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ABSTRACT

Trentham, Stacy Michelle, Ph D, Department of Mathematics, College of Science
and Mathematics, North Dakota State University, March 2011 Atomicity In
Rings With Zero Divisors Major Professor Dr James Barker Coykendall IV

In this dissertation, we examine atomicity i rings with zero divisors We begin
by examining the relationship between a ring’s level of atomicity and the highest
level of irreducibility shared by the ring’s irreducible elements Later, we choose
one of the higher forms of atomicity and i1dentify ways of building large classes of
examples of rings that rise to this level of atomicity but no higher Characteristics
of the various types of irreducible elements will also be examined Next, we extend
our view to mclude polynomial extensions of rings with zero divisors In particular,
we focus on properties of the three forms of maximal common divisors and how a
ring’s classification as an MCD, SMCD, or VSMCD ring affects 1ts atomicity To
conclude, we 1dentify some unsolved problems relating to the topics discussed n this

dissertation
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CHAPTER 1. INTRODUCTION

The interest 1in factorization 1s not, by any means, a modern fascination We
know that ideas of factorization have been floating around since 300 B C during
the time when Euchd composed The Elements At the begmning of Book VII of
The Elements, a list of definitions can be found mcluding the definitions for even,
odd, prime, and composite numbers We also find Euclid’s Algorithm for finding the
greatest common integral divisor of two positive integers in this book This algorithm
and 1ts apphcations are still taught in contemporary Abstract Algebra courses One
of the earhest results in factorization 1s the The Fundamental Theorem of Arithmetic,
an equivalent form 1s found 1n Book IX of Euchd’s The Elements This theorem states
that any integer greater than one can be written uniquely as the product of prime
numbers, up to ordering (3], [5]

Factorization theory 1s a branch of commutative algebra where various types of
commutative rings and their properties are studied These rings and their 1deals are
studied much like a chemist studies the molecular structure of a substance We look at
the “smallest” components of the ring (if such a thing exists) and examine how these
build “larger” components We not only look at the structure of these components but
also how they interact with one another via addition and multiphcation Much of the
research done 1n factorization today 1s focused on integral domains The defimtions

and theorems 1n this chapter can be found 1n a variety of texts such as [6] and [4]

Definition 11 A ring R 1s a nonempty set with two biary operations denoted +

and * with the following three properties
1 (R,+) 1s an abelhan group
2 (R, *) 1s associative

3 a(b+c)=ab+ ac and (a + b)c = ac+ be for every a,b,c € R

1



A ring R 1s called commutative 1f for each a,b € R we have that ab = ba If R contains
an element 1p such that alg = 1ga for each a € R, then R 1s said to be a ring with

identity

In this dissertation, we always will assume that rings are commutative with

1dentity

Defimition 1 2 Let R be a ring An element r € R 1s called regular if rs = 0 only
when s = 0 An element r € R 1s called a zero divisor 1if rs = 0 for some nonzero

sER

A ring may possess both regular elements and zero divisors For example, mn the
ring Zg[z] the element z 1s regular and the element 2 1s a zero divisor with (2)(3) =0
Particular focus has been put on those commutative rings whose nonzero elements
are all regular Such a ring 1s called an (integral) domain We encounter domains on
a daily basis The ring consisting of the integers Z, the ring consisting of the rational
numbers Q, the ring consisting of the real numbers R, and the ring consisting of the
complex numbers C are all examples of domains We also examine the structure and
behavior of a ring’s i1deals This can give us valuable msight into the factorization
properties of the ing We can also use the various types of 1deals to generate examples

of rings with specific factorization properties

Defimtion 1 3 Let R be a commutative ring A subset I C R 1s an ideal of R1f [
15 itself a ring and if for each € I and each r € R, the element rz 1s an element of

I

Definition 1 4 Andeal I C R 1s called a principal 1deal 1f 1t generated by a single

element of R

Definition 1 5 If every 1deal of a commutative ring R 1s a principal 1deal, then R



1s called a principal vdeal ring (PIR) Moreover, if R 1s a domain, then 1t 1s called a

principal wdeal domawn (PID)

The familiar domain Z 1s an example of a PID In this domain, the 1deal I = (6)
which consists of all integers divisible by 6 1s a principal 1deal If we generate an 1deal
with more than one element, say I = (8,12), then this 1deal 1s the same as the 1deal
generated by the greatest common divisor of 8 and 12,1e I = (8,12) = (4) More
generally, 1f an 1deal J C Z 1s generated by a finite set S, then J = (d) where d 1s the
greatest common divisor of S That 1s, any finitely generated 1deal in Z 1s principal

As 1t turns out, every 1deal in Z 1s fimtely generated

Definition 16 A ring 18 called Noetherian if every ideal in the ring 1s finitely

generated

PIR’s are special cases of Noetherian rings However, a Noetherian ring need
not be a PIR For example, the ring R = Z|[z,y| 1s a Noetherian domain The 1deal
I = (z,y) cannot be generated by only one element so R 1s not a PIR Equivalent
definitions of a Noetherian ring exist One such definition 1s that R 1s a Noetherian
ring 1if given an ascending cham of ideals I; € I, C there exists an N € N such

that for every 3,k > N we have I, = I

Definition 1 7 Consider an ascending chain of principal 1deals I; C I, C mn R
If there exists an N € N such that for every 3,k > N we have I, = I then we say

that R satisfies the ascending chain condition on principal wdeals (ACCP)

Defimtion 1 8 Let M be an ideal in a commutative ring B If M C I for some

nontrivial 1deal I C R only when M = I, then M 1s called a mazvmal ideal of R

Definition 19 Let P C R be an 1deal Then P 1s called a prime ideal of R 1if

whenever IJ C P for some 1deals I, J € R we have that ether I C Por J C P



Proposition 1 10 If M s a maximal wdeal i R, then M 1s a prime 1deal mn R

Proof Let ab € M with a ¢ M Then the 1deal (M,a) must be R This tells us
that 1 —ra € M for some r € R Now we look at the element b(1 — ra) = b — rab
This element 1s 1n M so we can say that b — rab = m for some m € M Thus,

b=m+ rab € M and we have that M 1s prime d

The 1deal I = (2) mn Z 1s a maximal 1deal The previous theorem leads us to
conclude that I = (2) 1s also prime While the 1deal J = (3) 1s a prime 1deal 1n the

domain R = Z[z] However, J 1s not maximal as J C (3,z)

Defimition 1 11 An ideal I C R 1s called a radical ideal 1f whenever z™ € I then
z € I If J C Ris an ideal of R, then the radical of J, wrnitten rad(J) 1s the set

{z € R|z"™ € J for some n € N}

Defimition 1 12 An ideal I C R 1s prumary if given ab € I, then either a € I or

b™ € I for some n € N
Proposition 1 13 1 1s a prime 1deal wn R of and only 1f I 1s both radical and primary

Proof First we will assume that [ 1s both radical and primary Let abe I Ifa ¢ I,
then we know that " € I for some n € N Since I 1s radical, we also have that b € I
Thus, I 1s prime

Now assume that I 1s prime and let ab € I This means that if a ¢ I, then
b € I so 11s pnmary If a® € I, then a € I since I 1s prime and we have that I 1s

radical O

Let R = Z[z] The 1deal I = (2z) 1s a radical 1deal n R The element 2z 1s 1n
I but neither 2 nor " 1s 1n I for any n € N Thus, I 1s not primary This tells us
that the 1deal I 1s not prime The 1deal J = (8) in Z 1s a primary 1deal However,
the element 2% 1s 11 J but 2 1s not 1n J and we have that J 1s not radical Thus, J 1s

also not prime



Proposition 1 14 Let I be a primary wdeal tn R Then rad(I) 1s a prime ideal n
R

Proof Let ab € rad(I) This means that there 1s a positive mteger n such that
(ab)™ = a™™ € I So we have that either a™ € I or b¥ € I where kK = mn for some

m € N That 1s, etther a € rad(I) or b € rad(I) So rad(I) 1s prime O

Defimtion 1 15 Let R be a commutative ring We say that a € R 1s a mulpotent
element if a” = 0 for some n € N We say that the 1deal I C R 1s mulpotent 1f I™ =0

for some n € N

If R 1s a domain, then the only nilpotent element 1s 0 and the only milpotent
1deal 1s (0) However, if we look at rings with zero divisors, we find many examples of
nilpotent elements and 1deals Considering the ring R = Zg4 we find that the element

2 15 nilpotent since 2% = 0 and I = (4) 1s a nilpotent 1deal since I° = 0
Theorem 1 16 Let R be a commutative ring and let I be an 1deal in R
1 R/I 1s a field of and only +f I 15 a mazmal 1deal
2 R/I s a domawn of and only +f I 15 a prime vdeal
3 R/I has no nonzero nilpotent elements 1f and only 1f I 15 a radical 1deal
4 All zero dwnsors wn R/I are milpotent 1f and only of I 1s a primary 1deal

Proof

1 We will begin by assuming that R/I 1s a field and let J be an 1deal such that
I C J Then there exists an element a € J — I This means that for some
b€ R, we have that ab+1T =1+Torab—1¢€ I CJ So there s some element
7 € J such that ab — 1 = 7 but this means that 1 = ab—-3 € J Thus, J =R

and I 1s maximal



Now assume that I 1s a maximal 1deal of R and choose some nonzero element
a+1€ R/I Smcea ¢ I, we know that (I,a) = R So for some r € R — I and
some ¢ € I, we have 1 +ra =1 Now if we look at (¢ +ra)+1=1+1, we will

see that ra+1I = (r+I)(a+1) =141 Thus, a+11saumt and R/I 1s a field

Here we will assume that R/J 1s a domain and assume that ab € I This means
that ab+ I =0+4+7Tor (a+I)(b+1I)=0+1 Since R/I 1s a domain, we have
thata+ I =0+Torb+I1=0+4+1,1e a€ Iorbec I and we have that I 15 a

prime 1deal

Next we will begin with I as a prime 1deal Let ab+1 =0+ This means that
ab€ I Since I 1s prime, we have that a € Torbe ] Thatiis,a+ =041 or

b+ I =0+ I and we have that R/I 1s a domain

Let a™ € I for some n € N Here, we are assuming that R/I has no nonzero
nilpotent elements so this means that a® + 1 = 0+ ] means that a+ 1 =0+ 1

Thus, a € I and I 1s radical

Let a® +1 = 0+ I where I 1s a radical ideal Since a™ € I and [ 1s radical, we

havea €l ora+1=0+1 So R/I has no nonzero nilpotent elements

Here we will assume that all zero divisors of R/I are nilpotent Let ab € I such
that a ¢ I This means that ab+1 =0+J m R/I witha+1 #0+1 So
b+ I 1s a zero divisor mn R/I and must therefore be nilpotent, say 6" +1 = 0+ 1
where n € N This means that if a ¢ I, then b® € I for some natural number n

and we have that [ 1s primary

Lastly, we will assume that I 1s primary Let b+ I be a zero dwvisor n R/I
This means that there 1s a nonzero element a+1 € R/I such that ab+1 = 0+7
giving us that ab € I Since I 1s primary and a ¢ I, we have that b* € I, 1€

(b+I)" =0+ 1 So the zero divisors in R/I are nilpotent O
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Our goal 1s to generalize concepts used to describe domains so that we may use
these generalizations to describe rings i general To this end, our focus will be on
rings with zero divisors or nondomains We must first agree on definitions for the
fundamental 1deas commonly used 1n factorization For example, there are several
equivalent defimitions for associate elements when working with domains However,
before we begin we must first examine these defimitions as applied to nondomains to
see if they remain equivalent If not, we must fine tune our lexicon to allow us to
properly describe rings regardless of the presence of zero divisors This will be the

focus of our next section



CHAPTER 2. DEFINITIONS

A domain 1s atomac if every nonzero, nonunit can be written as a finite product
of irreducibles To generalize this definition, we begin by replacing the word “domain”
with “ring” However, this raises a new question, “What 1s an irreducible 1n a
nondomain?’  An wrreducible 1n a domain 1s an element x such that whenever z = yz
then z 1s associate to either y or z To properly generalize this definition, we must
first revisit the definition for associate elements We continue to assume that rings

are commutative with 1dentity 1 # Og

Theorem 21 Let D be an integral domain uith nonzero elements a and b The

follounng statements are equivalent
! albandb|a
2 There exists a unit u € D such that a = ub

3 If we have a | b, b| a, and a = be, then ¢ must be a unit wn D

Proof Clearly, 3 = 2 = 1 So 1t suffices to show that 1 = 3 Ifa | b, b | a, and
a = be, then there exists a nonzero element d € D such that ad = b This means that
a = adc or a(l — dc) =0 Because a 1s nonzero, we know that 1 —dc=0ordec=1

Thus, both ¢ and d are umts in D O

If two elements a,b € D satisfy one, hence all of these properties, then we say
that a and b are associates in D If we remove the domain restriction, then the three
statements are no longer equivalent If two elements 1n a ring R satisfy the first
statement, then we say that these elements are associates (~) Two elements that
satisfy the second condition are called strong associates (=) Lastly, elements that
satisfy the third statement are called very strong associates (=) We also define 0 to

be very strongly associate to itself It 1s easily verified that very strong associates =



strong associates = associates It 1s worth noting that none of these implications can

be reversed [1]

Example 22 Let R = Zg x Zg Notice that (2,2) = (5,8)(4,7) where (5,8) 1s a
unit m R So (2,2) =~ (4,7) Also, (2,2) = (2,8)(4,7) where (2,8) 1s not a unit in R
Thus, (2,2) 2 (4,7)

Qlz, y]
(z —zy?)
rz = zy Assume that z1saumt m R Then zz — zy = rz — rry® € Q[z,y] for some

Example2 3 Let R = In R, z = zy? so  ~ xy so there exists z such that
r € Q[z,y] Swnce z1s prime, we have z—y=r—ry®’and z = y+r—ry? Ifz1s 2 unit
mn R, then (z,z—zy?) = Q[zr,y],1e 1 =az+b(z—zy?) = ay+ar— ary?+ bz — bxy?
Note that Q[z,y] 15 a domain, so we must have ar = 1 and ay — y% + bz — bry? =0
This means that both a and r are umts in Q[z, y| so they are elements of @ So b € (y)
and y(a—y?) € (x) Weknow thaty ¢ (z)soa—v? € (z) and ar—ry? = 1—ry? € (x)
Since ry? € (y), this gives us that (z,y) = Q[z,y], a contradiction So there 1s no
umit » 1n R such that £ = uzy which means z % zy A similar example can be found

m [1]

In domains, we have two equivalent defimitions for irreducible elements We
know that a 1s irreducible in a domain D 1if given a = bc, then b 1s a unit or ¢ 1s a unit
m D The three levels of associate elements along with this definition give us three
types of irreducible elements Equivalently, a 1s irreducible in a domain D if and only
if the 1deal I = (a) 1s maximal among all principal 1deals of D Using this definition
for an irreducible element, we find that there 1s also a fourth type of irreducible that

exists 1 rings with zero divisors

Definition 2 4 [1] Let a € R be a nonunit We say that a 1s wrreducible if a = be

umphes that a ~ b or a ~ ¢ Equivalently, a 1s wrreducible if (a) = (b)



Definition 2 5 [1] Let a € R be a nonumt We say that a 1s strongly wrreducible 1f

a = bc imphes that a = bora=xc¢

Defimtion 2 6 [1] Let a € R be a nonunit We say that a 1s very strongly irreducible

if @ = bc imphies that a 2 bora = c

Defimition 2 7 [1] Let a € R be a nonumt We say that a 18 m-wrreducible 1if (a) 1s

maximal among proper principal ideals

In domains, these four definitions are equivalent We must now show that when
we generalize to include nondomains, these are four umque levels of irreducibles Note
that for nonzero elements of R, very strongly wrreducible = m-irreducible = strongly

irreducible = 1rreducible [1]

Definition 28 Let a € R We say that a 1s prime 1if the 1deal (a) 1s prime 1deal

Equivalently, we say that a 1s prime if a | zy imphes that a |z or a | y

Proposition 29 Ifa € R 1s prime, then a s wrreducible

Proof Let a be prime in R and assume that a = zy for some z,y € R This
means that either z € (a) or y € (a) That 1s, esther a ~ z or a ~ y Thus, a 15

irreducible [

When defining new classifications of elements, we must verify that each class
1s nonempty and unique We know that prime elements are irreducible but we have
yet to determine whether or not irreducible elements are prime Let R = Z[v/—3]
Then 1+ /=3 15 irreducible but not prime Thus, the class of prime elements and the
class of irreducible elements are distinct Similarly, we can show that the remaining

classes of irreducibles are unique by providing examples to show that the implications
_Qlzy]
(z — zy?)

wreducible However, considering z and zy we know that x = zy? and =z ~ zy

above cannot be reversed First, let R = Notice that z 1s prime so 1t 1s

10



but there 1s no umt v € R such that » = u(zy) So z % zy Clearly, z t y so
x ~ y That 1s, x 15 wrreducible but not strongly irreducible Now, let R = Z x Q
If (0,5) = (a,b)(c,d), then either a = 0 or ¢ = 0 1n Z with both b and d being unts
m Q That 1s, erther (a,b) or (¢,d) 18 a umt multiple of (0,5) So (0, 5) 1s strongly
ureducible However, if we let / =< (0,5) > and J =< (2,5) >, then I ¢ J So
(0, 5) 1s strongly irreducible but not m-irreducible Lastly, let R = Zg Clearly, (3) 1s
maximal among principal 1deals so 3 1s m-irreducible However, 3 = (3)(3) but 3 1s
not a unit m B So 3 1s m-irreducible but not very strongly irreducible

Using these four levels of irreducible elements along with primes, we find that

nondomains may come 1n five different flavors of atomc

Definition 2 10 [1] R 1s atomac if every nonzero, nonunit can be written as a finite

product of irreducibles

Defimition 2 11 (1] R 1s strongly atomuc if every nonzero, nonumt can be written

as a finite product of strong irreducibles

Defimtion 2 12 [1] R 1s m-atomic if every nonzero, nonunit can be written as a

fimite product of m-irreducibles

Definition 2 13 [1] R 1s very strongly atomic if every nonzero, nonumt can be

written as a finite product of very strong irreducibles

Defimition 2 14 [1] R 1s p-atomic if every nonzero, nonumt can be written as a

finite product of primes

It 1s easily shown that very strongly atomic = m-atomic = strongly atomic
= atomic In [1], the following theorems were mtroduced Using Theorem 2 16, we
are able to use familiar rings to construct examples to show that the various levels
of atomicity are indeed unmique We credit this theorem with many of the examples

given 1n this dissertation
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Theorem 2 15 [1] Let {Ry}aeca be a family of commutative rings and R = H R,

a€El
Consider the elements a = (aq),b = (by) € R

1 a~be ay~by foreacha € A, a = b a, = b, for each a € A and 1f some

ag =0, thena =20

2 a 1s wreducible (respectwely, strongly irreducible, m-wrreducible, prime) < each
ao € U(Ry) except for one B € A where ag s wrreducible (respectively, strongly

wrreducible, m-irreductible, prime) in Rg

3 a 1s very strongly wreducible < each aq € U(R,) except for one f € A where
ag 1s very strongly wrreducible in Rg but 1s not 0 unless | A |= 1 and Rg 15 a

domain

Proof 1 First we will assume that a ~ & This means that ac = b for some
¢ = (cq) and a = bd for some d = (d,) So for each o € A, we have a,cy = by

and a, = byd, for cy,d, € R, Thus, ay, ~ b, for all @ € A

Now assume that a, ~ b, for each « € A So there exists ¢,,d, € R, such
that agcq = ba and a, = bad, That 15, ac = b and a = bd where ¢ = (c,) and

d = (dy) and we have a ~ b

Let a &~ b So there exists some umt u = (u,) € R such that a = ub This means

that a, = ugab, where u, 1s a umit 1n R, and thus, aq = b, for all « € A

Ifa, = b, for all & € A, then there exists some umit u,, € R, such that a, = usba

That 15, a = ub where u = (u,) and a = b

Here we will begin by assuming that a 2 b So either a = b = 0 or if a = bc then

12



c € U(R) This gives us that either a, = b, = 0 for all a € A or if aq = b,d,
then a = bd where d = (d,) so d € U(R) That 1s, each d, € U(R,) and we have
Ao = by If ag = 0 for some B € A, then we have 0 = bgdg If a # 0, then we
must have that dg € U(Rg) which means that by = 0 However, if ag = bg = 0,
then ag = bgz for any z € Rg This gives us nonunit elements ¢ € R such that

a = bc where a # 0, a contradiction So if ag = 0, then we must have a =0

Next we assume that a, = b, and if a, = 0 for some o € A, then a = 0 This
means that if a, = 0 for some «a, then a = b =0 and we havea = b Ifa, #0
for all a and a = bc for some ¢ € R, then a, = b,c, for all @ So each ¢, 15 a

unit in R, and thus, c1s a unit in R and we have that a = b

Let a = (as) € R be irreducible This means that a, 1s a nonumt 1in R, for some
1 € A If a, = b,c,, then we can say that a = bc where b = (3,,) and ¢ = (¢,) with
Za=11fa7éz,/l;a=bllfa=z,'c\a:aa fa#1,C,=c1f a=1 Sincea s
irreducible, we know that either a ~ b or a ~ ¢ and we have that either a, ~ Za
or a, ~ Cq for all @ € A More specifically, a, ~ 3, =bora, ~C = ¢ and we
have that a, 1s irreducible

Now consider a, where 7 # 1 € A Let b = (b) and ¢ = (¢) where b; = b, and
Gk =catf k#1,7, be =g, and ¢ = 1 1f k = 3, and finally, b = 1 and & = a,
if k =1 Recall that we are assuming a 1s irreducible and we now have a = b¢
So etthera~bora~7¢ 1e a, ~b, =1 or a, ~C, =1 That 1s, etther a, or q,
1s a unit  Since g, 1s irreducible, 1t cannot be a umt and therefore, a, must be a

unit for all 7 #1

Let : € A and a = (a,) where a, = 1 for a # @ and a, wrreducible n R, Now

13



assume that a = be with b = (b,) and ¢ = (¢,) This gives us that a, = byc,
So we have that b, and ¢, are units for & # ¢ and a, ~ b, or a, ~ ¢, That 1s,

a~boran~ c¢so ais irreducible

The proofs for the strongly irreducible, m-irreducible, and prime cases are very

similar and are left to the reader

Let a = (aq4) be very strongly irreducible m R This gives us that a 1s irreducible
and hence, a, = 1 for all a except one, call 1t ag, which 1s rreducible n Rg If
we assume a = bc, then we know that erther ¢ = b or @ = ¢ That 1s, etther b or
cisaumt m R So ag = bgcs where either bg or cg 1s a umt Now we have that

either ag = bg or ag = cg and ag 1s very strongly irreducible in Rg

Assume ag = 0 and recall that ag 15 very strongly irreducible so 1t 1s also m-
irreducible  This means that (ag) = (0) 1s maximal among principal ideals Now
let I be an 1deal in Rg such that (ag) € I This means that for any nonzero
element x € I we have (ag) C (x) € I However, (ag) 15 maximal among
principal 1deals so (ag) = (z), a contradiction Hence, (ag) = (0) 1s a maximal

1deal m Rg and Rg 1s a domain

Let a be very strongly irreducible where ag = 0 We know that a ~ a and 1if
a = ak for some k € R, then either a or k 1s a umit Since a 15 very strongly
irreducible, we know that a 1s not a unit This means that k£ 1s a unit and a = a
Also, 1f ag = 0, then we know from 1 that each a, =0 Now if | A |> 1, then
we can write a = bc where b = (b,) and ¢ = (¢,) with b, = 0 for all « € A and

cq 18 a nonumt for some o Notice that neither b nor c 1s a umit However, since

14



a 1s very strongly urreducible, we must have that either b or ¢ 1s a unit in R and

we have reached a contradiction Thus, | A |=1

a

Theorem 2 16 [1] Let { R,}aca be a family of commutative rings, and let R = TIR,,
If R satisfies ACCP or any of the forms of atomucity, then A 1s finite
Let Ry, Ry, R, be commutative rings and R = Ry X Ry x X R,

1 R satisfies ACCP (respectwvely, 1s atomac, strongly atomac, p-atomac) of and only
if each R, satisfies ACCP (respectively, 1s atomic, strongly atomac, p-atomac)
2 R 1s m-atomac of and only 1f each R, 15 m-atomsc and 1f n > 1 and some R, 15 a

domain, then R, must be a field

8 R 1s very strongly atomic +f and only 1f each R, s very strongly atomic and f

some R, 15 a domain we must have n =1

Proof Note that if R 1s an atomic ring with zero divisors, then 0 = ab for some
a,b € R So we can write 0 as a fimte product of irreducible elements Now if R 1s
a domain and 0 = ab, then we have that 0 ~ a or 0 ~ b so 0 1s irreducible So if R
1s ACCP or any form of atomic, then we must have that 0 can be written as a finite
product of irreducible elements in B From the previous theorem, we can see that 1f
A 1s infimte, then any fimte product of irreducible elements must be nonzero So we

must have that A 1s finite

For the remainder of this proof, we will assume that A =nand R = Ry xRyx xR,
1 We know that the principal 1deals of R are all ideals of the form I) x I, x X [,
where each I, 1s principal 1n £, Now assume that J; C J, C 1s an ascending
chain of principal 1deals m R; We will call this Chain 1  This gives us an

ascending chain of principal ideals J; x Re x X R, CJoxRyx XxR,C
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mm R which we will call Chain 2 Since R 1s ACCP, we know that Chain 2 must
stabilize This means that Chain 1 must also stabilize and thus, we have that R,

18 also ACCP Similarly, each R, must also be ACCP

Now we will assume that each R, 1s ACCP Let I;3 xIoy x Iy C Iig X Ipo X
I.o C be an ascending chain of principal 1deals m R Since each R, 1s
ACCP, we know that each of the chamns I,, C I, ,4; C must stabilize Thus,

our original chain of principal 1deals must also stabilize and we have that R 1s

ACCP

We know that r = (r,) € R 1s wreducible (respectively, strongly irreducbile,
prime) 1f and only if each r, 1s a umt 1 R, except one, say r,, which must be
urreducible (respectively, strongly wrreducible, prime) in R, From this we can
conclude that R 1s atomic (respectively, strongly atomic, p-atomic) if and only 1f

each R, 1s atomic (respectively, strongly atomic, p-atomic)

First we will assume that R 1s m-atomic Notice that the element (a,) where
a, = 1 for + # 7 and a, 1s a nonzero, nonunit in R, can be written as a finite
product of m-irreducibles m B This gives us a factonization of a, into a finite
product of m-irreducibles m R, Thus, every nonzero, nonumit 1mn R, can be
wiitten as a finmite product of m-irreducibles in R, and R, 1s m-atomic Also, 1f

R, 15 a domamn, then 0 must be m-irreducible and hence, R; 1s a field

If each R, 1s m-atomic, then each element of the form (a,) where a, = 1 for
1 # 7 and a; 15 a nonzero, nonunit 1n R, can be wnitten as a fimte product of

m-urreducibles in B Also, every nonzero, nonumit in R can be written as a fimte
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product of elements of this form Thus, B must also be m-atomic

3 Assume that R 1s very strongly atomic Recall that a = (a,) 15 very strongly
irreducible 1if and only 1If each a, 1s a umt m R, except one, call 1t a, which must
be very strongly irreducible in R, and cannot be zero unless n = 1 and R, 1s a
domain By this we see that each R, must be very strongly atomic Now assume
that R, 1s a domain for some 7 If n > 1, then we see that the element (z,)
where z, = 1 1f 2 # 7 and z, = 0 1s rreducible but not very strongly 1rreducible,
a contradiction since 0 1s very strongly wrreducible in £, This means that if R,

1s a domam for any 1 < 3 < n,thenn=1

Now assume that each R, 1s very strongly atomic If n =1 and R = Ry 1sa
domain, then R 1s very strongly atomic So we will assume that n > 1 and each
R, 1s not a domain Then if a € R, 1s nonzero and very strongly irreducible,
we have that (1, ,1,a,1, , 1) 1s very strongly irreducible in R Notice that

every element of R can be written as a fimte product of these types of elements

Thus, R 1s very strongly atomic O
Example 2 17 Let R = Z—gx’—y]z) Then R 1s atomic but not strongly atomic R
T — Y

1s Noethenian so 1t 1s atomic However, as we will see 1n the next chapter, because
z € R s irreducible but not strongly irreducible, we know that R cannot be strongly
atomic Now if we let R = Z x QQ, then R 1s strongly atomic but not m-atomic by
Theorem 2 16 Using this same theorem, if we let R = Zg, then R 1s m-atomic but

not very strongly atomic

The following theorems provide us with the tools we need to show that if R 1s
p-atomic, then R 1s both strongly atomic and ACCP Recall that in domains, if R 1s

ACCP, then R 1s atomic This implhication remains true when the domain condition

17



1s removed

Definition 2 18 [1] A principal 1deal ring (PIR) 1s called a special principal 1deal
ring (SPIR) 1f 1t has only one proper prime 1deal P and P? =0

Theorem 2 19 [1] For a commutatiwe ring R, the follounng statements are equiva-

lent

1 R s p-atomc

2 R s a fimte direct product of SPIRs and UFDs

3 Every (nonzero) proper principal 1deal of R 1s a product of principal prime 1deals

Proposition 2 20 If R 1s a SPIR, then R s very strongly atomac

Proof We know that if R 1s a SPIR, then R 1s ACCP and hence, atomic Let
M = (m) be the unique maximal 1deal We wish to show that m 1s irreducible We
know that M? = 0 Now let a € R be a nonzero irreducible element This means
that a € M so we have a = rm for some r € R Since a 1s irreducible, we have that
etthera ~rora~m Ifa~r, then r € M and ab = r for some b € R We now
have a = rm = abm = rmbm = ab*m?® = 0 However, we know that a 1s nonzero so
we must have a ~ m This means that ad = m for some d € R Now we will again
look at our original factorization of @ So we have a = rm = rad = rrmd = r?ad?
Now r2ad? = 0 1if erther r or d 1s a nonunit Since a 1s nonzero, we know that r and
d must both be units giving us that @ 2 m So m 1s also irreducible

Now we wish to show that m 1s very strongly wrreducible so we assume that
m = st This means that either m ~ s or m ~ t Without loss of generality,
we will assume that m ~ t So for some z € R, we have mz =t This gives us

2 Now s>mz? = 0 if exther s or z 15 a nonunit Thus,

m = st = smzx = sstx = s’mzx
s must be a unit in R and we have that m 1s very strongly irreducible Since a = m,

this means that a 1s also very strongly irreducible O
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Proposition 2 21 [1] If R 1s p-atomac, then R 1s strongly atomic

Proof Since R 1s a finite direct product of SPIRs and UFDs, we know that 1t 1s a fimite
direct product of very strongly atomic rings We will say that R= Ry x Ry x xR,
If each R, 1s not a domam or if n = 1, then R 1s very strongly atomic If n > 1 and
each R, 1s erther a field or a nondomain SPIR, then R 1s m-atomic If any one of the

rings R, 1s a domain but not a field, then R 1s strongly atomic a

The following diagram shows the relationships between the various forms of

atomicity

P-Atomic

ﬂ

Very Strongly Atomic == M-Atomic — Strongly Atomic =— Atomc

We would like to show that the class of p-atomic rings does not coincide with
another class of atomic ring If we let R = Z4 x Z, then R 1s p-atomic but not m-
atomic Next we let R = Z[y/—3] x Z Then R 1s strongly atomic but not p-atomic
In our next chapter, we will dig a hittle deeper to uncover additional properties of the

rings and elements wdentified in this chapter
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CHAPTER 3. THEOREMS

Now that we have 1dentified these five types of atomicity and have venfied
that they are unique, we want to know, "Given a ring, how do we 1dentify 1ts level
of atomicity?” The atomicity of some rings can be 1dentified using Theorem 2 16
However, this theorem may always not be useful We strive to 1dentify additional
methods for determining a ring’s atomicity Also, we will examine some of the
behavior of rings with various levels of atomicity

As we have seen 1n the previous chapter, when working with nondomains we
cannot make any assumptions, no matter how logical they may seem We will
begin by verifying whether or not a umt multiple of an element will retan the

irreducibility /prime status of the original element

Proposition 3 1 Let a be wrreducible (respectwely strongly wrreducible, m-irreducible,
very strongly wreducible, prime) in R and u a umit wmn R Then ua 1s wreducible

(respectwely strongly wrreducible, m-iwrreducible, very strongly wrreducible, prime) wn

R

Proof Let a be wrreducible in R and o = ua where u 1s a unit 1n B Assume that
a = zy for some z and y n R Then a = (u™'z)y Soeithera ~ulrora~y If
a ~ uz, then ab = u 'z for some b in R That s, uab=oab=zand a ~z If
a ~ y, then ab = y for some b n R That 1s, ua(u~'b) = au™'b =y and o ~y Thus,
o 18 irreducible

Let a be strongly irreducible in R and o = ua where u 1s a unit in B Assume
that o = zy for some z and y m R Then a = (u™'z)y Soethera~ul'zoraxy
If a =~ u™lz, then ab = u~'z for some unit bn B That1s, uab=ob=z and a ~ z
If a =~ y, then ab = y for some umit b1n R That 1s, ua(u™!b) = au 'b=yand a ~ y

Thus, « 1s strongly wrreducible
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Let a be m-irreducible in R and o = ua where v 1s a umit in R Then (a) = (a)
which 1s maximal among principal 1deals Thus, « 1s m-irreducible

Let a be very strongly wrreducible in R and o = wa where u 1s a unit in R
Assume that a = zy for some z,y € R Then a = (u™'z)y So either a = v~ !z or
a~y Ifa=u 'z, thenyisauntmn Randa=~z Ifa <y, then v 'z 1s a umt 1n
Rsoziisaumtm Rand @ 2y Thus, o 18 very strongly irreducible

Let a be prime n R and @ = ua where u 1s a unit in R Then (a) = (o) which

1s a prime 1deal Thus, « 1s prime |

Another matter of great interest 1s whether or not a ring’s atomicity status has
any relationship with the level of irreducibility reached by 1ts irreducible elements
Must the ring’s atomicity status agree with the highest level of irreducibility shared
by all irreducible elements? For example, can a very strongly atomic ring contain an

irreducible element that attains no higher level of atomicity?

Theorem 3 2 If R 1s very strongly atomac, then a s wreducible of and only i1f a 1s

very strongly wrreducible

Proof Clearly, if a 1s very strongly irreducible, then a 1s irreducible  So 1t suffices
to show that if R 1s very strongly atomic, then each irreducible 1s very strongly
irreducible

Let a be irreducible in B Since R 1s very strongly atomic, we can write a as a
finite product of very strong irreducibles, say a = ayjas  «,, where each «, 1s very
strongly irreducible Now a 1s urreducible, so without loss of generality a ~ oy That
18, ab = oy for some b 1n R but «; 1s very strongly wrreducible so b must be a unit

Thus, a 1s very strongly irreducible 0O

Theorem 3 3 If R 1s strongly atomac, then a 1s wreducible of and only 1f a 1s strongly

wreducible
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Proof If a 1s strongly irreducible then a 1s irreducible so we will assume that ¢ m R
1s irreducible and we can write @ = oy @, Where each «, 1s strongly irreducible
Since a 1s 1rreducible, we know that a ~ «, for some 37 Without loss of generality,
we will say that a ~ @; This means that o; = ak for some kK 1n R Since o3 18
strongly irreducible, we have that either oy = ua or a; = vk for some units u and v
m R If oy = ua, then a 1s strongly irreducible and we are done So we assume that
a; = vk This means that (a) = (o) = (k) = (a)(k) = (1)? = (a)? = (k)> More
specifically, (k) = (k)? and we have k = rk? for some r € R Also, rk 15 :dempotent
sice (rk)? = rk*r = rk Now we let I = (rk) = (o) = (a) and J = (1 — rk) be
ideals n R Notice that I and J are comaximal

Let f R — R/I x R/J be given by a — (a,a) where @ represents the coset
a + I and @ represents the coset a + J The map f 1s a well-defined homomorphism
Let z € R be such that f(z) = (0,0) This means that x € I(J So z = m(rk) =
n(1 — rk) for some m,n € R and we have that (m + n)rk = n which gives us n € [
We will say n = trk for some t € R Now we have z = trk(1 — rk) = trk — t(rk)? =
trk — trk = 0 Thus, f 1s mnjective Now let (m,n) € R/I x R/J Notice that
fn+ (m—n)(1 —rk)) = (m,n) So f1sbyective Thus, R= R/I x R/J

We know that a ~ rk so for some b € R we have rk = ab This gives us that
f(ab) = f(a)f(b) = f(rk) = (0,1) That 1s, (O,E)(B,A) = (0,1) and we have that
a1s aumit in R/J Smmilarly, f(a;) = (0,a7) where @7 1s a umit m R/J Now we
have f(a) = (0,2) = (1,a)(0,1) = (1,a)f(rk) Let f~!((1,@)) = y m R We wish
to show that y 15 a umit Since f(y) = (¥,y) = (1,a), we have yz+ I =1+ I and
yw+ J =1+ J for some w,z € R This means that there exists s,t € R such that
yz = 1+ srk and yw = 1 +t(1 — rk) So yw(srk) = (1 +t — trk)(srk) = srk and
yz = 1 +ywrsk, 1e y(z —wrsk) =1 and y € U(R) We now have a = yrk where

y € U(R) Similarly, o; = zrk for some z € U(R) Thus, a = yz7!(2rk) = (yz Hoy
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So a 1s strongly wrreducible a
Theorem 3 4 If R 1s m-atomuc, then a 1s wrreducible 1f and only +f a 1s m-wrreducible

Proof Clearly 1if a 1s m-irreducible, then a 1s irreducible  We need to show that if a
irreducible, then a 1s m-irreducible

Let a be wrreducible in R Since R 1s m-atomic, a can be written as a finite
product of m-irreducibles, say a = ajas o, where each «, 1s m-irreducible Now
a 1s wrreducible, so without loss of generality, a ~ a; That 1s, (@) = (1) Since
a; 18 m-irreducible, (a;) = (a) 13 maximal among principal 1deals Thus, @ 15 m-

irreducible |
Theorem 3 5 If R 1s p-atomac, then a 1s wreducible of and only 1f a 15 prime

Proof 1t suffices to show that an irreducible a 1s also prime

Let a be wrreducible in R Since R 1s p-atomic, a can be written as a finite
product of primes, say a = pyps  pn Where each p, 1s prime Now a 15 1rreducible, so
without loss of generality, a ~ p; That 1s, (a) = (p1) Since p; 1s prime, (p1) = (a)

1s a prime 1deal Thus, a 1s prime O

It 1s important to pont out that the irreducibles of a ring with a particular form
of atomicity will always fall mto the corresponding class of irreducible However, this
does not mean that the ring may not contain irreducibles from a “higher” class For
example, if we let R = Z x Z, then R 1s strongly atomic and has no higher form of
atomicity However, all elements of the form (p,1) and (1,p) where p 1s prime 1n Z
are both very strongly irreducible and prime The elements (1,0) and (0,1) are only
strongly irreducible but also prime Now let R = Z4 x Zg Notice that R 1s m-atomic
but has no higher form of atomicity but the element (2, 1) 1s very strongly irreducible

m R
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To assure ourselves that the classes of atomic rings we are studying are nonempty,
we look for methods of generating examples One such method has been shown in
Theorem 2 16 Another possible way of generating examples 1s by looking at classes

of domains R along with specific types of 1deals I and examining the atomic structure

of R/

Theorem 3 6 Let R be a Noetherian domawn and I C R a primary 1deal Then R/I

18 very strongly atomac

Proof R 1s Noetherian and hence ACCP Thus, R/I 1s also ACCP and hence atomic
Let a + I be irreducible n R/I and assume that a + I = bc+ 1 Without loss
of generality, we have that ad + I = b+ I for some d + I € R/I This gives us
a+1I =acd+ I or, equvalently, a(l —ed) + I =0+ 1 Since a ¢ I and I 1s primary,
we have that (1 — cd)™ € I for some n This means that for some z € R, the element
l1—cx el Socisaumtin R/I and a+ I 1s very strongly irreducible Therefore, R

18 very strongly atomic O

This theorem remains true if we let R be any ring such that R/I 1s atomic It
1s also mmportant to note that the converse does not hold true A ring R may be
Noetherian and R/I may be very strongly atomic for some 1deal / in R However, [
need not be primary For example, let R = Z and I = (900) = (4)(9)(25) with (4),
(9), and (25) pairwise comaximal and primary Then R/I = R/(4) x R/(9) x R/(25)
18 very strongly atomic but [ is not primary

What happens if R 1s Noetherian domain and I 1s a product of primary 1deals?
We have seen that R/I may be very strongly atomic but we wish to know 1f this will
always be the case Is there a Noetherian domain R with an 1deal I that 1s a product

of primary 1deals such that R/I 1s no longer very strongly atomic?

Theorem 3 7 Let R be a Noetherian domawn and I = I, Iy I, where each I, 15 a
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nonprime primary ideal and I, I,, I, are parrunse comazimal Then R/I 1s very

strongly atomic

Proof R/I= R/I1 x R/I; x  x R/I, where each R/I, 1s very strongly atomic If
each I, 1s not prime, then each R/I, 1s a nondomain and we have that R/I 1s very

strongly atomic O

Notice that, if any of the I,’s i the previous theorem 1s maximal, then R/I
15 m-atomic If one of the I;’s 1s a non-maximal prime 1deal, then R/ 1s strongly

atomic As in the previous theorem, we only need R to be a ring where R/I 1s atomic

Corollary 3 8 Let R be a PID and I = (o) with o = p*'ps*  pe~ where each p, 1s

prime and each a, > 1 Then R/I 1s very strongly atomic

The converse does not hold true If R 1s a PID, then R/I need not be very
strongly atomic For example, let R = Z and I = (6) Then 3 + I 1s wrreducible but
not very strongly irreducible So R 1s a PID but R/I 1s not very strongly atomic

We now turn our attention from Noetherian domains to Dedekind domains
Recall that every 1deal 1n a Dedekind domain can be written as a finite product of
prime 1deals Sice both prime ideals and powers of prime 1deals are primary mn a
Dedekind domain, we wonder if we can use Theorem 3 6 to deduce the atomic status

of the rings R/I where R 1s a Dedekind domain and [ 1s any 1deal in R

Lemma 3 9 If R 1s a one-dimensional domain with nonzero primary ideals Q1 and

Q2 such that rad(Q,) # rad(Q2), then Q1 and Q2 are comaximal

Proof Recall that the radical of a primary 1deal 1s prime and since R 1s one-dimensional,
every nonzero prime ideal 1s maximal Let P, = rad(Q;) and P; = rad(Q2) Assume
that @; + @2 1s contained i some maximal 1deal M ¢ B Then Q1 C Q1 + Q2 C M
So rad(Q;) € M However, rad(Q,) = P, so P, =M Smlarly, P, = M This gives

us that P, = P,, a contradiction So Q; + Q2 =R O
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Theorem 3 10 Let R be a Dedekind domain and I = P Py* P2~ be an ideal n
R where each P, 1s a prime 1deal in R and each a, > 1 Then R/I 1s m-atomic If

a, > 1 for each 1, then R/I 1s very strongly atomic

Proof 1f we have a factorization of I into the product of primary 1deals where P, = P,
for some ¢ and 7, then we can adjust the exponents and rewrite the factorization so
that P, # P, for all : # 3 For our purposes, we will assume that P, # P, for all 2 # 3

We know that prime 1deals are maximal and powers of prime 1deals are primary
because R 1s a Dedekind domain Note that rad(P’) = P, so by the previous
lemma, we have that P and P]a] are comaximal for each v+ # y Thus, R/I =
R/P* x R/Py? x  x R/P% by the Chinese Remainder Theorem Each R/P™ 1s
very strongly atomic and if a, = 1, we have that R/P 1s a field Giving us that R/I

1s m-atomic If each a, > 1, then each R/P" 1s a very strongly atomic nondomain so

R/I 1s very strongly atomic ]

We know that a domaimn R 1s Dedekind 1f and only if 1t 1s Noetherian, one-
dimensional, and integrally closed What happens to the atomicity of R/I if we
weaken the conditions of R That 1s, what happens to the atomicity of R/I if we
require R to be both Noetherian and one-dimensional but not necessarily integrally

closed?

Theorem 3 11 Let R be a one dimensional Noetherian domain and I be an ideal n
R Then R/I s m-atomic If I can be written as the product of primary ideals that

are not prime, then R/I 1s very strongly atomac

Proof R 1s Noethenan and one dimensional so each 1deal / mn R has a primary
decomposition Say I = @, Q2() [)Qn 1s a primary decomposition of I Let
T = {P, = rad(Q,)|1 £:<n} Then T 1s a set of prime 1deals with @, C P, Now
let S, = {@:|Q. € P,} Theset {S,]1 < 7 < n} forms a partation of {Q,|1 <1 < n}
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since all nonzero prime 1deals in R are maximal Now define I, = n @, and Y

Q.€S5,
to be the set of all distinct 1deals J;, Now considering only the 1deals I, m Y, we

have that I, 1s primary, I, C P,, and Iy C P, with P, # Py, I, € Py, and Iy € P,
Then I = ﬂ I, 1s a reduced primary decomposition Also, I, € Y and Iy € Y are
pairwise C()I;rf;/mmal for all 7 # k as needed to apply Lemma 3 9 Thus, we can write
R/I=R/I; xR/I;x  x R/I, using the elements I, from Y So each R/I, 1s very
strongly atomic and if I, 1s prime, then R/I, 1s a field This gives us that R/I 1s

m-atomic If I, 1s not prime for all j, then R/I 1s very strongly atomic O

Can we generalize Theorem 3 10 any further? What happens if we now remove
the requirement that R be one-dimensional? Let R = Qlz,y] and I = (z — zy?)
Then R 1s a 2-dimensional Noetherian domamn However, R/ 1s not m-atomic In
fact, R/I 1s not even strongly atomic

We will now switch gears and look a little closer at the elements of a ring Our
hope 1s that a better understanding of these elements will give us msight into the

ring’s factorization

Proposition 3 12 If m € R 1s m-wrreductble but not very strongly wrreducible, then

Proof Let m in R be m-iurreducible and say m = ab for some a,b € R Since we
assume that m 1s not very strongly irreducible, we can assume that neither a nor b

are umts So we have that (m) C (a) and (m) C (b) Since e and b are nonumts,

(a) # Rand (b)) # R Thus, (a) = (b) = (m) = (a)(b) = (m)? o

While this theorem shows us an interesting property of m-irreducibles, 1t does
not provide us with a method for identifying m-irreducibles A principal 1deal may
be 1dempotent and 1ts generator not be m-irreducible If we let R = Z x Z and let

m = (1,0) and I = (m), then I = I? but m 1s not m-irreducible since I ¢< (1,2) >
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Theorem 3 13 Ifr € R s reqular and wreducible, then r 1s very strongly wreducible

but not necessarily prime

Proof Let r € R be regular and irreducible Assume that » = ab Since 7 1s
ureducible, either r ~ a or r ~ b Without loss of generality, we will say r ~ a
So rk = a for some k mn R This means that r = rkb or r(1 — kb) =0 We know that
r 18 regular so this must mean that 1 — kb =0 That 1s, £ and b are units m B Thus,
r 18 very strongly irreducible

Let R = Z4[z] Then z 1s regular and (z + 2)*> € (z) but z+ 2 ¢ (z) so & 1s not

prime O

Now that we are more familiar with some of the intricacies of atomicity in
nondomains, we wish to take the next step and look at polynomial extensions of our
nondomains with varyng levels of atomicity Before we do this we will look into
a concept that can be used to verify the atomicity of a polynomal extension of a

domain called a maximal common divisor

28



CHAPTER 4. MAXIMAL COMMON DIVISORS IN
DOMAINS

In 1993, Moshe Roitman publhished Polynomual Extensions of Atomuc Domains [7]
Here he constructs an example of an atomic commutative domain R such that R[z] 1s
not atomic One of the key ingredients in this construction 1s the notion of marimal
common dwisor (MCD) Given a finite, nonempty set S 1n R, we say that m € R 1s
an MCD of S if m divides each element of S and 1if n 1s another common divisor of
S such that m | n, then m and n are associates [7] A domain in which every finite
set has an MCD 1s called an MCD domawn [7] It 1s worth noting that if R1s a GCD
domain, then R 1s an MCD domain If we let R = F5[z?, 28], then we know that R 1s
not a GCD domain because the set S = {z° z°} does not have a GCD However, 1t
does have an MCD In fact, both 22 and z3 are MCD’s of S We wish to show that
this ring 1s an MCD domain To do this, we must first establish that R 1s atomic
Notice that R is a Noetherian domain This gives us that R[y, 2] 1s also a Noetherian
doman Hence, both R and Ry, z] are atomic domains

In the first section of his paper, Roitman explores the connection between the
MCD property and the atomicity of polynomial extensions of the domamm The
following theorem was first introduced and proven in [2] but 1s restated in Roitman’s
paper adjusting the language to include the MCD property It 1s this theorem that
verifies that Fy[r?, 23] 1s an MCD domain We will later provide an alternate proof

of this theorem using maximal common divisors

Theorem 4 1 [7] Let R be an commutative domawn with wdentity The following are

equivalent
1 Riz,y] s atomic

2 Gwen any wndering set I, the polynomial extension R[{x,}].er 18 atomic
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8 R 15 an atomic MCD domain

This theorem shows how the MCD status of a domain can influence the atomicity
of 1ts polynomial extensions However, we wish to know more of the finer details of
this property For example, do we need every finite set mn R to have an MCD 1n order
for R[z] to be atomic or 1s 1t necessary only for some sets? Before we attempt to
answer that question, we need to i1dentify a special class of polynomials in Rlz] A
polynomial f € R[z] 1s called indecomposable 1if 1t cannot be written as the product
of two polynomals with positive degree [7] In the ring Z[z], the polynomal 2z + 2
1s indecomposable Notice that we can write 6z — 3 = 3(2z — 1) but we are unable to
write 6 — 3 as the product of two polynomials of positive degree In general, if R 1s

a domain, then any linear polynomial in R[z] 1s indecomposable
Theorem 4 2 [7] Let R be a domawn The following conditions are equivalent

1 R s atomac and the set of coefficients of any indecomposable polynomual in R|z]

has an MCD m R

2 R[z] s atomuc

Proof (1 = 2) Since any polynomial in R[z] can be written as a fimte product of
indecomposable polynomials, 1t suffices to show that any indecomposable polynomial
can be written as a finite product of rreducibles

Let f = Zn: f.z* be an mdecomposable polynomial and m be the MCD of the
coefficients of f =%f the degree of f 150, then we have that f € R so f can be wr;tten as
a finite product of irreducibles So we will assume that deg(f) > 0 Let g = Z %x’
We claim that g 1s wrreducible Assume that ¢ = hk for some h,k € R(z] 1=S°1nce f
1s indecomposable, we know that g must also be imdecomposable so without loss of
generality we say that h € R This means that mh | f, and m | mh so we now have

that m and mh are associates Thus, h 1s a umit in R and g 1s irreducible

30



(2 = 1) Let f be an mdecomposable polynomial n R[z] Now look at an
irreducible factorization of f say f = fif:  fi Since f 1s indecomposable, we know
that k—1 of these irreducible factors must be elements of & Without loss of generality
say fi, fo, , fe—1 are elements of R and let m = f,f,  fi_i Now assume that
¢ € R1s a common divisor of the coefficients of f where m | ¢ That 1s, md = ¢ for
some d € Rand f = md(%) but fi 1s irreducible so d 1s a umit Therefore, m and ¢

are associates and m 1s an MCD of the coefficients of f O

If we tighten the conditions on R shghtly, we see that if R 1s an atomic MCD
domain, then R[z] 1s atomic On our quest to provide an alternative proof of Theo-
rem 4 1, we need to know 1if R[z] inherits the MCD property from R More generally,
we want to know if any polynomial extension of R 1s an MCD domain 1f R 1s an MCD

domain
Theorem 4 3 [7] Let R be a commutatiwe domain The following are equivalent

1 R s an MCD doman
2 R[z] 1s an MCD domawn

3 R[z] 1s a weak GCD domawn (every set of two distinct elements i R has an

MCD)
4 Any polynomaal extension of R 1s an MCD doman

5 Any polynomual extension of R 1s a weak GCD domain

Proof Tt suffices to show that 3= 1= 4

(3 = 1) Consider the set S; = {ry, 72, ,Tn} In R and assume that n > 2
Let f(z) =7 +7rx+  +7,_12" 2 be a polynomial in R[z] We know that the set
Sy = {f,»} has an MCD m R[z] call it m This means that m | S; Now assume
that ¢ € R such that ¢ | §; and m | ¢ Then ¢ | Sz so ¢ and m are associates Thus,

m 1s an MCD for S
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(1 =4) Let X be a family of indeterminants and let S; = {fi, fo, , fn} be
a set of polynomials in R[X] If CDg, 1s the set of all common divisors of S, then
there exists at least one polynomal in CDg, that has the highest combined degree
Choose one such polynomial and call 1t ¢ Now let m € R be the MCD of all of the
coefficients of the polynomials in the set Sz = {%, %, , fgﬂ} We will show that mg
1s an MCD of S; If h 1s a common divisor of Sy such that mg | h, then mgk = h for
some k € R[X] Since g has the highest combined degree, we know that k£ must be

an element in R Thus, mk 1s a common divisor of the coefficients of Sy and m | mk

so m and mk are associates Thus, k 1s a umit and mg 1s an MCD of S, d
We now have the tools we need to provide an alternate proof of Theorem 4 1

Proof (3= 2) Let X be a set of indeterminates and choose f € R[X]| Since R[X]
15 a domain, we know that 1f a = be then deg,(a) = deg,(b) + deg,(c) for all z € X
Thus, we can write f = f1fo  f, where each f, 1s indecomposable Now let S, be
the set of coefficients of f, Since R 1s an MCD domain, each S, has an MCD call 1t
m, So we have f = mymq mn;n&l;% ;% Now R 1s atomic so myme  m, can
be wntten as a product of wrreducible elements in R[X] We claim that each ;Té 15
irreducible Assume that -m% = gh Then f, = (m,g)h so etther deg(m,g) = 0 which
means that deg(g) = 0 or deg(h) =0 Without loss of generality, we will assume that
deg(g) = 0 This means that m,g divides each element i S, and m, | m,g We know
that m, 1s the MCD of S, so we must have that m, and m,g are associates That 1s,
gisaumtin R So % 1s irreducible and R[X] 1s atomic

Since we can easily see that (2 = 1), we will conclude by proving that (1 = 3)
R 1nherits 1ts atomicity from R[z,y] so we need only show that R 1s an MCD domain
Let S = {s1, s2, ,Sn} beafinteset in R Then f = 8, + 8T+ +8,.12" 2+ 8,y
1s an indecomposable polynomial in R[z,y] Since R[z,y] 1s atomic, we know that the

set of coefficients of any indecomposable polynomial in R[z]{y] = R[z,y] has an MCD
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mm R[z] So if we rewrite f as f = g1 + goy where g1 = 51 + 822+  + 5,177 2 and
g2 = Sp, then we know that the set {g1, g2} has an MCD 1n R[z] call it m However,
g2 € Rsodeg(m)=0,1e m &€ R This means that m also divides each coefficient
of g3 So m divides each element of S Now assume that k also divides each element
of S and m | k This means that k also divides both g; and g, Since m 1s the MCD
of {g1, 92} we must have that m and k are associates Thus, m € R 1s an MCD of S

and R 1s an MCD domain O

Our goal 1n the next chapter 1s to generalize some of these theorems by removing
the domain condition However, as we will see, rings with zero divisors can display
behavior that can make this challenging To accommodate this behavior we will need
to specify additional properties that the ring must possess in order for the result
to hold true We will also provide examples of rings with some of this troublesome

behavior
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CHAPTER 5. MAXIMAL COMMON DIVISORS IN
RINGS WITH ZERO DIVISORS

We begin by defining three different types of maximal common divisors using
the defimition Roitman used when working with domains and incorporating the three

levels of associate elements

Defimtion 51 Given a set S 1n R, m 1s a mazimal common dwnsor (MCD) of S 1f

m has the following two properties
1 m divides every element in S and
2 1f n1s another common divisor of the elements of S such that m | n, then m ~ n

Defimition 5 2 Given aset S in R, m 1s a strong mazimal common dinsor (SMCD)

of S 1f m has the following two properties
1 1if m divides every element in S and
2 1f n 15 another common divisor of the elements of S such that m | n, then m = n

Defimtion 53 Given a set S 1n R, m 18 a very strong marimal common dwisor

(VSMCD) of S 1f m has the following two properties
1 1f m divides every element in S and
2 1if n1s another common divisor of the elements of S such that m | n, then m = n

We can see that when generalizing an MCD result in domains, we will have
three corresponding results to verify in nondomains We begin by first defining three

new types of rings
Definition 54 R 1s an MCD ring if every fimte set in R has an MCD
Definition 55 R 1s an SMCD ring if every fimte set in R has an SMCD

Defimition 56 R 1s a VSMCD ring if every finite set in R has a VSMCD
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Before we go any further we need to verify that these are three distinct, nonempty
classes of rings

The ring R =7Z x Z 1s a VSMCD ring Because Z 1s a UFD, 1t 1s also a GCD
domain so 1t 1s a VSMCD ring We will see later that the product of VSMCD rings
1s also a VSMCD ring

Now 1if we let R = Z¢ Then R 1s an SMCD ring but not a VSMCD ring If the
set contamns 1 or 5, then 1 1s an SMCD of the set If the set contains 2 and 3, then
115 an SMCD of the set If the set contains 3 and 4, then 1 1s an SMCD of the set
If the set 1s S = {3}, then the only common divisors of S are 1,3,5 Since 1 and 5
divide 3 but are not associate to 3, we know that they are not MCD’s of S Notice
here that 3 1s a common divisor of S such that 3 | 3 However, 3 1s strongly associate
but not very strongly associate to itself So 3 1s an SMCD of S but S does not have
a VSMCD If the set 1s {2}, {4}, or {2,4}, then 2 1s an SMCD of the set For any of
these three sets, 4 1s a common divisor such that 2 | 4 Also, we know that 2 ~ 4 but

2 24 This means that S has an SMCD but not a VSMCD

At this pomnt 1n time, an MCD ring that 1s not an SMCD ring has not been

dentified As we will see later, if R 1s an atomic SMCD ring, then R 1s strongly
Q[z, y]

(z — zy?)

the logical ring to begin with when looking for an example of a ring that 1s an MCD

atomic Since we know that 18 atomic but not strongly atomic, then this is
ring but not an SMCD ring

We will begin, as Roitman did, by examming how the various MCD properties
affect the polynomial extension of a ring

Recall that mn a domain R, every polynomial in R[z] can be written as a finite
product of indecomposable polynomials This useful fact does not necessarily hold 1f
R 1s contams zero divisors For example, if we let R = Z,, then we see that 1 + 22"

1s a unit 1 R[z] for all n € N So given any polynomial f € R[z] such that 2 | f
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and deg(f) > 1, we can write f = (1 + 22™)((1 + 2z")f) where both 1 + 2z2™ and
(14 2z™)f have positive degree for any n € N This means that any polynomial that
1s not divisible by 2 can be written as the product of two polynomials of positive
degree If 2|f and deg(f) > 1, then f = 2¢ for some g in R[z] Notice here that 24 g
smce f # 0 This means that f = (1 + 22)[(1 + 22)(2g)] = (1 + 2z)[2(1 + 2z)]g =
(14 2z)2g = (1 + 2z)f Here we have that both 1 + 2z and f have positive degree
Thus, no polynomial in R|[z] of positive degree 1s indecomposable and consequently
no nonconstant polynomial can be written as a finite product of indecomposable
polynomials This behavior 1s often problematic causing the need for an additional
condition when generahizing theorems from domains to rings

It 1s important to point out that polynomial rings exist outside the realm of
domains where each polynomial can be written as a finite product of indecomposable
polynomials One such ring 1s R = Zg[z] Notice that mn Zg[z], the 1deals I = (2)
and J = (3) are comaximal So we have that R = R/I x R/J Now since both R/I
and R/J are both domains, we know that any polynomial n R/I, for example, can
be written as a finite product of polynomials n R/I Thus, if we have a polynomial
m R call it f, then we can rewnte 1t as f = (g,h) If the degree of g 1s n and the
degree of h 1s m, then f can be factored into at most n + m polynomials in R with
positive degree This means that we can find a factorization of f into polynomials
of positive degree that has maximum length, say it 1s f = fifo  fr where each f,
15 of positive degree Now assume that f, = ab If a ¢ R and b ¢ R, then we have
a factorization of f into nonconstant polynomials of length £ + 1 This contradicts
the maximality of the length of the original factorization of f So we have that every

polynomial 1n Zg[z] can be written as a finite product of indecomposable polynomals

Conjecture 5 7 Let R be an atomic ring and let f be a polynomal mn R[z] If S 1s
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the set of coefficients of f, then there exists an MCD of S, call it m, and a polynomial

g such that f = mg where an MCD of the set of coefficients of g 15 1

If we are working with a domain, then this conjecture 1s easily proven to be
true However, if R = Zg, for example, then we can have factorizations like f(z) =
2z + 4 = 2(4z + 2) where the MCD of {2,4} # 1 In this case, we can choose to
factor f(z) = 2z +4 as f(z) = 2(z +2) and here the MCD of {1,2}1s 1 We use this

conjecture to prove the following two theorems

Theorem 5 8 Let R be a ming such that all polynomuals wn R[z] can be written as a
finute product of indecomposable polynomaals If R 1s atomuc and the set of coefficients

of any wndecomposable polynomial wn R[x] has an MCD, then R[z| s atomuc

Proof Let f be a polynomial in R[z] Since all polynomials in R[z] can be writ-
ten as a fimte product of indecomposable polynomials, we may assume that f 1s
indecomposable That 1s, if f = gh, then without loss of generality h € R

Let Sy be the set of coefhcients of f and let m be an MCD of Sy Also, let g be
a polynomal such that f = mg and the MCD of S, the set of coefficients of g, 15 1
We now need to show that g 1s irreducible 1n R|z]

Assume that g = kt for some k,t € R[z] Then without loss of generahty, we
may assume that ¢ € R since f 1s ndecomposable This means that ¢ 1s a common
dwvisor of S; and 1|t which gives us 1 ~ ¢t and ¢ 1s a umit Thus, g 15 1rreducible In
[1], we find that an element a € R 1s irreducible 1n R 1f and only if 1t 1s 1irreducible 1n

R[z] and we now have that R[z] 1s atomic O

Theorem 59 Let R be a ring such that all polynomaals in Riz] can be written as a
finite product of mdecomposable polynomuals If R 1s strongly atomic and the set of
coefficients of any indecomposable polynomal in R[z] has an SMCD wn R, then R|z]

15 strongly atomac
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Proof Let f be a polynomial in R[z] Since all polynomials m R[z] can be wrt-
ten as a finite product of indecomposable polynomials, we may assume that f 1s
indecomposable That 1s, if f = gh, then without loss of generality h € R

Let Sy be the set of coefficients of f and let m be an SMCD of Sy Also, let g
be a polynomial such that f = mg and the SMCD of S,, the set of coefficients of g,
181 We now need to show that g 1s strongly irreducible n R[z|

Assume that g = kt for some k,t € R[z] Then without loss of generality, we
may assume that £ € R since f 1s indecomposable This means that ¢ 1s a common
divisor of Sy and 1 | ¢t which gives us 1 ~ ¢ and ¢ 1s a umt Thus, g 1s strongly
ureducible In [1], we find that an element a € R 1s strongly irreducible mn R 1f
and only 1f 1t 1s strongly irreducible in R[z| and we now have that R[z] 1s strongly

atomic |

Theorem 5 10 Let R be a ring such that all polynomaals wn R[z] can be written as
a finite product of wndecomposable polynomuals If R s very strongly atomic and the
set of coefficients of any indecomposable polynomal in R[z] has a VSMCD, then R|z]

18 very strongly atomac

Proof Let f(x) = ap + a1z + azx® +  + a,z™ be a polynomial in R[z] Since all
polynomuials 1n R[z] can be written as a finite product of indecomposable polynomials,
we may assume that f 1s indecomposable That 1s, if f = gh, then without loss
of generality h € R Let S = {ag,a1,a2, ,a,} be the set of all coefficients of
f and m be a VSMCD of S So f(z) = m(% + %z + 2252 4 4 fagn) et
g(z) =2 + 2g 4 %ngx2 +  + 92" We now need to show that g 1s very strongly
rreducible i R[z]

Assume that g(z) = k(z)t(z) for some k,t € R[z] Then without loss of
generality, we may assume that t(z) € R since f 1s indecomposable This means

that mt 1s a common divisor of S and m | mt So m = mt which means there exists
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a umit u € R such that m = umt and if mt = rm for some r € R, then r must be
aumt Since mt = umt? = (ut?)m we can conclude that ¢(x) 1s a umit in R and 1n

R[z] Thus, g1s very strongly irreducible a

We have seen that a direct product of rings with a particular type of atomicity
does not necessarily possess the same form of atomicity In fact, this direct product
may not have any form of atomicity What happens when we take a direct product
of rings with a particular MCD property? Is 1t still an MCD ring? Do we have to

bound the indexing set to retain any level of the MCD property?

Theorem 5 11 Let { Ry }aca be a family of mings and let R = H R, Then R 1s an
a€A

MCD ring of and only if each Ry 15 an MCD ring R 1s an SMCD ring iof and only o+f

each R, 15 an SMCD rmng R ws a VSMCD ring +f and only +f each Ry s a VSMCD

ring

Proof The proofs for each of the three statements are nearly 1dentical so we will
prove only the first statement

Let R = H Ry be an MCD ring and let S, = {s1,s2, ,Sn} be a finite set 1n

a€cA
R, for some 7 € A Let 5 = (z5)aen Where 2o = s, f a = 7 and zo = 01f @ # 3

Consider the set §J = {8,8, ,$.} m R Note that S} has an MCD 1n R, call 1t
m = (My)aca We now have that m, | S, so we assume that ¢ | S, and m, | c for
some ¢ € R, If m¢ = (Ya)aca Where yo, = mq if @ # 7 and y, = ¢ 1f o = 7, then m,
18 a common divisor of .§'J with m | m. Thus, m ~ m, so m, ~ ¢ and we have that
m, 18 an MCD of S, giving us that R, 1s an MCD ring

Let R = HRQ where each R, 1s an MCD ring Consider the set § =

aEA
{s1,82, ,Sn}m Rwhereeachs, = {z,o}aecn Now look at the set S, = (21,4, Z2,a,

m R, This set has an MCD 1n R, call it m, We wish to show that m = (my)aen

1s an MCD of S Clearly, m | S so we now assume that ¢ | S and m | ¢ for some

39

) Tn,a)



€ = Ca)aca M R This means that ¢, | S, and m, | ¢, Thus, m, ~ c, and

mn~c O

In Chapter 3, we found nice ways of generating large classes of rings with the
various forms of atomicity We would like to also generate large classes of rings that

possess the various levels of the MCD property

Theorem 5 12 If R 1s a PIR, then R 15 an MCD mng If R 1s a SPIR, then R 1s
a VSMCD rng

Proof Let R be a PIR and let S C R be a finite set Since R 1s a PIR, we know
that the 1deal (S) 1s principally generated We will say (S) = (d) This means that d
15 a common divisor of § Now assume that z 1s another common divisor of S such
that d | ¢ We now have S C (z) and z € (d) That 1s, S = (d) C (z) and we have
(z) =(d),1e = ~danddi1san MCD of S

Now we will let R be a SPIR with maximal 1deal M and S C R be a finite set
We know that 1if (S) = (d), then d 1s an MCD of S Now let ¢ be a common divisor
of S such that d | ¢ This means that d ~ ¢ If d = 0, then (d) = (0) = (¢) so we have
that c=0and d = ¢ If d1s a umt, then ¢ 1s a umit and we have that d = ¢ So we
will assume that ¢ and d are nonzero, nonumts where d = cx for some x € B Since
R1s a SPIR, if x € M then cz = 0 = d, a contradiction So z ¢ M which means that
z1s aumt Thus, d = cand d1sa VSMCD of S O

Theorem 5 13 If R 1s p-atomac, then R 1s a VSMCD ring

Proof If R 1s p-atomic, then R = H R, where each R, 1s either a UFD or a SPIR
1=1
This means that each R, 1s a VSMCD ring which gives us that Ri1s a VSMCD ring O

A ning R 1s called préssmplifiable 1if x = zy 1mphes that either x = O or y 1s a

umt [1] Notice that any domain 1s présimphfiable For rings with zero divisors, the
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ring R = Zg 1s présimplhfiable Since R 1s very strongly atomic, we know that z = z
for all z € R so if we have z = zy, either z = 0 or y 1s a umt The ring Zg 1s not

preesimphifiable We know that 2 =2 4 where 2 # 0 and 4 1s not a umt

Theorem 5 14 If R 1s a préssmplifiable MCD ring, then R 1s a VSMCD ring

Proof Let S be a finite set 1n R and let m be an MCD of S Now assume that ¢ 18
a common divisor of S where m | ¢ This means that m ~ ¢ That 15, m = cd and
¢ = mk for some d,k € R So we now have that m = m(kd) If m =0, thenc =0
and we have that m =2 ¢ If m # 0, then we have that kd 1s a umit in R or, more

importantly, k£ and d are each units n B Thus, m = ¢ and every fimite set in R has

a VSMCD a

We have different levels of atomicity and different levels of MCD rings all
influenced by the three forms of associate elements If a ring 1s some form of atomic
and has some level of the MCD property, then how does 1its MCD level relate to 1ts

level of atomicity, 1f at all?
Theorem 5 15 Let R be an atomic ming
1 If R s an VSMCD ring, then R 1s very strongly atomac

2 If R be an SMCD ring, then R 1s strongly atomic

Proof 1 Let a be irreducible in R and consider the set S = {a} m R It suffices
to show that o 1s very strongly wrreducible Sice R 1s a VSMCD ring, S has a
VSMCD call it m Notice that o 1s a common divisor of S and m | @ This means
that m = o and « 1s also a VSMCD of S
Now assume that o = rt for some r,t € R Without loss of generality, we have
that a« ~r That1s, r | S and o | 7 Thus, we have a = r and « 1s very strongly

irreducible
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2 Let o be urreducible in R and consider the set S = {a} mn R It suffices to show
that « 1s strongly irreducible Since R 1s a SMCD ring, S has an SMCD call 1t
m Notice that o 1s a common divisor of S and m | @ This means that ma and
a 15 also an SMCD of S
Now assume that o = rt for some r,t € R Without loss of generality, we have
that « ~ 7 That 1s, r | S and o | » Thus, we have or and a 1s strongly
irreducible

O

We would also like to generalize Theorem 43 However, the proof for this
theorem relies heavily on degree arguments, a luxury we do not have when dealing
with nondomains

The research of factorization properties i rings with zero divisors 1s hmited
and there are several cases where we find many different theories surrounding a single
topic The 1dea of factoring an element has taken on two different flavors We may
factor an element 1n a nondomain just as we would factor an element 1n a domain
Alternatively, we may use an 1dea called u-factorization which separates an element’s
factors mto relevant and irrelevant factors When using the u-factorizations, 1t 1s
only the relevant factors that are examimed The research on MCD domains/rings
has spawned very httle published works Our final chapter will provide a sampling of

mteresting unsolved questions
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CHAPTER 6. FUTURE RESEARCH IDEAS

In 1993, Roitman states a conjecture that 1s a variation of Theorem 4 1
Conjecture 51 [7] Let R be a domain The following are equivalent
1 Rz] 1s atomic
2 R[z,y] 1s atomic
3 R s an atomic MCD domain

The proof of this conjecture comes down to verifying that given a set of elements
in R, there exists an indecomposable polynomial in R[z] whose coefficients are exactly
the elements of the set It 1s important to point out that the some of the coeflicients
of the polynomial may be zero For example, if the set 1s § = {2,3,4}, then a
polynomal of the form f(z) = 2z°% + 322 + 4 would be acceptable

Rings with zero divisors do not always behave 1n predictable ways For example,
we can use degree arguments when working with polynomial extensions of domains
However, as we have seen this techmque cannot necessarily be used for polynomial
extensions of rings with zero divisors A ring 1s indecomposable 1f 1t contains no
nontrivial idempotent elements In an indecomposable ring R, can every polynomial
m R[z] be written as a product of indecomposable polynomials? What characteristics
must R have m order for each polynomial m R[z] to be written as a product of
indecomposable polynomials? We also know that if R 1s a domain, then if R[z] 15
atomic we know that R must also be atomic What happens if R 1s not a domauin,
1s 1t possible to find a ring R that 1s not atomic but 1ts polynomial extension R[z] 1s
atomic?

Various aspects of MCD domains and the different flavors of MCD rings are

also of great interest We wish to generalize more of Roitman’s theorems or at least
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portions of them We also wish to know 1if there 1s any relation between a ring being
indecomposable and having some level of the MCD property

There 15 a wealth of research to be done mvolving MCD domains/rings and
their various levels of atomicity For domains, we often look beyond atomicity and
examine rings with properties such as umque factorization, bounded factorization,
and finite factorization We wish to follow a sumilar path for rings with zero divisors
To this end, some additional areas of interest are unique factorization in rings with

zero divisors, bounded factorization m rings with zero divisors, and u-factorizations
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APPENDIX A. GLOSSARY

ACCP_Consider an ascending chain of principal 1deals I C I, C m R If there
exists an N € N such that for every 3,k > N we have I, = I; then we say that R
satisfies the ascending chain condition on principal 1deals (ACCP)

Associate Elements Let a and b be elements of a ring We say that a and b are

assoclates if a |band b | a

Associate Elements (Domain) Let D be an integral doman and a,b € D The

following statements are equivalent
1 a and b are associates
2 alb and bla
3 There exists a umit u € D such that a = ub
4 If alb, bla and whenever a = bc with a # 0, then ¢ must be a unit i D

Atomic Domain_ A domain 18 atomic if every nonzero, nonunit can be written as a

fimte product of irreducibles

Atomic Rmmg A ring R 1s atomic if every nonzero, nonunit can be written as a finite

product of irreducibles

Commutative Ring A ring R 1s called commutative if for each a,b € R we have

that ab = ba If R contains an element 1p such that alp = 1ga for each a € R, then
R 1s said to be a ring with identity

Ideal: Let R be a commutative ring A subset I C R 1s an 1deal of R if [ 1s 1tself a
ring and 1if for each z € I and each r € R, the element rz 1s an element of |

Indecomposable Polynomial Let R be a ring A polynomial f € R[z] 1s said to

be indecomposable if whenever f = gh for some g,h € R|z], we have that either

geRorheR
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Indecomposable Ring A ring is indecomposable if 1t contains no nontrivial idem-

potent elements
Irreducible Let a be a nonumt element of a ring We say that a 1s irreducible if
a = bc 1mphes that a ~bora ~ ¢

Irreducible (Domain) An irreducible in a domain 1s an element z such that when-

ever x = yz then z 1s associate to either y or z

M-Atomic Ring A ring R 1s m-atomic if every nonzero, nonumt can be wrnitten as

a finite product of m-irreducibles

M-Irreducible Let a be a nonumt element of a ring We say that a 1s m-1rreducible

if (a) 1s maximal among proper principal 1deals

Maximal Common Divisor Given a set S n a ring R, we say m 1s a maximal

common divisor (MCD) of S 1if m has the following two properties
1 m divides every element 1mn S and
2 1f n 15 another common divisor of the elements of S such that m | n, then m ~ n

Maximal Common Divisor (Domain) Given a fimite, nonempty set S 1 a do-

mamn D, we say m € R 1s a maximal common divisor (MCD) of S 1if m divides each
element of S and if n 1s another element 1n R that divides each element of S with
m | n, then m and n are associates

Maximal Ideal Let M be an ideal in a commutative ring R If M C I for some

nontrivial 1deal I C R only when M = I, then M 1s called a maximal 1deal of R
MCD See Maximal Common Divisor

MCD Domain A domain 1n which every finite set has an MCD 1s called an MCD

domain
MCD Rang R 1s an MCD ring if every finite set in R has an MCD

Nilpotent Let R be a commutative ring We say that ¢ € R 1s a mlpotent element

if a® = 0 for some n € N We say that the ideal I C R 1s nilpotent 1f /™ = 0 for some
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Noetherian ring A ring 15 called Noetherian 1if every 1deal m the ring 1s finitely

generated

P-Atomic Ring A ring R 1s p-atomic if every nonzero, nonunit can be written as

a finite product of primes
PID See Principal Ideal Domain
PIR See Principal Ideal Ring

Présimphfiable A ring R 1s called présimplifiable if £ = zy mmples that either

z=0o0ryi1sauntin R

Primary Ideal An ideal I of a ring R 1s primary 1if given ab € I, then either a € I

orb® € I for somen € N

Prime Element Let a be an element of a ring We say that a 1s prime 1if (a) 1s

prime 1deal
Prime Ideal An ideal P 1s called a prime 1deal of a ring R if whenever IJ C P for
some 1deals I, J € R we have that ether I C Por J C P

Principal Ideal An ideal I of a ring R 1s called a principal ideal if 1t generated by

a single element of R

Principal Ideal Domain If every ideal of a commutative domamn D 1s a principal

1deal, then D 1s called a principal 1deal domamn (PID)

Principal Ideal Ring If every 1deal of a commutative ring R 1s a princtpal ideal,

then R 1s called a principal ideal ring (PIR)

Radical Ideal An ideal I of a ring R 1s called a radical 1deal if whenever z™ € [

then z € I If J C R1s an 1deal of R, then the radical of J, written rad(J) 1s the set
{z € R|z™ € J for some n € N}
Regular Let R be a commutative ring An element r € R 1s called regular if 7s = 0

only when s =0
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Ring A ring R 1s a nonempty set with two binary operations denoted + and * with

the following three properties

1 (R,+)1s an abehan group

2 (R, *) 1s associative

3 a(b+c) =ab+ac and (a+ b)c = ac + be for every a,b,c € R

SMCD See Strong Maximal Common Divisor
SMCD Ring A ring R 1s an SMCD ring if every finite set in R has an SMCD

Special Principal Ideal Ring A principal 1deal ring (PIR) 1s called a special prin-

cipal 1deal ring (SPIR) 1if 1t has only one proper prime 1deal P and P? = 0
SPIR _See Special Principal Ideal Ring

Strong Associate Elements Let a and b be elements of a ring Then a and b are

strong associates 1if there exists a unit « n the ring such that a = ub

Strong Irreducible Let a be a nonunit element of a ring We say that a 1s strongly

irreducible 1if @ = be imphies that a & bora = ¢

Strong Maximal Common Divisor Given a set S i a ring R, m 1s a strong

maximal common divisor (SMCD) of S if m has the following two properties
1 1if m divides every element in S and
2 1f n 1s another common divisor of the elements of S such that m | n, then m = n

Strongly Atomic Ring A ring R 1s strongly atomic if every nonzero, nonunit can

be written as a fimte product of strong irreducibles

Very Strong Associate Elements Let a and b be elements of a ring Then a and

b are very strong associates if either a = b = 0 or whenever a = bc we have that ¢
must be a unit 1n the ring

Very Strong Irreducible Let a be a nonunit element of a ring We say that a 1s

very strongly irreducible if a = be implies that a @ bora X ¢
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Very Strong Maximal Common Divisor Given a set S 1n a ring R, m 1s a very

strong maximal common divisor (VSMCD) of S 1f m has the following two properties
1 1f m divides every element 1n S and
2 1f n1s another common divisor of the elements of S such that m | n, then m = n

Very Strongly Atomic Ring A ring R 1s very strongly atomic if every nonzero,

nonunit can be written as a finite product of very strong irreducibles
VSMCD See Very Strong Maximal Common Divisor
VSMCD Ring A ring R 1s a VSMCD rning if every finite set in R has a VSMCD

Zero Divisor An element a of a ring R 1s called a zero divisor 1if ab = 0 for some

nonzero b € R
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