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ABSTRACT 

Trentham, Stacy Michelle, Ph D , Department of Mathematics, College of Science 
and Mathematics, North Dakota State University, March 2011 Atomicity In 
Rings With Zero Divisors Major Professor Dr James Barker Coykendall IV 

In this dissertation, we examine atomicity in rings with zero divisors We begin 

by examining the relationship between a ring's level of atomicity and the highest 

level of irreducibility shared by the ring's irreducible elements Later, we choose 

one of the higher forms of atomicity and identify ways of building large classes of 

examples of rings that rise to this level of atomicity but no higher Characteristics 

of the various types of irreducible elements will also be examined Next, we extend 

our view to include polynomial extensions of rings with zero divisors In particular, 

we focus on properties of the three forms of maximal common divisors and how a 

ring's classification as an MCD, SMCD, or VSMCD ring affects its atomicity To 

conclude, we identify some unsolved problems relating to the topics discussed in this 

dissertation 
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CHAPTER 1. INTRODUCTION 

The interest in factorization is not, by any means, a modern fascination We 

know that ideas of factorization have been floating around since 300 B C during 

the time when Euclid composed The Elements At the beginning of Book VII of 

The Elements, a list of definitions can be found including the definitions for even, 

odd, prime, and composite numbers We also find Euclid's Algorithm for finding the 

greatest common mtegral divisor of two positive integers in this book This algorithm 

and its applications are still taught in contemporary Abstract Algebra courses One 

of the earliest results in factorization is the The Fundamental Theorem of Arithmetic, 

an equivalent form is found in Book IX of Euclid's The Elements This theorem states 

that any integer greater than one can be written uniquely as the product of prime 

numbers, up to ordering [3], [5] 

Factorization theory is a branch of commutative algebra where various types of 

commutative rings and their properties are studied These rings and their ideals are 

studied much like a chemist studies the molecular structure of a substance We look at 

the "smallest" components of the ring (if such a thing exists) and examine how these 

build "larger" components We not only look at the structure of these components but 

also how they interact with one another via addition and multiplication Much of the 

research done in factorization today is focused on integral domains The definitions 

and theorems m this chapter can be found in a variety of texts such as [6] and [4] 

Definition 1 1 A ring R is a nonempty set with two binary operations denoted + 

and * with the following three properties 

1 (R, +) is an abelian group 

2 (R, *) is associative 

3 a(b + c) — ab + ac and (a + h)c = ac + bc for every a,b,c G R 
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A ring R is called commutative if for each a, b € R we have that ab = ba If i? contains 

an element In such that CLIR = l«a for each a € R, then i? is said to be a ring with 

identity 

In this dissertation, we always will assume that rings are commutative with 

identity 

Definition 1 2 Let R be a ring An element r e f l i s called regular if rs = 0 only 

when s = 0 An element r € R is called a zero divisor if rs = 0 for some nonzero 

A ring may possess both regular elements and zero divisors For example, in the 

ring Z6[x] the element x is regular and the element 2 is a zero divisor with (2) (3) = 0 

Particular focus has been put on those commutative rings whose nonzero elements 

are all regular Such a ring is called an (integral) domain We encounter domains on 

a daily basis The ring consisting of the integers Z, the ring consisting of the rational 

numbers Q, the ring consisting of the real numbers R, and the ring consisting of the 

complex numbers C are all examples of domains We also examine the structure and 

behavior of a ring's ideals This can give us valuable insight into the factorization 

properties of the ring We can also use the various types of ideals to generate examples 

of rings with specific factorization properties 

Definition 1 3 Let R be a commutative ring A subset / C R is an ideal of R if I 

is itself a ring and if for each x £ I and each r € R, the element rx is an element of 

I 

Definition 1 4 An ideal I C R is called a principal ideal if it generated by a single 

element of R 

Definition 1 5 If every ideal of a commutative ring R is a principal ideal, then R 
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is called a principal ideal ring (PIR) Moreover, if R is a domain, then it is called a 

principal ideal domain (PID) 

The familiar domain Z is an example of a PID In this domain, the ideal / = (6) 

which consists of all integers divisible by 6 is a principal ideal If we generate an ideal 

with more than one element, say / = (8,12), then this ideal is the same as the ideal 

generated by the greatest common divisor of 8 and 12, l e / = (8,12) = (4) More 

generally, if an ideal J C Z i s generated by a finite set S, then J = (d) where d is the 

greatest common divisor of S That is, any finitely generated ideal in Z is principal 

As it turns out, every ideal in Z is finitely generated 

Definition 1 6 A ring is called Noetherian if every ideal in the ring is finitely 

generated 

PIR's are special cases of Noetherian rings However, a Noetherian ring need 

not be a PIR For example, the ring R = 1\x,y\ is a Noetherian domain The ideal 

/ = {x,y) cannot be generated by only one element so R is not a PIR Equivalent 

definitions of a Noetherian ring exist One such definition is that R is a Noetherian 

ring if given an ascending chain of ideals I\ C I2 C there exists a n i V G N such 

that for every j , k > N we have I3 = Ik 

Definition 1 7 Consider an ascending chain of principal ideals I\ C I2 C in R 

If there exists an Af 6 N such that for every j , k > N we have Id — Ik then we say 

that R satisfies the ascending chain condition on principal ideals (A CCP) 

Definition 1 8 Let M be an ideal in a commutative ring R If M C / for some 

nontnvial ideal I C. R only when M = I, then M is called a maximal ideal of R 

Definition 1 9 Let P C R be an ideal Then P is called a prime ideal of R if 

whenever / J C P for some ideals I, J € R we have that either / C P or J C P 
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Proposition 1 10 If M is a maximal ideal in R, then M is a prime ideal in R 

Proof Let ab E M with a £ M Then the ideal (M, a) must be R This tells us 

that 1 — ra E M for some r E R Now we look at the element 6(1 — ra) = b — rab 

This element is in M so we can say that b — rab = m for some m € M Thus, 

b = m + rab E M and we have that M is prime • 

The ideal 7 = (2) in Z is a maximal ideal The previous theorem leads us to 

conclude that 7 = (2) is also prime While the ideal J = (3) is a prime ideal m the 

domain R = Z[z] However, J is not maximal as J C (3, x) 

Definition 1 11 An ideal 7 C R is called a radical ideal if whenever xn E I then 

x E I If J C R is an ideal of R, then the radical of J, written rad(J) is the set 

{x E R\xn E J for some n E N} 

Definition 1 12 An ideal 7 C R is primary if given ab E I, then either a 6 / o r 

bn E I for some n G N 

Proposition 1 1 3 7 is o prime ideal in R if and only if I is both radical and primary 

Proof First we will assume that I is both radical and primary Let ab E I If a £ I, 

then we know that bn E I for some n E N Since I is radical, we also have that b E I 

Thus, I is prime 

Now assume that I is prime and let ab E I This means that if a ^ / , then 

b1 E I so I is primary If a" E I, then a E I since 7 is prime and we have that I is 

radical • 

Let R = Z[x] The ideal I ~ (2x) is a radical ideal in R The element 2x is in 

7 but neither 2 nor x™ is in I for any n E N Thus, 7 is not primary This tells us 

that the ideal 7 is not prime The ideal J = (8) in Z is a primary ideal However, 

the element 23 is in J but 2 is not in J and we have that J is not radical Thus, J is 

also not prime 
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Proposition 1 14 Let I be a primary ideal in R Then rad(I) is a prime ideal in 

R 

Proof Let ab G rad(I) This means that there is a positive integer n such that 

(ab)n = anbn G 7 So we have that either an G I or bk G I where k = mn for some 

m G N That is, either a G rad(I) or b G rad(I) So rad(I) is prime D 

Definition 1 15 Let R be a commutative rmg We say that a G R is a mlpotent 

element if an = 0 for some n G N We say that the ideal I C R is mlpotent if 7™ = 0 

for some n G N 

If i? is a domain, then the only mlpotent element is 0 and the only mlpotent 

ideal is (0) However, if we look at rings with zero divisors, we find many examples of 

mlpotent elements and ideals Considering the ring R = Z64 we find that the element 

2 is mlpotent since 26 = 0 and I = (4) is a mlpotent ideal since I3 — 0 

Theorem 1 16 Let R be a commutative ring and let I be an ideal in R 

1 R/I is a field if and only if I is a maximal ideal 

2 R/I is a domain if and only if I is a prime ideal 

3 R/I has no nonzero mlpotent elements if and only if I is a radical ideal 

4 All zero divisors in R/I are mlpotent if and only if I is a primary ideal 

Proof 

1 We will begin by assuming that R/I is a field and let J be an ideal such that 

I C J Then there exists an element a G J — I This means that for some 

b G R, we have that ab + 1 = 1 + 1 or ab— 1 G / C J So there is some element 

j G J such that ab — 1 = j but this means that 1 = ab — j G J Thus, J = R 

and I is maximal 
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Now assume that 7 is a maximal ideal of R and choose some nonzero element 

a + 7 G R/I Since a £ I, we know that (7, a) = R So for some r G R — I and 

some i G 7, we have i + ra = 1 Now if we look at (i + ra) + 7 = 1 + 7, we will 

see that ra +I = (r + 7) (a + 7) — 1 + 7 Thus, a + 1 is a unit and R/I is a field 

2 Here we will assume that R/I is a domain and assume that ah E I This means 

that ab + I = 0 + I or (a + I)(b + I) — 0 + I Since R/I is a domain, we have 

that a + I = 0 + I or 6 + 7 = 0 + 7, l e a G 7 or 6 G 7 and we have that 7 is a 

prime ideal 

Next we will begin with 7 as a prime ideal Let ab + 7 = 0 + 7 This means that 

ab € I Since 7 is prime, we have that a G 7 or b G 7 That is, a + 7 = 0 + 7 or 

6 + 7 = 0 + 7 and we have that R/I is & domain 

3 Let an G 7 for some n G N Here, we are assuming that 7?/7 has no nonzero 

nilpotent elements so this means that a™ + 7 = 0 + 7 means that a + 7 = 0 + 7 

Thus, a G 7 and 7 is radical 

Let an + 7 = 0 + 7 where 7 is a radical ideal Since a™ G 7 and 7 is radical, we 

have a G 7 o r a + 7 = 0 + 7 So 7?/7 has no nonzero nilpotent elements 

4 Here we will assume that all zero divisors of R/I are nilpotent Let ab G 7 such 

that a <£ I This means that ab + 7 = 0 + 7 in 72/7 with a + 7 ^ 0 + 7 So 

6 + 7 is a zero divisor in R/I and must therefore be nilpotent, say bn + 7 = 0 + 7 

where n G N This means that if a ^ 7, then 6" G 7 for some natural number n 

and we have that 7 is primary 

Lastly, we will assume that 7 is primary Let b + 7 be a zero divisor in 7?/7 

This means that there is a nonzero element a + I G R/I such that ab + I — 0 + 7 

giving us that ab G 7 Since 7 is primary and a ^ 7, we have that 6™ G 7, l e 

(6 + 7)" = 0 + 7 So the zero divisors in R/I are nilpotent • 
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Our goal is to generalize concepts used to describe domains so that we may use 

these generalizations to describe rings in general To this end, our focus will be on 

rings with zero divisors or nondomains We must first agree on definitions for the 

fundamental ideas commonly used m factorization For example, there are several 

equivalent definitions for associate elements when working with domains However, 

before we begin we must first examine these definitions as applied to nondomains to 

see if they remain equivalent If not, we must fine tune our lexicon to allow us to 

properly describe rings regardless of the presence of zero divisors This will be the 

focus of our next section 

7 



CHAPTER 2. DEFINITIONS 

A domain is atomic if every nonzero, nonunit can be written as a finite product 

of irreducibles To generalize this definition, we begin by replacing the word "domain" 

with "ring" However, this raises a new question, "What is an irreducible in a 

nondomain7" An irreducible in a domain is an element x such that whenever x — yz 

then x is associate to either y or z To properly generalize this definition, we must 

first revisit the definition for associate elements We continue to assume that rings 

are commutative with identity IR^ OR 

Theorem 2 1 Let D be an integral domain with nonzero elements a and b The 

following statements are equivalent 

1 a \ b andb \ a 

2 There exists a unit u € D such that a = ub 

3 If we have a \ b, b \ a, and a = be, then c must be a unit in D 

Proof Clearly, 3 => 2 => 1 So it suffices to show that 1 => 3 If a | 6, b | a, and 

a = be, then there exists a nonzero element d G D such that ad = b This means that 

a = adc or a(l — dc) = 0 Because a is nonzero, we know that 1 — dc = 0 or dc = 1 

Thus, both c and d are units in D D 

If two elements a,b G D satisfy one, hence all of these properties, then we say 

that a and b are associates in D If we remove the domain restriction, then the three 

statements are no longer equivalent If two elements in a ring R satisfy the first 

statement, then we say that these elements are associates (~) Two elements that 

satisfy the second condition are called strong associates («) Lastly, elements that 

satisfy the third statement are called very strong associates (=) We also define 0 to 

be very strongly associate to itself It is easily verified that very strong associates => 
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strong associates => associates It is worth noting that none of these implications can 

be reversed [1] 

Example 2 2 Let R = Z6 x Z9 Notice that (2,2) = (5,8) (4, 7) where (5,8) is a 

unit in R So (2,2) ss (4, 7) Also, (2,2) = (2, 8)(4, 7) where (2, 8) is not a unit in R 

Thus, (2 ,2)2(4 ,7) 

Q\x y] 
Example 2 3 Let R = -—— In R, x = xy2 so x ~ xy so there exists z such that 

(x - xy1) 

xz = xy Assume that z is a unit in R Then xz — xy = rx — rxy2 G Q[x, y] for some 

r G Q[x,y] Since x is prime, we have z — y = r — ry2 and z = y + r — ry2 If z is a unit 

in R, then (z,x — xy2) = Q[x,y],ie 1 = az + b(x — xy2) = ay + ar — ary2 + bx — bxy2 

Note that Q[x, y] is a domain, so we must have ar = 1 and ay — y2 + bx — bxy2 = 0 

This means that both a and r are units in Q[x, y] so they are elements of Q So b G (y) 

and y(a—y2) G (x) We know that y £ (x) so a—y2 G (x) and ar—ry2 = l—ry2 G (x) 

Since ry2 G (y), this gives us that (x,y) = Q[x,y], a contradiction So there is no 

unit u m R such that x = uxy which means x $ xy A similar example can be found 

m[l] 

In domains, we have two equivalent definitions for irreducible elements We 

know that a is irreducible in a domain D if given a = be, then 6 is a unit or c is a unit 

in D The three levels of associate elements along with this definition give us three 

types of irreducible elements Equivalently, a is irreducible in a domain D if and only 

if the ideal / = (a) is maximal among all principal ideals of D Using this definition 

for an irreducible element, we find that there is also a fourth type of irreducible that 

exists in rings with zero divisors 

Definition 2 4 [1] Let a G R be a nonunit We say that a is irreducible if a = be 

implies that a ~ b or a ~ c Equivalently, a is irreducible if (a) = (b) 
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Definition 2 5 [1] Let a G R be a nonunit We say that a is strongly irreducible if 

a = be implies that a « 6 or a s=s c 

Definition 2 6 [1] Let a G i? be a nonunit We say that a is very strongly irreducible 

if a = be implies that a = 6 or a = c 

Definition 2 7 [1] Let a G i? be a nonunit We say that a is m-irreducible if (a) is 

maximal among proper principal ideals 

In domains, these four definitions are equivalent We must now show that when 

we generalize to include nondomains, these are four unique levels of irreducibles Note 

that for nonzero elements of R, very strongly irreducible => m-irreducible =>• strongly 

irreducible =>• irreducible [1] 

Definition 2 8 Let a G R We say that a is prime if the ideal (a) is prime ideal 

Equivalently, we say that a is prime if a \ xy implies that a \ x or a | y 

Proposition 2 9 If a G R is prime, then a is irreducible 

Proof Let a be prime in R and assume that a = xy for some x,y G R This 

means that either x G (a) or y G (a) That is, either a ~ x or a ~ y Thus, a is 

irreducible • 

When defining new classifications of elements, we must verify that each class 

is nonempty and unique We know that prime elements are irreducible but we have 

yet to determine whether or not irreducible elements are prime Let R = 1\\f—3] 

Then 1 + \ /~3 is irreducible but not prime Thus, the class of prime elements and the 

class of irreducible elements are distinct Similarly, we can show that the remaining 

classes of irreducibles are unique by providing examples to show that the implications 
Q[x,y] 

above cannot be reversed First, let R = — Notice that x is prime so it is 
(x — xy1) 

irreducible However, considering x and xy we know that x — xy2 and x ~ xy 
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but there is no unit u G R such that x = u(xy) So x 76 xy Clearly, x \ y so 

x *> y That is, x is irreducible but not strongly irreducible Now, let R = Z x Q 

If (0, 5) = (a, 6)(c, c?), then either a = 0 o r c = 0 i n Z with both b and d being units 

in Q That is, either (a, b) or (c, d) is a unit multiple of (0, 5) So (0, 5) is strongly 

irreducible However, if we let / = < (0,5) > and J = < (2,5) >, then / £ J So 

(0,5) is strongly irreducible but not m-irreducible Lastly, let R = Ze Clearly, (3) is 

maximal among principal ideals so 3 is m-irreducible However, 3 = (3) (3) but 3 is 

not a unit in R So 3 is m-irreducible but not very strongly irreducible 

Using these four levels of irreducible elements along with primes, we find that 

nondomams may come in five different flavors of atomic 

Definition 2 10 [1] R is atomic if every nonzero, nonunit can be written as a finite 

product of irreducibles 

Definition 2 11 [1] R is strongly atomic if every nonzero, nonunit can be written 

as a finite product of strong irreducibles 

Definition 2 12 [1] R is m-atomic if every nonzero, nonunit can be written as a 

finite product of m-irreducibles 

Definition 2 13 [1] R is very strongly atomic if every nonzero, nonunit can be 

written as a finite product of very strong irreducibles 

Definition 2 14 [1] R is p-atomic if every nonzero, nonunit can be written as a 

finite product of primes 

It is easily shown that very strongly atomic =>• m-atomic => strongly atomic 

=> atomic In [1], the following theorems were introduced Using Theorem 2 16, we 

are able to use familiar rings to construct examples to show that the various levels 

of atomicity are indeed unique We credit this theorem with many of the examples 

given in this dissertation 
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Theorem 2 15 [1] Let {Ra}aeA be a family of commutative rings and R = I T Ra 

aeA 
Consider the elements a = (aa), b = (ba) G R 

1 a ~ b •& aa ~ ba for each a G A, a « b O- aa « ba for each a G A and if some 

ap = 0, then a = 0 

2 a is irreducible (respectively, strongly irreducible, m-irreducible, prime) <=> each 

aa G U(Ra) except for one ft G A where ap is irreducible (respectively, strongly 

irreducible, m-irreducible, prime) in Rp 

3 a is very strongly irreducible o- each aa G U(Ra) except for one /? G A where 

ap is very strongly irreducible in Rp but is not 0 unless | A |= 1 and Rp is a 

domain 

Proof 1 First we will assume that a ~ b This means that ac = b for some 

c = (ca) and a = bd for some d = (da) So for each a G A, we have aaca = ba 

and aa = bada for ca, da G Ra Thus, aa ~ ba for all a G A 

Now assume that aa ~ ba for each a G A So there exists ca,dQ G Ra such 

that aQca = ba and aQ = bada That is, ac = b and a = bd where c = (cQ) and 

d = (c?a) and we have a ~ 6 

Let aw!) So there exists some unit u = (ua) G R such that a = ub This means 

that aQ = ua6Q where ua is a unit in Ra and thus, aQ « 6Q for all a- G A 

If aa w 6a for all a G A, then there exists some unit ua G Ra such that aa = uaba 

That is, a = ub where u — (ua) and a « 6 

Here we will begin by assuming that a = b So either a = b = 0 or if a = 6c then 
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c G U(R) This gives us that either aa = ba = 0 for all a G A or if aa = bada 

then a = bd where d = (da) so d G J7(.R) That is, each dQ G U(Ra) and we have 

o„ = 6Q If ap = 0 for some /? G A, then we have 0 = 6^^ If a ^ 0, then we 

must have that dp G U(Rg) which means that bp = 0 However, if ap = bp = 0, 

then a@ = bpx for any x G Rp This gives us nonunit elements c £ R such that 

a = be where a ^ 0, a contradiction So if ap = 0, then we must have a = 0 

Next we assume that aa = ba and if aa = 0 for some a G A, then a = 0 This 

means that if aQ = 0 for some a, then a = b = 0 and we have a = 6 If aa 7̂  0 

for all a and a — be for some c £ R, then aQ = 6aca for all a So each cQ is a 

unit in Ra and thus, c is a unit in R and we have that a = b 

2 Let a = (aQ) G i? be irreducible This means that a, is a nonunit in R for some 

i G A If a, = 6Jcl, then we can say that a —be where b = (ba) and c = (ca) with 

6„ = 1 if a 7̂  z, 6a = bz if a = 1, ca = aa if a ^ 1, ca = cz if a = z Since a is 

irreducible, we know that either a ~ b or a ~ c and we have that either aa ~ 6a 

or aa ~ ca for all a G A More specifically, a% ~ 6, = 6j or a4 ~ ci = cz and we 

have that a% is irreducible 

Now consider a3 where j ^ 1 G A Let 6 = (bk) and c = (c*) where bk = ba and 

Ck = cQ if fc 7̂  i,],~b~k — Qj and ĉ  = 1 if A; = j , and finally, 6fe = 1 and c~k — a% 

if k = 1 Recall that we are assuming a is irreducible and we now have a = bc 

So either a ~ b or a ~ c, 1 e a, ~ 6, = 1 or â  ~ c, = 1 That is, either at or a3 

is a unit Since at is irreducible, it cannot be a unit and therefore, a3 must be a 

unit for all j ^ i 

Let i G A and a = (aa) where aa = 1 for a 7̂  ? and a, irreducible in R Now 
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assume that a = be with b = (6a) and c = (c„) This gives us that aa = baca 

So we have that ba and ca are units for a ^ i and at ~ bx or a, ~ c. That is, 

a ~ 6 or a ~ c so a is irreducible 

The proofs for the strongly irreducible, m-irreducible, and prime cases are very 

similar and are left to the reader 

3 Let a = (aa) be very strongly irreducible in R This gives us that a is irreducible 

and hence, aa = 1 for all a except one, call it ap, which is irreducible in Rp If 

we assume a = be, then we know that either a = b or a = c That is, either b or 

c is a unit m R So ap = bpCp where either bp or cp is a unit Now we have that 

either ap = bp or ap = Cp and a^ is very strongly irreducible in Rp 

Assume ap = 0 and recall that ap is very strongly irreducible so it is also m-

lrreducible This means that (ap) = (0) is maximal among principal ideals Now 

let / be an ideal in Rp such that (ap) C / This means that for any nonzero 

element x £ I we have (ap) C (x) C / However, (ap) is maximal among 

principal ideals so (ap) = (x), a contradiction Hence, (ap) = (0) is a maximal 

ideal in Rp and Rp is a domain 

Let a be very strongly irreducible where ap — 0 We know that a ~ a and if 

a = ak for some k € R, then either a or A; is a unit Since a is very strongly 

irreducible, we know that a is not a unit This means that k is a unit and a = a 

Also, if ap = 0, then we know from 1 that each aa = 0 Now if | A |> 1, then 

we can write a = be where b — (ba) and c = (ca) with ba = 0 for all a G A and 

ca is a nonunit for some a Notice that neither b nor c is a unit However, since 
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a is very strongly irreducible, we must have that either b or c is a unit in R and 

we have reached a contradiction Thus, | A |= 1 

• 

Theorem 2 16 [1] Let {Ra}a€A be a family of commutative rings, and let R — URa 

If R satisfies ACCP or any of the forms of atomicity, then A is finite 

Let Ri,R2, Rn be commutative rings and R = R\ x R2 x x Rn 

1 R satisfies ACCP (respectively, is atomic, strongly atomic, p-atornic) if and only 

if each Rt satisfies ACCP (respectively, is atomic, strongly atomic, p-atomic) 

2 R is m-atomic if and only if each R^, is m-atomic and if n > 1 and some Rt is a 

domain, then R% must be a field 

3 R is very strongly atomic if and only if each Rx is very strongly atomic and if 

some R% is a domain we must have n =• 1 

Proof Note that if R is an atomic ring with zero divisors, then 0 = ab for some 

a, 6 G R So we can write 0 as a finite product of irreducible elements Now if R is 

a domain and 0 = ab, then we have that 0 ~ a or 0 ~ b so 0 is irreducible So if R 

is ACCP or any form of atomic, then we must have that 0 can be written as a finite 

product of irreducible elements in R From the previous theorem, we can see that if 

A is infinite, then any finite product of irreducible elements must be nonzero So we 

must have that A is finite 

For the remainder of this proof, we will assume that A — n and R = RtxR2x x i?„ 

1 We know that the principal ideals of R are all ideals of the form I\ x I2 x x In 

where each Ia is principal in Ra Now assume that Jx C J2 C is an ascending 

chain of principal ideals in R\ We will call this Chain 1 This gives us an 

ascending chain of principal ideals Jx x R2x x R^ C J2 x R2 x x Rn C 
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in R which we will call Chain 2 Since R is ACCP, we know that Chain 2 must 

stabilize This means that Chain 1 must also stabilize and thus, we have that R\ 

is also ACCP Similarly, each Rt must also be ACCP 

Now we will assume that each R^ is ACCP Let i^i x 72,i
 x In,i ^ h,2 x h,2 x 

In,2 ^ be an ascending chain of principal ideals in R Since each Rz is 

ACCP, we know that each of the chains IhJ C IlJ+\ C must stabilize Thus, 

our original chain of principal ideals must also stabilize and we have that R is 

ACCP 

We know that r = (rt) £ R is irreducible (respectively, strongly irreducbile, 

prime) if and only if each r% is a unit in R^ except one, say r3, which must be 

irreducible (respectively, strongly irreducible, prime) in R3 From this we can 

conclude that R is atomic (respectively, strongly atomic, p-atomic) if and only if 

each Rv is atomic (respectively, strongly atomic, p-atomic) 

2 First we will assume that R is m-atomic Notice that the element (az) where 

a% = 1 for i ^ j and a3 is a nonzero, nonunit in R0 can be written as a finite 

product of m-irreducibles in R This gives us a factorization of a0 into a finite 

product of m-irreducibles in R3 Thus, every nonzero, nonunit in R3 can be 

wiitten as a finite product of m-irreducibles in R0 and R3 is m-atomic Also, if 

Rj is a domain, then 0 must be m-irreducible and hence, R3 is a field 

If each R^ is m-atomic, then each element of the form (az) where at = 1 for 

j ^ j and a-j is a nonzero, nonunit in Rj can be written as a finite product of 

m-irreducibles in R Also, every nonzero, nonunit in R can be written as a finite 
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product of elements of this form Thus, R must also be m-atomic 

3 Assume that R is very strongly atomic Recall that a = (aa) is very strongly 

irreducible if and only if each aa is a unit in Ra except one, call it a, which must 

be very strongly irreducible in Rx and cannot be zero unless n = 1 and fi, is a 

domain By this we see that each Rt must be very strongly atomic Now assume 

that Rj is a domain for some j If n > 1, then we see that the element (xz) 

where xx = 1 if i ^ j and x3 = 0 is irreducible but not very strongly irreducible, 

a contradiction since 0 is very strongly irreducible in R} This means that if R3 

is a domain for any 1 < j < n, then n = 1 

Now assume that each R% is very strongly atomic If n = 1 and R — R\ is a 

domain, then R is very strongly atomic So we will assume that n > 1 and each 

R% is not a domain Then if a € R% is nonzero and very strongly irreducible, 

we have that (1, , 1, a, 1, , 1) is very strongly irreducible in R Notice that 

every element of R can be written as a finite product of these types of elements 

Thus, R is very strongly atomic • 

Qfo y] 
Example 2 17 Let R = -— ' Then R is atomic but not strongly atomic R 

(x — xy2) 

is Noetherian so it is atomic However, as we will see in the next chapter, because 

x € R is irreducible but not strongly irreducible, we know that R cannot be strongly 

atomic Now if we let R = Z x Q, then R is strongly atomic but not m-atomic by 

Theorem 2 16 Using this same theorem, if we let R = Z$, then R is m-atomic but 

not very strongly atomic 

The following theorems provide us with the tools we need to show that if R is 

p-atomic, then R is both strongly atomic and ACCP Recall that in domains, if R is 

ACCP, then R is atomic This implication remains true when the domain condition 
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is removed 

Definition 2 18 [1] A principal ideal ring (PIR) is called a special principal ideal 

ring (SPIR) if it has only one proper prime ideal P and P2 = 0 

Theorem 2 19 [1] For a commutative ring R, the following statements are equiva­

lent 

1 R is p-atomic 

2 R is a finite direct product of SPIRs and UFDs 

3 Every (nonzero) proper principal ideal of R is a product of principal prime ideals 

Proposition 2 20 If R is a SPIR, then R is very strongly atomic 

Proof We know that if R is a SPIR, then R is ACCP and hence, atomic Let 

M = (m) be the unique maximal ideal We wish to show that m is irreducible We 

know that M2 = 0 Now let a G R be a nonzero irreducible element This means 

that a G M so we have a = rm for some r G R Since a is irreducible, we have that 

either a ~ r or a ~ m If a ~ r, then r € M and ab = r for some b £. R We now 

have a = rm = abm = rmbm = ab2m2 = 0 However, we know that a is nonzero so 

we must have a ~ m This means that ad = m for some d G R Now we will again 

look at our original factorization of a So we have a = rm = rad = rrmd = r2ad2 

Now r2ad2 — 0 if either r or d is a nonumt Since a is nonzero, we know that r and 

d must both be units giving us that a = m So m is also irreducible 

Now we wish to show that m is very strongly irreducible so we assume that 

m = st This means that either m ~ s or m ~ t Without loss of generality, 

we will assume that m ~ t So for some x G R, we have mx = t This gives us 

m = st = smx = sstx = s2mx2 Now s2mx2 = 0 if either s or x is a nonumt Thus, 

s must be a unit in R and we have that m is very strongly irreducible Since a = m, 

this means that a is also very strongly irreducible • 
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Proposition 2 21 [1] If R is p-atomic, then R is strongly atomic 

Proof Since R is a finite direct product of SPIRs and UFDs, we know that it is a finite 

direct product of very strongly atomic rings We will say that R = Rxx R2x x Rn 

If each R} is not a domain or if n = 1, then R is very strongly atomic If n > 1 and 

each Rj is either a field or a nondomam SPIR, then R is m-atomic If any one of the 

rings Rj is a domain but not a field, then R is strongly atomic • 

The following diagram shows the relationships between the various forms of 

atomicity 

P-Atomic 

Very Strongly Atomic ==> M-Atomic => Strongly Atomic = > Atomic 

We would like to show that the class of p-atomic rings does not coincide with 

another class of atomic ring If we let R = Z4 x Z, then R is p-atomic but not m-

atomic Next we let R = Z[\/^3] x Z Then R is strongly atomic but not p-atomic 

In our next chapter, we will dig a little deeper to uncover additional properties of the 

rings and elements identified in this chapter 
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CHAPTER 3. THEOREMS 

Now that we have identified these five types of atomicity and have verified 

that they are unique, we want to know, "Given a ring, how do we identify its level 

of atomicity?" The atomicity of some rings can be identified using Theorem 2 16 

However, this theorem may always not be useful We strive to identify additional 

methods for determining a ring's atomicity Also, we will examine some of the 

behavior of rings with various levels of atomicity 

As we have seen in the previous chapter, when working with nondomams we 

cannot make any assumptions, no matter how logical they may seem We will 

begin by verifying whether or not a unit multiple of an element will retain the 

irreducibility/prime status of the original element 

Proposit ion 3 1 Let a be irreducible (respectively strongly irreducible, m-irreducible, 

very strongly irreducible, prime) in R and u a unit in R Then ua is irreducible 

(respectively strongly irreducible, m-irreducible, very strongly irreducible, prime) in 

R 

Proof Let a be irreducible m R and a = ua where u is a unit in R Assume that 

a = xy for some x and y in R Then a = {u~lx)y So either a ~ u~lx or a ~ y If 

a ~ u_ 1x, then oh = u~xx for some b in R That is, uab = ab = x and a ~ x If 

a ~ y, then ab = y for some b in R That is, ua{u~lb) = au~lb = y and a ~ y Thus, 

a is irreducible 

Let a be strongly irreducible in R and a = ua where u is a unit m R Assume 

that a = xy for some x and y in R Then a = (u~1x)y So either a « u~lx or a sa y 

If a ss u~lx, then ab = u~lx for some unit b in R That is, uab = ab — x and a « x 

\iaK,y, then ab = y for some unit b in R That is, ua{u~lb) = au~lb = y and a w y 

Thus, a is strongly irreducible 
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Let a be m-irreducible in R and a = ua where u is a unit in R Then (a) = (a) 

which is maximal among principal ideals Thus, a is m-irreducible 

Let a be very strongly irreducible in R and a = ua where u is a unit in R 

Assume that a = xy for some x,y 6 R Then a = (u~lx)y So either a = u~lx or 

a = y If a = u_1a;, then y is a unit in .R and a = x If a = y, then u~lx is a unit in 

R so x is a unit in R and a = y Thus, a is very strongly irreducible 

Let a be prime m R and a = ua where u is a unit in R Then (a) = (a) which 

is a prime ideal Thus, a is prime • 

Another matter of great interest is whether or not a ring's atomicity status has 

any relationship with the level of irreducibility reached by its irreducible elements 

Must the ring's atomicity status agree with the highest level of irreducibility shared 

by all irreducible elements7 For example, can a very strongly atomic ring contain an 

irreducible element that attains no higher level of atomicity7 

Theorem 3 2 If R is very strongly atomic, then a is irreducible if and only if a is 

very strongly irreducible 

Proof Clearly, if a is very strongly irreducible, then o is irreducible So it suffices 

to show that if R is very strongly atomic, then each irreducible is very strongly 

irreducible 

Let a be irreducible in R Since R is very strongly atomic, we can write a as a 

finite product of very strong irreducibles, say a — a^o.^ an where each at is very 

strongly irreducible Now a is irreducible, so without loss of generality a ~ a\ That 

is, ab = ax for some b in R but ax is very strongly irreducible so b must be a unit 

Thus, a is very strongly irreducible • 

Theorem 3 3 If R is strongly atomic, then a is irreducible if and only if a is strongly 

irreducible 
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Proof If a is strongly irreducible then a is irreducible so we will assume that a m i ? 

is irreducible and we can write a = a\a2 an where each at is strongly irreducible 

Since a is irreducible, we know that a ~ ad for some j Without loss of generality, 

we will say that a ~ a\ This means that a\ = ak for some k in R Since a\ is 

strongly irreducible, we have that either a.\ = ua or ot\ — vk for some units u and v 

in R If a i = ua, then a is strongly irreducible and we are done So we assume that 

ax = vk This means that (a) = (a.\) = (k) = (a)(k) = (a^2 = (a)2 = (k)2 More 

specifically, (k) = (k)2 and we have k = rk2 for some r G R Also, rk is idempotent 

since (rk)2 = rk2r = rk Now we let I = (rk) = (a:) = (a) and J = (1 — rfc) be 

ideals in R Notice that I and J are comaximal 

Let / R —> R/I x R/J be given by o ^ (a, a) where a represents the coset 

a + I and a represents the coset a + J The map / is a well-defined homomorphism 

Let x e f l b e such that f(x) = (0, 0) This means that x£lf\J Sox = m(rk) = 

n(\ — rk) for some m,n £ R and we have that (m + n)rk = n which gives us n G I 

We will say n = trk for some t G R Now we have x = £r/c(l — r/c) = trk — t(rk)2 = 

£rfc — ir/c = 0 Thus, f is mjective Now let (m,n) G R/I x R/J Notice that 

f(n + (m- n)(l - rfe)) = (m, n) So / is bijective Thus, R = R/I x R/J 

We know that a ~ rk so for some b E R we have r/c = afr This gives us that 

/(ob) = f(a)f(b) = f(rk) = (0,1) That is, (0,a)(b,b) = (0,1) and we have that 

a is a unit in R/J Similarly, f(a\) = (0, a[) where al is a unit in R/J Now we 

have /(a) = (0,a) = (l ,a)(0,l) = (l,a)f(rk) Let / ^ ( ( l . a ) ) = y in R We wish 

to show that y is a unit Since f(y) = (y,y) = (I, a), we have yz + I = 1 + 7 and 

yu; + J = 1 + J for some w,z £ R This means that there exists s,t £ R such that 

yz = 1 + srk and yiu = 1 + i(l — rk) So yw(srk) = (I + t — trk)(srk) = srk and 

yz = 1 + ywrsk, l e y(z — wrsk) — 1 and y G U(R) We now have a = yrk where 

y G U(R) Similarly, ax = zrk for some z G U(R) Thus, a = yz~l(zrk) = (yz~l)ai 
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So a is strongly irreducible • 

Theorem 3 4 If R is m-atomic, then a is irreducible if and only if a is m-irreducible 

Proof Clearly if a is m-irreducible, then a is irreducible We need to show that if a 

irreducible, then a is m-irreducible 

Let a be irreducible in R Since R is m-atomic, a can be written as a finite 

product of m-irreducibles, say a = aia2 an where each a% is m-irreducible Now 

a is irreducible, so without loss of generality, a ~ ax That is, (a) = (ai) Since 

ax is m-irreducible, (ai) = (a) is maximal among principal ideals Thus, a is m-

ureducible • 

Theorem 3 5 If R is p-atomic, then a is irreducible if and only if a is prime 

Proof It suffices to show that an irreducible a is also prime 

Let a be irreducible in R Since R is p-atomic, a can be written as a finite 

product of primes, say a = pip2 pn where each pz is prime Now a is irreducible, so 

without loss of generality, a ~ pi That is, (a) = (pi) Since pi is prime, (pi) = (a) 

is a prime ideal Thus, a is prime • 

It is important to point out that the irreducibles of a ring with a particular form 

of atomicity will always fall into the corresponding class of irreducible However, this 

does not mean that the ring may not contain irreducibles from a "higher" class For 

example, if we let R = Z x Z, then R is strongly atomic and has no higher form of 

atomicity However, all elements of the form (p, 1) and (l,p) where p is prime in Z 

are both very strongly irreducible and prime The elements (1, 0) and (0,1) are only 

strongly irreducible but also prime Now let R — Z4 x Z6 Notice that R is m-atomic 

but has no higher form of atomicity but the element (2,1) is very strongly irreducible 

inR 
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To assure ourselves that the classes of atomic rings we are studying are nonempty, 

we look for methods of generating examples One such method has been shown in 

Theorem 2 16 Another possible way of generating examples is by looking at classes 

of domains R along with specific types of ideals / and examining the atomic structure 

oiR/I 

Theorem 3 6 Let R be a Noethenan domain and I C R a primary ideal Then R/I 

is very strongly atomic 

Proof R is Noethenan and hence ACCP Thus, R/I is also ACCP and hence atomic 

Let a + I be irreducible in R/I and assume that a + I = be + I Without loss 

of generality, we have that ad + / = b + I for some d + I G R/I This gives us 

a + I = acd + / or, equivalently, a(l — cd) + 1 = 0 + 1 Since a £ I and I is primary, 

we have that (1 — cd)n G / for some n This means that for some x G R, the element 

1 — ex G / So c is a unit in R/I and a + I is very strongly irreducible Therefore, R 

is very strongly atomic • 

This theorem remains true if we let R be any ring such that R/I is atomic It 

is also important to note that the converse does not hold true A ring R may be 

Noethenan and R/I may be very strongly atomic for some ideal I in R However, / 

need not be primary For example, let R = Z and I = (900) = (4) (9) (25) with (4), 

(9), and (25) pairwise comaximal and primary Then R/I = R/(4) x R/{9) x R/(25) 

is very strongly atomic but / is not primary 

What happens if R is Noethenan domain and / is a product of primary ideals7 

We have seen that R/I may be very strongly atomic but we wish to know if this will 

always be the case Is there a Noethenan domain R with an ideal / that is a product 

of primary ideals such that R/I is no longer very strongly atomic7 

Theorem 3 7 Let R be a Noethenan domain and I = I\Ii In where each L is a 
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nonpnme primary ideal and I\,l2, ,In are pairwise comaximal Then R/I is very 

strongly atomic 

Proof R/I = R/h x R/h x x R/In where each R/I3 is very strongly atomic If 

each Ij is not prime, then each R/I3 is a nondomain and we have that R/I is very 

strongly atomic • 

Notice that, if any of the I3's in the previous theorem is maximal, then R/I 

is m-atomic If one of the I3 's is a non-maximal prime ideal, then R/I is strongly 

atomic As in the previous theorem, we only need R to be a ring where R/I is atomic 

Corollary 3 8 Let R be a PID and I = (a) with a = p " 1 ^ 2 Pnn where each p% is 

prime and each a3 > 1 Then R/I is very strongly atomic 

The converse does not hold true If R is a PID, then R/I need not be very 

strongly atomic For example, let R = Z and I = (6) Then 3 + I is irreducible but 

not very strongly irreducible So R is a PID but R/I is not very strongly atomic 

We now turn our attention from Noethenan domains to Dedekind domains 

Recall that every ideal in a Dedekind domain can be written as a hnite product of 

prime ideals Since both prime ideals and powers of prime ideals are primary in a 

Dedekind domain, we wonder if we can use Theorem 3 6 to deduce the atomic status 

of the rings R/I where R is a Dedekind domain and I is any ideal in R 

Lemma 3 9 If R is a one-dimensional domain with nonzero primary ideals Q\ and 

Q2 such that rad(Qi) ^ rad(Q2), then Q\ and Q2 are comaximal 

Proof Recall that the radical of a primary ideal is prime and since R is one-dimensional, 

every nonzero prime ideal is maximal Let Pi = rad(Qi) and P2 = rad(Q2) Assume 

that Q\ + Q2 is contained in some maximal ideal M £ R Then Q\ C Qx + Q2 C M 

So rad(Qi) C M However, rad{Qi) = Pi so Px = M Similarly, P2 = M This gives 

us that Pi = P2, a contradiction So Qx + Q2 = R • 
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Theorem 3 10 Let R be a Dedekmd domain and I = P^Pg2 P£n be an ideal in 

R where each P% is a prime ideal in R and each at > 1 Then R/I is m-atomic If 

al > 1 for each i, then R/I is very strongly atomic 

Proof If we have a factorization of / into the product of primary ideals where Pt = P3 

for some i and j , then we can adjust the exponents and rewrite the factorization so 

that P% ^ Pj for all i ^ j For our purposes, we will assume that Px ^ P0 for all i ^ j 

We know that prime ideals are maximal and powers of prime ideals are primary 

because R is a Dedekmd domain Note that rad(P^) = Pt so by the previous 

lemma, we have that Pt
a* and P°J are comaximal for each i ^ j Thus, R/I = 

R/P?1 x R/P%2 x x R/R** by the Chinese Remainder Theorem Each R/P? is 

very strongly atomic and if at = 1, we have that R/P"' is a field Giving us that R/I 

is m-atomic If each at > 1, then each R/P^ is a very strongly atomic nondomain so 

R/I is very strongly atomic • 

We know that a domain R is Dedekmd if and only if it is Noetherian, one-

dimensional, and integrally closed What happens to the atomicity of R/I if we 

weaken the conditions of R That is, what happens to the atomicity of R/I if we 

require R to be both Noetherian and one-dimensional but not necessarily integrally 

closed7 

Theorem 3 11 Let R be a one dimensional Noetherian domain and I be an ideal in 

R Then R/I is m-atomic If I can be written as the product of primary ideals that 

are not prime, then R/I is very strongly atomic 

Proof R is Noetherian and one dimensional so each ideal I in R has a primary 

decomposition Say / = Qi f| Q2 f] f] Qn is a primary decomposition of / Let 

T — {P% = rad(Qt)\l < i < n) Then T is a set of prime ideals with Qt C P% Now 

let Sj = {Qi\Qi Q Pj} The set {Sj\l < j < n} forms a partition of {Qt\l < i < n} 
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since all nonzero prime ideals in R are maximal Now define I3 = [ j Qz and Y 
Q,eS3 

to be the set of all distinct ideals I3 Now considering only the ideals I3 in Y, we 

have that I3 is primary, I3 C P,, and Ik C Pk with P3 j^ Pk, Ij ^ Pk, and /& ^ P, 

Then I = f | Zj is a reduced primary decomposition Also, I3 € Y and /& € V are 

pairwise comaximal for all j ^ k as needed to apply Lemma 3 9 Thus, we can write 

R/I = R/h x R/I2 x x R/Im using the elements I3 from Y So each /? / / t is very 

strongly atomic and if I3 is prime, then R/I3 is a field This gives us that R/I is 

m-atomic If I3 is not prime for all j , then .R/7 is very strongly atomic • 

Can we generalize Theorem 3 10 any further7 What happens if we now remove 

the requirement that R be one-dimensionaP Let R = Q[x,y] and I = (x — xy2) 

Then R is a 2-dimensional Noethenan domain However, R/I is not m-atomic In 

fact, R/I is not even strongly atomic 

We will now switch gears and look a little closer at the elements of a ring Our 

hope is that a better understanding of these elements will give us insight into the 

ring's factorization 

Proposition 3 12 If m £ R is m-irreducible but not very strongly irreducible, then 

(m) = (m)2 

Proof Let m m R be m-irreducible and say m = ab for some a,b € R Since we 

assume that m is not very strongly irreducible, we can assume that neither a nor b 

are units So we have that (m) C (a) and (m) C (b) Since a and b are nonunits, 

(a) ^ R and (6) ^ R Thus, (a) = (6) = (m) = (a)(6) = (m)2 • 

While this theorem shows us an interesting property of m-irreducibles, it does 

not provide us with a method for identifying m-irreducibles A principal ideal may 

be idempotent and its generator not be m-irreducible If we let R — Z x Z and let 

m = (1,0) and / = (m), then I = I2 but m is not m-irreducible since / £ < (1, 2) > 
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Theorem 3 13 If r G R is regular and irreducible, then r is very strongly irreducible 

but not necessarily prime 

Proof Let r G R be regular and irreducible Assume that r = ab Since r is 

irreducible, either r ~ a or r ~ b Without loss of generality, we will say r ~ a 

So rk = a for some k m R This means that r = rkb or r ( l — kb) = 0 We know that 

r is regular so this must mean that 1 — kb = 0 That is, k and 6 are units m R Thus, 

r is very strongly irreducible 

Let R = Z4[x] Then x is regular and (x + 2)2 G (x) but a; + 2 ^ (x) so x is not 

prime • 

Now that we are more familiar with some of the intricacies of atomicity in 

nondomains, we wish to take the next step and look at polynomial extensions of our 

nondomains with varying levels of atomicity Before we do this we will look into 

a concept that can be used to verify the atomicity of a polynomial extension of a 

domain called a maximal common divisor 
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CHAPTER 4. MAXIMAL COMMON DIVISORS IN 

DOMAINS 

In 1993, Moshe Roitman published Polynomial Extensions of Atomic Domains [7] 

Here he constructs an example of an atomic commutative domain R such that R[x] is 

not atomic One of the key ingredients in this construction is the notion of maximal 

common divisor (MCD) Given a finite, nonempty set S in R, we say that m G R is 

an MCD of S if m divides each element of S and if n is another common divisor of 

S such that m \ n, then m and n are associates [7] A domain in which every finite 

set has an MCD is called an MCD domain [7] It is worth noting that if R is a GCD 

domain, then R is an MCD domain If we let R = ¥2[x2, ^ 3 ] , then we know that R is 

not a GCD domain because the set S = {x5,x6} does not have a GCD However, it 

does have an MCD In fact, both x2 and x3 are MCD's of S We wish to show that 

this ring is an MCD domain To do this, we must first establish that R is atomic 

Notice that R is a Noethenan domain This gives us that R[y, z] is also a Noethenan 

domain Hence, both R and R[y, z] are atomic domains 

In the first section of his paper, Roitman explores the connection between the 

MCD property and the atomicity of polynomial extensions of the domain The 

following theorem was first introduced and proven in [2] but is restated in Roitman's 

paper adjusting the language to include the MCD property It is this theorem that 

verifies that F2[a;2,x3] is an MCD domain We will later provide an alternate proof 

of this theorem using maximal common divisors 

Theorem 4 1 [7] Let R be an commutative domain with identity The following are 

equivalent 

1 R[x, y] is atomic 

2 Given any indexing set I, the polynomial extension i?[{xj}]j6/ is atomic 
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3 R is an atomic MCD domain 

This theorem shows how the MCD status of a domain can influence the atomicity 

of its polynomial extensions However, we wish to know more of the finer details of 

this property For example, do we need every finite set in R to have an MCD in order 

for R[x] to be atomic or is it necessary only for some sets7 Before we attempt to 

answer that question, we need to identify a special class of polynomials in R[x] A 

polynomial / G R[x] is called indecomposable if it cannot be written as the product 

of two polynomials with positive degree [7] In the ring Z[x], the polynomial 2x + 2 

is indecomposable Notice that we can write 6x — 3 = 3(2x — 1) but we are unable to 

write 6x — 3 as the product of two polynomials of positive degree In general, if R is 

a domain, then any linear polynomial in R[x] is indecomposable 

Theorem 4 2 [7] Let R be a domain The following conditions are equivalent 

1 R is atomic and the set of coefficients of any indecomposable polynomial in R[x] 

has an MCD in R 

2 R[x] is atomic 

Proof (1 => 2) Since any polynomial in R[x\ can be written as a finite product of 

indecomposable polynomials, it suffices to show that any indecomposable polynomial 

can be written as a finite product of irreducibles 
n 

Let / = 2_. f%x% be an indecomposable polynomial and m be the MCD of the 
1=0 

coefficients of / If the degree of / is 0, then we have that / G R so / can be written as 
n p 

a finite product of irreducibles So we will assume that deg(f) > 0 Let g = Ŝ — x% 

We claim that g is irreducible Assume that g = hk for some h,k G R[x] Since / 

is indecomposable, we know that g must also be indecomposable so without loss of 

generality we say that h £ R This means that mh | / , and m \ mh so we now have 

that m and mh are associates Thus, h is a unit in R and g is irreducible 
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(2 => 1) Let / be an indecomposable polynomial in R[x] Now look at an 

irreducible factorization of / say / = /1/2 fk Since / is indecomposable, we know 

that k—1 of these irreducible factors must be elements of R Without loss of generality 

say / i , / 2 , ,/fc-i are elements of R and let m = / i / 2 fk-i Now assume that 

c € R is a common divisor of the coefficients of / where m | c That is, m<i = c for 

some d £ R and / = md(^j) but /^ is irreducible so d is a unit Therefore, m and c 

are associates and m is an MCD of the coefficients of / • 

ff we tighten the conditions on R slightly, we see that if R is an atomic MCD 

domain, then R[x] is atomic On our quest to provide an alternative proof of Theo­

rem 4 1, we need to know if R[x] inherits the MCD property from R More generally, 

we want to know if any polynomial extension of R is an MCD domain if R is an MCD 

domain 

Theorem 4 3 [7] Let R be a commutative domain The following are equivalent 

1 R is an MCD domain 

2 R[x] is an MCD domain 

3 R[x] is a weak GCD domain (every set of two distinct elements in R has an 

MCD) 

4 Any polynomial extension of R is an MCD domain 

5 Any polynomial extension of R is a weak GCD domain 

Proof It suffices to show that 3 => 1 => 4 

(3 =>• 1) Consider the set Si = {ri,r2 , ,r„} in R and assume that n > 2 

Let f(x) = r\ + r2x + + rn-\X
n~2 be a polynomial in R[x] We know that the set 

S2 = {/, rn} has an MCD in R[x] call it m This means that m \ Si Now assume 

that c 6 R such that c | Si and m | c Then c | S2 so c and m are associates Thus, 

m is an MCD for Si 
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(1 => 4) Let X be a family of mdeterminants and let Si = {/i, f2, , /«} be 

a set of polynomials in R[X] If CDsx is the set of all common divisors of Si, then 

there exists at least one polynomial in CDsx that has the highest combined degree 

Choose one such polynomial and call it g Now let m G R be the MCD of all of the 

coefficients of the polynomials in the set 52 = {&, &, ,^} We will show that mg 

is an MCD of Si If h is a common divisor of Si such that mg \ h, then mgk = h for 

some k G R[X] Since g has the highest combined degree, we know that k must be 

an element in R Thus, mk is a common divisor of the coefficients of 52 and m \ mk 

so m and mk are associates Thus, fcisa unit and mg is an MCD of Si • 

We now have the tools we need to provide an alternate proof of Theorem 4 1 

Proof (3 => 2) Let X be a set of mdetermmates and choose / G R[X] Since R[X] 

is a domain, we know that if a = be then degx(a) = degx(b) + degx(c) for all x G X 

Thus, we can write / = /1/2 / n where each / , is indecomposable Now let S% be 

the set of coefficients of / , Since R is an MCD domain, each 5, has an MCD call it 

m. So we have f = mimo rrin^-^- - ^ Now R is atomic so mimo mn can 

be written as a product of irreducible elements in R[X] We claim that each j ^ is 

irreducible Assume that -•"- = gh Then ft = (mlg)h so either deg{m%g) = 0 which 

means that deg(g) = 0 or deg(h) = 0 Without loss of generality, we will assume that 

deg(g) — 0 This means that mtg divides each element in Sl and m, | m%g We know 

that m, is the MCD of S% so we must have that ml and m%g are associates That is, 

g is a unit in R So ^- is irreducible and i2[X] is atomic 

Since we can easily see that (2 => 1), we will conclude by proving that (1 =>• 3) 

.R inherits its atomicity from R[x, y] so we need only show that R is an MCD domain 

L e t 5 = {si,S2, , sn} be a finite set in R Then / = Si + s2x + +sn_1x"~2 + sray 

is an indecomposable polynomial in R[x, y] Since R[x, y] is atomic, we know that the 

set of coefficients of any indecomposable polynomial in i?[x][y] = R[x, y] has an MCD 
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in R[x] So if we rewrite / as / = gx + g2y where g\ = s\ + s2x + + s„_ix™"2 and 

92 — sn, then we know that the set {51,52} has an MCD in R[x] call it m However, 

g2 £ R so deg(m) = 0, 1 e m €. R This means that m also divides each coefficient 

of gx So m divides each element of S Now assume that k also divides each element 

of S and m \ k This means that k also divides both gi and g% Since m is the MCD 

°f {91192} we must have that m and k are associates Thus, m G i? is an MCD of S 

and i? is an MCD domain • 

Our goal in the next chapter is to generalize some of these theorems by removing 

the domain condition However, as we will see, rings with zero divisors can display 

behavior that can make this challenging To accommodate this behavior we will need 

to specify additional properties that the ring must possess in order for the result 

to hold true We will also provide examples of rings with some of this troublesome 

behavior 
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CHAPTER 5. MAXIMAL COMMON DIVISORS IN 

RINGS WITH ZERO DIVISORS 

We begin by defining three different types of maximal common divisors using 

the definition Roitman used when working with domains and incorporating the three 

levels of associate elements 

Definition 5 1 Given a set S in R, m is a maximal common divisor (MCD) of S if 

m has the following two properties 

1 m divides every element in S and 

2 if n is another common divisor of the elements of S such that m | n, then m ~ n 

Definition 5 2 Given a set S in R, m is a strong maximal common divisor (SMCD) 

of S if m has the following two properties 

1 if m divides every element in S and 

2 if n is another common divisor of the elements of S such that m \ n, then m « n 

Definition 5 3 Given a set S in R, m is a very strong maximal common divisor 

(VSMCD) of S if m has the following two properties 

1 if m divides every element in S and 

2 if n is another common divisor of the elements of S such that m | n, then m = n 

We can see that when generalizing an MCD result in domains, we will have 

three corresponding results to verify in nondomams We begin by first defining three 

new types of rings 

Definition 5 4 R is an MCD ring if every finite set in R has an MCD 

Definition 5 5 R is an SMCD ring if every finite set in R has an SMCD 

Definition 5 6 R is a VSMCD ring if every finite set in R has a VSMCD 
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Before we go any further we need to verify that these are three distinct, nonempty 

classes of rings 

The ring # = Z x Z is a VSMCD ring Because Z is a UFD, it is also a GCD 

domain so it is a VSMCD ring We will see later that the product of VSMCD rings 

is also a VSMCD ring 

Now if we let R = Z6 Then R is an SMCD ring but not a VSMCD ring If the 

set contains 1 or 5, then 1 is an SMCD of the set If the set contains 2 and 3, then 

1 is an SMCD of the set If the set contains 3 and 4, then 1 is an SMCD of the set 

If the set is S = {3}, then the only common divisors of S are 1, 3, 5 Since 1 and 5 

divide 3 but are not associate to 3, we know that they are not MCD's of S Notice 

here that 3 is a common divisor of S such that 3 | 3 However, 3 is strongly associate 

but not very strongly associate to itself So 3 is an SMCD of S but S does not have 

a VSMCD If the set is {2}, {4}, or {2,4}, then 2 is an SMCD of the set For any of 

these three sets, 4 is a common divisor such that 2 | 4 Also, we know that 2 w 4 but 

2 ^ 4 This means that S has an SMCD but not a VSMCD 

At this point in time, an MCD ring that is not an SMCD ring has not been 

identified As we will see later, if R is an atomic SMCD ring, then R is strongly 
<Q\x y] 

atomic Since we know that !—^- is atomic but not strongly atomic, then this is 
(x — xyz) 

the logical ring to begin with when looking for an example of a ring that is an MCD 

ring but not an SMCD ring 

We will begin, as Roitman did, by examining how the various MCD properties 

affect the polynomial extension of a ring 

Recall that in a domain R, every polynomial in R[x] can be written as a finite 

product of indecomposable polynomials This useful fact does not necessarily hold if 

R is contains zero divisors For example, if we let R = Z4, then we see that 1 + 2xn 

is a unit in R[x] for all n e N So given any polynomial / G R[x] such that 2 \ f 
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and deg(f) > 1, we can write / = (1 + 2x")((l + 2xn)f) where both 1 + 2xn and 

(1 + 2xn)f have positive degree for any n 6 N This means that any polynomial that 

is not divisible by 2 can be written as the product of two polynomials of positive 

degree If 2 | / and deg(f) > 1, then f = 2g for some g in R[x] Notice here that 2 \ g 

since / ^ 0 This means that / = (1 + 2x)[(l + 2s)(2s)] = (1 + 2x)[2(l + 2x)]g = 

(1 + 2x)2g = (1 + 2x)f Here we have that both 1 + 2x and / have positive degree 

Thus, no polynomial in R[x] of positive degree is indecomposable and consequently 

no nonconstant polynomial can be written as a finite product of indecomposable 

polynomials This behavior is often problematic causing the need for an additional 

condition when generalizing theorems from domains to rings 

It is important to point out that polynomial rings exist outside the realm of 

domains where each polynomial can be written as a finite product of indecomposable 

polynomials One such ring is R = Z6[x] Notice that in Ze[x], the ideals I = (2) 

and J = (3) are comaximal So we have that R = R/I x R/J Now since both R/I 

and R/J are both domains, we know that any polynomial in R/I, for example, can 

be written as a finite product of polynomials in R/I Thus, if we have a polynomial 

in R call it / , then we can rewrite it as / = (g, h) If the degree of g is n and the 

degree of h is m, then / can be factored into at most n + m polynomials in R with 

positive degree This means that we can find a factorization of / into polynomials 

of positive degree that has maximum length, say it is / = / i / 2 fk where each / , 

is of positive degree Now assume that fl = ab If a £ R and b £ R, then we have 

a factorization of / into nonconstant polynomials of length k + 1 This contradicts 

the maximahty of the length of the original factorization of / So we have that every 

polynomial in Z6[x] can be written as a finite product of indecomposable polynomials 

Conjecture 5 7 Let R be an atomic ring and let / be a polynomial in R[x] If S is 
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the set of coefficients of / , then there exists an MCD of S, call it m, and a polynomial 

g such that / = mg where an MCD of the set of coefficients of g is 1 

If we are working with a domain, then this conjecture is easily proven to be 

true However, if R = Z6, for example, then we can have factorizations like f(x) = 

2x + 4 = 2(4x + 2) where the MCD of {2,4} ^ 1 In this case, we can choose to 

factor f(x) = 2x + 4 as f(x) = 2(x + 2) and here the MCD of {1,2} is 1 We use this 

conjecture to prove the following two theorems 

Theorem 5 8 Let R be a ring such that all polynomials in R[x] can be written as a 

finite product of indecomposable polynomials If R is atomic and the set of coefficients 

of any indecomposable polynomial in R[x] has an MCD, then R[x] is atomic 

Proof Let / be a polynomial in R[x] Since all polynomials in R[x] can be writ­

ten as a finite product of indecomposable polynomials, we may assume that / is 

indecomposable That is, if / = gh, then without loss of generality h G R 

Let Sf be the set of coefficients of / and let m be an MCD of Sf Also, let g be 

a polynomial such that / = mg and the MCD of Sg, the set of coefficients of g, is 1 

We now need to show that g is irreducible in R[x] 

Assume that g = kt for some k,t G R[x] Then without loss of generality, we 

may assume that t G R since / is indecomposable This means that t is a common 

divisor of Sg and 1 | t which gives us 1 ~ t and t is a unit Thus, g is irreducible In 

[1], we find that an element a G R is irreducible in R if and only if it is irreducible in 

R[x] and we now have that R[x] is atomic • 

Theorem 5 9 Let R be a ring such that all polynomials in R[x] can be written as a 

finite product of indecomposable polynomials If R is strongly atomic and the set of 

coefficients of any indecomposable polynomial in R[x] has an SMCD in R, then R[x] 

is strongly atomic 
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Proof Let / be a polynomial in R[x] Since all polynomials in R[x] can be writ­

ten as a finite product of indecomposable polynomials, we may assume that / is 

indecomposable That is, if / = gh, then without loss of generality h & R 

Let Sf be the set of coefficients of / and let m be an SMCD of Sf Also, let g 

be a polynomial such that / = mg and the SMCD of Sg, the set of coefficients of g, 

is 1 We now need to show that g is strongly irreducible in R[x] 

Assume that g = kt for some k, t G R[x] Then without loss of generality, we 

may assume that t G R since / is indecomposable This means that t is a common 

divisor of Sg and 1 | t which gives us 1 « t and t is a unit Thus, g is strongly 

irreducible In [1], we find that an element a G R is strongly irreducible in R if 

and only if it is strongly irreducible in R[x] and we now have that R[x] is strongly 

atomic • 

Theorem 5 10 Let R be a ring such that all polynomials in R[x] can be written as 

a finite product of indecomposable polynomials If R is very strongly atomic and the 

set of coefficients of any indecomposable polynomial in R[x] has a VSMCD, then R[x] 

is very strongly atomic 

Proof Let f(x) = ao + a\x + a2x
2 + + anx

n be a polynomial in R[x] Since all 

polynomials in R[x] can be written as a finite product of indecomposable polynomials, 

we may assume that / is indecomposable That is, if / = gh, then without loss 

of generality h G R Let S — {a0 ,ai,a2 , ,a n} be the set of all coefficients of 

/ and m be a VSMCD of S So f(x) = m ( ^ + ^x + ^x2 + + %xn) Let 
J •> V / \ 771 771 771 7 7 1 ' 

g(x) = ^ + mx "*" mx2 + + T£ X " ^ e now need to show that g is very strongly 

irreducible in R[x] 

Assume that g(x) = k(x)t(x) for some k,t € R[x] Then without loss of 

generality, we may assume that t(x) G R since / is indecomposable This means 

that mt is a common divisor of 5 and m \ mt So m = mt which means there exists 
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a unit n e i J such that m = umt and if mt = rm for some r G R, then r must be 

a unit Since mt = umt2 = (ut2)m we can conclude that t(x) is a unit in R and in 

R[x] Thus, g is very strongly irreducible • 

We have seen that a direct product of rings with a particular type of atomicity 

does not necessarily possess the same form of atomicity In fact, this direct product 

may not have any form of atomicity What happens when we take a direct product 

of rings with a particular MCD property7 Is it still an MCD ring? Do we have to 

bound the indexing set to retain any level of the MCD property7 

Theorem 5 11 Let {Ra}ae\ be a family of rings and let R = TT Ra Then R is an 

MCD ring if and only if each Ra is an MCD ring R is an SMCD ring if and only if 

each Ra is an SMCD ring R is a VSMCD ring if and only if each Ra is a VSMCD 

nng 

Proof The proofs for each of the three statements are nearly identical so we will 

prove only the first statement 

Let R = TT Ra be an MCD ring and let S3 = {s\, s2, ,s„} be a finite set in 
aeA 

Rj for some j G A Let ?, = (xQ)aeA where xa = s, if a = j and xa = 0 if a ^ j 

Consider the set S3 — {si,S2, , s^} in R Note that S3 has an MCD in R, call it 

m = (mQ)Q€A We now have that m^ | S3 so we assume that c | S3 and m} \ c for 

some c E Rj If mc = (ya)aeA where ya = ma if a ^ j and ya = c if a = j , then mc 

is a common divisor of S0 with m \ mc Thus, m ~ mc so m3 ~ c and we have that 

m3 is an MCD of 5^ giving us that R3 is an MCD ring 

Let R = TT Ra where each Ra is an MCD ring Consider the set S = 
a€A 

{si, S2, , sn} in R where each st = {xha}a€\ Now look at the set Sa = (xi]Q, x2,a, , ^n,a) 

in Ra This set has an MCD in Ra call it ma We wish to show that m = (ma)Q€A 

is an MCD of S Clearly, m | S so we now assume that c | S and m | c for some 

39 



c = cQ)a€A in R This means that ca \ Sa and ma | ca Thus, ma ~ ca and 

m ~ c D 

In Chapter 3, we found nice ways of generating large classes of rings with the 

various forms of atomicity We would like to also generate large classes of rings that 

possess the various levels of the MCD property 

Theorem 5 12 If R is a PIR, then R is an MCD ring If R is a SPIR, then R is 

a VSMCD ring 

Proof Let R be a PIR and let S C R be a finite set Since R is a PIR, we know 

that the ideal (S) is principally generated We will say (S) = (d) This means that d 

is a common divisor of S Now assume that x is another common divisor of S such 

that d | x We now have S C (x) and x € (d) That is, S = (d) C (x) and we have 

(x) = (d), 1 e x ~ d and d is an MCD of S 

Now we will let R be a SPIR with maximal ideal M and S C R be a finite set 

We know that if (5) = (d), then d is an MCD of S Now let c be a common divisor 

of S such that d \ c This means that d ~ c If d = 0, then (d) = (0) = (c) so we have 

that c = 0 and d = c If d is a unit, then c is a unit and we have that d = c So we 

will assume that c and d are nonzero, nonunits where d = ex for some x £ R Since 

i? is a SPIR, if x € M then ex = 0 = d, a contradiction So x $. M which means that 

x is a unit Thus, d = c and d is a VSMCD of S • 

Theorem 5 13 If R is p-atomic, then R is a VSMCD ring 

n 

Proof If R is p-atomic, then R = TT Ri where each R% is either a UFD or a SPIR 
t= i 

This means that each R? is a VSMCD ring which gives us that R is a VSMCD ring • 

A ring R is called presimphfiable li x = xy implies that either x = 0 or y is a 

unit [1] Notice that any domain is presimphfiable For rings with zero divisors, the 
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ring R = Zg is presimphfiable Since R is very strongly atomic, we know that x = x 

for all x e R so if we have x = xy, either x = 0 or y is a unit The ring Z6 is not 

preesimplmable We know that 2 = 2 4 where 2 ^ 0 and 4 is not a unit 

Theorem 5 14 If R is a presimphfiable MCD ring, then R is a VSMCD ring 

Proof Let 5 be a finite set in R and let m be an MCD of S Now assume that c is 

a common divisor of S where m | c This means that m ~ c That is, m = cd and 

c = mk for some d,k E R So we now have that m = m(kd) If m = 0, then c = 0 

and we have that m = c If m ^ 0, then we have that fed is a unit in R or, more 

importantly, fc and d are each units in R Thus, m = c and every finite set in R has 

a VSMCD • 

We have different levels of atomicity and different levels of MCD rings all 

influenced by the three forms of associate elements If a ring is some form of atomic 

and has some level of the MCD property, then how does its MCD level relate to its 

level of atomicity, if at all? 

Theorem 5 15 Let R be an atomic ring 

1 If R is an VSMCD ring, then R is very strongly atomic 

2 If R be an SMCD ring, then R is strongly atomic 

Proof 1 Let a be irreducible in R and consider the set S = {a} in R It suffices 

to show that a is very strongly irreducible Since R is a VSMCD ring, S has a 

VSMCD call it m Notice that a is a common divisor of 5 and m \ a This means 

that m = a and a is also a VSMCD of S 

Now assume that a = rt for some r,t € R Without loss of generality, we have 

that a ~ r That is, r | S and a \ r Thus, we have a = r and a is very strongly 

irreducible 
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2 Let a. be irreducible in R and consider the set S = {a} in R It suffices to show 

that a is strongly irreducible Since R is a SMCD ring, S has an SMCD call it 

m Notice that a is a common divisor of S and m \ a This means that ma and 

a is also an SMCD of 5 

Now assume that a = rt for some r,t e R Without loss of generality, we have 

that a ~ r That is, r \ S and a \ r Thus, we have ar and a is strongly 

irreducible 

• 

We would also like to generalize Theorem 4 3 However, the proof for this 

theorem relies heavily on degree arguments, a luxury we do not have when dealing 

with nondomams 

The research of factorization properties in rings with zero divisors is limited 

and there are several cases where we find many different theories surrounding a single 

topic The idea of factoring an element has taken on two different flavors We may 

factor an element in a nondomain just as we would factor an element in a domain 

Alternatively, we may use an idea called u-factorization which separates an element's 

factors into relevant and irrelevant factors When using the u-factonzations, it is 

only the relevant factors that are examined The research on MCD domains/rings 

has spawned very little published works Our final chapter will provide a sampling of 

interesting unsolved questions 
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CHAPTER 6. FUTURE RESEARCH IDEAS 

In 1993, Roitman states a conjecture that is a variation of Theorem 4 1 

Conjecture 5 1 [7] Let R be a domain The following are equivalent 

1 R[x] is atomic 

2 R[x, y] is atomic 

3 R is an atomic MCD domain 

The proof of this conjecture comes down to verifying that given a set of elements 

in R, there exists an indecomposable polynomial in R[x] whose coefficients are exactly 

the elements of the set It is important to point out that the some of the coefficients 

of the polynomial may be zero For example, if the set is S = {2,3,4}, then a 

polynomial of the form f(x) = 2x6 + 3x2 + 4 would be acceptable 

Rings with zero divisors do not always behave in predictable ways For example, 

we can use degree arguments when working with polynomial extensions of domains 

However, as we have seen this technique cannot necessarily be used for polynomial 

extensions of rings with zero divisors A ring is indecomposable if it contains no 

nontnvial idempotent elements In an indecomposable ring R, can every polynomial 

in R[x] be written as a product of indecomposable polynomials7 What characteristics 

must R have in order for each polynomial in R[x] to be written as a product of 

indecomposable polynomials7 We also know that if R is a domain, then if R[x] is 

atomic we know that R must also be atomic What happens if R is not a domain, 

is it possible to find a ring R that is not atomic but its polynomial extension R[x] is 

atomic7 

Various aspects of MCD domains and the different flavors of MCD rings are 

also of great interest We wish to generalize more of Roitman's theorems or at least 
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portions of them We also wish to know if there is any relation between a ring being 

indecomposable and having some level of the MCD property 

There is a wealth of research to be done involving MCD domains/rings and 

their various levels of atomicity For domains, we often look beyond atomicity and 

examine rings with properties such as unique factorization, bounded factorization, 

and finite factorization We wish to follow a similar path for rings with zero divisors 

To this end, some additional areas of interest are unique factorization in rings with 

zero divisors, bounded factorization in rings with zero divisors, and u-factonzations 
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APPENDIX A. GLOSSARY 

ACCP Consider an ascending chain of principal ideals 7i C I2 C m i ? If there 

exists an N E N such that for every j , k > N we have I3 = Ik then we say that R 

satisfies the ascending chain condition on principal ideals (ACCP) 

Associate Elements Let a and b be elements of a ring We say that a and b are 

associates if a \ b and b | a 

Associate Elements (Domain) Let D be an integral domain and a,b € D The 

following statements are equivalent 

1 a and b are associates 

2 a\b and b\a 

3 There exists a unit u £ D such that a = ub 

4 If a|6, 6|a and whenever a = be with a ^ O , then c must be a unit in D 

Atomic Domain A domain is atomic if every nonzero, nonunit can be written as a 

finite product of irreducibles 

Atomic Ring A ring R is atomic if every nonzero, nonunit can be written as a finite 

product of irreducibles 

Commutative Ring A ring R is called commutative if for each a,b € R we have 

that ab = ba If R contains an element 1R such that QIR = IRO. for each a € R, then 

R is said to be a ring with identity 

Ideal' Let R be a commutative ring A subset I Q R is an ideal of R if I is itself a 

ring and if for each x G I and each r € R, the element rx is an element of I 

Indecomposable Polynomial Let R be a ring A polynomial / € R[x] is said to 

be indecomposable if whenever / = gh for some g,h € R[x], we have that either 

g G R or h 6 R 
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Indecomposable Ring A ring is indecomposable if it contains no nontnvial idem-

potent elements 

Irreducible Let a be a nonunit element of a ring We say that a is irreducible if 

a = be implies that a ~ b or a ~ c 

Irreducible (Domain) An irreducible in a domain is an element x such that when­

ever x = yz then x is associate to either y or z 

M-Atomic Ring A ring R is m-atomic if every nonzero, nonunit can be written as 

a finite product of m-irreducibles 

M-Irreducible Let a be a nonunit element of a ring We say that a is m-irreducible 

if (a) is maximal among proper principal ideals 

Maximal Common Divisor Given a set S in a ring R, we say m is a maximal 

common divisor (MCD) of S if m has the following two properties 

1 m divides every element in S and 

2 if n is another common divisor of the elements of S such that m \ n, then m ~ n 

Maximal Common Divisor (Domain) Given a finite, nonempty set S in a do­

main D, we say m G R is a maximal common divisor (MCD) of S if m divides each 

element of S and if n is another element in R that divides each element of S with 

m | n, then m and n are associates 

Maximal Ideal Let M be an ideal in a commutative ring R If M C / for some 

nontnvial ideal I Q R only when M = I, then M is called a maximal ideal of i? 

M C D See Maximal Common Divisor 

MCD Domain A domain in which every finite set has an MCD is called an MCD 

domain 

MCD Ring R is an MCD ring if every finite set in R has an MCD 

Nilpotent Let R be a commutative ring We say that a € R is a nilpotent element 

if an = 0 for some n G N We say that the ideal I C. Ris nilpotent if In = 0 for some 
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Noetherian ring A ring is called Noethenan if eveiy ideal in the ring is finitely 

generated 

P-Atomic Ring A ring R is p-atomic if every nonzero, nonunit can be written as 

a finite product of primes 

P I P See Principal Ideal Domain 

PIR See Principal Ideal Ring 

Presimphfiable A ring R is called presimphfiable if x = xy implies that either 

x = 0 or y is a unit in R 

Primary Ideal An ideal 7 of a ring R is primary if given ab £ I, then either a & I 

or bn G I for some n G N 

Prime Element Let a be an element of a ring We say that a is prime if (o) is 

prime ideal 

Prime Ideal An ideal P is called a prime ideal of a ring R if whenever IJ C P for 

some ideals I, J G R we have that either I C. P or J C. P 

Principal Ideal An ideal 7 of a ring R is called a principal ideal if it generated by 

a single element of R 

Principal Ideal Domain If every ideal of a commutative domain D is a principal 

ideal, then D is called a principal ideal domain (PID) 

Principal Ideal Ring If every ideal of a commutative ring R is a principal ideal, 

then R is called a principal ideal ring (PIR) 

Radical Ideal An ideal 7 of a ring R is called a radical ideal if whenever xn G 7 

then x G 7 If J C R is an ideal of R, then the radical of J, written rad(J) is the set 

{x G R\xn G J for some n G N} 

Regular Let R be a commutative ring An element r G R is called regular if rs = 0 

only when s = 0 
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Ring A ring R is a nonempty set with two binary operations denoted + and * with 

the following three properties 

1 (R, +) is an abehan group 

2 (R, *) is associative 

3 a(b + c) = ab + ac and (a + b)c = ac + bc for every a,b,c € R 

SMCD See Strong Maximal Common Divisor 

SMCD Ring A ring R is an SMCD ring if every finite set in R has an SMCD 

Special Principal Ideal Ring A principal ideal ring (PIR) is called a special prin­

cipal ideal ring (SPIR) if it has only one proper prime ideal P and P2 — 0 

SPIR See Special Principal Ideal Ring 

Strong Associate Elements Let a and b be elements of a ring Then a and b are 

strong associates if there exists a unit u in the ring such that a = ub 

Strong Irreducible Let a be a nonunit element of a ring We say that a is strongly 

irreducible if a = be implies that a sa b or a « c 

Strong Maximal Common Divisor Given a set 5 in a ring R, m is a strong 

maximal common divisor (SMCD) of S if m has the following two properties 

1 if m divides every element in S and 

2 if n is another common divisor of the elements of S such that m\n, then m « n 

Strongly Atomic Ring A ring R is strongly atomic if every nonzero, nonunit can 

be written as a finite product of strong irreducibles 

Very Strong Associate Elements Let a and b be elements of a ring Then a and 

b are very strong associates if either a = b = 0 or whenever a = be we have that c 

must be a unit in the ring 

Very Strong Irreducible Let a be a nonunit element of a ring We say that a is 

very strongly irreducible if a = be implies that a = b or a = c 

49 



Very Strong Maximal Common Divisor Given a set S in a ring R, m is a very 

strong maximal common divisor (VSMCD) of S if m has the following two properties 

1 if 77i divides every element in S and 

2 if n is another common divisor of the elements of S such that m \ n, then m = n 

Very Strongly Atomic Ring A ring R is very strongly atomic if every nonzero, 

nonumt can be written as a finite product of very strong irreducibles 

VSMCD See Very Strong Maximal Common Divisor 

VSMCD Ring A ring R is a VSMCD ring if every finite set in R has a VSMCD 

Zero Divisor An element a of a ring R is called a zero divisor if ab = 0 for some 

nonzero b £ R 
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