostatic interactions (U0 > 0) as compared to their absence (U0 = 0). This

statement is qualitatively correct for any particular choices of U0 and φb. Hence,

our model predicts generally that the interplay of electrostatic and non-electrostatic

interactions increases the pH-sensitivity. The key for the physical mechanisms to

work is that the non-electrostatic interactions are sensitive with regards to the two

protonation states, PA− and PA2−, and thus can be regulated by pH-changes.

9.4. Conclusion

The present theoretical work has focused on the pH regulation of the membrane

affinity of PA binding proteins. We have specifically investigated whether the

electrostatic hydrogen bond switch mechanism increases the affinity of PA binding

proteins for PA through non-electrostatic interactions, and how this depends on pH.

Figure 7 clearly shows that as the hydrogen bond strength is increased, the adsorption

free energy becomes more negative (i.e. more favorable), and this effect is significantly

larger at higher pH (i.e. the slope of ∆fads is significantly steeper for η0 = 0.9 than

for η0 = 0.1). The electrostatic-hydrogen bond switch mechanism thus facilitates PA
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binding proteins to bind to PA in pH dependent way. It is likely that the electrostatic-

hydrogen bond switch also helps proteins to distinguish PA from more abundant acidic

lipid species such as phosphatidylserine (PS). To include PS into our present model

would be an interesting extension.

It is evident that the protonation/deprotonation equilibrium of an acidic lipid

that binds a basic protein entails a pH-dependence of the protein’s binding constant.

Such a dependence would already exist based on electrostatic interactions alone. Yet,

much less evident is the role that additional non-electrostatic interactions play in

this pH-dependence. Our work demonstrates that the presence of an additional

non-electrostatic contribution to the binding increases the sensitivity of this pH-

dependence. Hence, a physiological decrease in pH can cause a larger drop in the

affinity of PA-binding proteins for the membrane.

Given the approximative nature of our model, how reliable are our conclusions?

Recall that we employ an array of assumptions, ranging from the mean-field nature

of the Poisson-Boltzmann model to a number of drastic structural simplifications.

However, none of these appears likely to qualitatively change the model predictions. For

example, allowing the lateral cross-sectional area a of PA to depend on its protonation

state and to be significantly smaller from that of the zwitterionic lipid (instead of

assuming they are all the same) will render the present theoretical model considerably

more involved but is expected to affect the results only in a minor way. This is

because the number of PA that migrates to the protein binding site is dominated

by the tendency of charge matching between membrane and protein rather than the

cross-sectional area per lipid. A different cross-sectional area for PA would thus not

affect the number of PA molecules that migrate into the protein binding site. In fact,

if – as we propose – the electrostatic hydrogen bond switch mechanism constitutes

a general mechanism to regulate protein adsorption, it should depend on structural

motifs rather than structural details. This is what the present work has focused on.
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The pH-regulation of membrane affinity is illustrated by the transcription factor

Opi1 [302]. At acidic pH (e.g. upon starvation which leads to a drop in cytosolic pH)

Opi1 is released from the ER membrane to turn off membrane biogenesis. Conversely,

at neutral pH, which is maintained when yeast is metabolizing glucose; e.g., Opi1 is

kept bound to the ER membrane and subsequently membrane biogenesis takes place.

Thus when the yeast cell has a sufficient energy supply it is able to grow, and when it

is starved of nutrients it effectively shuts down growth. Our model thus shows how

PA is able to act as a pH sensor. Opi1 is likely not unique in this pH sensitivity

and other instances have been noted in the literature [250]. It will be important

to investigate the role of pH modulation for other pathways in which PA functions.

Aside from PA there are other signaling lipids that contain a phosphomonoester group

(e.g. ceramide-1-phosphate (cer-1-p) and polyphosphoinositides) and the electrostatic

hydrogen bond switch mechanism might act in those circumstances as well to make

the signaling process pH-dependent. Since our formalism is general it can be adjusted

to investigate these additional cases where a lipid phosphomonoester is responsible for

binding to basic amino acid residues. In the case of cer-1-p it was recently found that

the free OH group in the headgroup creates specificity for the binding of cPLA2α to

cer-1-p over PA which is structurally similar but which lacks the OH group (personal

communication, Robert Stahelin). The interaction of the polyphosphoinositides to

proteins also poses an interesting case where multiple phosphomonoesters coordinate

to bind protein partners. We are currently investigating the possibility of adopting

our model to treat these considerably more complicated cases.
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