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ABSTRACT

In this thesis we study bandlimited approximations to various functions. Bandlimited func-

tions have compactly supported Fourier transforms, which is a desirable feature in many applica-

tions. In particular, we address the problem of determining best approximations that minimize a

weighted integral error. By utilizing the theory of Hilbert spaces of entire functions developed by L.

de Branges, we are able to obtain optimal solutions for several weighted approximation problems.

As an application, we determine extremal majorants and minorants that vanish at a prescribed

point for a class of functions, which may be used to remove contributions from undesirable points.
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Pólya class, p. 57
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1. INTRODUCTION

We say that an entire function F : C → C is of exponential type δ ≥ 0 if for every ε > 0

there exists a constant Cε such that

|F (z)| ≤ Cεe(δ+ε)|z| (1.1)

holds for all z ∈ C. By the famed Paley-Wiener theorem (see Theorem 2.2.2), functions of exponen-

tial type 2πδ have (distributional) Fourier transforms supported in the interval [−δ, δ], i.e., they are

δ-bandlimited. Given this remarkable connection along with the vast applications of bandlimited

functions (some of which we describe below), one of the classical problems at the intersection of

approximation theory and harmonic analysis asks: how well can a given real-valued function be

approximated on the real line by a δ-bandlimited function? In this thesis we address the following

L1(R, µ)-approximation problem and variations of it:

Problem 1.0.1. Given f : R → R, δ > 0, and µ a Borel measure on R, can we find an entire

function K : C→ C of exponential type 2πδ such that the integral

‖K − f‖L1(R,µ) :=

∫ ∞
−∞
|K(x)− f(x)| dµ(x) (1.2)

is minimized?

Such a function is called a best approximation to f in L1(R, µ)-norm. In the case of the

Lebesgue measure this problem is classical with a large collection of works dating back to the

late 1930s by Akhiezer, Bernstein, Krein, Nagy, and many others. Influential works include those

of M.G. Krein [41] and B. Sz.-Nagy [62] in which they construct best approximations for large

classes of functions. Accounts of these results (in English) as well as additional information on

L1-approximations can be found in the books of H. Shapiro [61] and A.F. Timan [63]. Recently,

M. Ganzburg [29] has extended the Krein-Nagy approach to obtain best L1(R, dx)-approximations

to locally integrable functions on R.
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It is a well-known result in the theory of L1(R, µ)-approximation that a best approximation

K from A(δ), the space of all entire functions of exponential type δ, can be characterized by the

sign change pattern of K − f (see e.g., [24, Theorem 10.1] or [61, Theorem 4.2.2]). In particular

(see Theorem 5.1.2), a function K ∈ A(δ) is a best approximation to f in L1(R, µ)-norm if (1.2)

is finite, i.e., K − f ∈ L1(R, µ), and ψ = sgn(K − f) is orthogonal to A1(δ, µ), the space of all

entire functions of exponential type δ whose restrictions to the real line are integrable with respect

to µ.1 It is worth mentioning that this ‘sign change’ result for L1(R, µ)-approximations (as well as

Lp(R, µ)-approximations) is a natural extension of the Chebyshev alternation theorem2 from the

late 19th century which studies the problem of best uniform approximations of continuous functions

on [a, b] with polynomials (see e.g., [24, Theorem A]).

In Chapter 5 we identify sign change patterns ψ that are high-pass for A1(δ, µ), i.e., or-

thogonal to A1(δ, µ). Here µ is taken to be a so-called Hermite-Biehler weight, that is dµE(x) =

|E(x)|−2 dx for some entire function E : C→ C that satisfies |E(z)| < |E(z)| for all z in the open

upper half-plane C+. These Hermite-Biehler weights are particularly well-suited for the problem

of determining extremal signatures as they allow us to utilize the remarkable theory of the Hilbert

spaces of entire functions developed by L. de Branges in the 1960s (see Chapter 3) as well as Hardy

spaces in the upper half-plane (see Section 2.3). It is a well-known result (and we reprove it in

Theorem 5.1.2) that best approximations can frequently be obtained as solutions of an interpolation

problem.

Problem 1.0.2. Given f : R→ R, δ > 0, µ a Borel measure on R with polynomial growth, and ψ

a high-pass function for A1(δ, µ) with ψ2 = 1 a.e. on R, can we construct an entire function K of

exponential type δ such that K − f ∈ L1(R, µ) and

ψ(x) = sgn(K(x)− f(x)) (1.3)

for almost every real x?

Under reasonable assumptions on the Hermite-Biehler function E, we are able to identify

Laguerre-Pólya functions F , i.e., uniform limits of polynomials with only real zeros, so that ψ =

1Here sgn(x) is the signum function defined by sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0, and sgn(0) = 0.
2Even though the alternation theorem commonly bears Chebyshev’s name he did not actually prove it. It was

proved independently by Blichfeldt and Kirchberger in the early 1900s.
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Figure 1.2: Best approximation to the
signum function (of type π) in L1(R, dx

x2+1
)-

norm

sgn(F ) is high-pass for A1(δ, µE). In Chapter 4 we give a general method to construct entire

functions K that interpolate a given function f : R→ R at the zeros of a Laguerre-Pólya function

F , so that

sgn(F (x)) = sgn(K(x)− f(x)) (1.4)

for almost every real x. Using these interpolations, we are able to construct (unique) best approx-

imations in L1(R, µE)-norm for a class of truncated Laplace transforms and their odd extensions,

which includes the signum function (see Figures 1.1 and 1.2). Moreover, by utilizing the recent

interpolation results for classes of even functions in [11, 13] by Carneiro and Littmann, we are able

to construct best approximations in L1(R, µE)-norm for large classes of even, odd, and truncated

functions.

In applications, it is convenient to consider a variant of Problem 1.0.1 where the entire

function K further satisfies the majorizing constraint, K(x) ≥ f(x) for all real x. In this case, such

a function is called an extremal majorant of f . Analogously, we can define an extremal minorant

of f . Below we mention some of the history as well as applications of these so-called one-sided

approximations.

In the 1930s, A. Beurling considered the one-sided L1(R, dx)-approximation problem for

the signum function, sgn(x). He observed that the entire function

B2πδ(z) =

(
sin(πδz)

π

)2
{ ∞∑
n=0

1

(δz − n)2
−

−1∑
n=−∞

1

(δz − n)2
+

2

δz

}
(1.5)

satisfies the following properties:

3



1. B2πδ is of exponential type 2πδ,

2. B2πδ majorizes the signum function on the real line (see Figure 1.3), i.e., B2πδ(x) ≥ sgn(x)

for all real x,

3.

∫ ∞
−∞
{B2πδ(x)− sgn(x)} dx = δ−1.

Moreover, Beurling showed that if F is any entire function of exponential type 2πδ with

F (x) ≥ sgn(x) for all real x and F 6= B2πδ, then
∫∞
−∞{F (x) − sgn(x)} dx > δ−1, hence the

function B2πδ is the extremal majorant of the signum function. Using this function, he was able

to obtain an inequality for almost periodic functions on the real line. Beurling never published

these results (though he did present his findings at a Harmonic Analysis seminar in 1942), and

the first appearance of his results in the literature can be found in a classical survey paper on

L1-approximations and their applications [64] by J.D. Vaaler. For additional information on some

of Beurling’s early results see [4].

In the 1970s, A. Selberg [59, 60] independently discovered the function B2πδ in his work to

obtain a sharp form of the large sieve inequality of analytic number theory. Selberg observed that

the function B2πδ could be used to majorize and minorize the characteristic function of an interval

χ[a,b](x) =


1 if a ≤ x ≤ b,

0 if x < a or b < x,

(1.6)

where a < b. With the observation that for x 6= a and x 6= b we have χ[a,b](x) = 2−1{sgn(b− x) +

sgn(x− a)}, Selberg showed that the entire function

C2πδ(z) = 2−1 (B2πδ(b− z) +B2πδ(z − a)) (1.7)

majorizes χ[a,b] on the real line (see Figure 1.4), is of exponential type 2πδ, and satisfies

∫ ∞
−∞

{
C2πδ(x)− χ[a,b]

}
dx =

1

δ
. (1.8)

Moreover, Selberg showed that C2πδ is an extremal majorant if and only if δ(b − a) is an integer.

The extremal problem for the characteristic function of an interval when δ(b− a) is not an integer

4
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Figure 1.4: Selberg’s extremal majorant of
the characteristic function of an interval (of
type 2π)

has since been resolved by Donoho and Logan [25] when δ(b − a) < 1 with the remaining cases

settled by F. Littmann [49].

Since Beurling and Selberg’s investigations, the theory of one-sided L1(R, dx)-approximation

problems (now commonly referred to as Beurling-Selberg extremal problems) has been extensively

developed over the past 30 years with solutions for these extremal problems now available for large

classes of even, odd, and truncated functions [9, 10, 12, 13, 14, 15, 16, 25, 33, 47, 48, 49, 50, 64].

As these extremal majorants and minorants have compactly supported Fourier transforms (by the

Paley-Wiener Theorem) and minimal L1-errors (which often translates into optimal constants in

certain inequalities), they have proven extremely useful in a variety of inequalities and number

theoretical applications such as Hilbert-type inequalities [16, 33, 48, 64], bounds for the Riemann

zeta function and functions related to it [6, 7, 8, 9, 17, 31], the pair correlation of zeros of the

Riemann zeta-function [8, 28, 54], and Erdös-Turan discrepancy inequalities [46, 64] along with

problems in signal processing [25, 49].

To highlight the utility of these extremal problems in connection with the Riemann zeta-

function we sketch out Chandee and Soundararajan’s argument to improve the bound of ζ(z) along

the critical line, Re(z) = 1/2, under the Riemann Hypothesis (see [17]). For additional information

on the history and applications of Beurling-Selberg extremal problems with the Riemann zeta-

function see the survey paper [6] by E. Carneiro.

By Hadamard’s factorization formula for the Riemann ξ function3 and Stirling’s formula,

Chandee and Soundararajan obtain the following representation for log |ζ(z)| along the critical line.

3Here the Riemann ξ function is the entire function ξ(s) = 2−1s(s− 1)π−s/2Γ(2−1s)ζ(s).

5



For large t,

log |ζ(
1

2
+ it)| = log t− 1

2

∑
γ

f(t− γ) +O(1) (1.9)

where f(x) = log
(

4+x2

x2

)
and the sum runs over the nontrivial zeros ρ = 1

2 + iγ of ζ(z).

By replacing f with a function of exponential type that minorizes it (which exists under

the framework of [15]), they invoke a so-called Guinand-Weil explicit formula [37, Theorem 5.2]

to connect the sum over the nontrivial zeros of ζ(z) to a sum of the Fourier transform of the

minorant evaluated at prime powers. Since the minorant is chosen to be of exponential type

(i.e., bandlimited) its Fourier transform has compact support and the resulting sum only has

finitely many terms. Moreover, the choice of optimal minorant of f in L1(R, dx)-norm minimizes

the additional contribution from the Fourier transform of the minorant evaluated at t = 0 that

also appears in the explicit formula. By carefully analyzing the remaining terms, Chandee and

Soundararajan are able to improve the current bound for the size of ζ(z) on the critical line

(currently the best bound under the Riemann Hypothesis).

In general, an explicit formula is an identity that relates the values h(ρ), where ζ(ρ) = 0

(or L(χ, ρ) = 0 for a general L-function with Dirichlet character χ) and h is a smooth function,

to the values of the Fourier transform of h. Under the assumption of the Riemann Hypothesis

(RH) and writing ρ = 1
2 + iγ the series will only involve real values γ, and h is frequently chosen

to be a solution to the Beurling-Selberg extremal problem. Without the assumption of RH (or

GRH for general L-functions) the series will involve non-real values of γ. A tool that may aid in

accommodating for these additional points are extremal functions that vanish at given points in

the upper half-plane and respectively in the lower half-plane4.

Problem 1.0.3. Given f : R → R, δ > 0, and α ∈ C+, can we find an entire function F of

exponential type δ such that F (α) = 0, F (x) ≥ f(x) for all real x, and the integral

∫ ∞
−∞
{F (x)− f(x)} dx (1.10)

is minimal?

4This type of extremal problem can also be used in other situations where contribution from particular points
needs to be eliminated (e.g., zeros and poles).
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This variant of the Beurling-Selberg extremal problem was first considered in [39] for the

characteristic function of an interval χ[a,b]. By multiplying Selberg’s (non-vanishing) majorant and

minorant of χ[a,b] with an expression that vanishes at α, M. Kelly found non-optimal majorants

and minorants of χ[a,b] that vanish at a given point in the upper half-plane and obtained bounds

for the L1-error as a function of δ.

In Chapter 6 we study how imposing vanishing conditions affects the construction of ex-

tremal functions, and we find optimal majorants and minorants of the signum function (i.e., Beurl-

ing’s Problem), monomials, and the Poisson kernel that vanish at a given point α = ib along the

imaginary axis. Moreover, using the result for monomials, i.e., polynomials which only have one

term, we are able to construct non-optimal majorants and minorants of polynomials in R[x], i.e.,

polynomials with real coefficients, that satisfy the vanishing condition at ib. Here the approach is

to modify the approximated function f : R → R and encode the vanishing condition into a new

measure (so that the vanishing condition may be dropped). This modification is done by noticing

that any majorant F ∈ A(δ) of f that vanishes at ib ∈ iR also vanishes at −ib (since F is real

entire and therefore F (z) = F (z) for all z), hence F is necessarily of the form

F (z) = Fb(z)(z
2 + b2) (1.11)

where Fb ∈ A(δ) is a majorant of fb(x) = f(x)(x2 + b2)−1. Thus, we seek to answer the following

(non-vanishing) weighted one-sided L1(R, (x2 + b2) dx) extremal problem:

Problem 1.0.4. Given f : R → R, δ > 0, and b > 0, can we find an entire function Fb : C → C

of exponential type δ such that Fb(x) ≥ f(x)(x2 + b2)−1 for all real x and the integral

∫ ∞
−∞

{
Fb(x)− f(x)

x2 + b2

}
(x2 + b2) dx (1.12)

is minimal?

In Section 6.6 we consider this problem when f is taken to be the signum function, a

monomial, or the Poisson kernel. In fact, in Sections 6.2, 6.3, and 6.4 we are able to solve this

problem for a more general class of Hermite-Biehler weights µE . By constructing a suitable Hermite-

Biehler function E (see Section 6.5) we are able to apply the general weighted one-sided L1(R, µE)-

7



approximation results to solve the vanishing problem for the signum function, monomials, and the

Poisson kernel (Theorems 6.6.1, 6.6.3, and 6.6.6, respectively). For these functions, we show that

prescribing vanishing at α = ib substantially affects the integral value for small values of δ, but the

vanishing condition only leads to a small change if δ becomes large.

The problem of solving weighted one-sided L1(R, µ)-approximation problems was first stud-

ied in [35]. In this remarkable work, J.J. Holt and J.D. Vaaler extend Beurling and Selberg’s solu-

tions (majorants/minorants of the signum function) to weighted L1(R, µ)-norms. Moreover, they

use these results to construct majorants and minorants to characteristic functions of Euclidean

balls in RN while minimizing the L1(RN , dx)-norm5 and obtain a multi-dimensional version of the

large-sieve inequality of analytic number theory. The key step in their results is to show that

the weighted one-sided L1(R, µ) extremal problem has a close connection to the theory of Hilbert

spaces of entire functions developed by L. de Branges during the 1960s. These so-called de Branges

spaces generalize the classical Paley-Wiener spaces and Fourier Analysis. In fact, many of the de

Branges spaces used in applications can be viewed as weighted Paley-Wiener spaces (see Section

3.6) making them an ideal starting point for solving weighted L1(R, µ) approximation problems

(where the tools of Fourier analysis and classical interpolation results in the Paley-Wiener spaces

are no longer available). This approach of using de Branges spaces to study weighted one-sided

L1(R, µ) extremal problems has also proven useful in several recent works [10, 13, 50] with results

now known for classes of even, odd, and truncated functions. Very recently, the one-sided approx-

imation problem for the characteristic function of an interval in weighted L1-norm was solved in

[8] and applied to improve existing bounds for the pair correlation of zeros of the Riemann zeta-

function, under the Riemann Hypothesis. Other recent interesting approximation problems that

have utilized the theory of de Branges spaces include [32, 39, 49, 50]. In Chapter 5 we show that

the best (two-sided) L1(R, µ)-approximation problem (Problem 1.0.1) also has a close connection

to de Branges spaces, and in Chapter 6 we extend the known results for Beurling-Selberg extremal

problems in de Branges spaces.

This thesis is structured as follows. In Chapter 2 we describe general facts about some

classical spaces of analytic functions including the Lp Paley-Wiener Spaces, Hardy Spaces in the

upper half-plane, and functions of bounded type.

5This work is the first to treat the case of one-sided L1-approximation in higher dimensions.
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In Chapter 3 we give an introduction to the theory of Hilbert Spaces of Entire Functions

developed by L. de Branges and record basic facts about these spaces. This includes that these

spaces are reproducing kernel Hilbert spaces with some remarkable generalizations of properties

of the Paley-Wiener spaces (e.g., interpolation formulas, orthogonal sets, and Parseval’s formula).

Moreover, we describe some equivalent characterizations of these de Branges spaces which further

strengthen the relationship between de Branges spaces and weighted Paley-Wiener spaces. Lastly,

we prove an interpolation formula for these spaces which will be used to show that some best

L1(R, µ) approximations are unique (see Section 5.4).

In Chapter 4 we give a general method to construct entire functions K that interpolate a

given function f : R→ R at the zeros of a Laguerre-Pólya function F , so that

x 7→ F (x) (K(x)− f(x)) (1.13)

is of one sign for all real x. These functions will serve as candidates for the best approximation and

one-sided approximation problems of Chapters 5 and 6. The construction in Chapter 4 is based

on the general method of obtaining interpolations at the zeros of Laguerre-Pólya functions used in

[13] and [35] (which generalize the methods for creating extremal majorants and minorants with

respect to the Lebesgue measure in [33] by Graham and Vaaler).

In Chapter 5 we study the problem of best (two-sided) approximations in L1(R, µ)-norm.

In Sections 5.2 and 5.3 we identify extremal signatures for Hermite-Biehler weights dµE(x) =

|E(x)|−2 dx and describe general sign change properties of high-pass functions for µE .

In Section 5.4 we use the sign change results of Section 5.2 and 5.3 along with the interpo-

lations constructed in Chapter 4 to determine best approximations in L1(R, µE)-norm for a class of

odd and truncated functions including the signum function, Heaviside function, truncated Poisson

kernel, and truncated exponential. Lastly, in Section 5.5 we consider the special cases of best ap-

proximations to the Poisson and conjugate Poisson kernels. In these cases the best approximations

in L1(R, µE)-norm are explicit and the L1(R, µE)-error is remarkably simple.

In Chapter 6 we solve the extremal problem with vanishing condition described above. In

Sections 6.2, 6.3, and 6.4, we solve the one-sided L1(R, µE)-approximation problem for the class of

functions fb(x) = f(x)(x2 + b2)−1 when f is taken to be the signum function, a monomial, or the

9



Poisson kernel with respect to a large family of Hermite-Biehler weights. The key step in connecting

the extremal problems in L1(R, µE)-norm with the vanishing problem is that the weighted Paley-

Wiener space A2(δ, (x2 + b2) dx) is isometrically equal to a de Branges space A2(δ, |Eb(x)|−2 dx)

where Eb is of bounded type. In Section 6.5 we show this isometry and describe many important

properties about the space A2(δ, |Eb(x)|−2 dx).
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2. SPACES OF ANALYTIC FUNCTIONS

2.1. Introduction

In this chapter we give an overview of some spaces of analytic functions that will be needed

throughout this work. We begin by stating the Paley-Wiener Theorem which allows us to describe

functions of exponential type in terms of the support of their Fourier transforms. Using this

we define the classical Paley-Wiener spaces and related Bernstein spaces (i.e., Lp Paley-Wiener

spaces). These spaces are Banach spaces of entire functions and we state some well-known results

about these spaces including interpolation formulas and Parseval’s formula (Theorem 2.2.6). Many

of these results have remarkable generalizations in weighted Paley-Wiener spaces or so-called de

Branges spaces (see Chapters 3 and 6) which will be used to show extremal properties as well as

uniqueness (in some cases) of best approximations in weighted L1-norm.

The formulation of these de Branges spaces requires some notions and results from function

theory in the upper half-plane. In Section 2.3 we review some basic facts about the Hardy Spaces

in the upper half-plane, denoted Hp(C+). In Lemma 2.8.2 we show that functions belonging

to Hp(C+) are of so-called bounded type, i.e., they can be represented as the quotient of two

bounded functions in the upper half-plane. Functions of bounded type have a canonical ‘inner-outer’

factorization (Lemma 2.6.4) from which we define the notion of ‘mean type.’ By Krein’s theorem

(Lemma 2.7.10) the mean type is a natural generalization of exponential type for functions that may

not be entire. Lastly, in Lemmas 2.8.1 and 2.8.2 we prove necessary and sufficient conditions for a

function to belong to a Hardy Space in the upper half-plane using the mean type and integrability

conditions of the boundary function. This chapter is based on [23], [53], and [57] and more details

(as well as omitted proofs) about these spaces of analytic functions in the upper half-plane can be

found there.

We denote the field of real numbers by R, the field of complex numbers by C, and the

open upper half-plane by C+ := {z ∈ C | Im(z) > 0} where Im(z) and Re(z) denote the real and

imaginary parts of z ∈ C, respectively. The space of all analytic functions on the upper half-plane

is denoted by H(C+), and H∞(C+) is its subset containing all bounded analytic functions on C+.
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2.2. Bernstein and Paley-Wiener spaces

For f ∈ L1(R), we define the Fourier transform of f , denoted f̂ , by

f̂(t) =

∫ ∞
−∞

f(x)e−2πixt dx. (2.1)

The function f̂ is continuous on R and by the Riemann-Lebesgue Lemma f̂(t)→ 0 as |t| → ∞. We

extend the definition of the Fourier transform to Lp(R), 1 ≤ p ≤ ∞, in the usual way (cf. [36] and

[53]).

Definition 2.2.1. A function f ∈ Lp(R), 1 ≤ p ≤ ∞, is called δ-bandlimited if its Fourier transform

vanishes outside [−δ, δ]. We define the classical Paley-Wiener space, denoted PWδ, as the space of

all continuous δ-bandlimited functions.

For a function f belonging to PWδ with f ∈ L2(R), we have that f̂(t) = 0 for all |t| > δ

hence f̂ ∈ L1(R) and therefore

f(x) =

∫ δ

−δ
f̂(t)e2πixt dt (2.2)

for all real x. By Morera’s Theorem, the integral extends to an entire function on C given by

F (z) =

∫ δ

−δ
f̂(t)e2πizt dt. (2.3)

For z = x+ iy, we have that

|F (z)| ≤
∫ δ

−δ
|F̂ (t)|e−2πyt dt ≤ Ce2πδ|z|. (2.4)

Since F (x) = f(x) on R, it follows that f extends to an entire function of exponential type 2πδ.

By the Paley-Wiener Theorem (Theorem 2.2.2), the converse is also true (this is the deep

part of the theory). We say that an entire function F : C→ C belongs to Lp(R, dx) if the restriction

of F to the real line belongs to Lp(R, dx).

Theorem 2.2.2 (Paley-Wiener). Let F : C → C be an entire function such that F ∈ L2(R, dx).

The following are equivalent:

1. F is of exponential type 2πδ.
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2. F̂ (t) = 0 for all |t| > δ.

Proof. See e.g., [65, Theorem 7.2].

For δ > 0 and 1 ≤ p ≤ ∞, we define the Lp Paley-Wiener space or Bernstein space, denoted

Ap(δ, dx), as the space of all entire functions F of exponential type δ that belong to Lp(R, dx).

These spaces are Banach spaces, and for p = 2, the space A2(2πδ, dx) is a Hilbert space with

standard L2-inner product. Moreover, by the Paley-Wiener Theorem we have PWδ = A2(2πδ, dx)

(if we identify elements in PWδ with their extensions to entire functions).

The following lemma (see [5, Theorem 6.7.1]) gives that, unlike the spaces Lp(R, dx), the

spaces Ap(δ, dx) are nested.

Lemma 2.2.3 ([5, Theorem 6.7.1]). Let δ ≥ 0. If F : C → C is an entire function of exponential

type δ that belongs to Lp(R, dx), for some 1 ≤ p <∞, then for all real y

∫ ∞
−∞
|F (x+ iy)|p dx ≤ epδ|y|

∫ ∞
−∞
|F (x)|p dx. (2.5)

Moreover, F ∈ Lq(R, dx) for every q > p.

Proof. The proof is based on an application of the Phragmen-Lindelöf theorem. It is somewhat

technical and we refer to [5, Theorem 6.7.7]. In fact, [5, Theorem 6.7.7] shows that (2.5) holds for

functions that are of exponential type on the closed upper half-plane.

Remark 2.2.4. For simplicity, we have stated the Paley-Wiener theorem for functions belonging

to L2(R, dx); however, using Lemma 2.2.3 we see that the Paley-Wiener Theorem holds for entire

functions belonging to Lp(R, dx), 1 ≤ p ≤ 2. In fact, the theory can also be carried out for

distributions with compact support (see e.g., [36, Section 7.3]).

Remark 2.2.5. Containment in the other direction still does not hold. For example, for all w ∈ C

the entire function z 7→ Kδ(w, z) := sin(δ(w−z))
π(w−z) is of exponential type δ and belongs to L2(R, dx),

but it does not belong to L1(R, dx).

One of the remarkable properties about the Paley-Wiener space A2(2πδ, dx) is that for every

w ∈ C

F (w) =

〈
F,

sin(2πδ(w − ·))
π(w − ·)

〉
= 〈F,K2πδ(w, ·)〉 (2.6)
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holds for all F ∈ A2(2πδ, dx). Hence, the Paley-Wiener space is a so-called Reproducing Kernel

Hilbert Space (RKHS). More information about RKHS will be mentioned in Section 3.2.

Using the reproducing kernel property along with the fact that the collection of entire

functions {z 7→ sin(πz)
π(z−n)}n∈Z forms an orthonormal basis for A2(π, dx), one can deduce the famed

Shannon-Whittaker-Kotel’nikov (SWK) interpolation formula (see e.g., [65, Theorem 7.19]), which

provides a way to reconstruct any bandlimited function from its samples taken at equally spaced

nodes on the real line.

Theorem 2.2.6 ([65, Theorem 7.19]). Let F ∈ A2(π, dx). Then

F (z) =
sin(πz)

π

∑
n∈Z

(−1)n
F (n)

z − n
(2.7)

where the expression on the right-hand side of (2.7) converges uniformly on compact subsets of C.

Moreover, ∫ ∞
−∞
|F (t)|2 dt =

∑
n∈Z
|F (n)|2. (2.8)

Remark 2.2.7. By Theorem 2.2.3, the results of the previous theorem hold for any function

F ∈ Ap(π, dx), 1 ≤ p ≤ 2.

From this we can obtain interpolation formulas for functions of exponential type that are

bounded on the real axis (see e.g., [65, Equation 7.22]).

Corollary 2.2.8. Let F ∈ A∞(π, dx). Then

F (z) =
sin(πz)

π

F ′(0) +
F (0)

z
+

∑
n∈Z\{0}

(−1)nF (n)

(
1

z − n
+

1

n

) (2.9)

where the expression on the right-hand side of (2.9) converges uniformly on compact subsets of C.

Remark 2.2.9. By applying the previous results to the function G(z) = F ((2δ)−1z), we obtain

similar representations for functions of exponential type 2πδ.

In Section 3.8, we prove a generalization of Corollary 2.2.8 for the de Branges space

A∞(δ, µE).
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2.3. Hardy spaces in the upper half-plane

In this section we state some classical results about Hardy Spaces in the upper half-plane

Hp(C+). These Hardy spaces originated in the context of complex analytic and Fourier analysis

in the early twentieth century. The deep connection between the theories of Fourier Analysis and

Hardy Spaces have made these spaces extremely useful in a variety of applications. We follow the

notation and presentation of [53]. For further information about Hardy spaces on the unit disc as

well as upper half-plane see [26], [30], or [40].

Definition 2.3.1. For 1 ≤ p < ∞, define the Hardy Space on the upper half-plane, Hp(C+), as

the space of functions F that are analytic in the upper half-plane and satisfy

‖F‖Hp(C+) := sup
0<y<∞

(∫ ∞
−∞
|F (x+ iy)|pdx

)1/p

<∞. (2.10)

For p = ∞, H∞(C+) is the space of all bounded analytic functions in the upper half-plane. The

norm for each function F ∈ H∞(C+) is given by

‖F‖H∞(C) := sup
z∈C+

|F (z)|. (2.11)

It is a classical result in Hardy Space Theory (see e.g., [53, Chapter 13]) that the spaces

Hp(C+), 1 ≤ p ≤ ∞, are Banach spaces which are isomorphic to the real Hardy Spaces

Hp(R) =

{
f ∈ Lp(R) :

∫ ∞
−∞

f(t)

t− z̄
dt = 0, for all z ∈ C+

}
(2.12)

and

H∞(R) =

{
f ∈ L∞(R) :

∫ ∞
−∞

f(t)

(t− z̄)(t+ i)
dt = 0, for all z ∈ C+

}
(2.13)

respectively. In particular, we will make use of the following characterization result (see [53, The-

orems 13.2 - 13.5]). Here ‖ · ‖p denotes the standard Lp(R, dx)-norm and Fy(x) = F (x+ iy).
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Theorem 2.3.2 ([53, Theorems 13.2 - 13.5]). Let 1 ≤ p ≤ ∞. Let F be an analytic function in the

upper half-plane C+. Then F ∈ Hp(C+) if and only if there exists a unique f ∈ Hp(R) such that

F (z) =
y

π

∫ ∞
−∞

f(t)

(x− t)2 + y2
dt (2.14)

in C+. If so, for almost all x ∈ R,

lim
y→0

F (x+ iy) = f(x) (2.15)

and

‖F‖Hp(C+) = ‖f‖p. (2.16)

Moreover, for 1 ≤ p <∞ we have

lim
y→0
‖Fy − f‖p = 0, (2.17)

while if p =∞, then

lim
y→0
‖(Fy − f)ϕ‖∞ = 0 (2.18)

for every ϕ ∈ L1(R).

It turns out that the real Hardy spaces can be characterized by the support of their Fourier

transforms.

Lemma 2.3.3 ([53, Theorem 13.6]). Let f ∈ L1(R). Then f ∈ H1(R) if and only if f̂(t) = 0 for

all t ≤ 0.

Before giving the proof of Lemma 2.3.3, we make the following observation. For f ∈

H1(R) ⊆ L1(R) we have that f̂(0) = 0, i.e.,

Corollary 2.3.4. If f ∈ H1(R), then

f̂(0) =

∫ ∞
−∞

f(t) dt = 0. (2.19)
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Proof of Lemma 2.3.3. We follow the proof of [53, Theorem 13.6]. Let f ∈ L1(R). If z ∈ C+, then

the function g : R→ C defined by

g(t) =


0 t > 0

−e2πizt t ≤ 0

(2.20)

belongs to L1(R) and has Fourier transform given by

ĝ(t) =
1

2πi

1

t− z
. (2.21)

Hence,

1

2πi

∫ ∞
−∞

f(t)

t− z
dt =

∫ ∞
−∞

f(t)ĝ(t) dt =

∫ ∞
−∞

f̂(t)g(t) dt = −
∫ 0

−∞
f̂(t)e2πizt dt (2.22)

for all z ∈ C+.

If f̂(t) = 0 for all t ≤ 0, equation (2.22) implies that

1

2πi

∫ ∞
−∞

f(t)

t− z
dt = 0 (2.23)

for all z ∈ C+, hence f ∈ H1(R).

On the other hand, for f ∈ H1(R), it follows from (2.12) and equation (2.22) that

∫ 0

−∞
f̂(t)e2πizt dt = 0 (2.24)

for all z ∈ C+. As f̂ is continuous on R, it follows by the uniqueness theorem for the Fourier

transform (see e.g., [53, Corollary 11.11]) that f̂(t) = 0 for all t ≤ 0.

In fact, for functions f ∈ Hp(R) ⊆ Lp(R), 1 ≤ p ≤ 2, one obtains that f̂(t) = 0 for almost

every t ≤ 0 (see e.g., [53, Theorem 13.6]), which gives an alternative definition for the real Hardy

Spaces, for 1 ≤ p ≤ 2,

Hp(R) = {f ∈ Lp(R) | f̂(t) = 0 for almost every t ≤ 0}. (2.25)
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2.4. Nevanlinna representation

In this section we state Nevanlinna’s Representation for functions that are analytic in the

upper half-plane with non-negative real part there, i.e., belong to the Nevanlinna Class N0(C+).

Definition 2.4.1. If µ is Borel measure on R that satisfies

∫
R

d|µ|(t)
1 + t2

<∞, (2.26)

then its Herglotz integral, Hµ : C+ → C, is defined as

Hµ(z) =
i

π

∫
R

(
1

z − t
+

t

1 + t2

)
dµ(t). (2.27)

Notice that the modified Cauchy kernel in (2.27) satisfies

1

z − t
+

t

1 + t2
= −1 + tz

t− z
1

1 + t2
. (2.28)

Using (2.26), it follows that Hµ is a well-defined function which is analytic in the upper half-plane.

Moreover, if µ is a real Borel measure on R, then since

Re

(
i

π

(
1

z − t
+

t

1 + t2

))
= Re

i

π

1

z − t
=
y

π

1

(t− x)2 + y2
(2.29)

we have that

ReHµ(z) =
y

π

∫ ∞
−∞

dµ(t)

(t− x)2 + y2
= Py ∗ dµ(x) ≥ 0 (2.30)

for all z ∈ C+, where Py(t) = 1
π

y
t2+y2

and ∗ denotes convolution, i.e., f ∗dν(t) =
∫∞
−∞ f(t−x) dν(x).

Definition 2.4.2. We say that an analytic function in the upper half-plane belongs to the Nevan-

linna Class for C+, denoted N0(C+), if its real part is non-negative on C+.

Example 2.4.3.

1. For all b, α ∈ R, α ≤ 0, the functions z 7→ ib+ iαz belong to the Nevanlinna Class.

2. The functions z 7→ z1/2 and z 7→ −i log(z), with appropriately chosen branch cuts, are analytic

and have non-negative real part on C+, hence they belong to the Nevanlinna Class.
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3. If µ is a non-negative Borel measure on R which satisfies

∫
R

dµ(t)

1 + t2
<∞, (2.31)

then by (2.30) it follows that the Herglotz Integral of µ, Hµ, belongs to N0(C+).

It turns out that all functions belonging to the Nevanlinna class are combinations of (1)

and (3) (see e.g., [23, Theorems 3 - 4] and [57, Theorem 5.3]).

Theorem 2.4.4 (Nevanlinna Representation). Every analytic function F on the upper half-plane

C+ such that ReF (z) ≥ 0 for all z ∈ C+ has a representation

F (z) = ib+ iαz +
i

π

∫
R

(
1

z − t
+

t

1 + t2

)
dµ(t) (2.32)

where b, α ∈ R, α ≤ 0, and µ is a nonnegative Borel measure on R which satisfies

∫
R

dµ(t)

1 + t2
<∞. (2.33)

Sketch of proof. Since F is analytic on C+, then by the Cauchy-Riemann equations the functions

ReF and ImF are harmonic on C+. Hence, ReF is both harmonic and non-negative on C+ which

implies it has a Poisson representation in the upper half-plane (see e.g., [57, Theorem 5.2]), i.e.,

ReF (x+ iy) = −αy +
y

π

∫ ∞
−∞

dµ(t)

(t− x)2 + y2
(2.34)

where α ≤ 0 and µ is a nonnegative Borel measure on R such that
∫
R(1 + t2)−1 dµ(t) < ∞. It

follows that the function

G(z) = F (z)− iαz − i

π

∫
R

(
1

z − t
+

t

1 + t2

)
dµ(t) (2.35)

is analytic and satisfies ReG ≡ 0 on the upper half-plane, thus G is some imaginary constant which

proves (2.32).
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Theorem 2.4.5 (Fatou). Let F ∈ N0(C+) with Nevanlinna representation given by (2.32). If

dµ = Gdx+ dσ (2.36)

is the Lebesgue-Radon-Nikodym decomposition of µ where σ is singular with respect to the Lebesgue

measure, then

lim
y→0

Re(F (x+ iy)) = G(x) (2.37)

almost everywhere on R.

Proof. This is Fatou’s Theorem, see for example [57, Theorem 5.5].

2.5. Functions of bounded type

Definition 2.5.1. A function F that is analytic in the upper half-plane C+ is said to be of bounded

type in the upper half-plane if F is the quotient of two bounded and analytic functions on C+, i.e.,

there exist P and Q belonging to H∞(C+) such that F = P/Q. We denote the space of all functions

of bounded type in C+ by N (C+).

Functions of bounded type in the lower half-plane C− = {z ∈ C | Im(z) < 0} are defined

analogously. Naturally, any bounded function is of bounded type. The definition of bounded type

implies that finite sums and products of functions of bounded type are also of bounded type.

Remark 2.5.2. For x > 0, let log+(x) denote the positive part of log(x), i.e.,

log+(x) =


log(x) if x ≥ 1

0 else.

(2.38)

If F is of bounded type and F = P/Q, then we can assume without loss of generality that P is

bounded by 1 and 0 < |Q| ≤ 1. Hence,

log+ |F | ≤ log+ |P |+ log+ |Q−1| = − log |Q|. (2.39)

As − log |Q| is harmonic in C+, we see that any function of bounded type in C+ has a harmonic

majorant on C+. In fact, the converse of this is true as well (cf. [57, Theorem 3.20]). Hence, an
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equivalent definition for an analytic function in the upper half-plane to be of bounded type is that

log+ |F | has a harmonic majorant on C+.

Next we mention two direct observations about functions of bounded type.

Lemma 2.5.3. Let F belong to the Nevanlinna Class N0(C+). Then F is of bounded type in the

upper half-plane.

Proof. Since F has non-negative real part in the upper half-plane, we have that F/(1 + F ) and

1/(1 + F ) are bounded analytic functions in the upper half-plane. Therefore,

F =
F/(1 + F )

1/(1 + F )
(2.40)

is of bounded type in the upper half-plane.

Lemma 2.5.4. Let P be a polynomial. Then P is of bounded type in the upper half-plane.

Proof. Since the product of functions of bounded type is of bounded type, it is sufficient to show

the result for p(z) = z − z0 where z0 ∈ C. Notice that z 7→ (z − z0)/(z + i) and z 7→ 1/(z + i) are

bounded analytic functions in the upper half-plane. Therefore,

z − z0 =
(z − z0)/(z + i)

1/(z + i)
(2.41)

is of bounded type in the upper half-plane.

2.6. Nevanlinna factorization

One of the classical approaches to studying analytic functions is through their zeros and

singularities. For functions of bounded type there is a canonical ‘inner-outer’ factorization (Theorem

2.6.4). Here the ‘inner’ part accounts for the zeros of the function as well as the possible singular

behavior of the function near the real line.

Similar to the Hardy spaces, the boundary function of a function of bounded type exists

almost everywhere on the real line [57, Theorem 5.6].

Definition 2.6.1. A function F ∈ H∞(C+) is called inner for the upper half-plane if

|f(x)| =
∣∣∣∣ lim
y→0+

F (x+ iy)

∣∣∣∣ = 1 (2.42)
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for almost all x ∈ R.

Example 2.6.2.

1. If α ≤ 0, the entire function z 7→ e−iαz is an inner function for the upper half-plane.

2. If z0 ∈ C+, the Blaschke factor

bz0(z) =
z − z0

z − z0
(2.43)

is an inner function for the upper half-plane, since

|bz0(x)| =
∣∣∣∣x− z0

x− z0

∣∣∣∣ =

∣∣∣∣x− x0 − iy0

x− x0 + iy0

∣∣∣∣ = 1 (2.44)

for all real x.

3. Let {zn} be a sequence of complex numbers in the upper half-plane with no accumulation

point in C+ and let A denote the set of all accumulation points on the real line. If

∑
n

Im(zn)

|i+ zn|2
=
∑
n

yn
x2
n + (yn + 1)2

<∞ (2.45)

let

B(z) = lim
N→∞

N∏
n=1

∣∣∣ i−zni−zn

∣∣∣
i−zn
i−zn

z − zn
z − zn

= lim
N→∞

N∏
n=1

|z2
n + 1|
z2
n + 1

z − zn
z − zn

. (2.46)

By (2.45) the partial product on the right side of (2.46) converges uniformly on compact

subsets of C \ {A ∪ {z1, z2, ...}} (see e.g., [53, Theorem 13.13] or [23, Problem 23]) and so

(2.46) defines an analytic function in the upper half-plane and a meromorphic function on C.

As each factor is an inner function, it follows that B is an inner function. We call such an

inner function a Blaschke product.

4. If σ is a positive singular Borel measure on R such that

∫
R

dσ(t)

1 + t2
<∞ (2.47)

let

Sσ(z) = exp

(
− i
π

∫
R

(
1

z − t
+

t

1 + t2

)
dσ(t)

)
= exp (−Hσ(z)) . (2.48)
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By Theorem 2.4.4, Hσ defines an analytic function in the upper half-plane with non-negative

real part there. Hence, Sσ is analytic and bounded by 1 in the upper half-plane. As σ is

singular, Fatou’s Theorem (Theorem 2.4.5) implies that the boundary function of Re(Hσ(z))

is zero almost everywhere on R. It follows that Sσ is an inner function for the upper half-plane

which we call a singular inner function.

Notice that the product of two inner functions is again inner; hence, e−iαzB(z)Sσ(z) is

inner. In fact, every inner function has such a decomposition up to a multiplicative constant of

modulus one (this follows as a consequence of the Nevanlinna Factorization Theorem (Theorem

2.6.4)).

Definition 2.6.3. An analytic function F defined on C+ is called outer if

F (z) = α exp

(
i

π

∫ ∞
−∞

(
1

z − t
+

t

1 + t2

)
logK(t) dt

)
(2.49)

where |α| = 1 and K(t) > 0 a.e. on R such that

∫ ∞
−∞

| logK(t)|
1 + t2

dt <∞. (2.50)

If F is an outer function, then the function K satisfies K(x) = |F (x)| a.e., where F (x) is

the boundary function of F (z).

For functions of bounded type, we state the following canonical factorization theorem due

to Nevanlinna (see e.g., [57, Theorem 6.13] or [23, Theorem 9]).

Theorem 2.6.4 (Nevanlinna’s Factorization). Let F 6≡ 0 be an analytic function of bounded type

in the upper half-plane C+. Then

F (z) = e−ivzB(z)
Sσ+(z)

Sσ−(z)
G(z) (2.51)

for z ∈ C+, where v is a real number, B is a convergent Blaschke product formed with the zeros of

F in the upper half-plane, G is an outer function, and σ± are non-negative singular Borel measures

on the real line satisfying ∫ ∞
−∞

dσ±(t)

1 + t2
<∞. (2.52)
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Moreover, if F has analytic continuation across some open interval I on the real line, then the

restrictions of the measure σ± to I is zero.

Corollary 2.6.5. Let F ∈ H∞(C+) be an inner function that has an analytic continuation across

the real line. Then

F (z) = e−iαz+iqB(z) (2.53)

where α ≤ 0 and q are real numbers and B is a convergent Blaschke product formed with the

zeros of F in the upper half-plane. Moreover, if F is non-constant, then there exists a continuous,

increasing, and real-valued function ϕ such that

F (x) = e2iϕ(x) (2.54)

for all real x.

Proof. The factorization (2.53) is immediate from Theorem 2.6.4. The argument for (2.54) is

essentially that of the proof and following comments of [35, Lemma 13]. As the function ϕ will

be extremely important for the development of de Branges spaces (Chapter 3) as well as extremal

signatures (Chapter 5), we include the proof for completeness.

Since F is inner and analytic on an open set containing the closed half-plane, we have that

|F (x)| = 1 for all real x. It follows that there is an open, simply connected set S that contains the

real line such that F is analytic and does not vanish on S. Hence, there exists an analytic function

ϕ : S → C such that

F (z) = e2iϕ(z) (2.55)

in S. As |F (x)| = 1 on R, it follows that ϕ is real valued on the real line. From the identities (2.53)

and (2.55) we obtain

ϕ′(z) = − i
2

F ′(z)

F (z)
= −α

2
+
∑
n

yn
(z − zn)(z − z̄n)

(2.56)

for every z ∈ S and

ϕ′(x) = −α
2

+
∑
n

yn
(x− xn)2 + y2

n

(2.57)
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for all real x. Since F is non-constant, it follows from (2.55) and (2.57) that either α < 0 or F

vanishes at some point in the upper half-plane; therefore, by (2.57) we conclude that ϕ′(x) > 0 for

all real x.

2.7. Mean type

Definition 2.7.1. Following de Branges, we refer to the real number v in (2.6.4) as the mean type

of F , denoted v(F ).

The mean type of a function which is identically zero is taken to be −∞. In practice, we

can compute the mean type of a given function by either taking an average radial limit or studying

the growth of the function along the imaginary axis.

Theorem 2.7.2 ([23, Theorem 10]). Let F 6≡ 0 belong to N (C+). The mean type of F satisfies

v(F ) = lim
R→∞

2

πR

∫ π

0
log |F (Reiθ)| sin θ dθ (2.58)

and

v(F ) = lim sup
y→∞

log |F (iy)|
y

. (2.59)

Proof. These formulas have direct proofs if F does not have any zeros. In the case that F has zeros

see [57, Theorem 6.15] or [23, Theorem 10].

Remark 2.7.3. Theorem 2.7.2 shows that v(F ) is unique, hence the definition of mean type is

well-defined.

Remark 2.7.4. If follows from the definition of mean type and (2.51) that the mean type of a

Blaschke product is zero.

From this we make the following useful observation.

Corollary 2.7.5. Let F 6≡ 0 and G 6≡ 0 be functions of bounded type in C+. Then

v(FG) = v(F ) + v(G) (2.60)

and

v(F +G) = max{v(F ), v(G)}. (2.61)
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Example 2.7.6.

1. The mean type of any non-zero polynomial is zero. Using Corollary 2.7.5 it is sufficient to

show this for P (z) = z − z0 where z0 ∈ C. In this case we have that

|v(P )| =
∣∣∣∣lim sup
y→∞

log |P (iy)|
y

∣∣∣∣ =

∣∣∣∣lim sup
y→∞

log |iy − z0|
y

∣∣∣∣ ≤ ∣∣∣∣lim sup
y→∞

log(y + |z0|)
y

∣∣∣∣ = 0. (2.62)

2. The mean type of any bounded analytic function in the upper half-plane is non-positive, since

v(F ) = lim sup
y→∞

log |F (iy)|
y

≤ lim sup
y→∞

C

y
= 0. (2.63)

The following lemma shows that a function in the Nevanlinna Class has non-positive mean

type. Recall from Lemma 2.5.3 that functions in the Nevanlinna Class are of bounded type.

Lemma 2.7.7 ([23, Problem 30]). Let F be an analytic function with non-negative real part in the

upper half-plane. Then F has non-positive mean type.

Proof. If F ≡ 0, then ν(F ) = −∞. Assume now that F 6≡ 0. Since F is analytic on C+ and

ReF (z) ≥ 0 for all z ∈ C+, the function G = F 1/2 is an analytic function with non-negative real

part in C+ that satisfies

|G(z)| ≤
√

2ReG(z) (2.64)

for all z ∈ C+. It follows from Theorem 2.4.4 that there exists a non-negative Borel measure on R

which satisfies ∫
R

dµ(t)

1 + t2
dt <∞ (2.65)

and α ≥ 0 such that

ReG(x+ iy) = αy +
y

π

∫ ∞
−∞

dµ(t)

(t− x)2 + y2
dt. (2.66)

Hence, for y ≥ 1, we have

ReG(iy) = αy +
y

π

∫ ∞
−∞

dµ(t)

t2 + y2
dt ≤ αy +

y

π

∫ ∞
−∞

dµ(t)

1 + t2
dt ≤ Cy (2.67)

for some C ≥ 0. The case C = 0 can be excluded because then Re(G(iy)) = 0, then G(iy) = 0 by

(2.64) and F ≡ 0.
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Applying (2.65) and (2.67) we find that

log |F (iy)| = log |G(iy)|2 = 2 log |G(iy)| ≤ 2 log(
√

2ReG(iy)) ≤ 2(log
√

2 + log(Cy)) (2.68)

for y ≥ 1. Dividing through by y and taking limits gives

v(F ) = lim sup
y→∞

log |F (iy)|
y

≤ 0 (2.69)

hence F has non-positive mean type.

In fact, one can obtain that the mean type of any non-zero analytic function with non-

negative real part in the upper half-plane is zero (see e.g., [23, Problem 30]). However, we only

need that such functions have non-positive mean type.

Lemma 2.7.8. Let F be a function of bounded type in the upper half-plane. If there exists a

function G of bounded type and non-negative mean type in the upper half-plane such that such that

GF is bounded in the upper half-plane, then F has non-positive mean type.

Proof. Since GF is bounded in the upper half-plane, it has non-positive mean type. As v(G) ≥ 0,

it follows from Corollary 2.7.5 that

v(F ) ≤ v(G) + v(F ) = v(GF ) ≤ 0. (2.70)

Remark 2.7.9. Recall that any polynomial has zero mean type. Hence, if there exists a polynomial

P such that PF is bounded, then F has non-positive mean type.

An entire function F : C→ C, not identically zero, has exponential type τ = τ(F ) if

τ(F ) = lim sup
|z|→∞

log |F (z)|
|z|

<∞. (2.71)

If F : C→ C is an entire function, we define the entire function F ∗ : C→ C by

F ∗(z) := F (z). (2.72)
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By a classical result of M.G. Krein (see Lemma 2.7.10), an entire function F is of exponential

type if it is of bounded type in the upper and lower half-planes (i.e., F and F ∗ belong to N (C+)).

With this the mean type generalizes the notation of exponential type for functions that may not

be entire. Recall that log+(x) denotes the positive part of log(x) (see Remark 2.5.2).

Lemma 2.7.10 (Krein). Let F : C→ C be an entire function. The following are equivalent:

1. F and F ∗ have bounded type in the upper half-plane.

2. F has exponential type and ∫ ∞
−∞

log+ |F (x)|
1 + x2

dx <∞. (2.73)

Moreover, if either and therefore both of these conditions hold the exponential type of F is the

maximum of the mean types of F and F ∗ in the upper half-plane.

Proof. This is [57, Theorem 6.17] see also [42].

We denote by B the set of entire functions F which satisfy either and therefore both of the

conditions of the previous Lemma1.

We conclude the section on mean type by stating Cauchy’s formula for the upper half-plane

(see e.g., [23, Theorem 12] or [57, Theorem 5.19]).

Theorem 2.7.11 (Cauchy’s Formula). Let F be a function that is analytic and of bounded type in

the upper half-plane with non-positive mean type and continuous extension to the closed half-plane.

If F ∈ Lp(R, dx), for some 1 ≤ p <∞, then

F (z) =
1

2πi

∫ ∞
−∞

F (t)

t− z
dt (2.74)

and

0 =
1

2πi

∫ ∞
−∞

F (t)

t− z
dt (2.75)

for all z ∈ C+.

1This set is also commonly referred to as the Cartwright Class.
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2.8. Connection between Hardy spaces and functions of bounded type

It is the goal of this section to describe the connections between between Hardy Spaces in

the upper half-plane and functions of bounded type.

Lemma 2.8.1. Let 1 ≤ p ≤ ∞. Let F be an analytic function on the upper half-plane C+ with

continuous extension to the closed half-plane C+. The following are equivalent:

1. F ∈ Hp(C+).

2. F has bounded type and non-positive mean type in the upper half-plane and ‖F‖p <∞.

There are many (equivalent) formulations of Lemma 2.8.1 in literature (see e.g, [2, Theo-

rem 2.2], [57, Theorem 5.23], [30, Theorem 5.4]). This particular formulation gives us an easier

characterization of de Branges spaces (see Theorem 3.3.4). We prove the equivalent statements

of Lemma 2.8.1 in the following two lemmas. In particular, Lemma 2.8.2 shows that the class of

functions of bounded type and non-positive mean type in the upper half-plane2 is a natural upper

limit of the Hardy spaces Hp(C+).

Lemma 2.8.2. Let 1 ≤ p ≤ ∞. If F ∈ Hp(C+), then F has bounded type and non-positive mean

type in the upper half-plane and the boundary function f(x) = limy→0 F (x + iy) exists for almost

every real x and satisfies ‖f‖p <∞.

Proof. If p = ∞, then F is bounded on the upper half-plane and hence of bounded type with

non-positive mean type in the upper half-plane and bounded boundary function.

For 1 ≤ p <∞, Theorem 2.3.2 gives there exists a unique f ∈ Hp(R) ⊆ Lp(R) such that

F (z) =
y

π

∫ ∞
−∞

f(t)

(x− t)2 + y2
dt (2.76)

for all C+, and f(x) = limy→0 F (x+ iy) for almost every real x.

Let Re f(t) = u+(t) − u−(t), where u+ and u− are non-negative functions on R. Since

f ∈ Hp(R) ⊆ Lp(R), we have that

∫ ∞
−∞

u±(t)

1 + t2
dt ≤

∫ ∞
−∞

|f(t)|
1 + t2

dt <∞. (2.77)

2A sufficient condition for a function to belong to the so-called Smirnov class, N+(C+), is that it is of bounded
type and non-positive mean type in the upper half-plane (cf. [2, Theorem 2.3]).
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Thus, the Herglotz integrals

U±(z) =
i

π

∫
R

(
1

z − t
+

t

1 + t2

)
u±(t)d t (2.78)

are analytic functions with non-negative real parts in the upper half-plane. By construction, Re(F−

(U+−U−)) ≡ 0 on C+, hence F −(U+−U−) is an imaginary constant, say ib. By replacing U+ with

U+ + ib, we have that F (z) = U+(z)−U−(z) on C+. Since U+ and U− have non-negative real part

in the upper half-plane, Lemmas 2.5.3 and 2.65 imply they are of bounded type with non-positive

mean type. Hence F is of bounded type, and v(F ) = v(U+ − U−) ≤ v(U+) + v(U−) ≤ 0.

For the other direction we have the following. Here we again use the notation Fy(x) =

F (x+ iy).

Lemma 2.8.3. Let 1 ≤ p < ∞. Let F be a function of bounded type and nonpositive mean type

in C+. If there exists f ∈ Lp(R) so that ‖Fy − f‖p → 0 as y → 0+, then F ∈ Hp(C+) (and hence

f ∈ Hp(R)).

Proof. Let τ ≤ 0 be the mean type of F in C+. Let G be the analytic function in C+ defined by

G(z) = eiτzF (z). (2.79)

By construction G has exponential type 0 in C+. For β > 0 the function Gβ(z) = G(z + iβ) is

analytic on {z ∈ C | Im(z) > −β} and has exponential type 0 there. Lemma 2.2.3 gives

∫ ∞
−∞
|Gβ(x+ iy)|pdx ≤

∫ ∞
−∞
|Gβ(x)|pdx <∞ (2.80)

for all y ≥ 0, hence for any β > 0 we have

sup
β<y<∞

∫ ∞
−∞
|G(x+ iy)|pdx <∞. (2.81)
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Let ε > 0 and choose β0 > 0 so that ‖Gβ − f‖p < ε for all 0 < β ≤ β0. It follows that

‖Gβ‖p ≤ ‖f‖p + ε for 0 < β ≤ β0, hence

sup
0<y<β0

∫ ∞
−∞
|G(x+ iy)|pdx ≤ ‖f‖p + ε <∞. (2.82)

This combined with (2.81) implies that G ∈ Hp(C+). Since |e−iτz| = eτy ≤ 1 for y > 0, it follows

that F ∈ Hp(C+).
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3. DE BRANGES SPACES

3.1. Introduction

In the late 1950s Louis de Branges founded a beautiful theory of Hilbert spaces of entire

functions which generalizes the classical Paley-Wiener spaces and Fourier analysis (contained in

the text [23] see also [18, 19, 20, 21, 22]). In recent years, this theory has proven extremely useful

in a variety of (somewhat unrelated) contexts. Noteworthy examples are the following: spectral

theory of canonical systems and Schrödinger operators [27] and [56], reformulations of the Riemann

Hypothesis for Dirichlet-Riemann L-functions [43], as well as sampling and interpolation problems

[52].

It is the goal of this chapter to introduce the theory of these so-called de Branges spaces or

weighted Paley-Wiener spaces and record basic facts about these spaces. In addition, we describe

some generalizations, alternative definitions, and interpolation formulas that will be useful for L1

approximation problems.

3.2. Reproducing kernel Hilbert spaces

Let H be a non-zero Hilbert space of entire functions with the property that for each

complex number w the evaluation functional F 7→ F (w) is bounded on H, i.e., for any w ∈ C there

exists a constant Cw such that

|F (w)| ≤ Cw‖F‖H. (3.1)

By Riesz’s theorem, for each complex number w there exists an entire function z 7→ K(w, z) in H

such that

F (w) = 〈F,K(w, ·)〉H (3.2)

for all F ∈ H where 〈·, ·〉H is the inner product inH. The function K is called the reproducing kernel

for the Hilbert space H. We say a Hilbert Space is a reproducing kernel Hilbert space (RKHS) if

the evaluation functional is bounded. Using (3.2) we have

K(w,w) = 〈K(w, ·),K(w, ·)〉H = ‖K(w, ·)‖2H (3.3)
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for all complex w, and by the Cauchy-Schwarz inequality it follows that

|F (w)|2 ≤ ‖F‖2H‖K(w, ·)‖2H = ‖F‖2HK(w,w) (3.4)

for all complex w and all F in H. Notice that if K(w,w) > 0, then there is equality in (3.4) if and

only if F (z) = γK(w, z) for some complex γ. Moreover, if a sequence of functions {Fn} converges

to F in H, i.e., ‖Fn − F‖H → 0 as n → ∞, then (3.4) implies that Fn → F pointwise on C and

uniformly on any subset of C where the function z 7→ K(z, z) is bounded.

Example 3.2.1.

1. The Hardy Space H2(C+) is a reproducing kernel Hilbert space with reproducing kernel

K(w, z) =
1

2πi

1

w − z
(3.5)

for w, z ∈ C+.

2. The Paley-Wiener space A2(2πδ, dx), entire functions of exponential type 2πδ that are square

integrable on the real line, is a reproducing kernel Hilbert space with reproducing kernel

K(w, z) =
sin(2πδ(w − z))

π(w − z)
(3.6)

for w, z ∈ C.

3.3. De Branges spaces

The classical proof that the Paley-Wiener space is a reproducing kernel space relies on

Fourier Analysis. In the late 1950s Louis de Branges discovered a new approach to this fact using

Cauchy’s Formula for the upper half-plane (Lemma 2.7.11) and basic properties of orthogonal sets.

It is this approach which allowed de Branges to generalize the Paley-Wiener spaces. These weighted

Paley-Wiener spaces or de Branges spaces are also reproducing kernel Hilbert spaces (Theorem

3.3.8) with remarkable generalizations of the SWK Interpolation Theorem and Parseval’s formula

(Theorem 3.5.5). Further information and complete proofs about the results stated in following

sections can be found in [23] as well as [1], [32], and [35].

33



Recall that if F : C→ C is an entire function, we define the entire function F ∗ : C→ C by

F ∗(z) := F (z). (3.7)

We say that an entire function F is real entire if F ∗(z) = F (z) for all z (equivalently, the restriction

of F to the real line is real valued).

Definition 3.3.1. The Hermite-Biehler class, denoted HB, is defined as the set of all entire func-

tions E, satisfying

|E∗(z)| < |E(z)| (3.8)

for all z ∈ C+.

This property implies that a Hermite-Biehler function does not have any zeros in the upper

half-plane. It should be mentioned that the terminology “Hermite-Biehler” is not uniform through-

out literature. In fact, when working with de Branges spaces many authors refer to these functions

as de Branges functions. For a detailed discussion on the class of Hermite-Biehler functions (in-

cluding representation theorems) see Chapter VII of [45].

Example 3.3.2. For all δ > 0, the entire function E(z) = e−iδz is Hermite-Biehler, since

|E∗(z)| = e−δIm(z) < eδIm(z) = |E(z)| (3.9)

for all z ∈ C+.

For a given E, define

A(z) :=
1

2
(E(z) + E∗(z)) and B(z) :=

i

2
(E(z)− E∗(z)) . (3.10)

The functions A and B are real entire functions with only real zeros (from (3.8)) such that

E(z) = A(z)− iB(z). (3.11)
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If one views Hermite-Biehler functions as a generalization of the exponential (see Example 3.3.2),

then the functions A and B are generalizations of sine and cosine. In Lemmas 3.3.11 and 3.5.4 we

will explore additional properties of these functions.

Definition 3.3.3. Given a Hermite-Biehler function E and p ∈ [1,∞], define the Lp de Branges

space associated to E, denoted Hp(E), as the space of all entire functions F : C→ C such that both

ratios F/E and F ∗/E are of bounded type and of non-positive mean type in the upper half-plane

and

‖F‖E,p := ‖F/E‖p =

(∫ ∞
−∞

∣∣∣∣F (t)

E(t)

∣∣∣∣p dt)1/p

<∞ (3.12)

if p is finite, and

‖F‖E,∞ := ‖F/E‖∞ = sup
x∈R
|F (x)/E(x)| <∞ (3.13)

if p =∞.

These spaces are Banach spaces (see [1] as well as [32, Section 3]), and by Lemma 2.8.1 and

Lemma 3.3.7 (below), we have a more elegant description of Hp(E).

Lemma 3.3.4. Let 1 ≤ p ≤ ∞. Let E be a Hermite-Biehler function and F be an entire function.

Then F ∈ Hp(E) if and only if F/E and F ∗/E belong to Hp(C+).

In the case p = 2, H2(E) is a Hilbert space [23, Theorem 21] with inner product given by

〈F,G〉E =

∫ ∞
−∞

F (t)G(t)

|E(t)|2
dt (3.14)

for all F,G ∈ H2(E). We refer to this space as the de Branges space associated to E and write

H(E) = H2(E) and ‖ · ‖E = ‖ · ‖E,2.

The prototypical example of a de Branges space is the Paley-Wiener space A2(2πδ, dx). In

this case Eδ(z) = e−2πiδz. The conditions that F/Eδ and F ∗/Eδ have non-positive mean type imply

that F and F ∗ do not grow faster Eδ, i.e., this condition is essentially equivalent to the statement

that F has exponential type 2πδ. In Theorem 3.6.1, the connection between F/E and F ∗/E

having non-positive mean type and F being of exponential type is made formal for Hermite-Biehler

functions with bounded type.
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A fundamental result of de Branges is the recognition that H(E) is a reproducing kernel

Hilbert space (RKHS), see Theorem 3.3.8 below. The reproducing kernel is given by

KE(w, z) =
E(z)E∗(w)− E∗(z)E(w)

2πi(w − z)
=
B(z)A(w)−A(z)B(w)

π(z − w)
(3.15)

for z 6= w and when z = w we find that

KE(z, z) =
E(z)E′(z)− E∗(z)E′(z)

2πi
=
B′(z)A(z)−A′(z)B(z)

π
. (3.16)

Notice that for every complex w, the function z 7→ KE(w, z) is an entire function.

Remark 3.3.5. For α ∈ R and k > 0, the Hermite-Biehler functions

Eα(z) = eiαE(z) := Aα(z)− iBα(z) (3.17)

and

Ek(z) = kA(z)− i

k
B(z) (3.18)

give the same reproducing kernel as E, hence they generate the same space H(E). In fact, if M is

a real 2× 2 matrix with det(M) = 1 and EM = AM − iBM where

AM
BM

 = M

A
B

 , (3.19)

then

KEM (w, z) =
BM (z)AM (w)−AM (z)BM (w)

π(z − w)
=
B(z)A(w)−A(z)B(w)

π(z − w)
= KE(w, z). (3.20)

hence H(EM ) = H(E) isomorphically. Thus, there is an SL(2,R)-structure on the Hermite-Biehler

functions that generate a given de Branges space. Furthermore, if E and Ẽ are Hermite-Biehler

functions such that H(E) = H(Ẽ) isomorpically, then Ẽ = EM for some real 2 × 2 matrix with

determinant 1 (see [20, Theorem 1]).
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The following lemmas will be used to show that that H(E) is a RKHS. The first shows that

the kernel belongs to Hp(E) for all 1 < p ≤ ∞. The second gives that for any function F ∈ Hp(E),

1 < p ≤ ∞, the quotients F/E and F/E∗ do not have singularities on the real axis, hence they

have continuous extensions to the closed half-plane C+ (which allows us to apply Cauchy’s Formula

(Theorem 2.7.11)). We follow the notation and proofs of de Branges [23] making the appropriate

changes for p when needed.

Lemma 3.3.6. Let w ∈ C. Then z 7→ K(w, z)/E(z) has bounded type and non-positive mean type

in C+ and

‖K(w, ·)‖pE,p =

∫ ∞
−∞

∣∣∣∣K(w, t)

E(t)

∣∣∣∣p dt <∞ (3.21)

for all 1 < p <∞ and

‖K(w, ·)‖E,∞ = sup
t∈R
|K(w, t)/E(t)| <∞. (3.22)

Proof. Since E is Hermite-Biehler, it does not have any zeros in the upper half-plane. By (3.15)

we have that

2πi(w − z)K(w, z)

E(z)
= E(w)− E∗(z)

E(z)
E(w). (3.23)

As |E∗(z)E(z)−1| < 1 on C+ it follows that the right hand side of (3.23) is bounded in the half-

plane, hence of bounded type. As 2πi(w − z) is of bounded type in the upper half-plane with zero

mean type, it follows by Lemma 2.7.8 that the quotient z 7→ K(w, z)/E(z) is also of bounded type

with non-positive mean type in C+.

Notice that the right hand side of (3.23) has a zero at w. Hence, for every complex number

w the quotient

K(w, t)

E(t)
=
E(t)E(w)− E(t)E(w)

2πi(w − t)E(t)
(3.24)

defines a continuous and bounded function of t on the real line (where the left side is defined by

continuity at the point t = w if w is real). This proves the case p =∞.
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Using (3.24) it follows that

∫ ∞
−∞

∣∣∣∣K(w, t)

E(t)

∣∣∣∣p dt =

∫
|w−t|≤1

∣∣∣∣K(w, t)

E(t)

∣∣∣∣p dt+

∫
|w−t|>1

∣∣∣∣K(w, t)

E(t)

∣∣∣∣p dt
≤ C +

∫
|w−t|>1

∣∣∣∣∣E(t)E(w)− E(t)E(w)

2πi(w − t)E(t)

∣∣∣∣∣
p

dt

≤ C +
|E(w)|p + |E(w)|p

(2π)p

∫
|w−t|>1

∣∣∣∣ 1

w − t

∣∣∣∣p dt
<∞

(3.25)

for all 1 < p <∞, which proves the theorem.

Lemma 3.3.7. Let 1 ≤ p ≤ ∞. Let E be a Hermite-Biehler function. If E has a zero of order

r > 0 at a real point x0, then any F ∈ Hp(E) must have a zero of order at least r at x0.

Proof. Let p ∈ [1,∞). Assume that F does not have a zero of order at least r at x0, then

F (z) = F0(z)(z − x0)m (3.26)

for some 0 ≤ m < r and entire F0 such that F0(x0) 6= 0. Similarly, since E has a zero of order r

at x0, it follows that E(z) = E0(z)(z − x0)r where E0 is entire and E0(x0) 6= 0. Since F0 and E0

are entire and non-zero at x0, it follows by continuity that there exists ε > 0 and δ > 0 such that

|E0/F0| ≥ ε on (x0 − δ, x0 + δ). Since r > m it follows that

∫ ∞
−∞

∣∣∣∣F (t)

E(t)

∣∣∣∣p dt =

∫ ∞
−∞

∣∣∣∣F0(t)

E0(t)

∣∣∣∣p 1

|t− x0|p(r−m)
dt ≥ εp

∫ x0+δ

x0−δ

1

|t− x0|p(r−m)
dt =∞. (3.27)

This contradicts the assumption that F ∈ Hp(E), thus F must have a zero of order at least r at

x0. The case when p =∞ is immediate.

Theorem 3.3.8. Let E be a Hermite-Biehler function. For every complex number w and any

p ∈ [1,∞), z 7→ K(w, z) belongs to Hp′(E), where 1/p+ 1/p′ = 1, and

F (w) = 〈F (t),K(w, t)〉E =

∫ ∞
−∞

F (t)K(w, t)|E(t)|−2 dt (3.28)

for every F in Hp(E).

38



Proof. Let F belong to Hp(E). Since F/E and F ∗/E have non-positive mean type and belong

to Lp(R, dx), Lemma 3.3.7 implies they have continuous extensions to the closed half-plane. By

Cauchy’s formula (Theorem 2.7.11), applied to F/E, it follows that

F (w)/E(w) =
1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.29)

for z ∈ C+, and

0 =
1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.30)

for all w ∈ C−. Similarly, applying Cauchy’s formula to F ∗/E gives

F ∗(w)/E(w) =
1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.31)

for w ∈ C+, and

0 =
1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.32)

for all w ∈ C−. Taking conjugates in (3.31) and (3.32) leads to

F (w)/E∗(w) = − 1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.33)

for z ∈ C−, and

0 =
1

2πi

∫ ∞
−∞

F (t)/E(t)

t− w
dt (3.34)

for all w ∈ C+.
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Formulas (3.29), (3.30), (3.33), and (3.34) imply that for all non-real w,

F (w) =
1

2πi

∫ ∞
−∞

F (t)
E∗(t)E(w)− E(t)E∗(w)

t− w
dt

|E(t)|2
dt

=

∫ ∞
−∞

F (t)K(t, w) dt

=

∫ ∞
−∞

F (t)K(w, t) dt

= 〈F,K(w, ·)〉E .

(3.35)

If w is real, choose a sequence {wn} of nonreal numbers such that w = limnwn and apply a standard

limiting argument (see [23, Theorem 19]) to obtain (3.28).

Remark 3.3.9. By the Cauchy-Schwarz inequality, for F ∈ Hp(E), 1 ≤ p <∞, we have that

|F (w)| ≤ ‖F‖E,p‖K(w, ·)‖E,p′ (3.36)

for all complex w.

The following statements record some additional properties of the kernel K as well as the

functions A and B.

Lemma 3.3.10. Let w ∈ C. If Im(w) 6= 0 then K(w,w) > 0 and if w is real then 0 < K(w,w) if

and only if E(w) 6= 0.

Proof. This proof is essentially that of [35, Lemma 11], and we include it here for completeness.

If w = x+ iy with y 6= 0 then (3.15) implies

4πyK(w,w) = |E(x+ iy)|2 − |E∗(x+ iy)|2. (3.37)

Since E is Hermite-Biehler, it follows that K(w,w) > 0. Assume now that w is real. If E(w) = 0,

then by (3.16) we have

K(w,w) =
E(w)E′(w)− E(w)E′(w)

2πi
= 0. (3.38)
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On the other hand, if K(w,w) = 0, then

0 = K(w,w) = 〈K(w, ·),K(w, ·)〉H(E) = ‖K(w, ·)‖2H(E). (3.39)

Thus, z 7→ K(w, z) is identically zero, and by (3.15), we have

0 = E(z)

(
E(w)− E∗(z)

E(z)
E(w)

)
(3.40)

for all z ∈ C+.

If E(w) 6= 0, then since E is non-zero on C+ we have

E(w)

E(w)
=
E∗(z)

E(z)
(3.41)

for all z ∈ C+. It follows that |E∗(z)| = |E(z)| for all z ∈ C+ which contradicts the fact that E is

Hermite-Biehler. Thus, E(w) = 0.

Lemma 3.3.11. Let E be a Hermite-Biehler function with no real zeros. The following conditions

are equivalent:

1. E(−z) = E∗(z) for all z.

2. The function z 7→ E(iz) is real entire.

3. A is even and B is odd with a simple zero at the origin.

Proof. To prove that (1) and (2) are equivalent note that (1) implies that

E(iz) = E(−iz) = E∗(−iz) = E(iz) (3.42)

for all complex z, hence z 7→ E(iz) is real entire. Notice (3.42) holds if we assume z 7→ E(iz) is

real entire, and letting w = −iz in (3.42) gives (1).

To show that (1) implies (3), notice that E(−z) = E∗(z) gives A = 2−1(E + E∗) is even

and B = i2−1(E − E∗) is odd with B(0) = 0. If the zero at 0 is not simple, then (3.16) gives

K(0, 0) = 0 which implies that E(0) = 0 (by Lemma 3.3.10), a contradiction.
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For the other direction, we show that (3) implies (2). Recall that A and B are real entire

functions, i.e., A∗ = A and B∗ = B, hence

E(iz) = A∗(−iz) + iB∗(−iz) = A(−iz) + iB(−iz) = A(iz)− iB(iz) = E(iz) (3.43)

for all complex z and (2) follows.

Remark 3.3.12. Under the assumptions of the previous lemma we see that if x is real then

A(ix) ∈ R and B(ix) ∈ iR, hence (A(ix))2 > 0 and (B(ix))2 < 0 for all x ∈ R. Moreover, since E

is Hermite-Biehler, it follows that iB(ix) = −2−1(E(ix)− E(−ix)) < 0 for x > 0.

3.4. Axiomatic de Branges spaces

One can easily deduce that a given de Branges space H(E) satisfies the following properties:

H1. If F ∈ H(E) and w is a non-real zero of F , then the function z 7→ F (z) z−wz−w belongs to H(E)

and has the same norm as F .

H2. For every nonreal number w ∈ C, the evaluation functional F 7→ F (w) is continuous.

H3. If F ∈ H(E), then F ∗ ∈ H(E) and has the same norm as F .

One of the classical theorems of de Branges [23, Theorem 23] states that if H is a nontrivial Hilbert

space of entire functions that satisfies H1−H3 (so-called axiomatic de Branges space), then there

exists a Hermite-Biehler function E such that H is equal isometrically to H(E). In fact, by (H2)

an axiomatic de Branges spaces is a RKHS, and a Hermite-Biehler function for which H = H(E)

holds is

E(z) =
i
√
π(w − z)K(w, z)

(Im(w)K(w,w))1/2
(3.44)

where w is any point in the upper half-plane (see e.g., [8, Proposition 20]). Notice that the Hermite-

Biehler function is not uniquely determined (which we have already seen in Remark 3.3.5).

3.5. Orthonormal sets in H(E)

Lemma 3.5.1. Let E be a Hermite-Biehler function. Then there exists a continuous, increasing,

and real-valued function ϕ such that

E∗(x)

E(x)
= e2iϕ(x) (3.45)
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for x ∈ R.

Proof. Since |E∗(z)| < |E(z)| for all z ∈ C+, it follows that D(z) = E∗(z)
E(z) defines an analytic

function on C+ with analytic continuation to the closed half-plane that satisfies |D(z)| < 1 on C+

and |D(x)| = 1 on R. Hence, D is a non-constant inner function and (3.45) follows from Lemma

2.6.5.

Definition 3.5.2. If E is a Hermite-Biehler function, then any function ϕ that satisfies Lemma

3.5.1 is referred to as a phase function associated to E.

The phase function associated to E is uniquely defined up to an additive constant πk where

k is any integer. In particular, by Lemma 2.6.5, if ϕ is any such function, then

ϕ′(x) = −α
2

+
∑
k

yk
(x− xk)2 + y2

k

(3.46)

for all x ∈ R, where {zn} are the zeros of E and α = ν(E∗/E) ≤ 0. Moreover, equations (3.45) and

(3.16) give

ϕ′(x) = πK(x, x)|E(x)|−2 (3.47)

for all real x.

Example 3.5.3.

1. The Hermite-Biehler function z 7→ e−iτz has phase ϕ(x) = τx.

2. The Hermite-Biehler function z 7→ ze−iτz also has phase ϕ(x) = τx.

3. The Hermite-Biehler function z 7→ e−iτz(z + i) has phase τ(x) = τx+ arctan(x).

Using the phase function, we can record useful properties of the functions A and B.

Lemma 3.5.4. Let E = A− iB be a Hermite-Biehler function with no real zeros. Then the zeros

of A and B are simple and interlace.

Proof. Recall that A = 2−1(E + E∗) and B = i2−1(E − E∗). Using (3.45) it follows that

A(x) = eiϕ(x)E(x) cos(ϕ(x))

B(x) = eiϕ(x)E(x) sin(ϕ(x)).

(3.48)
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Since E does not have any real zeros and ϕ is continuous, real-valued, and increasing on the real-line,

the result follows.

Let α be a real number, and define

Tα := {t ∈ R | ϕ(t) ≡ αmodπ}. (3.49)

We denote by TF the set of zeros of F . For a Hermite-Biehler E with no real zeros, it follows

from (3.48) that T0 = TB and Tπ/2 = TA. For a general Hermite-Biehler E and α ∈ R, we have

Tα = TE−1Bα for all α, where Bα = eiαE − e−iαE∗.

Orthogonal sets in a de Branges space can also be constructed via phase functions, which

yield the remarkable generalization of Parseval’s formula (Theorem 3.5.5) for norms in the space

(see [23, Theorem 22]).

Notice that if a, b ∈ Tα with a 6= b, then by Theorem 3.3.8 and (3.45) we obtain

〈K(a, ·),K(b, ·)〉E = K(a, b)

=
E(b)E∗(a)− E∗(b)E(a)

2πi(a− b)

=
E(b)E∗(a)(1− e2i(ϕ(b)−ϕ(a)))

2πi(a− b)

= 0.

(3.50)

Next, define XE = {x ∈ R | E(x) 6= 0}. If ξ ∈ XE , then by Lemma 3.3.10 we have ‖K(ξ, ·)‖E 6= 0.

Hence, the function

z 7→ K(ξ, z)

‖K(ξ, ·)‖E
(3.51)

belongs to H(E) and has norm 1.

Theorem 3.5.5 ([23, Theorem 22]). Let E be a Hermite-Biehler function with ϕ an associated

phase function. Let α ∈ R be a real number such that Tα ∩XE is not empty. Then the collection

of entire functions

Kα :=

{
z 7→ K(ξ, z)

‖K(ξ, ·)‖E
| ξ ∈ Tα ∩XE

}
(3.52)

forms an orthonormal set in H(E).
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Moreover, if Bα = eiαE − e−iαE∗ 6∈ H(E), then Kα is an orthonomal basis for H(E), and

for all F ∈ H(E) the identity

‖F‖2E =

∫ ∞
−∞
|F (t)|2 dt

|E(t)|2
=
∑
ξ∈Tα

∣∣∣∣F (ξ)

E(ξ)

∣∣∣∣2 π

ϕ′(ξ)
=
∑
ξ∈Tα

|F (ξ)|2

K(ξ, ξ)
(3.53)

holds.

Remark 3.5.6. There is at most one α ∈ [0, π) such that Bα = eiαE − e−iαE∗ ∈ H(E) (see [23,

Problem 46]) for if Bα and Bβ belong to H(E) with α 6≡ βmodπ, then

E =
1

e2iα − e2iβ
(eiαBα − eiβBβ) ∈ H(E), (3.54)

a contradiction.

The previous theorem implies an interpolation formula in de Branges spaces. Namely, any

function F ∈ H(E) can be recovered from its samples {F (ξ)}ξ∈Tα . To see this, expand F ∈ H(E)

with respect to the orthogonal basis Kα to obtain

F (z) =
∑
ξ∈Tα

〈
F,

K(ξ, ·)
‖K(ξ, ·)‖E

〉
E

K(ξ, z)

‖K(ξ, ·)‖E
=
∑
ξ∈Tα

F (ξ)
K(ξ, z)

K(ξ, ξ)
(3.55)

in H(E). By (3.53) along with the fact that H(E) is a reproducing kernel Hilbert space (see Section

3.2) it follows that the convergence is also uniform and absolute on compact subsets of C (see [23,

Problem 47 and Theorem 22]).

3.6. Hermite-Biehler functions with bounded type

In the case that the Hermite-Biehler function is of bounded type in the upper half-plane

(which is the case for most of the de Branges spaces used in applications) there is an easier char-

acterization of functions in the Lp de Branges spaces (Theorem 3.6.1). The statement for p = 2 is

due to Holt and Vaaler [35, Lemma 12], and a similar result is given by H. Dym in [27, Lemma

3.5]. Recall that an entire function F is said to belong to B if F is of exponential type and

∫ ∞
−∞

log+ |F (x)|
1 + x2

dx <∞. (3.56)
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By Krein’s theorem (Theorem 2.7.10) this is equivalent to F and F ∗ being of bounded type in the

upper half-plane. Moreover, the exponential type of F is then the max of the mean types of F and

F ∗.

Theorem 3.6.1. Let E be a Hermite-Biehler function of bounded type in the upper half-plane and

F be an entire function. For 1 ≤ p <∞, the following conditions are equivalent:

1. F belongs to Hp(E).

2. F belongs to B, max{v(F ), v(F ∗)} ≤ v(E), and F/E ∈ Lp(R, dx),

3. F has exponential type, τ(F ) ≤ τ(E), and F/E ∈ Lp(R, dx).

Definition 3.6.2. For 1 ≤ p ≤ ∞, δ > 0, and µ a Borel measure on R, we define the weighted Lp

Paley-Wiener space, denoted Ap(δ, µ), as the space of all entire functions F of exponential type δ

that belong to Lp(R, µ).

Remark 3.6.3. Under the assumptions of the previous lemma, we see that

Hp(E) = Ap(τ(E), |E(x)|−p dx). (3.57)

In particular, H(E) = H2(E) = A2(τ(E), |E(x)|−2 dx) and H1(E2) = A1(2τ(E), |E(x)|−2 dx).

For the proof of Theorem 3.6.1 we will make use of the following Lemmas. The first records

many useful properties of Hermite-Biehler functions that are also of bounded type. The second

states well known facts about z 7→ log+ |z| and the last is Jensen’s Inequality (see e.g., [23, Problem

32]).

Lemma 3.6.4. Let E be a Hermite-Biehler function of bounded type in the upper half-plane. Then

1. E−1 is of bounded type with v(E) = −v(E−1).

2. E∗ is of bounded type and v(E∗) ≤ v(E).

3. E ∈ B and τ(E) = v(E).

4. The mean type of E is non-negative.
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Proof. Since E does not have any zeros in the upper half-plane, z 7→ E−1(z) defines an analytic

function on the upper half-plane. As E is of bounded type, it follows that E−1 is also of bounded

type, and by (2.59) we have that

v(E−1) = lim
y→∞

log |E−1(iy)|
y

= − lim
y→∞

log |E(iy)|
y

= −v(E). (3.58)

Since E is Hermite-Biehler, it follows that E∗/E is bounded by 1 in the upper half-plane, hence of

bounded type in the upper half-plane, and v(E∗/E) ≤ 0. Thus, E∗ has bounded type in the upper

half-plane and

v(E∗) = v(E∗E−1E) = v(E∗/E) + v(E) ≤ v(E). (3.59)

Krein’s Theorem (Theorem 2.7.10) then implies that E ∈ B and E is of exponential type with

v(E) = max{v(E), v(E∗)} = τ(E) ≥ 0.

Lemma 3.6.5. Let 1 ≤ p <∞. Then the inequalities

log+ |a| ≤ p−1 log(1 + |a|p) (3.60)

and

log+ |ab| ≤ log+ |a|+ log+ |b| (3.61)

hold for all complex numbers a and b.

Proof. For |a| ≤ 1, (3.60) is immediate. For |a| > 1, we have that

p−1 log(1 + |a|p)− log+ |a| = p−1 log(1 + |a|p)− log |a| = p−1 log(1 + |a|−p) ≥ 0 (3.62)

and (3.60) follows. Inequality (3.61) follows directly from properties of the logarithm.

Lemma 3.6.6 (Jensen’s Inequality). If f is a Borel measurable function, then

y

π

∫ ∞
−∞

log |f(t)|
(t− x)2 + y2

≤ log

(
y

π

∫ ∞
−∞

|f(t)|
(t− x)2 + y2

dt

)
(3.63)
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holds for all real x and y > 0.

We turn to the proof of Theorem 3.6.1.

Proof of Theorem 3.6.1. The proof follows that of Holt and Vaaler [35, Lemma 12] making the

appropriate changes for p when needed.

Suppose that F belongs to Hp(E). Then F/E ∈ Lp(R, dx), F/E and F ∗/E have bounded

type in C+, and max{v(F/E), v(F ∗/E)} ≤ 0. Since E has bounded type in C+, it follows that F

and F ∗ have bounded type in C+,

v(F ) = v(FE−1E) = v(F/E) + v(E) ≤ v(E), (3.64)

and

v(F ∗) = v(F ∗E−1E) = v(F ∗/E) + v(E) ≤ v(E). (3.65)

Hence,

max{v(F ), v(F ∗)} ≤ max{v(F/E), v(F ∗/E)}+ v(E) ≤ v(E) (3.66)

which shows that condition (2) holds.

By Krein’s Theorem (Theorem 2.7.10) we have that (2) implies (3).

Suppose that F satisfies condition (3). Applying inequality (3.60), Jensen’s inequality, and

that F/E ∈ Lp(R, dx) gives

∫ ∞
−∞

(1 + x2)−1 log+ |F (x)E(x)−1| dx

≤ p−1

∫ ∞
−∞

(1 + x2)−1 log
(
1 + |F (x)E(x)−1|p

)
dx

≤ πp−1 log

(
π−1

∫ ∞
−∞

(1 + x2)−1
(
1 + |F (x)E(x)−1|p

)
dx

)
= πp−1 log

(
1 + π−1

∫ ∞
−∞

(1 + x2)−1|F (x)E(x)−1|p dx
)

≤ πp−1 log

(
1 + π−1

∫ ∞
−∞
|F (x)E(x)−1|p dx

)
<∞.

(3.67)
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Using inequality (3.61), the above inequality, and that E ∈ B we obtain

∫ ∞
−∞

(1 + x2)−1 log+ |F (x)| dx

≤
∫ ∞
−∞

(1 + x2)−1 log+ |F (x)E(x)−1| dx+

∫ ∞
−∞

(1 + x2)−1 log+ |E(x)| dx

<∞.

(3.68)

Hence F belongs to B which gives F and F ∗ are of bounded type. Moreover, since E−1 is of

bounded type (Lemma 3.6.4), it follows that F/E and F ∗/E are of bounded type and by Krein’s

Theorem we find that

max{v(F/E), v(F ∗/E)} ≤ max{v(F ), v(F ∗)} − v(E) = τ(F )− τ(E) ≤ 0, (3.69)

hence F belongs to Hp(E).

3.7. UU∗ decomposition

We conclude the discussion of Lp de Branges spaces by mentioning a key lemma that allows

us to connect the L1 and L2 theories. The following lemma gives that any function in H1(E2) that

is non-negative on R can be written as a square of a function belonging to H2(E). The proof of

Lemma 3.7.1 is that of [13, Lemma 14] (which is essentially contained in the proof of [35, Theorem

15]).

Lemma 3.7.1 ( [13, Lemma 14]). Let E be a Hermite-Biehler function of bounded type in C+

with exponential type τ(E). Let F : C→ C be a real entire function of exponential type 2τ(E) that

satisfies

F (x) ≥ 0 (3.70)

for all x ∈ R and ∫ ∞
−∞

F (x)

|E(x)|2
dx <∞. (3.71)

Then there exists U ∈ H(E) such that

F (z) = U(z)U∗(z). (3.72)
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Proof. By Theorem 3.6.1 we have that F ∈ H1(E2) and F is of bounded type with v(F ) ≤ v(E2) =

2v(E). Since F has bounded type in C+, if z1, z2, ..., zn, ... are the zeros of F in C+ listed with

appropriate multiplicity then

∑
n

Im(zn)

|i+ zn|2
=
∑
n

yn
x2
n + (yn + 1)2

<∞ (3.73)

where zn = xn + iyn and yn > 0. Let

D(z) = lim
N→∞

N∏
n=1

∣∣∣ i−zni−zn

∣∣∣
i−zn
i−zn

z − zn
z − zn

= lim
N→∞

N∏
n=1

|z2
n + 1|
z2
n + 1

z − zn
z − zn

(3.74)

be the corresponding Blaschke product. Since F is real entire and non-negative on the real line,

the function D−1F is an entire function with all of its zeros having even multiplicity and no zeros

in C+ (note that since F is real entire (i.e., F = F ∗), the zeros of F in the lower half-plane are

precisely {zn}, and since F is non-negative on R, any zero of F on R must have even multiplicity).

Hence there exists an entire function U such that

D−1F = U2. (3.75)

Since DD∗ = 1 and F is real entire (F = F ∗), we have FD = (U∗)2. This with (3.75) shows that

F 2 = (UU∗)2. Since F is non-negative on the real line, we conclude that

F (z) = U(z)U∗(z). (3.76)

It remains to show that U ∈ H(E). Using (3.75) and Lemma 2.6.4, we find that U has

bounded type in C+. By (3.75) and (3.76) we have U∗ = DU . Since D is of bounded type and

has zero mean type (follows from the fact that D is a Blaschke product, see Remark 2.7.4), the

function U∗ is then of bounded type and v(U∗) = v(U). By Krein’s Theorem (Theorem 2.7.10), it

follows that U ∈ B. Using (3.76) we find that

2 max{v(U), v(U∗)} = 2v(U) = v(F ) ≤ v(E2) = 2v(E). (3.77)
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Since F ∈ H1(E2), we have

∫ ∞
−∞

|U(x)|2

|E(x)|2
dx =

∫ ∞
−∞

F (x)

|E(x)|2
dx <∞, (3.78)

and it follows using Theorem 3.6.1 that U belongs to H2(E) = H(E).

3.8. Interpolation formulas for H∞(E)

We end the Chapter on de Branges spaces by proving an analogue of the interpolation

formulas for functions of exponential type that are bounded on the real line (Theorem 2.2.8).

Theorem 3.8.1. Let E = A − iB be a Hermite-Biehler function with no real zeros such that

B 6∈ H(E). If F ∈ H∞(E), then for all tm ∈ TB

F (z) = B(z)


∑
tn∈TB
tn 6=tm

F (tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
+

F (tm)

B′(tm)(z − tm)
+ CF,E,m

 , (3.79)

where

CF,E,m =
F ′(tm)A(tm)− F (tm)A′(tm) + 2A′(tm)

A(tm)B′(tm)
+

B′′(tm)

2B′(tm)2
(3.80)

and the the expression on the right-hand side of (3.79) converges uniformly on compact subsets of

C.

Remark 3.8.2. In the case that E has no real zeros and E∗(z) = E(−z) we have that A is even

and B is odd with a simple zero at the origin (see Lemma 3.3.11), hence A′(0) = 0 and B′′(0) = 0.

In this case, applying the above result with the zero tm = 0 simplifies the above constant CF,E,0 to

CF,E,0 =
F ′(0)

B′(0)
. (3.81)

Remark 3.8.3. Applying Theorem 3.8.1 with E(z) = e−iπz = cos(πz)− i sin(πz) and tm = 0 gives

Corollary 2.2.8.

In the proof of Theorem 3.8.1 we will make use of the following lemma found in [32] which

follows from the Stieltjes inversion formula [23, Theorem 3] and Theorem 3.5.5 [23, Theorem 22].
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Lemma 3.8.4 ([32, Lemma 3]). Let E be a Hermite-Biehler function with no real zeros. If B 6∈

H(E), then for all tm ∈ TB ∑
tn∈TB
tn 6=tm

|A(tn)|
|B′(tn)|(1 + t2n)

<∞ (3.82)

and

∑
tn∈TB
tn 6=tm

A(tn)

B′(tn)

(
1

z − tm
+

1

tn − tm

)
=
A(z)

B(z)
− A′(tm)

B′(tm)
+
A(tm)B′′(tm)

2B′(tm)2
+

A(tm)

B′(tm)(z − tm)
(3.83)

where the series converges uniformly on compact sets of C that do not contain points from TB.

We turn to the proof of Theorem 3.8.1.

Proof of Theorem 3.8.1. Let F ∈ H∞(E) and tm ∈ TB. By Lemma 3.5.4, we have that the zeros

of A and B are simple and interlace, hence A(tm) 6= 0.

Define the entire function

Rm(z) =


F (z)A(tm)−F (tm)A(z)

z−tm if z 6= 0

F ′(tm)A(tm)− F (tm)A′(tm) if z = 0.

(3.84)

Since F/E and F ∗/E are of bounded type with non-positive mean type and A/E and A∗/E are

bounded in the upper half-plane, we have that Rm/E and R∗m/E are of bounded type with non-

positive mean type in the upper half-plane. Moreover, since Rm is continuous on R and F/E and

A/E are bounded on R it follows that ‖Rm‖E,2 <∞ (similar to the proof of Lemma 3.3.6), hence

Rm ∈ H2(E).

Applying (3.55) to Rm we obtain

F (z)A(tm)− F (tm)A(z) (3.85)

= B(z)


F ′(tm)A(tm)− F (tm)A′(tm)

B′(tm)
+
∑
tn∈TB
tn 6=tm

F (tn)A(tm)− F (tm)A(tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
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for every z ∈ C. This leads to the following representation

F (z) =
F (tm)

A(tm)
A(z) +B(z)

F
′(tm)− F (tm)

A(tm)A
′(tm)

B′(tm)
(3.86)

+
∑
tn∈TB
tn 6=tm

F (tn)− F (tm)
A(tm)A(tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

) .

Applying Lemma 3.8.4 gives

F (z) = B(z)


∑
tn∈TB
tn 6=tm

F (tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
+

1

z − tm
F (tm)

B′(tm)
(3.87)

+
F ′(tm)− F (tm)

A(tm)A
′(tm)

B′(tm)
− F (tm)

A(tm)

(
1

2B′(tm)2

(
A(tm)B′′(tm)− 2A′(tm)B′(tm)

))
= B(z)


∑
tn∈TB
tn 6=tm

F (tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
+

F (tm)

B′(tm)(z − tm)
+ CF,E,m


for every z ∈ C.

As E(tn) = 2−1A(tn) for all tn such that B(tn) = 0, we have

∑
tn∈TB
tn 6=tm

F (tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
=

1

2

∑
tn∈TB
tn 6=tm

F (tn)

E(tn)

A(tn)

B′(tn)

(
1

z − tn
+

1

tn − tm

)
. (3.88)

Since F/E is bounded on the real line, it follows from Lemma 3.8.4 that the series in (3.88) converses

uniformly on compact sets of C \ TB, and the result follows.

In later sections we will make use of the interpolation formula (Theorem 3.8.1) to prove

uniqueness of best approximations. The following lemma shows that if the phase does not grow too

quickly then H1(E2) is contained in H∞(E2). The proof of Lemma 3.8.5 is that of [32, Lemma 9].

Lemma 3.8.5 ([32, Lemma 9]). Let E be a Hermite-Biehler function such that ϕ′(x) is bounded.

Then H1(E) ⊂ H∞(E).
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Proof. Recall that ϕ′(x) = πK(x, x)|E(x)|−2 for all real x (see (3.47)). Hence, there exists a C > 0

such that K(x, x)|E(x)|−2 ≤ C for all real x. Since

‖K(w, ·)‖2E,∞ = sup
x∈R

∣∣∣∣K(w, x)

E(x)

∣∣∣∣2 (3.89)

and K(w, x)2 ≤ K(w,w)K(x, x), it follows that

‖K(w, ·)‖2E,∞ ≤ CK(w,w) ≤ C2|E(w)|2 (3.90)

for all real w.

Let F ∈ H1(E). By Cauchy-Schwartz (see (3.36)) we have that

|F (w)/E(w)| ≤ ‖F‖E,1‖K(w, ·)‖E,∞/|E(w)| ≤ C‖F‖E,1 <∞ (3.91)

for all real w, hence F ∈ H∞(E).

Remark 3.8.6. It should be mentioned that ϕ′(x) is not always bounded.

The entire function

E(z) =
∏

n∈Z\{0}

(
1 +

z

n+ i/|n|

)
(3.92)

is Hermite-Biehler. Using (3.46) we have that

ϕ′(x) =
∑

n∈Z\{0}

1/|n|
(x− n)2 + n−2

(3.93)

which is not bounded on R.

54



4. INTERPOLATIONS AT ZEROS OF

LAGUERRE-PÓLYA-FUNCTIONS

4.1. Introduction

Let Mb(R+) be the collection of all signed Borel measures on [0,∞) with distribution

function V (x) := ν([0, x]) satisfying the following inequality

0 ≤ V (x) ≤ C (4.1)

for some constant C and all x ≥ 0, and M+
b (R+) is its sub-collection of non-negative measures.

For ν ∈Mb(R+) we define L{ν}, the Laplace transform of ν, by

L{ν}(z) =

∫
[0,∞)

e−λz dν(λ). (4.2)

Notice that an integration by parts in (4.2) along with (4.1) gives that L{ν} is a well-defined

function that is analytic in the half-plane Re(z) > 0.

We further define f+
ν : C→ C, the truncated Laplace transform of ν, by

f+
ν (z) =


∫

[0,∞) e
−λz dν(λ) if Re(z) > 0;

0 if Re(z) ≤ 0,

(4.3)

and its odd extension

f̃ν(z) := f+
ν (z)− f+

ν (−z). (4.4)

Since L{ν} is analytic in the right half-plane, it follows that f+
ν and f̃ν are analytic on both

Re(z) < 0 and Re(z) > 0.

In this chapter, we show how to construct entire functions K that interpolate f+
ν at the

elements of a given discrete subset T ⊂ R so that K − f+
ν has no sign changes between consecutive

elements of T . These interpolations will be the basis for the construction of extremal functions in

Sections 5.4, 6.2, and 6.6. Under relatively mild assumptions, the set T forms the zero set of a
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so-called Laguerre-Pólya function (i.e., uniform limits of polynomials with only real zeros). These

Laguerre-Pólya functions belong to the Pólya class which has a close connection with functions of

bounded type and the theory of de Branges Spaces (see Lemmas 4.2.3 and 4.2.4). A key feature of

Laguerre-Pólya functions is that their reciprocals can be represented as inverse Laplace transforms

of a totally positive frequency function. This along with the Laplace transform representation of

f+
ν makes Laguerre-Pólya functions ideal for constructing interpolations of f+

ν .

In Sections 4.2 and 4.3 we record various properties of Laguerre-Pólya functions and their

associated frequency functions. In Sections 4.4, 4.5, 4.6, and 4.7 we construct interpolations of f+
ν

(and f̃ν) using even and odd Laguerre-Pólya functions. The construction of these interpolations is

based on the general method of obtaining interpolations at the zeros of Laguerre-Pólya functions

used in [13] and [35]. This approach has also proven effective in [10] and [11].

Below we mention some interesting functions that fall under the umbrella of the measures

described above.

Example 4.1.1.

1. For c ≥ 0, the Dirac measure, δc, belongs to M+
b (R+), and

f+
δc

(z) =


e−cz if Re(z) > 0;

0 if Re(z) ≤ 0.

(4.5)

In particular, for c = 0, we have that f+
δ0

is the Heaviside step function and f̃δ0 is the signum

function.

2. For q ≥ 0 and α > 0, the measure dνq,α(λ) = λqe−αλ dλ belongs to M+
b (R+), and

f+
νq,α(z) =


Γ(q+1)

(z+α)q+1 if Re(z) > 0;

0 if Re(z) ≤ 0.

(4.6)

56



3. For a > 0, the (signed) measure dνa(λ) = sin(aλ) dλ belongs to Mb(R+), and f+
νa is the

truncated Poisson kernel

f+
νa(z) =


a

z2+a2
if Re(z) > 0;

0 if Re(z) ≤ 0.

(4.7)

4.2. Pólya and Laguerre-Pólya classes

Definition 4.2.1. The Pólya class, denoted P, is defined as the set of all entire functions E that

satisfy the following properties:

1. E has no zeros in the upper half-plane.

2. |E∗(z)| ≤ |E(z)| for all z ∈ C+.

3. For each real x, y 7→ |E(x+ iy)| is a non-decreasing function of y > 0.

If a ≥ 0 and Im(b) ≤ 0, then by direct verification we see that the Gaussian, e−az
2
, and the

exponential, ebz, are of Pólya class. Also, if c is a constant, then the polynomial z − c is of Pólya

class if and only if c has non-positive imaginary part. The definition implies that the product of

any two functions of Pólya class is again of Pólya class, hence any polynomial having only zeros

in the closed lower half-plane belongs to P. Moreover, if {Pn(z)} is a sequence of polynomials of

Pólya class such that

lim
n→∞

Pn(z) = E(z) (4.8)

uniformly on bounded sets, then the entire function E is also of Pólya class.

Functions belonging to Pólya class can be characterized by their Hadamard factorization.

Theorem 4.2.2 ([23, Theorem 7]). Let E ∈ P. If {zn} is the sequence of non-zero zeros of E

(counted with multiplicity), then ∑
n

1− yn
x2
n + y2

n

<∞. (4.9)

Moreover, there exist a ≥ 0 and b with Im(b) ≤ 0 such that

E(z) = E(r)(0)
zr

r!
e−az

2
ebz
∏
n

(
1− z

zn

)
ezRe 1

zn . (4.10)
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The following lemmas describe the connection between the Pólya class and functions of

bounded type in the upper half-plane as well as the Nevanlinna Class (analytic functions with

non-negative real parts in the upper half-plane). The proofs (which we omit) of Lemmas 4.2.3 and

4.2.4 are somewhat technical and rely on a variant of Phragmén-Lindelöf Principle [23, Theorem 1].

A generalization of Lemma 4.2.3 can be found in [38, Theorem 1.3], and Lemma 4.2.4 is Theorem

15 of [23].

Lemma 4.2.3 ([38, Theorem 1.3] and [23, Problem 34]). Let E be an entire function which has

no zeros in the upper half-plane and which satisfies the inequality |E∗(z)| ≤ |E(z)| for all z ∈ C+.

Then E is of Pólya class if there exists an entire function F of Pólya class such that E/F ∈ N (C+).

Lemma 4.2.4 ([23, Theorem 15]). Let E ∈ HB with E(0) = 1. Let logE(z) be defined in such a

way that it is analytic in the upper half-plane with limit zero at the origin. Then E ∈ P if and only

if

Re

{
i
logE(z)

z

}
≥ 0 (4.11)

for all z ∈ C+.

In this work we are primarily interested in Hermite-Biehler functions that are also of

bounded type. Applying Lemma 4.2.3 with F ≡ 1 gives the following extremely useful corollary.

Corollary 4.2.5. If E is a Hermite-Biehler function of bounded type in the upper half-plane, then

E ∈ P.

We define the Laguerre-Pólya class as the subclass of functions F ∈ P that are real-valued

on the real line and only have real zeros. By (4.10) we have the following:

Definition 4.2.6. The Laguerre-Pólya class, denoted LP, consists of all entire functions of the

form

F (z) = Czre−az
2
ebz
∏
n

(
1− z

xn

)
ez/xn (4.12)

where a ≥ 0, r ∈ N0, C, b, xn (n ∈ N0) are real, and

∑
n

1

x2
n

<∞. (4.13)
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It is a classical result of Laguerre (see [44] or [34, Chapter 3]) that all functions in LP are

the uniform limit on compact sets of C of polynomials with only real zeros.

Example 4.2.7. From the Hadamard factorization (4.12), we can easily read off many interesting

examples of functions belonging to the Laguerre-Pólya class. For example, we have that

sinπz = πz
∞∏
n=1

(
1− z2

n2

)
= πz

∏
n∈Z
n 6=0

(
1− z

n

)
ez/n (4.14)

and

cosπz =
∞∏
n=1

(
1− z2

(n− 1/2)2

)
=
∏
n∈Z

(
1− z

n− 1/2

)
ez/(n−1/2) (4.15)

are LP-functions. Also, the Gamma function, Γ(z), satisfies

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−z/n (4.16)

where γ is Euler’s constant and its reciprocal, 1/Γ, belongs to LP.

Lemma 4.2.8. Assume that E = A − iB is a Hermite-Biehler function of bounded type in the

upper half-plane. Then the functions A and B are in the Laguerre-Pólya class.

Proof. Since E∗/E is bounded on C+, it follows that A/E is bounded on C+ and hence of bounded

type. Since A = A∗, Lemma 4.2.3 (applied to A) implies that that A is in the Pólya class. The

same argument shows that B is in the Pólya class. Since A and B are real entire and only have

real zeros, it follows that they are in the Laguerre-Pólya Class.

For a Laguerre-Pólya function F , we say that F has finite degree N = N (F ) if a = 0 in

(4.12) and F has exactly N zeros counted with multiplicity. Otherwise we set N (F ) = ∞. We

denote by TF the set of zeros of F . From the Hadamard Factorization (4.12) we easily deduce the

following lemma.

Lemma 4.2.9 ([34, Theorem 3.5.3]). If F is a Laguerre-Pólya function with N (F ) ≥ k, then for

any R > 0

1

|F (x+ iy)|
= O(|y|−k) (4.17)

59



as |y| → ∞, uniformly in |x| ≤ R.

If F is a Laguerre-Pólya function with N (F ) ≥ 2 (which will include the case that N (F ) =

∞) and c ∈ R \ TF , we define the frequency function1 gc by

gc(t) =
1

2πi

∫ c+i∞

c−i∞

etz

F (z)
dz. (4.18)

Notice that by Lemma 4.2.9 this integral converges absolutely. Let τ1 and τ2 be two consecutive

elements from TF and c ∈ (τ1, τ2). A Fourier inversion (see also [34, Corollary 5.4]) shows that

1

F (z)
=

∫ ∞
−∞

e−ztgc(t) dt (4.19)

in the strip τ1 < Re(z) < τ2. Moreover, an application of the residue theorem shows that gc = gd

for c, d ∈ (τ1, τ2).

IfN (F ) = 1 we can still define gc as a Cauchy principal value to give (4.19), and ifN (F ) = 0

we have that (4.19) holds with gc(t) dt being a suitable Dirac measure, though for this investigation

we are not interested in these cases.

Example 4.2.10. By (4.14), the entire functions sinπz and sinπz
z are Laguerre-Pólya functions.

With g(t) := π−1

e−t+1
, we have

1

sinπz
=

∫ ∞
−∞

e−zt
π−1

e−t + 1
dt =

∫ ∞
−∞

e−ztg(t) dt (4.20)

for 0 < Re(z) < 1 and

z

sinπz
=

∫ ∞
−∞

e−zt
π−1e−t

(e−t + 1)2
dt =

∫ ∞
−∞

e−ztg′(t)dt (4.21)

for −1 < Re(z) < 1. Moreover, sin2 πz and ( sinπz
z )2 are also Laguerre-Pólya functions. Using the

multiplication formula for the Laplace transform it follows that

1

sin2 πz
=

∫ ∞
−∞

e−zt
π−2tet

et − 1
dt =

∫ ∞
−∞

e−ztg ∗ g(t) dt (4.22)

1The function g0 is a frequency function in the language of probability provided F (0) = 1.
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Figure 4.1: Graph of g and its derivative
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Figure 4.2: Graph of g ∗ g and its derivative

for 0 < Re(z) < 1 and

z2

sin2 πz
=

∫ ∞
−∞

e−zt
π−2et(et(t− 2) + t+ 2)

(et − 1)3
dt =

∫ ∞
−∞

e−ztg′ ∗ g′(t)dt (4.23)

for −1 < Re(z) < 1, where ∗ denotes convolution, i.e., f ∗ g(t) =
∫∞
−∞ f(t− x)g(x) dx.

The functions g(t) = π−1

e−t+1
(which is associated with an odd LP-function with a simple zero

at the origin) and g ∗ g(t) = π−2tet

et−1 (which is associated with an even LP-function with a double

zero at the origin) will be useful to keep in mind while reading the following sections. The graphs

of g and g ∗ g (as well as their derivatives) are included in Figures 4.1 and 4.2, respectively.

Remark 4.2.11. Let F ∈ LP have a zero of order k at the origin and at least one (smallest)

positive zero τ+ and one (largest) negative zero τ− and define gτ+/2 by (4.18). Integrating by parts

k times in (4.19) gives

1

z−kF (z)
=

∫ ∞
−∞

e−ztg
(k)
τ+/2

(t) dt (4.24)

for all z with 0 < Re(z) < τ+. Since z−kF (z) is non-zero at the origin, convergence extends to

τ− < Re(z) < τ+. Moreover, the function H(z) = z−kF (z) is in LP and if we define h0 by (4.18)

(applied to H), it follows that h0 = g
(k)
τ+/2

.

4.3. Properties of the frequency function

As part of a series of papers on total positivity, I.J. Schoenberg [58] gave an intrinsic char-

acterization of the functions g that may occur as Laplace inverse transformations of LP functions.

In Lemmas 4.3.1 and 4.3.2, we record some of the key properties of these functions. For more infor-

mation and complete proofs of these facts, see the excellent account of this theory in [34, Chapters

II-V].
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Lemma 4.3.1 ([34, Chapter IV, Theorem 5.1 and Theorem 5.3]). Let F ∈ LP have degree N ≥ 2

and let gc be defined by (4.18) where c ∈ R \ TF . The following propositions hold:

1. The function gc ∈ CN−2(R) and is real valued.

2. The function gc is of one sign, and its sign equals the sign of F (c).

3. If c = 0, the function g
(k)
0 has exactly k sign changes on the real line for k = 0, 1, ...,N − 2.

Proof. Let k ≤ N − 2. By Lemma 4.2.9 we have that (4.18) may be differentiated k times under

the integral sign. Since the resulting integral converges uniformly, g
(k)
c exists and is continuous.

Since F is real entire, it follows that gc is real valued which shows (1).

Items (2) and (3) are [34, Chapter IV, Theorem 5.1 and Theorem 5.3].

Lastly, we require knowledge of the rate of decay of these functions (and their derivatives)

on the real line (see e.g., [34, Chapter IV, Theorem 5.1]).

Lemma 4.3.2 ([34, Chapter IV, Theorem 5.1]). Let F ∈ LP have degree N . If τ1 and τ2 are two

consecutive elements in TF and c ∈ (τ1, τ2), then for 0 ≤ n ≤ N − 2 there exists polynomials Pn

and Qn such that

|g(n)
c (t)| ≤ |Pn(t)|eτ1t as t→∞

|g(n)
c (t)| ≤ |Qn(t)|eτ2t as t→ −∞.

(4.25)

For even and odd Laguerre-Pólya functions, we describe the parity of the derivatives of

these frequency functions and evaluate their Fourier sine and cosine transforms.

Lemma 4.3.3. Let F be an even LP-function with a double zero at the origin and at least one

(smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by (4.18).

1. The derivatives g′ and g′′ exist and are nonnegative on the real line.

2. The function g′′ is even.

3. If −τ+ < Im(ξ) < τ+, then

∫ ∞
−∞

g′′(λ) cos(ξλ) dλ = − ξ2

F (iξ)
. (4.26)

In particular, F is real-valued on the imaginary axis.
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4. If −τ+ < Im(ξ) < τ+ and w ∈ R, then

∫ ∞
−∞

g′′(w − λ) sin(ξλ) dλ = −ξ
2 sin(ξw)

F (iξ)
. (4.27)

5. If ξ > 0, then

F (iξ) < 0. (4.28)

Proof. Since F has at least four zeros counted with multiplicity, Lemma 4.3.1 with c = τ+/2 implies

that g′ and g′′ exist and are real valued. Two integration by parts in (4.18) show that

zj

F (z)
=

∫ ∞
−∞

e−ztg(j)(t)dt (j ∈ {0, 1, 2}) (4.29)

for all z with 0 < Re(z) < τ+. Since z−jF (z) is in LP for j ∈ {0, 1, 2}, Lemma 4.3.1 with k = 0

implies that g(j) has no sign changes on the real line. Evaluation of (4.29) at z = τ+/2 shows

that these derivatives are nonnegative on the real line (by Lemma 4.3.1 part (2)). Since z−2F (z)

is non-zero at the origin, (4.29) extends to −τ+ < Re(z) < τ+ for j = 2. Since z−2F (z) is an even

function of z, (4.18) with c = 0 gives

g′′(t) =
1

2π

∫ ∞
−∞

(iu)2eiut

F (iu)
du (4.30)

which implies that g′′ is even.

Let ξ such that −τ+ < Im(ξ) < τ+. Since (4.29) extends to −τ+ < Re(z) < τ+, we have

∫ ∞
−∞

g′′(λ) cos(ξλ) dλ =
1

2

(
(iξ)2

F (iξ)
+

(−iξ)2

F (−iξ)

)
, (4.31)

and (4.26) follows since F is even. Since λ 7→ g′′(λ) sin ξλ is odd, the trigonometric identity

sin ξ(λ− w) = cos ξw sin ξλ− cos ξλ sin ξw implies

∫ ∞
−∞

g′′(λ) sin ξ(λ− w)dλ = − sin ξw

∫ ∞
−∞

g′′(λ) cos ξλdλ. (4.32)

An application of (4.26) gives (4.27).
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To show (4.28), let 0 < x1 < x2 < ... be the positive zeros of F . Since F is even and has a

double zero at the origin, it follows that

F (z) = Cz2e−az
2
∏
n

(
1− z2

x2
n

)
(4.33)

for some C and a with a > 0. Since F is positive in (0, x1), we have that

F
(x1

2

)
= C

(x1

2

)2
e−a(

x1
2 )

2∏
n

(
1−

(
x1
2

)2
x2
n

)
> 0 (4.34)

which gives that C > 0. It follows that

F (iξ) = C(iξ)2e−a(iξ)2
∏
n

(
1− (iξ)2

x2
n

)
= −Cξ2eaξ

2
∏
n

(
1 +

ξ2

x2
n

)
< 0. (4.35)

Analogously, for odd LP-functions we have the following.

Lemma 4.3.4. Let F be an odd LP-function with a simple zero at the origin and at least one

(smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by (4.18).

1. The derivative g′ exists, is non-negative on the real line and even.

2. If −τ+ < Im(ξ) < τ+, then

∫ ∞
−∞

g′(λ) cos(ξλ) dλ =
iξ

F (iξ)
. (4.36)

In particular, F is imaginary on the imaginary axis.

3. If −τ+ < Im(ξ) < τ+ and w ∈ R, then

∫ ∞
−∞

g′(w − λ) sin(ξλ) dλ = sin(ξw)
iξ

F (iξ)
. (4.37)

4. If ξ > 0, then

iF (iξ) < 0. (4.38)
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Proof. The proof is nearly identical to Lemma 4.3.3. Since the specific integral values will be

important in the construction of interpolations, we include the proof for completeness.

Since F has at least three zeros counted with multiplicity, Lemma 4.3.1 with c = τ+/2

implies that g′ exist and is real valued. One integration by parts in (4.18) shows that

zj

F (z)
=

∫ ∞
−∞

e−ztg(j)(t)dt (j ∈ {0, 1}) (4.39)

for all z with 0 < Re(z) < τ+. Since z−jF (z) is in LP for j ∈ {0, 1}, Lemma 4.3.1 with k = 0

implies that g(j) has no sign changes on the real line. Evaluation of (4.39) at z = τ+/2 shows

that g′ is non-negative on the real line. Since z−1F (z) is non-zero at the origin, (4.39) extends to

−τ+ < Re(z) < τ+ for j = 1. Since z−1F (z) is an even function of z, (4.18) with c = 0 gives

g′(t) =
1

2π

∫ ∞
−∞

iueiut

F (iu)
du (4.40)

which implies that g′ is even.

Let ξ such that −τ+ < Im(ξ) < τ+. Since (4.39) extends to −τ+ < Re(z) < τ+, we have

∫ ∞
−∞

g′(λ) cos(ξλ) dλ =
1

2

(
iξ

F (iξ)
+
−iξ

F (−iξ)

)
, (4.41)

and (4.36) follows since F is odd. Since λ 7→ g′(λ) sin ξλ is odd, the trigonometric identity sin ξ(λ−

w) = cos ξw sin ξλ− cos ξλ sin ξw implies

∫ ∞
−∞

g′(λ) sin ξ(λ− w)dλ = − sin ξw

∫ ∞
−∞

g′(λ) cos ξλdλ. (4.42)

An application of (4.36) gives (4.37).

To show (4.38), let 0 < x1 < x2 < ... be the positive zeros of F . Since F is odd and has a

simple zero at the origin, it follows that

F (z) = Cze−az
2
∏
n

(
1− z2

x2
n

)
(4.43)
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for some C and a with a > 0. Since F is positive in (0, x1), we have that

F
(x1

2

)
= Cx1/2e

−a(x12 )
2∏
n

(
1−

(
x1
2

)2
x2
n

)
> 0 (4.44)

which gives that C > 0. It follows that

iF (iξ) = −Cξe−a(iξ)2
∏
n

(
1− (iξ)2

x2
n

)
= −Cξeaξ2

∏
n

(
1 +

ξ2

x2
n

)
< 0. (4.45)

4.4. Interpolations in LP

Recall that if ν ∈Mb(R+), we defined the truncated Laplace transform f+
ν : C→ C by

f+
ν (z) :=


∫

[0,∞) e
−λz dν(λ) if Re(z) > 0;

0 if Re(z) ≤ 0.

(4.46)

In this section, for a given Laguerre-Pólya function F we utilize the fact that 1/F and f+
ν

are represented as inverse Laplace transforms to construct an entire function that interpolates f+
ν

at the zeros of F .

Let F be a Laguerre-Pólya function, and denote by τ+ the smallest positive zero of F (if no

such zero exists, we set τ+ =∞). Let g = gτ+/2 by (4.18). Define the function g ∗ dν : R→ R by

g ∗ dν(w) =

∫ ∞
0

g(w − λ) dν(λ). (4.47)

If F has at least two zeros and τ+ < ∞, Lemma 4.3.2 with τ2 = τ+ implies that g(t) and g′(t)

decay exponentially as t → −∞. Hence g ∗ dν(w) is finite for every w ∈ R, and an integration by

parts gives for all real w

g ∗ dν(w) =

∫ ∞
0

g(w − λ) dν(λ) =

∫ ∞
0

g′(w − λ)V (λ) dλ = g′ ∗ V (w). (4.48)

We will require bounds for g ∗ dν and its derivatives.
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Lemma 4.4.1. Let F be an even LP-functions with a double zero at the origin and at least one

(smallest) positive zero τ+, and at least five zeros (counted with multiplicity). Assume that F is

positive in (0, τ+), and define g = gτ+/2 by (4.18). The inequalities

0 ≤ g(n) ∗ dν(w) ≤ Cg(n)(w) (4.49)

hold for n ∈ {0, 1} and all real w, and for n = 2 and w ≤ 0.

Proof. From (4.48) we see that

g ∗ dν(w) =

∫ ∞
0

g(w − λ) dν(λ) =

∫ ∞
0

g′(w − λ)V (λ) dλ. (4.50)

The functions g, g′, and g′′ are non-negative on R by Lemma 4.3.3, and g′′′ has exactly one sign

change on R by Lemma 4.3.1 applied to g′′. Since g′′ is even, the sign change is located at the

origin. As 0 ≤ V (x) ≤ C on [0,∞), it follows that for all real w and n ∈ {0, 1}, as well as for n = 2

and w ≤ 0,

0 ≤ g(n) ∗ dν(w) =

∫ ∞
0

g(n+1)(w − λ)V (λ) dλ ≤ C
∫ ∞

0
g(n+1)(w − λ) dλ = Cg(n)(w) (4.51)

which gives the desired inequality.

Analogously, for odd Laguerre-Pólya functions, we have the following.

Lemma 4.4.2. Let F be an odd LP-function with a simple zero at the origin and at least one

(smallest) positive zero τ+, and at least five zeros (counted with multiplicity). Assume that F is

positive in (0, τ+), and define g = gτ+/2 by (4.18). The inequality

0 ≤ g ∗ dν(w) ≤ Cg(w) (4.52)

holds all real w, and

0 ≤ g′ ∗ dν(w) ≤ Cg′(w) (4.53)

holds for all w ≤ 0.
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The next lemma investigates two interpolations of f+
ν in Re(z) ≥ 0 and Re(z) ≤ τ+,

respectively, and shows that they are representations of a single entire function z 7→ A(F, ν, z)

which interpolates f+
ν at the zeros of F . See [13] for a similar construction for the cutoff of an

exponential function.

Lemma 4.4.3. Let F ∈ LP satisfy the assumptions of Lemma 4.4.1 (or Lemma 4.4.2). Assume

that F is positive in (0, τ+), and define g = gτ+/2 by (4.18). Define

A1(F, ν, z) = F (z)

∫ 0

−∞
g ∗ dν(w)e−zw dw for Re(z) < τ+

A2(F, ν, z) = f+
ν (z)− F (z)

∫ ∞
0

g ∗ dν(w)e−zw dw for Re(z) > 0.

(4.54)

Then z 7→ A1(F, ν, z) is analytic in Re(z) < τ+, z 7→ A2(F, ν, z) is analytic in Re(z) > 0, and these

functions are restrictions of an entire function z 7→ A(F, ν, z). Moreover, there exists a constant

c > 0 so that

|A(F, a, z)| ≤ c(1 + |F (z)|) (4.55)

for all z ∈ C, and

A(F, ν, ξ) = f+
ν (ξ) (4.56)

for all ξ ∈ R with F (ξ) = 0.

Proof. Inequality (4.25) with τ2 = τ+ implies that g′(t) decays exponentially as t→ −∞. It follows

from Lemma 4.4.1 (or Lemma 4.4.2) that

0 ≤ g ∗ dν(w) ≤ Cg(w) (4.57)

for all real w, and (4.25) with τ2 = τ+ applied to g for t → −∞ implies that the integral defining

A1(F, ν, z) converges absolutely in Re(z) < τ+. Inequality (4.25) implies with τ1 = 0 that g has

polynomial growth on the positive real axis, hence the integral in the definition of A2(F, a, z)

converges absolutely for Re(z) > 0. It follows that A1 and A2 are analytic functions in Re(z) < τ+

and 0 < Re(z), respectively.
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To prove that A1 and A2 are analytic continuations of each other it suffices to prove that

they are equal in the strip 0 < Re(z) < τ+. Starting with the identity

f+
ν (z) =

∫ ∞
0

e−zλ dν(λ), (4.58)

which is valid for Re(z) > 0, and combining this with (4.19) gives for 0 < Re(z) < τ+

f+
ν (z) = F (z)

∫ ∞
−∞

∫ ∞
0

e−z(w+λ)g(w) dν(λ) dw

= F (z)

∫ ∞
−∞

∫ ∞
0

e−zwg(w − λ)dν(λ) dw

= F (z)

∫ ∞
−∞

g ∗ dν(w)e−zw dw.

(4.59)

Inserting this in (4.54) shows that A2(F, ν, z) = A2(F, ν, z) for 0 < Re(z) < τ+. To prove

(4.55) we note that inequality (4.57) implies in Re(z) ≤ τ+/2

|A(F, ν, z)| ≤ |F (z)|
∫ 0

−∞
|g ∗ dν(w)e−zw| dw ≤ C|F (z)|

∫ 0

−∞
g(w)e−τ+w/2 dw, (4.60)

and an analogous calculation holds in Re(z) ≥ τ+/2. Identity (4.56) follows from the definition of

A.

Starting with the function A(F, ν, z), we construct interpolations K of f+
ν that interpolate

f+
ν at the zeros of F so that K − f+

ν has no sign changes between two consecutive zeros of F .

This is accomplished by selecting the value at the origin appropriately. In the following sections we

construct these interpolations of f+
ν (as well as f̃ν) by using odd and even Laguerre-Pólya functions.

4.5. Interpolations for f+
ν – odd LP functions

In this section, assume that ν ∈ M+
b (R+). Let F be an odd LP function that satisfies the

assumptions of Lemma 4.4.2. We define z 7→ K(F, ν, z) by the construction of Lemma 4.4.3:

K(F, ν, z) = A(F, ν, z) + g ∗ dν(0)
F (z)

z
. (4.61)

By construction K is an entire function such that K(F, ν, ξ) = f+
ν (ξ) for all real ξ ∈ TF \ {0}.
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Theorem 4.5.1. Let F be an odd LP-function with a simple zero at the origin and at least one

(smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by (4.18).

Then

F (x)
{
f+
ν (x)−K(F, ν, x)

}
≥ 0 (4.62)

for all x ∈ R, and

|f+
ν (x)−K(F, ν, x)| = O

(
F (x)

1 + x2

)
(4.63)

for all real x.

Proof. An expansion of the second term in (4.61) in a Laplace transform together with (4.54) gives

f+
ν (x)−K(F, ν, x) = −F (x)

∫ 0

−∞
(g ∗ dν(w)− g ∗ dν(0))e−xw dw (4.64)

for x < 0 and

f+
ν (x)−K(F, ν, x) = F (x)

∫ ∞
0

(g ∗ dν(w)− g ∗ dν(0))e−xw dw. (4.65)

for x > 0. By Lemma 4.4.2 we have 0 ≤ g ∗ dν(w) ≤ Cg(w) for all real w. Inequality (4.25) with

τ2 = τ+ and τ1 = 0 applied to g implies that g has exponential decay on the negative real axis and

polynomial growth on the positive real axis, hence the integrals in (4.64) and (4.65) converge.

By assumption F is an odd LP-function that is positive in (0, τ+), and Lemma 4.3.4 gives

that g′ is non-negative on the real line. Since ν is non-negative, it follows that

g ∗ dν(w)− g ∗ dν(0) =

∫ ∞
0

(g(w − λ)− g(−λ)) dν(λ) ≤ 0 (4.66)

for all w ≤ 0 and g ∗ dν(w)− g ∗ dν(0) ≥ 0 for all w ≥ 0. Multiplying through by F in (4.64) and

(4.65) gives (4.62).

Since z−1F (z) is an even Laguerre-Pólya function that is non-zero at the origin, Lemma

4.3.2 with −τ1 = τ2 = τ+ implies that g′′(t) and g(3)(t) decay exponentially as |t| → ∞. Hence∫∞
−∞ |g

(3)(t)| dt <∞, and (4.1) gives

∣∣g′′ ∗ dν(w)
∣∣ =

∣∣∣∣∫ ∞
0

g(3)(w − λ)V (λ) dλ

∣∣∣∣ ≤ C ∫ ∞
0

∣∣∣g(3)(w − λ)
∣∣∣ dλ <∞ (4.67)

70



for all real w. Two integration by parts in equations (4.64) and (4.65) then give (4.63).

From these results we can easily construct interpolations for the odd extension of f+
ν ,

f̃ν(z) := f+
ν (z)− f+

ν (−z). (4.68)

If F is a Laguerre-Pólya function that satisfies the assumptions of Theorem 4.5.1 define

K̃(F, ν, z) = K(F, ν, z)−K(F, ν,−z). (4.69)

Using Theorem 4.5.1 and the fact that F is odd we have

F (x)
{
f̃ν(x)− K̃(F, ν, x)

}
= F (x)

{
f+
ν (x)−K(F, ν, x)− (f+

ν (−x)−K(F, ν,−x))
}

(4.70)

= F (x)
{
f+
ν (x)−K(F, ν, x)

}
+ F (−x)

{
f+
ν (−x)−K(F, ν,−x)

}
≥ 0

holds for all real x.

Theorem 4.5.2. Let F be an odd LP-function with a simple zero at the origin and at least one

(smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by (4.18).

Then

F (x)
{
f̃ν(x)− K̃(F, ν, x)

}
≥ 0 (4.71)

for all x ∈ R, and ∣∣∣K̃(F, ν, x)− f̃ν(x)
∣∣∣ = O

(
F (x)

1 + x2

)
(4.72)

for all real x.

4.6. Interpolations for the truncated Poisson kernel – odd LP functions

The goal of this section is to study the interpolation problem for f+
ν for the signed measure

dνa(λ) = sin(aλ) dλ. Notice that for a > 0 we have

Va(λ) = νa([0, λ)) =
1− cos(aλ)

a
≤ 2

a
, (4.73)

71



hence νa belongs to Mb(R+). Moreover, we have that that

∫ ∞
0

e−λz dνa(λ) =

∫ ∞
0

e−λz sin(aλ) dλ =
a

a2 + z2
(4.74)

for Re(z) > 0. Hence f+
νa is the truncated Poisson kernel

f+
νa(z) =


a

a2+z2
if Re(z) > 0;

0 if Re(z) ≤ 0.

(4.75)

Since νa belongsMb(R+), we can apply many of the results from the previous sections to construct

the entire function K(F, νa, z), but the fact that dνa(λ) = sin(aλ) dλ is a signed measure introduces

additional difficulties when showing the sign changes of f+
νa −K.

To show this, we will require additional information about the function g ∗dνa. Notice that

g∗dνa(w) =

∫ ∞
0

g(w−λ) dνa(λ) =

∫ ∞
0

g′(w−λ)Va(λ) dλ =
1

a

∫ ∞
0

g′(w−λ)(1−cos aλ) dλ. (4.76)

Lemma 4.6.1. Let a > 0. Let F be an odd LP-function with a simple zero at the origin and at

least one (smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by

(4.18).

1. We have the representation

g ∗ dνa(0) =
g(0)

a
− i

2F (ia)
. (4.77)

2. For all real w we have

g′ ∗ dνa(w)− g′ ∗ dνa(−w) = sin(aw)
ia

F (ia)
. (4.78)

Proof. Since F is odd with with at least three zeros we have that g and g′ are non-negative on R

and g′ is even (by Lemma 4.3.4). To prove (4.77) we set w = 0 in (4.76) to get

g ∗ dνa(0) =

∫ ∞
0

g(−λ) sin(aλ) dλ. (4.79)
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We perform an integration by parts, apply that g′ is even, and use (4.36) to obtain

g ∗ dνa(0) =
g(0)

a
− 1

a

∫ ∞
0

g′(λ) cos(aλ) dλ

=
g(0)

a
− 1

2a

∫ ∞
−∞

g′(λ) cos(aλ) dλ

=
g(0)

a
− i

2F (ia)

(4.80)

which finishes the proof of (4.77). Equations (4.36) and (4.37) and a change of variables give

g′ ∗ dνa(w) =

∫ ∞
−∞

g′(w − λ) sin(aλ) dλ−
∫ 0

−∞
g′(w − λ) sin(aλ) dλ

= sin(aw)
ia

F (ia)
+

∫ ∞
0

g′(w + λ) sin(aλ) dλ

= sin(aw)
ia

F (ia)
+ g′ ∗ dνa(−w)

(4.81)

which is (4.78).

Theorem 4.6.2. Let a > 0. Let F be an odd LP-function with a simple zero at the origin and at

least one (smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by

(4.18). Then

F (x)
{
f+
νa(x)−K(F, νa, x)

}
≥ 0 (4.82)

for all x ∈ R, and

|K(F, νa, x)− f+
νa(x)| = O

(
F (x)

1 + x2

)
(4.83)

for all real x.

Proof. Consider first x < 0. An expansion of the second term in (4.61) in a Laplace transform

together with (4.54) gives

f+
νa(x)−K(F, νa, x) = −F (x)

∫ 0

−∞
(g ∗ dνa(w)− g ∗ dνa(0)) e−xw dw, (4.84)

By Lemma 4.4.2 we have 0 ≤ g ∗ dνa(w) ≤ Cg(w) for all real w. Inequality (4.25) with τ2 = τ+

applied to g implies that g has exponential decay on the negative real axis hence the integral in
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(4.84) converges. Moreover, Lemma 4.4.2 gives g′ ∗ dνa(w) ≥ 0 for w ≤ 0, and it follows that

g ∗ dνa(w)− g ∗ dνa(0) ≤ 0 for w ≤ 0 which shows (4.82) for x < 0.

Let x > 0. Analogous to the case when x < 0, we expand the second term in (4.61) in a

Laplace transform and use (4.54) to obtain

f+
νa(x)−K(F, νa, x) = F (x)

∫ ∞
0

(g ∗ dνa(w)− g ∗ dνa(0)) e−xw dw. (4.85)

Again, Lemma 4.4.2 along with inequality (4.25) with τ1 = 0 applied to g implies the integral in

(4.85) converges. By an integration by parts we have

∫ ∞
0

(g ∗ dνa(w)− g ∗ dνa(0)) e−xw dw =
1

x

∫ ∞
0

g′ ∗ dνa(w)e−xw dw, (4.86)

and inserting this into (4.85) gives

f+
νa(x)−K(F, νa, x) =

F (x)

x

∫ ∞
0

g′ ∗ dνa(w)e−xw dw. (4.87)

In order to investigate the sign of the right hand side, we multiply (4.78) by e−xw and integrate w

over [0,∞) to obtain

∫ ∞
0

(g′ ∗ dνa(w)− g′ ∗ dνa(−w))e−xw dw =
ia

F (ia)

∫ ∞
0

e−xw sin(aw) dw

=
i

F (ia)

a2

x2 + a2
.

(4.88)

Hence ∫ ∞
0

g′ ∗ dνa(w)e−xw dw =
i

F (ia)

a2

x2 + a2
+

∫ ∞
0

g′ ∗ dνa(−w)e−xw dw (4.89)

Since g′ ∗ dνa(−w) ≥ 0 for w ≥ 0 and iF (ia) < 0 (by (4.38)), it follows that

∫ ∞
0

g′ ∗ dνa(w)e−xw dw ≥ 0. (4.90)

Inserting this into (4.87) gives (4.82) for x > 0. Equations (4.84) and (4.85) give (4.83).
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As in the case for the non-negative measures, we can easily construct interpolations for the

odd extension of the truncated Poisson kernel

f̃νa(x) = f+
νa(x)− f+

νa(−x) =



a
x2+a2

if x > 0;

0 if x = 0;

− a
x2+a2

, if x < 0.

(4.91)

If F is an odd Laguerre-Pólya function that satisfies the assumptions of Theorem 4.6.2 define the

entire function

K̃(F, νa, z) = K(F, νa, z)−K(F, νa,−z). (4.92)

Analogous to Theorem 4.5.2 we have the following result.

Theorem 4.6.3. Let a > 0. Let F be an odd LP-function with a simple zero at the origin and at

least one (smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by

(4.18). Then

F (x)
{
f̃νa(x)− K̃(F, νa, x)

}
≥ 0 (4.93)

for all x ∈ R.

4.7. Interpolations for the truncated Poisson kernel – even LP functions

We conclude this chapter by constructing interpolations for the truncated Poisson kernel

using even LP functions. These interpolations will be used in Chapter 6 in the problem of finding

optimal one-sided approximations with the added vanishing requirement.

As in the problem of construing interpolations to f+
νa with odd Laguerre-Pólya functions,

for the case of even LP functions we require additional information about the functions g ∗ dνa.

Lemma 4.7.1. Let a > 0. Let F be an even LP-function with a double zero at the origin and at

least one (smallest) positive zero τ+. Assume that F is positive in (0, τ+), and define g = gτ+/2 by

(4.18).

1. We have the representation

g′ ∗ dνa(0) =
g′(0)

a
+

a

2F (ia)
. (4.94)
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2. For all real w we have

g′′ ∗ dνa(w)− g′′ ∗ dνa(−w) = − sin(aw)
a2

F (ia)
. (4.95)

Proof. The proof is analogous to Lemma 4.6.1, and we sketch out the differences. Since F is

even with with at least four zeros we have that g′′ is even (by Lemma 4.3.3). To prove (4.94) we

differentiate (4.76) and set w = 0 to get

g′ ∗ dνa(0) =

∫ ∞
0

g′(−λ) sin(aλ) dλ. (4.96)

We perform an integration by parts, apply that g′′ is even, and use (4.26) to obtain

g′ ∗ dνa(0) =
g′(0)

a
− 1

a

∫ ∞
0

g′′(λ) cos(aλ) dλ

=
g′(0)

a
− 1

2a

∫ ∞
−∞

g′′(λ) cos(aλ) dλ

=
g′(0)

a
+

a

2F (ia)

(4.97)

which finishes the proof of (4.94).

Equations (4.26) and (4.27) and a change of variables give

g′′ ∗ dνa(w) =

∫ ∞
−∞

g′′(w − λ) sin(aλ) dλ−
∫ 0

−∞
g′′(w − λ) sin(aλ) dλ

= − sin(aw)
a2

F (ia)
+

∫ ∞
0

g′′(w + λ) sin(aλ) dλ

= − sin(aw)
a2

F (ia)
+ g′ ∗ dνa(−w)

(4.98)

which is (4.95).

Assume that a > 0, and that F ∈ LP and τ > 0 satisfy the assumptions of Lemma 4.4.3

(for even F ). We define z 7→M+(F, a, z) and z 7→M−(F, a, z) by

M−(F, a, z) = A(F, νa, z) + g ∗ dνa(0)
F (z)

z
, (4.99)

M+(F, a, z) = A(F, νa, z) + g ∗ dνa(0)
F (z)

z
+

2g′(0)

a

F (z)

z2
(4.100)
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where A1(F, νa, z) is defined in (4.54). Evidently M+ and M− are entire functions. Recall that

TF is the zero set of F . It is evident from the definitions that M±(F, a, ξ) = f+
νa(ξ) for all real

ξ ∈ TF \{0}. Since F has a double zero at the origin, we see that M−(F, a, 0) = 0. Since g′′ is

non-negative and integrable on R, (4.29) implies

2

F ′′(0)
=

∫ ∞
−∞

g′′(w) dw. (4.101)

As g′′ is even and g′(w) decays exponentially as w → −∞, we also have that
∫∞
−∞ g

′′(w) dw = 2g′(0).

Hence, z−2F (z)→ 1/(2g′(0)) as z → 0 and M+(F, a, 0) = 1/a. This means that

M±(F, a, ξ) = f+
νa(ξ±) (4.102)

for all real ξ ∈ TF , where f+
νa(ξ±) denotes the one sided limits at ξ.

Theorem 4.7.2. Let a > 0. Let F be an even LP-function with a double zero at the origin and

at least one (smallest) positive zero τ+ and at least five zeros (counted with multiplicity). Assume

that F is positive in (0, τ+), and define g = gτ+/2 by (4.18) and g ∗ dνa by (4.76). Then

F (x)
{
M+(F, a, x)− f+

νa(x)
}
≥ 0 (4.103)

holds for all real x.

Proof. Consider first x < 0. An expansion of the second term in (4.100) in a Laplace transform

together with (4.54) gives

M+(F, a, x)− f+
νa(x) = F (x)

∫ 0

−∞
(g ∗ dνa(w)− g ∗ dνa(0))e−xw dw +

F (x)

x2

2g′(0)

a
. (4.104)

Two integration by parts and (4.94) lead to

∫ 0

−∞
(g ∗ dνa(w)− g ∗ dνa(0))e−xw dw =

1

x2

∫ 0

−∞
g′′ ∗ dνa(w)e−wxdx− g′ ∗ dνa(0)

x2
(4.105)

=
1

x2

∫ 0

−∞
g′′ ∗ dνa(w)e−xw dw − g′(0)

ax2
− a

2x2F (ia)
,
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and inserting this in (4.104) gives

M+(F, a, x)− f+
νa(x) =

F (x)

x2

(
g′(0)

a
− a

2F (ia)
+

∫ 0

−∞
g′′ ∗ dνa(w)e−xw dw

)
. (4.106)

By assumption −F (ia) > 0, and (4.49) implies g′′ ∗ dνa(w) ≥ 0. Since by assumption z−1F (z) is a

LP-function that is positive in (0, τ+), it follows from Lemma 4.3.3 that g′(0) > 0. Hence (4.103)

is shown for x < 0.

Let x > 0. From (4.54), (4.76), and (4.94) we get

M+(F, a, x)− f+
νa(x) = −F (x)

∫ ∞
0

g ∗ dνa(w)e−xw dw +
F (x)

x
g ∗ dνa(0) +

F (x)

x2

2g′(0)

a

= −F (x)

∫ ∞
0

(g ∗ dνa(w)− g ∗ dνa(0))e−xw dw +
F (x)

x2

2g′(0)

a
,

(4.107)

and, analogously to (4.106), we obtain the representation

M+(F, a, x)− f+
νa(x) =

F (x)

x2

(
g′(0)

a
− a

2F (ia)
−
∫ ∞

0
g′′ ∗ dνa(w)e−xw dw

)
(4.108)

for x > 0. In order to investigate the sign of the right hand side, we multiply (4.95) by e−xw and

integrate w over [0,∞) to get with (4.58)

∫ ∞
0

(g′′ ∗ dνa(w)− g′′ ∗ dνa(−w))e−xwdw = − a2

F (ia)

∫ ∞
0

e−xw sin(aw)dw

= − a2

F (ia)

a

x2 + a2
.

(4.109)

Hence

−
∫ ∞

0
g′′ ∗ dνa(w)e−xwdw =

a

F (ia)

a2

x2 + a2
−
∫ ∞

0
g′′ ∗ dνa(−w)e−xwdw. (4.110)

Since g′′ ∗ dνa(−w) ≥ 0 for w ≥ 0, we have from (4.94)

∫ ∞
0

g′′ ∗ dνa(−w)e−xwdw ≤
∫ ∞

0
g′′ ∗ dνa(−w)dw =

g′(0)

a
+

a

2F (ia)
. (4.111)
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We multiply (4.111) by −1 and insert the resulting inequality into (4.110) to get

−
∫ ∞

0
g′′ ∗ dνa(w)e−xwdw ≥ a

F (ia)

a2

x2 + a2
− g′(0)

a
− a

2F (ia)
. (4.112)

Inserting this into (4.108) gives

M+(F, a, x)− f+
νa(x)

F (x)
≥ a

F (ia)

1

x2

(
1

(x/a)2 + 1
− 1

)
, (4.113)

which is non-negative since F (ia) < 0 (by (4.28)). This proves (4.103) for x > 0.

Theorem 4.7.3. Let F be an even LP-function with a double zero at the origin and at least one

(smallest) positive zero τ+ and at least five zeros (counted with multiplicity). Assume that F is

positive in (0, τ+), and define g = gτ+/2 by (4.18) and g ∗ dνa by (4.76). Then

F (x)
{
M−(F, a, x)− f+

νa(x)
}
≤ 0 (4.114)

holds for all real x.

Proof. From the definition of M− and (4.104) we obtain for x < 0 the representation

M−(F, a, x)− f+
νa(x) = F (x)

∫ 0

−∞
(g ∗ dνa(w)− g ∗ dνa(0))e−xwdw, (4.115)

and since g′ ∗ dνa(w) ≥ 0 for real w, it follows that g ∗ dνa(w) − g ∗ dνa(0) ≤ 0 for w ≤ 0 which

shows (4.114) for x < 0. Analogously, for x > 0

M−(F, a, x)− f+
νa(x) = −F (x)

∫ ∞
0

(g ∗ dνa(w)− g ∗ dνa(0))e−xwdw, (4.116)

which gives (4.114) in this range.

Lemma 4.7.4. The functions M+ and M− from Theorems 4.7.2 and 4.7.3 satisfy

|M±(F, a, x)− f+
νa(x)| = O

(
F (x)

1 + x2

)
(4.117)

for all real x.
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Proof. Inequalities (4.104) and (4.108) yield (4.117) for M+, while (4.115) and (4.116) imply (4.117)

for M−.

Recall that the odd extension of the truncated Poisson kernel is given by

f̃νa(x) = f+
νa(x)− f+

νa(−x) =



a
x2+a2

if x > 0;

0 if x = 0;

− a
x2+a2

if x < 0.

(4.118)

By the above construction we can easily construct interpolations for this function. If F ∈ LP

satisfies the assumptions of Theorem 4.7.2 (also Theorem 4.7.3), define the entire functions

M̃+(F, a, z) = M+(F, a, z)−M−(F, a,−z) (4.119)

M̃−(F, a, z) = −M̃+(F, a,−z) (4.120)

Applying Theorem 4.7.2 and Theorem 4.7.3 and the fact that F is even gives

F (x)
{
M̃+(F, a, x)− f̃νa(x)

}
= F (x)

{
M+(F, a, x)− f+

νa(x)
}

+ F (−x)
{
f+
νa(−x)−M−(F, a,−x)

}
≥ 0

(4.121)

for all real x. By symmetry, we obtain F (x)
{
f̃νa − M̃−(F, a, x)

}
≥ 0 for all real x.

Theorem 4.7.5. Let a > 0. Let F be an even LP-function with a double zero at the origin and

at least one (smallest) positive zero τ+ and at least five zeros (counted with multiplicity). Assume

that F is positive in (0, τ+), and define g = gτ+/2 by (4.18) and g ∗ dνa by (4.76). Then

F (x)
{
M̃+(F, a, x)− f̃νa(x)

}
≥ 0 (4.122)

and

F (x)
{
f̃νa(x)− M̃−(F, a, x)

}
≥ 0 (4.123)
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holds for all real x and ∣∣∣M̃±(F, a, x)− f̃νa(x)
∣∣∣ = O

(
F (x)

1 + x2

)
(4.124)

for all real x.
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5. EXTREMAL SIGNATURES AND BEST

APPROXIMATIONS IN L1(R, µ)-NORM

5.1. Introduction

This chapter is primarily devoted to the study of Best Approximations in L1(µ)-norm. For

more information on best approximations in Lp(µ) (or in general Banach spaces) see [61, Chapter

4] or [24, Chapter 3].

Definition 5.1.1. Let δ > 0, µ be a Borel measure with polynomial growth, and f : R → R

a measurable function. A function K ∈ A(δ) is called a best approximation to f (of type δ) in

L1(R, µ)-norm if f −K ∈ L1(R, µ) and

∫ ∞
−∞
|f(x)−K(x)| dµ(x) ≤

∫ ∞
−∞
|f(x)−G(x)| dµ(x) (5.1)

for all G ∈ A(δ).

A classical result in the theory of L1(R, µ)-approximation is that a best approximation K

from A(δ) can be characterized by the sign change pattern of f −K.

Theorem 5.1.2 ([24, Theorem 2.10.1]). Let µ be a Borel measure on R with polynomial growth.

Let ψ : R→ C be such that |ψ(x)| = 1 for almost every x ∈ R and

∫ ∞
−∞

ψ(x)G(x) dµ(x) = 0 (5.2)

for every G ∈ A1(δ, µ).

If K ∈ A(δ) with f−K ∈ L1(R, µ) and ψ = sgn(f−K) a.e., then K is a best approximation

to f in L1(R, µ)-norm.

Proof. Let G ∈ A(δ). We may assume that f −G ∈ L1(R, µ) (else there is nothing to prove). Since

f −K ∈ L1(R, µ), we have G−K ∈ A1(δ, µ). Using (5.2) it follows that

‖f −K‖L1(µ) =

∫ ∞
−∞

ψ(f −K) dµ =

∫ ∞
−∞

ψ(f −G) dµ ≤
∫ ∞
−∞
|f −G| dµ = ‖f −G‖L1(µ), (5.3)
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hence K is a best approximation to f in L1(R, µ)-norm.

Remark 5.1.3. By an application of the Hahn-Banach Theorem, we also have that if K ∈ A(δ) is

a best approximation to f in L1(R, µ) and the set {x ∈ R | f(x) = K(x)} has measure zero, then

sgn(f −K) is orthogonal to A1(δ, µ) (see [24, Theorem 10.1] or [61, Theorem 4.2.2])

Given this connection, it is of interest to identify functions ψ that satisfy (5.2).

Definition 5.1.4. We say that a function ψ ∈ L∞(R, µ) is a high-pass function for A1(δ, µ) if

∫
R
ψ(x)G(x) dµ(x) = 0 (5.4)

for all G ∈ A1(δ, µ). We denote the class of all high-pass functions by T1(δ, µ). Furthermore, a

function ψ ∈ T1(δ, µ) with |ψ| = 1 a.e. is called an extremal signature for µ.

The term high-pass originates from the special case where µ is the Lebesgue measure. In

this case, an equivalent definition for a bounded function to be high-pass is that its (distributional)

Fourier transform has no support inside (−δ/2π, δ/2π) (see [61, Chapter 7]). For δ = π, the

simplest signatures with this property are of the form ψ(x) := sgn sinπ(x− α) where α is any real

number. Hence, for many functions it can be expected that a best approximation from A(π) in

L1(R, dx)-norm interpolates f at a translate of the integers and nowhere else on the real line. In

his notable thesis [51], B. F. Logan gives necessary and sufficient characterizations (Theorem 5.1.5)

of all sign change patterns which are high-pass for the Lebesgue measure. Using this, Logan is able

to find best L1(R, dx)-approximations of a class of so-called Krein kernels which are obtained by

an application of Nagy’s Criterion (see [51, Section 7.6] or [61, Section 7.4]).

Below we state Logan’s result (written in the language of functions of bounded type and

mean type).

Theorem 5.1.5 ([51, Section 7.6]). Let ψ be a measurable function on R such that ψ(x)2 = 1 a.e.

Then ψ ∈ T1(δ, dx) if and only if

ψ(x) = sgn sin 2ϕ(x) (5.5)

where e2iϕ(x) is the boundary function of an inner function G, in the upper half-plane with mean

type v(G) ≤ −δ.
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Proof. This is Theorem 6.5.1 of [51] see also Theorem 7.6.5.7 of [61].

In Sections 5.2 and 5.3 we determine extremal signatures for Hermite-Biehler weights (Theo-

rem 5.2.1) and explore additional properties of these functions. In Section 5.4 we apply the general

interpolation results from Sections 4.5 and 4.6 to construct best approximations to a variety of

functions in L1(R, |E(x)|−2 dx)-norm. Lastly, in Section 5.5 we present the best-approximations of

the Poisson and Conjugate Poisson kernel and give explicit values for the minimal error.

5.2. Extremal signatures for Hermite-Biehler weights

For a Hermite-Biehler function E, define the Hermite-Biehler weight (or de Branges mea-

sure) by

µE(B) =

∫
B

dx

|E(x)|2
. (5.6)

Recall that E∗/E is an inner function in the upper half-plane with continuous extension to the

closed half-plane, hence by Theorem 2.6.5 there exists a continuous, increasing, real-valued function

ϕ such that the identity

E∗(x)

E(x)
= e2iϕ(x) (5.7)

holds for all real x.

Theorem 5.2.1. Let E be a Hermite-Biehler function with bounded type in the upper half-plane

and mean type τ and no real zeros. If ϕ is a phase function of E, then

ψ(x) = sgn sin 2ϕ(x) (5.8)

belongs to T1(2τ, |E(x)|−2 dx).

Remark 5.2.2. If α is a real number, then the entire function

Eα(z) = eiαE(z) = Aα(z)− iBα(z) (5.9)

has phase ϕα = ϕ− α and satisfies |Eα(z)| = |E(z)| for all z. Thus,

ψα(x) = sgn sin(2(ϕ(x)− α)) (5.10)
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belongs to T1(2τ, |E(x)|−2 dx) for all real α.

Remark 5.2.3. Ultimately one would like a complete characterization (similar to Theorem 5.1.5)

of the space T1(δ, |E(x)|−2 dx).

Before we prove Theorem 5.2.1, we make the following useful observation.

Lemma 5.2.4. Let E be a Hermite-Biehler function with no real zeros. If ϕ is a phase function

of E, then the identity

sgn(AαBα) = sgn sin(2(ϕ− α)) (5.11)

is valid for all real α.

Proof. It follows from (5.7) that

sin(2(ϕ− α)) =
i

2

(
Eα
E∗α
− E∗α
Eα

)
=
i(E2

α − (E∗α)2)

2|Eα|2
=

2AαBα
|Eα|2

(5.12)

on the real line, which gives (5.11).

Remark 5.2.5. Equation (5.11) takes a particularly useful form when α = π/4. Since,

Aπ/4Bπ/4 = −1

4

(
E2 + (E∗)2

)
(5.13)

we have that

sgn
(
E2 + (E∗)2

)
= −sgn(Aπ/4Bπ/4) = −sgn sin(2(ϕ− π/4)) = −sgn cos(2ϕ). (5.14)

For the proof of Theorem 5.2.1 we make use of the following lemma.

Lemma 5.2.6. Let E be a Hermite-Biehler function with bounded type in the upper half-plane and

mean type τ and no real zeros. Let N ∈ N and define for z ∈ C+

FN (z) =
4

πi

N−1∑
k=0

1

2k + 1

(
E∗(z)

E(z)

)2k+1

. (5.15)
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Then

∫ ∞
−∞

FN (x)F (x)
dx

|E(x)|2
= 0 (5.16)

for all F ∈ A1(2τ, |E(x)|−2 dx).

Proof. Let F ∈ A1(2τ, |E(x)|−2 dx). By Lemma 3.3.4 and Theorem 3.6.1 we have that F/E2

belongs to H1(C+). Then

∫ ∞
−∞

FN (x)F (x)
dx

|E(x)|2
=

4

πi

N−1∑
k=0

1

2k + 1

∫ ∞
−∞

(
E∗(x)

E(x)

)2k F (x)

E2(x)
dx, (5.17)

and since E∗/E ∈ H∞(C+) it follows that the integrand on the right is an element of H1(R), and

Corollary 2.3.4 implies that each integral on the right is equal to zero.

Proof of Theorem 5.2.1. Let F ∈ A1(2τ, |E(x)|−2 dx) be real entire. Taking real parts in (5.16)

leads to ∫ ∞
−∞

4

π

N−1∑
k=0

sin(2(2k + 1)ϕ(x))

2k + 1
F (x)

dx

|E(x)|2
= 0. (5.18)

The function y 7→ sgn sin y is 2π periodic on R and has the Fourier expansion

sgn sin y = lim
N→∞

4

π

N−1∑
k=0

sin((2k + 1)y)

2k + 1
. (5.19)

Moreover, the partial sums on the right hand side of (5.19) are uniformally bounded in N and y,

and it follows that ∫ ∞
−∞

sgn sin(2ϕ(x))F (x)
dx

|E(x)|2
= 0 (5.20)

for every real entire F ∈ A1(2τ, |E(x)|−2 dx). For general F ∈ A1(2τ, |E(x)|−2 dx) we have that

F = F1− iF2 for real entire functions F1 and F2 given by F1 = 2−1(F +F ∗) and F2 = i2−1(F −F ∗).

As F ∈ A1(2τ, |E(x)|−2 dx) it follows that F ∗ and hence F1 and F2 belong to A1(2τ, |E(x)|−2 dx)

and the result follows.
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Remark 5.2.7. We see in the proof of Lemma 5.2.6 (and hence of Theorem 5.2.1) that one can

remove the assumption that E is of bounded type if we assume that F/E2 and F ∗/E2 belong to

H1(C+) for all F ∈ A1(2τ, |E(x)|−2 dx).

5.3. Sign changes of signatures

For the Lebesgue measure, Logan shows that high-pass functions cannot dwell at 1 (or −1)

for too long (see Theorem 5.3.1). In Theorem 5.3.2 we show that for Hermite-Biehler weights a

similar property holds.

Theorem 5.3.1 ([51, Theorem 7.3.1]). If ψ ∈ T1(δ, dx) such that |ψ(x)| ≤ 1 for all real x and

ψ(x) = 1 (5.21)

for a < x < b then

b− a ≤ π/δ, (5.22)

with equality possible if and only if

ψ(x) = sgn sin(δ(x− a)) (5.23)

for almost every real x.

For a Hermite-Biehler function with phase ϕ and α a real number, define

Γα :=
{
t ∈ R | ϕ(t) ≡ αmod

π

2

}
. (5.24)

Notice that if E does have have real zeros, we have that Γα = TAαBα (recall that TF is the zero set

of F ). The following theorem implies that if ψ ∈ T1(2τ, |E(x)|−2dx) with |ψ(x)| ≤ 1 on the real

line, then for all real α we have ψ 6≡ 1 (or −1) on any interval (a, b) that contains two elements in

Γα.

Theorem 5.3.2. Let E be a Hermite-Biehler function of bounded type in the upper half-plane and

mean type τ with no real zeros. Let α ∈ R. If ψ ∈ T1(2τ, |E(x)|−2dx) is bounded on the real line

and

ψ(x) = 1 (5.25)
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on an interval (a, b) that contains two elements in Γα, then

sup
x∈R
|ψ(x)| > 1. (5.26)

Proof. Let M = supx∈R |ψ(x)| <∞. Assume there exists a G ∈ A1(2τ, |E(x)|−2 dx) with G(x) > 0

on (a, b). (We will show that such a G exists below.) Since ψ ∈ T1(2τ, |E(x)|−2 dx), we have that

∫ ∞
−∞

G(x)ψ(x)
dx

|E(x)|2
= 0, (5.27)

thus ∫
(a,b)

G(x)
dx

|E(x)|2
= −

∫
R\(a,b)

G(x)ψ(x)
dx

|E(x)|2
. (5.28)

Since G(x) > 0 on (a, b), (5.28) gives

∫
(a,b)
|G(x)| dx

|E(x)|2
=

∣∣∣∣∣
∫
R\(a,b)

G(x)ψ(x)
dx

|E(x)|2

∣∣∣∣∣ ≤M
∫
R\(a,b)

|G(x)| dx

|E(x)|2
(5.29)

which leads to

M ≥

∫
(a,b) |G(x)| dx

|E(x)|2∫
R\(a,b) |G(x)| dx

|E(x)|2
. (5.30)

Let γi and γi+1 be two (consecutive) elements of Γα that belong to (a, b). If (a, b) contains

more than two elements from Γα, choose a sub-interval that only contains two elements from Γα

(notice that (5.30) holds with any sub-interval (a′, b′) ⊂ (a, b)).

In what follows, we construct a function Gα,i ∈ A1(2τ, |E(x)|−2 dx) with Gα,i(x) > 0 on

(a, b) such that ∫
R\(a,b)

|Gα,i(x)| dx

|E(x)|2
<

∫
(a,b)
|Gα,i(x)| dx

|E(x)|2
, (5.31)

which (along with (5.30)) gives M > 1 and finishes the proof.

Define

Gα,i(z) = Cα,i
Aα(z)Bα(z)

(z − γi)(z − γi+1)
(5.32)

where

Cα,i = −sgn

(
Aα

(
γi + γi+1

2

)
Bα

(
γi + γi+1

2

))
. (5.33)
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Since E does not have any real zeros, it follows that the (real) zeros of AαBα are simple

and are given by the set Γα (see (5.12)). By construction, the function Gα,i is entire and positive

on (γi−1, γi+2) ⊃ (a, b) (if there is no γi−1 or γi+2 take these to be −∞ or ∞, respectively). Since

Gα,i is continuous on R and AαBα/|E(x)|2 is bounded on the real line, it follows that Gα,i ∈

A1(2τ, |E(x)|−2 dx).

By Theorem 5.2.1 and Lemma 5.2.4 the function

ψα,i := sgn (Cα,iAαBα) . (5.34)

belongs to T1(2τ, |E(x)|−2 dx). Since Gα,i ∈ A1(2τ, |E(x)|−2 dx), we have that

∫ ∞
−∞

Gα,i(x)ψα,i(x)
dx

|E(x)|2
= 0. (5.35)

Notice that

ψα,i(x) =


sgnGα,i(x), x ∈ R \ (γi, γi+1)

−sgnGα,i(x), x ∈ (γi, γi+1),

(5.36)

hence (5.35) becomes

∫
R\(γi,γi+1)

|Gα,i(x)| dx

|E(x)|2
=

∫
(γi,γi+1)

|Gα,i(x)| dx

|E(x)|2
. (5.37)

Since Gα,i is continuous and positive on (γi, γi+1) ⊂ (a, b), inequality (5.31) follows.

5.4. Best approximations in L1(R, µE)-norm

In this section we apply the results of Sections 4.5 and 4.6 to construct best approximations

of the class of functions defined in Chapter 4.

Recall that if ν ∈ M+
b (R+), or the signed measure dνa(t) = sin(at)dt, and F is an an odd

Laguerre-Pólya function then the function z 7→ K(F, ν, z) (see (4.61) and Theorem 4.5.1) is an

entire function such that

sgn(F (x)) = f+
ν (x)−K(F, ν, x) (5.38)
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and

|f+
ν (x)−K(F, ν, x)| = O

(
F (x)

1 + x2

)
(5.39)

for all real x. Moreover, (5.38) and (5.39) also hold for the odd extension of f+
ν , f̃ν , with z 7→

K̃(F, ν, z) (see Theorem 4.5.2).

Theorem 5.4.1. Let E be a Hermite-Biehler function of bounded type in the upper half-plane

and exponential type τ(E) with no real zeros such that E(−z) = E∗(z) for all z. The following

propositions hold:

1. The entire function z 7→ K(AB, ν, z) is of exponential type 2τ and is a best approximation to

f+
ν from A(2τ(E)) in L1(R, |E(x)|−2 dx)-norm.

2. The entire function z 7→ K̃(AB, ν, z) is of exponential type 2τ and is a best approximation to

f̃ν from A(2τ(E)) in L1(R, |E(x)|−2 dx)-norm.

Moreover, if AB 6∈ H(E2) and ϕ′(x) is bounded on the real line, then the best approximations

to f+
ν and f̃ν are unique.

Remark 5.4.2. Unfortunately, there does not seem to be an approach that gives the minimal

L1(R, |E(x)|−2 dx)-error. However, in Section 5.5 we are able to give (via an application of the

Residue Theorem) simple expressions for the minimal L1(R, |E(x)|−2 dx)-error for the Poisson Ker-

nel and Conjugate Poisson Kernel.

Proof of Theorem 5.4.1. We show the result for the odd function f̃ν . The proof for f+
ν is nearly

identical, and we omit the details.

The Hermite-Biehler inequality (3.8) implies that A and B have only real zeros, and since

E has no real zeros, it follows from Lemma 3.5.4 that the zeros of A and B are simple and interlace.

As E is of bounded type and E∗(z) = E(−z), Lemmas 3.3.11 and 4.2.8 applied to

E2 = (A− iB)2 = (A2 +B2)− i2AB (5.40)

imply that AB is an odd LP function with a simple zero at the origin. Moreover, Lemma 3.3.11

implies that z 7→ E(iz) is real entire, hence iAB(ia) = −4−1(E2(ia) − E2(−ia)) and since E is
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Hermite-Biehler it follows that iAB(ia) < 0. Thus, the results of Sections 4.5 and 4.6 are applicable,

and we have that

sgn(AB(x)) = f̃ν(x)− K̃(AB, ν, x) (5.41)

for all real x. Since AB/E2 is bounded on R, it follows from (4.63) that

∫ ∞
−∞

|f̃ν(x)− K̃(AB, ν, x)|
|E(x)|2

dx <∞. (5.42)

Since E has exponential type τ , it follows that AB is of exponential type 2τ and (4.55) implies

that z 7→ K̃(AB, ν, z) of exponential type 2τ . Theorems 5.2.1 and 5.1.2 along with Lemma 5.2.4

prove that K̃ is extremal.

Next we prove uniqueness. If G ∈ A(2τ) such that

∫ ∞
∞
|f̃ν(x)−G(x)| dx

|E(x)|2
=

∫ ∞
∞
|f̃ν(x)− K̃(AB, ν, x)| dx

|E(x)|2

=

∫ ∞
∞

sgn (AB)
(
f̃ν(x)− K̃(AB, ν, x)

) dx

|E(x)|2
,

(5.43)

then sgn (AB)
(
f̃ν −G

)
does not change sign on the real line. Since G is continuous, we conclude

that

G(ξ) = f̃ν(ξ) = K̃(AB, ν, ξ) (5.44)

for all ξ ∈ TAB \ {0}, and we easily deduce that G(0) = 2−1(f̃ν(ξ+) + f̃ν(ξ−)) = K̃(AB, ν, 0) = 0.

As G− K̃ ∈ H1(E2) ⊂ H∞(E2) (by Lemma 3.8.5) and AB 6∈ H(E2) the interpolation formula for

H(E2) (Theorem 3.8.1), applied to G− K̃, gives

G(z)− K̃(AB, ν, z) = βAB(z) (5.45)

for some β. Since G − K̃ ∈ L1(R, |E(x)|−2dx) and AB 6∈ L1(R, |E(x)|−2 dx) (see Lemma 5.4.3

below), we conclude that β = 0, hence G = K̃.

Lemma 5.4.3. Let E = A−iB be a Hermite-Biehler function. If AB 6∈ H(E2), then AB 6∈ H1(E2)
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Proof. Since AB 6∈ H(E) and AB/E2 is bounded and hence of bounded type with non-positive

mean type, we have that ∫ ∞
−∞

|AB|2

|E2|2
dx =∞. (5.46)

Using that AB/E2 is bounded by 1 on the real line it follows that

∞ =

∫ ∞
−∞

|AB|2

|E2|2
dx ≤

∫ ∞
−∞

|AB|
|E|2

dx, (5.47)

hence AB 6∈ H1(E2).

Remark 5.4.4. In the recent works [11, 13], Carneiro and Littmann consider the interpolation

problem for classes of even functions given by

fν(x) =

∫ ∞
0

e−λ|x| dν(λ) and gν(x) =

∫ ∞
0

e−x
2λ dν(λ). (5.48)

For a given even LP-function, they construct interpolations z 7→ L(F, ν, z) such that

sgn(F (x)) = {fν(x)− L(F, ν, x)} and sgn(F (x)) = {gν(x)− L(F, ν, x)} (5.49)

and

|fν(x)− L(F, ν, x)| = O
(
F (x)

x2 + 1

)
and |gν(x)− L(F, ν, x)| = O

(
F (x)

x2 + 1

)
(5.50)

hold for all real x. Proceeding as in the proof of Theorem 5.4.1, we can apply these results to the

even LP-function Aπ/2Bπ/2 to obtain best approximations of fν and gν in L1(R, |E(x)|−2dx)-norm.

5.5. Best approximations to the Poisson and conjugate Poisson kernels in L1(R, µE)-

norm

We conclude the discussion on Best Approximations by presenting two special cases of best

approximations in L1(R, µE)-norm. For λ > 0, we define the Poisson kernel Pλ and conjugate

Poisson kernel Qλ by

Pλ(x) =
1

π

λ

x2 + λ2
(5.51)
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and

Qλ(x) =
1

π

x

x2 + λ2
. (5.52)

For a Hermite-Biehler function E such that E(−z) = E∗(z), we define the functions

KPλ,E ,KQλ,E : C→ C by

KPλ,E(z) =
1

π

λ

z2 + λ2

(
1− E(z)2 + E∗(z)2

E(iλ)2 + E∗(iλ)2

)
=

1

π

λ

z2 + λ2

(
1−

Aπ/4(z)Bπ/4(z)

Aπ/4(iλ)Bπ/4(iλ)

)
(5.53)

and

KQλ,E(z) =
1

π

1

z2 + λ2

(
z − iλ E(z)2 − E∗(z)2

E(iλ)2 − E∗(iλ)2

)
=

1

π

1

z2 + λ2

(
z − iλ A(z)B(z)

A(iλ)B(iλ)

)
(5.54)

Since these functions have been fixed up to have no singularities at ±iλ it follows that they are

entire functions. Moreover, if E is of bounded type in the upper half-plane with mean type τ (and

hence of exponential type τ by Krein’s Theorem), we have that these functions are of exponential

type 2τ .

These functions turn out to be best approximations of the Poisson kernel and conjugate

Poisson kernel, respectively, with remarkably explicit error bounds.

Theorem 5.5.1. Let λ > 0. Let E be a Hermite-Biehler function of bounded type in C+ and

exponential type τ(E) with no real zeros such that E(−z) = E∗(z) for all z. If F : C → C is an

entire function of exponential type 2τ(E), then

∫ ∞
−∞
|Pλ(x)− F (x)| dx

|E(x)|2
≥ 4

π

1

E(iλ)E(−iλ)
arctan

(
E(−iλ)

E(iλ)

)
. (5.55)

Moreover, there is equality in the inequality (5.55) if F (z) = KPλ,E(z).

Proof. By (5.53) we have

Pλ(x)−KPλ,E(x) =
1

π

λ

x2 + λ2

E(x)2 + E∗(x)2

E(iλ)2 + E∗(iλ)2
, (5.56)
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hence Pλ −KPλ,E ∈ L1(R, |E(x)|−2 dx). As E(−z) = E∗(z) for all z, it follows that E(iλ) is real

valued and

sgn(Pλ(x)−KPλ,E(x)) = sgn(E(x)2 + E∗(x)2) = −sgn sin(2(ϕ− π/4)) = sgn cos 2ϕ(x) (5.57)

for all real x. By Theorem 5.1.2 and Theorem 5.2.1 we have that

∫ ∞
−∞
|Pλ(x)− F (x)| dx

|E(x)|2
≥
∫ ∞
−∞
|Pλ(x)−KPλ,E(x)| dx

|E(x)|2
(5.58)

for every F ∈ A(2τ). We prove that KPλ,E gives the desired integral value (5.55) in Lemma 5.5.4

which completes the proof.

Theorem 5.5.2. Let λ > 0. Let E be a Hermite-Biehler function of bounded type in C+ and

exponential type τ(E) with no real zeros such that E(−z) = E∗(z) for all z. If F : C → C is an

entire function of exponential type 2τ(E), then

∫ ∞
−∞
|Qλ(x)− F (x)| dx

|E(x)|2
≥ 4

π

1

E(iλ)E(−iλ)
arctanh

(
E(−iλ)

E(iλ)

)
. (5.59)

Moreover, there is equality in the inequality (5.59) if F (z) = KQλ,E(z).

Proof. By (5.54) we have

Qλ(x)−KQλ,E(x) =
1

π

iλ

x2 + λ2

E(x)2 − E∗(x)2

E(iλ)2 − E∗(iλ)2
. (5.60)

hence Qλ−KQλ,E ∈ L1(R, µE). As E(−z) = E∗(z) for all z, we have that E(iλ) is real valued and

since E is Hermite-Biehler it follows that E(iλ)2 ≥ E∗(iλ)2. Thus,

sgn(Qλ(x)−KQλ,E(x)) = sgn(i(E(x)2 − E∗(x)2)) = sgn sin(2ϕ(x)) (5.61)

for all real x. By Theorem 5.1.2 and Theorem 5.2.1 we have that

∫ ∞
−∞
|Qλ(x)− F (x)| dx

|E(x)|2
≥
∫ ∞
−∞
|Qλ(x)−KQλ,E(x)| dx

|E(x)|2
(5.62)
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for every F ∈ A(2τ). We prove that KQλ,E gives the desired integral value (5.59) in Lemma 5.5.5

which completes the proof.

The following lemma is used to show that KPλ,E and KQλ,E give the desired integral values

(5.55) and (5.59).

Lemma 5.5.3. Let λ > 0 and k ∈ Z. Let E be a Hermite-Biehler function. We have

∫ ∞
−∞

(
E∗(x)

E(x)

)k 1

x2 + λ2
dx =


π
λ

(
E∗(iλ)
E(iλ)

)k
if k ≥ 0

π
λ

(
E∗(−iλ)
E(−iλ)

)k
if k < 0

(5.63)

Moreover, if E(−z) = E∗(z) for all z, then for k ≥ 0 we have

∫ ∞
−∞

(
E∗(x)

E(x)

)k 1

x2 + λ2
dx =

∫ ∞
−∞

(
E∗(x)

E(x)

)−k 1

x2 + λ2
dx =

π

λ

(
E(−iλ)

E(iλ)

)k
. (5.64)

Proof. Since E is Hermite-Biehler, we have E∗/E is analytic and bounded by 1 in the upper half-

plane and has continuous extension to the closed half-plane. Hence, for k ≥ 0 closing the contour

in the upper half-plane and applying the residue theorem gives (5.63). Similarly, for k < 0 we have

that E/E∗ is analytic and bounded by 1 in the lower half-plane, so closing the contour in the lower

half-plane gives 5.63. Equation (5.64) follows directly.

Lemma 5.5.4. Let λ > 0. Let E be a Hermite-Biehler function with no real zeros such that

E(−z) = E∗(z) for all z. Then

∫ ∞
−∞
|Pλ(x)−KPλ,E(x)| dx

|E(x)|2
=

4

π

1

E(iλ)E(−iλ)
arctan

(
E(−iλ)

E(iλ)

)
(5.65)

Proof. As in the the proof of Theorem 5.55 we have that sgn(Pλ(x) −KPλ,E(x)) = sgn cos 2ϕ(x)

for all real x. It follows that

∫ ∞
−∞
|Pλ(x)−KPλ,E(x)| dx

|E(x)|2
=

∫ ∞
−∞

(Pλ(x)−KPλ,E(x))sgn cos 2ϕ(x)
dx

|E(x)|2
(5.66)
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Expanding sgn cos 2ϕ(x) into its Fourier series and interchanging integration and summation (which

is valid since the partial sums are uniformly bounded) gives

∫ ∞
−∞

(Pλ(x)−KPλ,E(x))sgn cos 2ϕ(x)
dx

|E(x)|2

=
2

π

∑
n∈Z

(−1)n

2n+ 1

∫ ∞
−∞

(Pλ(x)−KPλ,E(x))
(
e2iϕ(x)

)2n+1 dx

|E(x)|2

=
2

π2

λ

E(iλ)2 + E(−iλ)2

∑
n∈Z

(−1)n

2n+ 1

∫ ∞
−∞

E(x)2 + E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2

(5.67)

It remains to study the integrals on the right hand side of (5.67). For n ≥ 0, we write |E(x)|2 =

E(x)E∗(x) and apply Lemma 5.5.3 to obtain

∫ ∞
−∞

E(x)2 + E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2

=

∫ ∞
−∞

1

x2 + λ2

(
1 +

E∗(x)2

E(x)2

)(
E∗(x)

E(x)

)2n

dx

=

∫ ∞
−∞

(
E∗(x)

E(x)

)2n 1

x2 + λ2
dx+

∫ ∞
−∞

(
E∗(x)

E(x)

)2n+2 1

x2 + λ2
dx

=
π

λ

(
E(−iλ)

E(iλ)

)2n

+
π

λ

(
E(−iλ)

E(iλ)

)2n+2

=
π

λ

(
E(−iλ)

E(iλ)

)2n E(iλ)2 + E(−iλ)2

E(iλ)2
.

(5.68)

Similarly, for n < 0 we have

∫ ∞
−∞

E(x)2 + E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2

=

∫ ∞
−∞

1

x2 + λ2

(
E(x)2

E∗(x)2
+ 1

)(
E∗(x)

E(x)

)2n+2

dx

=

∫ ∞
−∞

1

x2 + λ2

(
E∗(x)

E(x)

)2n

dx+

∫ ∞
−∞

1

x2 + λ2

(
E∗(x)

E(x)

)2n+2

dx

=
π

λ

(
E(iλ)

E(−iλ)

)2n

+
π

λ

(
E(iλ)

E(−iλ)

)2n+2

=
π

λ

(
E(iλ)

E(−iλ)

)2n E(iλ)2 + E(−iλ)2

E(−iλ)2
.

(5.69)

96



Inserting these into (5.67) and applying the identities

∞∑
n=0

(−1)n

2n+ 1
z2n =

arctan(z)

z
for |z| < 1 (5.70)

and
−1∑

n=−∞

(−1)n

2n+ 1
z2n =

arctan(1/z)

z
for |z| > 1 (5.71)

gives

∫ ∞
−∞

(Pλ(x)−KPλ,E(x))sgn cos 2ϕ(x)
dx

|E(x)|2

=
2

π

(
1

E(iλ)2

∞∑
n=0

(−1)n

2n+ 1

(
E(−iλ)

E(iλ)

)2n

+
1

E(−iλ)2

−1∑
n=−∞

(−1)n

2n+ 1

(
E(iλ)

E(−iλ)

)2n
)

=
2

π

(
1

E(iλ)2

E(iλ)

E(−iλ)
arctan

(
E(−iλ)

E(iλ)

)
+

1

E(−iλ)2

E(−iλ)

E(iλ)
arctan

(
E(−iλ)

E(iλ)

))
=

4

π

1

E(iλ)E(−iλ)
arctan

(
E(−iλ)

E(iλ)

)
(5.72)

which is (5.65).

Lemma 5.5.5. Let λ > 0. Let E be a Hermite-Biehler function with no real zeros such that

E(−z) = E∗(z) for all z. Then

∫ ∞
−∞
|Qλ(x)−KQλ,E(x)| dx

|E(x)|2
=

4

π

1

E(iλ)E(−iλ)
arctanh

(
E(−iλ)

E(iλ)

)
(5.73)

Proof. The proof is nearly identical to Lemma 5.59. We sketch out the minor differences.

As in the proof of Theorem 5.55 we have that sgn(Qλ(x) −KQλ,E(x)) = sgn sin 2ϕ(x) for

all real x. It follows that

∫ ∞
−∞
|Qλ(x)−KQλ,E(x)| dx

|E(x)|2
=

∫ ∞
−∞

(Qλ(x)−KQλ,E(x))sgn sin 2ϕ(x)
dx

|E(x)|2
(5.74)
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Expanding sgn sin 2ϕ(x) into its Fourier series and interchanging integration and summation gives

∫ ∞
−∞

(Qλ(x)−KQλ,E(x))sgn sin 2ϕ(x)
dx

|E(x)|2

=
2

π2

λ

E(iλ)2 − E(−iλ)2

∑
n∈Z

1

2n+ 1

∫ ∞
−∞

E(x)2 − E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2
.

(5.75)

As in Lemma 5.5.4 we compute the integrals on the right hand side of (5.75). For n ≥ 0 we have

∫ ∞
−∞

E(x)2 − E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2
=
π

λ

(
E(−iλ)

E(iλ)

)2n E(iλ)2 − E(−iλ)2

E(iλ)2
(5.76)

and for n < 0 we have

∫ ∞
−∞

E(x)2 − E∗(x)2

x2 + λ2

(
E∗(x)

E(x)

)2n+1 dx

|E(x)|2
= −π

λ

(
E(iλ)

E(−iλ)

)2n E(iλ)2 − E(−iλ)2

E(−iλ)2
. (5.77)

Inserting these into (5.75) and applying the identities

∞∑
n=0

1

2n+ 1
z2n =

arctanh(z)

z
for |z| < 1 (5.78)

and
−1∑

n=−∞

1

2n+ 1
z2n = −arctanh(1/z)

z
for |z| > 1 (5.79)

gives the desired result.
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6. EXTREMAL PROBLEMS WITH VANISHING

CONDITION

6.1. Introduction

In this chapter, we consider the following one-sided L1(R, dx)-approximation problem with

vanishing condition.

Problem 6.1.1. Given f : R → R, δ > 0, and α = ib with b > 0, can we find an entire function

F : C→ C of exponential type 2πδ that satisfies F (x) ≥ f(x) for all real x and F (α) = 0 such that

the integral ∫ ∞
−∞
{F (x)− f(x)} dx (6.1)

is minimized?

Remark 6.1.2. Let F be a real entire function, i.e., F ∗ = F . If F (α) = 0, then F (α) = F (α) = 0,

hence vanishing at α implies vanishing at α.

We approach this problem by modifying the function f and encoding the vanishing condition

into a new measure (so that the vanishing condition may be dropped). This modification is done

by noticing that any majorant F ∈ A(δ) of f that vanishes at ib ∈ iR is necessarily of the form

F (z) = Fb(z)(z
2 + b2) (6.2)

where Fb ∈ A(δ) is a majorant of fb(x) = f(x)(x2 + b2)−1. Hence, we seek to find G+ ∈ A(δ) such

that G+(x) ≥ f(x)(x2 + b2)−1 for all real x, and the integral

∫ ∞
−∞

{
G+(x)− f(x)

x2 + b2

}
(x2 + b2) dx (6.3)

is minimal.

In Sections 6.2, 6.3, and 6.4 we solve the more general weighted one-sided L1(R, µ) approxi-

mation problem for x 7→ f(x)(x2 +b2)−1 when f is taken to be the Heaviside function (equivalently

the signum function), a monomial, or the Poisson kernel and µE is a Hermite-Biehler weight. In
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Section 6.5 we define a Hermite-Biehler function E so that A2(δ, (x2 + b2) dx) = H(E) isometri-

cally and explore various properties of this weighted Paley-Wiener space. Lastly, in Section 6.6 we

combine these results to solve the vanishing problem for the signum function, monomials, and the

Poisson kernel.

Before we state the results of this chapter we briefly review some of the notation from

Chapter 3. Recall an entire function E is called a Hermite-Biehler function if

|E∗(z)| < |E(z)| (6.4)

for every z ∈ C+, where E∗(z) = E(z). For a given Hermite-Biehler function E and α ∈ R, we

define the functions

Aα(z) =
1

2

(
E(z)eiα + E∗(z)e−iα

)
and Bα(z) =

i

2

(
E(z)eiα − E∗(z)e−iα

)
. (6.5)

For α = 0, we set A = A0 and B = B0. If E is a Hermite-Biehler function, then the de Branges

space H2(E) is is a reproducing kernel Hilbert space (RKHS). The reproducing kernel is given by

KE(w, z) =
E(z)E∗(w)− E∗(z)E(w)

2πi(w − z)
=
B(z)A(w)−A(z)B(w)

π(z − w)
(6.6)

for z 6= w and when z = w we find that

KE(z, z) =
E(z)E′(z)− E∗(z)E′(z)

2πi
=
B′(z)A(z)−A′(z)B(z)

π
. (6.7)

6.2. One-sided approximations to the truncated Poisson kernel in L1(R, µE)-norm

For a > 0, we define ta : R→ R by

ta(x) =


1

x2+a2
ifx > 0,

0 else.

(6.8)

Theorem 6.2.1. Let E be a Hermite-Biehler function of bounded type in the upper half-plane and

exponential type τ(E) with no real zeros such that E(−z) = E∗(z) for all z. If F+, F− ∈ A(2τ)
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with

F−(x) ≤ ta(x) ≤ F+(x) (6.9)

for all real x, then

∫
R

(F+(x)− F−(x))
dx

|E(x)|2
≥ 1

a2K(0, 0)
, (6.10)

and there exist functions T±a ∈ A(2τ) satisfying (6.9) such that there is equality in (6.10) for

F+ = T+
a and F− = T−a .

Proof of Theorem 6.2.1. Inequality (3.8) implies that B has only real zeros, and since E has no

real zeros, it follows from Lemma 3.5.4 that the zeros of B are simple. Since, E is of bounded type

and E∗(z) = E(−z), Lemmas 3.3.11 and 4.2.8 give that B is an odd LP function with a simple

zero at the origin. Evidently, B2 is an even LP function that has a double zero at the origin, and

the results of Section 4.7 are applicable.

We define the entire functions T+
a and T−a by

T+
a (z) = a−1M+(B2, a, z) (6.11)

T−a (z) = a−1M−(B2, a, z) (6.12)

with M− and M+ as in (4.99) and (4.100) (see Section 4.7). Since E has exponential type τ , it

follows that B is also of exponential type τ and (4.55) implies that T+
a and T−a are of exponential

type 2τ . Since B2 ≥ 0 on R, inequality (4.103) implies

T+
a (x) ≥ ta(x) (6.13)

for all real x, and (4.102) implies that

T+
a (ξ) = ta(ξ+) (6.14)
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for all ξ with B(ξ) = 0. Since B2/E2 is bounded on R, it follows from (4.117) that

∫ ∞
−∞

T+
a (x)− ta(x)

|E(x)|2
dx <∞. (6.15)

A similar argument gives the same statement for ta − T−a . Since T−a ≤ ta ≤ T+
a we obtain

that |T+
a − T−a | is integrable with respect to µE = |E(x)|−2dx. It follows from Lemma 3.7.1 that

there exists U ∈ H(E) such that

T+
a − T−a = UU∗. (6.16)

We prove next the optimality of T+
a . Let F be a function of type 2τ with F ≥ ta on R. We

may assume that ∫ ∞
−∞

F (x)− ta(x)

|E(x)|2
dx <∞, (6.17)

(since otherwise there is nothing to show). The inequality T−a ≤ ta ≤ F gives

|F (x)− T−a (x)| ≤ (F (x)− ta(x)) + (ta(x)− T−a (x)) (6.18)

and hence F −T−a is an entire function of exponential type 2τ that is integrable with respect to µE .

Evidently, F − T−a ≥ F − ta ≥ 0. Applying Lemma 3.7.1 again implies that there exists V ∈ H(E)

such that

F − T−a = V V ∗, (6.19)

It follows from (6.16) and (6.19) that

F − T+
a = V V ∗ − UU∗. (6.20)

An application of Theorem 3.5.5 to U and V together with T+
a (ξ) = ta(ξ+) for all ξ ∈ R

with B(ξ) = 0 implies

∫ ∞
−∞

F (x)− T+
a (x)

|E(x)|2
dx =

∑
B(ξ)=0

F (ξ)− ta(ξ)
K(ξ, ξ)

≥ 0, (6.21)
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hence T+
a is extremal.

An analogous calculation (which we omit) shows that T−a is an extremal minorant. It

remains to prove that ∫ ∞
−∞

(T+
a (x)− T−a (x))

dx

|E(x)|2
=

1

a2K(0, 0)
. (6.22)

It follows from (6.16) and Theorem 3.5.5 that

∫ ∞
−∞

(T+
a (x)− T−a (x))

dx

|E(x)|2
=

∑
B(ξ)=0

T+
a (ξ)− T−a (ξ)

K(ξ, ξ)
. (6.23)

The only non-zero summand is the term for ξ = 0. Since T+
a (0)−T−a (0) = ta(0+)− ta(0−) = 1/a2,

the proof is complete.

6.3. One-sided approximations to xn(x2 + λ2)−1 in L1(R, µE)-norm

As with the problem of best approximations, the optimal one-sided approximations to the

Poisson kernel Pλ and conjugate Poisson kernel Qλ are explicit and we obtain remarkably simple

error bounds. In fact, this approach extends to a slightly larger class of functions. For n ∈ N0 and

λ > 0, define fn,λ : R→ R by

fn,λ(x) =
xn

x2 + λ2
. (6.24)

Notice that for n = 0 and n = 1, the functions f1,λ and f2,λ are essentially the Poisson kernel Pλ

and conjugate Poisson kernel Qλ, respectively.

For a positive λ and a Hermite-Biehler function E such that E∗(z) = E(−z) for all complex

z, we define the functions Mfn,λ,E , Lfn,λ,E : C→ C by the following:

For n ≡ 0 mod 4,

Mfn,λ,E(z) =
1

z2 + λ2

(
zn − (iλ)n

(
B(z)

B(iλ)

)2
)
, (6.25)

Lfn,λ,E(z) =
1

z2 + λ2

(
zn − (iλ)n

(
A(z)

A(iλ)

)2
)

; (6.26)

and for n ≡ 1 mod 4

Mfn,λ,E(z) =
1

z2 + λ2

(
zn − i(iλ)n

2

(
i
B(z)

B(iλ)
− A(z)

A(iλ)

)2
)
, (6.27)
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Lfn,λ,E(z) = −Mfn,λ,E(−z). (6.28)

Notice that the functions fn,λ satisfy the following recursive relationship

fn,λ(x) = xn−2 − λ2fn−2,λ(x). (6.29)

Using this we can easily define Mfn,λ,E and Lfn,λ,E for the remaining cases.

For n ≡ 2 mod 4,

Mfn,λ,E(z) = zn−2 − λ2Ln−2,λ,E(z) =
1

z2 + λ2

(
zn − (iλ)n

(
A(z)

A(iλ)

)2
)
, (6.30)

Lfn,λ,E(z) = zn−2 − λ2Mn−2,λ,E(z) =
1

z2 + λ2

(
zn − (iλ)n

(
B(z)

B(iλ)

)2
)

; (6.31)

and for n ≡ 3 mod 4,

Mfn,λ,E(z) = zn−2 − λ2Ln−2,λ,E(z) =
1

z2 + λ2

(
−zn − i(iλ)n

2

(
i
B(z)

B(iλ)
+

A(z)

A(iλ)

)2
)
, (6.32)

Lfn,λ,E(z) = zn−2 − λ2Mn−2,λ,E(z) = −Mfn,λ,E(−z). (6.33)

Since these functions have been fixed up to have no singularities at ±iλ it follows that

they are entire functions. Moreover, if E is of bounded type in the upper half-plane with mean

type τ (and hence of exponential type τ by Krein’s Theorem), we have that these functions are of

exponential type 2τ .

The results for fn,λ (and hence for the Poisson kernel and conjugate Poisson kernel) are the

following:

Theorem 6.3.1. Let λ > 0 and n ∈ N0 such that n ≡ 0 mod 4. Let E be a Hermite-Biehler function

of bounded type in C+ and exponential type τ(E) with no real zeros such that E∗(z) = E(−z) for

all complex z. The following properties hold:
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1. Assume B /∈ H(E). If M : C → C is an entire function of exponential type 2τ(E) with

M(x) ≥ fn,λ(x) for all real x, then

∫ ∞
−∞

(M(x)− fn,λ(x))
dx

|E(x)|2
≥ 2πλn−1

E(iλ)(E(iλ)− E(−iλ))
. (6.34)

Moreover, there is equality in the inequality (6.34) if M(z) = Mfn,λ,E(z).

2. Assume A /∈ H(E). If L : C → C is an entire function of exponential type 2τ(E) with

Pλ(x) ≥ L(x) for all real x, then

∫ ∞
−∞

(fn,λ(x)− L(x))
dx

|E(x)|2
≥ 2πλn−1

E(iλ)(E(iλ) + E(−iλ))
. (6.35)

Moreover, there is equality in the inequality (6.35) if L(z) = Lfn,λ,E(z).

Using the recursive relationships (6.29) and (6.31) the case when n ≡ 2 mod 4 follows

directly from Theorem 6.3.1.

Theorem 6.3.2. Let λ > 0 and n ∈ N0 such that n ≡ 2 mod 4. Let E be a Hermite-Biehler function

of bounded type in C+ and exponential type τ(E) with no real zeros such that E∗(z) = E(−z) for

all complex z. The following properties hold:

1. Assume A /∈ H(E). If M : C → C is an entire function of exponential type 2τ(E) with

M(x) ≥ fn,λ(x) for all real x, then

∫ ∞
−∞

(M(x)− fn,λ(x))
dx

|E(x)|2
≥ 2πλn−1

E(iλ)(E(iλ) + E(−iλ))
. (6.36)

Moreover, there is equality in the inequality (6.36) if M(z) = Mfn,λ,E(z).

2. Assume B /∈ H(E). If L : C → C is an entire function of exponential type 2τ(E) with

Pλ(x) ≥ L(x) for all real x, then

∫ ∞
−∞

(fn,λ(x)− L(x))
dx

|E(x)|2
≥ 2πλn−1

E(iλ)(E(iλ)− E(−iλ))
. (6.37)

Moreover, there is equality in the inequality (6.37) if L(z) = Lfn,λ,E(z).
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Theorem 6.3.3. Let λ > 0 and n an odd positive integer. Let E be a Hermite-Biehler function of

bounded type in C+ and exponential type τ(E) with no real zeros such that E∗(z) = E(−z) for all

complex z. For αλ = arg(A(iλ) +B(iλ)), the following properties hold:

1. Assume Bαλ 6∈ H(E). If M : C → C is an entire function of exponential type 2τ(E) with

M(x) ≥ fn,λ(x) for all real x, then

∫ ∞
−∞

(M(x)− fn,λ(x))
dx

|E(x)|2
≥ 2πλn−1

E2(iλ)− E2(−iλ)
. (6.38)

Moreover, there is equality in the inequality (6.38) if M(z) = Mfn,λ,E(z).

2. Assume Bαλ 6∈ H(E). If L : C → C is an entire function of exponential type 2τ(E) with

fn,λ(x) ≥ L(x) for all real x, then

∫ ∞
−∞

(fn,λ(x)− L(x))
dx

|E(x)|2
≥ 2πλn−1

E2(iλ)− E2(−iλ)
. (6.39)

Moreover, there is equality in the inequality (6.39) if L(z) = Lfn,λ,E(z).

Remark 6.3.4. In the above results we are able to give explicit L1(R, |E(x)|−2dx)-errors of the

difference between fn,λ and its majorant/minorant. It is worth mentioning that if we look at the

integral value of the difference between majorant and minorant (as in Theorem 6.2.1), then for all

n ∈ N0 the inequalities (6.34), (6.35),(6.36), (6.37), (6.38), and (6.39) read

∫ ∞
∞

(M(x)− L(x))
dx

|E(x)|2
≥ 4πλn−1

E2(iλ)− E2(−iλ)
. (6.40)

Remark 6.3.5. The results for the conjugate Poisson kernel (i.e., f1,λ) are especially interesting

since they are the first for an odd continuous function in de Branges spaces. In fact, very little

is known about optimal majorants and minorants for continuous odd functions even with respect

to the Lebesgue measure. Using the results for the conjugate Poisson kernel, it may be possible

to construct good, not necessarily optimal, majorants and minorants for other continuous odd

functions.

In an effort to better understand extremal problems for other continuous odd functions it

is instructive to consider the special case of the previous theorem for the Lebesgue measure. This
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is done by applying the previous theorem with the Hermite-Biehler function Eπ(z) = e−πiz. The

needed assumptions for Eπ are verified directly. By letting αλ = 1
π arctan(tanh(πλ)), we see that

Q+
λ (γ) = Qλ(γ) for any γ = αλ + Z. It follows that the extremal majorant for Qλ of type 2π with

respect to the Lebesgue measure can also be written as

Q+
λ (z) =

sin2(π(z − αλ))

π2

∞∑
n=−∞

(
Qλ(n+ αλ)

(z − (n+ αλ))2
+

Q′λ(n+ αλ)

z − (n+ αλ)

)
. (6.41)

We turn to the proof of Theorem 6.3.1 (The case when n ≡ 0 mod 4).

Proof of Theorem 6.3.1. We divide the proof into two pieces. First, we show that the functions

Mfn,λ,E and Lfn,λ,E satisfy

Lfn,λ,E(x) ≤ fn,λ(x) ≤Mfn,λ,E(x) (6.42)

for all real x and give equality in (6.34) and (6.35), respectively.

Since E∗(z) = E(−z) for all complex z, we have that A(iλ), iB(iλ) ∈ R. It follows that

Mfn,λ,E(x)− fn,λ(x) = − λn

x2 + λ2

B2(x)

B2(iλ)
≥ 0 (6.43)

and

fn,λ − Lfn,λ,E(x) =
λn

x2 + λ2

A2(x)

A2(iλ)
≥ 0 (6.44)

for all real x, which gives (6.42).

To show that Mfn,λ,E and Lfn,λ,E give equality in (6.34) and (6.35), respectively, we write

B = i/2(E − E∗) and |E(x)|2 = EE∗, expand the square, and apply Lemma 5.5.3 to obtain

∫ ∞
−∞

(Mfn,λ,E(x)− fn,λ(x))
dx

|E(x)|2
= − λn

B2(iλ)

∫ ∞
−∞

B2(x)

|E(x)|2
1

x2 + λ2
dx

=
λn

4B2(iλ)

∫ ∞
−∞

(
E(x)

E∗(x)
+
E∗(x)

E(x)
− 2

)
1

x2 + λ2
dx

=
1

2

πλn−1

B2(iλ)

(
E(−iλ)

E(iλ)
− 1

)
=

2πλn−1

E(iλ)(E(iλ)− E(−iλ))
.

(6.45)
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In a similar way expanding A gives

∫ ∞
−∞

(fn,λ(x)− Lfn,λ,E(x))
dx

|E(x)|2
=

1

2

πλn−1

A2(iλ)

(
E(−iλ)

E(iλ)
+ 1

)
=

2πλn−1

E(iλ)(E(iλ) + E(−iλ))
. (6.46)

Next we prove the optimality of Mfn,λ,E and Lfn,λ,E . Let M be a real entire function of

exponential type 2τ(E) such that M(x) ≥ fn,λ(x) for all real x. We may assume that

∫ ∞
−∞

(M(x)− fn,λ(x))
dx

|E(x)|2
<∞. (6.47)

Since Mfn,λ,E − Lfn,λ,E and M − Lfn,λ,E are entire functions of exponential type 2τ(E) that are

nonnegative on the real line and integrable with respect to µE = |E(x)|−2 dx, it follows from Lemma

3.7.1 that there exists U, V ∈ H(E) such that

Mfn,λ,E − Lfn,λ,E = UU∗ (6.48)

M − Lfn,λ,E = V V ∗ (6.49)

hence

M(z)−Mfn,λ,E(z) = V (z)V ∗(z)− U(z)U∗(z) (6.50)

for all z ∈ C. An application of Theorem 3.5.5 with α = 0 applied to U and V together with the

fact that Mfn,λ,E(γ) = fn,λ(γ) for all γ ∈ R with B(γ) = 0 implies

∫ ∞
−∞

M(x)−Mfn,λ,E(x)

|E(x)|2
dx =

∑
B(γ)=0

M(γ)− fn,λ(γ)

K(γ, γ)
≥ 0, (6.51)

proving that Mfn,λ,E is extremal. The proof of the extremality of the minorant Lfn,λ,E is similar,

and we omit the details.

Next we prove the odd cases.

Proof of Theorem 6.3.3. The proof is similar to Theorem 6.3.1, and we highlight some of the dif-

ferences.

First consider the case when n ≡ 1 mod 4. We begin by showing that Mfn,λ,E and Lfn,λ,E

satisfy the desired properties. Since E∗(z) = E(−z) for all complex z we have that A(iλ), iB(iλ) ∈
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R, hence

Mfn,λ,E(x)− fn,λ(x) =
λn

2π

(
i
B(x)

B(iλ)
− A(x)

A(iλ)

)2 1

x2 + λ2
≥ 0 (6.52)

for all real x.

To show (6.38) we expand the square and apply Lemma 5.5.3 to obtain

∫ ∞
−∞

(Mfn,λ,E(x)− fn,λ(x))
dx

|E(x)|2

=
λn

2

∫ ∞
−∞

(
i
B(x)

B(iλ)
− A(x)

A(iλ)

)2 1

x2 + λ2

dx

|E(x)|2

=
λn

8

(
1

B2(iλ)
+

2

B(iλ)A(iλ)
+

1

A2(iλ)

)∫ ∞
−∞

E(x)

E∗(x)

1

x2 + λ2
dx

+
λn

8

(
1

B2(iλ)
− 2

B(iλ)A(iλ)
+

1

A2(iλ)

)∫ ∞
−∞

E(x)

E∗(x)

1

x2 + λ2
dx

+
λn

4

(
− 1

B2(iλ)
+

1

A2(iλ)

)∫ ∞
−∞

1

x2 + λ2
dx

=
πλn−1

4

(
1

B2(iλ)
+

1

A2(iλ)

)
E(−iλ)

E(iλ)
+
πλn−1

4

(
− 1

B2(iλ)
+

1

A2(iλ)

)
=

2πλn−1

E2(iλ)− E2(−iλ)
.

(6.53)

It remains to show that Mfn,λ,E is extremal. Let f(z) = iB(z)A(iλ) − A(z)B(iλ). Notice

that for γ ∈ R with f(γ) = 0 we have Mfn,λ,E(γ) = fn,λ(γ). Let ϕ be a phase function associated

to E and define αλ = arg(A(iλ) +B(iλ)) and r = |A(iλ) +B(iλ)|. For real x we have

f(x) =
1

2
(−A(iλ)(E(x)− E∗(x))−B(iλ)(E(x) + E∗(x)))

= −r
2

(
E(x)eiαλ − E∗(x)e−iαλ

)
= −r

2
Bαλ(x)

(6.54)

It follows that if γ ∈ Tαλ (recall Tα = {t ∈ R | ϕ(t) ≡ αmodπ}), then f(γ) = 0 and hence

Mfn,λ,E(γ) = fn,λ(γ). The proof now follows analogously to that of Theorem 6.3.1 by applying

Theorem 3.5.5 with α = αλ. By symmetry the result for the minorant follows. Lastly, the case

when n ≡ 3 mod 4 is identical (or follows from the recursive relationship (6.29)), and we omit these

details.
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6.4. One-sided approximations to (x2 + λ2)−1(x2 + β2)−1 in L1(R, µE)-norm

For the Poisson and Conjugate Poisson kernels we see that the extremal majorants and

minorants are built up in a certain way to remove the poles at ±iλ. We can push this idea a bit

further to construct majorants and minorants for the function

hλ,β(x) =
f1,λ(x)

x2 + β2
=

1

(x2 + λ2)(x2 + β2)
(6.55)

where λ and β are positive.

Let E be a Hermite-Biehler function such that E∗(z) = E(−z) for all complex z. Define

for positive λ and β such that λ 6= β the functions Mhλ,β ,E , Lhλ,β ,E : C→ C by

Mhλ,β ,E(z) =
1

(z2 + λ2)(z2 + β2)

(
1−B2(z)

(
1

λ2 − β2

(
λ2 + z2

B2(iβ)
− β2 + z2

B2(iλ)

)))
(6.56)

and

Lhλ,β ,E(z) =
1

(z2 + λ2)(z2 + β2)

(
1−A2(z)

(
1

λ2 − β2

(
λ2 + z2

A2(iβ)
− β2 + z2

A2(iλ)

)))
. (6.57)

Again, these functions have been fixed up to remove the singularities at ±iλ and ±iβ and are

therefore entire. Also, if E is of bounded type with exponential type τ(E) it follows that these

functions are of exponential type 2τ(E).

Theorem 6.4.1. Let λ > 0 and β > 0 such that λ 6= β. Let E be a Hermite-Biehler function of

bounded type in C+ and exponential type τ(E) with no real zeros such that E∗(z) = E(−z) for all

complex z. The following propositions hold:

1. Assume B /∈ H(E). If M : C → C is an entire function of exponential type 2τ(E) with

M(x) ≥ hλ,β(x) for all real x, then

∫ ∞
−∞

(M(x)− hλ,β(x))
dx

|E(x)|2
(6.58)

≥ 2π

λ2 − β2

(
1

βE(iβ)(E(iβ)− E(−iβ))
− 1

λE(iλ)(E(iλ)− E(−iλ))

)
.

Moreover, there is equality in the inequality (6.58) if M(z) = Mhλ,β ,E(z).
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2. Assume A /∈ H(E). If L : C → C is an entire function of exponential type 2τ(E) with

hλ,β(x) ≥ L(x) for all real x, then

∫ ∞
−∞

(hλ,β(x)− L(x))
dx

|E(x)|2
(6.59)

≥ 2π

λ2 − β2

(
1

βE(iβ)(E(iβ) + E(−iβ))
− 1

λE(iλ)(E(iλ) + E(−iλ))

)
.

Moreover, there is equality in the inequality (6.59) if L(z) = Lhλ,β ,E(z).

Remark 6.4.2. Under the assumptions of the previous theorem, (6.58) and (6.59) give

∫ ∞
−∞

(
Mhλ,β ,E(x)− Lhλ,β ,E(x)

) dx

|E(x)|2

=
4π

λ2 − β2

(
β−1

E2(iβ)− E2(−iβ)
− λ−1

E2(iλ)− E2(−iλ)

)
.

(6.60)

As in the proof of Theorem 6.3.1, we require knowledge of certain integral values to assist

in the computation of the explicit error values of Theorem 6.4.1.

Lemma 6.4.3. Let λ > 0. Let E be a Hermite-Biehler function and q2 a polynomial of degree at

most 2. We have

∫ ∞
−∞

E(x)

E∗(x)

q2(x)

(x2 + λ2)(x2 + β2)
dx =

π

λ2 − β2

(
E(−iβ)

E∗(−iβ)

q2(−iβ)

β
− E(−iλ)

E∗(−iλ)

q2(−iλ)

λ

)
(6.61)

and

∫ ∞
−∞

E∗(x)

E(x)

q2(x)

(x2 + λ2)(x2 + β2)
dx =

π

λ2 − β2

(
E∗(iβ)

E(iβ)

q2(−iβ)

β
− E∗(iλ)

E(iλ)

q2(−iλ)

λ

)
. (6.62)

Moreover, if E∗(z) = E(−z) for all complex z, then the two integrals are both equal to

π

λ2 − β2

(
E(−iβ)

E(iβ)

q2(−iβ)

β
− E(−iλ)

E(iλ)

q2(−iλ)

λ

)
. (6.63)

Proof. The proof is an application of the residue theorem and is analogous to Lemma 5.5.3, and

we omit the details.
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Proof of Theorem 6.4.1. We first show that the functions Mhλ,β ,E and Lhλ,β ,E satisfy the needed

requirements. For real x we have

Mhλ,β ,E(x)− hλ,β(x) = −B2(x)q(x)hλ,β(x) (6.64)

where

q(x) =
1

λ2 − β2

(
λ2 + x2

B2(iβ)
− β2 + x2

B2(iλ)

)
. (6.65)

To show that Mhλ,β ,E is a majorant of hλ,β it will be sufficient to show that q(x) ≤ 0 for all real

x since B2 and hλ,a are non-negative on R. Without loss of generality assume that β < λ. Since

y 7→ B2(iy) is negative and decreasing for y > 0 (follows from the fact that B2 is of Pólya-Class)

we have that

q(0) =
1

λ2 − β2

(
λ2

B2(iβ)
− β2

B2(iλ)

)
≤ 1

λ2 − β2

(
(λB(iλ))2 − (βB(iβ))2

B2(iβ)B2(iλ)

)
≤ 0 (6.66)

and

q′′(x) =
2

λ2 − β2

(
1

B2(iβ)
− 1

B2(iλ)

)
< 0, (6.67)

and it follows that q(x) ≤ 0 for all real x.

The proof that Lhλ,β ,E is a minorant follows by a similar argument using that y 7→ A2(iy)

is positive and increasing for positive y.

Next, we show that Mhλ,β ,E gives the desired integral value (6.58). Using (6.64) we write

B = i/2(E − E∗) and |E|2 = EE∗, apply Lemma 6.4.3, and use that

∫ ∞
−∞

q(x)

(x2 + λ2)(x2 + β2)
dx

=
1

λ2 − β2

(
1

A2(iβ)

∫ ∞
−∞

1

x2 + β2
dx− 1

A2(iλ)

∫ ∞
−∞

1

x2 + λ2
dx

)
=

π

λ2 − β2

(
1

βA2(iβ)
− 1

λA2(iλ)

) (6.68)
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to obtain∫ ∞
−∞

(Mhλ,β ,E(x)−hλ,β(x))
dx

|E(x)|2

= −
∫ ∞
−∞

B2(x)

|E(x)|2
q(x)

(x2 + λ2)(x2 + β2)
dx

=
1

4

∫ ∞
−∞

(
E(x)

E∗(x)
+
E∗(x)

E(x)
− 2

)
q(x)

(x2 + λ2)(x2 + β2)
dx

=
1

2

∫ ∞
−∞

(
E(x)

E∗(x)
− 1

)
q(x)

(x2 + λ2)(x2 + β2)
dx

=
π

2(λ2 − β2)

(
1

βB2(iβ)

(
E(−iβ)

E(iβ)
− 1

)
− 1

λB2(iλ)

(
E(−iλ)

E(iλ)
− 1

))
=

2π

λ2 − β2

(
1

βE(iβ)(E(iβ)− E(−iβ))
− 1

λE(iλ)(E(iλ)− E(−iλ))

)
.

(6.69)

The computations (which we omit) for Lhλ,β ,E are nearly identical. Moreover, the proof that

MPλ,β ,E and LPλ,β ,E are optimal is analogous to the proof of Theorem 6.3.1, and we omit these

details.

6.5. Properties of the vanishing measure

For a > 0 and δ > 0 we define the entire function Ea,δ : C→ C by

Ea,δ(z) =

√
2

sinh(2δa)

sin(δ(z + ia))

z + ia
. (6.70)

Theorem 6.5.1. Let a > 0 and δ > 0. The function Ea,δ is Hermite-Biehler with bounded type in

the upper half-plane and exponential type δ, does not have real zeros, satisfies E∗a,δ(z) = Ea,δ(−z)

for all z, and eiαEa,δ − e−iαE∗a,δ 6∈ H(Ea,δ) for all real α.

Moreover, the space A2(δ, (x2 + a2) dx) is isometrically equal to the de Branges space

H(Ea,δ) = A2(δ, |Ea,δ(x)|−2 dx).

Proof. Since z 7→ sin δz is LP and hence of Pólya class, we have that z 7→ sin(δ(z + ia)) is also of

Pólya class. By [23, Section 7, Lemma 1] it follows that Ea,δ is of Pólya class. This implies

|Ea,δ(z)| ≥ |E∗a,δ(z)| (6.71)
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for all z with Im(z) > 0. Since Ea,δ has no zeros in the upper half-plane, the function E∗a,δ/Ea,δ is

analytic in the upper half-plane and has modulus bounded by 1. Since this quotient is not constant,

the modulus is never equal to 1 by the maximum principle, hence Ea,δ satisfies (3.8) and therefore

Hermite-Biehler.

It can be checked directly that Ea,δ has bounded type δ (or apply the reverse direction of

Krein’s theorem) and hence of exponential type δ. Evidently Ea,δ has no real zeros and E∗a,δ(z) =

Ea,δ(−z) for all z. By Theorem 3.6.1 we have that H(Ea,δ) = A2(δ, |Ea,δ(x)|−2 dx).

Notice that

|Ea,δ(x)|2 =
cosh(2δa)− cos(2δx)

sinh(2δa)

1

x2 + a2
(6.72)

It follows that

tanh(aδ) ≤ |Ea,δ(x)|2(x2 + a2) ≤ coth(aδ). (6.73)

and

tanh(aδ)(x2 + a2) ≤ 1

|Ea,δ(x)|2
≤ coth(aδ)(x2 + a2), (6.74)

for all real x.

A direct calculation gives

Aa,δ(z) =

√
2

sinh(2δa)

z cosh(δa) sin(δz) + a sinh(δa) cos(δz)

z2 + a2
, (6.75)

Ba,δ(z) =

√
2

sinh(2δa)

a cosh(δa) sin(δz)− z sinh(δa) cos(δz)

z2 + a2
, (6.76)

and (6.74) implies Aa,δ, Ba,δ /∈ H(Ea,δ). An analogous calculation gives eiαEa,δ−e−iαEa,δ /∈ H(Ea,δ)

for all real α. Moreover, (3.16) leads to the representation

Ka,δ(x, x) =
δ(a2 + x2)− a coth(2δa) + a cos(2δx)csch(2δa)

π(a2 + x2)2
. (6.77)

It follows from (6.74) that A2(δ, (x2 + a2) dx) and A2(δ, |Ea,δ(x)|−2 dx) are equal as sets

with equivalent norms. The main statement to prove is the fact that the two norms are equal on

the smaller spaces.

114



We show that A2(π, (x2 + a2) dx) = H(Ea,π) isometrically and sketch out an alternative

proof (which relies on deep de Branges space theory) for the general statement.

We note first that

(z + ia)(z − ia)

sin(π(z + ia)) sin(π(z − ia))
=

2(z2 + a2)

cosh(2πa)− cos(2πz)
(6.78)

holds, in particular, the right hand side is 1-periodic after division by z2 + a2. Furthermore,

∫ 1

0

1

cosh(2πa)− cos(2πx)
dx =

1

sinh(2πa)
. (6.79)

This means that pa defined by pa(x) = sinh(2πa)(cosh(2πa)− cos(2πx))−1− 1 is 1-periodic

and has mean value zero. Since a > 0, this function is infinitely differentiable on the real line. It

follows that the Fourier series of pa converges absolutely and uniformly, and that it represents the

function, i.e., there exists a sequence an so that

pa(x) =
∑
n6=0

ane
2πinx (6.80)

for all real x.

Let H ∈ L1(R, dx) be an entire function of exponential type 2π. Since H ∈ L2(R, dx) by

Theorem 2.2.3, the Paley-Wiener theorem implies that the Fourier transform of H satisfies Ĥ(t) = 0

for |t| > 1. Since H ∈ L1(R, dx) it follows that Ĥ is continuous, hence Ĥ(t) = 0 for |t| ≥ 1. This

implies ∫ ∞
−∞

H(x)
∑
|n|≤N
n6=0

ane
2πinxdx =

∑
|n|≤N
n6=0

anĤ(−n) = 0. (6.81)

Since the partial sums of the series in (6.80) converge uniformly, we obtain with an appli-

cation of Lebesgue dominated convergence that

∫ ∞
−∞

H(x)

(
sinh(2πa)

cosh(2πa)− cos(2πx)
− 1

)
dx = 0. (6.82)
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Let F,G ∈ A2(π, (x2 + a2)dx) and define H by H(z) = F (z)G∗(z)(z2 + a2). It follows from

(6.78) that

〈F,G〉H(Ea,π) − 〈F,G〉L2(R,µa) =

∫ ∞
−∞

F (x)G∗(x){|Ea,π(x)|−2 − (x2 + a2)}dx

=

∫ ∞
−∞

H(x)

(
sinh(2πa)

cosh(2πa)− cos(2πx)
− 1

)
dx,

(6.83)

and since H is a Lebesgue integrable entire function of exponential type 2π, it follows from (6.82)

that

〈F,G〉H(Ea,π) = 〈F,G〉L2(R,(x2+a2)dx) (6.84)

as claimed.

Sketch of Alternative Proof. Define for a, δ > 0 the meromorphic function Wa,δ by

Wa,δ(z) = −e−2aδ a+ iz

a− iz
(6.85)

and note that Wa,δ is analytic and has modulus ≤ 1 in the upper half-plane. The identity

Ea,δ(z) + E∗a,δ(z)Wa,δ(z)

Ea,δ(z)− E∗a,δ(z)Wa,δ(z)
= coth(2aδ)− e2δizcsch(2aδ) (6.86)

is valid for all z ∈ C. Also, for real x and y > 0 we have

y

π

∫ ∞
−∞

(t2 + a2)|Ea,δ(t)|2

(x− t)2 + y2
dt =

1

sinh(2aδ)

y

π

∫ ∞
−∞

cosh(2δa)− cos(2δt)

(x− t)2 + y2
dt

= coth(2δa)− e−2δy cos(2δx)csch(2δa)

= Re
(

coth(2aδ)− e2δizcsch(2aδ)
) (6.87)

Where we have used the fact that

y

π

∫ ∞
−∞

cos(2δt)

(x− t)2 + y2
dt = e−2δy cos(2δx) (6.88)

holds for all real x and y > 0.
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Theorem V.A. of [20] with dµa,δ(t) = (t2 + a2)|Ea,δ(t)|2 dt implies

∫ ∞
−∞
|F (x)|2(x2 + a2) dx =

∫ ∞
−∞

∣∣∣∣ F (x)

Ea,δ(x)

∣∣∣∣2 dx (6.89)

for every F ∈ H(Ea,δ).

A classical result of Plancherel and Pólya [55] is that the Lp Paley-Wiener spaces Ap(δ, dx)

are closed under differentiation i.e., if F ∈ Ap(δ, dx), for some 1 ≤ p ≤ ∞, then F ′ ∈ Ap(δ, dx).

The case p = ∞ is due to Bernstein [3]. For the space Ap(2δ, |Ea,δ(x)|−2p dx) we have a similar

result.

Theorem 6.5.2. Let a > 0 and δ > 0. Let F ∈ Ap(2δ, |Ea,δ(x)|−2p dx), for some 1 ≤ p < ∞.

Then F ′ ∈ Ap(2δ, |Ea,δ(x)|−2p dx).

Remark 6.5.3. The results of the previous theorem implies that H(E2
a,δ) is closed under differ-

entiation. Lemma 6 of [32] gives that ϕ′(x) is bounded hence H1(Ea,δ) ⊂ H∞(Ea,δ) (by Lemma

3.8.5) making the interpolation formulas for H∞(Ea,δ) (Theorem 3.8.1) applicable when proving

uniqueness of best approximations in L1(R, µEa,δ)-norm (see Theorem 5.4.1).

A similar result (to Theorem 6.5.2) is shown in [13, Theorem 20] for the family of homoge-

neous de Branges spaces which are used to treat the power weights dµν = |x|2ν+1dx, ν > −1. The

following proof follows their approach.

Proof. By (6.74) we see that F ∈ Ap(2δ, dx) and by Plancherel-Pólya it follows that F ′ has expo-

nential type 2δ. It remains to show that F ′ ∈ Lp(R, |Ea,δ(x)|−2p dx).

Define the entire function G : C→ C by

G(z) = (z2 + a2)2Ea(z)E
∗
a(z) = csch(2πa)(z2 + a2)(cosh(2πa)− cos(2πz)). (6.90)

By (6.74) we have

tanh(πa)(x2 + a2) ≤ G(x) ≤ coth(πa)(x2 + a2) (6.91)

for all x ∈ R.
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Since

G′(z) = 2csch(2πa)(z(csch(2πa)− cos(2πz)) + π(z2 + a2) sin(2πz)), (6.92)

we obtain

|G′(x)| ≤ ca(x2 + a2) (6.93)

for some constant ca > 0 and all real x. Hence (6.74) implies that FG′ ∈ Lp(R, dx).

By assumption and (6.74) we have that FG ∈ Lp(R, dx). Since FG is an entire function of

exponential type Plancherel-Pólya implies that (FG)′ ∈ Lp(R, dx).

Using that

|F ′(x)G(x)|p = |(FG)′(x)− F (x)G′(x)|p ≤ 2p
(
|(FG)′(x)|p + |F (x)G′(x)|p

)
(6.94)

we find that F ′G ∈ Lp(R, dx). By (6.74) and (6.91) this is equivalent to

F ′ ∈ Lp(R, |Ea,δ(x)|−2p dx) (6.95)

which proves the theorem.

Recall that in Lemma 3.7.1 we had that any function in H1(E2) that is non-negative on R

can be written as a square of a function belonging to H2(E). The fact that the space H1(E2
a,δ) is

closed under differentiation plays a large role in showing that any real entire function in H1(E2
a,δ)

can be written as a difference of squares belonging to H2(Ea,δ).

Theorem 6.5.4. Let a > 0 and δ > 0. Let F : C→ C be a real entire function of exponential type

2δ such that F ∈ L1(R, |Ea,δ(x)|−2dx). Then there exist U, V ∈ H(Ea,δ) such that

F = UU∗ − V V ∗. (6.96)

With (6.74) and Theorem 6.5.2 the proof of Theorem 6.5.4 is identical to Corollary 23 of

[13]. Since we do not explicitly need this result in this investigation, we omit the proof.
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6.6. Extremal problems with vanishing condition

In the following section we combine the results from Chapter 4 and Sections 6.2, 6.3, 6.4, and

6.5 to study the one-sided approximation problem with additional vanishing condition. We start by

stating the vanishing theorem for the Heaviside function1, H. Notice that this problem is equivalent

to the vanishing problems for the signum function using the relationship sgn(x) = H(x)−H(−x).

Theorem 6.6.1. Let a > 0 and δ > 0. If S, T ∈ A(2πδ) with

S(ia) = T (ia) = 0 (6.97)

and

S(x) ≤ H(x) ≤ T (x) (6.98)

for all real x, then ∫ ∞
−∞
{S(x)− T (x)} dx ≥ πa

πaδ − tanh(πaδ)
, (6.99)

and there exist S+
a,2πδ, S

−
a,2πδ ∈ A(2πδ) such that there is equality in (6.99) for S = S−a,2πδ and

T = S+
a,2πδ.

Remark 6.6.2. This implies that for fixed a and δ →∞ the integral is ∼ δ−1, while for δ → 0+ the

integral is ∼ 3(πb)−2δ−3. In (3) we see that the integral value for the corresponding extremal prob-

lem for the signum function (equivalently the Heaviside functions via H = 2−1(sgn(x)− sgn(−x)))

without the vanishing condition (i.e., Beurling’s Problem) is equal to δ−1. This shows that the

prescribed vanishing at α = ia substantially affects the integral value for small values of δ, but the

vanishing condition leads only to a small change if δ becomes large.

Proof of Theorem 6.6.1. We define S+
a,2πδ and S−a,2πδ by

S+
a,2πδ(z) = a−1M+(B2

a,πδ, a, z)(z
2 + a2), (6.100)

S−a,2πδ(z) = a−1M−(B2
a,πδ, a, z)(z

2 + a2) (6.101)

with M− and M+ as in (4.99) and (4.100) (see Section 4.7). By Theorem 6.5.1 along with Lemmas

3.3.11 and 4.2.8 we have that Ba,πδ is an odd LP function with a simple zero at the origin. Hence

1Here H is the Heaviside function defined by H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0.
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F = B2
a,πδ satisfies the assumptions of Theorems 4.7.2 and 4.7.3. For the remainder of the proof

we set M±(z) = a−1M±(B2
a,πδ, a, z). Since B2

a,πδ ∈ A(2πδ) we obtain that M+,M− ∈ A(2πδ).

Theorems 4.7.2 and 4.7.3 imply

M−(x) ≤ ta(x) ≤M+(x) (6.102)

for all real x. It follows from (6.10) and (6.77) that

∫ ∞
−∞

(M+(x)−M−(x))
dx

|Ea,πδ(x)|2
=

1

a2Ka,πδ(0, 0)
=

πa

πaδ − tanh(πaδ)
. (6.103)

By definition of S±a,2πδ we have

∫ ∞
−∞

{
S+
a,2πδ(z)− S

−
a,2πδ(x)

}
dx =

∫ ∞
−∞

(M+(x)−M−(x))(x2 + a2)dx. (6.104)

Since M+ −M− ∈ A1(2πδ, |Ea,πδ(x)|−2dx), Lemma 3.7.1 implies that M+ −M− = UU∗

with U ∈ H(Ea,πδ). Theorem 6.5.1, (6.103), and (6.104) imply

∫ ∞
−∞

{
S+
a,2πδ(x)− S−a,2πδ(x)

}
dx =

πa

πaδ − tanh(πaδ)
, (6.105)

which gives the case of equality in (6.99).

Let now S, T ∈ A(2πδ) such that S(ia) = T (ia) = 0 and S(x) ≤ ta(x) ≤ T (x) on the real

line. We may assume that S −M− and T −M+ are integrable with respect to (x2 + a2)dx. Since

S and T are real entire, it follows that S(−ia) = T (−ia) = 0, hence

S(z) = (z2 + a2)σ(z) (6.106)

and

T (z) = (z2 + a2)τ(z) (6.107)

where σ, τ are entire and have exponential type 2πδ. Furthermore, σ− ta and τ − ta are integrable

and

σ(x) ≤ ta(x) ≤ τ(x) (6.108)
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for all real x. It follows from Theorem 6.2.1 that

∫ ∞
−∞

(σ(x)− τ(x))(x2 + a2)dx ≥ 1

a2Ka,πδ(0, 0)
, (6.109)

which is (6.99).

Applying Theorems 6.3.1, 6.3.2, and 6.3.3 with Ea,2δ and following the same argument as

Theorem 6.6.1 gives the vanishing result for monomials.

Theorem 6.6.3. Let a, δ > 0 and n ∈ N0. If S, T ∈ A(2πδ) with

S(ia) = T (ia) = 0 (6.110)

and

S(x) ≤ xn ≤ T (x) (6.111)

for all real x, then

∫ ∞
−∞
{S(x)− T (x)} dx ≥ 16πan+1 sinh(2πaδ)

cosh(4πaδ)− 8(πaδ)2 − 1
(6.112)

and there exist S+
n,a,2πδ, S

−
n,a,2πδ ∈ A(2πδ) such that there is equality in the inequality (6.112) for

S = S−n,a,2πδ and T = S+
n,a,2πδ.

Remark 6.6.4. This implies that for fixed a and δ → 0+ the integral is ∼ 3π−1an−2δ−3, while

for δ → ∞ the integral is ∼ 16πan+1exp(−2πaδ). Notice that for all n ∈ N0, the monomimal

Pn(z) = zn is an entire function of exponential type 0, i.e., it is its own extremal majorant and

minorant with L1-error of 0. Hence, prescribing vanishing at α = ia substantially affects the

integral value for small values of δ, but the vanishing condition leads only to a small change if δ

becomes large.

Remark 6.6.5. By Theorem 6.6.3 we can easily construct non-optimal majorants and minorants

to any polynomial in R[x] which satisfy the vanishing condition at α. Let p(x) =
∑N

n=0 anx
n belong

to R[x] (i.e., an ∈ R). For simplicity assume that an 6= 0 for n = 0, 1, ..., N .
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We define

P+(z) =
N∑
n=0

anS
sign(an)
n,a,2πδ (z) (6.113)

and

P−(z) =
N∑
n=0

anS
sign(−an)
n,a,2πδ (z), (6.114)

where sign(a) = + for a > 0 and sign(a) = − for a < 0. By construction we have that P± ∈ A(2πδ),

P−(x) ≤ p(x) ≤ P+(x) (6.115)

for all real x, and P+(ia) = P−(ia) = 0. Moreover, (6.112) gives

∫ ∞
−∞
{P+(x)− P−(x)} dx =

16π sinh(2πaδ)

cosh(4πaδ)− 8(πaδ)2 − 1

N∑
n=0

|an|an+1 (6.116)

We turn to the proof of Theorem 6.6.3.

Proof. The proof is similar to Theorem 6.6.1 and we sketch out the minor differences.

Define S+
n,a,2πδ and S−n,a,2πδ by

S+
n,a,2πδ(z) = Mfn,a,Ea,πδ(z)(z

2 + a2) (6.117)

S−n,a,2πδ(z) = Lfn,a,Ea,πδ(z)(z
2 + a2) (6.118)

with M and L as in (6.25), (6.26), (6.27), (6.28), (6.30), (6.31), (6.32), and (6.33) (See Section 6.3).

By construction S±n,a,2πδ(ia) = 0 and Theorems 6.3.1, 6.3.2, and 6.3.3 imply S±n,a,2πδ ∈ A(2πδ) and

S−n,a,2πδ(x) ≤ xn ≤ S+
n,a,2πδ(x) (6.119)

for all real x.

For the remainder of the proof we set M = Mfn,a,Ea,πδ and L = Lfn,a,Ea,πδ . It follows from

(6.34), (6.35), (6.36), (6.37), (6.38), and (6.39) (see also Remark 6.3.4) that

∫ ∞
−∞

(M(x)− L(x))
dx

|Ea,πδ(x)|2
=

4πan−1

E2
a,πδ(ia)− E2

a,πδ(−ia)
. (6.120)
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By definition of S±n,a,2πδ we have

∫ ∞
−∞

{
S+
n,a,2πδ(x)− S−n,a,2πδ(x)

}
dx =

∫ ∞
−∞

(M(x)− L(x)) (x2 + a2) dx. (6.121)

Since M−L ∈ A1(2πδ, |Ea,πδ(x)|−2dx), Lemma 3.7.1 implies that M−L = UU∗ with U ∈ H(Ea,πδ).

Theorem 6.5.1 and (6.120) imply

∫ ∞
−∞

{
S+
n,a,2πδ(x)− S−n,a,2πδ(x)

}
dx =

4πan−1

E2
a,πδ(ia)− E2

a,πδ(−ia)

=
16πan+1 sinh(2πaδ)

cosh(4πaδ)− 8(πaδ)2 − 1

(6.122)

which gives the case of equality in (6.112). The proof that S±n,a,2πδ are optimal is analogous to

Theorem 6.6.1, and we omit the details.

Similarly, we obtain the vanishing results for the Poisson kernel by using Theorem 6.4.1

applied with Ea,πδ and applying the same argument as Theorem 6.6.3. As the proof is nearly

identical, we omit the details.

Theorem 6.6.6. Let a, δ, λ > 0 with a 6= λ. If S, T ∈ A(2πδ) with

S(ia) = T (ia) = 0 (6.123)

and

S(x) ≤ Pλ(x) ≤ T (x) (6.124)

for all real x, then

∫ ∞
−∞
{S(x)− T (x)} dx ≥ 8λa

(a2 − λ2)((2πaδ)2csch(2πaδ)− sinh(2πaδ)
(6.125)

+
4(a2 − λ2) sinh(2πaδ)

(a− λ)2 cosh(2π(a+ λ)δ)− (a+ λ)2 cosh(2π(a− λ)δ) + 4λa

and there exist S+
λ,a,2πδ, S

−
λ,a,2πδ ∈ A(2πδ) such that there is equality in (6.125) for S = S−λ,a,2πδ and

T = S+
λ,a,2πδ.
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Remark 6.6.7. This implies that for fixed a and δ → 0+ the integral is ∼ 3λ−1a−2(πδ)−3, while

for a < λ and δ →∞ the integral is ∼ 16aλ(λ2 − a2)−1 exp(−2πaδ) and for a > λ and δ →∞ the

integral is ∼ 4(a+ λ)(a− λ)−1 exp(−2πλδ).

Theorem 6.3.1 applied with the Hermite-Biehler function E(z) = e−πiδz gives the corre-

sponding extremal problem for the Poisson kernel with out the vanishing condition, and applying

E to (6.34) and (6.35) the integral value becomes 2csch(2πλδ). This again shows that the pre-

scribed vanishing at α = ia substantially affects the integral value for small values of δ, but the

vanishing condition only leads to a small change if δ becomes large.
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