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The results of the studies carried out in our laboratories during the last 15 years, aimed at developing green

methodologies for the synthesis of polyfunctionalized heteroaromatic substances, are surveyed. The results of
the investigations demonstrate that green methodologies are not only less hazard than classical preparative
methods but they also are more efficient and economical. For example, short reaction times and higher yields

are observed for reactions in which conventional heating is replaced by microwave or ultrasound irradiation. The
implementation of multicomponent reactions in green preparative routes also reduces the cost of carrying out
the reactions because multiple separation and crystallization steps are avoided. In general, by employing the new

green methodologies we have been able to produce a large number of polyfunctional aromatic substances in a
highly efficient manner.
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Introduction

As a result of pollution prevention legislation in the
USA in 1990 [1], a green chemistry campaign was
initiated so that organic substances could be pro-
duced in an environmentally clean manner. The basic
principles guiding this new synthetic strategy are
simply summarized in the following goals:

(1) Reducing potential waste production by utilizing
atom economical processes, which minimize the use

of solvents.
(2) Reducing the use of hazardous reagents or the

production of hazardous by-products.
(3) Utilizing energy economically and looking at energy

sources that do not rely on fossil fuel combustion.
(4) Minimizing time so that energy consumption is

reduced.

(5) Maximizing yields by utilizing catalysts when appro-
priate.

Owing to the fact that the 12 principles of green
chemistry have been reviewed several times recently
[2�5], they will not be elaborated in detail here.
Instead, the review below focuses only studies carried
out in our group that were targeted at developing
green methodologies for the preparation of hetero-
cyclic compounds.

Synthetic approaches

Solvent-free reactions

Long before the recognition and development of
green chemistry concepts, we utilized methodologies
employing solvent-free reactions for the production
of 1,2,4-triazole carboxamides [6�8], recently pa-
tented as cannabinoid receptor blockers [9].

The goal of our more recent efforts was to design
economical reactions. We observed that mixtures of
1 and a variety of amines when stirred in refluxing
water yield either 2 or 3 depend on the nature of the
amine utilized [6�8]. Recently we have also observed
that 4 undergoes rearrangement to form 5 under these
reaction conditions (Scheme 1 and Table 1) [10].

In the past decade, we have also described the
conversion of 6 to 7 via reaction with ethyl cyanoa-
cetate in the presence of a catalytic amount of both
AcOH and ammonium acetate. This finding opens a
new route in which 7 is employed as a precursor in
generation of condensed pyridazines (Scheme 2) [11].

Recently, a green, highly efficient, three-component
process for the synthesis of thiazolo[3,2-a]pyridine
derivatives 8 and 9 was described. Accordingly, reac-
tions were observed to occur between malononitrile,
aromatic aldehydes, and 2-mercaptoacetic acid in
respective molar ratios of 2:2:1.2 and 2:2:2.1 and in
the presence of catalytic amounts of piperidine in the
absence of solvent to produce 8 and 9 (Scheme 3 and
Table 2) [12]. The structures of the products of these
reactions were established using HMBC and hetero-
nuclear multi-quantum correlation (HMQC) techni-
ques. The findings contrast to the reported formation
of pyronothiazoles 10 in similar reactions [13].
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Scheme 1. Rearrangements of compounds 1 and 4.

Table 1. Yields of compounds 2a�c and 3a�c.

Compounds X R R? Ar Yield%

2a S C6H5CH2 C6H5 C6H5 80
2b S C6H5CH2 C6H5 o-CH3C6H4 65
2c S C6H5CH2 C6H5NH C6H5 73

3a S � CH3 C6H5 80
3b S � CH3 o-CH3C6H4 78
3c S � Piperidino C6H5 85
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Enaminones 11 are produced via reactions of

methyl ketones with dimethylformamide dimethyla-

cetal (DMFDMA) [14] in refluxing toluene [15], but

the yields of these processes are rather poor. Heating

methyl ketones with DMFDMA in absence of solvent

for 4�8 h, however, leads to the formation of 11 in
much improved yields (Scheme 3) [14]. A similar

methodology has been developed for the synthesis of

15 from 10, triethylorthoformate and morpholine or

piperidine 14a,b (Scheme 4) [16].

Utilization of microwaves and ultrasound as energy
sources

Since Gidey and Gidey described [17] the utility of

microwave irradiation produced in domestic ovens as

an energy source for conducting organic reactions in

short time periods, the utility of this technique in

organic synthesis has gained great attention [17,18].

This is especially true when microwave ovens that are

specially designed for chemical reactions were con-

structed.

Our interest in adopting microwaves as energy

sources started in 1997, when we observed that

benzo[g]imidazo[1,2-a]pyridines could be synthesized

via reactions of arylidene-1H-benzimidazole-2-aceto-

nitriles 16 with different electron poor olefins and

diethyl acetylenedicarboxylate under microwave heat-

ing (Scheme 5 and Table 3) [19]. In 2003, we reported

the synthesis of 21 from the reaction of 20 and

DMFDMA utilizing this technique [20] (Scheme 6).
In connection with our interest in applying green

methodologies to the synthesis of condensed azines,

we developed a novel and efficient route for the

preparation of pyrimido[1,2-a]pyrimidines using mi-

crowave irradiation. Thus, subjecting equimolecular

mixtures of 2-aminopyrimidine 22, aromatic alde-

hydes 23, and active nitriles 24 in the presence of

piperidine as a catalyst to microwave irradiation leads

to the formation of either 4-amino isomer 25 or 2-

amino isomer 26 (Scheme 7 and Table 4) [21],

depending on the active methylene compound em-

ployed. In this study, we employed the microwave

organic reaction enhancement technology (MORE

technology) [22] in a domestic oven. Moreover, we

noted several difficulties with reproducing results and

also hazards caused by solvent evaporation. Conse-

quently, we instead began to utilize the controlled

microwave heating technique.
We have described the syntheses of 7 from 6 in

shorter times and improved yields using a microwave

lab station. Also, we observed that 27 and 28 can

be converted to 29 and 30, respectively, by heating

under controlled microwave conditions (Scheme 8

and Table 5) [20,[23�25].
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Scheme 4. Syntheses of compounds 11 and 15.

Table 2. Yields of compounds 8 and 9a�c.

Compounds Ar Yield%

8a C6H5 85
8b p-BrC6H4 82

8c p-CH3OC6H4 88
8d m-O2NC6H4 82
9a C6H5 90

9b p-CH3OC6H4 92
9c m-O2NC6H4 87
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Benzoylacetonitrile 31 has long [26] been known

to yield the self-tricondensation product 32 upon

refluxing in pyridine. Abdelrazek and Michael [27]

have subsequently reported that 33 is actually the

reaction product.
Similarly, heating 3-aminocrotononitrile 34 in

pyridine leads to the formation of the aniline

derivative 35 that undergoes hydrolysis to afford 36

[26]. We reinvestigated this process and found that

indeed 32 is the product formed. Moreover, instead of

requiring the reaction to be carried out in refluxing

pyridine for at least 5 h [26], we found that heating

neat 19 in a microwave oven for 5 min afforded 32

[26] (Scheme 9 and Table 6).
Recently, a novel, simple, and efficient method for

the synthesis of polysubstituted diaminobenzonitriles

has been developed in our group. The process

involves the reaction of 1,1,3-tricyano-2-aminopro-

pionitrile with nitro olefins under controlled micro-

wave irradiation conditions. Thus, when equimolar

Table 3. Yields of compounds 17a�d and 19a�b.
Compounds R Ar X Yield%

17a H C6H5 CONH2 80
17b H p-CH3OC6H4 CONH2 82

17c C6H5 C6H5 NO2 88
17d C6H5 p-CH3OC6H4 NO2 90
19a � C6H5 � 85
19b � p-CH3OC6H4 � 88
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Scheme 6. Synthesis of compound 21.
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amounts of 37 and (E)-2-nitrophenylarenes 38 in
dioxane are irradiated using a microwave lab station
at 100 8C in the presence of piperidine (2 drops), the
corresponding polysubstituted diaminobenzonitriles
39 are generated rather than the corresponding
2-cyanomethylpyridine derivatives 40. The structures
of 39 were established using 1H NMR and 13C NMR
spectroscopic analysis (Scheme 10 and Table 7) [27].

Microwave promoted heating mixtures of 2-ar-
ylhydrazonals 41 with acrylonitrile 42a or methyl
vinylketone 42b in the presence of 1,4-diazabicy-
clo[2,2,2]octane (DABCO) for 5 min in the absence
of solvent results in the formation of 45 via inter-
mediates 43 and 44 that can be isolated in some cases
(Scheme 7) [28,29]. Reactions 41 (X�COR) with

hydroxylamine hydrochloride in acetic acid in pre-
sence of sodium acetate under microwave irradiation
conditions afforded 46 [30], which is an ecofriendly
route to this substance that serves as an alternative
to Shawali et al.’s synthesis [31], which utilizes
the reaction of 47 with cyanide ion, or the use of
Elnagdi’s coupling method of aroylacetonitrile with
aryldiazonium salts [32] (Scheme 11). Notably, this
reaction can be conducted on a 0.01 mol scale giving a
reported yield of 93% for 45.

Recently Al-Zaydi et al. [33] described a proce-
dure for the formation of pyridines 48 that involves
microwave or ultrasound irradiation of a mixture
of 49 and an amine followed by treatment of the
intermediate 50 with ethyl cyanoacetate also under

Table 4. Yields of compounds 25a-d and 26a-b.

Compounds X Ar Yield%

25a CN C6H5 85
25b CN p-ClC6H5 83

25c CO2C2H5 2-Furyle 81
25d CO2C2H5 m-NO2C6H4 84
26a C5NH2 p-CH3OC6H5 82
26b C5NH2 m-NO2C6H4 83
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Scheme 8. Syntheses of compounds 29a�b and 30.

Table 5. Yields of compounds 29a�b and 30.

Compounds R Ar Yield%

29a H C6H5 79
29b CH3 p-CH3C6H4 64

30 C2H5 p-CH3C6H4 64
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either microwave or ultrasound irradiation (Scheme

12). Generally, microwave irradiation proved to be

more efficient in producing the desired pyridines in

higher yields. Pyridones 48 couple with aromatic

diazonium salts to yield arylhydrazones 51, which

react with elemental sulfur in the presence of piper-

idine, either under conventional heating or micro-

wave or ultrasound irradiation conditions, to yield

thienopyridines 52. Again, the use of microwave and

ultrasound irradiation requires less time to bring

reactions to completion. Microwave reactions were

observed to proceed faster than those promoted by

ultrasound (Scheme 12 and Table 8) [33]. The

structure of compound 52a was assigned by using

X-ray crystallography.
Substituted 2-amino-2-chromenes 56 have re-

ceived considerable attention owing to their impor-

tance as pigments, agrochemicals, and cosmetics
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Scheme 9. Syntheses of compounds 32a�c and 36.

Table 6. Yields of compounds 32a�c.

Compounds R Yield%

32a C6H5 85
32b p-ClC6H4 87
32c CH3 27
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[34,35]. The synthesis of 2-amino-2-chromenes using

conventional heating techniques requires prolonged

times, and products are formed in only moderate

yields. In contrast, an efficient, high-yielding three-

component synthesis of these target molecules in-

volves the utilization of controlled microwave heating

of aldehydes with active methylene nitriles and

a-naphthol 55 in ethanol containing a catalytic

amount of piperidine at 80 8C for 5�8 min (Scheme 13
and Table 9) [36].
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Scheme 10. Synthesis of compound 39a�f.

Table 7. Yields of compounds 39a�f.

Compounds Ar Yield%

39a C6H5 73
39b p-ClC6H4 70

39c p-CH3OC6H4 72
39d m-NO2C6H4 70
39e 2-Furyl 72
39f 3,4-Cl2C6H3 70
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We also developed a simple and efficient method

for carrying out a one-pot three-component synthesis
of the Biginelli 4-aryl-3,4-dihydropyrimidine-2(1H)-

ones 58 through reaction of aldehydes, ethyl acetoace-

tate, and urea or thiourea under controlled microwave
heating conditions (Scheme 14 and Table 10) [37].

Under microwave irradiation conditions, 59

reacts to afford a mixture of 60 and 61, of which

the former undergoes self-condensation to yield

62 upon microwave irradiation in an acetic

acid solution in the presence of acidic zeolite

(Scheme 15) [38].
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Scheme 12. Syntheses of compounds 52a�d.

Table 8. Yields of compounds 52a�d.

Compounds R Ar Yield%

52a Butyl o-MeO2CC6H4 84
52b Hexyl o-MeO2CC6H4 88

52c Cyclohexyl o-MeO2CC6H4 89
52d Benzyl o-MeO2CC6H4 87

ArCHO + H2C

CN

CN
+

OH

MW / 80 oC

EtOH/ pip
5–8 min

O

NH2

X

Ar

55 56

Scheme 13. Syntheses of compounds 56a�d.

Table 9. Yields of compounds 56a�d.

Compounds X Ar Yield%

56a CN C6H5 93
56b CN p-CH3OC6H4 94

56c CN p-ClC6H4 88
56d CN p-NO2C6H4 85
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Solar thermal energy as an energy source

A great demand now exists for alternative and freely

available clean energy sources. An important indica-

tor of the greenness of a chemical reaction is found in

its energy efficiency (the cost and environmental

friendliness of the energy, and its applicability on a

large scale). Solar energy is essentially free and,

because its use does not require raw materials, no

pollutants are produced. Thus, solar energy can be
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O O

O +

X

NH2H2N

AcOH / MW

120 oC, 5 min
N
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NH

Ar

H3C X

O

EtO

57
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Scheme 14. Syntheses of compounds 58a�f.

Table 10. Yields of compounds 58a�f.

Compounds X Ar Yield

58a O C6H5 90
58b O p-CH3OC6H4 91

58c O p-ClC6H4 88
58d O p-O2NC6H4 80
58e S C6H5 87

58f S p-CH3OC6H4 88
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Scheme 15. Syntheses of compound 62.
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regarded as a clean reagent [39]. A description of our

first utilization of solar thermochemical energy in

organic synthesis was published in 2008. The process

involved a four-component synthesis of polyhydro-

quinoline derivative 65 via the reaction of dimedone

63, aromatic aldehydes, ethyl acetoacetate 64, and

ammonium acetate employing solar heating (Scheme

16 and Table 11) [40].
Green conditions have been developed for the

synthesis of substituted 2-aminothiophenes 70, em-

ploying multicomponent reactions of a ketone 66

with active methylene nitrile and elemental sulfur

induced by solar thermal energy. The procedure

proved to be efficient and simple in terms of

conducting the reaction and isolating products

(Scheme 17 and Table 12) [41].
The tetra-substituted imidazole scaffold is a core

component of many biological systems as well as

several natural products [42]. A number of synthetic

approaches for the construction of this scaffold have

been published, but all involve the use of high

temperatures, expensive metal precursors, and cata-

lysts that may be harmful to the environment. We

observed that exposing a solution of benzoin 71,

O

O
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+ ArCHO +

O
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2–12 hrs
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Scheme 16. Syntheses of compounds 65a�g.

Table 11. Yields of compounds 65a�g.

Compounds Ar Yield%

65a C6H5 92
65b p-CH3OC6H4 92

65c 1-Naphthyl 88
65d p-ClC6H4 87
65e 2-Furyl 90

65f p-CH3C6H4 88
65g m-O2NC6H4 83

+ +
Solar heat

25–210 min
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OR1
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CN

X
S

EtOH / pip

S

XR1

NH2R2

Scheme 17. Syntheses of compounds 70a�f.

Table 12. Yields of compounds 70a�f.

Compounds R1 R2 X Yield%

70a CH3 CO2C2H5 CN 72
70b CH3 CO2C2H5 CO2C2H5 70

70c Cyclohexyl CH3 CN 88

70d
O O

CO2C2H5 75

70e CH3 CH3 CN 73

70f N OH3C N OH3C CO2C2H5 75
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aromatic aldehydes, aromatic amines 72, and ammo-

nium acetate in dichloromethane in the presence of

catalytic amount of high surface area SiO2 to direct

sunlight for 2�25 h leads to the formation of the

corresponding tetra-substituted imidazoles 73 in ex-

cellent yields (Scheme 18 and Table 13) [42].
A novel synthesis of 2-cyano-3-aryl-2-enthioamides

76 has been recently developed in our laboratories. We

Table 13. Yields of compounds 73a�f.

Compounds Ar R Yield%

73a C6H5 C6H5 88
73b C6H5 C6H5CH2 80

73c p-ClC6H4 C6H5 93
73d p-CH3C6H4 C6H5 90
73e m-O2NC6H4 p-CH3C6H4 89
73f p-ClC6H4 p-ClC6H4 84
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Scheme 18. Syntheses of compounds 73a�f.
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observed that reactions of cyanothioacetamide 74 with

nitrones 75 in EtOH under solar thermal energy

conditions afford 76 in good yields. The reaction of

74 with diphenylnitrone furnished the corresponding

2-cyano-3-phenylprop-2-ene 76a. It is worth mention-

ing that 76a has not previously isolated as a solid

product. A mechanism that accounts for the formation
of 76 is presented in Scheme 19 (Table 14) [43].

Utility of heterogeneous acid and base catalysis to
replace homogenous alternatives

In the 1970s and 1980s, we extensively investigated the
reactivity of functionally substituted cinnamonitriles 77
toward active methylene compounds, electron rich
aromatics, azolones, and alkyl heteroaromatic carboni-
triles in the presence of homogeneous base catalysts,
usually piperidine or pyridine [44�56]. This effort led to
the preparation of a variety of pyrans 78, thiopyrans 79,
benzopyrans 80, naphthopyrans 81, pyranoazoles 82,
thiazolopyridines 83, phthaloazinones 84, and cinno-
lines 85. Several of the compounds synthesized in this
effort showed interesting biological activities, which
have been reported in the literature [57,58] and

Table 14. Yields of compounds 76a�f.
Compounds Ar Yield%

76a C6H5 63
76b p-CH3OC6H4 73

76c p-O2NC6H4 69
76d o-O2NC6H4 65
76e p-Me2NC6H4 66

76f 2-Thienyl 54
76g 2-Furyl 52
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Scheme 20. Syntheses of compounds 78�86.
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described in patents [59,60]. As a consequence, synthetic

approaches to these types of compounds have attracted

much attention recently (Scheme 20) [61�64].
In 2008, we reported on utility of chitosan, a

naturally occurring biopolymer obtained by treating

chitin with strong alkali, as a heterogeneous catalyst

for these reactions [65]. It occurred to us that it might

be valuable to probe in detail the actual structures of

some of these products, which have been questioned

[67,68]. Chitosan is hydrophilic basic catalyst and, as

such, it has been used successfully as a catalyst for

Michael addition reactions (Scheme 20) [69]. It was

Table 15. Yields of compounds 80, 81 and 83.

Compounds Ar X or Y Yields%

80 C6H5 CN 74
81 C6H5 CN 76

83 C6H5 CN 96

NMe2

R
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CN
CN
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O

R
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R
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O
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R
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87
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R
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NC

O

NH2

R

O

– NMe2

+ NMe2
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93

87

Scheme 21. Syntheses of compounds 90a�c.

Table 16. Yields of compounds 90a�c.

Compounds R Yield%

90a C6H5 72

90b 2-Furyl 75
90c 2-Thinyl 72
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observed that reactions of 77 (X�CN) with acetoa-

cetic ester and malononitrile in the presence of

chitosan afford 78 and 79, respectively, in almost

the same yields described for reactions in the presence

of piperidine.
Similarly, reactions of this substance with phe-

nols, naphthols, and pyrazolone afforded the respec-

tive products 80, 81, and 82. The latter product was

incorrectly assigned as 86 earlier. The reaction of 77

with thiazolylacetonitriles and ethyl thiazolylacetate

afforded 83 as expected despite claims to the contrary

[67] (Table 15). Pyridazinylcarbonitriles (Y�CO2Et)

afforded 84 whereas when Y�CN 85 was formed

(Scheme 20). All of the observed yields are similar to

those given in the original reports [69].
We have also utilized chitosan as base catalyst to

promote addition reactions of malononitrile and ethyl

cyanoacetate to form the enaminone 87. Initially, Al-

Omran et al. reported that 88 is the product of the

reaction of these substances promoted by ethanolic

sodium ethoxide, but suggested that 89 is produced

when the reaction occurred in ethanolic piperidine

(Scheme 21 and Table 16) [70]. Utilizing both 15N

NMR, HMBC NMR methods [71,72], and a subse-

quent X-ray crystal structural analysis, we demon-

strated that the reaction product is really 90. It is

quite strange that the results of our work were

available in open-access journals at least a year before

the report of similar results by Abdelrazek et al. [68].

We have recently found that 87 reacts not only

with malononitrile but also with ethyl cyanoacetate

and benzoylacetonitrile to yield dienamides, which

are believed to be formed via intermediates 91, 92,

and 93. The possibility that formation of 92 takes

place, which then reacts further by elimination of

dimethylamine, was excluded based on experimental

observations (Scheme 21) [73].
Chitosan has also been used as catalyst for the

addition of 94 to 77 yielding 95, thus replacing

piperidine reported in the initial paper as the catalyst

of choice (Scheme 22 and Table 17) [74,75].

O

R

N
NH

+

Ar

77
Reflux

EtOH
3 hrs

N
N

Ar

NH2

X

ArO

R

9594

Scheme 22. Syntheses of compounds 95a�d.

Table 17. Yields of compounds 95a�d.

Compounds Ar R X Yield%

95a C6H5 H CN 84
95b C6H5 CH3 CN 82

95c m-O2NC6H4 H CN 85
95d p-ClC6H4 H CN 80
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Scheme 23. Syntheses of compounds 97, 99, 101, and 102.
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Eco-friendly, solid Lewis acid catalysts as well as

ionic liquids have also been employed as replacement

for their noneco-friendly counterparts. In 2007 we

reported [76] the utilization of 97, prepared by the

reaction of indole 96 with cyanoacetic acid/acetic

anhydride mixture following the procedure reported

by Slatt et al. [77] as a building block for the synthesis

of substituted indoles. This approach appeared to us

to be an interesting route to 3-oxoalkanomitriles.

However, less electron-rich aromatics failed to under-

go the reaction employing the conditions developed.

We envisioned that InCl3 would act as an efficient

catalyst for this condensation and, indeed, this

catalyst did promote the reaction of 98 to form

oxoalanonitriles 99. Also, 101 and 102 have been

produced from 100 in 70% yields (Scheme 23) [78].
Abdel-Khalik and Elnagdi [79] reported that

enaminones 103a are converted into 1,2,5-triaroyl-

benzenes 104a in refluxing in acetic acid (Scheme 24).

Subsequently Makhseed et al. [80] extended this

approach to the synthesis of benzene-1,3,5-trials 104

(R�H) and triethylbenzene-1,3,5-tricarboxylates 104

(R�OH). Recently Al-Zaydi et al. were able to affect

the conversion of 103d to 104d more efficiently using

pyridine hydrochloride as an ionic liquid and MW as

the energy source (Scheme 24) [81]. Although 103e in

O
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RR
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g, R= 2-Pyrrolyl
h, R= 2-Pyridyl
i, R= 2-Furyl
j, R= 2-Thienyl
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Scheme 24. Synthesis of compound 105.
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Scheme 25. Syntheses of compounds 108, 109, and 111�114.
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refluxing acetic acid reacts to generate 105 only, when

the process is carried out in the presence of pyridi-

nium hydrochloride 104e is formed [81]. Very re-

cently, Al-Mousawi et al. showed that these

conversions can be affected by fusing enaminones in

the presence of montmorillonite K10. Moreover,

these workers provided evidence that the reaction

takes place in a stepwise manner. Specifically, the

results of crossover experiments showed that mixtures

of 106 and 107 afford both 108 and 109. In addition,

the reaction of 110 with ethyl propiolate was shown

to afford a mixture of 111�113 (Scheme 25) [14]. On
heating with dimethyl acetylenedicarboxylate in the

presence of montmorillonite K10, 110 is converted to

114 (Scheme 25).
Ceric (IV) ammonium nitrate (CAN) is a con-

venient and widely used reagent for affecting a broad

range of reactions owing to advantages that include

solubility in water and various organic solvents,

inexpensiveness, eco-friendly nature, uncomplicated

handling, fast conversions, and convenient work up

procedure. We have initiated a program aimed at

exploring the potential of CAN in organic transfor-

mation. This effort led to the development of a one-

pot CAN-catalyzed synthesis of 2-arylthiazoloes 116

from the reaction of 2-aminothiophenol 115 and

aromatic aldehydes (Scheme 26 and Table 18) [82].
The reactions of o-phenylenediamine 117 with

aromatic aldehydes in MeOH at room temperature,

catalyzed by Cerium (IV) ammonium nitrate (CAN),

afford either 118 and/or 119. The results clearly show

that this process proceeds mainly via two different

routes. The first involves 1:1 condensation followed

by oxidation to afford 2-aryl-1-substituted-1H-benzi-

midazoles. The second process is a 1:2 condensation

that generates 2-aryl-1-arylmethyl-1H-benzimida-

zoles. Thus, in these reactions both of the expected

products are obtained in ratios that depend on nature

of the solvent. For example, in methanol both 118

and 119 are obtained (Scheme 27 and Table 19) [83].
Although extensively utilized as a one-electron

oxidant [84], CAN’s use as a Lewis acid catalyst in

NH2
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MeOH/CAN%, RT, overnight
75-89%
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Ar
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H
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Ar S

N

Ar

115
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Scheme 26. Syntheses of compounds 116a�h.

Table 18. Yields of compounds 116a�h.
Compounds Ar Yields%

116a C6H5 75
116b p-CH3OC6H4 78
116c 1,4-C6H9(OCH3)2 77

116d m-O2NC6H4 88
116e o-ClC6H4 89
116f o-CH3OC6H4 80

116g p-O2NC6H4 87
116h 2-Thienyl 79
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C�N bond forming reactions leading to heterocyclic
compounds is somehow limited [85]. We recently
observed that a simple and highly efficient procedure
for conducting the Biginelli condensation reaction of
aldehydes, b-ketoesters 120, urea, or thiourea 121a,b

at ambient temperature involves the use of CAN as a
Lewis-acid catalyst. A mechanism to account for the
formation of the products is shown in Scheme 28
(Table 20) [86].
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ArCHO/CAN(10mol%)
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Ar

Ar

N

N

Ar

Ar

N
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Scheme 27. Syntheses of compounds 118a�c and 119a�b.

Table 19. Yields of compounds 118a�c and 119a�b.

Compounds Ar Yield%

118a p-CH3OC6H4 90
118b 7,4-C6H3-OCH3 89

118c m-O2NC6H4 15
119a o-O2NC6H4 55
119b p-ClC6H4 70
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Scheme 28. Syntheses of compounds 122a�g.
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N,N-diaryl-formamidines are of considerable in-

terest in fields related to organic and medicinal

chemistry. Exchange reactions of N,N -dimethylfor-

mamidines or acetamidines by a variety of amines

have been reported to be the most popular method

for the synthesis of symmetrical and unsymmetrical

formamidines. We have developed a simple and green

route for the synthesis of N,N?-diaryl-formamidines
124 via the reaction of aromatic amines with triethy-

lorthoformate 123 in water at room temperature

catalyzed by CAN acting as a Lewis acid catalyst

(Scheme 29 and Table 21) [87].

Table 20. Yields of compounds 122a�g.

Compounds X Ar Yields%

122a O C6H5 90
122b O p-CH3OC6H4 93

122c O m-O2NC6H4 96
122d O p-ClC6H4 88
122e S C6H5 94

122f S p-CH3OC6H4 92
122g S p-O2NC6H4 93

ArNH2 + CH(OEt)3
H2O / CAN 10%

rt
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OEt

OEt
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H
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Scheme 29. Syntheses of compounds 124a�h.

Table 21. Yields of compounds 124a�h.

Compounds Ar Yield%

124a C6H5 93
124b p-CH3C6H4 94

124c p-CH3OC6H4 95
124d p-O2NC6H4 86
124e o-ClC6H4 88

124f p-ClC6H4 87
124g p-BrC6H4 88
124h 5-Methyl-3-yl 88

Pyrazole 88
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Greener synthetic approaches

4-Aminopyrazoles-5-carboxylic acid derivatives are
interesting intermediates in the synthesis of pharma-
ceuticals. Moreover, reported synthetic approaches to
these substances are rather inefficient hazardous and/
or nonconcise [88]. For example, 128, a precursor of
Viagra, is prepared using a multistep sequence that
includes production of potentially explosive nitropyr-
azoles by employing a hazardous nitration reaction
mixture followed by a heavy metal reduction. Re-
cently we described a direct synthesis of 132 through

the reaction of 129 with functionally substituted alkyl
halides (Scheme 30). Similarly 129 was converted to a
Zaperinsate analog via reaction with NH4OH to yield
intermediate 130 that then reacts with malononitrile
to yield 133.

Conclusion

In investigations carried out over a 48-year period,
our group has made contributions to green meth-
odologies by providing greener approaches to several
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Scheme 30. Syntheses of compounds 128, 132, and 133.
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biologically interesting polyfunctional heteroaromatic

compounds.
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