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ABSTRACT 

Sports competitions provide excellent opportunities for model building and using basic 

statistical methodology in an interesting way. More attention has been paid to and more research 

has been conducted pertaining to men’s sports as opposed to women’s sports. This paper will 

focus on three kinds of women’s sports, i.e. NCAA women’s basketball, volleyball and soccer.  

Several ordinary least squares models were developed that help explain the variation in 

point spread of a women’s basketball game, volleyball game and soccer game based on in-game 

statistics. Several logistic models were also developed that help estimate the probability that a 

particular team will win the game for women’s basketball, volleyball and soccer tournaments. 

Ordinary least squares models for Round 1, Round 2 and Rounds 3-6 with point spread 

being the dependent variable by using differences in ranks of seasonal averages and differences 

of seasonal averages were developed to predict winners of games in each of those rounds for the 

women’s basketball, volleyball and soccer tournament. Logistic models for Round 1, Round 2 

and Rounds 3-6 that estimate the probability of a team winning the game by using differences in 

ranks of seasonal averages and differences of seasonal averages were developed to predict 

winners of games in each of those rounds for the basketball, volleyball and soccer tournaments. 

The prediction models were validated before doing the prediction. For basketball, the 

least squares model developed by using differences in ranks of seasonal averages with a double 

scoring system variable predicted the results of a 76.2% of the games for the entire tournament 

with all the predictions made before the start of the tournament. For volleyball, the logistic 

model developed by using differences of seasonal averages predicted 65.1% of the games for the 

entire tournament. For soccer, the logistic regression model developed by using differences of 

seasonal averages predicted 45% of all games in the tournament. Correctly when all 6 rounds 
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were predicted before the tournament began. In this case, team predicted to win in the second 

round or higher might not have even made it to this round since prediction was done ahead of 

time. 

  



v 

 

ACKNOWLEDGMENTS 

It would not have been possible to write this doctoral thesis without the help and support 

of the kind people around me, to only some of whom it is possible to give particular mention 

here. 

It is a great pleasure to acknowledge my deepest thanks and gratitude to my Supervisor, 

Dr. Rhonda Magel for her meaningful assistance, tireless guidance and patience over the years 

which is unmeasurable and without it I would not be where I am today. I thank her so much for 

the knowledge she has passed on and I will always be grateful for having the opportunity to 

study under her.  

I would also like to acknowledge helpful suggestions from my committee members: Dr. 

Gang Shen, Dr. Ronald Degges, and Dr. Zhaohui Liu. Thanks for their endless help, generous 

advice and support during the study. This work would not have been possible without their help 

and input. 

I am also grateful to Sandie Salisbury, my advisor at Noridian Healthcare Solutions, for 

providing me flexible working hours to complete writing this paper. It was particularly kind of 

her to allow me to take days off to finish my writing. It is a great honor to work under her 

supervision. 

Finally, I would like to thank my husband Guojia Ma for his personal support and great 

patience at all times. Big thanks to my two children, Oscar and Alvin, they always been a 

constant source of joy when I am facing struggles and difficulties, they are always the motivation 

for me to complete my degree. I also want to thank my parents and parents in laws, they have 

given me their unequivocal support throughout, as always, for which my mere expression of 

thanks likewise does not suffice.  



vi 

 

TABLE OF CONTENTS 

ABSTRACT…………………………………………………………………………..………….iii 

ACKNOWLEDGMENTS…………………………………………………………………...……v 

LIST OF TABLES………………………………………………………………………….........xii 

LIST OF FIGURES………………………………………………………………….....……..xxvii 

CHAPTER 1. INTRODUCTION…………………………………………………………………1 

1.1. References………………………………………………………………………….....…...1 

CHAPTER 2. REVIEW OF PAST STUDIES……………………………………………………3 

2.1. Basketball…………………………………………………………………………..…...…3 

2.2. Volleyball………………………………………………………………………….....……4 

2.3. Soccer……………………………………………………………………………..….……5 

2.4. Football…………………………………………………………………………..……..…5 

2.5. Description of Study………………………………………………………………..…..…6 

2.6. References…………………………………………………………………………..…..…7 

CHAPTER 3. BRACKETING NCAA WOMEN’S BASKETBALL TOURNAMENT…………9 

3.1. Introduction……………………………………………………………………………..…9 

3.1.1. The history of NCAA women’s basketball tournament……………………...………9 

3.1.2. The playing rule and structure……………………………………………………..…9 

3.1.3. The research objectives for this study……………………………………...…….…12 

3.2. Develop models by using differences in ranks of seasonal averages………………….…17 

3.2.1. Bracket scoring system…………………………………………………………...…17 

3.2.2. Develop models for the first round using differences in ranks of seasonal  

          averages with single scoring system variable……...………...………...………...…19 

3.2.3. Develop models for the first round using differences in ranks of seasonal  

          averages with double scoring system variable……………………………………...22 



vii 

 

3.2.4. Develop models for the second round using differences in ranks of seasonal  

          averages with single scoring system variable………………………………………25 

3.2.5. Develop models for the second round using differences in ranks of seasonal  

          averages with double scoring system variable…………………………………...…29 

3.2.6. Develop models for the third and higher rounds using differences in ranks of 

          seasonal averages with single scoring system variable……………………………..32 

3.2.7. Develop models for the third and higher rounds using differences in ranks of  

          seasonal averages with double scoring system variable………………………….…35 

3.2.8. Validating models …………………………………………………………….....…38 

3.2.9. Bracketing the 2014 and 2015 tournament before tournament begins –  

          Prediction……………………………………………………………………...……42 

3.2.10. Results for prediction………………………………………………………...……54 

3.3. Develop models using differences of seasonal averages………………………...………57 

3.3.1. Develop models for the first round using differences of seasonal averages  

               with singe scoring system variable…………………………………………..……..57 

3.3.2. Develop models for the first round using differences in seasonal averages  

          with double scoring system variable…………………………………………..……60 

3.3.3. Develop models for the second round using differences in seasonal averages  

          with single scoring system variable…………………………………………...……64 

3.3.4. Develop models for the second round using differences in seasonal averages  

          with double scoring system variable……………………………………......………67 

3.3.5. Develop models for the third and higher rounds using differences in seasonal 

          averages with single scoring system variable…………………………………....…70 

3.3.6. Develop models for the third and higher rounds using differences in seasonal 

          averages with double scoring system variable………………………………...……73 

3.3.7. Validating models…………………………………………………………………..76 

3.3.8. Bracketing the 2015 tournament before tournament begins - Prediction  

          (models developed by using seasonal averages with a single scoring system  

          variable) ……………………………………………………………………………80 

3.3.9. Results for prediction ………………………………………………………………92 



viii 

 

3.4. Develop models by using in-game statistics……………………………………………..94 

3.4.1. Development of ordinary least squares regression model…………………………..95 

3.4.2. Development of logistic regression model……………………………………….....96 

3.4.3. Validating models………………………………………………………………......97 

3.4.4. Bracketing the 2016 tournament before tournament begins - Prediction………….100 

3.4.5. Results for prediction by using in-game statistics models………………………...106 

3.5. Conclusion……………………………………………………………………………...107 

3.5.1. Validation - Models developed by using seasonal averages……………………....107 

3.5.2. Prediction - Models developed by using seasonal averages……………………....108 

3.5.3. Validation - Model developed by using in-game statistics……………………......109 

3.5.4. Prediction - Model developed by using in-game statistics…………………….......109 

3.5.5. Overall comparisons…………………………………………………………….....109 

3.6. References……………………………………………………………………………....110 

CHAPTER 4. BRACKETING NCAA WOMEN’S VOLLEYBALL TOURNAMENT………112 

4.1. Introduction……………………………………………………………………………..112 

4.1.1. The history of NCAA women’s volleyball tournament…………………………...112 

4.1.2. The playing rule and structure………………………………………………..……112 

4.1.3. The research objectives for this study………………………………………...…...115 

4.2. Model developed by using differences in ranks of seasonal averages………………….117 

4.2.1. Develop models by using differences in ranks of seasonal averages……………...117 

4.2.2. Develop models for the first round using differences in ranks of seasonal 

          averages....…………………………………………………………………………118 

4.2.3. Develop models for the second round using differences in ranks of seasonal 

          averages……………………………………………………………………………121 



ix 

 

4.2.4. Develop models for the third and higher rounds using differences in ranks of  

          seasonal averages……………………………………………………………….....124 

4.2.5. Validating first round using models developed …………………………………...127 

4.2.6. Validating second round using models developed ……………………………......128 

4.2.7. Validating third and higher rounds using models developed ……………………..129 

4.2.8. Bracketing the 2015 tournament before tournament begins - Prediction……….....130 

4.2.9. Results for prediction by using models developed by differences in ranks of  

          seasonal averages……………………………………………………………….....142 

4.3. Model developed by using difference of seasonal averages……………………………143 

4.3.1. Develop models by using seasonal averages……………………………………....143 

4.3.2. Develop models for the first round using seasonal averages……………………...143 

4.3.3. Develop models for the second round using seasonal averages…………………...146 

4.3.4. Develop models for the third and higher rounds using seasonal averages………...149 

4.3.5. Validating first round using models developed ………………………………...…152 

4.3.6. Validating second round using models developed …………………………….….153 

4.3.7. Validating third and higher rounds using models developed ………………...…...154 

4.3.8. Bracketing the 2015 tournament before tournament begins – Prediction…….…...155 

4.3.9. Results for prediction by using models developed by difference of seasonal  

          averages………………………………………………………………………........166 

4.4. Model developed by using difference of in-game statistics…………………………….168 

4.4.1. Develop models by using in-game statistics………………………………….…...168 

4.4.2. Validating first round using models developed ……………………………...…....171 

4.4.3. Validating second round using models developed………………………………...173 

4.4.4. Validating third and higher rounds using models developed……………………...174 

4.4.5. Bracketing the 2016 tournament before tournament begins – Predicting………....175 



x 

 

4.4.6. Results for Prediction by using models developed by in-game statistics…….…...178 

4.5. Conclusion…………………………………………………………………………..….179 

4.5.1. Validation - Models developed by using seasonal averages………………….…...179 

4.5.2. Prediction - Models developed by using seasonal averages……………………....180 

4.5.3. Validation - Models developed by using in-game statistics………………….…...181 

4.5.4. Prediction - Models developed by using in-game statistics………………..……...181 

4.5.5. Overall comparisons…………………………………………………………….…182 

4.6.  References………………………………………………………………………….…..182 

CHAPTER 5. BRACKETING NCAA WOMEN’S SOCCER TOURNAMENT…………..…184 

5.1. Introduction……………………………………………………………………………..184 

5.1.1. The history of NCAA women’s soccer tournament…………………………….…184 

5.1.2. The playing rule and structure…………………………………………………..…184 

5.1.3. The research objectives for this study…………………………………………..…186 

5.2. Model developed by using difference of seasonal averages……………………………188 

5.2.1. Develop models by using seasonal averages………………………………………188 

5.2.2. Develop models for the first round using seasonal averages……………………...189 

5.2.3. Develop models for the second round using seasonal averages………………...…192 

5.2.4. Develop models for the third and higher rounds using seasonal averages……...…195 

5.2.5. Validating first round using models developed ……………………………...…....198 

5.2.6. Validating second round using models developed ………………………...……...199 

5.2.7. Validating third and higher rounds using models developed ……………...……...200 

5.2.8. Bracketing the 2016 tournament before tournament begins – Prediction…………201 

5.2.9. Results for Prediction by using models developed by difference of seasonal  

          averages…………………………………………………………………………....212 



xi 

 

5.3. Model developed by using difference of in-game statistics……………………………213 

5.3.1. Develop models by using in-game statistics……………………………………....213 

5.3.2. Validating 2015 first round using models developed ………………………..……216 

5.3.3. Validating second round using models developed………………………………...218 

5.3.4. Validating third and higher rounds using models developed……………………...219 

5.3.5. Bracketing the 2016 tournament before tournament begins – Predicting….……...219 

5.3.6. Results for prediction by using models developed by in-game statistics……….…223 

5.4. Conclusion…………………………………………………………………..………….224 

5.4.1. Validation - Models developed by using seasonal averages…………...……..…...224 

5.4.2. Prediction - Models developed by using seasonal averages………………………225 

5.4.3. Validation - Models developed by using in-game statistics………………….……225 

5.4.4. Prediction - Models developed by using in-game statistics…………………..…...225 

5.4.5. Overall comparisons…………………………………………………….…………226 

5.5. References……………………………………………………………………..………..226 

  



xii 

 

LIST OF TABLES 

Table                Page 

3.1. Set A - Variables in consideration for seasonal averages……………………………….......15 

3.2. Set B - Variables in consideration for in-game statistics ……………………….......………16 

3.3. Single scoring system and double scoring system………………………………..........……18 

3.4. Winning history for Connecticut in 2010 season………………………………........………18 

3.5. Winning history for Connecticut in 2009 season…………………………………........……18 

3.6. Point spread model parameter estimates………………………………………….......…..…20 

3.7. Summary of stepwise selection for point spread model………………………….........……20 

3.8. Summary of R-squares value……………………………………………………......………20 

3.9. Summary of stepwise selection for logistic regression model……………………............…22 

3.10. Logistic regression model parameter estimates……………………………….........…...…22 

3.11. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...........…22 

3.12. Point spread model parameter estimates………………………………………...........……24 

3.13. Summary of stepwise selection for point spread model……………………….........…..…24 

3.14. Summary of R-squares value……………………………………………………........……24 

3.15. Summary of stepwise selection for logistic regression model……………….........…….…25 

3.16. Logistic regression model parameter estimates………………………………............……25 

3.17. Hosmer and Lemeshow Goodness-of-Fit test…………………………………...........……25 

3.18. Point spread model parameter estimates…………………………………….........……..…27 

3.19. Summary of stepwise selection for point spread model…………………….........……..…27 

3.20. Summary of R-squares value…………………………………………………........………27 

3.21. Summary of stepwise selection for logistic regression model…………….........…………28 

3.22. Logistic regression model parameter estimates……………………………….........…...…29 

3.23. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...........…29 



xiii 

 

3.24. Point spread model parameter estimates…………………………………………….......…30 

3.25. Summary of stepwise selection for point spread model……………………….........…..…30 

3.26. Summary of R-squares value……………………………………………………........……31 

3.27. Summary of stepwise selection for logistic regression model………………..............……31 

3.28. Logistic regression model parameter estimates……………………………….........…...…32 

3.29. Hosmer and Lemeshow Goodness-of-Fit test…………………………………...........……32 

3.30. Point spread model parameter estimates………………………………………...........……33 

3.31. Summary of stepwise selection for point spread model………………………...........……33 

3.32. Summary of R-squares value……………………………………………………........……34 

3.33. Summary of stepwise selection for logistic regression model…………………..............…35 

3.34. Logistic regression model parameter estimates…………………………………............…35 

3.35. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...........…35 

3.36. Point spread model parameter estimates………………………………………........…...…37 

3.37. Summary of stepwise selection for point spread model………………………...........……37 

3.38. Summary of R-squares value……………………………………………………........……37 

3.39. Summary of stepwise selection for logistic regression model……………….........…….…38 

3.40. Logistic regression model parameter estimates……………………………….........…...…38 

3.41. Hosmer and Lemeshow Goodness-of-Fit test……………………………….........…..……38 

3.42. Accuracy of ordinary least squares regression model developed by differences in ranks 

         of seasonal averages with a single scoring system variable when validating first round  

         of 2014…………………………………………………………………………..…………39 

3.43. Accuracy of ordinary least squares regression model developed by differences in ranks  

         of seasonal averages with a double scoring system variable when validating first round  

         of 2014……..……..……..……..……..……..……..……..……..……..……..……..……..39 

3.44. Accuracy of ordinary least squares regression model developed by differences in ranks 

         of seasonal averages with a single scoring system variable when validating second  

         round of 2014…..…..……..……..……..……..……..……..………..……..……..……..…40 

 



xiv 

 

3.45. Accuracy of ordinary least squares regression model developed by differences in ranks  

         of seasonal averages with a double scoring system variable when validating second 

          round of 2014………………………………………………………………………….…..41 

3.46. Accuracy of ordinary least squares regression model developed by differences in ranks  

         of seasonal averages with a single scoring system variable when validating third and  

         higher rounds of 2014……………………………………………………………………...41 

3.47. Accuracy of ordinary least squares regression model developed by differences in ranks  

         of seasonal averages with a double scoring system variable when validating third and  

         higher rounds of 2014………………………………………………………………...……42 

3.48. University of Connecticut and Prairie View Statistics…………………………………….43 

3.49. North Carolina State and BYU Statistics…………………………………………………..44 

3.50. DePaul and Oklahoma Statistics…………………………………………………………...45 

3.51. Stanford and South Dakota Statistics………………………………………………………45 

3.52. Oklahoma State and Purdue Statistics……………………………………………………..46 

3.53. California and Baylor Statistics……………………………………………………………47 

3.54. Notre Dame and Oklahoma State Statistics………………………………………………..47 

3.55. Tennessee and Maryland Statistics………………………………………………………...48 

3.56. University of Connecticut and Prairie View Statistics…………………………………….49 

3.57. North Carolina State and BYU Statistics………………………………………….……….50 

3.58. DePaul and Oklahoma Statistics……………………………………………………….…..50 

3.59. Stanford and South Dakota Statistics………………………………………………………51 

3.60. Oklahoma State and Purdue Statistics……………………………………………………..52 

3.61. California and Baylor Statistics……………………………………………………………52 

3.62. Notre Dame and Oklahoma State Statistics……………………………………………..…53 

3.63. Tennessee and Maryland Statistics……………………………………………………...…53 

3.64. Prediction results of each round for 2014: (Ordinary least squares regression model  

         developed by differences in ranks of seasonal averages with a single scoring system 

         variable) …...……….……….……….……….……….……….……….……….…………55 

 



xv 

 

3.65. Prediction results of each round for 2015: (Ordinary least squares regression model  

         developed by differences in ranks of seasonal averages with a single scoring system  

          variable) ……….……….……….……….……….……….……….……….……..……....55 

3.66. Prediction results of each round for 2014: (Ordinary least squares regression model 

         developed by differences in ranks of seasonal averages with a double scoring system  

          variable) ………….……….……….……….……….……….……….……….………..…56 

3.67. Prediction results of each round for 2015: (Ordinary least squares regression model  

         developed by differences in ranks of seasonal averages with a double scoring system 

         variable) ………….……….……….……….……….……….……….……….………..….57 

3.68. Point spread model parameter estimates………………………………………………...…59 

3.69. Summary of stepwise selection for point spread model………………………………...…59 

3.70. Summary of R-squares value………………………………………………………………59 

3.71. Summary of stepwise selection for logistic regression model…………………….…….…60 

3.72. Logistic regression model parameter estimates……………………………………....……60 

3.73. Hosmer and Lemeshow Goodness-of-Fit test……………………………………….…..…60 

3.74. Point spread model parameter estimates………………………………………………...…62 

3.75. Summary of stepwise selection for point spread model……………………………...……62 

3.76. Summary of R-squares value………………………………………………………………62 

3.77. Summary of stepwise selection for logistic regression model…………………………..…63 

3.78. Logistic regression model parameter estimates……………………………………….…...63 

3.79. Hosmer and Lemeshow Goodness-of-Fit test…………………………………………..…64 

3.80. Point spread model parameter estimates………………………………………………..…65 

3.81. Summary of stepwise selection for point spread model………………………………...…65 

3.82. Summary of R-squares value………………………………………………………………65 

3.83. Summary of stepwise selection for logistic regression model…………………………..…66 

3.84. Logistic regression model parameter estimates………………………………………....…66 

3.85. Hosmer and Lemeshow Goodness-of-Fit test………………………………………...……67 

3.86. Point spread model parameter estimates……………………………………………...……68 



xvi 

 

3.87. Summary of stepwise selection for point spread model…………………………..….……68 

3.88. Summary of R-squares value………………………………………………………………68 

3.89. Summary of stepwise selection for logistic regression model……………………….…….69 

3.90. Logistic regression model parameter estimates………………………………………....…69 

3.91. Hosmer and Lemeshow Goodness-of-Fit test……………………………………….…..…69 

3.92. Point spread model parameter estimates………………………………………………...…71 

3.93. Summary of stepwise selection for point spread model………………………………...…71 

3.94. Summary of R-squares value………………………………………………………………71 

3.95. Summary of stepwise selection for logistic regression model…………………………..…72 

3.96. Logistic regression model parameter estimates……………………………………...….…72 

3.97. Hosmer and Lemeshow Goodness-of-Fit test……………………………………..….……72 

3.98. Point spread model parameter estimates………………………………………….……..…74 

3.99. Summary of stepwise selection for point spread model……………………………...……74 

3.100. Summary of R-squares value…………………………………………………………..…74 

3.101. Summary of stepwise selection for logistic regression model………………………....…75 

3.102. Logistic regression model parameter estimates…………………………………...…...…75 

3.103. Hosmer and Lemeshow Goodness-of-Fit test………………………………….…………75 

3.104. Accuracy of ordinary least squares regression model developed by using seasonal 

           averages with a single scoring system variable when validating first round of 2014……77 

3.105. Accuracy of ordinary least squares regression model developed by using seasonal 

           averages with a double scoring system variable when validating first round of 2014…...77 

3.106. Accuracy of ordinary least squares regression model developed by using seasonal 

          averages with a single scoring system variable when validating second round of 2014….78 

3.107. Accuracy of ordinary least squares regression model developed by using seasonal 

          averages with a double scoring system variable when validating second round of 2014…78 

3.108. Accuracy of ordinary least squares regression model developed by using seasonal  

           averages with a single scoring system variable when validating third and higher 

           rounds of 2014……………………………………………………………………………79 



xvii 

 

3.109. Accuracy of ordinary least squares regression model developed by using seasonal 

           averages with a double scoring system variable when validating third and higher  

           rounds of 2014…………………………………..………………………………..………79 

3.110. University of Connecticut and Prairie View Statistics………………………...…………81 

3.111. North Carolina State and BYU Statistics…………………………………………………82 

3.112. DePaul and Oklahoma Statistics……………………………………………….…………82 

3.113. Stanford and South Dakota Statistics………………………………………………..……83 

3.114. Oklahoma State and Purdue Statistics……………………………………………………84 

3.115. California and Baylor Statistics……………………………………………………..……84 

3.116. Notre Dame and Oklahoma State Statistics………………………………………………85 

3.117. Tennessee and Maryland Statistics………………………………………………….……85 

3.118. University of Connecticut and Prairie View Statistics………………………………...…87 

3.119. North Carolina State and BYU Statistics…………………………………………………87 

3.120. DePaul and Oklahoma Statistics……………………………………………………….…88 

3.121. Stanford and South Dakota Statistics…………………………………………………..…89 

3.122. Oklahoma State and Purdue Statistics……………………………………………………89 

3.123. California and Baylor Statistics………………………………………………………..…90 

3.124. Notre Dame and Oklahoma State Statistics………………………………………………91 

3.125. Tennessee and Maryland Statistics…………………………………………………….…91 

3.126. Prediction Results of each round for 2014: (Ordinary least squares regression model 

           developed by using seasonal averages with a single scoring system variable) …….....…92 

3.127. Prediction Results of each round for 2015: (Ordinary least squares regression model 

           developed by using seasonal averages with a single scoring system variable) …..…...…93 

3.128. Prediction Results of each round for 2014: (Ordinary least squares regression model  

           developed by using seasonal averages with a double scoring system variable) ……...….94 

3.129. Prediction results of each round for 2015: (Ordinary least squares regression model 

           developed by using differences of seasonal averages with a double scoring system  

           variable) ….….…….…….…….…….…….…….…….…….…….…….…….…….…...94 



xviii 

 

3.130. Point spread model parameter estimates……………………………………….….…...…96 

3.131. Summary of stepwise selection for point spread model……………………….……....…96 

3.132. Summary of R-squares value…………………………………………………………..…96 

3.133. Summary of stepwise selection for logistic regression model……………………........…97 

3.134. Logistic regression model parameter estimates…………………………………......……97 

3.135. Hosmer and Lemeshow Goodness-of-Fit test…………………………………….....……97 

3.136. Accuracy of ordinary least squares regression model developed by in-game statistics  

           when validating first round of 2015…………………………………………………...….98 

3.137. Accuracy of logistic regression model developed by in-game statistics when validating  

 first round of 2015…………………………………………………………….…………98 

3.138. Accuracy of ordinary least squares regression model developed by in-game statistics  

           when predicting second round of 2015………………………………………………...…99 

3.139. Accuracy of logistic regression model developed by in-game statistics when validating  

 second round of 2015…………………………………………………………………….99 

3.140. Accuracy of ordinary least squares regression model developed by in-game statistics  

           when validating third and higher rounds of 2015……………………………...………..100 

3.141. Accuracy of logistic regression model developed by in-game statistics when  

           validating third and higher rounds of 2015……………………………………………...100 

3.142. Seton Hall and Duquesne Statistics………………………………………………….….102 

3.143. South Florida and Colorado State Statistics……………………………………………..102 

3.144. Louisville and Central Arkansas Statistics……………………………………………...103 

3.145. Miami (Florida) and South Dakota State Statistics………………………….……..……103 

3.146. Seton Hall and Duquesne Statistics………………………………………………..……104 

3.147. BYU and Missouri Statistics……………………………………………………….……104 

3.148. Louisville and Central Arkansas Statistics………………………………………...……105 

3.149. Miami (Florida) and South Dakota State Statistics………………………….………..…105 

3.150. Prediction results of each round for 2016: (Ordinary least squares regression model 

           developed by in-game statistics) …………………………………………………..……106 

 



xix 

 

3.151. Prediction results of each round for 2016: (Logistic regression model developed by  

in-game statistics) ……………………………………………………………………...107 

4.1. Set A - Variables in consideration for seasonal average……………………...……………116 

4.2. Set B - Variables in consideration for in-game statistics ……………………….…………117 

4.3. Point spread model parameter estimates……………………………………….…………..119 

4.4. Summary of stepwise selection for point spread model…………………………….…..…119 

4.5. Summary of R-squares value………………………………………………………………120 

4.6. Summary of stepwise selection for logistic regression model…………………………..…121 

4.7. Logistic regression model parameter estimates…………………………………….…...…121 

4.8. Hosmer and Lemeshow Goodness-of-Fit test…………………………………………...…121 

4.9. Point spread model parameter estimates……………………………………………..….…122 

4.10. Summary of stepwise selection for point spread model…………………………...…..…122 

4.11. Summary of R-squares value ………………………………………………………….…122 

4.12. Summary of stepwise selection for logistic regression model…………………………....123 

4.13. Logistic regression model parameter estimates………………………………………......124 

4.14. Hosmer and Lemeshow Goodness-of-Fit test………………………………………….....124 

4.15. Point spread model parameter estimates……………………………………………….…125 

4.16. Summary of stepwise selection for point spread model…………………………..…...…125 

4.17. Summary of R-squares value ………………………………………………………….…125 

4.18. Summary of stepwise selection for logistic regression model…………………..………..126 

4.19. Logistic regression model parameter estimates……………………………………......…126 

4.20. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...…..…126 

4.21. Accuracy of ordinary least squares regression model developed by using differences in  

         ranks of seasonal averages when validating first round of 2014…………………………128 

4.22. Accuracy of logistic regression model developed by using differences in ranks of  

         seasonal averages when validating first round of 2014………………………………..…128 



xx 

 

4.23. Accuracy of ordinary least squares regression model developed by using differences in   

         ranks of seasonal averages when validating second round of 2014………………………129 

4.24. Accuracy of logistic regression model developed by using differences in ranks of  

seasonal averages when validating second round of 2014………………………………..129 

4.25. Accuracy of ordinary least squares regression model developed by using differences in  

ranks of seasonal averages when predicting third and higher rounds of 2014…….……..130 

4.26. Accuracy of logistic regression model developed by using differences in ranks of  

seasonal averages when validating third and higher rounds of 2014…………………….130 

4.27. Southern California and Cleveland State Statistics………………………………………131 

4.28. Northern Arizona and San Diego Statistics………………………………………………132 

4.29. North Carolina and UNCW Statistics………………………………………………….…132 

4.30. Coastal Carolina and Creighton Statistics……………………………………………...…133 

4.31. BYU and Western Kentucky Statistics……………………………………………...……134 

4.32. Florida and Florida State Statistics…………………………………………………….…134 

4.33. Illinois and Minnesota Statistics……………………………………………………….…135 

4.34. Texas and Florida Statistics………………………………………………………………135 

4.35. Southern California and Cleveland State Statistics………………………………………137 

4.36. Northern Arizona and San Diego Statistics………………………………………………137 

4.37. North Carolina and UNCW Statistics……………………………………………………138 

4.38. Coastal Carolina and Creighton Statistics…………………………………………..……138 

4.39. BYU and Western Kentucky Statistics…………………………………………….….…139 

4.40. Florida and Florida State Statistics…………………………………………….….……..139 

4.41. Texas and Florida Statistics………………………………………………………...……140 

4.42. Texas and Minnesota Statistics……………………………………………………..……141 

4.43. Prediction results of each round for 2015: (Ordinary least squares regression model  

         developed by using differences in ranks of seasonal averages) …………………………142 

4.44. Prediction results of each round for 2015: (Logistic regression model developed by  

         using differences in ranks of seasonal averages) ……………………………………...…142 



xxi 

 

4.45. Point spread model parameter estimates……………………………………………...…..144 

4.46. Summary of stepwise selection for point spread model…………………………..…...…145 

4.47. Summary of R-squares value……………………………………………………….…….145 

4.48. Summary of stepwise selection for logistic regression model………………….…..…….146 

4.49. Logistic regression model parameter estimates………………………………….…….…146 

4.50. Hosmer and Lemeshow Goodness-of-Fit test…………………………………….………146 

4.51. Point spread model parameter estimates……………………………………………...…..147 

4.52. Summary of stepwise selection for point spread model………………………………….147 

4.53. Summary of R-squares value…………………………………………………………..…148 

4.54. Summary of stepwise selection for logistic regression model……………………........…149 

4.55. Logistic regression model parameter estimates……………………………………......…149 

4.56. Hosmer and Lemeshow Goodness-of-Fit test……………………………………….....…149 

4.57. Point spread model parameter estimates……………………………………………..…...150 

4.58. Summary of stepwise selection for point spread model…………………………….……150 

4.59. Summary of R-squares value…………………………………………………………..…150 

4.60. Summary of stepwise selection for logistic regression model…………………..………..151 

4.61. Logistic regression model parameter estimates…………………………………..………151 

4.62. Hosmer and Lemeshow Goodness-of-Fit test………………………………………..…...151 

4.63. Accuracy of ordinary least squares regression model developed by seasonal averages  

when validating first round of 2014………………………………………….……..……152 

4.64. Accuracy of logistic regression model developed by seasonal averages when validating  

first round of 2014……………………………………………………………………..…153 

4.65. Accuracy of ordinary least squares regression model developed by seasonal averages  

when validating second round of 2014……………………………………………...……154 

4.66. Accuracy of logistic regression model developed by seasonal averages when validating  

second round of 2014……………………………………………………………………154 

 



xxii 

 

4.67. Accuracy of ordinary least squares regression model developed by seasonal averages  

         when validating third and higher rounds of 2014…………………………………..….…155 

4.68. Accuracy of logistic regression model developed by seasonal averages when validating 

  third and higher rounds of 2014………………………………………………………..…155 

4.69. Southern California and Cleveland State Statistics………………………………………156 

4.70. Northern Arizona and San Diego Statistics………………………………………………157 

4.71. North Carolina and UNCW Statistics………………………………………………….…157 

4.72. Coastal Carolina and Creighton Statistics……………………………………...…………158 

4.73. BYU and Western Kentucky Statistics………………………………………………...…159 

4.74. Florida and Florida State Statistics……………………………………………………….159 

4.75. Texas and Florida Statistics………………………………………………………………160 

4.76. Texas and Minnesota Statistics…………………………………………………………...160 

4.77. Southern California and Cleveland State Statistics………………………………………162 

4.78. Northern Arizona and San Diego Statistics………………………………………………162 

4.79. North Carolina and UNCW Statistics…………………………………………………….163 

4.80. Coastal Carolina and Creighton Statistics………………………………………………...163 

4.81. BYU and Western Kentucky Statistics…………………………………………………...164 

4.82. Florida and Florida State Statistics……………………………………………………….164 

4.83. BYU and Nebraska Statistics……………………………………………………………..165 

4.84. Texas and Minnesota Statistics…………………………………………………………...166 

4.85. Prediction results of each round for 2015: (Ordinary least squares regression model 

         developed by seasonal averages) …………………………………………………….…..167 

4.86. Prediction results of each round for 2015: (Logistic regression model developed by  

 seasonal averages) ………………………………………………………………………..167 

4.87. Point spread model parameter estimates………………………………………...………..169 

4.88. Summary of stepwise selection for point spread model………………………...………..169 

4.89. Summary of R-squares value………………………………………………………..……170 



xxiii 

 

4.90. Summary of stepwise selection for logistic regression model……………………...…….171 

4.91. Logistic regression model parameter estimates……………………………………...…...171 

4.92. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...……..171 

4.93. Accuracy of ordinary least squares regression model developed by in-game statistics  

when validating first round of 2014………………………………………………....……172 

4.94. Accuracy of logistic regression model developed by in-game statistics when validating  

first round of 2014………………………………………………………………………..172 

4.95. Accuracy of ordinary least squares regression model developed by in-game statistics  

when validating second round of 2014…………………………………………………...173 

4.96. Accuracy of logistic regression model developed by in-game statistics when validating  

 second round of 2014……………………………………………………………………..173 

4.97. Accuracy of ordinary least squares regression model developed by in-game statistics  

when validating third and higher rounds of 2014……………………………………...…174 

4.98. Accuracy of logistic regression model developed by in-game statistics when validating 

third and higher rounds of 2014………………………………………………………..…174 

4.99. Nebraska and New Hampshire Statistics…………………………………………………176 

4.100. Kentucky and Colorado State Statistics…………………………………………………176 

4.101. Kansas and Samford Statistics…………………………………………………………..177 

4.102. UNI and Creighton Statistics……………………………………………………………177 

4.103. Prediction results of each round for 2015: (Ordinary least squares regression model 

  developed by in-game statistics) ………………………………………………………..179 

5.1. Set A - Variables in consideration for seasonal average ……………………………….….187 

5.2. Set B - Variables in consideration for in-game statistics …………………………….……187 

5.3. Point spread model parameter estimates…………………………………………….…..…190 

5.4. Summary of stepwise selection for point spread model………………………………...…190 

5.5. Summary of R-squares value………………………………………………………………190 

5.6. Summary of stepwise selection for logistic regression model………………………….….192 

5.7. Logistic regression model parameter estimates……………………………………………192 



xxiv 

 

5.8. Hosmer and Lemeshow Goodness-of-Fit test…………………………………………...…192 

5.9. Point spread model parameter estimates………………………………………………...…193 

5.10. Summary of stepwise selection for point spread model…………………………….....…193 

5.11. Summary of R-squares value………………………………………………………..……193 

5.12. Summary of stepwise selection for logistic regression model……………………........…194 

5.13. Logistic regression model parameter estimates……………………………………...…...194 

5.14. Hosmer and Lemeshow Goodness-of-Fit test……………………………………….....…194 

5.15. Point spread model parameter estimates……………………………………………...…..196 

5.16. Summary of stepwise selection for point spread model……………………………...…..196 

5.17. Summary of R-squares value……………………………………………………………..196 

5.18. Summary of stepwise selection for logistic regression model……………………........…197 

5.19. Logistic regression model parameter estimates…………………………………......……197 

5.20. Hosmer and Lemeshow Goodness-of-Fit test…………………………………...…..……197 

5.21. Accuracy of ordinary least squares regression model developed by seasonal averages  

         when validating first round of 2016…………………………………………….……..….198 

5.22. Accuracy of logistic regression model developed by seasonal averages when validating  

first round of 2016…………………………………………………………………..……199 

5.23. Accuracy of ordinary least squares regression model developed by seasonal averages  

 when validating second round of 2016……………………………………………..……199 

5.24. Accuracy of logistic regression model developed by seasonal averages when validating  

second round of 2016………………………………………………………………..……200 

5.25. Accuracy of ordinary least squares regression model developed by seasonal averages  

when validating third and higher rounds of 2016………………………………….…..…200 

5.26. Accuracy of logistic regression model developed by seasonal averages when validating 

third and higher rounds of 2016………………………………………………..…………201 

5.27. Stanford and Houston Baptist Statistics…………………………………………………..202 

5.28. Rutgers and Harvard Statistics……………………………………………………………202 

5.29. Utah and Texas Tech Statistics…………………………………………………………...203 



xxv 

 

5.30. Auburn and South Alabama Statistics……………………………………………………203 

5.31. Rutgers and Georgetown Statistics…………………………………………………….…204 

5.32. Wisconsin and Florida Statistics……………………………………………………….…205 

5.33. South Carolina and BYU Statistics…………………………………………………….…206 

5.34. Clemson and North Carolina Statistics…………………………………………………...206 

5.35. Stanford and Houston Baptist Statistics…………………………………………………..207 

5.36. Long Beach State and Santa Clara Statistics……………………………………………..208 

5.37. Virginia and Monmouth Statistics……………………………………………………..…208 

5.38. Albany and Connecticut Statistics……………………………………………………..…209 

5.39. Stanford and Santa Clara Statistics…………………………………………………….…210 

5.40. Wisconsin and Florida Statistics……………………………………………………….…210 

5.41. Clemson and North Carolina Statistics…………………………………………………...211 

5.42. Prediction results of each round for 2016: (Ordinary least squares regression model 

 developed by seasonal averages) …………………………………………………….….212 

5.43. Prediction results of each round for 2016: (Logistic regression model developed by 

seasonal averages) ………………………………………………………………………..213 

5.44. Point spread model parameter estimates…………………………………………...…..…214 

5.45. Summary of stepwise selection for point spread model……………………………….....215 

5.46. Summary of R-squares value…………………………………………………………..…215 

5.47. Summary of stepwise selection for logistic regression model……………………........…216 

5.48. Logistic regression model parameter estimates………………………………..….……...216 

5.49. Hosmer and Lemeshow Goodness-of-Fit test……………………………………...……..216 

5.50. Accuracy of ordinary least squares regression model developed by in-game statistics  

when validating first round of 2015………………………………………………….…...217 

5.51. Accuracy of logistic regression model developed by in-game statistics when validating  

first round of 2015……………………………………………………………………..…217 

 



xxvi 

 

5.52. Accuracy of ordinary least squares regression model developed by in-game statistics  

when validating second round of 2015………………………………………….……..…218 

5.53. Accuracy of logistic regression model developed by in-game statistics when validating 

second round of 2015………………………………………………………………….….218 

5.54. Accuracy of ordinary least squares regression model developed by in-game statistics  

         when validating third and higher rounds of 2015……………………………………...…219 

5.55. Accuracy of logistic regression model developed by in-game statistics when validating  

 third and higher rounds of 2015………………………………………………………..…219 

5.56. USC and Eastern Washington Statistics………………………………………………….221 

5.57. Texas A&M and TCU Statistics……………………………………………………….…221 

5.58. USC and Eastern Washington Statistics………………………………………………….222 

5.59. Texas A&M and TCU Statistics………………………………………………………….223 

5.60. Prediction results of first round for 2016: (Ordinary least squares regression model  

developed by in-game statistics) ……………………………………………………..….224 

5.61. Prediction results of first round for 2016: (Logistic regression model developed by  

         in-game statistics) ……………………………………………………………………..…224 



xxvii 

 

LIST OF FIGURES 

Figure                Page 

1. The NCAA women’s basketball tournament bracket for the 2015 – 2016 season………........11 

2. The NCAA women’s volleyball tournament bracket for the 2015 – 2016 season…………..114 

3. The NCAA women’s soccer tournament bracket for the 2015 – 2016 season….………...…185 

 



1 

 

CHAPTER 1. INTRODUCTION 

The use of statistics in sports has drawn more and more interest in the past several years. 

Female participation and popularity in sports also increased dramatically in recent years 

(Women’s sports [1]). Women’s basketball, volleyball and soccer are the most well-known and 

competitive sports with physical and technical performances over the years. 

The NCAA division I women’s basketball tournament is an annual college basketball 

tournament for women. It is also known as March Madness or The Big Dance since it is staged 

in a single elimination format. Unlike the men’s tournament, there are only 32 at-large bids and 

no play-in games (NCAA – Basketball [2]). 

The NCAA division I women’s volleyball championship is the annual championship in 

women’s volleyball from teams in division I contested by the NCAA each winter since 

1981.Volleyball was one of twelve women’s sports added to the NCAA championship program 

for the 1981-1982 school year (NCAA – Volleyball [3]). 

The NCAA division I women’s soccer championship is also known as the women’s 

College Cup. It is an American college soccer tournament conducted by National Collegiate 

Athletic Association (NCAA) (NCAA – Soccer [4]). 

This research will focus on developing models that help explain the point spread between 

the two teams participating in an NCAA women’s game of basketball, volleyball, and soccer. 

These models will be used and additional models will be developed to help predict the outcomes 

of NCAA tournaments in these sports.  

1.1. References 

[1] Women's sports. Retrieved October 20, 2017, from  

      https://en.wikipedia.org/wiki/Women%27s_sports 
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[2] NCAA Division I Women's Basketball Tournament. Retrieved October 10, 2017, from  

      https://en.wikipedia.org/wiki/NCAA_Division_I_Women%27s_Basketball_Tournament 

[3] NCAA Division I Women's Volleyball Championship. Retrieved October 10, 2017, from 

      https://en.wikipedia.org/wiki/NCAA_Division_I_Women%27s_Volleyball_Championship 

[4] NCAA Division I Women's Soccer Championship. Retrieved October 10, 2017, from  

      https://en.wikipedia.org/wiki/NCAA_Division_I_Women%27s_Soccer_Championship 
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CHAPTER 2. REVIEW OF PAST STUDIES 

More attention has been paid to and more research has been conducted pertaining to 

men’s sports as opposed to women’s sports. Some of the findings will be presented. 

2.1. Basketball 

Schwertman et al. (1996) [1] developed models to estimate the probability of any given 

men’s basketball team winning their regional tournament advancing to the ‘Final Four’. They 

modified the approach to fit linear and logistic regression models as a function of the difference 

in either team seeds or normal scores of the team seeds. One variable that was placed into their 

models was the team’s overall seed in the tournament.  

Kubatko et al. (2007) [2] introduced some basic basketball statistics to consider when 

analyzing men’s basketball games. They found in-game statistics are useful in the diagnostics of 

the performance of a team and helpful for the team to prepare a future since the in-game statistics 

measures a different dimension of the performance of a team in a game. 

Magel and Unruh (2013) [3] collected statistics from two seasons of NCAA men’s 

basketball games and used these to develop logistic and ordinary least squares regression models. 

Difference in assists, free throw attempts, defensive rebounds and turnovers were found to be 

significant to determining victory. The models were verified by using the data from 2011-2012 

season and used in prediction for 2013 NCAA tournament. 

Shen et al. (2015) [4] developed a new bracketing tool for the NCAA men’s basketball 

tournament. The method is based on a binomial generalized linear regression model with Cauchy 

link on the conditional probability of a team winning a game given its rival team. The new 

method then was compared to three existing methods to help complete March Madness brackets 
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and the result shows their new method did better than the other three methods in predicting 

March Madness winners. 

Jones and Magel (2016) [5] developed models based on a stratified random sample of 

144 NBA basketball games. Field goal shooting percentage, three-point shooting percentage, free 

throw shooting percentage, offensive rebounds, assists, turnovers and free throws attempted were 

found to be significant when developing the models. The models were validated using a random 

sample of 50 NBA games and then were used to do the predictions. 

Huang and Magel (2016) [6] developed ordinary least squares regression models and 

logistic regression models of NCAA women’s division II basketball tournament game using in-

game statistics. The models were verified based on a random sample of basketball games and 

then used to predict the outcomes of the 2015 NCAA dvision II women’s basketball tournament. 

2.2. Volleyball 

Giatsis (2008) [7] conducted an analysis on men’s beach volleyball. The purpose of his 

study was to determine the differences in playing characteristics between winning and losing 

teams in FIVB Men’s Beach Volleyball World Tour Tournament. Giatsis used independent t-

tests and a discriminant function analysis to determine which skills contributed significantly to 

winning in matches. He found the opponents’ attack errors was the most significant factor 

contributing to winner’s win.  

Zhang (2016) [8] developed a multiple linear regression model using in-game statistics 

that explain the point spread of a volleyball game and a logistic regression model that estimates 

the probability of a team winning the game based on the in-game statistics for women’s 

volleyball game. The point spread model was used to predict the results of future volleyball 
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game by replacing the in-game statistics with the averages of the in-game statistics based on the 

past two previous matches of both teams playing each other. 

2.3. Soccer 

Parentos (2012) [9] developed a model to determine factors in the men’s European soccer 

Champions League that influence the number of goals that a team scores. Ball possession 

percentage and the logarithm of the ratio between goals scored and goals conceded were the two 

of the variables that he considered. 

Magel and Melnykov (2014) [10] conducted an analysis of games played by three top 

men’s European soccer leagues during the first 33 rounds of soccer during the 2011-2012 season. 

They developed two regression models to predict the point spread of a game between two teams. 

The models correctly predicted the winner of a game at 73% to 80% of the time when predict 

winners of games for the last five rounds of the 2011-2012 season. 

Sylla and Magel (2016) [11] developed several statistical models to predict the outcomes 

of men’s World Cup soccer matches. Data from the 2006 World Cup Matches was used to 

develop the ordinary least squares regression and logistic regression models. These models were 

then tested by using data from the 2010 World Cup Matches and then used to predicted the 2014 

World Cup Championship. 

2.4. Football 

Willoughby (2002) [12] conducted an analysis of games on the men’s Canadian Football 

league by using logistic regression in order to determine factors leading to a team’s overall 

success. Willoughby separated teams into three categories: ‘very good’ teams, ‘average’ teams, 

and ‘poor’ teams. The models were developed by using in-game statistics and found the models 
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predicted 85.9% correctly for ‘very good’ teams, 90.2% correctly for ‘average’ teams and 78.8 

correctly for ‘poor’ teams. 

Karlis and Ntzoufras (2003) [13] used an indirect approach and modeled the goals scored 

by each team playing in the match using a bivariate Poisson model. They found using a bivariate 

Poisson distribution can improve model fit and prediction of the number of draws in men’s 

football games. 

Magel and Long (2013) [14] conducted an analysis of games played by FCS Division I 

men’s college football. They developed models by using in-game statistics to estimate point 

spread of the game and the probability that a particular team will win the football game when the 

in-game statistics are known. These models are then used to predict the outcome of future 

football games. 

2.5. Description of Study 

In this paper, we will focus on three kinds of women’s sports, i.e. women’s basketball, 

women’s volleyball, and women’s soccer. First, we would like to develop several models that 

help explain the variation in point spread of a NCAA women’s division I basketball game, 

women’s volleyball game and women’s soccer game based on in-game statistics. We would also 

like to develop several logistic regression models that help estimate the probability that a 

particular team will win the game. Various sets of statistics will be used to develop the models 

for each sport. Once the models are developed they will be validated. 

After developing models to explain point spread of games using in-game statistics and 

also developing models to estimate the probability of a team winning based on given differences 

of in-game statistics, we would like to develop prediction models. The prediction models will be 

based on each round of a NCAA tournament game using various seasonal statistics. These 
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statistics are often differences of seasonal averages between the two teams playing or differences 

in ranks of seasonal averages of the two teams playing. Results will be given. 

2.6. References 

[1] Schertman, N.C., Schenk, K.L., and Holdbrook, B.C., (1996). More probability Models for  

     the NCAA Regional Basketball Tournaments. The American Statistician, 50: 34-38 

[2] Kubatko, J. and Olicer, D. and Pelton, K. and Rosenbaum, D. T. (2007). A Starting Point for 

     Analyzing Basketball Statistics. Journal of Quantitative Analysis in Sports, 3, 3, p1-18 

[3] R. Magel, S. Unruh (2013). Determining Factor Influencing the Outcome of College  

     Basketball Games, Open Journal of Statistics, Vol.3 No. 4, 2013, p. 225-230  

[4] G. Shen, et al. (2015). Predicting Results of March Madness Using the Probability  

     Self-Consistent Method, International Journal of Sports Science, Vol. 5(4), 139-144  

[5] E. Jones, R. Magel (2016). Predicting Outcomes of NBA Basketball Games, Journal of  

     Advance Research in Business, Management and Accounting, Vol. 3, Issue 5 

[6] F. Huang, R. Magel (2016). Developing Models to Explain Point Spread of NCAA Women’s 

     Division II Basketball Games, JIATTS, June 2016 

[7] Giatsis, George (2008). Statistical Analysis of Men’s FIVB Beach Volleyball Team 

     Performance. International Journal of Performance Analysis in Sport, 31-43 

[8] D. Zhang, (2016). Forecasting Point Spread for Women's Volleyball. Unpublished Thesis  

     Paper, North Dakota State University, Fargo, ND 

[9] V. Panaretos (2012). A statistical analysis of the European Soccer Champions League, Joint  

      Statistical Meetings – Section on Statistics in Sports, 2600-2602 

[10] R. Magel, Y. Melnykov (2014), Examining Influential Factors and Predicting Outcomes in  

      European Soccer Games, International Journal of Sports Science, Vol. 4, No. 3 
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[11] M. Sylla, R. Magel (2016). Predicting the Winner of Games in World Cup Soccer Matches,  

       Advance Research in Mathematics and Mathematical Sciences, Vol. 1, Issue 8 

[12] Willoughby, K. A. (2002). Winning Games in Canadian Football: A Logistic Regression  

       Analysis. The College Mathematics Journal 33(3):215-220 

[13] Karlis, D., Ntzoufras, J. (2003). Analysis of sports data using bivariate Poisson models. The  

       Statistician,52, 381-393 

[14] R. Magel, J. Long (2013). Identifying Significant In-Game Statistics and Developing  

       Prediction Models for Outcomes of NCAA Division I Football Championship  

       Subdivision(FCS) Games, Journal of Statistical Science and Application, Vol. 1, No., 51-62 
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CHAPTER 3. BRACKETING NCAA WOMEN’S BASKETBALL TOURNAMENT 

3.1. Introduction 

3.1.1. The history of NCAA women’s basketball tournament 

The NCAA division I women’s basketball tournament is an annual championship in 

women’s basketball from teams in division I contested by the National Collegiate Athletic 

Association(NCAA) each spring since 1982. Basketball was one of the 12 women’s sports added 

to the NCAA championship program for the 1981-1982 school year. There were only 32 teams 

competing for the first NCAA championship which was held in 1982. The tournament expanded 

gradually, and reached its current size of 64 teams in 1994 (NCAA – Basketball [1]). 

3.1.2. The playing rule and structure 

The significant difference between the women’s and men’s basketball tournament is that 

in the women’s tournament, there are still only 64 teams with 32 at-large bids and no play-in 

games as in the men’s tournament. For the tournament bracket, champions from each division I 

conference receive automatic bids. The remaining slots are at-large bids, with teams chosen by 

an NCAA selection committee. The selection process is based on team rankings, win-loss 

records and Ratings Percentage Index (RPI) data (NCAA – Basketball [1]). Like the men’s 

tournament, the women’s tournament is staged in a single elimination format, this made the 

games very watchable and is part of the reason why it is also known as March Madness or The 

Big Dance (Road to the Championship [2]). 

For the first round, there will be 64 teams compete in single-elimination for second 

round. The 32 advancing teams then compete against each other in single-elimination second 

round competition. The winning team will advance to the third round. For the third round, there 

will be 16 teams compete in single-elimination regional semifinal competition. The advancing 
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teams then compete against each other in single-elimination regional final. The winning team in 

each of the four regions will advance to the NCAA women’s basketball semifinal round. There 

will be 4 teams competing in the single-elimination semifinal and the advancing teams then 

compete against each other for the national championship title (Road to the Championship [2]). 

Figure 1 shows the 2015 - 2016 NCAA women’s basketball tournament bracket. 
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Figure 1. The NCAA women’s basketball tournament bracket for the 2015 – 2016 season. (This 

bracket is downloaded from: http://www.ncaa.com/interactive-bracket/basketball-women/d1) 
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3.1.3. The research objectives for this study 

The research objectives for this study are as follows: 

1) Develop ordinary least squares regression models with point spread as dependent 

variables for Round 1, Round 2 and Rounds 3-6 by using differences in ranks of seasonal 

averages with a single scoring system variable, to predict winners of basketball games in each of 

those rounds for the NCAA women’s basketball tournament; and 

2) Develop ordinary least squares regression models with point spread as dependent 

variables for Round 1, Round 2 and Rounds 3-6 by using differences in ranks of seasonal 

averages with a double scoring system variable, to predict winners of basketball games in each of 

those rounds for the NCAA women’s basketball tournament; and 

3) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using differences in ranks of seasonal 

averages with a single scoring system variable, to predict winners of basketball games in each of 

those rounds for the NCAA women’s basketball tournament; and 

4) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using differences in ranks of seasonal 

averages with a double scoring system variable, to predict winners of basketball games in each of 

those rounds for the NCAA women’s basketball tournament; and 

5) Develop ordinary least squares regression models with point spread as dependent 

variables for Round 1, Round 2 and Rounds 3-6 by using differences of seasonal averages with a 

single scoring system variable, to predict winners of basketball games in each of those rounds for 

the NCAA women’s basketball tournament; and 
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6) Develop ordinary least squares regression models with point spread as dependent 

variables for Round 1, Round 2 and Rounds 3-6 by using differences of seasonal averages with a 

double scoring system variable, to predict winners of basketball games in each of those rounds 

for the NCAA women’s basketball tournament; and 

7) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using differences of seasonal averages 

with a single scoring system variable, to predict winners of basketball games in each of those 

rounds for the NCAA women’s basketball tournament; and 

8) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using differences of seasonal averages 

with a double scoring system variable, to predict winners of basketball games in each of those 

rounds for the NCAA women’s basketball tournament; and 

9) Develop one ordinary least squares regression model with point spread as dependent 

variable using in-game statistics, to explain the variation in point spread of basketball games for 

the NCAA women’s basketball tournament; and 

10) Develop one logistic regression model for round 1-6 that estimate the probability of a 

team winning the game by using in-game statistics, to predict winners of basketball games for 

the NCAA women’s basketball tournament. 

In order to accomplish objectives 1 to 8, data was collected for three years of the NCAA 

women’s basketball tournament. This included 2011, 2012 and 2013 tournaments. Seasonal 

averages and the ranks of the seasonal averages were collected for all the teams in the 2011 

tournament on the variables listed in Table 3.1 (Set A). The variables included: Scoring Offense, 

Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage Defense, Free-
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Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-Point Field Goal 

Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, Steals Per 

Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, Turnover Margin 

and Three Pt FG Defense. Seasonal averages were also collected on the same variables for all 

teams playing in the 2012 and 2013 tournaments. Seasonal average statistics from each of the 

teams were collected from the official NCAA Basketball statistics Database (NCAA [3]). Data 

was collected before the tournament started. For example, the first game of NCAA 2011 

women’s basketball tournament was held on March 19, 2011. The seasonal averages for each of 

the variables were based on games played through March 16, 2011. 
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Table 3.1. Set A - Variables in consideration for seasonal averages  

Variables in consideration Definitions 

Scoring Offense SO = 
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Scoring Defense SD = 
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Scoring Margin SM = Scoring Offense – Scoring Defense [4] 

Field-Goal Percentage  FG% = 
𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑚𝑎𝑑𝑒

𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [4] 

Field-Goal Percentage Defense  FGPD = 
𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
 [4] 

Free-Throw Percentage FT% = 
𝐹𝑟𝑒𝑒 𝑡ℎ𝑟𝑜𝑤 𝑚𝑎𝑑𝑒

𝐹𝑟𝑒𝑒 𝑡ℎ𝑟𝑜𝑤 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [4] 

Rebound Margin RM = 
Number of Rebounds

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑
 - 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑏𝑜𝑢𝑛𝑑𝑠 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
 [4]  

Three-Point Field Goals Per 

Game 

TPFGPG = 
𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙𝑠 𝑚𝑎𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Three-Point Field Goal 

Percentage 

TPFGP = 
𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙𝑠 𝑚𝑎𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [4] 

Won-Lost Percentage WLP = 
𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑤𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Assists Per Game APG = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑖𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Blocked Shots Per Game  BSPG = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑠ℎ𝑜𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Steals Per Game SPG = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Turnovers Per game TPG = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Personal Fouls Per Game PFPG = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑜𝑢𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒𝑠 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Assist Turnover Ratio ATR = 
Number of assists made

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑
 / 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑚𝑎𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Turnover Margin TM = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
−

Number of turnovers

𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑚𝑒 𝑝𝑙𝑎𝑦𝑒𝑑
 [4] 

Three Pt FG Defense TPFGD = 
𝑇ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙𝑠 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

𝑇ℎ𝑟𝑒𝑒 𝑝𝑜𝑖𝑛𝑡 𝑓𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡 𝑏𝑦 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡
 [4] 
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For research objectives 9 and 10, data was collected for NCAA women’s basketball 

tournament of 2014. In-game statistics were collected for 63 games of the 2014 tournament on 

the variables listed in Table 3.2 (Set B). The variables included: Free-Throw Percentage (FT%), 

Field-Goal Percentage (FG%), 3 Point Goals Percentage (3P%), Offensive Rebounds (OREB), 

Assists (AST), Steals (ST), Blocks (BLK) and Turnovers (TO). 

Table 3.2. Set B - Variables in consideration for in-game statistics  

Variables in consideration Definitions 

Free-Throw Percentage (FT%) An unguarded shot taken from the foul line by a player 

whose opponent committed a personal or technical 

foul; it is worth 1 point.  

FT%=
𝐹𝑟𝑒𝑒 𝑡ℎ𝑟𝑜𝑤 𝑚𝑎𝑑𝑒

𝐹𝑟𝑒𝑒 𝑡ℎ𝑟𝑜𝑤 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [5] [6] 

Field-Goal Percentage (FG%) A basket scored on any shot other than a free throw, 

worth two or three points depending on the distance of 

the attempt from the basket.  

FG%=
𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑚𝑎𝑑𝑒

𝐹𝑖𝑒𝑙𝑑 𝑔𝑜𝑎𝑙 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [5] [6] 

3 Point Goals Percentage (3P%) A field goal worth 3 points because the shooter had 

both feet behind the 3-point line when he released the 

ball.  

3P%=
3 𝑝𝑜𝑖𝑛𝑡 𝑔𝑜𝑎𝑙𝑠 𝑚𝑎𝑑𝑒

3 𝑝𝑜𝑖𝑛𝑡 𝑔𝑜𝑎𝑙𝑠 𝑎𝑡𝑡𝑒𝑚𝑝𝑡
 [5] [6] 

Offensive Rebounds (OREB)  A rebound by a player on offense. [5] 

Assists (AST) The last pass to a teammate that leads directly to a field 

goal; the scorer must move immediately toward the 

basket for the passer to be credited with an assist; only 

1 assist can be credited per field goal. [5] [6] 

Steals (ST) To take the ball away from the opposing team, either 

off the dribble or by picking off a pass. [5] 

Blocks (BLK)  The successful deflection of a shot by touching part of 

the ball on its way to the basket, thereby preventing a 

field goal. [5]  

Turnovers (TO) When the offense loses possession through its own 

fault by passing the ball out of bounds or committing a 

floor violation. [5] 
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3.2. Develop models by using differences in ranks of seasonal averages 

Ranks of the seasonal averages from each of the team were collected and differences of 

these ranks were found from the official NCAA basketball statistics database (NCAA [3]). Data 

was collected for three years of the women’s basketball tournament and collected before the 

tournament started. For example, the first game of NCAA 2011 women’s basketball tournament 

began on March 19, 2011, the seasonal averages and their ranks were based on all games played 

through March 16, 2011. Seasonal averages were also collected before the 2012 and 2013 

tournaments began, ranks of these seasonal averages were found, and difference taken on the 

variables listed in Table 3.1 (Set A).  

3.2.1. Bracket scoring system 

Variables representing points received by teams for the previous two years based on the 

single scoring system and the double scoring system (Shen et al., 2015 [7]) of March Madness 

were separately considered for entry into the model. 

In the single scoring system, a team will be rewarded one single point for each game they 

win in the March Madness Tournament. There are 6 rounds in the tournament, so 6 is the 

maximum number of points a team could receive in one tournament of March Madness. 

For double scoring system, a team will receive one point for winning the first round, and 

2 points for winning the second round and the points a team would receive are for winning a 

game doubled for each consecutive round in March Madness. The maximum points will be 63 

for one tournament. This gives increasingly more weight to games won as the tournament 

unfolds, presumably to reflect the increasing importance of each round.  

Table 3.3 gives the number of points a team would receive for winning the round under 

each scoring system. 
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Table 3.3. Single scoring system and double scoring system 

Variable Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Max 

Single scoring 1 1 1 1 1 1 6 

Double scoring 1 2 4 8 16 32 63 

For each team playing in the 2011, 2012, and 2013 March Madness Tournaments, the 

number of points under the single scoring system, and then under the double scoring system for 

the two previous years in the tournament was found. 

As an example, Connecticut played in the tournament in 2011. The points Connecticut 

received under the single and double scoring system for the previous two years are calculated in 

Tables 3.4 and 3.5.  

Table 3.4. Winning history for Connecticut in 2010 season 

Connecticut 

2010 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Points 

History results Won Won Won Won Won Won  

Single scoring 1 1 1 1 1 1 6 

Double scoring 1 2 4 8 16 32 63 

Table 3.5. Winning history for Connecticut in 2009 season 

Connecticut 

2009 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Points 

History Results Won Won Won Won Won Won  

Single scoring 1 1 1 1 1 1 6 

Double scoring 1 2 4 8 16 32 63 

It is noted that Connecticut received 12 points and 126 points under the single and double 

scoring system, respectively.  
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3.2.2. Develop models for the first round using differences in ranks of seasonal averages 

with single scoring system variable 

3.2.2.1. Ordinary least squares regression model 

Differences in the ranks of the seasonal averages were collected for all the teams in the 

2011, 2012 and 2013 tournaments on the variables listed in Table 3.1 (Set A). The variables 

included: Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 

Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. A positive point spread indicates a win 

for the team of interest and a negative value indicates a loss for the team of interest. There were 

192 teams playing 96 games in first rounds of the tournaments in 2011, 2012 and 2013. For the 

first half of the games of the first round in the three years, the point spread was obtained by using 

the scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other half of the games of the first round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers).  

No intercept was included when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences 

between the two teams of the seasonal averages for all the variables previously given in Table 
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3.1 (Set A) were considered for entry in the model. Single scoring system variable X2 was also 

included for entry in the model. 

3.2.2.1.1. Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to estimate the point spread for each game in 

the first round based on using difference between seasonal averages of the significant variables 

was developed and found to be: 

𝑌̂ = (-0.11158*Diff in Scoring Margin) + (0.02418*Diff in Three-Point Field Goals Per Game) + 

(2.40833*X2 (SINGLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.6. Table 3.7 gives the steps associated with the stepwise selection 

technique and Table 3.8 shows the associated R-square values as variables are added to the 

model. The model with the 3 significant variables explains an estimated 60% of the variation in 

point spread. 

Table 3.6. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 -0.11158 0.02405 -4.64 <.0001 1.30598 

Three_Point_Goals 1 0.02418 0.01090 2.22 0.0289 1.02804 

SINGLE 1 2.40833 0.35459 6.79 <.0001 1.33775 

Table 3.7. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 SINGLE   1 0.4946 0.4946 22.2472 92.96 <.0001 

2 Scoring_Margin   2 0.0890 0.5835 3.7868 20.08 <.0001 

3 Three_Point_Goals   3 0.0209 0.6045 0.9688 4.93 0.0289 

Table 3.8. Summary of R-squares value 

Root MSE 13.78907    R-Square    0.6045 

Dependent Mean -4.53125    Adj R-Sq 0.5917 

Coeff Var -304.31050     
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3.2.2.2. Logistic regression model 

The logistic regression model was also fit to the data with the dependent variable 

recorded as ‘1’ for win and ‘0’ for loss for the team of interest. Team of interest was the stronger 

team (higher seed numbers) in half of the games and the weaker team (lower seed numbers) in 

the other half of the games. 

The intercept was excluded during the development of the logistic regression model 

because the ordering of the teams in the model should not matter. Stepwise selection was used 

with an α value of 0.1 for both entry and exit when determining the significant variables in 

developing the logistic regression model. The differences of the seasonal averages for both teams 

for all previously mentioned variables listed in Table 3.1 (Set A) were considered for entry in the 

model.  Single scoring system variable X2 was also considered to enter the model. 

3.2.2.2.1. Development of logistic regression model for the first round 

A logistic regression model to estimate the probability of the team of interest winning the 

game for each game in the first round was developed and found to be: 

𝜋(Diff_FGP, Diff_TPG, Diff_BLK, Diff_Single)= 

𝑒−0.00908∗Diff_FGP+0.00574∗Diff_TPG−0.00457∗Diff_BLK+0.2466∗Diff_Single

1 + 𝑒−0.00908∗Diff_FGP+0.00574∗Diff_TPG−0.00457∗Diff_BLK+0.2466∗Diff_Single
 

Where π (Diff_FGP, Diff_TPG, Diff_BLK, Diff_Single) is the estimated probability that 

the team of interest will win the game with difference of seasonal averages in Field Goal 

Percentage, difference of seasonal averages in Three Point Goals, difference of seasonal averages 

in Blocked Shots and difference of seasonal averages in single scoring system variable in model. 

Table 3.9 shows the steps for the stepwise selection technique and Table 3.10 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.11 shows the Hosmer and Lemeshow Test [8] was done to test whether there 
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was evidence the logistic regression model was not appropriate. The p-value was 0.1675 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.9. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 SINGLE   1 1 28.2358   <.0001 

2 Three_Point_Goals   1 2 8.9312   0.0028 

3 Field_Goal_PCT   1 3 7.4522   0.0063 

4 Blocked_shots   1 4 4.1107   0.0426 

Table 3.10. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT 1 -0.00908 0.00349 6.7658 0.0093 

Three_Point_Goals 1 0.00574 0.00231 6.1900 0.0128 

Blocked_shots 1 -0.00457 0.00232 3.8638 0.0493 

SINGLE 1 0.2466 0.0891 7.6649 0.0056 

Table 3.11. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

11.6508 8 0.1675 

3.2.3. Develop models for the first round using differences in ranks of seasonal averages 

with double scoring system variable 

Difference in the ranks of seasonal averages for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A) were collected. The variables included: 

Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 

Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  



23 

 

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. A positive point spread indicates a win 

for the team of interest and a negative value indicates a loss for the team of interest. There were 

192 teams playing 96 games in first rounds of the tournaments in 2011, 2012 and 2013. For the 

first half games of the first round in the three years, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other half of the games for the first round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers).  

No intercept was included when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences 

between the two teams of the seasonal averages for all the variables previously given in Table 

3.1 (Set A) were considered for entry in the model. Double scoring system variable X1 was also 

considered to enter the model. 

3.2.3.1. Ordinary least squares regression model 

3.2.3.1.1. Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to estimate the point spread for each game in 

the first round based on using differences between seasonal averages of the significant variables 

was developed and found to be: 

𝑌̂ = (-0.09799*Diff in Scoring Margin) + (0.02447*Diff in Three-Point Field Goals Per Game) + 

(-0.02182*Diff in Blocked Shots Per Game) + (0.31844*X1 (DOUBLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.12. Table 3.13 gives the steps associated with the stepwise selection 
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technique and Table 3.14 shows the associated R-square values as variables are added to the 

model. The model with the 4 significant variables explains an estimated 56% of the variation in 

point spread. 

Table 3.12. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 -0.09799 0.02761 -3.55 0.0006 1.54167 

Three_Point_Goals 1 0.02447 0.01186 2.06 0.0419 1.09047 

Blocked_shots 1 -0.02182 0.01165 -1.87 0.0643 1.34494 

DOUBLE 1 0.31844 0.06432 4.95 <.0001 1.49309 

Table 3.13. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 DOUBLE   1 0.4289 0.4289 23.5971 71.35 <.0001 

2 Scoring_Margin   2 0.0834 0.5123 8.4261 16.07 0.0001 

3 Three_Point_Goals   3 0.0339 0.5462 3.4426 6.95 0.0098 

4 Blocked_shots   4 0.0167 0.5629 2.0106 3.51 0.0643 

Table 3.14. Summary of R-squares value 

Root MSE 14.57469    R-Square    0.5629 

Dependent Mean -4.53125    Adj R-Sq 0.5439 

Coeff Var -321.64826     

3.2.3.2. Logistic regression model 

3.2.3.2.1. Development of logistic regression model for the first round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the first round was developed and found to be: 

𝜋(Diff_FGP, Diff_TPG, Diff_BLK, Diff_Double)= 

𝑒−0.00899∗Diff_FGP+0.0056∗Diff_TPG−0.00449∗Diff_BLK+0.075∗Diff_Double

1 + 𝑒−0.00899∗Diff_FGP+0.0056∗Diff_TPG−0.00449∗Diff_BLK+0.075∗Diff_Double
 

Where π (Diff_FGP, Diff_TPG, Diff_BLK, Diff_Double) is the estimated probability 

that the team of interest will win the game with difference of seasonal averages in Field Goal 
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Percentage, difference of seasonal averages in Three Point Goals, difference of seasonal averages 

in Blocked shots and difference of seasonal averages in double scoring system variable in model. 

Table 3.15 shows the steps for the stepwise selection technique and Table 3.16 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.17 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.2003 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.15. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 DOUBLE   1 1 22.0756   <.0001 

2 Three_Point_Goals   1 2 8.5188   0.0035 

3 Field_Goal_PCT   1 3 7.0184   0.0081 

4 Blocked_shots   1 4 3.8729   0.0491 

Table 3.16. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT 1 -0.00899 0.00351 6.5530 0.0105 

Three_Point_Goals 1 0.00560 0.00233 5.7894 0.0161 

Blocked_shots 1 -0.00449 0.00235 3.6478 0.0561 

DOUBLE 1 0.0750 0.0314 5.6935 0.0170 

Table 3.17. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

11.0241 8 0.2003 

3.2.4. Develop models for the second round using differences in ranks of seasonal averages 

with single scoring system variable 

3.2.4.1. Ordinary least squares regression model 

Rank differences based on seasonal averages were collected for all the teams in the 2011, 

2012 and 2013 tournaments on the variables listed in Table 3.1 (Set A). The variables included: 
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Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 

Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first half games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.1 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables in Table 3.1 (Set A) were considered for entry in the model. Single scoring system 

variable was considered to enter the model. Single scoring system variable X2 was also 

considered to enter the model. 

3.2.4.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to estimate the point spread for each game in 

the second round based on using difference between seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (-0.108*Diff in Scoring Margin) + (- 0.03852*Diff in Assist Turnover Ratio) + (1.38319*X2 

(SINGLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.18. Table 3.19 gives the steps associated with the stepwise selection 
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technique and Table 3.20 shows associated R-square values as variables are added to the model. 

The model with the 3 significant variables explains an estimated 61% of the variation in point 

spread. 

Table 3.18. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 -0.10800 0.03947 -2.74 0.0089 1.61525 

Assist_Turnover_Ratio 1 -0.03852 0.01806 -2.13 0.0384 1.20444 

SINGLE 1 1.38319 0.36197 3.82 0.0004 1.50182 

Table 3.19. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 SINGLE   1 0.4698 0.4698 10.1554 41.64 <.0001 

2 Scoring_Margin   2 0.1046 0.5744 1.0797 11.30 0.0016 

3 Assist_Turnover_Ratio   3 0.0391 0.6134 -1.0583 4.55 0.0384 

Table 3.20. Summary of R-squares value 

Root MSE 10.54685    R-Square   0.6134 

Dependent Mean -1.06250    Adj R-Sq 0.5877 

Coeff Var -992.64498     

3.2.4.2. Logistic regression model 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. This model estimates the probability of a win for the 

team of interest. No intercept was used during the development of the logistic regression model. 

Stepwise selection was used with an α value of 0.1 for both entry and exit when determine the 

significant variables in developing the logistic regression model. The differences between the 

two teams of the seasonal averages of all previously mentioned variables in Table 3.1 (Set A) 

were considered for entry in the model. Single scoring system variable X2 was considered to 

enter the model. 
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3.2.4.2.1. Development of logistic regression model for the second round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the second round was developed and found to be: 

𝜋(Diff_FGPD, Diff_ATR, Diff_TPFGD, Diff_Single)= 

𝑒0.0343∗Diff_FGPD−0.0409∗Diff_ATR−0.0262∗Diff_TPFGD+0.5967∗Diff_Single

1 + 𝑒0.0343∗Diff_FGPD−0.0409∗Diff_ATR−0.0262∗Diff_TPFGD+0.5967∗Diff_Single
 

Where π (Diff_FGPD, Diff_ATR, Diff_TPFGD, Diff_Single) is the estimated probability 

that the team of interest will win the game with difference of seasonal averages in Field Goal 

Percentage Defense, difference of seasonal averages in Assists Turnover Ratio, difference of 

seasonal averages in Three Point Field Goals Defense and difference of seasonal averages in 

single scoring system variable in model. 

Table 3.21 shows the steps for the stepwise selection technique and Table 3.22 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.23 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.4236 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.21. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 SINGLE   1 1 13.8737   0.0002 

2 Assist_Turnover_Rati   1 2 6.9077   0.0086 

3 Assists   1 3 3.9058   0.0481 

4 Field_Goal_PCT_Dfens   1 4 5.9259   0.0149 

5 Three_Pt_FG_Defense   1 5 13.5136   0.0002 

6   Assists 1 4   2.0205 0.1552 
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Table 3.22. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT_Dfens 1 0.0343 0.0128 7.2293 0.0072 

Assist_Turnover_Rati 1 -0.0409 0.0184 4.9478 0.0261 

Three_Pt_FG_Defense 1 -0.0262 0.00968 7.3448 0.0067 

SINGLE 1 0.5967 0.1994 8.9554 0.0028 

Table 3.23. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.1021 8 0.4236 

3.2.5. Develop models for the second round using differences in ranks of seasonal averages 

with double scoring system variable 

Rank differences of seasonal averages were collected for all the teams in the 2011, 2012 

and 2013 tournaments on the variables listed in Table 3.1 (Set A). The variables included: 

Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 

Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first half games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.1 for both entry and exit to develop the models. The 
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differences between the two teams of the seasonal averages of the previously mentioned 

variables were considered for entry in the model. Double scoring system variable X1 was 

considered to enter the model. 

3.2.5.1. Ordinary least squares regression model 

3.2.5.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to estimate the point spread for each game in 

the second round based on using difference between seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (-0.10627*Diff in Scoring Margin) + (0.03144*Diff in Three-Point Field-Goal Percentage) + 

(-0.03812*Diff in Assist Turnover Ratio) + (0.22394*X1 (DOUBLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.24. Table 3.25 gives the steps associated with the stepwise selection 

technique and Table 3.26 shows the associated R-square values as variables are added to the 

model. The model with the 4 significant variables explains an estimated 65% of the variation in 

point spread. 

Table 3.24. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 -0.10627 0.03813 -2.79 0.0078 1.63111 

Three_Point_Goal_PCT 1 0.03144 0.01608 1.96 0.0569 1.14973 

Assist_Turnover_Ratio 1 -0.03812 0.01744 -2.19 0.0342 1.21532 

DOUBLE 1 0.22394 0.05023 4.46 <.0001 1.66101 

Table 3.25. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 DOUBLE   1 0.4923 0.4923 7.8769 45.58 <.0001 

2 Scoring_Margin   2 0.0933 0.5856 -0.0225 10.35 0.0024 

3 Assist_Turnover_Ratio   3 0.0347 0.6203 -1.7058 4.11 0.0485 

4 Three_Point_Goal_PCT   4 0.0304 0.6507 -2.9282 3.82 0.0569 
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Table 3.26. Summary of R-squares value 

Root MSE 10.13900    R-Square    0.6507 

Dependent Mean -1.06250    Adj R-Sq 0.6189 

Coeff Var -954.25902     

3.2.5.2. Logistic regression model 

3.2.5.2.1. Development of logistic regression model for the second round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the second round was developed and found to be: 

𝜋(Diff_FGPD, Diff_ATR, Diff_TPFGD, Diff_Double)= 

𝑒0.0259∗Diff_FGPD−0.03∗Diff_ATR−0.0202∗Diff_TPFGD+0.072∗Diff_Double

1 + 𝑒0.0259∗Diff_FGPD−0.03∗Diff_ATR−0.0202∗Diff_TPFGD+0.072∗Diff_Double
 

Where π (Diff_FGPD, Diff_ATR, Diff_TPFGD, Diff_Double) is the estimated 

probability that the team of interest will win the game with difference of seasonal averages in 

Field Goal Percentage Defense, difference of seasonal averages in Assists Turnover Ratio, 

difference of seasonal averages in Three Point Field Goals Defense and difference of seasonal 

averages in double scoring system variable in model. 

Table 3.27 shows the steps for the stepwise selection technique and Table 3.28 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.29 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.0003 which is 

less than 0.5 indicating that there was evidence to reject using the logistic regression model. 

Table 3.27. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 DOUBLE   1 1 11.5750   0.0007 

2 Assist_Turnover_Rati   1 2 6.9345   0.0085 

3 Three_Pt_FG_Defense   1 3 4.0577   0.0440 

4 Field_Goal_PCT_Dfens   1 4 11.8057   0.0006 
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Table 3.28. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT_Dfens 1 0.0259 0.00941 7.5523 0.0060 

Assist_Turnover_Rati 1 -0.0300 0.0125 5.7261 0.0167 

Three_Pt_FG_Defense 1 -0.0202 0.00705 8.2136 0.0042 

DOUBLE 1 0.0720 0.0246 8.5571 0.0034 

Table 3.29. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

29.1145 8 0.0003 

3.2.6. Develop models for the third and higher rounds using differences in ranks of seasonal 

averages with single scoring system variable 

3.2.6.1. Ordinary least squares regression model 

Rank differences of seasonal averages for all the teams in the 2011, 2012 and 2013 

tournaments were collected on the variables list in Table 3.1 (Set A). The variables included: 

Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 

Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. For the first 20 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 
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selection was used with an α value of 0.1 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables were considered for entry in the model. Single scoring system variable X2 was also 

considered to enter the model. 

3.2.6.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to estimate the point spread for each game in 

the third and higher rounds based on using difference between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = (-0.07693*Diff in Scoring Defense) + (-0.10473*Diff in Assists Per Game) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.30. Table 3.31 gives the steps associated with the stepwise selection 

technique and Table 3.32 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 42% of the variation in 

point spread. 

Table 3.30. Point spread model parameter estimates 

Variable Parameter 

Estimate 

Standard 

Error 

Type II SS F Value Pr > F 

Scoring_Defense -0.07693 0.02609 1843.66219 8.69 0.0051 

Assists -0.10473 0.02390 4074.00461 19.21 <.0001 

Table 3.31. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Assists   1 0.2996 0.2996 21.9965 18.82 <.0001 

2 Scoring_Defense   2 0.1178 0.4174 13.0669 8.69 0.0051 
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Table 3.32. Summary of R-squares value 

Root MSE 14.56370    R-Square    0.4174 

Dependent Mean -3.86667    Adj R-Sq 0.3903 

Coeff Var -376.64740     

3.2.6.2. Logistic regression model 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. This model estimates the probability of a win for the 

team of interest. No intercept was used during the development of the logistic regression model. 

Stepwise selection was used with an α value of 0.1 for both entry and exit when determine the 

significant variables in developing the logistic regression model. The differences between the 

two teams of the seasonal averages of all previously mentioned variables in Table 3.1 (Set A) 

were considered for entry in the model. Single scoring system variable X2 was also considered to 

enter the model. 

3.2.6.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the third and higher rounds was developed and found to be: 

𝜋(Diff_SO, Diff_SD, Diff_SM, Diff_STL)= 

𝑒−0.0757∗Diff_SO−0.0229∗Diff_SD+0.0582∗Diff_SM−0.00585∗Diff_STL

1 + 𝑒−0.0757∗Diff_SO−0.0229∗Diff_SD+0.0582∗Diff_SM−0.00585∗Diff_STL
 

Where π (Diff_SO, Diff_SD, Diff_SM, Diff_STL) is the estimated probability that the 

team of interest will win the game with difference of seasonal averages in Scoring Offense, 

Difference of seasonal averages in Scoring Defense, difference of seasonal averages in Scoring 

Margin and difference of seasonal averages in Steals in model. 

Table 3.33 shows the steps for the stepwise selection technique and Table 3.34 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 
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the model. Table 3.35 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.4358 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.33. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Offense   1 1 9.3923   0.0022 

2 Scoring_Defense   1 2 5.5685   0.0183 

3 Scoring_Margin   1 3 3.6053   0.0576 

4 Steals   1 4 3.0988   0.0783 

5 Three_Point_Goal_PCT   1 5 2.8189   0.0932 

6   Three_Point_Goal_PCT 1 4   2.5291 0.1118 

Table 3.34. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Offense 1 -0.0757 0.0319 5.6360 0.0176 

Scoring_Defense 1 -0.0229 0.00948 5.8578 0.0155 

Scoring_Margin 1 0.0582 0.0285 4.1742 0.0410 

Steals 1 -0.00585 0.00346 2.8513 0.0913 

Table 3.35. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

6.9342 7 0.4358 

3.2.7. Develop models for the third and higher rounds using differences in ranks of seasonal 

averages with double scoring system variable 

3.2.7.1. Ordinary least squares regression model 

Differences in ranks of seasonal averages were collected for all the teams in the 2011, 

2012 and 2013 tournaments on the variables listed in Table 3.1 (Set A). The variables included: 

Scoring Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal 

Percentage Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per 

Game, Three-Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked 
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Shots Per Game, Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist 

Turnover Ratio, Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. For the first 20 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.1 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables in Table 3.1 (Set A) were considered for entry in the model. Double scoring system 

variable X1 was also considered to enter the model. 

3.2.7.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to estimate the point spread for each game in 

the third and higher rounds based on using difference between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = (-0.07693*Diff in Scoring Defense) + (-0.10473*Diff in Assists Per Game) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.36. Table 3.37 gives the steps associated with the stepwise selection 

technique and Table 3.38 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 42% of the variation in 

point spread. 
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Table 3.36. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Defense 1 -0.07693 0.02609 -2.95 0.0051 1.01018 

Assists 1 -0.10473 0.02390 -4.38 <.0001 1.01018 

Table 3.37. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Assists   1 0.2996 0.2996 23.1254 18.82 <.0001 

2 Scoring_Defense   2 0.1178 0.4174 14.0060 8.69 0.0051 

Table 3.38. Summary of R-squares value 

Root MSE 14.56370    R-Square    0.4174 

Dependent Mean -3.86667    Adj R-Sq 0.3903 

Coeff Var -376.64740     

3.2.7.2. Logistic regression model 

3.2.7.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the third and higher rounds was developed and found to be: 

𝜋(Diff_SO, Diff_SD, Diff_SM, Diff_STL)= 

𝑒−0.0757∗Diff_SO−0.0229∗Diff_SD+0.0582∗Diff_SM−0.00585∗Diff_STL

1 + 𝑒−0.0757∗Diff_SO−0.0229∗Diff_SD+0.0582∗Diff_SM−0.00585∗Diff_STL
 

Where π (Diff_SO, Diff_SD, Diff_SM, Diff_STL) is the estimated probability that the 

team of interest will win the game with difference of seasonal averages in Scoring Offense, 

Difference of seasonal averages in Scoring Defense, difference of seasonal averages in Scoring 

Margin and difference of seasonal averages in Steals in model. 

Table 3.39 shows the steps for the stepwise selection technique and Table 3.40 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.41 shows the Hosmer and Lemeshow Test [8] was done to test whether there 
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was evidence the logistic regression model was not appropriate. The p-value was 0.4358 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.39. Summary of stepwise selection for logistic regression model 

Step Effect D

F 

Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Offense   1 1 9.3923   0.0022 

2 Scoring_Defense   1 2 5.5685   0.0183 

3 Scoring_Margin   1 3 3.6053   0.0576 

4 Steals   1 4 3.0988   0.0783 

5 Three_Point_Goal_PCT   1 5 2.8189   0.0932 

6   Three_Point_Goal_PCT 1 4   2.5291 0.1118 

Table 3.40. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Offense 1 -0.0757 0.0319 5.6360 0.0176 

Scoring_Defense 1 -0.0229 0.00948 5.8578 0.0155 

Scoring_Margin 1 0.0582 0.0285 4.1742 0.0410 

Steals 1 -0.00585 0.00346 2.8513 0.0913 

Table 3.41. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

6.9342 7 0.4358 

3.2.8. Validating models  

3.2.8.1. Validating first round using models developed with single scoring system variable 

The 6 ordinary least squares regression models developed by using differences in ranks 

of seasonal averages data with either a single or double scoring system variable was used to 

validate the first round, second round and third round through final of 2014 season to check the 

validation accuracy of the models respectively.  Logistic regression models were also used to do 

the validation but the results were not included in this paper since the accuracy is lower than 

ordinary least squares regression models. It is noted that the 2014 season was not used in the 

development of the models.  
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Table 3.42 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a single 

scoring system variable for first round of the NCAA 2014 women’s basketball tournament. 

Table 3.42. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a single scoring system variable when validating first round of 

2014 

Point spread Predicted   

Win Loss Total 

Actual Win 19 6 25 

Loss 5 2 7 

  Total 24 8 32 

Overall Accuracy            65.63% 

3.2.8.2. Validating first round using models developed with double scoring system variable 

Table 3.43 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a double 

scoring system variable for first round of the NCAA 2014 women’s basketball tournament. 

Table 3.43. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a double scoring system variable when validating first round of 

2014 

Point spread Predicted   

Win Loss Total 

Actual Win 21 4 25 

Loss 3 4 7 

  Total 24 8            32 

Overall Accuracy 78.13% 
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3.2.8.3. Validating second round using models developed with single scoring system 

variable  

Table 3.44 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a single 

scoring system variable for second round of the NCAA 2014 women’s basketball tournament. 

Table 3.44. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a single scoring system variable when validating second round 

of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 2 7 

Loss 1 7 8 

  Total 6 9            16 

Overall Accuracy 75% 

3.2.8.4. Validating second round using models developed with double scoring system 

variable  

Table 3.45 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a double 

scoring system variable for second round of the NCAA 2014 women’s basketball tournament. 
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Table 3.45. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a double scoring system variable when validating second round 

of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 1 7 8 

  Total 6 10            16 

Overall Accuracy 75% 

3.2.8.5. Validating third and higher rounds using models developed with single scoring 

system variable  

Table 3.46 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a single 

scoring system variable for third and higher rounds of the NCAA 2014 women’s basketball 

tournament. 

Table 3.46. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a single scoring system variable when validating third and higher 

rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 10 0 10 

Loss 1 4 5 

  Total 11 4             15 

Overall Accuracy 93.33% 
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3.2.8.6. Validating third and higher rounds using models developed with double scoring 

system variable  

Table 3.47 gives the results as to how accurately the ordinary least squares regression 

model which developed by using differences in ranks of seasonal averages data with a double 

scoring system variable for third and higher rounds of the NCAA 2014 women’s basketball 

tournament. 

Table 3.47. Accuracy of ordinary least squares regression model developed by differences in 

ranks of seasonal averages with a double scoring system variable when validating third and 

higher rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 10 0 10 

Loss 1 4 5 

  Total 11 4             15 

Overall Accuracy 93.33% 

3.2.9. Bracketing the 2014 and 2015 tournament before tournament begins – Prediction 

3.2.9.1. Using ordinary least squares regression models developed by differences in ranks of 

seasonal averages with a single scoring system variable 

Results were predicted for every round before the tournament began. Significant 

differences in ranks of seasonal averages of variables were found for all teams playing in the first 

round and put into first round model. Significant differences of ranks of seasonal averages of 

variables were found for each team predicted to play each other in the second round were placed 

in second round model and winners of this round were predicted. Differences of ranks of 

seasonal averages of variables found to be significant of teams predicted to play each other in the 
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third round were placed in the third round model and winning teams predicted for this round. 

This process continued until a winner is selected. 

The predicted results were then compared against the actual results for every game in the 

2014 and 2015 tournaments. 

3.2.9.1.1. Examples for each round in 2014 tournament 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model developed by using differences in ranks of 

seasonal averages with a single scoring system variable for a particular round in 2014 

tournament was used. 

3.2.9.1.1.1. Examples for seasonal averages models with single scoring system variable 

3.2.9.1.1.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences in ranks of seasonal averages with a single scoring system variable is: 

𝑌̂ = (-0.11158*Diff in Scoring Margin) + (0.02418*Diff in Three-Point Field Goals Per Game) + 

(2.40833*X2 (SINGLE)) 

University of Connecticut played Prairie View in the first round of the 2014 Tournament. 

Data on significant differences in ranks of seasonal averages was collected and displayed in 

Table 3.48. The number of points each of these teams received under the single scoring system 

for the last two tournaments are found and the difference is taken.  

Table 3.48. University of Connecticut and Prairie View Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Single 

scoring* 

University of Connecticut 87 1 40 11 

Prairie View 44 247 245 2 

Difference 43 -246 -205 9 

   * Ranks based on seasonal averages 
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Using the model above, the game between University of Connecticut and Prairie View 

had a predicted point spread of: 

ŷ = (-0.11158*-246) + (0.02418*-205) + (2.40833*9) = 44.17 

Since ŷ >0 this game was coded as a correctly predicted win for University of 

Connecticut, who won the game by a score of 87 to 44. 

North Carolina State played BYU in the first round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.49. 

The number of points each of these teams received under the single scoring system for the last 

two tournaments are found and the difference is taken.  

Table 3.49. North Carolina State and BYU Statistics 

Team Score Scoring 

Margin* 

Three-Point Field Goals* Single scoring* 

North Carolina State 57 44 46 0 

BYU 72 61 101 1 

Difference -15 -17 -55 -1 

* Ranks based on seasonal averages 

Using the model above, the game between North Carolina State and BYU had a predicted 

point spread of: 

ŷ = (-0.11158*-17) + (0.02418*-55) + (2.40833*-1) = -1.84 

Since ŷ <0 this game was coded as a correctly predicted loss for North Carolina State, 

who lost the game by a score of 57 to 72. 

DePaul played Oklahoma in the first round of the 2014 Tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 3.50. The number 

of points each of these teams received under the single scoring system for the last two 

tournaments are found and the difference is taken.  
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Table 3.50. DePaul and Oklahoma Statistics 

Team Score Scoring Margin* Three-Point Field Goals* Single scoring* 

DePaul 104 21 15 3 

Oklahoma 100 52 85 5 

Difference 4 -31 -70 -2 

       * Ranks based on seasonal averages 

Using the model above, the game between DePaul and Oklahoma had a predicted point 

spread of: 

ŷ = (-0.11158*-31) + (0.02418*-70) + (2.40833*-2) = -3.05 

Since ŷ <0 this game was coded as an incorrectly predicted loss for DePaul, who won the 

game by a score of 104 to 100. 

Stanford played South Dakota in the first round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.51. 

The number of points each of these teams received under the single scoring system for the last 

two tournaments are found and the difference is taken.  

Table 3.51. Stanford and South Dakota Statistics 

Team Score Scoring Margin* Three-Point Field Goals* Single scoring* 

Stanford 81 9 79 8 

South Dakota 62 123 127 1 

Difference 19 -114 -48 7 

    * Ranks based on seasonal averages 

Using the model above, the game between Stanford and South Dakota had a predicted 

point spread of: 

ŷ = (-0.11158*-114) + (0.02418*-48) + (2.40833*7) = 28.42 

Since ŷ >0 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 81 to 62. 
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3.2.9.1.1.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences in ranks of seasonal averages with a single scoring system variable is: 

ŷ = (-0.108*Diff in Scoring Margin) + (- 0.03852*Diff in Assist Turnover Ratio) + (1.38319*X2 

(SINGLE)) 

Oklahoma State played Purdue in the second round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.52. 

The number of points each of these teams received under the single scoring system for the last 

two tournaments are found and the difference is taken.  

Table 3.52. Oklahoma State and Purdue Statistics 

Team Score Scoring Margin* Assist Turnover Ratio * Single scoring* 

Oklahoma State 73 32 77 2 

Purdue 66 76 70 4 

Difference 7 -44 7 -2 

   * Ranks based on seasonal averages 

Using the model above, the game between Oklahoma State and Purdue had a predicted 

point spread of: 

ŷ = (-0.108*-44) + (-0.03852*7) + (1.38319*-2) = 1.72 

Since ŷ >0 this game was coded as a correctly predicted win for Oklahoma State, who 

won the game by a score of 73 to 66. 

California played Baylor in the second round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.53. 

The number of points each of these teams received under the single scoring system for the last 

two tournaments are found and the difference is taken.  
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Table 3.53. California and Baylor Statistics 

Team Score Scoring Margin* Assist Turnover Ratio * Single scoring* 

California 56 103 167 7 

Baylor 75 3 3 9 

Difference -19 100 164 -2 

       * Ranks based on seasonal averages 

Using the model above, the game between California and Baylor had a predicted point 

spread of: 

ŷ = (-0.108*100) + (-0.03852*164) + (1.38319*-2) = -19.88 

Since ŷ <0 this game was coded as a correctly predicted loss for California, who lost the 

game by a score of 56 to 75. 

3.2.9.1.1.1.3. Ordinary least squares regression model for third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences in ranks of seasonal averages with a single scoring system variable is: 

ŷ = (-0.07693*Diff in Scoring Defense) + (-0.10473*Diff in Assists Per Game) 

Notre Dame played Oklahoma State in the third round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.54.  

Table 3.54. Notre Dame and Oklahoma State Statistics 

Team Score Scoring Defense * Assists * 

Notre Dame 89 50 2 

Oklahoma State 72 38 143 

Difference 17 12 -141 

      * Ranks based on seasonal averages 

Using the model above, the game between Notre Dame and Oklahoma State had a 

predicted point spread of: 

ŷ = (-0.07693*12) + (- 0.10473*-141) = 13.84 
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Since ŷ > 0 this game was coded as a correctly predicted win for Notre Dame, who won 

the game by a score of 89 to 72. 

 Tennessee played Maryland in the third round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.55.  

Table 3.55. Tennessee and Maryland Statistics 

Team Score Scoring Defense * Assists * 

Tennessee 62 79 47 

Maryland 73 56 4 

Difference -11 23 43 

* Ranks based on seasonal averages 

Using the model above, the game between Tennessee and Maryland had a predicted point 

spread of: 

ŷ = (-0.07693*23) + (-0.10473*43) = -6.27 

Since ŷ < 0 this game was coded as a correctly predicted loss for Tennessee, who lost the 

game by a score of 62 to 73. 

3.2.9.2. Using models developed by differences in ranks of seasonal averages with a double 

scoring system variable 

3.2.9.2.1. Examples for seasonal averages models with double scoring system variable 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model developed by using differences in ranks of 

seasonal averages with a double scoring system variable for a particular round in 2014 

tournament was used. 
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3.2.9.2.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences in ranks of seasonal averages with a double scoring system variable is: 

y ̂= (-0.09799*Diff in Scoring Margin) + (0.02447*Diff in Three-Point Field Goals Per Game) + 

(-0.02182*Diff in Blocked Shots Per Game) + (0.31844*X1 (DOUBLE)) 

University of Connecticut played Prairie View in the first round of the 2014 Tournament. 

Data on significant differences in ranks of seasonal averages was collected and displayed in 

Table 3.56. The number of points each of these teams received under the double scoring system 

for the last two tournaments are found and the difference is taken.  

Table 3.56. University of Connecticut and Prairie View Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Blocked 

shots 

Double 

scoring* 

University of Connecticut 87 1 40 1 94 

Prairie View 44 247 245 70 2 

Difference 43 -246 -205 -69 92 

* Ranks based on seasonal averages 

Using the model above, the game between University of Connecticut and Prairie View 

had a predicted point spread of: 

ŷ = (-0.09799*-246) + (0.02447*-205) + (-0.02182*-69) + (0.31844*92) = 49.89 

Since ŷ >0 this game was coded as a correctly predicted win for University of 

Connecticut, who won the game by a score of 87 to 44. 

North Carolina State played BYU in the first round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.57. 

The number of points each of these teams received under the double scoring system for the last 

two tournaments are found and the difference is taken.  
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Table 3.57. North Carolina State and BYU Statistics 

Team Score Scoring 

Margin* 

Three-Point Field 

Goals* 

Blocked 

shots 

Double 

scoring* 

North Carolina State 57 44 46 236 0 

BYU 72 61 101 7 1 

Difference -15 -17 -55 229 -1 

* Ranks based on seasonal averages 

Using the model above, the game between North Carolina State and BYU had a predicted 

point spread of: 

ŷ = (-0.09799*-17) + (0.02447*-55) + (- 0.02182*229) + (0.31844*-1) = -4.99 

Since ŷ <0 this game was coded as a correctly predicted loss for North Carolina State, 

who lost the game by a score of 57 to 72. 

DePaul played Oklahoma in the first round of the 2014 Tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 3.58. The number 

of points each of these teams received under the double scoring system for the last two 

tournaments are found and the difference is taken.  

Table 3.58. DePaul and Oklahoma Statistics 

Team Score Scoring 

Margin* 

Three-Point Field 

Goals* 

Blocked 

shots 

Double 

scoring* 

DePaul 104 21 15 240 4 

Oklahoma 100 52 85 124 10 

Difference 4 -31 -70 116 -6 

* Ranks based on seasonal averages 

Using the model above, the game between DePaul and Oklahoma had a predicted point 

spread of: 

ŷ = (-0.09799*-31) + (0.02447*-70) + (- 0.02182*116) + (0.31844*-6) = -3.12 

Since ŷ <0 this game was coded as an incorrectly predicted loss for DePaul, who won the 

game by a score of 104 to 100. 
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Stanford played South Dakota in the first round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.59. 

The number of points each of these teams received under the double scoring system for the last 

two tournaments are found and the difference is taken.  

Table 3.59. Stanford and South Dakota Statistics 

Team Score Scoring 

Margin* 

Three-Point Field 

Goals* 

Blocked 

shots 

Double 

scoring* 

Stanford 81 9 79 93 38 

South Dakota 62 123 127 223 1 

Difference 19 -114 -48 -130 37 

* Ranks based on seasonal averages 

Using the model above, the game between Stanford and South Dakota had a predicted 

point spread of: 

ŷ = (-0.09799*-114) + (0.02447*-48) +(- 0.02182*-130) + (0.31844*37) = 24.62 

Since ŷ >0 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 81 to 62. 

3.2.9.2.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences in ranks of seasonal averages with a double scoring system variable is: 

ŷ = (-0.10627*Diff in Scoring Margin) + (0.03144*Diff in Three-Point Field-Goal Percentage) + 

(- 0.03812*Diff in Assist Turnover Ratio) + (0.22394*X1 (DOUBLE)) 

Oklahoma State played Purdue in the second round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.60. 

The number of points each of these teams received under the double scoring system for the last 

two tournaments are found and the difference is taken.  
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Table 3.60. Oklahoma State and Purdue Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field-Goal 

Percentage 

Assist 

Turnover 

Ratio * 

Double 

scoring* 

Oklahoma State 73 32 156 77 3 

Purdue 66 76 6 70 6 

Difference 7 -44 150 7 -3 

* Ranks based on seasonal averages 

Using the model above, the game between Oklahoma State and Purdue had a predicted 

point spread of: 

ŷ = (-0.10627*-44) + (0.03144*150) + (- 0.03812*7) + (0.22394*-3) = 8.45 

Since ŷ >0 this game was coded as a correctly predicted win for Oklahoma State, who 

won the game by a score of 73 to 66. 

California played Baylor in the second round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.61. 

The number of points each of these teams received under the double scoring system for the last 

two tournaments are found and the difference is taken.  

Table 3.61. California and Baylor Statistics 

Team Score Scoring 

Margin* 

Three-Point Field-

Goal Percentage 

Assist Turnover 

Ratio * 

Double 

scoring* 

California 56 103 262 167 34 

Baylor 75 3 88 3 70 

Difference -19 100 174 164 -36 

* Ranks based on seasonal averages 

Using the model above, the game between California and Baylor had a predicted point 

spread of: 

ŷ = (-0.10627*100) + (0.03144*174) + (- 0.03812*164) + (0.22394*-36) = -19.47 
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Since ŷ <0 this game was coded as a correctly predicted loss for California, who lost the 

game by a score of 56 to 75. 

3.2.9.2.1.3. Ordinary least squares regression model for third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences in ranks of seasonal averages with a double scoring system variable is: 

ŷ = (-0.07693*Diff in Scoring Defense) + (-0.10473*Diff in Assists Per Game) 

Notre Dame played Oklahoma State in the third round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.62. 

Table 3.62. Notre Dame and Oklahoma State Statistics 

Team Score Scoring Defense * Assists * 

Notre Dame 89 50 2 

Oklahoma State 72 38 143 

Difference 17 12 -141 

      * Ranks based on seasonal averages 

Using the model above, the game between Notre Dame and Oklahoma State had a 

predicted point spread of: 

ŷ = (-0.07693*12) + (- 0.10473*-141) = -18.85 

Since ŷ > 0 this game was coded as a correctly predicted win for Notre Dame, who won 

the game by a score of 89 to 72. 

 Tennessee played Maryland in the third round of the 2014 Tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 3.63. 

Table 3.63. Tennessee and Maryland Statistics 

Team Score Scoring Defense * Assists * 

Tennessee 62 79 47 

Maryland 73 56 4 

Difference -11 23 43 

* Ranks based on seasonal averages 
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Using the model above, the game between Tennessee and Maryland had a predicted point 

spread of: 

ŷ = (-0.07693*23) + (- 0.10473*43) = -6.27 

Since ŷ <0 this game was coded as a correctly predicted loss for Tennessee, who lost the 

game by a score of 62 to 73. 

3.2.10. Results for prediction 

3.2.10.1. Results for prediction when using models developed using differences in ranks of 

seasonal averages with a single scoring system variable 

In 2014, a continuous process was used in verifying the models instead of doing round by 

round predictions as in previous chapter. In other words, a complete bracket was filled out in 

2014 before any game was played. 

The ordinary least squares regression model for the first round developed by using 

differences in ranks of seasonal averages and a single scoring system variable was used to 

predict the teams who go to next round. Once the teams in the second round were predicted, the 

second-round models were used to predict the winners of the second round. This process was 

continued for the third and higher rounds until the predicted final winner of the game was 

determined. 

A summary of the number of correct and incorrect predictions for each round of the 2014 

tournament is given in Table 3.64. 
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Table 3.64. Prediction results of each round for 2014: (Ordinary least squares regression model 

developed by differences in ranks of seasonal averages with a single scoring system variable) 

 Correct Incorrect Total games 

First round 21 11 32 

Second round 10 6 16 

Third round 5 3 8 

Fourth round 4 0 4 

Fifth round 2 0 2 

Final round 1 0 1 

Overall Accuracy 68.25% 

A similar process was conducted to verifying the models for 2015 season. Namely, a 

complete bracket was filled out before 2015 tournament started. 

A summary of the number of correct and incorrect predictions for each round of the 2015 

tournament is given in Table 3.65. 

Table 3.65. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by differences in ranks of seasonal averages with a single scoring system variable) 

 Correct Incorrect Total games 

First round 24 8 32 

Second round 13 3 16 

Third round 6 2 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 74.6% 

3.2.10.2. Results for prediction when using models developed using differences in ranks of 

seasonal averages with a double scoring system variable 

A similar process was conducted as in the previous section using the models developed 

by using differences in ranks of seasonal averages and a double scoring system variable to 

predict the results of the 2014 tournament. A complete bracket was filled out in 2014 before any 

game was played. 
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The ordinary least squares regression model for the first round developed by using 

differences in ranks of seasonal averages with a double scoring system variable was used to 

predict the teams who go to next round. Once the teams in the second round were predicted, the 

second-round models were used to predict the winners of the second round. This process was 

continued for the third and higher rounds until the predicted final winner of the game was 

determined. 

A summary of the number of correct and incorrect predictions for each round of the 2014 

tournament is given in Table 3.66. 

Table 3.66. Prediction results of each round for 2014: (Ordinary least squares regression model 

developed by differences in ranks of seasonal averages with a double scoring system variable) 

 Correct Incorrect Total games 

First round 25 7 32 

Second round 10 6 16 

Third round 6 2 8 

Fourth round 4 0 4 

Fifth round 2 0 2 

Final round 1 0 1 

Overall Accuracy 76.19% 

A similar process was conducted to verifying the models for 2015 season. Namely, a 

complete bracket was filled out before 2015 tournament started. 

A summary of the number of correct and incorrect predictions of the ordinary least 

squares regression model for each round of the 2015 tournament is given in Table 3.67. 
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Table 3.67. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by differences in ranks of seasonal averages with a double scoring system variable) 

 Correct Incorrect Total games 

First round 25 7 32 

Second round 11 5 16 

Third round 6 2 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 73.02% 

It is noted that ordinary least squares regression models developed by using differences in 

ranks of seasonal averages with a double scoring system variable gave better results than the 

ordinary least squares regression models developed by using differences in ranks of seasonal 

averages with a single scoring system variable. 

3.3 Develop models using differences of seasonal averages 

3.3.1. Develop models for the first round using differences of seasonal averages with single 

scoring system variable 

Seasonal averages from each of the team playing in the tournament were collected from 

the official NCAA basketball statistics database (NCAA [3]). Data was collected for three years 

of the NCAA women’s basketball tournament and it was collected before the tournament started. 

For example, the first game of NCAA 2011 women’s basketball tournament began on March 19, 

2011, all the data was collected through games March 16, 2011. This included 2011, 2012 and 

2013 tournaments. Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 

Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 
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Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. A positive point spread indicates a win 

for the team of interest and a negative value indicates a loss for the team of interest. There were 

192 teams playing 96 games in first rounds of the tournaments in 2011, 2012 and 2013. For the 

first 48 games of the first round in the three years, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other 48 games of the first round of the three years, the point spread was 

acquired by using the scores of stronger teams (lower seed numbers) minus the scores of weaker 

teams (higher seed numbers).  

No intercept was included when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences 

between the two teams of the seasonal averages for all the variables previously given in Table 

3.1 (Set A) were considered for entry in the model. Single scoring system variable X2 was also 

considered to enter the model. 

3.3.1.1.  Ordinary least squares regression model 

3.3.1.1.1 Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to estimate the point spread for each game in 

the first round based on using difference between seasonal averages of the significant variables 

was developed and found to be: 

𝑌̂ = (0.78646*Diff in Scoring Margin) + (- 1.75276*Diff in Three - Point Field Goals Per Game) 

+ (2.0739*X2 (SINGLE)) 
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The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.68. Table 3.69 gives the steps associated with the stepwise selection 

technique and Table 3.70 shows the associated R-square values as variables are added to the 

model. The model with the 3 significant variables explains an estimated 62% of the variation in 

point spread. 

Table 3.68. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 0.78646 0.15284 5.15 <.0001 1.48851 

Three_Point_Goals 1 -1.75276 0.66810 -2.62 0.0102 1.05068 

SINGLE 1 2.07390 0.37320 5.56 <.0001 1.54867 

Table 3.69. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 SINGLE   1 0.4946 0.4946 19.5703 92.96 <.0001 

2 Scoring_Margin   2 0.0990 0.5935 -0.6636 22.88 <.0001 

3 Three_Point_Goals   3 0.0280 0.6215 -4.9574 6.88 0.0102 

Table 3.70. Summary of R-squares value 

Root MSE 13.48857    R-Square    0.6215 

Dependent Mean -4.53125    Adj R-Sq 0.6093 

Coeff Var -297.67880     

3.3.1.2. Logistic regression model 

3.3.1.2.1. Development of logistic regression model for the first round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the first round was developed and found to be: 

𝜋(Diff_TPG, Diff_FGP, Diff_Single)= 
𝑒−0.4522∗Diff_TPG+0.2614∗Diff_FGP+0.2325∗Diff_Single

1+𝑒−0.4522∗Diff_TPG+0.2614∗Diff_FGP+0.2325∗Diff_Single 
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Where π (Diff_TPG, Diff_FGP, Diff_Single) is the estimated probability that the team of 

interest will win the game with difference of seasonal averages in Three Point Goals, difference 

of seasonal averages in Field Goal Percentage and difference of seasonal averages in Single 

Scoring system variable in model. 

Table 3.71 shows the steps for the stepwise selection technique and Table 3.72 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.73 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.4344 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.71. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 SINGLE   1 1 28.2358   <.0001 

2 Three_Point_Goals   1 2 9.7432   0.0018 

3 Field_Goal_PCT   1 3 9.0850   0.0026 

Table 3.72. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT 1 0.2614 0.0918 8.1154 0.0044 

Three_Point_Goals 1 -0.4522 0.1493 9.1798 0.0024 

SINGLE 1 0.2325 0.0905 6.6025 0.0102 

Table 3.73. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

7.9904 8 0.4344 

3.3.2. Develop models for the first round using differences in seasonal averages with double 

scoring system variable 

Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 
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Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 

Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. A positive point spread indicates a win 

for the team of interest and a negative value indicates a loss for the team of interest. There were 

192 teams playing 96 games in first rounds of the tournaments in 2011, 2012 and 2013. For the 

first 48 games of the first round in the three years, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other 48 games of the first round of the three years, the point spread was 

acquired by using the scores of stronger teams (lower seed numbers) minus the scores of weaker 

teams (higher seed numbers).  

No intercept was included when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences 

between the two teams of the seasonal averages for all the variables previously given in Table 

3.1 (Set A) were considered for entry in the model. Double scoring system variable X1 was also 

considered to enter the model. 
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3.3.2.1. Ordinary least squares regression model 

3.3.2.1.1. Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to estimate the point spread for each game in 

the first round based on using difference between seasonal averages of the significant variables 

was developed and found to be: 

𝑌̂ = (0.73021*Diff in Scoring Margin) + (- 1.8507*Diff in Three-Point Field Goals Per Game) + 

(1.62689*Diff in Blocked shots) + (0.2645*X1 (DOUBLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.74. Table 3.75 gives the steps associated with the stepwise selection 

technique and Table 3.76 shows the associated R-square values as variables are added to the 

model. The model with the 4 significant variables explains an estimated 59% of the variation in 

point spread. 

Table 3.74. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 0.73021 0.17768 4.11 <.0001 1.83273 

Three_Point_Goals 1 -1.85070 0.71798 -2.58 0.0115 1.10553 

Blocked_shots 1 1.62689 0.97048 1.68 0.0971 1.43301 

DOUBLE 1 0.26450 0.06636 3.99 0.0001 1.69081 

Table 3.75. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Scoring_Margin   1 0.4335 0.4335 25.8626 72.70 <.0001 

2 DOUBLE   2 0.0978 0.5313 7.1647 19.62 <.0001 

3 Three_Point_Goals   3 0.0452 0.5765 -0.3933 9.92 0.0022 

4 Blocked_shots   4 0.0126 0.5891 -1.0493 2.81 0.0971 

Table 3.76. Summary of R-squares value 

Root MSE 14.13146    R-Square    0.5891 

Dependent Mean -4.53125    Adj R-Sq 0.5712 

Coeff Var -311.86662     
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3.3.2.2. Logistic regression model 

3.3.2.2.1. Development of logistic regression model for the first round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the first round was developed and found to be: 

𝜋(Diff_TPG, Diff_FGP, Diff_Double)= 
𝑒−0.4381∗Diff_TPG+0.2523∗Diff_FGP+0.0749∗Diff_Double

1+𝑒−0.4381∗Diff_TPG+0.2523∗Diff_FGP+0.0749∗Diff_Double 

Where π (Diff_TPG, Diff_FGP, Diff_Double) is the estimated probability that the team 

of interest will win the game with difference of seasonal averages in Three Point Goals, 

difference of seasonal averages in Field Goal Percentage and difference of seasonal averages in 

double scoring system variable in model. 

Table 3.77 shows the steps for the stepwise selection technique and Table 3.78 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.79 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.0511 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.77. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 Field_Goal_PCT   1 1 24.8076   <.0001 

2 Three_Point_Goals   1 2 15.4098   <.0001 

3 DOUBLE   1 3 6.3523   0.0117 

Table 3.78. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Field_Goal_PCT 1 0.2523 0.0924 7.4605 0.0063 

Three_Point_Goals 1 -0.4381 0.1505 8.4696 0.0036 

DOUBLE 1 0.0749 0.0323 5.3831 0.0203 
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Table 3.79. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

15.4400 8 0.0511 

3.3.3. Develop models for the second round using differences in seasonal averages with 

single scoring system variable 

Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 

Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 

Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first 24 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other 24 games of the second round, the point spread was acquired by using 

the scores of stronger teams (lower seed numbers) minus the scores of weaker teams (higher seed 

numbers). The intercept was excluded when developing the models. Stepwise selection was used 

with an α value of 0.1 for both entry and exit to develop the models. The differences between the 

two teams of the seasonal averages of the previously mentioned variables in Table 3.1 (Set A) 

were considered for entry in the model. Single scoring system variable X2 was considered to 

enter the model. 
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3.3.3.1. Ordinary least squares regression model 

3.3.3.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to estimate the point spread for each game in 

the second round based on using difference between seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (1.3091*Diff in Scoring Margin) + (- 0.33382*Diff in Won-Lost Percentage) + (0.91812*X2 

(SINGLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.80. Table 3.81 gives the steps associated with the stepwise selection 

technique and Table 3.82 shows the associated R-square values as variables are added to the 

model. The model with the 3 significant variables explains an estimated 68% of the variation in 

point spread. 

Table 3.80. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 1.30910 0.28125 4.65 <.0001 5.25999 

Won_lost_PCT 1 -0.33382 0.15593 -2.14 0.0377 4.19159 

SINGLE 1 0.91812 0.36244 2.53 0.0149 1.81583 

Table 3.81. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Scoring_Margin   1 0.5941 0.5941 6.6798 68.79 <.0001 

2 SINGLE   2 0.0527 0.6468 1.8388 6.87 0.0119 

3 Won_lost_PCT   3 0.0326 0.6795 -0.3984 4.58 0.0377 

Table 3.82. Summary of R-squares value 

Root MSE 9.60394    R-Square    0.6795 

Dependent Mean -1.06250    Adj R-Sq 0.6581 

Coeff Var -903.89998     
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3.3.3.2. Logistic regression model 

3.3.3.2.1. Development of logistic regression model for the second round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the second round was developed and found to be: 

𝜋(Diff_SO, Diff_TP)= 
𝑒0.1752∗Diff_SO−0.2899∗Diff_TP

1+𝑒0.1752∗Diff_SO−0.2899∗Diff_TP 

Where π (Diff_SO, Diff_TP) is the estimated probability that the team of interest will 

win the game with difference of seasonal averages in Scoring Offense and difference of seasonal 

averages in Turnover in model. 

Table 3.83 shows the steps for the stepwise selection technique and Table 3.84 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.85 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.8415 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.83. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Offense   1 1 15.6689   <.0001 

2 Diff in Turnovers Pe   1 2 4.3404   0.0372 

3 SINGLE   1 3 2.7360   0.0981 

4   SINGLE 1 2   2.4507 0.1175 

Table 3.84. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Offense 1 0.1752 0.0555 9.9648 0.0016 

Diff in Turnovers Pe 1 -0.2899 0.1506 3.7066 0.0542 
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Table 3.85. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

4.1692 8 0.8415 

3.3.4. Develop models for the second round using differences in seasonal averages with 

double scoring system variable 

Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 

Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 

Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first 24 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the other 24 games of the second round, the point spread was acquired by using 

the scores of stronger teams (lower seed numbers) minus the scores of weaker teams (higher seed 

numbers). The intercept was excluded when developing the models. Stepwise selection was used 

with an α value of 0.1 for both entry and exit to develop the models. The differences between the 

two teams of the seasonal averages of the previously mentioned variables were considered for 

entry in the model. Double scoring system variable X1 was considered to enter the model. 
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3.3.4.1. Ordinary least squares regression model 

3.3.4.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to estimate the point spread for each game in 

the second round based on using difference between seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (1.27219*Diff in Scoring Margin) + (- 0.3248*Diff in Won-Lost Percentage) + (0.13556*X1 

(DOUBLE)) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.86. Table 3.87 gives the steps associated with the stepwise selection 

technique and Table 3.88 shows the associated R-square values as variables are added to the 

model. The model with the 3 significant variables explains an estimated 69% of the variation in 

point spread. 

Table 3.86. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 1.27219 0.28124 4.52 <.0001 5.36207 

Won_lost_PCT 1 -0.32480 0.15466 -2.10 0.0414 4.20411 

DOUBLE 1 0.13556 0.04977 2.72 0.0091 1.85231 

Table 3.87. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Scoring_Margin   1 0.5941 0.5941 6.9950 68.79 <.0001 

2 DOUBLE   2 0.0607 0.6548 1.0728 8.09 0.0066 

3 Won_lost_PCT   3 0.0308 0.6856 -0.9504 4.41 0.0414 

Table 3.88. Summary of R-squares value 

Root MSE 9.51159    R-Square    0.6856 

Dependent Mean -1.06250    Adj R-Sq 0.6646 

Coeff Var -895.20832     
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3.3.4.2. Logistic regression model 

3.3.4.2.1. Development of logistic regression model for the second round 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the second round was developed and found to be: 

𝜋(Diff_SO, Diff_TP)= 
𝑒0.1752∗Diff_SO−0.2899∗Diff_TP

1+𝑒0.1752∗Diff_SO−0.2899∗Diff_TP 

Where π (Diff_SO, Diff_TP) is the estimated probability that the team of interest will 

win the game with difference of seasonal averages in Scoring Offense and difference of seasonal 

averages in Turnover in model. 

Table 3.89 shows the steps for the stepwise selection technique and Table 3.90 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.91 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.8415 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.89. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Offense   1 1 15.6689   <.0001 

2 Diff in Turnovers Pe   1 2 4.3404   0.0372 

Table 3.90. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Offense 1 0.1752 0.0555 9.9648 0.0016 

Diff in Turnovers Pe 1 -0.2899 0.1506 3.7066 0.0542 

Table 3.91. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

4.1692 8 0.8415 
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3.3.5. Develop models for the third and higher rounds using differences in seasonal 

averages with single scoring system variable 

Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 

Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 

Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and single scoring system variable X2.  

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. For the first 20 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.1 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables in Table 3.1 (Set A) were considered for entry in the model. Single scoring system 

variable X2 was also considered to enter the model. 
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3.3.5.1. Ordinary least squares regression model 

3.3.5.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to estimate the point spread for each game in 

the third and higher rounds based on using difference between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = (1.9762*Diff in Scoring Margin) + (- 0.71222*Diff in Won-Lost Percentage) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.92. Table 3.93 gives the steps associated with the stepwise selection 

technique and Table 3.94 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 52% of the variation in 

point spread. 

Table 3.92. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 1.97620 0.31787 6.22 <.0001 2.89771 

Won_lost_PCT 1 -0.71222 0.21693 -3.28 0.0020 2.89771 

Table 3.93. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Scoring_Margin   1 0.4058 0.4058 2.9188 30.05 <.0001 

2 Won_lost_PCT   2 0.1191 0.5249 -4.2849 10.78 0.0020 

Table 3.94. Summary of R-squares value 

Root MSE 13.15148    R-Square    0.5249 

Dependent Mean -3.86667    Adj R-Sq 0.5028 

Coeff Var -340.12437     
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3.3.5.2. Logistic regression model 

3.3.5.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the third and higher rounds was developed and found to be: 

𝜋(Diff_SM, Diff_PF)= 
𝑒0.225∗Diff_SM+0.3563∗Diff_PF

1+𝑒0.225∗Diff_SM+0.3563∗Diff_PF 

Where π (Diff_SM, Diff_PF) is the estimated probability that the team of interest will 

win the game with difference of seasonal averages in Scoring Margin and difference of seasonal 

averages in Personal Fouls in model. 

Table 3.95 shows the steps for the stepwise selection technique and Table 3.96 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 3.97 shows the Hosmer and Lemeshow Test [8] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.2853 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.95. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Margin   1 1 14.7294   0.0001 

2 Personal_Fouls   1 2 3.9261   0.0475 

Table 3.96. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Margin 1 0.2250 0.0695 10.4707 0.0012 

Personal_Fouls 1 0.3563 0.1910 3.4792 0.0621 

Table 3.97. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.5670 7 0.2853 
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3.3.6. Develop models for the third and higher rounds using differences in seasonal 

averages with double scoring system variable 

Seasonal averages were collected for all the teams in the 2011, 2012 and 2013 

tournaments on the variables listed in Table 3.1 (Set A). The variables included: Scoring 

Offense, Scoring Defense, Scoring Margin, Field-Goal Percentage, Field-Goal Percentage 

Defense, Free-Throw Percentage, Rebound Margin, Three-Point Field Goals Per Game, Three-

Point Field Goal Percentage, Won-Lost Percentage, Assists Per Game, Blocked Shots Per Game, 

Steals Per Game, Turnovers Per game, Personal Fouls Per Game, Assist Turnover Ratio, 

Turnover Margin, Three Pt FG Defense and double scoring system variable X1.  

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. For the first 20 games of the second round, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the remainder of games in the second round, the point spread was acquired by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.1 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables in Table 3.1 (Set A) were considered for entry in the model. Double scoring system 

variable X1 was also considered to enter the model. 
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3.3.6.1. Ordinary least squares regression model 

3.3.6.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to estimate the point spread for each game in 

the third and higher rounds based on using difference between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = (1.9762*Diff in Scoring Margin) + (- 0.71222*Diff in Won-Lost Percentage) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.98. Table 3.99 gives the steps associated with the stepwise selection 

technique and Table 3.100 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 52% of the variation in 

point spread. 

Table 3.98. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Scoring_Margin 1 1.97620 0.31787 6.22 <.0001 2.89771 

Won_lost_PCT 1 -0.71222 0.21693 -3.28 0.0020 2.89771 

Table 3.99. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Scoring_Margin   1 0.4058 0.4058 2.8156 30.05 <.0001 

2 Won_lost_PCT   2 0.1191 0.5249 -4.3674 10.78 0.0020 

Table 3.100. Summary of R-squares value 

Root MSE 13.15148    R-Square    0.5249 

Dependent Mean -3.86667    Adj R-Sq 0.5028 

Coeff Var -340.12437     
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3.3.6.2. Logistic regression model 

3.3.6.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help estimate the probability of the team of interest 

winning the game for each game in the third and higher rounds was developed and found to be: 

𝜋(Diff_SM, Diff_PF)= 
𝑒0.225∗Diff_SM+0.3563∗Diff_PF

1+𝑒0.225∗Diff_SM+0.3563∗Diff_PF 

Where π (Diff_SM, Diff_PF) is the estimated probability that the team of interest will 

win the game with difference of seasonal averages in Scoring Margin and difference of seasonal 

averages in Personal Fouls in model. 

Table 3.101 shows the steps for the stepwise selection technique and Table 3.102 gives 

the parameter estimates, their standard errors and associated p-values when all the variables are 

in the model. Table 3.103 shows the Hosmer and Lemeshow Test [8] was done to test whether 

there was evidence the logistic regression model was not appropriate. The p-value was 0.2853 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.101. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 Scoring_Margin   1 1 14.7294   0.0001 

2 Personal_Fouls   1 2 3.9261   0.0475 

Table 3.102. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Scoring_Margin 1 0.2250 0.0695 10.4707 0.0012 

Personal_Fouls 1 0.3563 0.1910 3.4792 0.0621 

Table 3.103. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.5670 7 0.2853 
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3.3.7. Validating models 

3.3.7.1. Validating first round using models developed with single scoring system variable  

The 6 ordinary least squares regression models developed by using seasonal averages 

data with either a single or double scoring system variable were validated using the first round, 

second round and third round through final of the 2014 tournament.  It is noted that the 2014 

season was not used in the development of the models.  

When develop the logistic regression model by using differences in ranks of seasonal 

averages with a double scoring system variable, the p-value for Hosmer and Lemeshow Test [8] 

was 0.0003 indicating that there was evidence to reject using the logistic regression model. 

When develop the logistic regression model by using differences of seasonal averages 

with a double scoring system variable, the p-value for Hosmer and Lemeshow Test [8] was 

0.0511 indicating that there was evidence to reject using the logistic regression model.  

Because the p-value for the Hosmer and Lemeshow Test was 0.0003 and 0.0511 when 

developing the models with the double and single scoring system variables respectively, the 

logistic regression models were not included in this research. 

Table 3.104 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a single scoring system variable for 

first round of the NCAA 2014 women’s basketball tournament. 
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Table 3.104. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a single scoring system variable when validating first round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 19 6 25 

Loss 5 2 7 

  Total 24 8             32 

Overall Accuracy 65.63% 

3.3.7.2. Validating first round using models developed with double scoring system variable  

Table 3.105 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a double scoring system variable 

for first round of the NCAA 2014 women’s basketball tournament. 

Table 3.105. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a double scoring system variable when validating first round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 20 5 25 

Loss 3 4 7 

  Total 23 9             32 

Overall Accuracy 75% 

3.3.7.3. Validating second round using models developed with single scoring system 

variable  

Table 3.106 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a single scoring system variable for 

second round of the NCAA 2014 women’s basketball tournament. 
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Table 3.106. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a single scoring system variable when validating second round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 1 7 8 

  Total 6 10 16 

Overall Accuracy 75% 

3.3.7.4. Validating second round using models developed with double scoring system 

variable  

Table 3.107 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a double scoring system variable 

for second round of the NCAA 2014 women’s basketball tournament. 

Table 3.107. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a double scoring system variable when validating second round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 1 7 8 

  Total 6 10 16 

Overall Accuracy 75% 

It is noted that both models developed by using either the double or single scoring system 

variable have the same accuracy in this case.  
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3.3.7.5. Validating third and higher rounds using models developed with single scoring 

system variable  

Table 3.108 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a single scoring system variable for 

third and higher rounds of the NCAA 2014 women’s basketball tournament. 

Table 3.108. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a single scoring system variable when validating third and higher rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 8 2 10 

Loss 1 4 5 

  Total 9 6 15 

Overall Accuracy 80% 

3.3.7.6. Validating third and higher rounds using models developed with double scoring 

system variable 

Table 3.109 gives the results as to how accurately the ordinary least squares regression 

model which developed by using seasonal averages data with a double scoring system variable 

for third and higher rounds of the NCAA 2014 women’s basketball tournament. 

Table 3.109. Accuracy of ordinary least squares regression model developed by using seasonal 

averages with a double scoring system variable when validating third and higher rounds of 2014 

Point spread Predicted   

Win    Loss  Total 

Actual Win 8 2 10 

Loss 1 4 5 

  Total 9 6 15 

Overall Accuracy 80% 
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It is found that when seasonal averages were used in development of the models, the 

validation accuracy was the same for both models with single and double scoring system 

variables in this case. 

3.3.8. Bracketing the 2015 tournament before tournament begins - Prediction (models 

developed by using seasonal averages with a single scoring system variable) 

Results were predicted for every round before the tournament began. Differences of 

seasonal averages of variables to be significant were collected for all teams playing in the first 

round and put into the first round model. Significant differences of seasonal averages for each 

predicted to play each other in the second round were placed in second round model and winners 

of this round were predicted. Differences of seasonal averages of variables found to be 

significant of teams predicted to play each other in the third round were placed in the third round 

model and winning teams predicted for this round. This process continued until a winner is 

selected. 

The predicted results were then compared against the actual results for each round of the 

game for 2014 and 2015. 

3.3.8.1. Examples for seasonal averages models with single scoring system variable 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model developed by using differences of seasonal 

averages with a single scoring system variable for a particular round in 2014 tournament was 

used. 

3.3.8.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences of seasonal averages with a single scoring system variable is: 
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ŷ = (0.78646*Diff in Scoring Margin) + (-1.75276*Diff in Three-Point Field Goals Per Game) + 

(2.0739*X2 (SINGLE)) 

University of Connecticut played Prairie View in the first round of the 2014 Tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 3.110. 

The number of points each of these teams received under the single scoring system for the last 

two tournaments are found and the difference is taken. 

Table 3.110. University of Connecticut and Prairie View Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Single 

scoring* 

University of Connecticut 87 35.7 7.5 11 

Prairie View 44 -4.5 4.4 2 

Difference 43 40.2 3.1 9 

     * Average per game for season 

Using the model above, the game between University of Connecticut and Prairie View 

had a predicted point spread of: 

ŷ = (0.78646*40.2) + (-1.75276*3.1) + (2.0739*9) = 44.85 

Since ŷ >0 this game was coded as a correctly predicted win for University of 

Connecticut, who won the game by a score of 87 to 44. 

North Carolina State played BYU in the first round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.111. The 

number of points each of these teams received under the single scoring system for the last two 

tournaments are found and the difference is taken. 
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Table 3.111. North Carolina State and BYU Statistics 

Team Score Scoring Margin* Three-Point Field 

Goals* 

Single 

scoring* 

North Carolina State 57 9.6 7.3 0 

BYU 72 8.5 6.2 1 

Difference -15 1.1 1.1 -1 

* Average per game for season 

Using the model above, the game between North Carolina State and BYU had a predicted 

point spread of: 

ŷ = (0.78646*1.1) + (- 1.75276*1.1) + (2.0739*-1) = -3.14 

Since ŷ <0 this game was coded as a correctly predicted loss for North Carolina State, 

who lost the game by a score of 57 to 72. 

DePaul played Oklahoma in the first round of the 2014 Tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 3.112. The number of 

points each of these teams received under the single scoring system for the last two tournaments 

are found and the difference is taken. 

Table 3.112. DePaul and Oklahoma Statistics 

Team Score Scoring Margin* Three-Point Field Goals* Single scoring* 

DePaul 104 13.2 8.6 3 

Oklahoma 100 9 6.4 5 

Difference 4 4.2 2.2 -2 

      * Average per game for season 

Using the model above, the game between DePaul and Oklahoma had a predicted point 

spread of: 

ŷ = (0.78646*4.2) + (- 1.75276*2.2) + (2.0739*-2) = -4.7 

Since ŷ <0 this game was coded as an incorrectly predicted loss for DePaul, who won the 

game by a score of 104 to 100. 
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Stanford played South Dakota in the first round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.113. The 

number of points each of these teams received under the single scoring system for the last two 

tournaments are found and the difference is taken. 

Table 3.113. Stanford and South Dakota Statistics 

Team Score Scoring Margin* Three-Point Field Goals* Single scoring* 

Stanford 81 17.5 6.5 8 

South Dakota 62 2.6 5.7 1 

Difference 19 14.9 0.8 7 

   * Average per game for season 

Using the model above, the game between Stanford and South Dakota had a predicted 

point spread of: 

ŷ = (0.78646*14.9) + (- 1.75276*0.8) + (2.0739*7) = 24.83 

Since ŷ >0 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 81 to 62. 

3.3.8.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences of seasonal averages with a single scoring system variable is: 

ŷ = (1.3091*Diff in Scoring Margin) + (-0.33382*Diff in Won-Lost Percentage) + (0.91812*X2 

(SINGLE)) 

Oklahoma State played Purdue in the second round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.114. The 

number of points each of these teams received under the single scoring system for the last two 

tournaments are found and the difference is taken. 
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Table 3.114. Oklahoma State and Purdue Statistics 

Team Score Scoring Margin* Won-Lost Percentage* Single scoring* 

Oklahoma State 73 11.2 74.2 2 

Purdue 66 6.3 72.4 4 

Difference 7 4.9 1.8 -2 

    * Average per game for season 

Using the model above, the game between Oklahoma State and Purdue had a predicted 

point spread of: 

ŷ = (1.3091*4.9) + (- 0.33382*1.8) + (0.91812*-2) = 3.98 

Since ŷ >0 this game was coded as a correctly predicted win for Oklahoma State, who 

won the game by a score of 73 to 66. 

 California played Baylor in the second round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.115. The 

number of points each of these teams received under the single scoring system for the last two 

tournaments are found and the difference is taken. 

Table 3.115. California and Baylor Statistics 

Team Score Scoring Margin* Won-Lost Percentage* Single scoring* 

California 56 4.6 70 7 

Baylor 75 22.2 87.9 9 

Difference -19 -17.6 -17.9 -2 

* Average per game for season 

Using the model above, the game between California and Baylor had a predicted point 

spread of: 

ŷ = (1.3091*-17.6) + (- 0.33382*-17.9) + (0.91812*-2) = -18.9 

Since ŷ <0 this game was coded as a correctly predicted loss for California, who lost the 

game by a score of 56 to 75. 
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3.3.8.1.3. Ordinary least squares regression model for Third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences of seasonal averages with a single scoring system variable is: 

ŷ = (1.9762*Diff in Scoring Margin) + (- 0.71222*Diff in Won-Lost Percentage) 

Notre Dame played Oklahoma State in the third round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.116. 

Table 3.116. Notre Dame and Oklahoma State Statistics 

Team Score Scoring Margin * Won-Lost Percentage * 

Notre Dame 89 25.6 100 

Oklahoma State 72 11.2 74.2 

Difference 17 14.4 25.8 

     * Average per game for season 

Using the model above, the game between Notre Dame and Oklahoma State had a 

predicted point spread of: 

ŷ = (1.9762*14.4) + (- 0.71222*25.8) = 10.08 

Since ŷ > 0 this game was coded as a correctly predicted win for Notre Dame, who won 

the game by a score of 89 to 72. 

Tennessee played Maryland in the third round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.117. 

Table 3.117. Tennessee and Maryland Statistics 

Team Score Scoring Margin * Won-Lost Percentage * 

Tennessee 62 15.5 84.4 

Maryland 73 21.3 80 

Difference -11 -5.8 4.4 

* Average per game for season 
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Using the model above, the game between Tennessee and Maryland had a predicted point 

spread of: 

ŷ = (1.9762*-5.8) + (- 0.71222*4.4) = -14.6 

Since ŷ <0 this game was coded as a correctly predicted loss for Tennessee, who lost the 

game by a score of 62 to 73. 

3.3.8.2. Examples for seasonal averages models with a double scoring system variable 

Results were predicted for every round before the tournament began. Significant 

differences of seasonal averages for all teams playing in the first round and put into first round 

model. Values were found for significant differences of seasonal averages for teams predicted to 

play each other in the second round were placed in second round model and winners of this 

round were predicted. Values were found for differences of seasonal averages of variables for 

teams predicted to play each other in the third round were placed in the third round model and 

winning teams predicted for this round. This process continued until a winner is selected. 

The predicted results were then compared against the actual results for each round of the 

games in the 2014 and 2015 tournaments. 

3.3.8.2.1. Examples for seasonal averages models with double scoring system variable 

An example will be given as to how the ordinary least squares regression model 

developed by using differences of seasonal averages with a double scoring system variable for a 

particular round in the 2014 tournament was used. An example for the first round, second round 

and then third or higher round is given. 

3.3.8.2.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences of seasonal averages with a double scoring system variable is: 
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𝑌̂ = (0.73021*Diff in Scoring Margin) + (-1.8507*Diff in Three-Point Field Goals Per Game) + 

(1.62689*Diff in Blocked shots) + (0.2645*X1 (DOUBLE)) 

University of Connecticut played Prairie View in the first round of the 2014 Tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 3.118. 

The number of points each of these teams received under the double scoring system for the last 

two tournaments are found and the difference is taken. 

Table 3.118. University of Connecticut and Prairie View Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Blocked 

shots* 

Double 

scoring* 

University of Connecticut 87 35.7 7.5 8.2 94 

Prairie View 44 -4.5 4.4 4 2 

Difference 43 40.2 3.1 4.2 92 

* Average per game for season 

Using the model above, the game between University of Connecticut and Prairie View 

had a predicted point spread of: 

ŷ = (0.73021*40.2) + (-1.8507*3.1) + (1.62689*4.2) + (0.2645*92) = 54.78 

Since ŷ >0 this game was coded as a correctly predicted win for University of 

Connecticut, who won the game by a score of 87 to 44. 

North Carolina State played BYU in the first round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.119. The 

number of points each of these teams received under the double scoring system for the last two 

tournaments are found and the difference is taken. 

Table 3.119. North Carolina State and BYU Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Blocked 

shots* 

Double 

scoring* 

North Carolina State 57 9.6 7.3 2.6 0 

BYU 72 8.5 6.2 6 1 

Difference -15 1.1 1.1 -3.4 -1 

* Average per game for season 
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Using the model above, the game between North Carolina State and BYU had a predicted 

point spread of: 

ŷ = (0.73021*1.1) + (- 1.8507*1.1) + (1.62689*-3.4) + (0.2645*-1) = -7.03 

Since ŷ <0 this game was coded as a correctly predicted loss for North Carolina State, 

who lost the game by a score of 57 to 72. 

DePaul played Oklahoma in the first round of the 2014 tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 3.120. The number of 

points each of these teams received under the double scoring system for the last two tournaments 

are found and the difference is taken. 

Table 3.120. DePaul and Oklahoma Statistics 

Team Score Scoring 

Margin* 

Three-Point Field 

Goals* 

Blocked 

shots* 

Double 

scoring* 

DePaul 104 13.2 8.6 2.5 4 

Oklahoma 100 9 6.4 3.4 10 

Difference 4 4.2 2.2 -0.9 -6 

* Average per game for season 

Using the model above, the game between DePaul and Oklahoma had a predicted point 

spread of: 

ŷ = (0.73021*4.2) + (- 1.8507*2.2) + (1.62689*-0.9) + (0.2645*-6) = -4.06 

Since ŷ <0 this game was coded as an incorrectly predicted loss for DePaul, who won the 

game by a score of 104 to 100. 

Stanford played South Dakota in the first round of the 2014 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.121. The 

number of points each of these teams received under the double scoring system for the last two 

tournaments are found and the difference is taken. 
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Table 3.121. Stanford and South Dakota Statistics 

Team Score Scoring 

Margin* 

Three-Point 

Field Goals* 

Blocked 

shots* 

Double 

scoring* 

Stanford 81 17.5 6.5 3.7 38 

South Dakota 62 2.6 5.7 2.7 1 

Difference 19 14.9 0.8 1 37 

* Average per game for season 

Using the model above, the game between Stanford and South Dakota had a predicted 

point spread of: 

ŷ = (0.73021*14.9) + (- 1.8507*0.8) + (1.62689*1) + (0.2645*37) = 20.81 

Since ŷ >0 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 81 to 62. 

3.3.8.2.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences of seasonal averages with a double scoring system variable is: 

ŷ = (1.27219*Diff in Scoring Margin) + (- 0.3248*Diff in Won-Lost Percentage) + (0.13556*X1 

(DOUBLE)) 

Oklahoma State played Purdue in the second round of the 2014 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.122. The 

number of points each of these teams received under the double scoring system for the last two 

tournaments are found and the difference is taken. 

Table 3.122. Oklahoma State and Purdue Statistics 

Team Score Scoring Margin* Won-Lost Percentage* Double scoring* 

Oklahoma State 73 11.2 74.2 3 

Purdue 66 6.3 72.4 6 

Difference 7 4.9 1.8 -3 

   * Average per game for season 
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Using the model above, the game between Oklahoma State and Purdue had a predicted 

point spread of: 

ŷ = (1.27219*4.9) + (- 0.3248*1.8) + (0.13556*-3) = 5.24 

Since ŷ >0 this game was coded as a correctly predicted win for Oklahoma State, who 

won the game by a score of 73 to 66. 

California played Baylor in the second round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.123. The 

number of points each of these teams received under the double scoring system for the last two 

tournaments are found and the difference is taken. 

Table 3.123. California and Baylor Statistics 

Team Score Scoring Margin* Won-Lost Percentage* Double scoring * 

California 56 4.6 70 34 

Baylor 75 22.2 87.9 70 

Difference -19 -17.6 -17.9 -36 

       * Average per game for season 

Using the model above, the game between California and Baylor had a predicted point 

spread of: 

ŷ = (1.27219*-17.6) + (- 0.3248*-17.9) + (0.13556*-36) = -21.46 

Since ŷ <0 this game was coded as a correctly predicted loss for California, who lost the 

game by a score of 56 to 75. 

3.3.8.2.1.3. Ordinary least squares regression model for third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences of seasonal averages with a double scoring system variable is: 

ŷ = (1.9762*Diff in Scoring Margin) + (-0.71222*Diff in Won-Lost Percentage) 
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Notre Dame played Oklahoma State in the third round of the 2014 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.124. 

Table 3.124. Notre Dame and Oklahoma State Statistics 

Team Score Scoring Margin * Won-Lost Percentage * 

Notre Dame 89 25.6 100 

Oklahoma State 72 11.2 74.2 

Difference 17 14.4 25.8 

      * Average per game for season 

Using the model above, the game between Notre Dame and Oklahoma State had a 

predicted point spread of: 

ŷ = (1.9762*14.4) + (- 0.71222*25.8) = 10.08 

Since ŷ > 0 this game was coded as a correctly predicted win for Notre Dame, who won 

the game by a score of 89 to 72. 

Tennessee played Maryland in the third round of the 2014 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.125. 

Table 3.125. Tennessee and Maryland Statistics 

Team Score Scoring Margin * Won-Lost Percentage * 

Tennessee 62 15.5 84.4 

Maryland 73 21.3 80 

Difference -11 -5.8 4.4 

* Average per game for season 

Using the model above, the game between Tennessee and Maryland had a predicted point 

spread of: 

ŷ = (1.9762*-5.8) + (- 0.71222*4.4) = -14.6 

Since ŷ <0 this game was coded as a correctly predicted loss for Tennessee, who lost the 

game by a score of 62 to 73. 
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3.3.9. Results for prediction  

3.3.9.1. Results for prediction when using models developed using difference of seasonal 

averages with a single scoring system variable 

In 2014, a continuous process was used to predict the results of the tournament instead of 

doing round by round validations as in previous section. In other words, a complete bracket was 

filled out in 2014 before any game was played. 

The ordinary least squares regression model for the first round developed by using 

seasonal averages and a single scoring system variable was used to predict the teams who go to 

next round. Once the teams in the second round were predicted, the second-round model was 

used to predict the winners of the second round. This process was continued for the third and 

higher rounds until the predicted final winner of the game was determined. 

A summary of the number of correct and incorrect predictions for each round of the 2014 

tournament is given in Table 3.126. 

Table 3.126. Prediction Results of each round for 2014: (Ordinary least squares regression model 

developed by using seasonal averages with a single scoring system variable) 

 Correct Incorrect Total games 

First round 21 11 32 

Second round 12 4 16 

Third round 7 1 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 69.84% 

A similar process was conducted in predicting 2015 tournament. Namely, a complete 

bracket was filled out before 2015 tournament started. 

A summary of the number of correct and incorrect predictions for each round of the 2015 

tournament is given in Table 3.127. 
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Table 3.127. Prediction Results of each round for 2015: (Ordinary least squares regression model 

developed by using seasonal averages with a single scoring system variable) 

 Correct Incorrect Total games 

First round 24 12 32 

Second round 11 5 16 

Third round 6 2 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 71.43% 

3.3.9.2. Results for prediction when using models developed using differences of seasonal 

averages with a double scoring system variable 

A similar process was conducted as in the previous section using the models developed 

with seasonal averages and a double scoring system variable to predict the results of the 2014 

and 2015 tournaments. A complete bracket was filled out for 2014 and 2015 tournaments before 

any game was played. 

The ordinary least squares regression model for the first round developed by using 

seasonal averages and a double scoring system variable was used to predict the teams who go to 

next round. Once the teams in the second round were predicted, the second-round model was 

used to predict the winners of the second round. This process was continued for the third and 

higher rounds until the predicted final winner of the game was determined. 

A summary of the number of correct and incorrect predictions for each round of the 2014 

tournament is given in Table 3.128. 

  



94 

 

Table 3.128. Prediction Results of each round for 2014: (Ordinary least squares regression model 

developed by using seasonal averages with a double scoring system variable) 

 Correct Incorrect Total games 

First round 24 8 32 

Second round 12 4 16 

Third round 7 1 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 74.6% 

A similar process was conducted to predict the results for the 2015 tournament. Namely, 

a complete bracket was filled out before 2015 tournament started. The summary of the number of 

correct and incorrect predictions for each round of the 2015 tournament is given in Table 3.129. 

Table 3.129. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by using differences of seasonal averages with a double scoring system variable) 

 Correct Incorrect Total games 

First round 23 9 32 

Second round 10 11 16 

Third round 6 2 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 68.25% 

When seasonal averages were used, the models developed by using the double scoring 

system variable worked better than the ones using the single scoring system variable for the data 

considered. 

3.4. Develop models by using in-game statistics 

Data was collected from the results of the NCAA women’s basketball tournament of 

2014. In-game statistics were collected for 63 games of the 2014 tournament on variables listed 

in Table 3.2 (Set B). The variables included: Free-Throw Percentage (FT%), Field-Goal 
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Percentage (FG%),3 Point Goals Percentage (3P%), Offensive Rebounds (OREB), Assists 

(AST), Steals (ST), Blocks (BLK) and Turnovers (TO). Differences between these variables for 

the two teams playing each game were found and considered for entry into model. 

One ordinary least squares regression model and one logistic regression model were 

developed by using the data collected from the 2014 season. The first model used ordinary least 

squares regression with point spread as a response, and the second model used a logistic 

regression approach with responses recorded as ‘1’ for win and ‘0’ for loss. 

3.4.1. Development of ordinary least squares regression model 

The ordinary least squares regression model to estimate the point spread based on using 

significant differences between in-game statistics was found to be: 

𝑌̂ = (78.00159*Diff in FGP) + (6.9552*Diff in 3PP) + (13.57326*Diff in FTP) + (0.62633*Diff 

in REB) + (0.36394*Diff in AST) + (-1.07784*Diff in TO) 

The following statistics have positive coefficients associated with them which is to be 

expected: Difference in FGP, Difference in 3PP, Difference in FTP, Difference in REB and 

Difference in AST. It is noted that if the team increases Field Goal Percentage by 1% more than 

other team, the team will on average get 0.78 more points. Each additional rebound over the 

other team is worth approximately 0.63 points. The only variable that has negative coefficients is 

Diff in TO. Each additional turnover a team has compared to the opposing team, costs the team 

an average of 1.08 points over the opposing team. 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 3.130. Table 3.131 gives the steps associated with the stepwise 

selection technique and Table 3.132 shows the associated R-square values as variables are added 

to the model. The model with the 6 significant variables explains an estimated 97% of the 

variation in point spread. 
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Table 3.130. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

FGP 1 78.00159 7.30785 10.67 <.0001 4.44515 

3PP 1 6.95520 4.02554 1.73 0.0894 2.07599 

FTP 1 13.57326 2.75585 4.93 <.0001 1.18281 

REB 1 0.62633 0.05619 11.15 <.0001 2.67062 

AST 1 0.36394 0.10254 3.55 0.0008 2.95907 

TO 1 -1.07784 0.10932 -9.86 <.0001 1.29572 

Table 3.131. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 FGP   1 0.8063 0.8063 316.563 258.13 <.0001 

2 TO   2 0.0722 0.8786 177.760 36.28 <.0001 

3 REB   3 0.0691 0.9477 45.0248 79.24 <.0001 

4 FTP   4 0.0123 0.9600 22.9930 18.18 <.0001 

5 AST   5 0.0102 0.9702 5.1256 19.82 <.0001 

6 3PP   6 0.0015 0.9717 4.2330 2.99 0.0894 

Table 3.132. Summary of R-squares value 

Root MSE 3.73453    R-Square    0.9717 

Dependent Mean -5.00000    Adj R-Sq 0.9687 

Coeff Var -74.69057     

3.4.2. Development of logistic regression model 

A logistic regression model to help estimate the probability of the team of interest 

winning the game was developed and found to be: 

𝜋REB, FGP, FTP=
𝑒0.3031𝑅𝐸𝐵+32.0237𝐹𝐺𝑃+13.5347𝐹𝑇𝑃

1+𝑒0.3031𝑅𝐸𝐵+32.0237𝐹𝐺𝑃+13.5347𝐹𝑇𝑃 

Where π (REB, FGP,FTP) is the estimated probability that the team of interest will win 

the game with differences of in-game statistics in rebounds, difference of in-game statistics in 

Field Goal Percentage and difference of in-game statistics in Free Throw Percentage in model. 

Table 3.133 shows the steps for the stepwise selection technique and Table 3.134 gives 

the parameter estimates, their standard errors and associated p-values when all the variables are 
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in the model. Table 3.135 shows the Hosmer and Lemeshow Test [8] was done to test whether 

there was evidence the logistic regression model was not appropriate. The p-value was 0.992 

indicating that there was no evidence to reject using the logistic regression model. 

Table 3.133. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 REB   1 1 36.3735   <.0001 

2 FGP   1 2 12.1608   0.0005 

3 TO   1 3 6.0411   0.0140 

4 FTP   1 4 3.6833   0.0550 

5   TO 1 3   1.4325 0.2314 

6 TO   1 4 6.6876   0.0097 

7   TO 1 3   1.4325 0.2314 

Table 3.134. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

FGP 1 32.0237 14.2846 5.0258 0.0250 

FTP 1 13.5347 7.9615 2.8900 0.0891 

REB 1 0.3031 0.1305 5.3937 0.0202 

Table 3.135. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

1.5360 8 0.9921 

3.4.3. Validating models 

3.4.3.1. Validating first round using models developed  

The ordinary least squares regression model developed by using in-game statistics was 

used to predict the results of the 2015.  The logistic regression model was also used to predict the 

results of the 2015 tournament. It is noted that the 2015 season was not used in the development 

of the models.  
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Table 3.136 gives the results as to how accurately the ordinary least squares regression 

model developed by using in-game statistics predicted the winning teams of the first round of the 

NCAA 2015 women’s basketball game. 

Table 3.136. Accuracy of ordinary least squares regression model developed by in-game 

statistics when validating first round of 2015 

Point spread predicted   

Win Loss Total 

Actual Win 26 0 26 

Loss 1 5 6 

  Total 27 5             32 

Overall Accuracy 96.88% 

Table 3.137 gives the results as to how accurately the logistic regression model 

developed by using in-game statistics when predicting the winning teams of the first round of the 

NCAA 2015 women’s basketball game. 

Table 3.137. Accuracy of logistic regression model developed by in-game statistics when 

validating first round of 2015 

Logistic Predicted   

Win Loss Total 

Actual Win 23 3 26 

Loss 2 4 6 

  Total 25 7             32 

Overall Accuracy 84.38% 

3.4.3.2. Validating second round using models developed 

Table 3.138 gives the results as to how accurately the ordinary least squares regression 

model developed by using in-game statistics predicts the second round of the NCAA 2015 

women’s basketball game. 
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Table 3.138. Accuracy of ordinary least squares regression model developed by in-game 

statistics when validating second round of 2015 

Point spread predicted   

Win Loss Total 

Actual Win 7 0 7 

Loss 0 9 9 

  Total 7 9 16 

Overall Accuracy 100% 

Table 3.139 gives the results as to how accurately the logistic regression model 

developed by using in-game statistics was in predicting the second round of the NCAA 2015 

women’s basketball game. 

Table 3.139. Accuracy of logistic regression model developed by in-game statistics when 

validating second round of 2015 

Logistic predicted   

Win Loss Total 

Actual Win 7 0 7 

Loss 1 8 9 

  Total 8 8            16 

Overall Accuracy 93.75% 

3.4.3.3. Validating third and higher rounds using models developed 

Table 3.140 gives the results as to how accurately the ordinary least squares regression 

model developed by using in-game statistics was in predicting the third and higher rounds of the 

NCAA 2015 women’s basketball game. 

  



100 

 

Table 3.140. Accuracy of ordinary least squares regression model developed by in-game 

statistics when validating third and higher rounds of 2015 

Point spread predicted   

Win Loss Total 

Actual Win 11 0 11 

Loss 1 3 14 

  Total 12 3             15 

Overall Accuracy 93.33% 

Table 3.141 gives the results as to how accurately the logistic regression model 

developed by using in-game statistics was in predicting the third and higher rounds of the NCAA 

2015 women’s basketball game. 

Table 3.141. Accuracy of logistic regression model developed by in-game statistics when 

validating third and higher rounds of 2015 

Logistic Predicted   

Win Loss Total 

Actual Win 9 0 9 

Loss 2 4 6 

  Total 11 4             15 

Overall Accuracy 86.67% 

3.4.4. Bracketing the 2016 tournament before tournament begins - Prediction 

Since the in-game statistics will not be available before the tournaments began, 

significant differences of in-game statistics were replaced with seasonal averages for the current 

year of the associated statistics. The seasonal averages of these statistics for all teams playing in 

the 2016 tournament were collected.  

Differences of seasonal averages for teams playing each other in the first round were 

placed into the model for each game in the first round and the winning teams were predicted. 
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Namely, if ŷ is great than 0, a predicted win for the team of interest was coded. If ŷ is less than 0, 

a predicted loss for the team of interest was coded. 

To verify the accuracy of prediction results for the logistic regression model for the first 

round, a similar process was conducted. Differences of seasonal averages were placed into the 

logistic model instead of differences of in-game statistics. If π xi is greater than 0.5, a predicted 

win was coded. If π xi is less than 0.5, a predicted loss was coded for the team of interest. 

Once the teams making it to the second round were predicted, the same model was used 

to predict the winners of the second round. This process continued for the third and higher 

rounds. 

In 2016, a continuous process was used in predicting winners of all games instead of 

doing round by round predictions as in 2015 using both the ordinary least squares and logistic 

models. Namely, a complete bracket was filled out in 2016 before any game was played.  

3.4.4.1. Example for in-game statistics models when predicting 2016 

An example will be given as to how the ordinary least squares regression model 

developed by using in-game statistics for a particular round was used for each round in 2016 

tournament. 

3.4.4.1.1. Ordinary least squares regression models 

3.4.4.1.1.1. Ordinary least squares regression model for first and higher rounds 

The ordinary least squares regression model to estimate the point spread based on using 

difference between in-game statistics of the significant variables was found to be the following: 

ŷ = (78.00159*Diff in FGP) + (6.9552*Diff in 3PP) + (13.57326*Diff in FTP) + (0.62633*Diff 

in REB) + (0.36394*Diff in AST) + ( -1.07784*Diff in TO) 

Seton Hall played Duquesne in the first round of the 2016 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.142.  
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Table 3.142. Seton Hall and Duquesne Statistics 

Team Score FGP* 3PP* FTP* REB* AST* TO* 

Seton Hall 76 0.4247392 0.33232628 0.71061644 39.688 11.938 13.875 

Duquesne 97 0.40751043 0.33550914 0.7357513 42.324 16.412 14.38235 

Difference -21 0.01722876 -0.00318285 -0.02513486 -2.636 -4.474 -0.5073529 

* Average per game for season 

Using the model above, the game between Seton Hall and Duquesne had a predicted 

point spread of: 

ŷ = (78.00159*0.01722876) + (6.9552*-0.00318285) + (13.57326*-0.02513486) + 

(0.62633*-2.636) + (0.36394*-4.474) + (-1.07784*-0.5073529) = -1.75 

Since ŷ <0 this game was coded as a correctly predicted loss for Seton Hall, who lost the 

game by a score of 76 to 97. 

South Florida played Colorado State in the first round of the 2016 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.143.  

Table 3.143. South Florida and Colorado State Statistics 

Team Score FGP* 3PP* FTP* REB* AST* TO* 

South Florida 48 0.41004184 0.34410339 0.78322785 42.794 13 12.67647 

Colorado 45 0.44444444 0.34385382 0.70804598 37.515 15 12.0303 

Difference 3 -0.0344026 0.00024957 0.07518187 5.279 -2 0.6461676 

* Average per game for season 

Using the model above, the game between South Florida and Colorado had a predicted 

point spread of: 

ŷ = (78.00159*-0.0344026) + (6.9552*0.00024957) + (13.57326*0.07518187) + 

(0.62633*5.279) + (0.36394*-2) + (-1.07784*0.6461676) = 0.65 

Since ŷ <0 this game was coded as a correctly predicted loss for South Florida, who lost 

the game by a score of 48 to 45. 

Louisville played Central Arkansas in the first round of the 2016 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.144.  
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Table 3.144. Louisville and Central Arkansas Statistics 

Team Score FGP* 3PP* FTP* REB* AST* TO* 

Louisville 87 0.43536761 0.32705479 0.71473851 38.706 16.118 15.05882 

Central Arkansas 60 0.42322725 0.34878049 0.73483536 38.969 14.188 14.15625 

Difference 27 0.0121404 -0.021726 -0.020097 -0.263 1.93 0.902574 

* Average per game for season 

Using the model above, the game between Louisville and Central Arkansas had a 

predicted point spread of: 

ŷ = (78.00159*0.0121404) + (6.9552*-0.021726) + (13.57326*-0.020097) + (0.62633*-

0.263) + (0.36394*1.93) + (-1.07784*0.902574) = 0.09 

Since ŷ >0 this game was coded as an incorrectly predicted win for Louisville, who won 

the game by a score of 87 to 60. 

Miami (Florida) played South Dakota State in the first round of the 2016 Tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 3.145.  

Table 3.145. Miami (Florida) and South Dakota State Statistics 

Team Score FGP* 3PP* FTP* REB* AST* TO* 

Miami (Florida) 71 0.43057571 0.33695652 0.63584906 39.697 15.576 15.57576 

South Dakota State 74 0.41496921 0.34635417 0.69391635 39.853 14.618 12.94118 

Difference -3 0.0156065 -0.009398 -0.058067 -0.156 0.958 2.634581 

 * Average per game for season 

Using the model above, the game between Miami (Florida) and South Dakota State had a 

predicted point spread of: 

ŷ = (78.00159*0.0156065) + (6.9552*-0.009398) + (13.57326*-0.058067) + (0.62633*-

0.156) + (0.36394*0.958) + (-1.07784*2.634581) = -2.22 

Since ŷ <0 this game was coded as a correctly predicted loss for Miami (Florida), who 

lost the game by a score of 71 to 74. 
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3.4.4.1.2. Logistic regression models 

3.4.4.1.2.1. Logistic regression model for first and higher rounds 

The logistic regression model to help estimate the probability of the team of interest 

winning based on significant differences of in-game statistics was found to be: 

𝜋REB, FGP, FTP = 
𝑒0.3031𝑅𝐸𝐵+32.0237𝐹𝐺𝑃+13.5347𝐹𝑇𝑃

1+𝑒0.3031𝑅𝐸𝐵+32.0237𝐹𝐺𝑃+13.5347𝐹𝑇𝑃 

Seton Hall played Duquesne in the first round of the 2016 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.146.  

Table 3.146. Seton Hall and Duquesne Statistics 

Team Score REB* FGP* FTP* 

Seton Hall 76 39.688 0.4247392 0.71061644 

Duquesne 97 42.324 0.40751043 0.7357513 

Difference -21 -2.636 0.01722876 -0.02513486 

      * Average per game for season 

Using the model above, the game between Seton Hall and Duquesne had an estimated 

probability of winning the game of: 

𝜋 (-2.636, 0.017, -0.025) = 
𝑒0.3031∗−2.636+32.0237∗0.017+13.5347∗−0.025

1+𝑒0.3031∗−2.636+32.0237∗0.017+13.5347∗−0.025 = 0.36 

Since  𝜋 < 0.5 this game was coded as a correctly predicted loss for Seton Hall, who lost 

the game by a score of 76 to 97. 

BYU played Missouri in the first round of the 2016 Tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 3.147.  

Table 3.147. BYU and Missouri Statistics 

Team Score REB* FGP* FTP* 

BYU 69 37.485 0.42667375 0.70289855 

Missouri 78 38.781 0.43348624 0.76256499 

Difference -9 -1.296 -0.00681249 -0.05966644 

     * Average per game for season 
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Using the model above, the game between BYU and Missouri had an estimated 

probability of winning the game of: 

𝜋 (-1.296, -0.007, -0.06) = 
𝑒0.3031∗−1.296+32.0237∗−0.007+13.5347∗−0.06

1+𝑒0.3031∗−1.296+32.0237∗−0.007+13.5347∗−0.06
 = 0.19 

Since 𝜋 < 0.5 this game was coded as a correctly predicted loss for BYU, who lost the 

game by a score of 69 to 78. 

Louisville played Central Arkansas in the first round of the 2016 Tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 3.148.  

Table 3.148. Louisville and Central Arkansas Statistics 

Team Score REB* FGP* FTP* 

Louisville 87 38.706 0.43536761 0.71473851 

Central Arkansas   60 38.969 0.42322725 0.73483536 

Difference 27 -0.263 0.0121404 -0.020097 

 * Average per game for season 

Using the model above, the game between Louisville and Central Arkansas had an 

estimated probability of winning the game of: 

𝜋 (-0.263,0.012,-0.02) = 
𝑒0.3031∗−0.263+32.0237∗0.012+13.5347∗−0.02

1+𝑒0.3031∗−0.263+32.0237∗0.012+13.5347∗−0.02 = 0.51 

Since  𝜋 > 0.5 this game was coded as a correctly predicted win for Louisville, who won 

the game by a score of 87 to 60. 

Miami (Florida) played South Dakota State in the first round of the 2016 Tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 3.149.  

Table 3.149. Miami (Florida) and South Dakota State Statistics 

Team Score REB* FGP* FTP* 

Miami (Florida) 71 39.697 0.43057571 0.63584906 

South Dakota State 74 39.853 0.41496921 0.69391635 

Difference -3 -0.156 0.0156065 -0.058067 

* Average per game for season 
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Using the model above, the game between Miami (Florida) and South Dakota State had 

an estimated probability of winning the game of: 

𝜋 (-0.156,0.016,-0.058) = 
𝑒0.3031∗−0.156+32.0237∗0.016+13.5347∗−0.058

1+𝑒0.3031∗−0.156+32.0237∗0.016+13.5347∗−0.058
 = 0.42 

Since  𝜋 < 0.5 this game was coded as a correctly predicted loss for Miami (Florida), who 

lost the game by a score of 71 to 74. 

3.4.5. Results for prediction by using in-game statistics models 

In 2016, a continuous process was used in verifying the models instead of doing round by 

round predictions as in the previous section. In other words, a complete bracket was filled out in 

2016 before any game was played. 

One ordinary least square regression model and one logistic regression model were used 

to predict each round of NCAA women’s basketball tournament of 2016. Since the in-game 

statistics would not be available before the tournaments began, seasonal averages were entered 

into in-game model to predict the winner of the basketball game for 2016. 

A summary of the number of correct and incorrect predictions for ordinary least squares 

regression model for each round of the 2016 tournament is given in Table 3.150. 

Table 3.150. Prediction results of each round for 2016: (Ordinary least squares regression model 

developed by in-game statistics) 

 Correct Incorrect Total games 

First round 23 9 32 

Second round 9 7 16 

Third round 2 6 8 

Fourth round 1 3 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 58.73% 
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A summary of the number of correct and incorrect predictions for logistic regression 

model for each round of the 2016 tournament is given in Table 3.151. 

Table 3.151. Prediction results of each round for 2016: (Logistic regression model developed by 

in-game statistics) 

 Correct Incorrect Total games 

First round 28 4 32 

Second round 9 7 16 

Third round 3 5 8 

Fourth round 1 3 4 

Fifth round 1 1 2 

Final round 1 0 1 

Overall Accuracy 68.25% 

It is noted that both models correctly predicted the winning team. 

3.5. Conclusion 

3.5.1. Validation - Models developed by using seasonal averages 

To verify the accuracy of prediction results for the ordinary least squares regression 

models developed for each round using differences of the seasonal averages, data from the 2014 

tournament was used. The ordinary least squares regression model developed by using 

differences in ranks of seasonal averages with either a single or double scoring system variable 

for the first round had approximately a 62.63% and a 78.13% chance of correctly predicting the 

results, respectively. The ordinary least squares regression model developed by using seasonal 

averages with either a single or double scoring system variable for the first round had 

approximately a 65.63% chance of correctly predicting the results. 

The ordinary least squares regression model developed by using differences in ranks of 

seasonal averages with either a single or double scoring system variable for the second round had 

approximately a 75% chance of correctly predicting the results. The ordinary least squares 
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regression model developed by using seasonal averages with either a single or double scoring 

system variable for the second round had approximately a 75% chance of correctly predicting the 

results. 

The ordinary least squares regression model developed by using differences in ranks of 

seasonal averages with either a single or double scoring system variable for the third and higher 

rounds had approximately a 93.33% chance of correctly predicting the results. The ordinary least 

squares regression model developed by using seasonal averages with either a single or double 

scoring system variable for the third and higher rounds had approximately a 80% chance of 

correctly predicting the results. 

3.5.2. Prediction - Models developed by using seasonal averages 

In 2015, a continuous process was used to predict the winning team in each round before 

the tournament started instead of doing round by round predictions as in 2014. Namely, a 

complete bracket was filled out in 2015 before any game was played.  When the differences of 

the seasonal averages for both teams for all previously mentioned variables were considered for 

entry in the ordinary least squares models which developed by using differences in ranks of 

seasonal averages with either a single or double scoring system variable, the models had 

approximately a 74.6% and 73.02% chance of correctly predicting the winner of a basketball 

game, respectively. When the differences of the seasonal averages for both teams for all 

previously mentioned variables were considered for entry in the ordinary least squares models 

which developed by using seasonal averages with either a single or double scoring system 

variable, the models had approximately a 71.43% chance of correctly predicting the winner of a 

basketball game. 
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3.5.3. Validation - Model developed by using in-game statistics 

To verify the accuracy of prediction results for the ordinary least squares regression 

model developed by using in-game statistics, differences of the in-game statistics for both teams 

for all previously mentioned variables listed in Table 3.2 (Set B) were placed in the model. The 

ordinary least squares regression model and the logistic regression model for the first round had 

approximately a 96.88% and 84.38% chance of correctly predicting the results, respectively. The 

ordinary least squares regression model and the logistic regression model for the second round 

had approximately a 100% and 93.75% chance of correctly predicting the results, respectively. 

The ordinary least squares regression model and the logistic regression model for the third and 

higher rounds had approximately a 93.33% and 86.67% chance of correctly predicting the 

results, respectively. 

3.5.4. Prediction - Model developed by using in-game statistics 

When the differences of the seasonal averages were placed into the model developed by 

using differences of in-game statistics, the ordinary least squares regression model and logistic 

regression model correctly predicted 59% and 68%, respectively, of the games correctly. 

It is noted that the predictions were done and brackets filled out before the tournament 

began. The accuracy is lower because teams predicted to play in the second round or higher 

round might not have actually made it to those rounds. 

3.5.5. Overall comparisons 

Both the ordinary least squares regression model and the logistic regression model 

developed by using in-game statistics work well when the in-game statistics are known.  

When predicting results for future tournaments without in-game statistics given, the 

ordinary least squares regression model has an overall accuracy of 59% and logistic regression 
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model has an overall accuracy of 68% chance of correctly pick the winner of each game in 

NCAA women’s basketball tournament. This result was not surprising since the models were 

developed by using in-game statistics and replaced with seasonal averages when doing the 

prediction.  

Overall, ordinary least squares models developed by using seasonal averages had an 

overall accuracy is 75% works slightly better than models developed by using in-game statistics 

when estimating the point spread of a NCAA women’s basketball tournament game.  
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CHAPTER 4. BRACKETING NCAA WOMEN’S VOLLEYBALL TOURNAMENT 

4.1. Introduction 

4.1.1. The history of NCAA women’s volleyball tournament 

The NCAA division I women’s volleyball tournament is the annual championship in 

women’s volleyball from teams in division I contested by the National Collegiate Athletic 

Association(NCAA) each winter since 1981. Volleyball was added to the NCAA championship 

program for the 1981-1982 school year. There were only 20 schools competing for the first 

NCAA championship which held in 1981. The tournament expanded gradually, and its current 

size of 64 teams was attained in 1998 (NCAA - Volleyball [1]). 

4.1.2. The playing rule and structure 

There are 330 NCAA member institutions that sponsor division I women’s volleyball 

teams and are eligible to compete in the National Championship. There are 64 teams that play 32 

games to compete in a single elimination tournament for the first round of the NCAA division I 

women’s volleyball tournament championship. Of the 64 teams, 32 teams will receive automatic 

qualification while the rest 32 teams are selected by the division I women’s volleyball committee 

(Road to the Championship [2]). 

For the first round, there will be 64 teams competing in single-elimination to advance to 

second round. The 32 advancing teams then compete against each other in single-elimination 

second round competition. The winning teams will advance to the regional round. For the 

regional round, there will be 16 teams competing in single-elimination regional semifinal 

competition. The advancing teams then compete against each other in the single-elimination 

regional final. The winning team for the four regions will advance to the NCAA women’s 

volleyball championship final game. There will be 4 teams competing in single-elimination 
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semifinal and the advancing teams then compete against each other in the national championship 

title (Road to the Championship [2]). Figure 2 shows the 2015 - 2016 NCAA women’s volleyball 

tournament bracket. 
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Figure 2. The NCAA women’s volleyball tournament bracket for the 2015 – 2016 season. (This 

bracket is downloaded from: http://www.ncaa.com/interactive-bracket/volleyball-women/d1) 
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4.1.3. The research objectives for this study 

The research objectives for this study are as follows: 

1) Develop ordinary least squares regression models for Round 1, Round 2 and Rounds 

3-6 with point spread being the dependent variable and using differences in ranks of seasonal 

averages of various variables, to predict winners of volleyball games in each of those rounds for 

the NCAA women’s volleyball tournament; and 

2) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using differences in ranks of seasonal 

averages, to predict winners of volleyball games in each of those rounds for the NCAA women’s 

volleyball tournament; and 

3) Develop ordinary least squares regression models for Round 1, Round 2 and Rounds 

3-6 with point spread being the dependent variable by using difference of seasonal averages of 

various variables, to predict winners of volleyball games in each of those rounds for the NCAA 

women’s volleyball tournament; and 

4) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using difference of seasonal averages, to 

predict winners of volleyball games in each of those rounds for the NCAA women’s volleyball 

tournament; and 

5) Develop one ordinary least squares regression model by using in-game statistics, to 

explain the variation of the point spread of a women’s volleyball game and then use this model 

to predict the winners of the volleyball games for the NCAA women’s volleyball tournament by 

estimating the significant in-game statistics with differences in seasonal averages of the statistics 

between the two teams playing; and  
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6) Develop one logistic regression model by using in-game statistics, and use this model 

to predict winners by replacing the significant in-game statistics with the differences in seasonal 

averages of the statistics for the two teams playing.  

In order to accomplish objectives 1 and 2, data was collected for three years of the 

NCAA women’s volleyball tournament. This included data from the 2011, 2012 and 2013 

tournaments. Differences in ranks of seasonal averages were collected for all the teams in the 

2011 tournament on the following variables in Table 4.1 (Set A). Differences in ranks of 

seasonal averages were also collected on the same variables for all teams playing against each 

other in the 2012 and 2013 tournament. The developed models are given in Section 4.2. 

Table 4.1. Set A - Variables in consideration for seasonal average 

Variables in 

consideration 

Definitions  

Aces Per Set A serve that results directly in a point when a player 

attempts to serve the ball over the net into the 

opponent’s court for each set. [3] 

Assists Per Set When a player passer, sets or digs ball to teammate who 

gets a kill for each set. [3] 

Blocks Per Set Player(s) block leads directly to a point for each set. [3] 

Digs Per Set When a player receives an attacked ball and keeps the 

ball in play for each set. [3] 

Hitting Percentage Hitting Percentage = (Total kills – Total Errors)/ Total 

Attempts. [3] 

Kills Per Set An attack that directly leads to a point for each set. [3] 

Match W-L Percentage Match W-L Percentage = Numbers of games won / 

Total sets played. [3]  

Note: The value for Match W-L Percentage will 

between 0 to 1. 

In order to accomplish objectives 3 and 4, data was collected for three years of the 

NCAA women’s volleyball tournament. This included data from the 2011, 2012 and 2013 

tournaments. Seasonal averages were collected for all the teams playing each other in the 2011 

tournament on the same variables listed in Table 4.1 (Set A). Seasonal averages were also 
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collected on the same variables for all teams playing each other in the 2012 and 2013 

tournament. The developed models are given in Section 4.3. 

For research objectives 5 and 6, data was collected from the NCAA women’s volleyball 

tournament of 2015. In-game statistics were collected for 37 games of 63 games of the 2015 

tournament on the variables listed in Table 4.2 (Set B): Attack Kill, Attack Error, Attack 

Percentage, SERVE SA, SRV RE, Digs and Blocks. The developed models are given in Section 

4.4. 

Table 4.2. Set B - Variables in consideration for in-game statistics  

Variables in consideration Definitions 

Attack Kill An attack that directly leads to a point. [3] 

Attack Error An attack that directly results in a point for the 

opposing team. [3] 

Attack Percentage Attack Percentage = (Total kills – Total Errors)/ 

Total Attempts. [3] 

SERVE SA (Service ace) A service ace (SA) is a serve that results directly in a 

point when a player attempts to serve the ball over 

the net into the opponent’s court. [3] 

SRV RE (Reception Error) When a result for a point for the opposing team a 

player of team must be charged with a reception 

error. [3] 

Digs When a player receives an attacked ball and keeps the 

ball in play. [3] 

Blocks Player(s) block leads directly to a point. [3] 

4.2. Model developed by using differences in ranks of seasonal averages 

4.2.1. Develop models by using differences in ranks of seasonal averages 

All data was collected from NCAA.COM [4]. Data for the ranks of the seasonal averages 

of the variables of interest were collected before the tournament started. For example, the first 

game of NCAA 2011 women’s volleyball tournament was held on December 1, 2011. The ranks 

of the seasonal averages for each of the variables were based on games played through 

November 27, 2011. 
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Data was collected for three years of the NCAA women’s volleyball tournament. This 

included 2011, 2012 and 2013 tournaments. The ranks for the seasonal averages for the variables 

of interest for each team were collected for all the teams in the 2011 tournament on the variables 

listed in Table 4.1 (Set A). The variables included: Aces Per Set, Assists Per Set, Blocks Per Set, 

Digs Per Set, Hitting Percentage, Kills Per Set and Match W-L Percentage. Ranks of the seasonal 

averages for the variables of interest for each team were also collected for all teams playing in 

the 2012 and 2013 tournaments. 

4.2.2. Develop models for the first round using differences in ranks of seasonal averages  

4.2.2.1. Develop ordinary least squares regression models 

The response variable for the ordinary least squares regression model was the point 

spread of the game in the order of the team of interest minus the opposing team. A positive point 

spread indicates a win for the team of interest and a negative value indicates a loss for the team 

of interest. There were 192 teams playing 96 games in first rounds of the tournaments in 2011, 

2012 and 2013. For the half games of the first round in the three years, the team of interest is the 

stronger team (higher seed numbers), the point spread was obtained by using the stronger team 

(higher seed numbers) minus the weaker team (lower seed numbers). For the remainder of games 

in the first round, the team of interest is the weaker team (lower seed numbers), the point spread 

was acquired by using the score of weaker team (lower seed number) minus the stronger team 

(higher seed number). 

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences of the 

ranks of seasonal averages for all the variables previously given in Table 4.1 (Set A) between the 
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two teams were considered for entry in the model in the order team of interest minus opposing 

team.  

4.2.2.1.1. Development of ordinary least squares regression model for first round 

The ordinary least squares regression model to predict the winning team for each game in 

the first round based on using difference between seasonal averages of the significant variables 

was developed and found to be: 

𝑌̂ = (-0.01228* Diff_Assists) + ( -0.00925* Diff_Blocks) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.3. Table 4.4 gives the steps associated with the stepwise selection 

technique and Table 4.5 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 38% of the variation in 

point spread. 

Table 4.3. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Assists 1 -0.01228 0.00253 -4.85 <.0001 1.00941 

Diff_Blocks 1 -0.00925 0.00171 -5.42 <.0001 1.00941 

Table 4.4. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Diff_Hitting%_   1 0.2654 0.2654 19.7568 34.33 <.0001 

2 Diff_Blocks   2 0.0773 0.3427 9.7928 11.05 0.0013 

3 Diff_Assists   3 0.0507 0.3934 3.9388 7.78 0.0064 

4   Diff_Hitting%_ 2 0.0097 0.3837 3.4442 1.49 0.2252 
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Table 4.5. Summary of R-squares value 

Root MSE 2.00969     R-Square   0.3837 

Dependent Mean -0.14583     Adj R-Sq  0.3706 

Coeff Var -1378.07576     

4.2.2.2. Develop logistic regression models for first round 

The logistic regression model was also fit to the data with the dependent variable 

recorded as ‘1’ for win and ‘0’ for loss for the team of interest. This model estimates the 

probability of a win for the team of interest. Team of interest was the stronger team (higher seed 

numbers) in half of the games and the weaker team (lower seed numbers) in the other half of the 

games. 

No intercept was used during the development of the logistic regression model since the 

ordering of the teams in the model should not matter. Stepwise selection was used with an α 

value of 0.1 for both entry and exit when determining the significant variables in developing the 

logistic regression model. The differences in ranks of the seasonal averages for both teams for all 

previously mentioned variables listed in Table 4.1 (Set A) were considered for entry in the 

model.  

4.2.2.2.1. Development of logistic regression model for the first round 

The logistic regression model to predict the winning team for each game in the first round 

was developed and found to be: 

𝜋(Diff_Blocks, Diff_Kills)=
𝑒−0.0114∗Diff_Blocks−0.0169∗Diff_Kills

1+𝑒−0.0114∗Diff_Blocks−0.0169∗Diff_Kills 

Where π (Diff_Blocks, Diff_Kills) is the estimated probability that the team of interest 

will win the game with differences in ranks of seasonal averages in blocks and differences in 

ranks of seasonal averages in kills in model. 
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Table 4.6 shows the steps for the stepwise selection technique and Table 4.7 gives the 

parameter estimates, the standard errors and associated p-values when both the variables are in 

the model. Table 4.8 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.1546 

indicating that there was no evidence to reject using the logistic regression model. 

Table 4.6. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 Diff_Blocks   1 1 19.9778   <.0001 

2 Diff_Kills   1 2 12.6898   0.0004 

Table 4.7. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_Blocks 1 -0.0114 0.00285 16.0866 <.0001 

Diff_Kills 1 -0.0169 0.00510 11.0503 0.0009 

Table 4.8. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

11.9243 8 0.1546 

4.2.3. Develop models for the second round using differences in ranks of seasonal averages 

4.2.3.1. Develop ordinary least squares regression models for second round 

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first half of the second round, the point spread was obtained by using the stronger 

team (higher seed numbers) minus the weaker team (lower seed numbers). For the remainder of 

games in the second round, the point spread was acquired by using the weaker team (lower seed 

numbers) minus the stronger team (higher seed numbers). No intercept was used when 

developing the models. Stepwise selection was used with an α value of 0.1 for both entry and 
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exit to develop the models. The differences in ranks of the seasonal averages of the variables 

listed in Table 4.1 (Set A) between the two teams were considered for entry in the model.  

4.2.3.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to predict the winning team for each game in 

the second round based on using differences in ranks of seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = 0.00834* Diff_Digs 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.9. Table 4.10 gives the steps associated with the stepwise selection 

technique and Table 4.11 shows the associated R-square values as variables are added to the 

model. The model with the 1 significant variable explains an estimated only 15% of the variation 

in point spread. 

Table 4.9. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Digs 1 0.00834 0.00292 2.85 0.0064 1.00000 

Table 4.10. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Diff_Digs   1 0.1478 0.1478 0.5467 8.15 0.0064 

Table 4.11. Summary of R-squares value 

Root MSE 2.23304    R-Square  0.1478 

Dependent Mean -0.06250    Adj R-Sq 0.1296 

Coeff Var -3572.86064     
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4.2.3.2. Develop logistic regression models for the second round 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. With the model estimating the probability of a win 

for the team of interest. No intercept was used during the development of the logistic regression 

model. Stepwise selection was used with an α value of 0.1 for both entry and exit when 

determine the significant variables in developing the logistic regression model. The differences 

in ranks of the seasonal averages of all previously mentioned variables in Table 4.1 (Set A) for 

the two teams playing in each game were considered for entry in the model. 

4.2.3.2.1. Development of logistic regression model for the second round 

A logistic regression model to predict the winning team for each game in the second 

round was developed and found to be: 

𝜋(Diff_Digs)=
𝑒0.00653∗Diff_Digs

1+𝑒0.00653∗Diff_Digs 

Where π (Diff_Digs) is the estimated probability that the team of interest will win the 

game with differences in ranks of seasonal averages in digs in model. 

Table 4.12 shows the steps for the stepwise selection technique and Table 4.13 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.14 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.427 

indicating that there was no evidence to reject using the logistic regression model.  

Table 4.12. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_Digs   1 1 5.0762   0.0243 Diff_Digs 

 



124 

 

Table 4.13. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_Digs 1 0.00653 0.00304 4.5953 0.0321 

Table 4.14. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.0668 8 0.4270 

4.2.4. Develop models for the third and higher rounds using differences in ranks of seasonal 

averages 

4.2.4.1. Develop ordinary least squares regression model 

There were 90 teams playing 45 games in third and higher rounds of the tournaments in 

2011 to 2013. For the first 24 games of the second round, the point spread was obtained by using 

the stronger team (higher seed numbers) minus the weaker team (lower seed numbers). For the 

remainder of games in the second round, the point spread was acquired by using the scores of 

weaker team (lower seed numbers) minus the stronger team (higher seed numbers). The intercept 

was excluded when developing the models. Stepwise selection was used with an α value of 0.1 

for both entry and exit to develop the models. The differences in ranks of the seasonal averages 

of the previously mentioned variables listed in Table 4.1 (Set A) between the two teams were 

considered for entry in the model.  

4.2.4.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to predict the winning team for each game in 

the third and higher rounds based on using differences in ranks of seasonal averages of the 

significant variables was developed and found to be: 
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𝑌̂ = -0.02617* Diff_Match_W-L% 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.15. Table 4.16 gives the steps associated with the stepwise selection 

technique and Table 4.17 shows the associated R-square values as variables are added to the 

model. The model with the only 1 significant variable explains an estimated 17% of the variation 

in point spread. 

Table 4.15. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Match_W-L%_ 1 -0.02617 0.00871 -3.01 0.0044 1.00000 

Table 4.16. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Diff_Match_W-L%_   1 0.1704 0.1704 3.5610 9.04 0.0044 

Table 4.17. Summary of R-squares value 

Root MSE 2.16675    R-Square 0.1704 

Dependent Mean 0.11111    Adj R-Sq   0.1515 

Coeff Var 1950.07838     

4.2.4.2. Develop logistic regression model for the third and higher rounds 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 

logistic regression model. Stepwise selection was used with an α value of 0.1 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences in ranks of the seasonal averages of all previously mentioned variables in Table 4.1 

(Set A) between the two teams were considered for entry in the model. 
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4.2.4.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help predict the winning team for each game in the third 

and higher rounds was developed and found to be: 

𝜋(Diff_W-L%)=
𝑒−0.0295∗Diff_W−L%

1+𝑒−0.0295∗Diff_W−L% 

Where π (Diff_W-L%) is the estimated probability that the team of interest will win the 

game with differences in ranks of seasonal averages in won-lost percentage in model. 

Table 4.18 shows the steps for the stepwise selection technique and Table 4.19 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.20 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.1521 

indicating that there was no evidence to reject using the logistic regression model. 

Table 4.18. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_W-L%   1 1 7.5986   0.0058 Diff_Match_W-L%_ 

Table 4.19. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_W-L% 1 -0.0295 0.0121 5.9027 0.0151 

Table 4.20. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

10.7029 7 0.1521 
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4.2.5. Validating first round using models developed  

4.2.5.1. Verification of the models developed by using differences in ranks of seasonal 

averages 

Using the ordinary least squares regression model developed for the first round, the point 

spread of the 32 games in the first round of the 2014 tournament was estimated based of the team 

of interest. Team of interest was the stronger team (higher seed numbers) in half of the games 

and the weaker team (lower seed numbers) in the other half of the games.  

Differences in ranks of seasonal averages between the teams of all variables found to be 

significant were placed in the model developed for the first round to verify the accuracy of 

prediction results for the ordinary least squares regression model. The estimated response ŷ then 

calculated. If ŷ is great than 0, a predicted win for the team of interest was coded. If  ŷ is less 

than 0, a predicted loss for the team of interest was coded. 

Results from the first round of the 2014 tournament were used to validate the first round 

ordinary least squares regression model and logistic regression model using differences in ranks 

of seasonal averages. It is noted that the 2014 season was not used in the development of the 

models. 

Table 4.21 gives the results as to how accurately the ordinary least squares regression 

model for first round of the NCAA 2014 women’s volleyball tournament performed. 

The first round logistic regression model was validated using the 2014 first round game 

outcomes and seeing how closely the model agreed. The results are given in Table 4.22.  
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Table 4.21. Accuracy of ordinary least squares regression model developed by using differences 

in ranks of seasonal averages when validating first round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 11 3 14 

Loss 9 9 18 

  Total 20 12 32 

Overall Accuracy 62.5% 

Table 4.22. Accuracy of logistic regression model developed by using differences in ranks of 

seasonal averages when validating first round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 11 3 14 

Loss 9 9 18 

  Total 20 12 32 

Overall Accuracy 62.5% 

4.2.6. Validating second round using models developed  

Results from the second round of the 2014 tournament were used to validate the second 

round ordinary least squares regression model and logistic regression model using differences in 

ranks of seasonal averages. It is noted that the 2014 season was not used in the development of 

the models. 

Table 4.23 gives the results as to how accurately the ordinary least squares regression 

model for second round of the NCAA 2014 women’s volleyball tournament. Table 4.24 gives 

equivalent results for the logistic regression model. 
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Table 4.23. Accuracy of ordinary least squares regression model developed by using differences 

in ranks of seasonal averages when validating second round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 4 3 7 

Loss 2 7 9 

  Total 6 10 16 

Overall Accuracy 68.8% 

Table 4.24. Accuracy of logistic regression model developed by using differences in ranks of 

seasonal averages when validating second round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 4 3 7 

Loss 2 7 9 

  Total 6 10 16 

Overall Accuracy 68.8% 

4.2.7. Validating third and higher rounds using models developed  

Results from the third and higher rounds of the 2014 tournament were used to validate 

the third and higher rounds ordinary least squares regression model and logistic regression model 

using differences in ranks of seasonal averages. It is noted that the 2014 season was not used in 

the development of the models. 

Table 4.25 gives the results as to how accurately the ordinary least squares regression 

model for third and higher rounds of the NCAA 2014 women’s volleyball tournament. Table 

4.26 gives equivalent results for the logistic regression model. 
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Table 4.25. Accuracy of ordinary least squares regression model developed by using differences 

in ranks of seasonal averages when predicting third and higher rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 4 3 7  

  Total 9 6 15 

Overall Accuracy 53.3% 

Table 4.26. Accuracy of logistic regression model developed by using differences in ranks of 

seasonal averages when validating third and higher rounds of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 4 3 7 

  Total 9 6 15 

Overall Accuracy 53.3% 

4.2.8. Bracketing the 2015 tournament before tournament begins - Prediction 

Results were predicted for every round before the tournament began. Significant 

differences in ranks of seasonal averages of variables were found for all teams playing each other 

in the first round and put into first round model. Significant differences of ranks of seasonal 

averages for each team predicted to play each other in the second round were placed in second 

round model and winners of this round were predicted. Differences in ranks of seasonal averages 

of variables found to be significant of teams predicted to play each other in the third round were 

placed in the third round model and winning teams predicted for this round. This process 

continued until a winner was selected. 
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The predicted results were then compared against the actual results for each round of the 

game for 2015. 

4.2.8.1. Examples for each round in 2015 tournament 

4.2.8.1.1. Using Ordinary least squares regression model developed by using differences in 

ranks of seasonal averages 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model for a particular round in 2015 tournament 

was used. 

4.2.8.1.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences in ranks of seasonal averages is: 

𝑌̂ = (-0.01228* Diff_Assists) + ( -0.00925* Diff_Blocks) 

Southern California played Cleveland State in the first round of the 2015 tournament. 

Data on significant differences in ranks of seasonal averages was collected and displayed in 

Table 4.27.  

Table 4.27. Southern California and Cleveland State Statistics 

Team Score Assists* Blocks* 

Southern California 3 8 37 

Cleveland State 1 67 60 

Difference 2 -59 -23 

* Ranks based on seasonal averages 

Using the model above, the game between Southern California and Cleveland State had a 

predicted point spread of: 

ŷ = (-0.01228* -59) + ( -0.00925* -23) = 0.94 
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Since ŷ >0 this game was coded as a correctly predicted win for Southern California, who 

won the game by a score of 3 to 1. 

Northern Arizona played San Diego in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.28.  

Table 4.28. Northern Arizona and San Diego Statistics 

Team Score Assists* Blocks* 

Northern Arizona 0 92 21 

San Diego 3 15 41 

Difference -3 77 -20 

* Ranks based on seasonal averages 

Using the model above, the game between Northern Arizona and San Diego had a 

predicted point spread of: 

ŷ = (-0.01228* 77) + ( -0.00925* -20) = -0.76 

Since ŷ < 0 this game was coded as a correctly predicted loss for Northern Arizona, who 

lost the game by a score of 0 to 3. 

North Carolina played UNCW in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.29.  

Table 4.29. North Carolina and UNCW Statistics 

Team Score Assists* Blocks* 

North Carolina 3 72 4 

UNCW 0 204 10 

Difference 3 -132 -6 

    * Ranks based on seasonal averages 

Using the model above, the game between North Carolina and UNCW had a predicted 

point spread of: 

ŷ = (-0.01228* -132) + ( -0.00925* -6) = 1.68 
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Since ŷ > 0 this game was coded as a correctly predicted win for North Carolina, who 

won the game by a score of 3 to 0. 

Coastal Carolina played Creighton in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.30.  

Table 4.30. Coastal Carolina and Creighton Statistics 

Team Score Assists* Blocks* 

Coastal Carolina 0 81 170 

Creighton 3 30 55 

Difference -3 51 115 

  * Ranks based on seasonal averages 

Using the model above, the game between Coastal Carolina and Creighton had a 

predicted point spread of: 

ŷ = (-0.01228* 51) + ( -0.00925* 115) = -1.69 

Since ŷ < 0 this game was coded as a correctly predicted loss for Coastal Carolina, who 

lost the game by a score of 0 to 3. 

Round 1: 

Number correct: 25 

Number incorrect: 7 

Total: 32 

4.2.8.1.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences in ranks of seasonal averages is: 

𝑌̂ = 0.00834* Diff_Digs 

BYU played Western Kentucky in the second round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.31.  
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Table 4.31. BYU and Western Kentucky Statistics 

Team Score Digs* 

BYU 3 188 

Western Kentucky 0 160 

Difference 3 28 

* Ranks based on seasonal averages 

Using the model above, the game between BYU and Western Kentucky had a predicted 

point spread of: 

ŷ = 0.00834* 28 = 0.23 

Since ŷ >0 this game was coded as a correctly predicted win for BYU, who won the 

game by a score of 3 to 0. 

Florida played Florida State in the second round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.32.  

Table 4.32. Florida and Florida State Statistics 

Team Score Digs* 

Florida 3 236 

Florida State 1 234 

Difference 2 2 

    * Ranks based on seasonal averages 

Using the model above, the game between Florida and Florida State had a predicted point 

spread of: 

ŷ = 0.00834* 2 = 0.02 

Since ŷ >0 this game was coded as a correctly predicted win for Florida, who won the 

game by a score of 3 to 1. 

Round 2: 

Number correct: 8 

Number incorrect: 8 
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Total: 16 

4.2.8.1.1.3. Ordinary least squares regression model for Third and Higher Rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences in ranks of seasonal averages is: 

𝑌̂ = -0.02617* Diff_Match_W-L% 

Illinois played Minnesota in the third round of the 2015 tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 4.33.  

Table 4.33. Illinois and Minnesota Statistics 

Team Score Match won-lost 

percentage* 

Illinois 0 98 

Minnesota 3 11 

Difference -3 87 

       * Ranks based on seasonal averages 

Using the model above, the game between Illinois and Minnesota had a predicted point 

spread of: 

ŷ = -0.02617* 87 = -2.28 

Since ŷ < 0 this game was coded as a correctly predicted loss for Illinois, who lost the 

game by a score of 0 to 3. 

Texas played Florida in the fourth round of the 2015 tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 4.34.  

Table 4.34. Texas and Florida Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 6 

Florida 2 28 

Difference 1 -22 

       * Ranks based on seasonal averages 
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Using the model above, the game between Texas and Florida had a predicted point spread 

of: 

ŷ = -0.02617* -22= 0.58 

Since ŷ > 0 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 2. 

Round 3-6: 

Number correct: 6 

Number incorrect: 9 

Total: 15 

It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 

4.2.8.1.2. Using logistic regression model developed by using differences in ranks of 

seasonal averages 

An example will be given as to how the logistic regression model for a particular round 

was used for each round in 2015 tournament. 

4.2.8.1.2.1. Logistic regression model for first round 

The logistic regression model for first round developed by using differences in ranks of 

seasonal averages is: 

𝜋(Diff_Blocks, Diff_Kills) = 
𝑒−0.0114∗Diff_Blocks−0.0169∗Diff_Kills

1+𝑒−0.0114∗Diff_Blocks−0.0169∗Diff_Kills 

Southern California played Cleveland State in the first round of the 2015 tournament. 

Data on significant differences in ranks of seasonal averages was collected and displayed in 

Table 4.35.  
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Table 4.35. Southern California and Cleveland State Statistics 

Team Score Blocks* kills* 

Southern California 3 37 7 

Cleveland State 1 60 56 

Difference 2 -23 -49 

   * Ranks based on seasonal averages 

Using the model above, the game between Southern California and Cleveland State had 

an estimated probability of winning the game of: 

𝜋(-23, -49) = 
𝑒−0.0114∗−23−0.0169∗−49

1+𝑒−0.0114∗−23−0.0169∗−49
 = 0.75 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Southern California, 

who won the game by a score of 3 to 1. 

Northern Arizona played San Diego in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.36.  

Table 4.36. Northern Arizona and San Diego Statistics 

Team Score Blocks* kills* 

Northern Arizona 0 21 108 

San Diego 3 41 9 

Difference -3 -20 99 

    * Ranks based on seasonal averages 

Using the model above, the game between Northern Arizona and San Diego had an 

estimated probability of winning the game of: 

𝜋(-20, 99) = 
𝑒−0.0114∗−20−0.0169∗99

1+𝑒−0.0114∗−20−0.0169∗99
 = 0.19 

Since 𝜋 < 0.5 this game was coded as a correctly predicted loss for Northern Arizona, 

who lost the game by a score of 0 to 3. 

North Carolina played UNCW in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.37.  
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Table 4.37. North Carolina and UNCW Statistics 

Team Score Blocks* kills* 

North Carolina 3 4 58 

UNCW 0 10 177 

Difference 3 -6 -119 

      * Ranks based on seasonal averages 

Using the model above, the game between North Carolina and UNCW had an estimated 

probability of winning the game of: 

𝜋(-6, -119) = 
𝑒−0.0114∗−6−0.0169∗−119

1+𝑒−0.0114∗−6−0.0169∗−119
 = 0.89 

Since 𝜋> 0.5 this game was coded as a correctly predicted win for North Carolina, who 

won the game by a score of 3 to 0. 

Coastal Carolina played Creighton in the first round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.38.  

Table 4.38. Coastal Carolina and Creighton Statistics 

Team Score Blocks* kills* 

Coastal Carolina 0 170 61 

Creighton 3 55 43 

Difference -3 115 18 

     * Ranks based on seasonal averages 

Using the model above, the game between Coastal Carolina AND Creighton had an 

estimated probability of winning the game of: 

𝜋(115,18) = 
𝑒−0.0114∗115−0.0169∗18

1+𝑒−0.0114∗115−0.0169∗18
 = 0.17 

Since 𝜋< 0.5 this game was coded as a correctly predicted loss for Coastal Carolina, who 

lost the game by a score of 0 to 3. 

Round 1: 

Number correct: 25 
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Number incorrect: 7 

Total: 32 

4.2.8.1.2.2. Logistic regression model for second round 

The logistic regression model for second round developed by using differences in ranks 

of seasonal averages is: 

𝜋(Diff_Digs)=
𝑒0.00653∗Diff_Digs

1+𝑒0.00653∗Diff_Digs 

BYU played Western Kentucky in the second round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.39. 

Table 4.39. BYU and Western Kentucky Statistics 

Team Score Digs* 

BYU 3 188 

Western Kentucky 0 160 

Difference 3 28 

* Ranks based on seasonal averages 

Using the model above, the game between BYU and Western Kentucky had an estimated 

probability of winning the game of: 

𝜋(28)=
𝑒0.00653∗28

1+𝑒0.00653∗28= 0.55 

Since 𝜋>0.5 this game was coded as a correctly predicted win for BYU, who won the 

game by a score of 3 to 0. 

Florida played Florida State in the second round of the 2015 tournament. Data on 

significant differences in ranks of seasonal averages was collected and displayed in Table 4.40. 

Table 4.40. Florida and Florida State Statistics 

Team Score Digs* 

Florida 3 236 

Florida State 1 234 

Difference 2 2 

    * Ranks based on seasonal averages 
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Using the model above, the game between Florida and Florida State had an estimated 

probability of winning the game of: 

  𝜋(2)=
𝑒0.00653∗2

1+𝑒0.00653∗2
= 0.51 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Florida, who won the 

game by a score of 3 to 1. 

Round 2: 

Number correct: 6 

Number incorrect: 10 

Total: 16 

4.2.8.1.2.3. Logistic regression model for third and higher rounds 

The logistic regression model for third and higher rounds developed by using differences 

in ranks of seasonal averages is: 

𝜋(Diff_W-L%)=
𝑒−0.0295∗Diff_W−L%

1+𝑒−0.0295∗Diff_W−L%
 

Texas played Florida in the fourth round of the 2015 tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 4.41. 

Table 4.41. Texas and Florida Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 6 

Florida 2 28 

Difference 1 -22 

       * Ranks based on seasonal averages 

Using the model above, the game between Texas and Florida had an estimated 

probability of winning the game of: 
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𝜋(-22)=
𝑒−0.0295∗−22

1+𝑒−0.0295∗−22
= 0.66 

Since  𝜋 > 0.5 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 2. 

Texas played Minnesota in the fifth round of the 2015 tournament. Data on significant 

differences in ranks of seasonal averages was collected and displayed in Table 4.42. 

Table 4.42. Texas and Minnesota Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 6 

Minnesota 1 11 

Difference 2 -5 

       * Ranks based on seasonal averages 

Using the model above, the game between Texas and Minnesota had an estimated 

probability of winning the game of: 

𝜋(-5)=
𝑒−0.0295∗−5

1+𝑒−0.0295∗−5
= 0.54 

Since 𝜋 > 0.5 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 1. 

Round 3-6: 

Number correct: 6 

Number incorrect: 9 

Total: 15 

It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 
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4.2.9. Results for prediction by using models developed by differences in ranks of seasonal 

averages 

Ordinary least square regression models which developed by using differences in ranks of 

seasonal averages were used to predict each round of NCAA women’s volleyball tournament of 

2015. A summary of the number of correct and incorrect predictions for each round of the 2015 

tournament is given in Table 4.43. 

Table 4.43. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by using differences in ranks of seasonal averages) 

 Correct Incorrect Total games 

First round 25 7 32 

Second round 8 8 16 

Third round 4 4 8 

Fourth round 2 2 4 

Fifth round 0 2 2 

Final round 0 1 1 

Overall Accuracy 61.9% 

Logistic regression models which developed by using differences in ranks of seasonal 

averages were used to predict each round of NCAA women’s volleyball tournament of 2015. A 

summary of the number of correct and incorrect predictions for each round of the 2015 

tournament is given in Table 4.44. 

Table 4.44. Prediction results of each round for 2015: (Logistic regression model developed by 

using differences in ranks of seasonal averages) 

 Correct Incorrect Total games 

First round 25  32 

Second round 6  16 

Third round 3  8 

Fourth round 2  4 

Fifth round 1  2 

Final round 0  1 

Overall Accuracy 58.7% 
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It is noted that ordinary least squares regression model works slightly better than logistic 

regression model when using differences in ranks of seasonal averages to develop models. 

4.3. Model developed by using difference of seasonal averages 

4.3.1. Develop models by using seasonal averages 

All data collected from NCAA.COM [4], seasonal averages were collected before the 

tournament started. For example, the first game of NCAA 2011 women’s volley ball tournament 

was held on December 1, 2011, the differences of seasonal averages were based on all games 

through November 27, 2011. 

Data was collected for three years of the NCAA women’s volleyball tournament. This 

included 2011, 2012 and 2013 tournaments. Seasonal averages for the variables listed in Table 

4.1 (Set A) were collected for all the teams in the 2011 tournament. The variables included: Aces 

Per Set, Assists Per Set, Blocks Per Set, Digs Per Set, Hitting Percentage, Kills Per Set and 

Match W-L Percentage. Seasonal averages were also collected on the same variables for all 

teams playing in the 2012 and 2013 tournament. 

4.3.2. Develop models for the first round using seasonal averages 

4.3.2.1. Develop ordinary least squares regression models 

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. Team of interest was the stronger team 

(higher seed numbers) in half of the games and the weaker team (lower seed numbers) in the 

other half of the games.  A positive point spread indicates a win for the team of interest and a 

negative value indicates a loss for the team of interest. There were 192 teams playing 96 games 

in first rounds of the tournaments in 2011, 2012 and 2013. For the first half games of the first 

round in the three years, the point spread was obtained by using the stronger team (higher seed 
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numbers) minus the weaker team (lower seed numbers). For the remainder games of the first 

round of the three years, the point spread was acquired by using the scores of weaker team 

(lower seed numbers) minus stronger team (higher seed numbers). 

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences of the 

seasonal averages for all the variables previously given in Table 4.1 (Set A) between the two 

teams were considered for entry in the model.  

4.3.2.1.1. Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to help predict the winning team for each 

game in the first round based on using differences of seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (-2.04026* Diff_ Aces) + (28.72233* Diff_Hitting%) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.45. Table 4.46 gives the steps associated with the stepwise selection 

technique and Table 4.47 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 39% of the variation in 

point spread. 

Table 4.45. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Aces 1 -2.04026 0.55647 -3.67 0.0004 1.00886 

Diff_Hitting%_ 1 28.72233 3.97361 7.23 <.0001 1.00886 

 

  



145 

 

Table 4.46. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Diff_Hitting%   1 0.3080 0.3080 17.4884 42.28 <.0001 

2 Diff_Aces   2 0.0866 0.3946 5.5395 13.44 0.0004 

Table 4.47. Summary of R-squares value 

Root MSE 1.99186    R-Square   0.3946 

Dependent Mean -0.14583    Adj R-Sq 0.3817 

Coeff Var -1365.84572     

4.3.2.2. Develop logistic regression models 

The logistic regression model was also fit to the data with the dependent variable 

recorded as ‘1’ for win and ‘0’ for loss for the team of interest. The model estimates the 

probability of a win for the team of interest. Team of interest was the stronger team (higher seed 

numbers) in half of the games and the weaker team (lower seed numbers) in the other half of the 

games. 

No intercept was included during the development of the logistic regression model 

because the ordering of the teams in the model should not matter. Stepwise selection was used 

with an α value of 0.1 for both entry and exit when determining the significant variables in 

developing the logistic regression model. The differences of the seasonal averages for both teams 

for all previously mentioned variables given in Table 4.1 (Set A) were considered for entry in the 

model.  

4.3.2.2.1. Development of logistic regression model for the first round 

A logistic regression model to help predict the winning team for each game in the first 

round was developed and found to be: 

𝜋(Diff_Assists, Diff_Blocks)=
𝑒1.3902∗Diff_Assists+2.5910∗Diff_Blocks

1+𝑒1.3902∗Diff_Assists+2.5910∗Diff_Blocks 
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Where π (Diff_Assists, Diff_Blocks) is the estimated probability that the team of interest 

will win the game with difference of seasonal averages in assists and difference of seasonal 

averages in blocks in model. 

Table 4.48 shows the steps for the stepwise selection technique and Table 4.49 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.50 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.6488 

indicating that there was no evidence to reject using the logistic regression model. 

Table 4.48. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_Hitting%   1 1 21.8592   <.0001 Diff_Hitting%_ 

2 Diff_Blocks   1 2 7.4371   0.0064 Diff_Blocks 

3 Diff_Assists   1 3 8.1293   0.0044 Diff_Assists 

4   Diff_Hitting% 1 2   0.5308 0.4663 Diff_Hitting%_ 

Table 4.49. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_Assists 1 1.3902 0.3732 13.8739 0.0002 

Diff_Blocks 1 2.5910 0.6129 17.8702 <.0001 

Table 4.50. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

5.9861 8 0.6488 

4.3.3. Develop models for the second round using seasonal averages 

4.3.3.1. Develop ordinary least squares regression models 

There were 96 teams playing 48 games in second rounds of the tournaments in 2011 to 

2013. For the first half games of the second round, the point spread was obtained by using the 

scores of stronger team (higher seed numbers) minus the weaker team (lower seed numbers). For 
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the remainder of games in the second round, the point spread was acquired by using stronger 

team (higher seed numbers) minus the weaker team (lower seed numbers). The intercept was 

excluded when developing the models. Stepwise selection was used with an α value of 0.1 for 

both entry and exit to develop the models. The differences of the seasonal averages of the 

variables listed in Table 4.1 (Set A) between the two teams were considered for entry in the 

model.  

4.3.3.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to help predict the winning team for each 

game in the second round based on using differences of seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = -0.57886* Diff_Digs 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.51. Table 4.52 gives the steps associated with the stepwise selection 

technique and Table 4.53 shows the associated R-square values as variables are added to the 

model. The model with the only 1 significant variable explains an estimated 17% of the variation 

in point spread. 

Table 4.51. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Digs 1 -0.57886 0.18599 -3.11 0.0032 1.00000 

Table 4.52. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Diff_Digs   1 0.1709 0.1709 0.3116 9.69 0.0032 
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Table 4.53. Summary of R-squares value 

Root MSE 2.20255    R-Square   0.1709 

Dependent Mean -0.06250    Adj R-Sq  0.1532 

Coeff Var -3524.08603     

4.3.3.2. Develop logistic regression models for the second round 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 

logistic regression model. Stepwise selection was used with an α value of 0.1 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences of the seasonal averages of all previously mentioned variables listed in Table 4.1 (Set 

A) between the two teams were considered for entry in the model. 

4.3.3.2.1. Development of logistic regression model for the second round 

A logistic regression model to help predict the winning team for each game in the second 

round was developed and found to be: 

𝜋(Diff_Digs)=
𝑒−0.5085∗Diff_Digs

1+𝑒−0.5085∗Diff_Digs 

Where π (Diff_Digs) is the estimated probability that the team of interest will win the 

game with difference of seasonal averages in digs in model. 

Table 4.54 shows the steps for the stepwise selection technique and Table 4.55 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.56 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.8955 

indicating that there was no evidence to reject using the logistic regression model. 
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Table 4.54. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_Digs   1 1 6.4175   0.0113 Diff_Digs 

Table 4.55. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_Digs 1 -0.5085 0.2164 5.5214 0.0188 

Table 4.56. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

3.5467 8 0.8955 

4.3.4. Develop models for the third and higher rounds using seasonal averages 

4.3.4.1. Develop ordinary least squares regression models 

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. For the first 24 games of the second round, the point spread was obtained by using the 

stronger team (higher seed numbers) minus the weaker team (lower seed numbers).  For the 

remainder of games in the second round, the point spread was acquired by using the scores of 

weaker team (lower seed numbers) minus the stronger team (higher seed numbers). The intercept 

was excluded when developing the models. Stepwise selection was used with an α value of 0.1 

for both entry and exit to develop the models. The differences of the seasonal averages of the 

previously mentioned variables list in Table 4.1 (Set A) between the two teams were considered 

for entry in the model.  
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4.3.4.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to help predict the winning team for each 

game in the third and higher rounds based on using differences between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = 7.33912* Diff_Match_W-L% 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.57. Table 4.58 gives the steps associated with the stepwise selection 

technique and Table 4.59 shows the associated R-square values as variables are added to the 

model. The model with this only 1 significant variable explains an estimated 15% of the 

variation in point spread. 

Table 4.57. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Diff_Match_W-L%_ 1 7.33912 2.58589 2.84 0.0068 1.00000 

Table 4.58. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Diff_Match_W-L%_   1 0.1547 0.1547 0.6923 8.06 0.0068 

Table 4.59. Summary of R-squares value 

Root MSE 2.18710    R-Square   0.1547 

Dependent Mean 0.11111    Adj R-Sq 0.1355 

Coeff Var 1968.38887     

4.3.4.2. Develop logistic regression models for the third and higher rounds 

The logistic regression model was also fit to the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 
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logistic regression model. Stepwise selection was used with an α value of 0.1 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences of the seasonal averages of all previously mentioned variables listed in Table 4.1 (Set 

A) between the two teams were considered for entry in the model.  

4.3.4.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help predict the winning team for each game in the third 

and higher rounds was developed and found to be: 

𝜋(Diff_W-L%)=
𝑒7.2716∗Diff_W−L%

1+𝑒7.2716∗Diff_W−L% 

Where π (Diff_W-L%) is the estimated probability that the team of interest will win the 

game with differences of seasonal averages in win-lose percentage in the model. 

Table 4.60 shows the steps for the stepwise selection technique and Table 4.61 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.62 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.305 

indicating that there was no evidence to reject using the logistic regression model. 

Table 4.60. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_W-L%   1 1 6.7844   0.0092 Diff_Match_W-L%_ 

Table 4.61. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_W-L% 1 7.2716 3.0249 5.7789 0.0162 

Table 4.62. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.3225 7 0.3050 
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4.3.5. Validating first round using models developed  

4.3.5.1. Ordinary least squares regression model 

Results from the first round of the 2014 tournament were used to validate the first round 

ordinary least squares regression model and logistic regression model using differences of 

seasonal averages. It is noted that the 2014 season was not used in the development of the 

models. 

Table 4.63 gives the results as to how accurately the ordinary least squares regression 

model for first round of the NCAA 2014 women’s volleyball tournament. 

Table 4.63. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating first round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 10 4 14 

Loss 7 11 18 

  Total 17 15 32 

Overall Accuracy 65.6% 

The first logistic regression models developed by using seasonal actual average data was 

used to predict the first round of 2014 season to check the prediction accuracy of the model.  It is 

noted that the 2014 season was not used in the development of the models. 

Table 4.64 gives the results as to how accurately the logistic regression model for first 

round of the NCAA 2014 women’s volleyball tournament. 
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Table 4.64. Accuracy of logistic regression model developed by seasonal averages when 

validating first round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 11 4 15 

Loss 6 11 17 

  Total 17 15 32 

Overall Accuracy 68.8% 

It is noted that the percentage of accuracy for first rounds using the logistic regression 

models developed by using seasonal average differences works slightly better than the ordinary 

least squares regression model. 

4.3.6. Validating second round using models developed  

Results from the second round of the 2014 tournament were used to validate the second 

round ordinary least squares regression model and logistic regression model using differences of 

seasonal averages. It is noted that the 2014 season was not used in the development of the 

models. 

Table 4.65 gives the results as to how accurately the ordinary least squares regression 

model for second round of the NCAA 2014 women’s volleyball tournament. Table 4.66 gives 

equivalent results for the logistic regression model. 

  



154 

 

Table 4.65. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating second round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 4 3 7 

Loss 2 7 9 

  Total 6 10 16 

Overall Accuracy 68.8% 

Table 4.66. Accuracy of logistic regression model developed by seasonal averages when 

validating second round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 4 3 7 

Loss 2 7 9 

  Total 6 10 16 

Overall Accuracy 68.8% 

4.3.7. Validating third and higher rounds using models developed  

Results from the third and higher rounds of the 2014 tournament were used to validate 

the third and higher rounds ordinary least squares regression model and logistic regression model 

using differences of seasonal averages. 

Table 4.67 gives the results as to how accurately the ordinary least squares regression 

model for third and higher rounds of the NCAA 2014 women’s volleyball tournament. Table 

4.68 gives equivalent results for the logistic regression model. 
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Table 4.67. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating third and higher rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 3 8 

Loss 4 3 7 

  Total 9 6 15 

Overall Accuracy 53.3% 

Table 4.68. Accuracy of logistic regression model developed by seasonal averages when 

validating third and higher rounds of 2014 

Logistic Predicted   

Wi

n 

Loss Total 

Actual Win 5 3 8 

Loss 4 3 7 

  Total 9 6 15 

Overall Accuracy 53.33% 

4.3.8. Bracketing the 2015 tournament before tournament begins – Prediction 

Results were predicted for every round before the 2015 tournament began. Significant 

differences of seasonal averages of variables were found for all teams playing in the first round 

and put into first round model. Significant differences of seasonal averages for each team 

predicted to play each other in the second round were placed in second round model and winners 

of this round were predicted. Differences of seasonal averages of variables found to be 

significant of teams predicted to play each other in the third round were placed in the third round 
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model and winning teams predicted for this round. This process continued until a winner was 

selected. 

The predicted results were then compared against the actual results for each round of the 

game for 2015. 

4.3.8.1. Examples for each round in 2015 tournament 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model for a particular round in 2015 tournament 

was used. 

4.3.8.1.1. Ordinary least squares regression model developed by using seasonal averages 

4.3.8.1.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences of seasonal averages is: 

𝑌̂ = (-2.04026* Diff_ Aces) + (28.72233* Diff_Hitting%) 

Southern California played Cleveland State in the first round of the 2015 tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 4.69. 

Table 4.69. Southern California and Cleveland State Statistics 

Team Score Aces* Hitting percentage* 

Southern California 3 1.52 0.292 

Cleveland State 1 1.05 0.248 

Difference 2 0.47 0.044 

    * Average per game for season 

Using the model above, the game between Southern California and Cleveland State had a 

predicted point spread of: 

ŷ = (-2.04026* 0.47) + (28.72233* 0.044) = 0.3 
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Since ŷ >0 this game was coded as a correctly predicted win for Southern California, who 

won the game by a score of 3 to 1. 

Northern Arizona played San Diego in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.70. 

Table 4.70. Northern Arizona and San Diego Statistics 

Team Score Aces* Hitting percentage* 

Northern Arizona 0 1.77 0.264 

San Diego 3 1.05 0.22 

Difference -3 0.72 0.044 

     * Average per game for season 

Using the model above, the game between Northern Arizona and San Diego had a 

predicted point spread of: 

ŷ = (-2.04026* 0.72) + (28.72233* 0.044) = -0.21 

Since ŷ < 0 this game was coded as a correctly predicted loss for Northern Arizona, who 

lost the game by a score of 0 to 3. 

North Carolina played UNCW in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.71. 

Table 4.71. North Carolina and UNCW Statistics 

Team Score Aces* Hitting percentage* 

North Carolina 3 1.12 0.239 

UNCW 0 1.22 0.231 

Difference 3 -0.1 0.008 

       * Average per game for season 

Using the model above, the game between North Carolina and UNCW had a predicted 

point spread of: 

ŷ = (-2.04026* -0.1) + (28.72233*0.008) = 0.43 
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Since ŷ > 0 this game was coded as a correctly predicted win for North Carolina, who 

won the game by a score of 3 to 0. 

Coastal Carolina played Creighton in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.72. 

Table 4.72. Coastal Carolina and Creighton Statistics 

Team Score Aces* Hitting percentage* 

Coastal Carolina 0 1.48 0.289 

Creighton 3 1.21 0.249 

Difference -3 0.27 0.04 

      * Average per game for season 

Using the model above, the game between Coastal Carolina and Creighton had a 

predicted point spread of: 

ŷ = (-2.04026* 0.27) + (28.72233*0.04) = 0.6 

Since ŷ < 0 this game was coded as an incorrectly predicted win for Coastal Carolina, 

who actual lost the game by a score of 0 to 3. 

Round 1: 

Number correct: 25 

Number incorrect: 7 

Total: 32 

4.3.8.1.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences of seasonal averages is: 

𝑌̂ = -0.57886* Diff_Digs 

BYU played Western Kentucky in the second round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.73. 
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Table 4.73. BYU and Western Kentucky Statistics 

Team Score Digs* 

BYU 3 14.63 

Western Kentucky 0 14.96 

Difference 3 -0.33 

* Average per game for season 

Using the model above, the game between BYU and Western Kentucky had a predicted 

point spread of: 

ŷ = -0.57886* -0.33 = 0.19 

Since ŷ >0 this game was coded as a correctly predicted win for BYU, who won the 

game by a score of 3 to 0. 

Florida played Florida State in the second round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.74. 

Table 4.74. Florida and Florida State Statistics 

Team Score Digs* 

Florida 3 14.08 

Florida State 1 14.12 

Difference 2 -0.04 

     * Average per game for season 

Using the model above, the game between Florida and Florida State had a predicted point 

spread of: 

ŷ = -0.57886* -0.04 = 0.02 

Since ŷ >0 this game was coded as a correctly predicted win for Florida, who won the 

game by a score of 3 to 1. 

Round 2: 

Number correct: 8 

Number incorrect: 8 
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Total: 16 

4.3.8.1.1.3. Ordinary least squares regression model for third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences of seasonal averages is: 

𝑌̂ = 7.33912* Diff_Match_W-L% 

Texas played Florida in the fourth round of the 2015 tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 4.75. 

Table 4.75. Texas and Florida Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 0.929 

Florida 2 0.793 

Difference 1 0.136 

        * Average per game for season 

Using the model above, the game between Texas and Florida had a predicted point spread 

of: 

ŷ = 7.33912* 0.136 = 0.99 

Since ŷ > 0 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 2. 

Texas played Minnesota in the fifth round of the 2015 tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 4.76. 

Table 4.76. Texas and Minnesota Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 0.929 

Minnesota 1 0.867 

Difference 2 0.062 

       * Average per game for season 
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Using the model above, the game between Texas and Minnesota had a predicted point 

spread of: 

ŷ = 7.33912* 0.062 = 0.46 

Since ŷ >0 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 1. 

Round 3-6: 

Number correct: 7 

Number incorrect: 8 

Total: 15 

It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 

4.3.8.1.2. Using logistic regression model developed by seasonal averages 

An example will be given as to how the logistic regression model for a particular round 

was used for each round in 2015 tournament. 

4.3.8.1.2.1. Logistic regression model for first round 

The logistic regression model for first round developed by using differences of seasonal 

averages is: 

𝜋(Diff_Assists, Diff_Blocks) = 
𝑒1.3902∗Diff_Assists+2.5910∗Diff_Blocks

1+𝑒1.3902∗Diff_Assists+2.5910∗Diff_Blocks 

Southern California played Cleveland State in the first round of the 2015 tournament. 

Data on significant differences of seasonal averages was collected and displayed in Table 4.77. 
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Table 4.77. Southern California and Cleveland State Statistics 

Team Score Assists* Blocks* 

Southern California 3 13.75 2.53 

Cleveland State 1 12.76 2.38 

Difference 2 0.99 0.15 

* Average per game for season 

Using the model above, the game between Southern California and Cleveland State had 

an estimated probability of winning the game of: 

𝜋(0.99, 0.15) = 
𝑒1.3902∗0.99+2.5910∗0.15

1+𝑒1.3902∗0.99+2.5910∗0.15
 = 0.85 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Southern California, 

who won the game by a score of 3 to 1. 

Northern Arizona played San Diego in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.78. 

Table 4.78. Northern Arizona and San Diego Statistics 

Team Score Assists* Blocks* 

Northern Arizona 0 12.42 2.79 

San Diego 3 13.48 2.51 

Difference -3 -1.06 0.28 

  * Average per game for season 

Using the model above, the game between Northern Arizona and San Diego had an 

estimated probability of winning the game of: 

𝜋(-1.06, 0.28) = 
𝑒1.3902∗−1.06+2.5910∗0.28

1+𝑒1.3902∗−1.06+2.5910∗0.28
 = 0.32 

Since 𝜋 < 0.5 this game was coded as a correctly predicted loss for Northern Arizona, 

who lost the game by a score of 0 to 3. 

North Carolina played UNCW in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.79. 
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Table 4.79. North Carolina and UNCW Statistics 

Team Score Assists* Blocks* 

North Carolina 3 12.68 3.07 

UNCW 0 11.41 2.95 

Difference 3 1.27 0.12 

    * Average per game for season 

Using the model above, the game between North Carolina and UNCW had an estimated 

probability of winning the game of: 

𝜋(1.27, 0.12) = 
𝑒1.3902∗1.27+2.5910∗0.12

1+𝑒1.3902∗1.27+2.5910∗0.12
 = 0.89 

Since 𝜋> 0.5 this game was coded as a correctly predicted win for North Carolina, who 

won the game by a score of 3 to 0. 

Coastal Carolina played Creighton in the first round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.80. 

Table 4.80. Coastal Carolina and Creighton Statistics 

Team Score Assists* Blocks* 

Coastal Carolina 0 12.56 2.03 

Creighton 3 13.18 2.39 

Difference -3 -0.62 -0.36 

  * Average per game for season 

Using the model above, the game between Coastal Carolina and Creighton had an 

estimated probability of winning the game of: 

𝜋(-0.62, -0.36) = 
𝑒1.3902∗−0.62+2.5910∗−0.36

1+𝑒1.3902∗−0.62+2.5910∗−0.36
= 0.14 

Since 𝜋< 0.5 this game was coded as a correctly predicted loss for Coastal Carolina, who 

lost the game by a score of 0 to 3. 

Round 1: 

Number correct: 26 
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Number incorrect: 6 

Total: 32 

4.3.8.1.2.2. Logistic regression model for second round 

The logistic regression model for second round developed by using differences of 

seasonal averages is: 

𝜋(Diff_Digs) = 
𝑒−0.5085∗Diff_Digs

1+𝑒−0.5085∗Diff_Digs 

BYU played Western Kentucky in the second round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.81. 

Table 4.81. BYU and Western Kentucky Statistics 

Team Score Digs* 

BYU 3 14.63 

Western Kentucky 0 14.96 

Difference 3 -0.33 

* Average per game for season 

Using the model above, the game between BYU and Western Kentucky had an estimated 

probability of winning the game of: 

  𝜋(-0.33) = 
𝑒−0.5085∗−0.33

1+𝑒−0.5085∗−0.33 = 0.54 

Since 𝜋>0.5 this game was coded as a correctly predicted win for BYU, who won the 

game by a score of 3 to 0. 

Florida played Florida State in the second round of the 2015 tournament. Data on 

significant differences of seasonal averages was collected and displayed in Table 4.82. 

Table 4.82. Florida and Florida State Statistics 

Team Score Digs* 

Florida 3 14.08 

Florida State 1 14.12 

Difference 2 -0.04 

    * Average per game for season 
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Using the model above, the game between Florida and Florida State had an estimated 

probability of winning the game of: 

𝜋(-0.04) = 
𝑒−0.5085∗−0.04

1+𝑒−0.5085∗−0.04
 = 0.51 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Florida, who won the 

game by a score of 3 to 1. 

Round 2: 

Number correct: 9 

Number incorrect: 7 

Total: 16 

4.3.8.1.2.3. Logistic regression model for third and higher rounds 

The logistic regression model for third and higher rounds developed by using differences 

of seasonal averages is: 

𝜋(Diff_W-L%) = 
𝑒7.2716∗Diff_W−L%

1+𝑒7.2716∗Diff_W−L%
 

BYU played Nebraska in the third round of the 2015 tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 4.83. 

Table 4.83. BYU and Nebraska Statistics 

Team Score Match won-lost 

percentage* 

BYU 0 0.897 

Nebraska 3 0.867 

Difference -3 0.03 

       * Average per game for season 

Using the model above, the game between BYU and Nebraska had an estimated 

probability of winning the game of: 
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𝜋(0.03) = 
𝑒7.2716∗0.03

1+𝑒7.2716∗0.03
 = 0.55 

Since  𝜋 > 0.5 this game was coded as an incorrectly predicted win for BYU, who lost the 

game by a score of 0 to 3. 

Texas played Minnesota in the fifth round of the 2015 tournament. Data on significant 

differences of seasonal averages was collected and displayed in Table 4.84. 

Table 4.84. Texas and Minnesota Statistics 

Team Score Match won-lost 

percentage* 

Texas 3 0.929 

Minnesota 1 0.867 

Difference 2 0.062 

       * Average per game for season 

Using the model above, the game between Texas and Minnesota had an estimated 

probability of winning the game of: 

  𝜋(0.062)=
𝑒7.2716∗0.062

1+𝑒7.2716∗0.062
 = 0.61 

Since 𝜋 > 0.5 this game was coded as a correctly predicted win for Texas, who won the 

game by a score of 3 to 1. 

Round 3-6: 

Number correct: 6 

Number incorrect: 9 

Total: 15 

4.3.9. Results for prediction by using models developed by difference of seasonal averages 

In 2015, a continuous process was used in verifying the models instead of doing round by 

round predictions as in 2014. In other words, a complete bracket was filled out in 2015 before 

any game was played.  
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The ordinary least squares regression model for the first round developed by using actual 

seasonal averages was used to predict the teams who go to next round. Once the teams in the 

second round were predicted, the second-round models were used to predict the winners of the 

second round. This process was continued for the third and higher rounds until the predicted final 

winner of the game was determined.  

Accuracy of ordinary least squares regression model results was given in Table 4.85 and 

results of logistic regression models was given in Table 4.86. 

Table 4.85. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by seasonal averages) 

 Correct Incorrect Total games 

First round 25 7 32 

Second round 8 8 16 

Third round 4 4 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 0 1 1 

Overall Accuracy 63.5% 

Table 4.86. Prediction results of each round for 2015: (Logistic regression model developed by 

seasonal averages) 

 Correct Incorrect Total games 

First round 26 6 32 

Second round 9 7 16 

Third round 3 5 8 

Fourth round 2 2 4 

Fifth round 1 1 2 

Final round 0 1 1 

Overall Accuracy 65.1% 

It is noted logistic regression model worked slightly better than ordinary least squares 

regression model when using seasonal averages to develop models on this data set. 
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4.4. Model developed by using difference of in-game statistics 

4.4.1. Develop models by using in-game statistics 

Data was collected for NCAA women’s volleyball tournament of 2015. In-game statistics 

were collected for 37 games of 63 games of the 2015 tournament on the variables listed in Table 

4.2 (Set B). The variables included: Attack K, Attack E, Attack Percentage, SERVE SA, SRV 

RE, Digs and Blocks.  

4.4.1.1. Develop ordinary least squares regression model 

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. Team of interest was the stronger team 

(higher seed numbers) in half of the games and the weaker team (lower seed numbers) in the 

other half of the games. A positive point spread indicates a win for the team of interest and a 

negative value indicates a loss for the team of interest. There were 64 teams playing 63 games in 

the tournaments of 2015. However, only 37 games have the in-game statistics data.  For the first 

18 games of 2015 years, the point spread was obtained by using stronger team (higher seed 

numbers) minus the weaker team (lower seed numbers). For the other 17 games, the point spread 

was acquired by using weaker team (lower seed numbers) minus the stronger team (higher seed 

numbers). 

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.1 for both entry and exit to develop the models. The differences of the 

in-game statistics for all the variables previously given in Table 4.2 (Set B) between the two 

teams were considered for entry in the model.  
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The ordinary least squares regression model to help explain the variation in point spread 

for each game in first round through final round based on using differences between in-game 

statistics of the significant variables was developed and found to be: 

 𝑌̂ = (0.04538* Diff_AttackK) + (8.12106 * Diff_Attack%)+ (0.21009* Diff_ ServeSA) 

The following statistics have positive coefficients associated with them which is to be 

expected: Difference in Attack Kills, Diff in Attack Percentage and Difference in Serve SA. It is 

noted that if the team increases Attack Percentage by 1% more than the other team, on average 

the team will get approximately 0.08 more points. Each additional Attack Kill over the other 

team is worth approximately 0.05 points.  

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.87. Table 4.88 gives the steps associated with the stepwise selection 

technique and Table 4.89 shows the associated R-square values as variables are added to the 

model. The model with the 3 significant variables explains an estimated 82% of the variation in 

point spread. 

 Table 4.87. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Attack_K 1 0.04538 0.02365 1.92 0.0634 2.40263 

Attack_PCT 1 8.12106 1.71816 4.73 <.0001 2.43370 

SERVE_SA 1 0.21009 0.04758 4.42 <.0001 1.19471 

Table 4.88. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-

Square 

Model 

R-

Square 

C(p) F 

Value 

Pr > F 

1 Attack_PCT   1 0.6883 0.6883 24.1946 79.48 <.0001 

2 SERVE_SA   2 0.1154 0.8036 4.2859 20.57 <.0001 

3 Attack_K   3 0.0192 0.8228 2.6413 3.68 0.0634 
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Table 4.89. Summary of R-squares value 

Root MSE 1.02086    R-Square    0.8228 

Dependent Mean -0.05405    Adj R-Sq 0.8072 

Coeff Var -1888.59651     

4.4.1.2. Develop logistic regression model using in-game statistics 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 

logistic regression model. Stepwise selection was used with an α value of 0.1 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences of the in-game statistics of all previously mentioned variables listed in Table 4.2 (Set 

B) between the two teams were considered for entry in the model. 

A logistic regression model to estimate the probability of the team of interest winning 

based on in-game statistics for each game in round 1 through final round was developed and 

found to be: 

𝜋(Diff_AttackPCT, Diff_ServeSA)=
𝑒50.2967∗Diff_AttackPCT+0.671∗Diff_ServeSA

1+𝑒50.2967∗Diff_AttackPCT+0.671∗Diff_ServeSA 

Where π (Diff_AttackPCT, Diff_ServeSA) is the estimated probability that the team of 

interest will win the game with difference of in-game statistics in attack percentage and 

difference of in-game statistics in serve SA in model. 

Table 4.90 shows the steps for the stepwise selection technique and Table 4.91 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.92 shows the Hosmer and Lemeshow Test [5] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.907 

indicating that there was no evidence to reject using the logistic regression model. 
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Table 4.90. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-

Square 

Wald 

Chi-

Square 

Pr > ChiSq Variable 

Label Entered Removed 

1 Diff_AttackPCT   1 1 20.0456   <.0001 Attack PCT 

2 Diff_ServeSA   1 2 6.8386   0.0089 SERVE SA 

3 Diff_Blocks   1 3 4.5635   0.0327 Block BS+BA 

4   Diff_Blocks 1 2   1.0029 0.3166 Block BS+BA 

Table 4.91. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Diff_AttackPCT 1 50.2967 26.8148 3.5183 0.0607 

Diff_ServeSA 1 0.6710 0.3534 3.6058 0.0576 

Table 4.92. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

2.7513 7 0.9070 

4.4.2. Validating first round using models developed  

4.4.2.1. Verification of the models developed by using in-game statistics 

Using the ordinary least squares regression model developed with in-game statistics, the 

point spread of each of the 63 games in the 2014 tournament was estimated. 

To verify the accuracy of prediction results for the ordinary least squares regression 

model, values of the in-game statistics were placed in the model for each game. The model result 

was calculated and compared to the actual result for each game. The estimated response ŷ was 

observed. If ŷ was greater than 0, a predicted win for the team of interest was coded. If ŷ was less 

than 0, a predicted loss for the team of interest was coded. 

To verify the accuracy of prediction results for the logistic regression model for the first 

round, a similar process was conducted. For each round of the game, values for the significant 

in-game statistics were collected and the difference were taken and placed into the logistic 

regression model to find an estimated probability, π xi. If π xi was greater than 0.5, a predicted 
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win was coded for the team of interest. If π xi was less than 0.5, a predicted loss was coded for 

the team of interest. 

Results from the first to final rounds of the 2014 tournament were used to validate the 

ordinary least squares regression model and logistic regression model using differences in in-

game statistics. The validation results for the first round using the ordinary least squares 

regression model and the logistic regression model are given in Table 4.93 and Table 4.94, 

respectively. 

Table 4.93. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating first round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 13 2 15 

Loss 2 15 17 

  Total 15 17   32 

Overall Accuracy 87.5% 

Table 4.94. Accuracy of logistic regression model developed by in-game statistics when 

validating first round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 13 2 15 

Loss 2 15 17 

  Total 15 17 32 

Overall Accuracy 87.5% 
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It is noted that the percentage of accuracy for first round using the ordinary least squares 

models and using the logistic regression models which developed by in-game statistics are the 

same. 

4.4.3. Validating second round using models developed 

The validation results for second round using ordinary least squares regression model and 

logistic regression model are given in Table 4.95 and Table 4.96, respectively. 

Table 4.95. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating second round of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 6 0 6 

Loss 1 9 10 

  Total 7 9 16 

Overall Accuracy 93.75% 

Table 4.96. Accuracy of logistic regression model developed by in-game statistics when 

validating second round of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 6 0 6 

Loss 1 9 10 

  Total 7 9 16 

Overall Accuracy 93.75% 

It is noted that the percentage of accuracy for second round using the ordinary least 

squares models and using the logistic regression models which developed by in-game statistics 

are the same. 
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4.4.4. Validating third and higher rounds using models developed 

The validation results for third and higher rounds using ordinary least squares regression 

model and logistic regression model are given in Table 4.97 and Table 4.98, respectively. 

Table 4.97. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating third and higher rounds of 2014 

Point spread Predicted   

Win Loss Total 

Actual Win 5 0 5 

Loss 1 9 10 

  Total 6 9 15 

Overall Accuracy 93.33% 

Table 4.98. Accuracy of logistic regression model developed by in-game statistics when 

validating third and higher rounds of 2014 

Logistic Predicted   

Win Loss Total 

Actual Win 5 0 5 

Loss 0 10 10 

  Total 5 10 15 

Overall Accuracy 100% 

It is noted that the percentage of accuracy for third and higher rounds using the logistic 

regression models is slightly higher than the percentage of accuracy for ordinary least squares 

regression models that developed by in-game statistics for this data set. 
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4.4.5. Bracketing the 2016 tournament before tournament begins – Predicting 

Since the in-game statistics will not be available before the tournament begins, 

differences of seasonal averages of the current year for both teams playing were collected and 

put into the in-game model to predict the winner of a volleyball game in the 2016 tournament. 

Results were predicted for each round by using the ordinary least squares regression 

model developed using in-game statistics before the 2016 tournament begin by replacing 

differences between the in-game statistics with differences in seasonal averages.  

Differences of seasonal averages of significant variables were found for all teams playing 

in the first round and put into first round model. Differences of seasonal averages for each team 

predicted to play each other in the second round were then placed in the model and winners of 

this round were predicted. Differences of seasonal averages of variables found to be significant 

of teams predicted to play each other in the third round were placed in the model and winning 

teams predicted for this round. This process continued until a winner was selected. 

The predicted results were then compared against the actual results for each round of the 

game for 2016. 

4.4.5.1. Examples for each round in 2016 tournament 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model for a particular round in 2016 tournament 

was used. 

4.4.5.1.1. Using ordinary least squares regression model developed by in-game statistics 

4.4.5.1.1.1. Ordinary least squares regression model for the whole tournament 

The ordinary least squares regression model for first to final round developed by using 

differences in in-game statistics is: 
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𝑌̂ = (0.04538* Diff_AttackK) + (8.12106 * Diff_Attack%) + (0.21009* Diff_ ServeSA) 

Nebraska played New Hampshire in the first round of the 2016 tournament. Data on 

differences of seasonal averages for significant variables were collected and displayed in Table 

4.99. 

Table 4.99. Nebraska and New Hampshire Statistics 

Team Score Attack_K* Attack_Percentage* Serve_SA* 

Nebraska 3 14.52 0.274 1.09 

New Hampshire 0 11.82 0.198 1.73 

Difference 3 2.7 0.076 -0.64 

  * Average per game for season 

Using the model above, the game between Nebraska and New Hampshire had a predicted 

point spread of: 

ŷ = (0.04538* 2.7) + (8.12106*0.076) + (0.21009* -0.64) = 0.61 

Since ŷ >0 this game was coded as a correctly predicted win for Nebraska, who won the 

game by a score of 3 to 0. 

Kentucky played Colorado State in the first round of the 2016 tournament. Data on 

differences of seasonal averages for significant variables were collected and displayed in Table 

4.100. 

Table 4.100. Kentucky and Colorado State Statistics 

Team Score Attack_K* Attack_Percentage* Serve_SA* 

Kentucky 3 13.65 0.228 1.31 

 Colorado State 1 14.05 0.273 1.13 

Difference 2 -0.4 -0.045 0.18 

   * Average per game for season 

Using the model above, the game between Kentucky and Colorado State had a predicted 

point spread of: 
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ŷ = (0.04538* -0.4) + (8.12106 *-0.045) + (0.21009* 0.18) = -0.35 

Since ŷ < 0 this game was coded as an incorrectly predicted loss for Kentucky, who 

actually won the game by a score of 3 to 1. 

Kansas played Samford in the first round of the 2016 tournament. Data on differences of 

seasonal averages for significant variables were collected and displayed in Table 4.101. 

Table 4.101. Kansas and Samford Statistics 

Team Score Attack_K* Attack_Percentage* Serve_SA* 

Kansas 3 15.1 0.299 1.32 

 Samford 0 13.1 0.229 1.47 

Difference 3 2 0.07 -0.15 

       * Average per game for season 

Using the model above, the game between Kansas and Samford had a predicted point 

spread of: 

ŷ = (0.04538* 2) + (8.12106 *-0.07) + (0.21009* -0.15) = 0.63 

Since ŷ > 0 this game was coded as a correctly predicted win for Kansas, who won the 

game by a score of 3 to 0. 

UNI played Creighton in the first round of the 2016 tournament. Data on differences of 

seasonal averages for significant variables were collected and displayed in Table 4.102. 

Table 4.102. UNI and Creighton Statistics 

Team Score Attack_K* Attack_Percentage* Serve_SA* 

UNI 2 13.36 0.187 1.07 

 Creighton 3 14.01 0.248 1.16 

Difference -1 -0.65 -0.061 -0.09 

       * Average per game for season 

Using the model above, the game between UNI and Creighton had a predicted point 

spread of: 
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ŷ = (0.04538* -0.65) + (8.12106 *-0.061) + (0.21009* -0.09) = -0.54 

Since ŷ < 0 this game was coded as a correctly predicted loss for UNI, who lost the game 

by a score of 2 to 3. 

Round 1-6: 

Number correct: 30 

Number incorrect: 33 

Total: 63 

It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 

4.4.6. Results for Prediction by using models developed by in-game statistics 

In 2016, a continuous process was used in verifying the models instead of doing round by 

round validations as in 2015. In other words, a complete bracket was filled out in 2016 by using 

the ordinary least squares regression model and the logistic regression model before any game 

was played.  

The ordinary least squares regression model that was developed by using in-game 

statistics was used to predict the team in the first round who go to next round. Once the teams in 

the second round were predicted, the same model was used to predict the winners of the second 

round. This process was continued for the third and higher rounds until the predicted final winner 

of the game was determined.  

A similar process was conducted for logistic regression model. However, the accuracy is 

even lower than ordinary least squares regression model, so only ordinary least squares 

regression model was used to fill out the bracket of 2016 season.  
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The prediction results for each round of 2016 tournament using ordinary least squares 

regression model is given in Table 4.103. 

Table 4.103. Prediction results of each round for 2015: (Ordinary least squares regression model 

developed by in-game statistics) 

 Correct Incorrect Total games 

First round 21 11 32 

Second round 6 10 16 

Third round 3 5 8 

Fourth round 0 4 4 

Fifth round 0 2 2 

Final round 0 1 1 

Overall Accuracy 47.62% 

Accuracy of ordinary least squares regression model results was given in Table 4.103 and 

it is noted the accuracy is only 47.62%. It should be noted that only the teams predicted to play 

each other in the second round were used in the model. The actual teams were not used all the 

time since predicting was done before the tournament started.  

4.5. Conclusion 

4.5.1. Validation - Models developed by using seasonal averages 

To verify the accuracy of prediction results for the ordinary least squares regression 

model, differences of the seasonal averages for both teams for all previously mentioned 

significant variables were placed in the models developed for the whole tournament. The 

ordinary least squares regression model developed by using differences in ranks of seasonal 

averages and seasonal averages for the first round had approximately a 62.5% and a 65.6% 

chance of correctly predicting the results, respectively. The logistic regression model developed 

by using differences in ranks of seasonal averages and seasonal averages for the first round had 

approximately a 62.5% and 68.8% chance of correctly predicting the results, respectively. The 
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ordinary least squares regression model and the logistic regression model developed by using 

differences in ranks of seasonal averages and seasonal averages for the second round both had 

approximately a 68.8% chance of correctly predicting the results. The logistic regression model 

developed by using differences in ranks of seasonal averages and seasonal averages for the 

second round both had approximately a 68.8% chance of correctly predicting the results. The 

ordinary least squares regression model and the logistic regression model developed by using 

differences in ranks of seasonal averages and seasonal averages for the third and higher rounds 

both had approximately a 53.3% chance of correctly predicting the results. The logistic 

regression model developed by using differences in ranks of seasonal averages and seasonal 

averages for the third and higher rounds had approximately a 53.3% chance of correctly 

predicting the results. 

4.5.2. Prediction - Models developed by using seasonal averages 

In 2015, a continuous process was used to predict the winning team in each round before 

the tournament started instead of doing round by round predictions as in 2014. Namely, a 

complete bracket was filled out in 2015 before any game was played.  When the differences of 

the seasonal averages for both teams for all the significant variables were considered for entry in 

the ordinary least squares models which developed by using differences in ranks of seasonal 

averages and differences of seasonal averages, the models had approximately a 61.9% and 63.5% 

chance of correctly predicting the winner of a volleyball game, respectively. The logistic 

regression model developed by using differences in ranks of seasonal averages and seasonal 

averages had approximately a 58.7% and 65.1% chance of correctly predicting the women’s 

volleyball game, respectively. 
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4.5.3. Validation - Models developed by using in-game statistics 

To verify the accuracy of prediction results for the ordinary least squares regression 

model developed by using in-game statistics, differences of the in-game statistics for both teams 

for all previously mentioned significant variables were placed in the model developed for the 

whole tournament. The ordinary least squares regression model and the logistic regression model 

for the first round both had approximately a 87.5% chance of correctly predicting the results. The 

ordinary least squares regression model and the logistic regression model for the second round 

both had approximately a 93.8% chance of correctly predicting the results. The ordinary least 

squares regression model and the logistic regression model for the third and higher rounds had 

approximately a 93.33% and a 100% chance of correctly predicting the results, respectively. 

It is noted the validation accuracy is high, both ordinary least squares regression model 

and logistic regression model work great on explain the variables when the model is developed 

by using in-game statistics. 

4.5.4. Prediction - Models developed by using in-game statistics 

When the differences of the seasonal averages for both teams for all significant variables 

were considered for entry in the ordinary least squares regression model developed by using 

differences of in-game statistics, the model had approximately a 47.6% chance of correctly 

predicting the winner of a volleyball game. 

It is noted that the prediction were done and brackets filled out before the tournament 

began. The accuracy is lower because teams predicted to play in the second round or higher 

round might not have actually made it to those rounds. 
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4.5.5. Overall comparisons 

Both the ordinary least squares regression and logistic regression model developed by 

using in-game statistics work well when the in-game statistics are known.  

When predicting results for future tournaments without in-game statistics given, the 

models developed by using seasonal averages is better than the models developed by in-game 

statistics. This is not surprising since the model developed using seasonal averages is developed 

with seasonal averages in mind. The model developed using in-game statistics is not, and then 

replacing in-game statistics with seasonal averages. 

It is noted using difference of seasonal averages is better than using differences in ranks 

of averages for both ordinary least squares regression model and logistic regression model.  

Overall, the logistic regression model developed by using seasonal averages with an 

overall accuracy 65% works slightly better than the ordinary least squares regression model 

when predicting the winner of 2015 NCAA women’s volleyball tournament. 
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CHAPTER 5. BRACKETING NCAA WOMEN’S SOCCER TOURNAMENT 

5.1. Introduction 

5.1.1. The history of NCAA women’s soccer tournament 

The NCAA division I women’s soccer tournament is the annual championship in 

women’s soccer from teams in division I contested by the National Collegiate Athletic 

Association(NCAA) each winter. It is also known as the Women’s College Cup. There were only 

12 team competing for the single division women’s soccer Championship tournament which held 

in 1982. The tournament became the Division I Championship in 1986. The tournament 

expanded gradually, and is currently at 64 teams (NCAA - Soccer [1]). 

5.1.2. The playing rule and structure 

All division I women’s soccer programs were eligible to qualify for the tournament. 

Twenty-eight teams receive automatic bids by winning their conference tournaments, 3 teams 

receive automatic bids by claiming the conference regular season crown and the remainder of the 

teams earn at-large bids based on their regular season records (Road to the Championship [2]). 

There are 64 teams playing 32 games to compete in a single elimination tournament for 

the first round of the NCAA division I women’s soccer tournament championship. The 32 

advancing teams then compete against each other in single-elimination second round 

competition. The winning teams advance to the regional round. For the regional round, there will 

be 16 teams competing in a single-elimination regional semifinal competition. The advancing 

teams then compete against each other in single-elimination regional final. The winning team in 

each of the four regions advanced to the semifinal. The winner of each game in the semifinal 

advances to the final round and plays for the championship (Road to the Championship [2]). 

Figure 3 shows the 2015-2016 NCAA women’s soccer tournament bracket. 
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Figure 3. The NCAA women’s soccer tournament bracket for the 2015 – 2016 season. (This 

bracket is downloaded from: http://www.ncaa.com/interactive-bracket/soccer-women/d1) 
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5.1.3. The research objectives for this study 

The research objectives for this study are as follows: 

1) Develop ordinary least squares regression models for Round 1, Round 2 and Rounds 

3-6 with point spread being the dependent variable by using seasonal average, to predict winners 

of soccer games in each of those rounds for the NCAA women’s soccer tournament; and 

2) Develop logistic regression models for Round 1, Round 2 and Rounds 3-6 that 

estimate the probability of a team winning the game by using seasonal averages, to predict 

winners of soccer games in each of those rounds for the NCAA women’s soccer tournament; and 

3) Develop one ordinary least squares regression model by using in-game statistics, to 

explain the variation of the point spread of a women’s soccer game and then use this model to 

predict the winners of the soccer games for the NCAA women’s soccer tournament by replacing 

the significant in-game statistics with seasonal averages; and 

4) Develop one logistic regression model that estimate the probability of a team winning 

the game by using in-game statistics, and then use this model to predict winners by replacing 

significant in-game statistics with seasonal averages.  

In order to accomplish objectives 1 and 2, data was collected for three years of the 

NCAA women’s soccer tournament. This included the 2013, 2014 and 2015 tournaments. 

Differences of seasonal averages were collected for all the teams in the 2013 tournament on the 

variables listed in Table 5.1 (Set A): Scoring Offense, Goals-Against Average, Shutout 

Percentage, Won-Lost-Tied Percentage, Save Percentage, Saves Per game, Assists Per Game and 

Points Per Game. Seasonal averages were also collected on the same variables for all teams 

playing in the 2014 and 2015 tournaments. The developed models are given in Section 5.2. 
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Table 5.1. Set A - Variables in consideration for seasonal average  

Variables in consideration 

 

Definitions 

Scoring Offense SO = 
𝑇𝑜𝑡𝑎𝑙 𝐺𝑜𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑎𝑚 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [3]  

 

Goals-Against Average GAA = 
𝐺𝑜𝑎𝑙𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 ×90

𝑇𝑜𝑡𝑎𝑙 𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [4] 

 

Shutout Percentage Shutout %= 
𝑇𝑜𝑡𝑎𝑙 𝑆ℎ𝑢𝑡𝑜𝑢𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑎𝑚 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [3] 

 

Won-Lost-Tied Percentage 
WLT %= 

𝑊𝑖𝑛𝑠+( 
1

2
 𝑜𝑓 𝑡𝑖𝑒𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑎𝑚 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [3] 

 

Save Percentage Save %=
𝑆𝑎𝑣𝑒𝑠

𝑆𝑎𝑣𝑒𝑠+𝐺𝑜𝑎𝑙𝑠 𝐴𝑙𝑙𝑜𝑤𝑒𝑑
 [4] 

 

Saves Per Game SPG = 
𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [3] 

 

Assists Per Game APG = 
𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑖𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [4]  

 

Points Per Game PPG = 
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐺𝑎𝑚𝑒𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 [4]  

 

For research objectives 3 and 4, data was collected for NCAA women’s soccer 

tournament of 2016. In-game statistics were collected for all the games in the 2016 tournament 

on the variables listed in Table 5.2 (Set B). The variables included: Shutout, SOG, Assists, Fouls, 

Goalie Saves and Offside. The developed models are given in Section 5.3. 

Table 5.2. Set B - Variables in consideration for in-game statistics  

Variables in consideration 

 

Definitions 

Shutout A shut out is earned when the opposite team 

fails to score a single goal during a game. [5] 

SOG Any time a player makes an attempt to take a 

shot that does or would enter the goal is 

considered a (SOG). This includes shots that 

bounce off the goals, shots stopped by a 

defender, or shots saved by a goalkeeper. [5] 
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Table 5.2. Set B - Variables in consideration for in-game statistics (continued) 

Variables in consideration 

 

Definitions 

Assists An assist is awarded for a pass leading 

directly to a goal. [3] 

Fouls An illegal tackle by a player on an opponent 

resulting in a free kick, or in a penalty kick if 

the foul was adjudged to have been 

committed in the penalty area. [3] 

Goalie Saves Goalie Saves = Shouts on Goal -Scores [3] 

Offside To be in an offside position, a player must be 

on the opponent's half of the field & closer to 

the opponent's goal line than both the ball & 

the second-last defender. (However, the 

complete set of rules for offside is much more 

detailed.) The penalty for Offside is that an 

Indirect Free Kick is awarded to the opposing 

team to be taken from the place where the 

offside occurred. [5] 

5.2. Model developed by using difference of seasonal averages 

5.2.1. Develop models by using seasonal averages 

All data was collected from NCAA.COM [6]. Seasonal averages were collected before 

the tournament started. For example, the first game of NCAA 2013 women’s soccer tournament 

was held on November 15, 2013, the differences in seasonal averages were based on all games 

through November 10, 2013. 

Data was collected for three years of the NCAA women’s soccer tournament. This 

included the 2013, 2014 and 2015 tournaments. Seasonal averages for the variables listed in 

Table 5.1 (Set A) were collected for all the teams in the 2013 tournament. The variables 

included: Scoring Offense, Goals-Against Average, Shutout Percentage, Won-Lost-Tied 

Percentage, Save Percentage, Saves Per game, Assists Per Game and Points Per Game. Seasonal 

averages were also collected on the same variables for all teams playing each other in the 2014 

and 2015 tournaments. 
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5.2.2. Develop models for the first round using seasonal averages 

5.2.2.1. Develop ordinary least squares regression models 

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. Team of interest was the stronger team 

(higher seed numbers) in half of the games and the weaker team (lower seed numbers) in the 

other half of the games. A positive point spread indicates a win for the team of interest and a 

negative value indicates a loss for the team of interest. There were 192 teams playing 96 games 

in first rounds of the tournaments in 2013, 2014 and 2015. Tied games were excluded when 

developing the models. Differences of seasonal averages for 85 games were collected and 

considered in developing the models. For 42 games of the first round games in the three years, 

the point spread was obtained by using the stronger team (higher seed numbers) minus the 

weaker team (lower seed numbers). For the remainder of the games in the first rounds of the 

three years, the point spread was acquired by using the scores of weaker team (lower seed 

numbers) minus stronger team (higher seed numbers). 

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.2 for both entry and exit to develop the models. The α value of 0.2 was 

used to allow more variables to enter the initial model since there are fewer variables in soccer to 

consider than in basketball and volleyball. The differences of the seasonal averages for all the 

variables previously given in Table 5.1 (Set A) between the two teams were considered for entry 

in the model.  
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5.2.2.1.1. Development of ordinary least squares regression model for the first round 

The ordinary least squares regression model to help predict the winning team for each 

game in the first round based on using differences of seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = (-0.9076 * Diff_ Saves) + (1.19331* Diff_Assists) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 5.3. Table 5.4 gives the steps associated with the stepwise selection 

technique and Table 5.5 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 39% of the variation in 

point spread. 

Table 5.3. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Saves 1 -0.90760 0.20255 -4.48 <.0001 1.28196 

Assists 1 1.19331 0.39728 3.00 0.0035 1.28196 

Table 5.4. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Saves   1 0.3258 0.3258 9.7235 40.59 <.0001 

2 Assists   2 0.0661 0.3919 2.6326 9.02 0.0035 

Table 5.5. Summary of R-squares value 

Root MSE 2.57927     R-Square    0.3919 

Dependent Mean 0.02353     Adj R-Sq 0.3772 

Coeff Var 10962     

5.2.2.2. Develop logistic regression models 

The logistic regression model was also fit to the data with the dependent variable 

recorded as ‘1’ for win and ‘0’ for loss for the team of interest. The model estimates the 
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probability of a win for the team of interest. The team of interest was the stronger team (higher 

seed numbers) in half of the games and the weaker team (lower seed numbers) in the other half 

of the games. 

No intercept was included during the development of the logistic regression model 

because the ordering of the teams in the model should not matter. Stepwise selection was used 

with an α value of 0.2 for both entry and exit when determining the significant variables in 

developing the logistic regression model. The differences of the seasonal averages for both teams 

for all previously mentioned variables in Table 5.1 (Set A) were considered for entry in the 

model.  

5.2.2.2.1. Development of logistic regression model for the first round 

A logistic regression model to help predict the winning team for each game in the first 

round was developed and found to be: 

𝜋(Diff_Saves, Diff_Points)=
𝑒−0.7854∗Diff_Saves+0.3043∗Diff_Points

1+𝑒−0.7854∗Diff_Saves+0.3043∗Diff_Points 

Where π (Diff_Saves, Diff_Points) is the estimated probability that the team of interest 

will win the game with difference of seasonal averages in saves and difference of seasonal 

averages in points per game in model. 

Table 5.6 shows the steps for the stepwise selection technique and Table 5.7 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 5.8 shows the Hosmer and Lemeshow Test [7] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.391 

indicating that there was no evidence to reject using the logistic regression model. 
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Table 5.6. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 Saves   1 1 22.2778   <.0001 

2 Points   1 2 4.7683   0.0290 

Table 5.7. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Saves 1 -0.7854 0.2397 10.7342 0.0011 

Points 1 0.3043 0.1440 4.4670 0.0346 

Table 5.8. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

7.3736 7 0.3910 

5.2.3. Develop models for the second round using seasonal averages 

5.2.3.1. Develop ordinary least squares regression models 

There were 96 teams playing 48 games in second rounds of the tournaments in 2013 to 

2015. Tie games were excluded when developing the models. Differences of seasonal averages 

for 45 games were collected and considered for entry into the model. For 22 games of the second 

round, the point spread was obtained by using the scores of stronger team (higher seed numbers) 

minus the weaker team (lower seed numbers). For the remainder of games in the second round, 

the point spread was acquired by using stronger team (higher seed numbers) minus the weaker 

team (lower seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.2 for both entry and exit to develop the models. The 

differences of the seasonal averages of the previously mentioned variables listed in Table 5.1 

(Set A) between the two teams were considered for entry in the model.  
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5.2.3.1.1. Development of ordinary least squares regression model for the second round 

The ordinary least squares regression model to help predict the winning team for each 

game in the second round based on using differences of seasonal averages of the significant 

variables was developed and found to be: 

𝑌̂ = 7.97536* Diff_SavePct + 1.53406*Diff_Assists 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 5.9. Table 5.10 gives the steps associated with the stepwise selection 

technique and Table 5.11 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 24% of the variation in 

point spread. 

Table 5.9. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

SavePct 1 7.97536 4.40851 1.81 0.0774 1.09629 

Assists 1 1.53406 0.42676 3.59 0.0008 1.09629 

Table 5.10. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 Assists   1 0.1814 0.1814 0.0530 9.75 0.0032 

2 SavePct   2 0.0579 0.2393 -0.9921 3.27 0.0774 

Table 5.11. Summary of R-squares value 

Root MSE 2.29602     R-Square 0.2393 

Dependent Mean -0.26667     Adj R-Sq     0.2039 

Coeff Var -861.00722     

5.2.3.2. Develop logistic regression models 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was included during the development of 
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the logistic regression model. Stepwise selection was used with an α value of 0.2 for both entry 

and exit when determine the significant variables in developing the logistic regression model. 

The differences of the seasonal averages of all previously mentioned variables listed in Table 5.1 

(Set A) between the two teams were considered for entry in the model. 

5.2.3.2.1. Development of logistic regression model for the second round 

A logistic regression model to help predict the winning team for each game in the second 

round was developed and found to be: 

𝜋(Diff_Assists)=
𝑒0.7953∗Diff_Assists

1+𝑒0.7953∗Diff_Assists 

Where π (Diff_Assists) is the estimated probability that the team of interest will win the 

game with difference of seasonal averages in assists in model. 

Table 5.12 shows the steps for the stepwise selection technique and Table 5.13 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 5.14 shows the Hosmer and Lemeshow Test [7] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.2733 

indicating that there was no evidence to reject using the logistic regression model. 

Table 5.12. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 Assists   1 1 4.0025   0.0454 

Table 5.13. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

Assists 1 0.7953 0.4190 3.6028 0.0577 

Table 5.14. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

8.7207 7 0.2733 
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5.2.4. Develop models for the third and higher rounds using seasonal averages 

5.2.4.1. Develop ordinary least squares regression models 

There were 90 teams playing 45 games in second rounds of the tournaments in 2011 to 

2013. Tie games were not included when develop the models. Differences of seasonal averages 

for 38 games were collected and considered for entry into the model. For the first half games of 

the second round, the point spread was obtained by using the stronger team (higher seed 

numbers) minus the weaker team (lower seed numbers).  For the remainder of games in the 

second round, the point spread was acquired by using the scores of weaker team (lower seed 

numbers) minus the stronger team (higher seed numbers). The intercept was excluded when 

developing the models. Stepwise selection was used with an α value of 0.2 for both entry and 

exit to develop the models. The differences of the seasonal averages of the previously mentioned 

variables listed in Table 5.1 (Set A) between the two teams were considered for entry in the 

model.  

5.2.4.1.1. Development of ordinary least squares regression model for the third and higher 

rounds 

The ordinary least squares regression model to help predict the winning team for each 

game in the third and higher rounds based on using differences between seasonal averages of the 

significant variables was developed and found to be: 

𝑌̂ = (-7.2473*Diff_GoalsAgainst) + (-6.50028* Diff_Shutout%) + ( - 6.12538*Diff_WLT%) + 

(1.81157* Diff_Assists) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 5.15. Table 5.16 gives the steps associated with the stepwise selection 

technique and Table 5.17 shows the associated R-square values as variables are added to the 
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model. The model with the 4 significant variables explains an estimated 68% of the variation in 

point spread. 

Table 5.15. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

GoalsAgainstAvg 1 -7.24730 1.47994 -4.90 <.0001 5.86470 

ShutoutPct 1 -6.50028 2.41752 -2.69 0.0110 3.83753 

WonLostTiedPct 1 -6.12538 2.76841 -2.21 0.0337 4.47427 

AssistsPG 1 1.81157 0.42620 4.25 0.0002 2.64622 

Table 5.16. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 GoalsAgainstAvg   1 0.4497 0.4497 29.1979 30.23 <.0001 

2 AssistsPG   2 0.1411 0.5908 14.4792 12.42 0.0012 

3 ShutoutPct   3 0.0426 0.6334 11.4319 4.07 0.0514 

4 WonLostTiedPct   4 0.0461 0.6795 7.9654 4.90 0.0337 

Table 5.17. Summary of R-squares value 

Root MSE 1.55333     R-Square     0.6795 

Dependent Mean -0.47368     Adj R-Sq 0.6418 

Coeff Var -327.92552     

5.2.4.2. Develop logistic regression models 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 

logistic regression model. Stepwise selection was used with an α value of 0.2 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences of the seasonal averages of all previously mentioned variables listed in Table 5.1 (Set 

A) between the two teams were considered for entry in the model.  
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5.2.4.2.1. Development of logistic regression model for the third and higher rounds 

A logistic regression model to help predict the winning team for each game in the third 

and higher rounds was developed and found to be: 

𝜋(Diff_GoalsAgainst, Diff_Assists)=
𝑒−4.3317∗Diff_GoalsAgainst+1.8709∗Diff_Assists

1+𝑒−4.3317∗Diff_GoalsAgainst+1.8709∗Diff_Assists 

Where π (Diff_GoalsAgainst, Diff_Assists) is the estimated probability that the team of 

interest will win the game with difference of seasonal averages in goals against and difference of 

seasonal averages in assists in model. 

Table 5.18 shows the steps for the stepwise selection technique and Table 5.19 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 5.20 shows the Hosmer and Lemeshow Test [7] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.2348 

indicating that there was no evidence to reject using the logistic regression model. 

Table 5.18. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 GoalsAgainstAvg   1 1 14.2971   0.0002 

2 AssistsPG   1 2 7.7820   0.0053 

Table 5.19. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

GoalsAgainstAvg 1 -4.3317 1.6588 6.8192 0.0090 

AssistsPG 1 1.8709 0.7713 5.8842 0.0153 

Table 5.20. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

10.4510 8 0.2348 
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5.2.5. Validating first round using models developed  

5.2.5.1. Ordinary least squares regression model 

The first ordinary least squares regression models developed by using seasonal averages 

was used to predict the first round of 2016 season to check the accuracy of the model.  It is noted 

that the 2016 season was not used in the development of the models. 

Table 5.21 gives the prediction results for the ordinary least squares regression model for 

first round of the NCAA 2016 women’s soccer tournament. 

Table 5.21. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating first round of 2016 

Point spread Predicted   

Win Loss Total 

Actual Win 7 7 14 

Loss 5 8 13 

  Total 12 15 27 

Overall Accuracy 55.56% 

The first logistic regression model developed by using seasonal averages was used to 

predict the first round of 2016 season to check the accuracy of the model.  It is noted that the 

2016 season was not used in the development of the models. 

Table 5.22 gives the prediction results for the logistic regression model for first round of 

the NCAA 2016 women’s soccer tournament.  
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Table 5.22. Accuracy of logistic regression model developed by seasonal averages when 

validating first round of 2016 

Logistic Predicted   

Win Loss Total 

Actual Win 8 6 14 

Loss 4 9 13 

  Total 12 15 32 

Overall Accuracy 62.96% 

It is noted that the percentage of accuracy for first rounds using the logistic regression 

models which developed by using seasonal averages is better than the ordinary least squares 

regression model. 

5.2.6. Validating second round using models developed  

The second round ordinary least squares regression model and logistic regression model 

that were developed by using seasonal averages were used to predict the second round of the 

2016 soccer tournament to check the accuracy of the model.  It is noted that the 2016 season was 

not used in the development of the models. 

Table 5.23 gives the prediction results for the ordinary least squares regression model for 

second round of the NCAA 2016 women’s soccer tournament. Table 5.24 gives equivalent 

results for the logistic regression model. 

Table 5.23. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating second round of 2016 

Point spread Predicted   

Win Loss Total 

Actual Win 3 2 5 

Loss 1 8 9 

  Total 4 10 14 

Overall Accuracy 78.57% 
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Table 5.24. Accuracy of logistic regression model developed by seasonal averages when 

validating second round of 2016 

Logistic Predicted   

Win Loss Total 

Actual Win 4 1 5 

Loss 2 7 9 

  Total 6 8 14 

Overall Accuracy 78.57% 

5.2.7. Validating third and higher rounds using models developed  

The third ordinary least squares regression model and logistic regression model 

developed by using seasonal averages were used to predict the third through final rounds of 2016 

tournament to check the accuracy of the model.   

Table 5.25 gives the validation results for the ordinary least squares regression model for 

third and higher rounds of the NCAA 2016 women’s soccer tournament. Table 5.26 gives similar 

results for the logistic regression model. 

Table 5.25. Accuracy of ordinary least squares regression model developed by seasonal averages 

when validating third and higher rounds of 2016 

Point spread Predicted   

Win Loss Total 

Actual Win 2 4 6 

Loss 5 4 9 

  Total 7 8 15 

Overall Accuracy 40% 
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Table 5.26. Accuracy of logistic regression model developed by seasonal averages when 

validating third and higher rounds of 2016 

Logistic Predicted   

Win Loss Total 

Actual Win 1 5 6 

Loss 3 6 9 

  Total 4 11 15 

Overall Accuracy 46.67% 

5.2.8. Bracketing the 2016 tournament before tournament begins – Prediction 

Results were predicted for every round before the 2016 tournament began. Differences of 

significant seasonal averages of variables were found for all teams playing in the first round and 

put into first round model. Differences of seasonal averages for teams predicted to play each 

other in the second round were placed in second round model and winners of this round were 

predicted. Differences of seasonal averages of variables found to be significant of teams 

predicted to play each other in the third round were placed in the third round model and winning 

teams predicted for this round. This process continued until a tournament winner was selected. 

The predicted results were then compared against the actual results for each round of 

games in the 2016 tournament. 

5.2.8.1. Examples for each round in 2016 tournament 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model for a particular round in 2016 tournament 

was used. 
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5.2.8.1.1. Ordinary least squares regression model developed by seasonal averages 

5.2.8.1.1.1. Ordinary least squares regression model for first round 

The ordinary least squares regression model for first round developed by using 

differences of seasonal averages is: 

𝑌̂ = (-0.9076 * Diff_ Saves) + (1.19331* Diff_Assists) 

Stanford played Houston Baptist in the first round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.27.  

Table 5.27. Stanford and Houston Baptist Statistics 

Team Score Saves* Assists* 

Stanford 4 2.42 1.84 

Houston Baptist 0 5.1 1.33 

Difference 4 -2.68 0.51 

   * Average per game for season 

Using the model above, the game between Stanford and Houston Baptist had a predicted 

point spread of: 

ŷ = (-0.9076 * -2.68) + (1.19331* 0.51) = 3.04 

Since ŷ >0 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 4 to 0. 

Rutgers played Harvard in the first round of the 2016 tournament. Data on differences of 

significant seasonal averages was collected and displayed in Table 5.28.  

Table 5.28. Rutgers and Harvard Statistics 

Team Score Saves* Assists* 

Rutgers 3 3.33 1.38 

Harvard 0 3.44 1.44 

Difference 3 -0.11 -0.06 

        * Average per game for season 
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Using the model above, the game between Rutgers and Harvard had a predicted point 

spread of: 

ŷ = (-0.9076 * -0.11) + (1.19331* -0.06) = 0.03 

Since ŷ >0 this game was coded as a correctly predicted win for Rutgers, who won the 

game by a score of 3 to 0. 

Utah played Texas Tech in the first round of the 2016 tournament. Data on differences of 

significant seasonal averages was collected and displayed in Table 5.29.  

Table 5.29. Utah and Texas Tech Statistics 

Team Score Saves* Assists* 

Utah 1 3.95 1.47 

Texas Tech 0 4.32 0.47 

Difference 1 -0.37 1 

        * Average per game for season 

Using the model above, the game between Utah and Texas Tech had a predicted point 

spread of: 

ŷ = (-0.9076 * -0.37) + (1.19331* 1) = 1.53 

Since ŷ >0 this game was coded as a correctly predicted win for Utah, who won the game 

by a score of 1 to 0. 

Auburn played South Alabama in the first round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.30.  

Table 5.30. Auburn and South Alabama Statistics 

Team Score Saves* Assists* 

Auburn 4 3.15 2.2 

South Alabama 0 4.1 1.48 

Difference 4 -0.95 0.72 

    * Average per game for season 
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Using the model above, the game between Auburn and South Alabama had a predicted 

point spread of: 

ŷ = (-0.9076 *-0.95) + (1.19331*0.72) = 1.72 

Since ŷ >0 this game was coded as a correctly predicted win for Auburn, who won the 

game by a score of 4 to 0. 

Round 1: 

Number correct: 15 

Number incorrect: 12 

Total: 27 

5.2.8.1.1.2. Ordinary least squares regression model for second round 

The ordinary least squares regression model for second round developed by using 

differences of seasonal averages is: 

𝑌̂ = (7.97536* Diff_SavePct) + (1.53406*Diff_Assists) 

Rutgers played Georgetown in the second round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.31.  

Table 5.31. Rutgers and Georgetown Statistics 

Team Score Save_Pct* Assists* 

Rutgers 0 0.805 1.38 

Georgetown 2 0.811 1.9 

Difference -2 -0.006 -0.52 

   * Average per game for season 

Using the model above, the game between Rutgers and Georgetown had a predicted point 

spread of: 

ŷ = (7.97536* - 0.006) + (1.53406 * - 0.52) = -0.85 
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Since ŷ < 0 this game was coded as a correctly predicted loss for Rutgers, who lost the 

game by a score of 0 to 2. 

Wisconsin played Florida in the second round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.32.  

Table 5.32. Wisconsin and Florida Statistics 

Team Score Save_Pct* Assists* 

Wisconsin 2 0.795 1 

Florida 3 0.753 2.4 

Difference -1 0.042 -1.4 

     * Average per game for season 

Using the model above, the game between Wisconsin and Florida had a predicted point 

spread of: 

ŷ = (7.97536* 0.042) + (1.53406*(-1.4)) = -1.81 

Since ŷ < 0 this game was coded as a correctly predicted loss for Wisconsin, who lost the 

game by a score of 2 to 3. 

Round 2: 

Number correct: 7 

Number incorrect: 7 

Total: 14 

5.2.8.1.1.3. Ordinary least squares regression model for third and higher rounds 

The ordinary least squares regression model for third and higher rounds developed by 

using differences of seasonal averages is: 

𝑌̂ = (-7.2473*Diff_GoalsAgainst) + (-6.50028* Diff_Shutout%) + (- 6.12538* Diff_WLT%) + 

(1.81157* Diff_Assists) 
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South Carolina played BYU in the third round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.33.  

Table 5.33. South Carolina and BYU Statistics 

Team Score Goals_Against* Shutout%* WLT%* Assists * 

South Carolina 1 0.441 0.55 0.925 1.95 

BYU 0 0.464 0.632 0.868 2.89 

Difference 1 -0.023 -0.082 0.057 -0.94 

* Average per game for season 

Using the model above, the game between South Carolina and BYU had a predicted point 

spread of: 

ŷ = (-7.2473*-0.023) + (-6.50028*-0.082) + (-6.12538*0.057) + (1.81157* -0.94) = -1.35 

Since ŷ < 0 this game was coded as an incorrectly predicted loss for South Carolina, who 

won the game by a score of 1 to 0. 

Clemson played North Carolina in the third round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.34.  

Table 5.34. Clemson and North Carolina Statistics 

Team Score Goals_Against* Shutout%* WLT%* Assists * 

Clemson 0 0.774 0.35 0.725 2.65 

North Carolina 1 0.666 0.45 0.75 1.55 

Difference -1 0.108 -0.1 -0.025 1.1 

* Average per game for season 

Using the model above, the game between Clemson and North Carolina had a predicted 

point spread of: 

ŷ = (-7.2473*0.108) + (-6.50028* -0.1) + (- 6.12538*-0.025) + (1.81157* 1.1) = 2.01 

Since ŷ > 0 this game was coded as an incorrectly predicted win for Clemson, who lost 

the game by a score of 0 to 1. 
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Round 3-6: 

Number correct: 2 

Number incorrect: 13 

Total: 15 

It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 

5.2.8.1.2. Logistic regression model developed by seasonal averages 

An example for first round, second round and third or higher round will be given as to 

how the logistic regression model for a particular round was used for each round in 2016 

tournament. 

5.2.8.1.2.1. Logistic regression model for first round 

The logistic regression model for first round developed by using differences of seasonal 

averages is: 

𝜋(Diff_Saves, Diff_Points) = 
𝑒−0.7854∗Diff_Saves+0.3043∗Diff_Points

1+𝑒−0.7854∗Diff_Saves+0.3043∗Diff_Points 

Stanford played Houston Baptist in the first round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.35.  

Table 5.35. Stanford and Houston Baptist Statistics 

Team Score Saves* Points* 

Stanford 4 2.42 6.79 

Houston Baptist 0 5.1 4.67 

Difference 4 -2.68 2.12 

   * Average per game for season 

Using the model above, the game between Stanford and Houston Baptist had an 

estimated probability of winning the game of: 
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𝜋(-2.68, 2.12) = 
𝑒−0.7854∗−2.68+0.3043∗2.12

1+𝑒−0.7854∗−2.68+0.3043∗2.12
 = 0.94 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Stanford, who won the 

game by a score of 4 to 0. 

Long Beach State played Santa Clara in the first round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.36.  

Table 5.36. Long Beach State and Santa Clara Statistics 

Team Score Saves* Points* 

Long Beach State   0 4 4.35 

Santa Clara 3 3.47 3.26 

Difference -3 0.53 1.09 

  * Average per game for season 

Using the model above, the game between Long Beach State and Santa Clara had an 

estimated probability of winning the game of: 

𝜋(0.53, 1.09) = 
𝑒−0.7854∗0.53+0.3043∗1.09

1+𝑒−0.7854∗0.53+0.3043∗1.09 = 0.48 

Since 𝜋 <0.5 this game was coded as a correctly predicted loss for Long Beach State, 

who lost the game by a score of 0 to 3. 

Virginia played Monmouth in the first round of the 2016 tournament. Data on differences 

of significant seasonal averages was collected and displayed in Table 5.37.  

Table 5.37. Virginia and Monmouth Statistics 

Team Score Saves* Points* 

Virginia 4 2 6.53 

Monmouth 1 2.85 8.45 

Difference 3 -0.85 -1.92 

        * Average per game for season 

Using the model above, the game between Virginia and Monmouth had an estimated 

probability of winning the game of: 
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𝜋(-0.85, -1.92) = 
𝑒−0.7854∗−0.85+0.3043∗−1.92

1+𝑒−0.7854∗−0.85+0.3043∗−1.92
 = 0.52 

Since 𝜋 >0.5 this game was coded as a correctly predicted win for Virginia, who won the 

game by a score of 4 to 1. 

Albany played Connecticut in the first round of the 2016 tournament. Data on differences 

of significant seasonal averages was collected and displayed in Table 5.38.  

Table 5.38. Albany and Connecticut Statistics 

Team Score Saves* Points* 

Albany 2 4.79 4.53 

Connecticut 4 4.43 5.57 

Difference -2 0.36 -1.04 

       * Average per game for season 

Using the model above, the game between Albany and Connecticut had an estimated 

probability of winning the game of: 

𝜋(0.36, -1.04) = 
𝑒−0.7854∗0.36+0.3043∗−1.04

1+𝑒−0.7854∗0.36+0.3043∗−1.04 = 0.35 

Since 𝜋 <0.5 this game was coded as a correctly predicted loss for Albany, who lost the 

game by a score of 2 to 4. 

Round 1: 

Number correct: 17 

Number incorrect: 10 

Total: 27 

5.2.8.1.2.2. Logistic regression model for second round 

The logistic regression model for second round developed by using differences of 

seasonal averages is: 

𝜋(Diff_Assists) = 
𝑒0.7953∗Diff_Assists

1+𝑒0.7953∗Diff_Assists
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Stanford played Santa Clara in the second round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.39.  

Table 5.39. Stanford and Santa Clara Statistics 

Team Score Assists* 

Stanford 0 1.84 

Santa Clara 1 0.84 

Difference -1 1 

  * Average per game for season 

Using the model above, the game between Stanford and Santa Clara had an estimated 

probability of winning the game of: 

𝜋(1)= 
𝑒0.7953∗1

1+𝑒0.7953∗1 = 0.3 

Since 𝜋<0.5 this game was coded as a correctly predicted loss for Stanford, who lost the 

game by a score of 0 to 1. 

Wisconsin played Florida in the second round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.40.  

Table 5.40. Wisconsin and Florida Statistics 

Team Score Assists* 

Wisconsin 2 1 

Florida 3 2.4 

Difference -1 -1.4 

   * Average per game for season 

Using the model above, the game between Wisconsin and Florida had an estimated 

probability of winning the game of: 

𝜋(-1.4) = 
𝑒0.7953∗−1.4

1+𝑒0.7953∗−1.4 = 0.45 

Since 𝜋<0.5 this game was coded as a correctly predicted loss for Wisconsin, who lost 

the game by a score of 2 to 3. 
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Round 2: 

Number correct: 5 

Number incorrect: 9 

Total: 14 

5.2.8.1.2.3. Logistic regression model for third and higher rounds 

The logistic regression model for third and higher rounds developed by using differences 

of seasonal averages is: 

𝜋(Diff_GoalsAgainst, Diff_Assists) = 
𝑒−4.3317∗Diff_GoalsAgainst+1.8709∗Diff_Assists

1+𝑒−4.3317∗Diff_GoalsAgainst+1.8709∗Diff_Assists 

Clemson played North Carolina in the third round of the 2016 tournament. Data on 

differences of significant seasonal averages was collected and displayed in Table 5.41.  

Table 5.41. Clemson and North Carolina Statistics 

Team Score Goals_Against* Assists* 

Clemson 0 0.774 2.65 

North Carolina 1 0.666 1.55 

Difference -1 0.108 1.1 

        * Average per game for season 

Using the model above, the game between Clemson and North Carolina had an estimated 

probability of winning the game of: 

𝜋(0.108, 1.1) = 
𝑒−4.3317∗0.108+1.8709∗1.1

1+𝑒−4.3317∗0.108+1.8709∗1.1 = 0.03 

Since  𝜋 < 0.5 this game was coded as a correctly predicted loss for Clemson, who lost 

the game by a score of 0 to 1. 

Round 3-6: 

Number correct: 3 

Number incorrect: 12 

Total: 15 
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It should be noted that only the teams predicted to play each other in the second round 

were used in the model. The actual teams were not used all the time since predicting was done 

before the tournament started. 

5.2.9. Results for Prediction by using models developed by difference of seasonal averages 

In 2016, a continuous process was used in verifying the models instead of doing round by 

round predictions as in previous chapter. In other words, a complete bracket was filled out in 

2016 before any game was played.  

The ordinary least squares regression model for the first round developed by using 

difference of seasonal averages were used to predict the teams who go to next round. Once the 

teams in the second round were predicted, the second-round models were used to predict the 

winners of the second round. This process was continued for the third and higher rounds until the 

predicted final winner of the game was determined.  

Accuracy of ordinary least squares regression model results are given in Table 5.42 and 

results of logistic regression models are given in Table 5.43. 

Table 5.42. Prediction results of each round for 2016: (Ordinary least squares regression model 

developed by seasonal averages) 

 Correct Incorrect Total games 

First round 15 12 27 

Second round 7 7 14 

Third round 2 6 8 

Fourth round 0 4 4 

Fifth round 0 2 2 

Final round 0 1 1 

Overall Accuracy 42.86% 
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Table 5.43. Prediction results of each round for 2016: (Logistic regression model developed by 

seasonal averages) 

 Correct Incorrect Total games 

First round 17 10 27 

Second round 5 9 14 

Third round 2 6 8 

Fourth round 1 3 4 

Fifth round 0 2 2 

Final round 0 1 1 

Overall Accuracy 44.64% 

It is noted logistic regression model works slightly better than ordinary least squares 

regression model when using seasonal averages to develop models. 

5.3. Model developed by using difference of in-game statistics 

5.3.1. Develop models by using in-game statistics 

Data was collected for NCAA women’s soccer tournament of 2016. Tie games were 

excluded when develop the models. In-game statistics were collected for 55 games of 63 games 

of the 2015 tournament on the variables listed in Table 5.2 (Set B). The variables included: 

Shutout, SOG, Assists, Fouls, Goalie Saves and Offside. 

5.3.1.1. Develop ordinary least squares regression model using in-game statistics 

The response variable for the ordinary least squares regression model was point spread in 

the order of the team of interest minus the opposing team. Team of interest was the stronger team 

(higher seed numbers) in half of the games and the weaker team (lower seed numbers) in the 

other half of the games. A positive point spread indicates a win for the team of interest and a 

negative value indicates a loss for the team of interest. There were 64 teams playing 63 games in 

the tournaments of 2015. However, only 55 games were left after eliminating the tie games.  

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 
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used with an α value of 0.2 for both entry and exit to develop the models. The differences of the 

seasonal averages for all the variables previously given in Table 5.2 (Set B) between the two 

teams were considered for entry in the model.  

The ordinary least squares regression model to help predict the winning team for each 

round based on using differences between in-game statistics of significant variables was 

developed and found to be: 

𝑌̂ = (0.99212* Diff_SOG) + (0.99038 * Diff_GoaliesSaves) 

The following statistics have positive coefficients associated with them which is to be 

expected: Difference in SOG and Difference in Goalies Saves. It is noted that each additional 

Goalies Saves over the opposing team is estimated to be worth on average approximately 1 point. 

Each additional SOG over the other team is worth approximately 1 point.  

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 5.44. Table 5.45 gives the steps associated with the stepwise selection 

technique and Table 5.46 shows the associated R-square values as variables are added to the 

model. The model with the 2 significant variables explains an estimated 99% of the variation in 

point spread. 

Table 5.44. Point spread model parameter estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

SOG 1 0.99212 0.01721 57.63 <.0001 8.40089 

GoaliesS 1 0.99038 0.02239 44.24 <.0001 8.40089 
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Table 5.45. Summary of stepwise selection for point spread model 

Step Variable 

Entered 

Variable 

Removed 

Number 

Vars In 

Partial 

R-Square 

Model 

R-Square 

C(p) F Value Pr > F 

1 A   1 0.7056 0.7056 1111.59 129.42 <.0001 

2 SOG   2 0.0824 0.7880 787.547 20.61 <.0001 

3 GoaliesS   3 0.1993 0.9874 1.0312 819.54 <.0001 

4   A 2 0.0000 0.9874 -0.9678 0.00 0.9751 

Table 5.46. Summary of R-squares value 

Root MSE 0.27418     R-Square    0.9874 

Dependent Mean 0.23636     Adj R-Sq 0.9869 

Coeff Var 115.99884     

5.3.1.2. Develop logistic regression model using in-game statistics 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. No intercept was used during the development of the 

logistic regression model. Stepwise selection was used with an α value of 0.2 for both entry and 

exit when determine the significant variables in developing the logistic regression model. The 

differences of the seasonal averages of all previously mentioned variables listed in Table 5.2 (Set 

B) between the two teams were considered for entry in the model. 

A logistic regression model to predict the winning team for each round was developed 

and found to be: 

𝜋(Diff_SOG, Diff_GoaliesS)=
𝑒3.254∗Diff_SOG+3.2308∗Diff_GoaliesS

1+𝑒3.254∗Diff_SOG+3.2308∗Diff_GoaliesS 

Where π (Diff_SOG, Diff_GoaliesS) is the estimated probability that the team of interest 

will win the game with difference of in-game statistics in SOG and difference of in-game 

statistics in Goalies saves in model. 

Table 5.47 shows the steps for the stepwise selection technique and Table 5.48 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 
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the model. Table 5.49 shows the Hosmer and Lemeshow Test [7] was done to test whether there 

was evidence the logistic regression model was not appropriate. The p-value was 0.7568 

indicating that there was no evidence to reject using the logistic regression model. 

Table 5.47. Summary of stepwise selection for logistic regression model 

Step Effect DF Number 

In 

Score 

Chi-Square 

Wald 

Chi-Square 

Pr > ChiSq 

Entered Removed 

1 A   1 1 22.7008   <.0001 

2 SOG   1 2 3.9977   0.0456 

3 GoaliesS   1 3 20.7524   <.0001 

4   A 1 2   0.0743 0.7852 

Table 5.48. Logistic regression model parameter estimates 

Parameter DF Estimate Standard 

Error 

Wald 

Chi-Square 

Pr > ChiSq 

SOG 1 3.2540 0.9991 10.6071 0.0011 

GoaliesS 1 3.2308 1.0381 9.6858 0.0019 

Table 5.49. Hosmer and Lemeshow Goodness-of-Fit test 

Chi-Square DF Pr > ChiSq 

4.1972 7 0.7568 

5.3.2. Validating 2015 first round using models developed  

5.3.2.1. Verification of the models developed by using in-game statistics 

Using the ordinary least squares regression model developed for the whole tournament, 

the point spread of each of 63 games in the 2015 tournament was estimated. 

To verify the accuracy of the results for the ordinary least squares regression model, 

significant differences of in-game statistics were placed in the model developed. 

The estimated response ŷ then observed. If ŷ is great than 0, a predicted win for the team 

of interest was coded. If ŷ is less than 0, a predicted loss for the team of interest was coded. 

To verify the accuracy of the results for the logistic regression model for the first round, a 

similar process was conducted. For each round of the game, statistics for the significant factors 
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were collected and the difference was taken and placed into the logistic regression model to find 

a predicted probability, π xi. If π xi was greater than 0.5, a predicted win was coded. If π xi was 

less than 0.5, a predicted loss was coded. 

The second round and higher round models were verified in a similar way. Once the 

teams in the second round were determined, the same model was used to predict the winners of 

the second round. This process continued for the third and higher rounds. 

The validation results for first round using ordinary least squares regression model and 

logistic regression model developed by using in-game statistics are given in Table 5.50 and 

Table 5.51, respectively. 

Table 5.50. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating first round of 2015 

Point spread Predicted   

Win Loss Total 

Actual Win 13 0 13 

Loss 1 15 16 

  Total 14 15 29 

Overall Accuracy 96.55% 

Table 5.51. Accuracy of logistic regression model developed by in-game statistics when 

validating first round of 2015 

Logistic Predicted   

Win Loss Total 

Actual Win 13 0 13 

Loss 1 15 16 

  Total 14 15 29 

Overall Accuracy 96.55% 
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It is noted that the percentage of accuracy for first round using the ordinary least squares 

model and using the logistic regression model are the same. 

5.3.3. Validating second round using models developed 

The validation results for second round using ordinary least squares regression model and 

logistic regression model developed by using in-game statistics are given in Table 5.52 and 

Table 5.53, respectively. 

Table 5.52. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating second round of 2015 

Point spread Predicted   

Win Loss Total 

Actual Win 8 0 8 

Loss 0 7 7 

  Total 8 7 15 

Overall Accuracy 100% 

Table 5.53. Accuracy of logistic regression model developed by in-game statistics when 

validating second round of 2015 

Logistic Predicted   

Win Loss Total 

Actual Win 8 0 8 

Loss 0 7 7 

  Total 8 7 15 

Overall Accuracy 100% 

It is noted that the percentage of accuracy for second round using the ordinary least 

squares model and using the logistic regression model are equivalent. 
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5.3.4. Validating third and higher rounds using models developed 

The validation results for third and higher rounds using ordinary least squares regression 

model and logistic regression model developed by using in-game statistics are given in Table 

5.54 and Table 5.55, respectively. 

Table 5.54. Accuracy of ordinary least squares regression model developed by in-game statistics 

when validating third and higher rounds of 2015 

Point spread Predicted   

Win Loss Total 

Actual Win 6 0 6 

Loss 0 6 6 

  Total 6 6 12 

Overall Accuracy 100% 

Table 5.55. Accuracy of logistic regression model developed by in-game statistics when 

validating third and higher rounds of 2015 

Logistic Predicted   

Win Loss Total 

Actual Win 6 0 6 

Loss 0 6 6 

  Total 6 6 12 

Overall Accuracy 100% 

It is noted that the percentage of accuracy for third and higher rounds using the logistic 

regression model is the same as the ordinary least squares regression model. 

5.3.5. Bracketing the 2016 tournament before tournament begins – Predicting 

For predicting, since the in-game statistics will not be available before the tournament, 

seasonal averages of the current year were collected and put into the in-game model to predict 

the winners of the soccer games for 2016 tournament. 
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Results were predicted for each round by using the ordinary least squares regression 

model and the logistic regression model developed based on in-game statistics before the 2016 

tournament began.  

Differences of seasonal averages of in-game statistics found to be significant were put 

into first round model based on the team playing. Differences of seasonal averages for each team 

predicted to play each other in the second round were placed in second round model and winners 

of this round were predicted. Differences of seasonal averages of variables of teams predicted to 

play each other in the third round were placed in the third round model and winning teams 

predicted for this round. This process continued until a winner is selected. 

The predicted results were then compared against the actual results for each round of the 

tournament for 2016. 

5.3.5.1. Examples for first round in 2016 tournament 

An example for the first round, second round and then third or higher round will be given 

as to how the ordinary least squares regression model for a particular round in 2016 tournament 

was used. 

5.3.5.1.1. Using ordinary least squares regression model developed by in-game statistics 

The ordinary least squares regression model for first through final rounds developed by 

using differences of in-game statistics is: 

𝑌̂ = (0.99212* Diff_SOG) + (0.99038 * Diff_GoaliesSaves) 

USC played Eastern Washington in the first round of the 2015 tournament. Data on 

significant differences of in-game statistics were collected and displayed in Table 5.56. 
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 Table 5.56. USC and Eastern Washington Statistics 

Team Score SOG* Goalies_Saves * 

USC 3 4.12 6.94 

Eastern Washington 1 6.29 3.81 

Difference 2 -2.17 3.13 

      * Average per game for season 

Using the model above, the game between USC and Eastern Washington had a predicted 

point spread of: 

ŷ = (0.99212* -2.17) + (0.99038 *3.13) = 0.95 

Since ŷ >0 this game was coded as a correctly predicted win for USC, who won the game 

by a score of 3 to 1. 

Texas A&M played TCU in the first round of the 2015 tournament. Data on significant 

differences of in-game statistics were collected and displayed in Table 5.57.  

Table 5.57. Texas A&M and TCU Statistics 

Team Score SOG* Goalies_Saves * 

Texas A&M 1 6.9 3.8 

TCU 0 6.15 3.85 

Difference 1 0.75 -0.05 

* Average per game for season 

Using the model above, the game between Texas A&M and TCU had a predicted point 

spread of: 

ŷ = (0.99212* 0.75) + (0.99038 * -0.05) = 0.69 

Since ŷ >0 this game was coded as a correctly predicted win for Texas A&M, who won 

the game by a score of 1 to 0. 

Round 1: 

Number correct: 11 
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Number incorrect: 16 

Total: 27 

5.3.5.1.2. Using logistic regression model developed by in-game statistics 

An example for first round, second round, third or high round will be given as to how the 

logistic regression model for a particular round was used for each round in 2016 tournament. 

The logistic regression model for first through final rounds developed by using 

differences of in-game statistics is: 

𝜋(Diff_SOG, Diff_GoaliesS) = 
𝑒3.254∗Diff_SOG+3.2308∗Diff_GoaliesS

1+𝑒3.254∗Diff_SOG+3.2308∗Diff_GoaliesS 

USC played Eastern Washington in the first round of the 2015 tournament. Data on 

significant differences of in-game statistics were collected and displayed in Table 5.58.  

Table 5.58. USC and Eastern Washington Statistics 

Team Score SOG* Goalies_Saves * 

USC 3 4.12 6.94 

Eastern Washington 1 6.29 3.81 

Difference 2 -2.17 3.13 

      * Average per game for season 

Using the model above, the game between USC and Eastern Washington had an 

estimated probability of winning the game of: 

𝜋(-2.17, 3.13) = 
𝑒3.254∗−2.17+3.2308∗3.13

1+𝑒3.254∗−2.17+3.2308∗3.13 = 0.09 

Since 𝜋 < 0.5this game was coded as an incorrectly predicted loss for USC, who won the 

game by a score of 3 to 1. 

Texas A&M played TCU in the first round of the 2015 tournament. Data on significant 

differences of in-game statistics were collected and displayed in Table 5.59.  
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Table 5.59. Texas A&M and TCU Statistics 

Team Score SOG* Goalies_Saves * 

Texas A&M 1 6.9 3.8 

TCU 0 6.15 3.85 

Difference 1 0.75 -0.05 

* Average per game for season 

Using the model above, the game between Texas A&M and TCU had an estimated 

probability of winning the game of: 

𝜋(0.75, -0.05) = 
𝑒3.254∗0.75+3.2308∗−0.05

1+𝑒3.254∗0.75+3.2308∗−0.05
 = 0.21 

Since 𝜋 <0.5 this game was coded as an incorrectly predicted loss for Texas A&M, who 

won the game by a score of 1 to 0. 

Round 1: 

Number correct: 11 

Number incorrect: 16 

Total: 27 

5.3.6. Results for prediction by using models developed by in-game statistics 

Ideally, a complete bracket was filled out in 2016 by using the ordinary least squares 

regression model and logistic regression model developed by using in-game statistics before any 

game was played. However, after predicting the first round of 2016, the accuracy of predicting 

was low. In other word, put seasonal averages into in-game model did not work well. 

The Ordinary least squares regression model that developed by using in-game statistics 

was used to predict the team who go to next round, the results are given in Table 5.60.  

A similar process was conducted for logistic regression model. However, the results were 

similar with ordinary least squares regression model, the results are given in Table 5.61. 
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Table 5.60. Prediction results of first round for 2016: (Ordinary least squares regression model 

developed by in-game statistics) 

 Correct Incorrect Total games 

First round 11 16 27 

Accuracy         40.74% 

Table 5.61. Prediction results of first round for 2016: (Logistic regression model developed by 

in-game statistics) 

 Correct Incorrect Total games 

First round 11 16 32 

Accuracy           40.74% 

Accuracy of both ordinary least squares regression model and logistic regression model 

has an accuracy of 41% since seasonal averages data not fit the in-game model well. 

5.4. Conclusion 

5.4.1. Validation - Models developed by using seasonal averages 

To verify the accuracy of prediction results for the ordinary least squares regression 

model, differences of the seasonal averages for both teams for all significant variables were 

placed in the model developed for the whole tournament. The ordinary least squares regression 

model and the logistic regression model developed by using difference in seasonal averages for 

the first round had approximately a 55.56% and a 62.96% chance of correctly predicting the 

results, respectively. The ordinary least squares regression model and the logistic regression 

model developed by using difference in seasonal averages for the second round both had 

approximately a 78.57% chance of correctly predicting the results. The ordinary least squares 

regression model and the logistic regression model developed by using difference of seasonal 

averages for the third and higher rounds had approximately a 40% and 46.67% chance of 

correctly predicting the results, respectively.  
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5.4.2. Prediction - Models developed by using seasonal averages 

In 2016, a continuous process was used in verifying the models instead of doing round by 

round predictions as in 2015. Namely, a complete bracket was filled out in 2016 before any game 

was played.  When the differences of the seasonal averages for both teams for all significant 

variables were considered for entry in the ordinary least squares models and the logistic 

regression models which developed by using seasonal average, the models had approximately a 

47.6% chance of correctly predicting the winner of a soccer game, respectively.  

5.4.3. Validation - Models developed by using in-game statistics 

To verify the accuracy of prediction results for the ordinary least squares regression 

model developed by using in-game statistics, differences of the in-game statistics for both teams 

for significant variables were placed in the model developed for the whole tournament. The 

ordinary least squares regression model and the logistic regression model for the first round both 

had a 96.55% chance of correctly predicting the results when the tie games were excluded. The 

ordinary least squares regression model and the logistic regression model for the second through 

final rounds both had a 100% chance of correctly predicting the results when the tie games were 

excluded. 

5.4.4. Prediction - Models developed by using in-game statistics 

When the differences of the seasonal averages were placed into the model developed by 

using differences of in-game statistics, the ordinary least squares regression model and logistic 

regression model both had approximately a 41% chance of correctly predicting for the winner of 

a soccer game for the first round. 
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It is noted that the predictions were done and brackets filled out before the tournament 

began. The accuracy is lower because tams predicted to play in the second round or higher 

rounds might not have actually made it to those rounds. 

5.4.5. Overall comparisons 

Both the ordinary least squares regression model and the logistic regression model 

developed by using in-game statistics work well when the in-game statistics are known.  

However, when predicting results for future tournaments without in-game statistics given, 

the results are not good due the limited access of data readily available. Logistic model 

developed by using seasonal average with an overall 45% accuracy works better than the models 

developed by using in-game statistics. This is not surprising since the model developed using 

seasonal averages is developed with seasonal averages in mind. The model developed using in-

game statistics is not, and then replacing in-game statistics with seasonal averages. 

In order to improve this accuracy in the future, perhaps additional seasonal average 

variables and in-game statistics could be found which help to further explain the point margin in 

a women’s soccer game. 
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