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ABSTRACT

High-throughput RNA Sequencing (RNA-Seq) has emerged as an innovative and
powerful technology for detecting differentially expressed genes (DE) across different
conditions. Unlike continuous microarray data, RNA-Seq data consist of discrete read counts
mapped to a particular gene. Most proposed methods for detecting DE genes from RNA-Seq are
based on statistics that compare normalized read counts between conditions. However, most of
these methods do not take into account potential asymmetry in the distribution of effect sizes. In
this dissertation, we propose methods to detect DE genes when the distribution of the effect sizes
is observed to be asymmetric. These proposed methods improve detection of differential
expression compared to existing methods. Chapter 3 proposes two new methods that modify an
existing nonparametric method, Significance Analysis of Microarrays with emphasis on RNA-
Seq data (SAMseq), to account for the asymmetry in the distribution of the effect sizes. Results
of the simulation studies indicates that the proposed methods, compared to the SAMseq method
identifies more DE genes, while adequately controlling false discovery rate (FDR). Furthermore,
the use of the proposed methods is illustrated by analyzing a real RNA-Seq data set containing
two different mouse strain samples. In Chapter 4, additional simulation studies are performed to
show that the one of the proposed method, compared with other existing methods, provides
better power for identifying truly DE genes or more sufficiently controls FDR in most settings
where asymmetry is present. Chapter 5 compares the performance of parametric methods,
DESeq2, NBPSeq and edgeR when there exist asymmetric effect sizes and the analysis takes into
account this asymmetry. Through simulation studies, the performance of these methods are
compared to the traditional BH and g-value method in the identification of DE genes. This

research proposes a new method that modifies these parametric methods to account for

il



asymmetry found in the distribution of effect sizes. Likewise, illustration on the use of these
parametric methods and the proposed method by analyzing a real RNA-Seq data set containing

two different mouse strain samples. Lastly, overall conclusions are given in Chapter 6.
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CHAPTER 1. INTRODUCTION
1.1. Background
Recent advances in technology have allowed the state of diseases and biological
conditions to be characterized by distinct patterns of gene expression (Brown and Botstein, 1999;
DeRaisi et al., 1997; Eisen and Brown, 1999; Spellman et al., 1998). The development of DNA
microarrays in the 1990s, has been the main technology for large-scale studies in measuring gene
expression (i.e., quantifying the amount of messenger RNA transcripts for a gene) in
experimental units (referred to as “experiments”) in the field of genetic, biological and medical
research (Macgregor and Squire, 2002; Petricoin et al., 2002). This technology has the ability to
simultaneously measure tens of thousands of transcripts to provide information in dealing with a
wide range of biological problems, including the identification of genes that are differentially
expressed between diseased and healthy tissues, new insights into developmental processes, and
the evolution of gene regulation in different species (Baldi and Hatfield, 2002; Kerr et al., 2008;
Passador-Gurgel et al., 2007). Although microarrays are still the most common and affordable
technology used in transcript profiling, it has several limitations. For example, background
hybridization limits the accuracy of gene expression measurements, particularly for transcripts
present in low abundance. Also, probes differ significantly in their hybridization properties, and
arrays are limited to measuring only genes for which probes are designed (Abdullah-Sayani et
al., 2006; Russo et al., 2003).
In recent years, a new approach known as RNA Sequencing (RNA-Seq), that is, the
direct sequencing of transcripts by high-throughput sequencing technologies, has been developed
(Nagalakshmi et al., 2008; Wilhelm and Landry, 2009) to measure the entire transcriptome. It

has been shown to have the potential to become a replacement to microarrays for whole-genome



transcriptome profiling (Beyer et al., 2012; Montgomery et al., 2010; A. Mortazavi et al., 2008;
Mutz et al., 2013; Nagalakshmi et al., 2001). RNA-Seq uses the capabilities of next-generation
sequencing to reveal the presence and quantity of RNA expressions from a genome and is more
preferable compared to microarray approaches because it provides more information such as
alternative splicing and isoform-specific gene expression with low background signal (Chu and
Corey, 2012; Wang et al., 2009). These sequencing methods also offer more accurate
quantification of expression levels compared to other technologies. The development of
sequencing technologies enables simultaneous sequencing of millions of molecules; leading to
advanced approaches for measuring expression levels (Bennett et al., 2005; Margulies et al.,
2005) with high accuracy and reproducibility (Fu et al., 2009; Marioni et al., 2008b; Miller et al.,
2008; Ali Mortazavi et al., 2008). Researchers often use RNA-Seq to identify differentially
expressed genes (DE) genes in many types of comparative studies. Also, RNA-Seq does not
depend on genome annotation for prior probe selection and avoids the biases introduced during
hybridization of microarrays. However, RNA-Seq poses algorithmic and logistical challenges for
data analysis and storage. Although many computational methods have been developed for
alignment of reads, quantification of genes and transcripts, and identification of differentially
expressed genes (Garber et al., 2011), there is great variability in the development of these
available computational tools. Further details on RNA-Seq technology and its challenges,
benefits and applications are reviewed elsewhere (Bloom et al., 2009; Bradford et al., 2010; Hurd

and Nelson, 2009; Malone and Oliver, 2011; Wang et al., 2009).



1.2. Research objectives
This research is specific to analyzing gene expression data sets with two class
experiments. An example includes an experiment comparing healthy patients to those with an
illness or disease. The goals of this research are to:

(1) Develop methods for analyzing RNA-Seq data that takes into account asymmetry
in the distribution of the test statistic when analyzing RNA expression data that
lead to an improvement over previously existing methods in the number of truly
DE genes identified as differentially expressed, while still adequately controlling
false discovery rate. A simulation study will be performed to determine under
which experimental settings taking into account asymmetry in the distribution of
the test statistics improves identification of DE genes compared to traditional
methods and by reanalyzing data generated by real RNA-Seq experiments.

(2) Compare the best-performing proposed method to other commonly-used existing
methods for identifying DE genes from RNA-Seq experiments. These methods
are NBPSeq (Yanming et al., 2011), edgeR (Robinson et al., 2010), and DESeq2
(Love et al., 2014). Similar to goal (1), comparison of methods are accomplished
through simulation studies and the use of these methods are illustrated by
reanalyzing data generated from real RNA-Seq experiments.

(3) Lastly, this research compares the performance of these commonly-used existing
methods for identifying DE genes from RNA-Seq experiments when there exists
asymmetry in the distribution of effect sizes, using BH method proposed by
Benjamini and Hochberg (1995) and g-value method proposed by Storey (2002)

to adequately control false discovery rate. Similar to goals (1) and (2), comparison



of these methods is accomplished through simulation studies and illustrated by
reanalyzing data generated from real RNA-Seq experiments
1.3. Organization
The rest of the dissertation is organized as follows. In Chapter 2, RNA-Sequencing

analysis and multiple hypothesis testing with emphasis on false discovery rate are reviewed.
Chapter 3 describes the SAMseq method for two class experiments and two proposed methods
that modify this procedure in estimating FDR are presented. A description and the results of
simulation studies implemented to compare the performances of the proposed methods and
traditional SAMseq method, in terms of identification of differential expressed genes and FDR
control, are presented. Analysis of a real RNA-Seq experiment using all methods from the
simulation studies, conclusions and recommendations are discussed. Chapter 4 describes and
presents the results of simulation studies implemented to compare the performances of the best-
performing proposed method and the three existing methods in terms of identification of
differential expressed genes and FDR control. Chapter 5 briefly describes the DESeq2, NBPSeq,
edgeR methods and presents methods that modify the procedures used in adjusting the p-value
when estimating FDR. A description and the results of simulation studies implemented to
evaluate the performances of the proposed method and these parametric methods, in terms of
identification of differential expressed genes and FDR control are presented. Analysis of a real
RNA-Seq dataset using all methods from the simulation studies, conclusions and
recommendations are discussed. All analyses are performed in R. Lastly, overall conclusions of

this research are given Chapter 6.



CHAPTER 2. LITERATURE REVIEW
2.1. Performance of RNA — sequencing analysis
Several studies comparing RNA-Seq and hybridization-based arrays have been
performed (Fu et al., 2009; Marioni et al., 2008a; Sirbu et al., 2012). Marioni et al. (2008a) and
estimated the technical variance associated with Illumina RNA-Sequencing to identify DE genes
with existing array technologies. The results indicated that, RNA-Seq data on the Illumina
platform was highly reproducible, with relatively low technical variation. The DE genes
identified from RNA-Seq experiments were similar to those identified using microarrays. Fu et
al. (2009) designed a study that used protein expression measurements to evaluate the accuracy
of microarrays and RNA-Seq for mRNA quantification. In that study, gene expression levels
were measured using Shotgun Mass Spectroscopy. This allowed for assessment of the relative
accuracy of the two transcriptome quantification approaches with respect to absolute transcript
level measurements. The results from this study showed that RNA-Seq provided better estimates
of the absolute transcript levels. Many recent studies have been performed to run RNA-Seq and
microarray in parallel with a focus on finding the relationship between them (Bottomly et al.,

2011; Sirbu et al., 2012; Zhang et al., 2012).

2.2. Multiple testing
A major challenge faced by researchers in the analysis of large data sets is the problem of
multiple testing. In RNA-sequencing analysis and other gene expression analysis, it is not
unusual to test thousands of hypotheses simultaneously. For every hypothesis test, there is a risk
of falsely rejecting a null hypothesis that is true, that is a Type I error, and of failing to reject a

null hypothesis that is false, that is a Type II error. Traditionally, Type I errors are considered



more problematic than Type II errors. The key goal of multiple testing methods is to control the
rate at which Type I errors occur when many hypothesis tests are performed simultaneously.

The Family-Wise Error Rate (FWER) is often the preferred error rate to be controlled.
Common procedures for identifying DE genes while controlling the FWER are the Bonferroni
(Simes, 1986) and Holm (Holm, 1979) methods. However, for high-dimensional data in which
thousands of hypotheses are being tested simultaneously, the FWER generally results in
extremely low statistical power for identifying DE genes. In efforts to improve the power of
detecting DE genes while still controlling multiple testing error, the False Discovery Rate (FDR)
was developed (Benjamini and Hochberg, 1995).

2.3. False discovery rate

Many methods have been developed to overcome the problems that arise from multiple
testing, and they all attempt to assign an adjusted p-value to each hypothesis test, or reduce the p-
value threshold. Several traditional methods such as the Bonferroni correction are too
conservative, as it reduces the number of false positives but also considerably decreases the
number of true discoveries in many cases. FDR methods also determine adjusted p-values for
each hypothesis test. More specifically, the FDR controls the proportion of false discoveries
among all tests that are significant and has a greater power to determine truly significant results.
This approach was proposed by Benjamini and Hochberg (1995) as a multiple-hypothesis testing
error measure to control the proportion of Type I errors among all rejected null hypotheses
(Benjamini and Hochberg, 1995). Benjamin and Hochberg (BH) considered the case of testing m
null hypothesis, of which are true. Table 1 provides notation for random variables associated

with different scenarios in a multiple testing experiment.



Table 1. Random Variables Corresponding to the Number of Errors Committed when Testing m
Hypothesis

Declared non-significant | Declared Significant Total

True null hypothesis U V m,
Non - true null hypothesis T A) m—m,

Total m—R R m

BH defined the FDR as
v
FDR=E| ——|.. (2.1)
max (R, 1)

and the following sequential p-value methods was provided to control the FDR. Let

p, <p, <..<p, be the ordered p-values and let H, be the null hypothesis of the i gene with

corresponding p-value p,. Also, let k be the largest i for which

p<—q . 22)

IfallH,, for i=1,2,...,k are rejected, then the above formula controls the FDR at q* for any

genes with true null hypotheses and any configuration of false null hypotheses. Also, if the test
statistics corresponding to true null hypotheses are statistically independent, equation (2.2)

controls FDR when

FDR < (%j ¢ <q. (2.3)

Figure 1 below shows the comparison between the controlling procedures used in FDR and

FWER.
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Figure 1. Comparison of the controlling procedures of FDR and FWER (Lazar, 2012)

Figure 1 above is a plot of the first 20 ordered p-values for a gene expression experiment,
with the order indicator on the x-axis and p-values on the y-axis (Lazar, 2012). The horizontal
solid line represents the Bonferroni correction method (controlling procedure for FWER) and the
dashed line represents the FDR-controlling procedure. Points that fall below the line for a given
method are considered to be significant by that method. From this plot, it is clear that the FDR
controlling procedures allows for more tests to be identified as significant compared to the
Bonferroni correction method. Thus, FDR-controlling methods result in higher power for
detecting DE genes but also allow for more type I errors or false discoveries than the FWER.
Storey (2002) pointed out the weaknesses in controlling the FDR which was proposed by BH

and suggested that the FDR should be calculated as
V
pFDR = E(E|R > oj , (2.4)

where pFDR is the positive false discovery rate (Storey, 2002).



2.4. Q - value
Storey (2002), later developed the g-value, a natural pFDR analogue of the p-value, as a
hypothesis testing error measure for each of the observed statistics with respect to pFDR (Storey,
2002). The g-value is the j# smallest p-value p; and is defined as

. P(r)"A% .
Gy =MINg————7"=J,...,m, (2.5)
: r

where P(r)”% is an estimate of the number of false discoveries and r is the total number of genes

declared to be DE if all genes with p-values less than or equal to p, are declared DE. m, is the

estimate of the number of EE genes in a data set, and calculated using a method proposed by
(Storey et.al., 2003). This procedure involves first ordering all the p-values and estimating

my (A) for arange of A between 0 and 1, where

iy (A) =L (2.6)

Then, a natural cubic spline is fit to the points(/l, m, (/1)) . Finally, this function is evaluated at

A=1 to obtain the final estimate of m, (Storey et.al., 2003).

2.5. Asymmetric Q - value
Recently, Orr et al. (2014) suggested that when asymmetry in the distribution of test
statistics is observed in a two class gene expression experiments, the estimation of FDR using the
g-value method might be improved if this asymmetry is taken into consideration. The following

method for doing this was proposed. Consider performing m hypothesis tests in the two class



experiments (¢ = 1, 2). The null hypothesis for the /" gene is H, :w; =u,,, where p, is the
population mean expression for genej (j = 1, ..., m) in experiment ¢. For each gene, an
appropriate t-test statistic £ is computed with its corresponding two-sided p-value obtained. The
number of EE genes is then estimated as i, using all m p-values using the methods described in
Storey and Tibshirani (2003). Next, the p-values are then partitioned into two subsets based on
the signs of the corresponding test statistics, {p,((l) k= 1,...,m_} and{p,({z) k=1, m+} . This
represent the subsets of ordered p-values corresponding to the m™ genes with negative statistics

and the m" genes positive test statistics, respectively (Orr et al., 2014). Then, the g-values for

each subset are estimated separately as

1) »
Py /2

q((l))=min ) of r=k,..,m (2.7)

r

and
(1) »
| pymy /2 .

q((,f))=m1n M:r=k,...,m . (2.8)

r

Simulation studies showed that this method improved the identification of DE genes over
the traditional gq-value method while adequately controlling FDR in when asymmetry was

present in the distribution of the test statistics. Orr et al. (2014) also recommended the use of the

proposed method in analyzing experiments with smaller sample sizes(n <10).

10



CHAPTER 3. MODIFYING SAMseq TO ACCOUNT FOR ASYMMETRY IN THE
DISTRIBUTION OF EFFECT SIZES WHEN IDENTIFYING DIFFERENTIALLY
EXPRESSED
3.1. Summary

A common statistical method used to analyze RNA-Seq data is Significance Analysis of
Microarray with emphasis on RNA-Seq data (SAMseq). SAMseq is a nonparametric method that
uses a resampling technique to account for differences in sequencing depths when identifying
DE genes. Modifications of this method are made to take into account asymmetry in the
distribution of the effect sizes by taking into account the sign of the test statistics. Through
simulation studies, the proposed methods, compared with the traditional SAMseq method,
provide better power for identifying truly DE genes while sufficiently controlling FDR in most
settings. Illustration on the use of the proposed methods are made by reanalyzing RNA-Seq data
from C57BL/6J (B6) and DBA/2J (D2) mouse strains samples.

3.2. Introduction

Sequencing approaches measure gene expressions as counts. The Poisson distribution has
been the fundamental distribution used in modelling expression data (Audic and Claverie, 1997;
Kal et al., 1999; Madden et al., 1997), and commonly applied to RNA-Seq data (Bullard et al.,
2010; Marioni et al., 2008b). As an extension to the original SAM method (Tusher et al., 2001),
Li and Tibshirani (2013) proposed a non-parametric approach known as Significance Analysis of
Microarrays with emphasis on RNA-Seq data (SAMseq) to identify DE genes in RNA-
Sequencing and other sequencing-based comparative genomic experiments. However, these tests
are not free from error; thus, there is the risk of falsely identifying equivalently expressed (EE)

genes as DE. In the Li and Tibshirani (2013) SAMseq procedure, they employ the use of a

11



permutation plug-in method (Storey, 2002; Storey and Tibshirani, 2003; Tusher et al., 2001) to
estimate the false discovery rate (Benjamini and Hochberg, 1995). This procedure uses
permutations to generate the null distribution of the test statistic and estimate the false discovery

rate (FDR) at a given cutoff point (C) as

N %
FDR =7, . 3.1)

where 7, is the estimated proportion of null features in the population, V' is the estimated
number of false discoveries (i.e., genes that are EE but declared to be DE) when C is used as the

cutoff point, and R is the estimated number of genes declared to be differentially expressed
(DDE) when C is used as the cutoff point.

Ideally, researchers desire to identify all DE genes and no equivalently expressed (EE)
genes between conditions (or classes) in a gene expression experiment. This is infeasible,
however, so researchers seek to use the method that identifies the most DE genes while
minimizing the number of EE genes that are declared DE. Identifying more DE genes (and fewer
EE genes) allows researchers to more easily make important biological discoveries based on
gene expression experiments. Thus, this propose to modify a commonly-used method to improve
identification of DE genes while still adequately controlling false discovery rate (FDR).

In this chapter, our focus is on two class experiments. An example of a two class
experiment data set is shown in Table 2. Suppose we obtain n: RNA-Seq experiments for class i

(i=1, 2), and each experiment measures the expression levels of the same m genes on a subject.

The data can then be represented as a m x (n1 + n2) matrix G, whose element G is the measure

of expression Gene j in Experiment i, wherel < <n,,and1< j<m.
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Table 2. RNA-Seq data set for a two class experiment.

Class 1 Class 2
Gene 1 2 oo 1 2 n,
1 20 42 ..l 15 54 44 35
2 444 450 ...l 200 230 540 ... | 320
m 151 167 ... 101 182 617 ... | 210

The SAMseq procedure does not explicitly take into account asymmetry in the
distribution of the test statistics. Orr et al. (2014) showed in a two class gene expression
experiments that taking into account asymmetry in the distribution of the test statistics when
calculating g-values, another common method used to estimate false discovery rates (Storey,
2002), improved the identification of DE genes when asymmetry was apparent.

Motivated by the results of Orr et al. (2014) discussed in chapter 2, this research proposes
two new methods that modifies the FDR estimation used in SAMseq to take into account such
asymmetry. The first goal is to determine if taking into account this asymmetry when analyzing
RNA expression data leads to an improvement over the traditional SAMseq method in the
number of truly DE genes identified as differentially expressed, while still adequately controlling
false discovery rate. The second goal is to compare the performance of the suitable proposed
method to other commonly-used existing methods for identifying DE genes from RNA-Seq

experiments. This is addressed in Chapter 4.
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The rest of this chapter is organized as follows. In section 3.3; review of the SAMseq
method for two class experiments and propose two methods that modifies the procedure used in
estimating FDR. Section 3.4 describes and presents the results of simulation studies implemented
to compare the performances of the proposed methods and traditional SAMseq method in terms
of identification of differential expressed genes and FDR control. Section 3.5 presents analysis of
a real RNA-Seq dataset using all methods from the simulation studies. All analyses are
performed in R. Code from the samr package is used and modified to implement the proposed
methods. Lastly, conclusions and recommendations are discussed in section 3.6.

3.3. Methods

Consider the problem of simultaneously testing multiple null hypotheses H,,...,H,,
where the j™ hypothesis is
H ;- Gene j is EE between the two classes. (3.2)
Thus, if H; is false, then gene j is said to be differentially expressed (DE). Moreover, if H ;is

rejected, then gene j is declared to be differentially expressed. Ultimately, a researcher wants to
determine which hypotheses should be rejected (i.e. determine which genes to declare to be DE)

while controlling false discovery rate at a nominal level a.

In this section, an overview of the SAMseq method for estimating the FDR associated

with each hypothesis H,,...,H, using two independent samples of RNA-Seq data. Additionally,

proposed methods that modifies the FDR estimation used in SAMseq to account for asymmetry

in the distribution of effect sizes.
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3.3.1. Overview of SAMseq for two class unpaired comparison

Li and Tibshirani (2013) outlined the following steps for estimating FDR for a given
cutoff A using two independent samples of RNA-Seq data;

(1) Using experiment 1 as the base level, estimate the sequencing depths for each

experiment as

1<i<n, 1<j<m, (3.3)

where E (Gl.j) is the mean expression count for all genes in Experiment i. Note that
this implies di = 1.
(2) Resample S times from the data using the estimated depths d,,...,d, . The following

steps outline the Poisson sampling strategy used;

a. Estimate the geometric mean d of the sequencing depths as

1
Jz(Hd,.j" (3.4)
i=1
b. For each experiment i, the count is resampled as

G’ ~ Poisson iG.. , (3.5)
i d v

where Gj; is the read count for the j# gene in experiment i.

c. A small random number is added to each count to account for ties between
G,...G, . Thus G, =G, +¢&, where &, are independent identically distributed
random variables generated from Uniform (0, 0. 1) )

(3) Compute and order the test statistics on each resampled dataset. The Wilcoxon

statistic for the j gene is calculated as
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T =12(2R”(G”)—@]; (=1,2. (3.6)

teC,

where C; represents the subset of data from the /" sample, G* represents the

expression values for the s™ resampled data set, R ; (G"‘ ) is the rank of G"* in

G,;,...G, and n, is the number of experiments in the first sample.

(4) Permute the read counts from the n experiments B times to obtain B permuted data
sets. For the b permutation, compute test statistic 7, ',...,7." based on the permuted

data and order.

(5) Estimate the expected order statistic 7.7,..., T, as

| “
iy 6.7

(6) For a given A ; genes with positive test statistic Tj >0 are called significant positive if
T, -1, > A and genes with negative test statistic T, <0 are called significant
. . _*]7 *
negative if 7y =7, > A.
(7) Determine cut,, ( A) , the minimum value of the test statistics 7; among all significant

positive genes, and cut, (A) , the maximum value of the test statistic 1; among all

significant negative genes.
(8) Compute the number of falsely called (FC) genes, i.e. the number of EE genes that

are called significant, among the b set of permutations as

FC'(A) =Y 1{T" > cut,, (A)} +1{T" < cut,, (A)} (3.8)

Jj=1
(9) Estimate the proportion of true null genes 7, in the data set as
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T 25,475
/Z\_O — Zj { J E(q q )} (39)
0.5m

where ¢25 and ¢75 are the 25" and 75" points of all permuted test statistics (among
all B permutations). If the estimated proportion of true null genes is greater than one,
set the proportion of true null genes to be equal to one.

(10)  Compute the false discovery rate as

FDR(A) = #,medFC (A)

= (3.10)
Number of significant genes(A)

where medFC (A) is the median number of falsely called genes among the B

permuted datasets. Starting in Chapter 3, we will refer to this method used to estimate
FDR as the “traditional method”.
3.3.2. Proposed methods for estimating FDR
The method described in section 3.3.1 does not account for asymmetry in the distribution
of the test statistics, if such asymmetry exists. Orr et al. (2014) showed that taking into account
apparent asymmetry in the test statistics by modifying Storey’s g-value results in higher power
for detecting DE genes when such asymmetry exists. Using this as motivation, this research
proposes two methods that modify the FDR estimation of the SAMseq method by taking into
account the asymmetry of the test statistics.
3.3.2.1. Proposed method |
For proposed method I, steps (1) through (7) of the SAMseq procedure outlined in
section 3.3.1. is used. To estimate FDR, begin by dividing the test statistics into two groups
based on sign. For genes with positive test statistics, estimate the number of falsely called

positive genes for each permuted data set among the B set of permutations as
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FC"+(A)=Y"I{T" > cut,, (A)}, (3.11)
j=1
and for genes with negative test statistics, estimate the number of falsely negatively called genes
among the B set of permutations as
FC'—(A)=>I1{T" <cut,,, (A)}. (3.12)

Jj=1

Next, calculate the median number of falsely positively called genes as
medFC+(A)=median{FCb+(A)} (3.13)
and the median number of falsely negatively called genes as
medFC—(A):median{FC" —(A)}. (3.14)
The proportion of EE genes 7, is estimated exactly as in equation (3.9). Then estimate the

proportion of EE genes among genes with positive test statistics, that is, 7?;) >0 as

iy = UZ, (3.15)
m

where m is the total number of genes in an experiment and, m " is the number of genes with
Z(;) >0. Similarly, estimate the proportion of EE genes among genes with negative test statistics,
thatis, T, <0 as

()

i =%°/2, (3.16)

where m~ is the number of genes with 76) <0.

The estimates in (3.15) and (3.16) are based on the assumption that the asymmetry
present in the distribution of the test statistics is due to asymmetry in the distribution of the effect

sizes of DE genes and that EE genes have test statistics that are symmetric (or very close to
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symmetric) around zero. Thus, a researcher expect that the number of EE genes with positive

test statistics is equal to the number of EE genes with negative test statistics, on average, and this

number is estimated to be 7, /2.

Lastly for a given A, estimate FDR as

FDR(A) = #ymedFC (+)+ 7, medFC (-) G.17)
" Number of significant genes(A) ' '

The estimation of FDR in (3.17) modifies the numerator in (3.10) by taking into account the
asymmetry in the test statistics but maintains the same cutoff (A) for both positive and negative
test statistics.

3.3.2.2. Proposed method 11

For the proposed method I, steps (1) through (5) of the SAMseq procedure in section

3.3.1 and estimation of the proportion of equally expressed genes, 7, , in the data set as described

in equation (3.9). Next, divide the test statistics into two groups based on the sign of the test

statistics and estimate FDR separately for genes with positive test statistics and genes with

negative test statistics. The FDR estimation for genes with positive test statistics, i.e., T(j) >0; for
a given value A", a gene is significant positive if 72/) —7_;/; > A" Next, estimate cuz,, (A+ ) , that is,
the minimum value of the test statistics T(j) among all significant positive genes. Given B sets of

permuted and ordered test statistics; calculate the number of falsely positively called genes, i.e.

the number of EE genes among significant positive genes, as

FCb(N):i]{Tj*b > cut,, (A" (3.18)

J=1

and estimate the median number of falsely positively called genes as
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medFC(A+) = median{FCb (A+ )} ,ie, median{FCb (A+); b=12,.. .,B} ) (3.19)
The proportion of genes with positive test statistics 7(;) >0 that are EE is estimated as

ﬁg:mﬁ'o/Z.

(3.20)

m+
where m is the total number of genes in an experiment and, m" is the number of genes with
T(j) 20.

For a given A", estimate the FDR for genes with positive test statistics as

FDR(A")= AimedrC(4) (3.21)
Number of significant positive genes (N) .

For genes with negative test statistics, i.e., T(j) <0; a gene is significant negative if T_zjl)’ —T(j.) >A.
Next, cut, (A’) the maximum value of the test statistics 711) among all significant negative genes,

is determined. For each of the B sets of permuted and ordered test statistics, calculate the number
of falsely negatively called genes i.e. the number of EE genes among significant negative genes

as
FC'(A)=>1{T" <cu, (&)}, (3.22)

and estimate the median number of falsely negatively called genes as

medFC(Af)zmedian{FCb (Af)}, 1e., median{FCb(Af); b=1,2,...,B} (3.23)

Then estimate the proportion of genes with T(j) <0 that are EE as

LY (3.24)
m
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where m~ is the number of genes with T(j) <0, and estimate the FDR for genes with negative

test statistics as

ﬁgmedFC(A’ )

FDR(A)=

= — . (3.25)
Number of significant negaitive genes(A )

The estimates in (3.20) and (3.24) are based on the assumption that the asymmetry
present in the distribution of the test statistics is due to asymmetry in the distribution of the effect
sizes of DE genes and that EE genes have test statistics that are symmetric (or very close to
symmetric) around zero. Thus, the expected the number of EE genes with positive test statistics

is equal to the number of EE genes with negative test statistics, on average, and this number is
estimated to be 7, /2. The estimation of FDR in (3.21) and (3.25) modifies the numerator in

(3.10) by taking into account the asymmetry in the test statistics and uses different delta values
for positive and negative test statistics.
3.4. Simulation studies
In order to evaluate the performance of the proposed methods compared to the traditional
method (Li andTibshirani, 2013) for estimating false discovery rate; data sets with Poisson
distributed gene counts were randomly generated. For each data set, gene counts were randomly
generated for m = 10,000 genes in two experiments. For gene j in experiment #, the gene count

was generated as
G, ~ Poisson (,ul.j ) (3.26)
and

log 11, =logd, +logv, + 7,1,

(IECZ) ’

(3.27)
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where d, is the sequencing depth of experiment i, v; is the expression level of gene j in the first

group, and 7, represents the difference in gene expression between the two experiments for gene

j if it is differentially expressed. Using procedures implemented by Li et al. (2012),
d, ~ exp(uniform(4,6)), (3.28)
is simulated so that the total number of reads are similar to real RNA-seq experiments;

G,
v =— "t (3.29)

: > G,

- 1 m
e J
m =

is simulated so that gene expression levels are similar to a real RNA-seq data set (Marioni et al.,

2008b);

7,~N(0.1). (3.30)
for upregulated genes, and for down regulated genes

7, ~=[N(0.1), (3.31)

are simulated so that the average fold change for differentially expressed genes is about 2.7. For

EE genes,
7;=0 (3.32)

To create difference simulation settings, simulated data sets with four different sample

sizes,n = {4, 6, 10,12} and four different values for the number of EE genes,

m, = {5000, 7000, 9000,9500} are used. To simulate asymmetry, five set of values representing
the proportion of DE genes that are upregulated and downregulated were used: 7, = (0.5,0.5) ,
T, = (0.7,0.3) , Ty = (0.8,0.2) , Ty = (0.9,0.1), and 7, = (0.95,0.05). For instance, in settings

where 7, = (0.8,0.2) is used, 0.8 represent the proportion of DE genes that are upregulated and
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0.2 represent the proportion of DE genes that are downregulated in the data set. This results in
eighty different simulation settings.
3.4.1. Results

For each simulation setting, 100 data sets were randomly generated. For each data set, all
three methods (proposed method I, proposed method II and traditional method) were used to
estimate the FDR for each gene to identify DE genes. For a given delta value, FDRs were
calculated using all methods. Although delta values are usually user defined, a set of delta values
was sequenced and the value of delta was chosen that corresponded to an estimated FDR closest
to but less than 0.05 (or 5%).

Controlling FDR at the 5% significance level, S (the number of DE genes DDE) was
determined for each data set. To determine if each method controlled FDR at the 5% significance
level, the observed FDR, V/R (the proportion of EE genes among all DDE genes) was calculated
for each data set. If no genes were DDE for a particular data set, V/R was set to zero. For each
simulation setting, paired #-tests were performed to test the difference in the mean S of proposed
method I and the traditional method, proposed method II and the traditional method, proposed
method I and proposed method II. If the test between these comparisons were significant at a
type I error rate of 5%, then the higher mean S is shown in bolded font. If a test between
proposed method I and proposed method II was significant at a type I error rate of 5% with the
proposed method II outperforming the proposed method I, the higher mean S is underlined. Table
3 and Table 4 below presents the mean S and mean V/R for each simulation setting, respectively.

The corresponding standard errors for the mean S and mean V/R are reported in parentheses.
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As expected, the power to detect DE genes increased as the number of EE genes
decreased, that is, the number of DE genes (mo) increased. Also, the power to identify DE genes
increased as the sample size increased.

Pertaining to the initial goal of this research, the traditional method did not outperform the
proposed method I and II in any of the simulation settings in terms of mean S, as seen in Table 3.
Proposed method I performed better than the traditional method in 59 of the 80 simulation
settings with regard to mean S (10 of 20 settings with n =4, 16 of 20 settings with n =6, 16 of 20
settings with n = 10, and 17 of 20 settings with n = 12). The proposed method II performed better
than the traditional method in 69 of the 80 simulations, including all settings with n = 6, 18 of 20
settings with n = 10; 19 of 20 settings with n = 12, and 12 of 20 settings with n = 4. Furthermore,
proposed method II performed better than proposed method I in 62 of 80 settings in terms of
mean S (6 of 20 settings with n =4, 20 of 20 settings with n = 6, 18 of 20 settings with n = 10,
and 18 of 20 settings with n = 12). Although a higher value of mean S was observed in the

traditional method compared to the proposed methods I and II in the setting where sample size n

=10, mo = 9000, and 7, ; this difference was not significant. Also higher values of mean S was

observed in proposed method II compared to proposed method I, but there were no significant
differences between these two methods in 3 of 80 settings. Apart from these settings, a higher
value of mean § was observed using the traditional method compared to proposed method I, but
not proposed method II in 9 of 80 settings, but there was no significant difference in mean S at
5% significance between the traditional method and proposed method I.

As shown in Table 4, the observed FDR (mean V/R) was comparable among the

proposed methods and traditional method for each simulation setting, with levels elevated above
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5% for the simulation settings with the smallest sample size (n = 4). In the simulation settings

with all other sample sizes, the observed FDR was controlled at, or close to, 5% for all methods.

Table 3.

errors in parentheses for each simulation setting.

The mean S for the proposed and traditional FDR methods with associated standard

Mean S
Traditional Proposed
n | m | DE | m; I I
4 5000 | 5000 | r; | 603.770(5.779) | 584.030 (5.768) 665.040 (4.746)
m, | 519.010 (2.914) | 569.940 (4.511) 671.570 (7.292)
3 | 558.070 (4.439) | 610.600 (3.851) 613.570 (3.819)
m, | 728.700 (4.714) | 801.540 (4.091) 802.560 (4.063)
s | 700.850 (4.471) | 792.640 (4.380) 792.640 (4.380)
7000 | 3000 | ©; | 100.820 (4.425) 94.700 (4.584) 120.560 (6.076)
m, | 183.910(4.296) | 201.310 (2.423) 208.450 (2.867)
3 | 225.540(2.825) | 250.930 (3.117) 250.930 (3.117)
my | 254.060 (2.961) | 300.450 (2.617) 300.450 (2.617)
s | 262.480 (3.231) | 324.180 (3.857) 324.180 (3.857)
9000 | 1000 | m, 0.770 (0.384) 0.330 (0.233) <0.001 (<0.001)
m, | <0.001 (<0.001) 0.570 (0.412) 0.570 (0.412)
[ 4.200 (0.993) 4.650 (1.072) 4.650 (1.072)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), 7, = (0.7, 0.3), 73 = (0.8, 0.2), 7, = (0.9, 0.1) and 5 =
(0.95, 0.05).
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Table 3. The mean S for the proposed and traditional FDR methods with associated standard
errors in parentheses for each simulation setting (continued).
Mean S
Traditional Proposed
n Mo DE | m; I II
4 (9000 | 1000 | m, 10.050 (1.693) 23.180 (2.111) 23.180 (2.111)
s 26.450 (2.433) 31.660 (2.404) 31.660 (2.404)
9500 | 500 | m; | <0.001(<0.001) <0.001 (<0.001) <0.001 (<0.001)
m, | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)
3 | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)
my | <0.001 (<0.001) 0.330 (0.237) 0.330 (0.237)
s | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)
6 |5000 | 5000 | ry; | 3142.390 (2.816) | 3145.260 (2.676) | 3167.580 2.541)
m, | 2455.030 (4.608) | 2543.140 (7.385) | 3292.600 (2.541)
3 | 2643.070 (2.687) | 2674.230 (2.613) | 3210.310 (2.884)
m, | 3144.200 (2.161) | 3186.670 (2.491) | 3458.040 (2.710)
s | 3281.200 (2.506) | 3321.780 (2.244) | 3439.340 (4.547)
7000 | 3000 | m, | 1278.380 19.220) | 1281.960 (19.143) | 1540.420 (2.121)
m, | 1399.460 (1.775) | 1425.710 (2.871) | 1860.730 (1.875)
3 | 1647.370 (1.580) | 1662.400 (1.599) | 1987.230 (1.716)

For each setting, the significant higher mean § value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), 7, = (0.7, 0.3), 73 = (0.8, 0.2), 7, = (0.9, 0.1) and 5 =
(0.95, 0.05).
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Table 3.

errors in parentheses for each simulation setting (continued).

The mean S for the proposed and traditional FDR methods with associated standard

Mean S
Traditional Proposed

n | m | DE | m; I 11
6 |7000 | 3000 | m, | 1699.210 (1.857) | 1728.290 (1.793) | 1830.980 (4.729)
s | 1919.720 (1.744) | 1951.730 (1.741) | 1976.980 (2.299)
9000 | 1000 | 74 515.200 (7.394) 517.260 (7.208) 535.970 (5.080)
T, 393.760 (7.155) 407.070 (4.239) 517.720 (6.150)
T3 505.130 (0.777) 507.830 (0.753) 578.540 (3.576)
Ty 525.390 (3.935) 527.950 (3.962) 542.750 (4.241)
[ 479.170 (0.955) 483.380 (0.965) 491.180 (1.252)
9500 | 500 | m, 189.030 (1.222) 193.190 (2.239) 231.910 (6.203)
1T, 159.530 (8.129) 172.280 (7.593) 218.040 (8.390)
T3 199.210 (7.111) 195.430 (7.370) 212.680 (7.584)
my | 253.200 (3.600) 253.260 (3.600) 259.150 (3.650)
s 244.320 (6.124) 260.470 (3.373) 262.940 (3.350)
10 | 5000 | 5000 | 7r; | 3333.470(2.514) | 3332.570(2.516) | 3338.570 (2.454)
m, | 3487.460 (2.623) | 3511.980 (2.715) | 3555.450 (2.499)
3 | 3566.390 (2.649) | 3609.980 (2.604) | 3668.730 (2.497)

For each setting, the significant higher mean § value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), 7, = (0.7, 0.3), 73 = (0.8, 0.2), 7, = (0.9, 0.1) and 5 =
(0.95, 0.05).
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Table 3.

The mean S for the proposed and traditional FDR methods with associated standard

errors in parentheses for each simulation setting (continued).

Mean S
Traditional Proposed

n | m | DE | m; I 11
10 | 5000 | 5000 | m, | 3476.510(6.919) | 3558.420 (4.318) | 3621.910 (2.080)
s | 3682.050 (4.375) | 3758.830 (5.453) | 3831.440 (2.445)
7000 | 3000 | mr; | 2046.110 (1.600) | 2045.460 (1.593) | 2049.050 (1.542)
m, | 1915.780 (1.747) | 1922.750 (1.706) | 1944.820 (1.722)
3 | 1961.270 (1.615) | 1979.750 (1.569) | 2000.900 (1.406)
my | 2195.010 (4.836) | 2250.420 (1.377) | 2276.420 (1.377)
s | 2162.030 (1.841) | 2198.260 (2.025) | 2269.640 (1.555)
9000 | 1000 | m, 625.040 (0.764) 624.390 (0.737) 624.620 (0.762)
1T, 600.960 (0.968) 600.170 (0.986) 608.800 (1.020)
T3 653.700 (0.794) 656.220 (0.762) 662.280 (0.768)
Ty 588.770 (0.953) 589.820 (0.909) 621.650 (0.902)
s 681.500 (0.744) 685.670 (0.730) 707.460 (0.690)
9500 | 500 | m, 293.450 (0.541) 293.690 (0.543) 293.430 (0.555)
T, 286.600 (0.564) 287.770 (0.557) 289.400 (0.518)
T3 307.240 (0.557) 307.890 (0.563) 309.700 (0.553)

For each setting, the significant higher mean § value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), 7, = (0.7, 0.3), 73 = (0.8, 0.2), 7, = (0.9, 0.1) and 5 =
(0.95, 0.05).
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Table 3.

The mean S for the proposed and traditional FDR methods with associated standard

errors in parentheses for each simulation setting (continued).

Mean S
Traditional Proposed

n | m | DE | m; I 11
10 | 9500 | 500 | m, 315.450 (0.762) 317.470 (0.681) 319.260 (0.582)
s 317.030 (0.505) 317.130 (0.504) 326.800 (0.534)
12 | 5000 | 5000 | r; | 3621.600 (3.078) | 3628.480 (2.681) | 3631.800 (2.681)
m, | 3408.150 (3.805) | 3443.260 (3.507) | 3484.980 (3.192)
3 | 3462.340 (3.433) | 3500.930 (3.541) | 3550.160 (3.049)
m, | 3597.780 (2.699) | 3669.350 (3.075) | 3699.720 (2.628)
s | 3694.540 (3.381) | 3748.770 (2.958) | 3776.480 (2.807)
7000 | 3000 | m; | 2021.820(1.691) | 2022.220 (1.636) | 2026.860 (1.689)
m, | 2084.570 (1.540) | 2098.030 (1.507) | 2113.840 (1.458)
my | 2115.730 (1.570) | 2131.110 (1.585) | 2150.520 (1.482)
m, | 2211.550 (1.612) | 2237.970 (1.733) | 2254.140 (1.674)
s | 2240.620 (1.916) | 2279.460 (1.620) | 2289.900 (1.632)
9000 | 1000 | m, 655.090 (0.789) 655.010 (0.788) 655.110 (0.780)
[ %) 679.660 (0.727) 680.190 (0.729) 684.700 (0.732)
T3 646.790 (0.914) 648.140 (0.893) 653.430 (0.849)

For each setting, the significant higher mean § value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), 7, = (0.7, 0.3), 73 = (0.8, 0.2), 7, = (0.9, 0.1) and 5 =
(0.95, 0.05).
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Table 3.

errors in parentheses for each simulation setting (continued).

The mean S for the proposed and traditional FDR methods with associated standard

Mean S
Traditional Proposed

n | m | DE | m; I 11
12 | 9000 | 1000 | m, 728.650 (0.622) 731.510 (0.624) 735.200 (0.609)
s 702.520 (0.745) 705.240 (0.781) 708.540 (0.778)
9500 | 500 | m4 310.950 (0.493) 311.390 (0.488) 311.570 (0.511)
T, 325.440 (0.437) 324.910 (0.445) 326.610 (0.422)
T3 300.360 (0.475) 300.660 (0.484) 301.850 (0.436)
Ty 323.550 (0.493) 324.130 (0.490) 325.420 (0.493)
[ 320.840 (0.472) 321.550 (0.472) 323.060 (0.498)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If one method has a significant higher mean S compared to the other two methods, then the
mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated and
downregulated. 7; = (0.5, 0.5), m, = (0.7, 0.3), 73 = (0.8, 0.2),r, = (0.9, 0.1) and 5 =
(0.95, 0.05).

Table 4. The mean V/R for the proposed and traditional FDR methods with associated
standard errors in parentheses for each simulation setting.
Mean V/R
Traditional Proposed
n Mo DE | m; I II

4 [5000] 5000 | 7, | 0.193(0.002) 0.190 (0.002) 0.161 (0.002)

T, 0.121 (0.002) 0.140 (0.002) 0.142 (0.002)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 4.

standard errors in parentheses for each simulation setting (continued).

The mean V/R for the proposed and traditional FDR methods with associated

Mean V/R
Traditional Proposed
n | m | DE | m; I 11
4 | 5000 | 5000 | 74 0.102 (0.002) 0.116 (0.001) 0.117 (0.001)
Ty 0.084 (0.001) 0.100 (0.001) 0.100 (0.001)
g 0.079 (0.001) 0.101 (0.001) 0.101 (0.001)
7000 | 3000 | m, 0.176 (0.007) 0.166 (0.008) 0.154 (0.006)
T, 0.143 (0.004) 0.157 (0.003) 0.158 (0.003)
[ 0.150 (0.003) 0.173 (0.003) 0.173 (0.003)
Ty 0.145 (0.003) 0.177 (0.003) 0.177 (0.003)
g 0.122 (0.002) 0.159 (0.003) 0.159 (0.003)
9000 | 1000 | m, 0.014 (0.007) 0.008 (0.006) <0.001 (<0.001)
m, | <0.001 (<0.001) 0.005 (0.004) 0.005 (0.004)
[ 0.044 (0.010) 0.046 (0.011) 0.046 (0.011)
T, 0.089 (0.015) 0.178 (0.016) 0.178 (0.016)
s 0.165 (0.015) 0.195 (0.015) 0.195 (0.015)
9500 | 500 | m; | <0.001(<0.001) <0.001 (<0.001) <0.001 (<0.001)
m, | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)
3 | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 4.

standard errors in parentheses for each simulation setting (continued).

The mean V/R for the proposed and traditional FDR methods with associated

Mean V/R
Traditional Proposed
n | m | DE | m; I 11
4 9500 | 500 | m, | <0.001 (<0.001) 0.010 (0.007) 0.010 (0.007)
s | <0.001 (<0.001) <0.001 (<0.001) <0.001 (<0.001)
6 |5000 | 5000 | m, 0.048 (<0.001) 0.048 (<0.001) 0.047 (<0.001)
[ ) 0.062 (0.001) 0.73 (0.001) 0.069 (0.001)
[ 0.024 (<0.001) 0.028 (<0.001) 0.034 (<0.001)
Ty 0.020 (<0.001) 0.025 (<0.001) 0.034 (<0.001)
[ 0.017 (<0.001) 0.020 (<0.001) 0.036 (<0.001)
7000 | 3000 | m, 0.046 (0.001) 0.045 (0.001) 0.038 (0.001)
1T, 0.043 (0.001) 0.054 (0.001) 0.044 (<0.001)
T3 0.037 (<0.001) 0.043 (0.001) 0.043 (0.001)
Ty 0.043 (0.001) 0.052 (0.001) 0.051 (0.001)
s 0.038 (0.001) 0.047 (0.001) 0.047 (0.001)
9000 | 1000 | m, 0.067 (0.002) 0.067 (0.002) 0.063 (0.001)
T, 0.042 (0.002) 0.041 (0.001) 0.040 (0.001)
[ 0.040 (0.001) 0.044 (0.001) 0.044 (0.001)
Ty 0.034 (0.001) 0.036 (0.001) 0.038 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 4.

The mean V/R for the proposed and traditional FDR methods with associated
standard errors in parentheses for each simulation setting (continued).

Mean V/R
Traditional Proposed

n | m | DE | m; I 11
6 9000 | 1000 | 75 0.040 (0.001) 0.044 (0.001) 0.044 (0.001)
9500 | 500 | m, 0.052 (0.002) 0.052 (0.002) 0.051 (0.003)
T, 0.078 (0.006) 0.073 (0.005) 0.064 (0.004)
T3 0.061 (0.005) 0.062 (0.005) 0.081 (0.005)
Ty 0.049 (0.003) 0.049 (0.003) 0.058 (0.003)
g 0.059 (0.004) 0.057 (0.003) 0.058 (0.002)
10 | 5000 | 5000 | 74 0.047 (<0.001) 0.047 (<0.001) 0.047 (<0.001)
T, 0.040 (<0.001) 0.043 (<0.001) 0.047 (<0.001)
3 0.035 (<0.001) 0.040 (<0.001) 0.048 (<0.001)
Ty 0.027 (<0.001) 0.032 (<0.001) 0.046 (<0.001)
5 0.029 (<0.001) 0.035 (<0.001) 0.089 (0.001)
7000 | 3000 | m, 0.048 (0.001) 0.048 (0.001) 0.049 (0.001)
[ ) 0.044 (<0.001) 0.047 (0.001) 0.048 (0.001)
[ 0.043 (0.001) 0.048 (0.001) 0.048 (0.001)
Ty 0.045 (<0.001) 0.053 (0.001) 0.052 (0.001)
s 0.045 (<0.001) 0.056 (0.001) 0.055 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 4.

The mean V/R for the proposed and traditional FDR methods with associated
standard errors in parentheses for each simulation setting (continued).

Mean V/R
Traditional Proposed

n | m | DE | m; I 11
10 | 9000 | 1000 | 74 0.045 (0.001) 0.044 (0.001) 0.044 (0.001)
T, 0.044 (0.001) 0.043 (0.001) 0.048 (0.001)
[ 0.047 (0.001) 0.050 (0.001) 0.047 (0.001)
Ty 0.040 (0.001) 0.041 (0.001) 0.041 (0.001)
g 0.045 (0.001) 0.049 (0.001) 0.048 (0.001)
9500 | 500 | m4 0.080 (0.002) 0.080 (0.002) 0.077 (0.002)
[ ) 0.061 (0.001) 0.065 (0.001) 0.059 (0.001)
[ 0.043 (0.001) 0.045 (0.001) 0.043 (0.001)
Ty 0.048 (0.001) 0.052 (0.001) 0.050 (0.001)
s 0.038 (0.001) 0.039 (0.001) 0.040 (0.001)
12 | 5000 | 5000 | 74 0.034 (0.001) 0.035 (<0.001) 0.035 (<0.001)
[ ) 0.036 (0.001) 0.040 (0.001) 0.042 (0.001)
T3 0.028 (<0.001) 0.033 (<0.001) 0.040 (<0.001)
T, 0.035 (<0.001) 0.044 (<0.001) 0.053 (0.001)
y £ 0.025 (<0.001) 0.030 (<0.001) 0.053 (0.001)
7000 | 3000 | m, 0.045 (<0.001) 0.045 (<0.001) 0.046 (<0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 4.

standard errors in parentheses for each simulation setting (continued).

The mean V/R for the proposed and traditional FDR methods with associated

Mean V/R
Traditional Proposed

n | m | DE | m; I 11
12 | 7000 | 3000 | m, 0.050 (0.001) 0.055 (0.001) 0.053 (0.001)
3 0.039 (<0.001) 0.044 (0.001) 0.045 (0.001)
Ty 0.046 (<0.001) 0.057 (0.001) 0.056 (<0.001)
s 0.054 (0.001) 0.068 (0.001) 0.066 (0.001)
9000 | 1000 | m, 0.049 (0.001) 0.049 (0.001) 0.049 (0.001)
T, 0.044 (0.001) 0.044 (0.001) 0.045 (0.001)
T3 0.044 (0.001) 0.046 (0.001) 0.045 (0.001)
Ty 0.049 (0.001) 0.054 (0.001) 0.053 (0.001)
g 0.045 (0.001) 0.049 (0.001) 0.049 (0.001)
9500 | 500 | m, 0.060 (0.001) 0.061 (0.001) 0.060 (0.001)
[ %) 0.048 (0.001) 0.046 (0.001) 0.053 (0.001)
[ 0.042 (0.001) 0.043 (0.001) 0.042 (0.001)
Ty 0.041 (0.001) 0.043 (0.001) 0.043 (0.001)
g 0.046 (0.001) 0.048 (0.001) 0.048 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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3.5. Real data analysis

In this section, RNA-Seq data from a real gene expression experiment described by
Bottomly et al. (2011) using both the proposed methods and traditional (SAMseq) methods is
analyzed. Using the Illumina GAIIx sequencing platform, the experiment was performed to
evaluate gene expression in C57BL/6J (B6) and DBA/2J (D2) mouse striatum using RNA-Seq
and microarrays. For the analysis, the focus is on the RNA-Seq data. There were two classes (B6
and D2); with a total of n = 21 samples, n; = 10 B6 samples and n2 = 11 D2 samples. The data
set contains 36,536 genes, with many of the genes not having any reads. These genes were
removed, and the remaining m = 13,932 were analyzed. The raw data set is named after the first
author of the paper and is available from ReCount project (Frazee et al., 2011) with an identifier

“bottomly”. Figure 2 below shows the distribution of the test statistic for the genes analyzed.
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Figure 2. Histogram of the test statistic from the experiment described by Bottomly et al.
(2011) using SAMseq two class unpaired test statistics, to compare RNA expression levels
between B6 and D2 samples.

Although, the histogram of the test statistics from this experiment does not clearly

indicate asymmetry in the distribution of test statistics; there are more genes with positive test
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statistics than negative test statistics. Precisely, there are m” =7190 genes with positive test

statistics and m~ = 6742 genes with negative test statistics.
Using the method described in section 3.3.1 for estimating the proportion of EE genes m,

7, =0.7182 . Thus, the estimated number of EE genes was i, = 10006 . Since the expected EE

genes should have an equal number of both positive and negative test statistics, then the estimate

m, /2 =5003 EE genes with positive test statistics and i, /2 = 5003 EE genes with negative test

statistics. Using these estimates, estimate the number of DE genes with positive effect sizes as
7190 — 5003 = 2187 genes, and the number of DE genes negative effect sizes as 6742 — 5003 =
1739 genes. This results in an estimate of 56% of DE having positive effect sizes and 44%
having negative effect sizes.

The number of genes declared to be DE using proposed method I, proposed method II
and the traditional method while controlling FDR at 5% are summarized in Figure 3. There were
1868 genes that were DDE by all three methods. An additional 47 genes were DDE by the
proposed method I and the traditional method, but not the proposed method II. Finally, there are
70 additional genes DDE by only proposed method I and 8 genes DDE by only the traditional
method. Therefore, proposed method II declared the most genes to be DE, followed by the
traditional method and then proposed method I. This is not surprising based on the results from

the simulation studies in section 3.4.
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Figure 3. Venn diagram of genes declared to be DE for the proposed method I, proposed
method II and traditional method.

Because this analysis was performed on a real, not simulated, data set, it cannot be
determined which genes are EE and which are DE. Thus, evaluating the true FDR associated
with each method is impossible. However, because the sample size for each class is relatively
large with a small degree of asymmetry, the FDR is being adequately controlled at 5% based on
the results of the simulation study in section 3.4.

3.6. Discussion

The proposed methods for estimating FDR, when there exists asymmetry in the
distribution of the test statistics, has observed advantages over the traditional method. Proposed
methods I and II were never outperformed by the traditional method in terms of identifying DE
genes in the simulation studies and outperformed the traditional method in almost all settings
where asymmetry was present. The proposed methods also adequately controlled FDR at 5% in

most simulation settings with the exception of settings with n = 4. The power for detecting DE
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genes was also low when n = 4. Thus, the use of the proposed methods or traditional method for
estimating FDR when the sample size is very small is not recommended. This is consistent with
recommendations made by Li and Tibshirani (2013). Additionally, proposed method II
performed better than proposed method I and the traditional method in most settings.

Using real RNA-Seq data, proposed method II declared more genes to be DE than
proposed method I and the traditional method at 5% significance level, which is consistent with
the simulation results.

Based on the results from the simulation studies and real data analyses, the proposed
methods should be used to analyze experiments with sample sizes of at least 6 when there exists
asymmetry in the distribution of the test statistics. Proposed method II is more preferable than
proposed method I.

Lastly, because the proposed methods only alters the FDR estimation in the SAMseq
procedure, the proposed methods can also be used to modify the original SAM method that uses

different methods for calculating test statistics.
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CHAPTER 4. COMPARISION OF PROPOSED METHOD II AND OTHER
COMMONLY-USED EXISTING METHODS
4.1. Summary

In this chapter, the performance of proposed method II, the best-performing method from
Chapter 3, to other commonly-used existing methods for identifying DE genes from RNA-Seq
experiments are compared. These methods are NBPSeq (Yanming et al., 2011), edgeR
(Robinson et al., 2010), and DESeq2(Love et al., 2014). Proposed method II is a non-parametric
procedure described in section 3.3.2.2., while the NBPSeq, edgeR and DESeq?2 are parametric
methods that assume a negative binomial distribution for the data. NBPSeq, edgeR and DESeq?2
first estimate the dispersion parameter and test statistics. The test statistics are then transformed
into p-values and FDRs are estimated. DESeq2 and edgeR uses the Benjamini and Hochberg
(1995) procedure to estimate the FDR for each gene, while the NBPSeq uses Storey’s 2002 g-
value approach.

4.2. Overview of DESeq2 NBPSep and edgeR methods

4.2.1. DESeq2 method

DESeq? is a successor of DESeq, which was proposed by Anders and Huber (2010). In
their previous method, they proposed using a negative binomial distribution with variance and
mean linked by local regression to estimate the data variability and a suitable error model. To
improve on the stability and interpretability of estimates, Love et al. (2014) proposed using
shrinkage estimation for dispersions and fold changes which allows for more quantitative
analysis (such as experiments with small number of replicates) based on the strength rather than

the presence of differential expression.
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4.2.2. NBPSeq method

NBPSeq method was developed by Yanming et al., 2011 a statistical method used to
assess differential gene expression using RNA-Seq data. Yanming et al., (2011) propose the use
of NBP parameterization of the negative binomial distribution to test for DE genes. Their method
extends the exact test proposed by Robinson and Smyth (2007, 2008) by adding an extra
parameter to allow the dispersion parameter to depend on the mean. Robinson and Smyth (2007,
2008) used a constant as a measure for the dispersion parameter, to model the count variability
between biological replicates. To test for differentially expressed genes, log fold changes are
estimated for each gene and the g-value method proposed by Storey (2002) is used to adjust the
p-values control the false discovery rate.
4.2.3. edgeR method

EdgeR method was developed by Robinson et al., (2010) to examine differential
expression of replicated count data using over dispersed Poisson model to account for both
biological and technical variability. Robinson et al., (2010) uses the empirical Bayes procedures
to shrink the dispersions towards a suitable value to measure the degree of over dispersion across
transcripts, thereby improving the number of genes that are identified as differentially expressed.
Lastly, to test for differentially expressed genes, likelihood-ratio statistics are estimated to
compare the null hypothesis that a gene is equivalently expressed against a two-sided alternative
that the gene is not equivalently expressed. The BH method proposed by Benjamini and
Hochberg (1995) is then used to adjust the p-values control the false discovery rate. Robinson et
al., (2010) method assumes data can be summarized into a table of counts, with rows
corresponding to genes and columns to experimental units. The data is modeled as a negative

binomial (NB) distribution.
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4.3. Simulation studies
To evaluate the performance of proposed method II compared to the three commonly-
used existing methods for estimating false discovery rate, data sets with Poisson distributed gene
counts were randomly generated. For each data set, gene counts were randomly generated for m
= 10,000 genes in two experiments. For gene j in experiment Z, the gene count was generated
using the procedures discussed in section 3.4.

Using the same simulation settings described in section 3.4, four different sample sizes,

n= {4, 6,10, 12} and four different values for the number of EE genes,

m, = {500(), 7000, 9000,9500} are used for the simulated data sets. To simulate asymmetry, five

set of values representing the proportion of DE genes that are upregulated and downregulated

were used: 7, :(0.5, 0.5), T, = (0.7, ().3) A :(0.8, 0.2) A :(().9,0.1), and 7 :(0.95, 0.05).
For instance, in settings where 7, = (0.7, 0.3) 1s used, 0.7 represent the proportion of DE genes

that are upregulated and 0.3 represent the proportion of DE genes that are downregulated in the
data set. This results in eighty different simulation settings.
4.3.1. Results

For each simulation setting, 100 data sets were randomly generated. For each data set, all
four methods (proposed method II, NBPSeq, edgeR, and DESeq2) were used to estimate the
FDR for each gene to identify DE genes.

Controlling FDR at the 5% significance level, S (the number of DE genes DDE) for each
data set was determined. To determine if each method controlled FDR at 5% significance level,
the observed FDR, V/R (proportion of EE genes among all DDE genes) was calculated for each

data set. If no genes were DDE for a particular data set, V/R was set to zero. For each simulation
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setting, paired ¢-tests were performed to test the difference in the mean S of proposed method I1
and NBPSeq, proposed method II and edgeR, and proposed method II and DESeq2 method. If a
test between proposed method I and another existing method (NBPSeq, edgeR, or DESeq2) was
significant at a type I error rate of 5% with the existing method outperforming proposed method,
the higher mean S is underlined. If proposed method II outperformed all three other existing
methods, the mean S for proposed method II is bolded. Table 5 and Table 6 below presents the
mean S and mean V/R for each simulation setting, respectively. The corresponding standard
errors for the mean S and mean V/R are reported in parentheses.

As expected, the power to detect DE genes increased as the number of EE genes
decreased, that is, the number of DE genes (mo) increased. Also, the power to identify DE genes
increased as the sample size increased.

Proposed method II performed better than NBPSeq in 57 of 80 settings in terms of mean
S (all settings with n =10 and 12, and 17 of 20 settings with n = 6). Furthermore, proposed
method II performed better than edgeR in 27 of 80 settings in terms of mean S (8 of 20 settings
with n = 6, 10 of 20 settings with n = 10, and 9 of 20 settings with n = 12). Lastly, proposed
method II performed better than DESeq?2 in 52 of 80 settings in terms of mean S (15 of 20
settings with n = 6, 19 of 20 settings with n = 10, and 18 of 20 settings with n = 12). Proposed
method II was outperformed by the NBPSeq, edgeR, and DESeq2 methods in all simulation
settings with n = 4.

Again, looking at Table 6, NBPSeq, edgeR, and DESeq2 methods best controlled the
observed FDR in settings where 50% (1) or 70% (72) of genes are upregulated or in settings
where the number of EE genes is high (mo = 9000 or 9500). However, in settings where the level

of asymmetry is high (73, 74, and 7s) and the number of EE genes is smaller (0 = 5000 or 7000),
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the observed FDRs of these methods tend to be elevated above 5%, in many cases over 20%. In
these simulation settings, the observed FDR for proposed method II exhibit much better control

of the observed FDR, except for simulation settings with n = 4 as already noted.

Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting.

Mean S
n Mo | DE | m; | Proposed NBPSeq edgeR DESeq2
method II
4 | 5000 | 5000 | T;| 665.040 2393.740 3004.790 2361.140
(4.746) (1.630) (1.870) (10.400)
m,| 671.570 2506.910 2751.190 2035.960
(7.292) (1.204) (2.134) (8.545)
3| 613.570 2225.980 2576.720 1948.730
(3.819) (1.474) (1.726) 0.151)
| 802.560 2206.140 2512.640 1763.320
(4.063) (1.388) (2.437) (5.946)
| 792.640 2033.790 2597.510 1891.770
(4.38) (1.594) (3.802) (1.875)
7000 | 3000 | T4 120.560 1297.790 1432.570 1159.780
(6.076) (1.019) (1.312) (3.647)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
II, then the mean S is underlined. The m;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9,
0.1) and w5 = (0.95, 0.05).



Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
4 | 7000 | 3000 | T, | 208.450 1420.370 1519.580 1169.160
(2.867) (1.186) (1.374) (1.472)
3|  250.930 1634.860 1852.370 1464.750
(3.117) (1.084) (1.316) (3.526)
.| 300.450 1544.470 1741.700 1369.650
(2.617) (1.091) (1.431) (4.226)
| 324.180 1405.500 1748.680 1327.950
(3.857) (1.080) (1.601) (5.149)
9000 | 1000 | 7z, <0.001 462.250 510.120 372.800
(<0.001) (0.531) (0.839) (0.809)
T, 0.570 378.550 479.290 345.040
(0.412) (0.517) (0.805) (1.038)
3 4.650 595.450 614.120 504.430
(1.072) (0.436) (0.632) (0.776)
Ty 23.180 496.870 615.180 509.780
(2.111) (0.671) (0.627) (2.021)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5.

The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with

associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
4 19000 | 1000 | 5 31.660 385.340 492.820 409.620
(2.404) (0.627) (0.784) (2.510)
9500 | 500 | 4 <0.001 219.490 253.270 189.050
(<0.001) (0.394) (0.580) (0.558)
T, <0.001 196.620 264.890 208.370
(<0.001) (0.425) (0.456) (0.630)
T3 <0.001 204.530 281.650 224.250
(<0.001) (0.420) (0.427) (1.236)
Ty 0.330 217.160 267.780 220.880
(0.237) (0.408) (0.452) (0.607)
s <0.001 211.490 252.850 199.710
(<0.001) (0.392) (0.455) (0.676)
6 | 5000 | 5000 | ;| 3167.580 2512.510 3141.370 2881.370
(2.541) (1.788) (1.935) (7.140)
| 3292.600 2436.120 2924.670 2829.200
(2.541) (1.539) (1.696) (4.918)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
6 | 5000 | 5000 | 3| 3210.310 2427.720 3075.600 2655.170
(2.884) (1.684) (2.298) (1.580)
| 3458.040 2943.060 3079.110 2693.820
(2.710) (1.282) (1.751) (4.947)
s | 3439.340 2728.340 2992.840 2598.970
(4.547) (1.419) (2.130) (2.283)
7000 | 3000 | T; | 1540.420 1329.570 1608.270 1398.550
(2.121) (1.068) (1.484) (3.817)
m,| 1860.730 1473.040 1893.590 1672.560
(1.875) (1.358) (1.519) (4.608)
3| 1987.230 1679.790 1948.980 1733.900
(1.716) (1.306) (1.400) (3.426)
m,| 1830.980 1364.390 1710.980 1477.740
(4.729) (1.179) (1.560) (4.602)
5| 1976.980 1581.580 1852.280 1570.240
(2.299) (1.124) (1.593) (2.857)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
6 | 9000 | 1000 | T,y 535.970 452.860 559.940 507.750
(5.080) (0.650) (0.837) (1.179)
m,| 517.720 475.560 588.800 513.550
(6.150) (0.565) (0.784) (1.684)
3| 578.540 512.040 618.890 553.620
(3.576) (0.665) (0.633) (0.955)
| 542.750 498.480 580.510 521.350
(4.241) (0.611) (0.808) (1.414)
| 491.180 463.450 490.860 416.830
(1.252) (0.392) (0.847) (0.696)
9500 | 500 | ;| 231910 241.410 301.270 264.240
(6.203) (0.436) (0.526) (0.757)
m,| 218.040 264.810 313.960 279.300
(8.390) (0.378) (0.578) (0.695)
3|  212.680 228.270 280.430 258.580
(7.584) (0.440) (0.532) (0.948)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
6 | 9500 | 500 |m, 259.150 251.460 281.560 260.610
(3.650) (0.401) (0.509) (0.837)
Ty | 262.940 220.760 275.860 244.630
(3.350) (0.450) (0.466) (0.757)
10 | 5000 | 5000 | ;| 3338.570 2737.820 3307.910 3135.040
(2.454) (1.628) (2.043) (4.275)
T, | 3555.450 2689.210 3417.290 3200.460
(2.499) (1.413) (1.857) (1.735)
3| 3668.730 2701.920 3474.850 3270.890
(2.497) (1.725) (1.541) (1.721)
| 3621.910 2673.960 3199.810 3003.920
(2.080) (1.788) (2.144) (1.816)
s | 3831.440 2862.120 3367.310 3170.710
(2.445) (1.533) (1.723) (1.636)
7000 | 3000 | Ty | 2049.050 1668.250 2091.140 1989.180
(1.542) (1.178) (1.252) (2.639)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5.

The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with

associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
10 | 7000 | 3000 | r, | 1944.820 1610.330 1911.210 1811.090
(1.722) (1.142) (1.458) (1.983)
3| 2000.900 1646.71 1925.240 1791.640
(1.406) (1.120) (1.482) (1.653)
T, | 2276.420 1907.520 2157.350 2025.280
(1.377) (1.109) (1.263) (1.168)
5| 2269.640 1789.000 2107.220 1972.130
(1.555) (1.184) (1.621) (1.100)
9000 | 1000 | T; | 624.620 558.040 641.090 605.600
(0.762) (0.588) (0.709) (1.046)
m,| 608.800 528.770 628.570 598.800
(1.020) (0.641) (0.796) (1.209)
3| 662.280 546.760 675.060 639.120
(0.768) (0.659) (0.685) (1.019)
m,| 621.650 510.070 649.470 615.570
(0.902) (0.631) (0.774) (0.884)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).
Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11

10 | 9000 | 1000 | T5| 707.460 619.170 693.660 656.990
(0.690) (0.520) (0.636) (0.906)

9500 | 500 | my| 293.430 232.420 307.650 294.730
(0.555) (0.443) (0.559) (0.672)

| 289.400 250.130 299.640 281.490

(0.518) (0.333) (0.464) (0.571)

3| 309.700 256.420 324.840 306.510

(0.553) (0.425) (0.486) (0.624)

m,| 319.260 265.580 323.050 303.960

(0.582) (0.360) (0.516) (0.682)

5| 326.800 269.590 336.720 325.330

(0.534) (0.458) (0.439) (0.559)

12 | 5000 | 5000 | r;| 3631.800 3044.920 3642.540 3503.160
(2.681) (1.488) (1.530) (3.213)

m, | 3484.980 2852.450 3388.700 3232.940

(3.192) (1.572) (1.649) (1.829)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
12 | 5000 | 5000 | 3| 3550.160 2819.240 3288.460 3113.280
(3.049) (1.581) (2.148) (1.787)
| 3699.720 2664.210 3231.800 3047.890
(2.628) (1.547) (1.804) (1.883)
| 3776.480 2687.840 3403.550 3282.990
(2.807) (1.711) (1.662) (1.609)
7000 | 3000 | T; | 2026.860 1677.590 2085.390 2000.710
(1.689) (1.287) (1.373) (2.131)
m,| 2113.840 1791.330 2075.040 1978.530
(1.458) (1.130) (1.407) (1.978)
3| 2150.520 1773.460 2117.230 2026.720
(1.482) (1.177) (1.289) (1.266)
T, | 2254.140 1795.050 2148.180 2044.430
(1.674) (1.098) (1.352) (1.184)
5| 2289.900 1711.590 2124.090 2019.690
(1.632) (1.273) (1.532) (1.126)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
12 | 9000 | 1000 | ;| 655.110 538.450 671.320 641.550
(0.780) (0.693) (0.665) (0.818)
m,| 684.700 542.900 706.380 678.890
(0.732) (0.673) (0.638) (0.829)
3| 653.430 553.950 666.360 635.380
(0.849) (0.624) (0.781) (0.926)
| 735.200 601.220 738.550 709.430
(0.609) (0.650) (0.675) (0.696)
s | 708.540 602.530 696.570 668.830
(0.778) (0.596) (0.702) (0.805)
9500 | 500 | ;| 311.570 253.510 327.320 316.630
(0.511) (0.391) (0.459) (0.498)
|  326.610 266.430 336.970 326.560
(0.422) (0.427) (0.441) (0.517)
3| 301.850 265.480 312.910 297.680
(0.436) (0.397) (0.506) (0.602)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
I, then the mean S is underlined. The 7;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), w3 = (0.8, 0.2), m, = (0.9,
0.1) and 5 = (0.95, 0.05).
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Table 5. The mean S for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean S
n Mo | DE |m; | Proposed NBPSeq edgeR DESeq2
method 11
12 | 9500 | 500 |m,| 325.420 276.110 331.330 319.910
(0.493) (0.394) (0.394) (0.511)
| 323.060 285.790 327.210 312.950
(0.498) (0.357) (0.440) (0.539)

For each setting, the significant higher mean § value at 5% significance level is shown in bolded
fonts. If the existing methods have a significant higher mean S compared to the proposed method
II, then the mean S is underlined. The m;’s represent the proportion of DE genes that are
upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, = (0.9,
0.1) and w5 = (0.95, 0.05).

Table 6. The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting.

Mean V/R

n mo | DE |m; Proposed NBPSeq edgeR DESeq2

method 11

4 | 5000 [ 5000 | ;| 0.161(0.002) | 0.015 (<0.001) | 0.017 (<0.001) | <0.001 (<0.001)

m,| 0.142(0.002) | 0.087 (<0.001) | 0.071(0.001) | 0.026 (0.001)

my| 0.117(0.001) | 0.123(<0.001) | 0.161(0.001) | 0.052(0.001)

m,| 0.100(0.001) | 0.197 (<0.001) | 0.233(0.002) | 0.094 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and s = (0.95, 0.05).
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Table 6.

The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean V/R
n| mo | DE |m; Proposed NBPSeq edgeR DESeq2
method I
4 | 5000 | 5000 | 5| 0.101(0.001) 0.232 (0.001) | 0.307 (0.004) 0.140 (0.001)
7000 | 3000 | ry | 0.154(0.006) | 0.022 (<0.001) | 0.021 (<0.001) | 0.001 (<0.001)
m,| 0.158(0.003) | 0.046 (<0.001) | 0.051 (0.001) | 0.009 (<0.001)
3| 0.173 (0.003) | 0.083 (<0.001) | 0.072 (0.001) | 0.017 (<0.001)
m,| 0.177(0.003) 0.114 (0.001) | 0.116 (0.002) 0.035 (0.001)
s | 0.159(0.003) 0.106 (0.001) | 0.123 (0.003) 0.042 (0.001)
9000 | 1000 | 7ty | <0.001 (<0.001) | 0.026 (0.001) | 0.028 (0.001) | <0.001 (<0.001)
1, | 0.005 (0.004) 0.027 (0.001) | 0.025(0.001) | <0.001 (<0.001)
3| 0.046 (0.011) 0.039 (0.001) | 0.038(0.001) | 0.002 (<0.001)
m,| 0.178 (0.016) 0.038 (0.001) | 0.036(0.001) | 0.004 (<0.001)
s | 0.195(0.015) 0.044 (0.001) | 0.057 (0.001) 0.006 (0.001)
9500 | 500 | 7ry | <0.001 (<0.001) | 0.021 (0.001) | 0.028 (0.001) | <0.001 (<0.001)
1, | <0.001 (<0.001) | 0.021 (0.001) | 0.028 (0.001) | <0.001 (<0.001)
15| <0.001 (<0.001) | 0.023 (0.001) | 0.028 (0.001) | <0.001 (<0.001)
1, | 0.010(0.007) 0.029 (0.001) | 0.026 (0.001) | <0.001 (<0.001)
15| <0.001 (<0.001) | 0.026 (0.001) | 0.037(0.001) | <0.0001 <0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 6.

associated standard errors in parentheses for each simulation setting (continued).

The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with

Mean V/R
n| mo | DE |m; Proposed NBPSeq edgeR DESeq2
method I

6 | 5000 | 5000 | T, | 0.047 (<0.001) | 0.014 (<0.001) | 0.017 (<0.001) | 0.003 (<0.001)
m, | 0.069 (0.001) | 0.061 (<0.001) | 0.043 (0.001) 0.077 (0.001)

13| 0.034 (<0.001) | 0.162 (<0.001) | 0.249 (0.004) 0.143 (0.001)

1y | 0.034 (<0.001) | 0.302 (<0.001) | 0.296 (0.001) 0.236 (0.001)

5| 0.036(<0.001) | 0.333 (<0.001) | 0.364 (0.001) 0.288 (0.001)

7000 | 3000 | ;| 0.038 (0.001) | 0.021 (<0.001) | 0.022 (<0.001) | 0.002 (<0.001)

1, | 0.044 (<0.001) | 0.048 (0.001) | 0.050(0.001) | 0.020 (<0.001)

3| 0.043 (0.001) | 0.096 (<0.001) | 0.108 (0.002) 0.049 (0.001)

m,| 0.051(0.001) 0.109 (0.001) | 0.121 (0.002) 0.079 (0.002)

s | 0.047 (0.001) 0.159 (0.001) | 0.155(0.001) 0.090 (0.001)

9000 | 1000 | 7ty | 0.063 (0.001) 0.027 (0.001) | 0.027 (0.001) | 0.002 (<0.001)

m, | 0.040 (0.001) 0.030 (0.001) | 0.031(0.001) | 0.002 (<0.001)

3| 0.044(0.001) 0.030 (0.001) | 0.036(0.001) | 0.004 (<0.001)

m,| 0.038(0.001) 0.046 (0.001) | 0.053 (0.001) 0.012 (0.001)

5| 0.044 (0.001) 0.051 (0.001) | 0.038(0.001) | 0.012(<0.001)

9500 | 500 | ;| 0.051(0.003) 0.027 (0.001) | 0.032(0.001) | 0.001 (<0.001)

1, | 0.064 (0.004) 0.027 (0.001) | 0.030(0.001) | 0.001 (<0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 6.

The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean V/R
n mo | DE |m; Proposed NBPSeq edgeR DESeq2
method 11

6 | 9500 | 500 | 3| 0.081 (0.005) 0.026 (0.001) | 0.033 (0.001) | 0.003 (<0.001)
m,| 0.058(0.003) 0.041 (0.001) | 0.040 (0.001) | 0.003 (<0.001)
s | 0.058 (0.002) 0.031 (0.001) | 0.026 (0.001) | 0.002 (<0.001)
10 | 5000 | 5000 | r; | 0.047 (<0.001) | 0.019 (<0.001) | 0.018 (<0.001) | 0.008 (<0.001)
1, | 0.047 (<0.001) | 0.099 (<0.001) | 0.141 (0.002) 0.119 (0.001)
3| 0.048 (<0.001) | 0.175(<0.001) | 0.255 (0.002) 0.231 (0.001)
1, | 0.046 (<0.001) | 0.295(<0.001) | 0.361 (0.002) | 0.325(<0.001)
s | 0.089 (0.001) | 0.344 (<0.001) | 0.387(0.001) | 0.384(<0.001)
7000 | 3000 | 7ty | 0.049 (0.001) | 0.028 (<0.001) | 0.028 (<0.001) | 0.008 (<0.001)
1, | 0.048 (0.001) | 0.066 (<0.001) | 0.094 (0.001) 0.048 (0.001)
3| 0.048 (0.001) 0.116 (0.001) | 0.141 (0.003) 0.087 (0.001)
m,| 0.052(0.001) | 0.198 (<0.001) | 0.209 (0.003) 0.186 (0.001)
s | 0.055(0.001) 0.215(0.001) | 0.251 (0.004) 0.223 (0.001)
9000 | 1000 | 7r; | 0.044 (0.001) 0.035 (0.001) | 0.029 (0.001) | 0.006 (<0.001)
m, | 0.048 (0.001) 0.037(0.001) | 0.058(0.001) | 0.010 (<0.001)
3| 0.047 (0.001) 0.041 (0.001) | 0.052 (0.002) 0.022 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 6.

The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean V/R
n mo | DE |m; Proposed NBPSeq edgeR DESeq2
method 11

10 | 9000 | 1000 | r,| 0.041 (0.001) 0.051 (0.001) | 0.099 (0.003) 0.027 (0.001)
s | 0.048 (0.001) 0.069 (0.001) | 0.084 (0.002) 0.040 (0.001)
9500 | 500 | m,| 0.077(0.002) 0.032 (0.001) | 0.028 (0.001) 0.007 (0.001)
m, | 0.059 (0.001) 0.029 (0.001) | 0.029 ()0.001 0.006 (<0.001)
3| 0.043 (0.001) 0.033 (0.001) | 0.038 (0.001) 0.008 (0.001)
m,| 0.050 (0.001) 0.031 (0.001) | 0.036 (0.001) 0.011 (0.001)
s | 0.040 (0.001) 0.036 (0.001) | 0.058 (0.002) 0.014 (0.001)
12 | 5000 | 5000 | r; | 0.035(<0.001) | 0.024 (<0.001) | 0.027 (0.001) | 0.012(<0.001)
m,| 0.042(0.001) | 0.130(<0.001) | 0.130 (0.002) 0.137(0.001)
13| 0.040 (<0.001) | 0.228 (<0.001) | 0.281 (0.002) | 0.255 (<0.001)
my| 0.053(0.001) | 0.289 (<0.001) | 0.322 (0.001) | 0.333 (<0.001)
g | 0.053(0.001) | 0.327(<0.001) | 0.412(0.001) | 0.394 (<0.001)
7000 | 3000 | 7r; | 0.046 (<0.001) | 0.027 (<0.001) | 0.033 (0.001) | 0.011(<0.001)
m, | 0.053 (0.001) | 0.080 (<0.001) | 0.068 (0.001) 0.063 (0.001)
3| 0.045(0.001) 0.121 (0.001) | 0.194 (0.004) 0.132 (0.001)
m,| 0.056 (<0.001) | 0.171(0.001) | 0.220 (0.004) 0.206 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 6.

The mean V/R for proposed method II, NBPSeq, edgeR and DESeq2 methods with
associated standard errors in parentheses for each simulation setting (continued).

Mean V/R
n mo | DE |m; Proposed NBPSeq edgeR DESeq2
method 11

12 | 7000 | 3000 | r5| 0.066 (0.001) 0.196 (0.001) | 0.243 (0.004) 0.241 (0.001)
9000 | 1000 | 7ty | 0.049 (0.001) 0.030 (0.001) | 0.032(0.001) | 0.007 (<0.001)
T, | 0.045(0.001) 0.033 (0.001) | 0.049 (0.001) 0.013 (0.001)
3| 0.045(0.001) 0.046 (0.001) | 0.059 (0.001) 0.024 (0.001)
m,| 0.053(0.001) 0.058 (0.001) | 0.078 (0.002) 0.041 (0.001)
s | 0.049 (0.001) 0.070 (0.001) | 0.087(0.001) 0.056 (0.001)
9500 | 500 | m,| 0.060 (0.001) 0.031 (0.001) | 0.033 (0.001) 0.007 (0.001)
m, | 0.053(0.001) 0.032 (0.001) | 0.044 (0.001) | 0.007 (<0.001)
3| 0.042(0.001) 0.034 (0.001) | 0.038(0.001) 0.008 (0.001)
m,| 0.043(0.001) 0.037 (0.001) | 0.041 (0.001) 0.012 (0.001)
s | 0.048 (0.001) 0.033 (0.001) | 0.041 (0.001) 0.014 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and s = (0.95, 0.05).

4.4. Real data analysis

In this section, RNA-Seq data from a real gene expression experiment described by

Bottomly et al. (2011) is reanalyzed using proposed method II, NBPSeq, edgeR and DESeq2

methods. The description of the data was previously discussed in section 3.5. The data consist of

two classes (B6 and D2); with a total of n =21 samples, n; = 10 B6 samples and n2 =11 D2
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samples. The data set contains 36,536 genes, the total number of genes m = 13,932 were
analyzed after filtering to remove genes without any reads.
The number of genes declared to be DE using proposed method II, NBPSeq, edgeR and

DESeq2 methods while controlling FDR at 5% are summarized in Figure 4 below.

NBPSeq Method edgeR Method

Proposed Method I DESeq2 Method

11862

Figure 4. Venn diagram of genes declared to be DE for proposed method II, NBPSeq, edgeR
and DESeq2 methods.

The total number of genes declared to be DE using all methods are summarized n Table 7
below. There were 732 genes that were DDE by all methods. An additional 570 genes were DDE
by proposed method II. NBSeq method declared 86 more genes to be DE. 12 and 9 other genes
were DDE using edgeR and DESeq2 method respectively. Hence, proposed method II declared
the most genes to be DE, this is not surprising based on the results from the simulation studies in
section 4.2. This analysis was performed on a real, not simulated, data set, therefore genes that

are EE and DE are not known. Thus, evaluating the true FDR associated with each method
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cannot be done. However, because the sample size for each class is relatively large with a small
degree of asymmetry, the estimation of the FDR is being adequately controlled at 5% based on

the results of the simulation study in section 4.2.

Table 7. Total number of genes declared to be differentially expressed.

Method Total number of genes DDE
Proposed method 11 1939
DESeq2 1313
edgeR 1165
NBPSeq 896

4.5. Discussion

Proposed method II for estimating FDR, when there exists asymmetry in the distribution
of the test statistics, has observed advantages over the commonly-used methods. Except for
settings where n = 4, proposed method II generally outperformed NBPSeq, edgeR, and DESeq2
methods in terms of mean S in the settings where the number of EE genes was low (mo = 5000
and mo = 7000) and the degree of asymmetry was high (80%, 90%, and 95% of genes
upregulated). The observed FDRs for NBPSeq, edgeR, and DESeq2 were also elevated in most
of these setting. Therefore, using proposed method I when asymmetry in the test statistics is
apparent and the estimated percentage of EE genes is low (less than 80%, for example) is
recommended. When the estimated percentage of EE genes is high, use of the other methods is
recommended. Using real RNA-Seq data, proposed method II declared more genes to be DE than

the other methods at 5% significance level, which is consistent with the simulation results.
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CHAPTER 5. MODIFICATION AND PERFORMANCE OF COMMONLY-USED
PARAMETRIC METHODS WHEN THERE EXISTS ASYMMETRY IN THE
DISTRIBUTION OF EFFECT SIZES IN IDENTIFICATION OF DIFFERENTIALLY
EXPRESSED GENES
5.1. Introduction

In chapters 3 and 4, the performance of SAMseq, its proposed modification, and three
commonly-used methods were evaluated when there existed asymmetry in the distribution of the
effect sizes in an RNA-Seq data set. In this chapter, performance of these three commonly-used
parametric methods, DESeq2, NBPSeq and edgeR, when there exists asymmetry in the
distribution of the effect sizes are evaluated. This research uses methods that modify the p-values
of the commonly-used methods to account for asymmetry in the distribution of effect sizes when
estimating false discovery rate (FDR). Additionally, through simulation studies and real data
analysis, this research compares performance of these methods to that of the traditional BH
proposed by Benjamini and Hochberg (1995), traditional g-value proposed by Storey (2002) and
asymmetric g-value proposed by Orr et al. (2014). These methods were discussed in section 2.4.

5.2. Overview of DESeq2 method

DESeq? is a successor of DESeq, which was proposed by Anders and Huber (2010). In
their previous method, they proposed using a negative binomial distribution with variance and
mean linked by local regression to estimate the data variability and a suitable error model. To
improve the stability and interpretability of the estimates, Love et al. (2014) proposed using
shrinkage estimation for dispersions and fold changes which allows for quantitative analysis (on
experiments with small number of replicates, for example) based more on the strength rather

than the presence of differential expression.
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For the expression of gene i from experimental unit j (Gij) in each class, fit a generalized

linear model using the negative binomial distribution with a logarithm link function, i.e.,
G, ~ NB(mean = {4, dispersion = 0‘,-) , (5.1)
where the mean is estimated as
yijzsij(qij) i=12,..,m, j=L2,..p.
(5.2)

S;

j 18 the normalization factor and considered constant within a sample, i.e., S; =8;. 8,18

J

estimated as

G,
s, =median (F] (5.3)

i=G["#0

and

R
G {HG,»,} : (5.4)

where p is the total number of units and G” is the geometric mean estimate for each gene. The

logarithm of ¢ is estimated as

log,q; =Y x,, r=0,.k-1. (5.5)

X, is the design matrix element with coefficients g, and r is the covariate index with intercept

7

r =0 and £ is the number of parameters. In a two class experiment, j indicates whether sample j
is from the controlled samples or treated samples. The empirical Bayes shrinkage for dispersion

estimation is modeled by the dispersion parameter «,, which describes the variance of each gene

as
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Var(Gy) = pt; + a5, (5.6)
«a, follows a log normal prior distribution that is centered around a trend, and depends on the
gene’s mean normalized read count. ¢, is estimated as

loga, ~N(logatr(ﬁi),a§), (5.7)
where ¢, is a function of the gene’s mean normalized read count. z describes the mean-

dependent expectation of the prior and estimated as
O (5.8)

o, represents the width of the prior, which describes how much the individual genes’ true

dispersions scatter around the trend. The trend function is estimated as
N O
a, (1) zflﬂzo (5.9)

where ¢, and ¢, are estimated by iteratively fitting a gamma-family GLM (Generalized Linear

Model). To estimate the fold-change (FC) using the empirical Bayes procedure, Love ef al.,
(2014) outlined the following steps;
(1) Estimate the maximum-likelihood (MLE) for the logarithm of the FCs using ordinary
GLM.
(2) Fit a zero-centered normal distribution to the observed distribution of the MLEs over

all genes; thus assuming a normal prior for the coefficients g, (logarithm of the fold-

changes) of the log link function

p~N(0.07) (5.10)
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Testing whether each model coefficients differ significantly from zero, the following procedures
are used;
(1) Fit GLMs for each gene to obtain the shrunken logarithm of the FCs (LFCs) and
estimate it corresponding standard errors.
(2) Estimate the test statistic (Wald test) with it corresponding p-values for each gene.

The test statistic is estimated as

A

__ B
" e(p)

(5.11)
this result in a z-statistic which is then compared to a standard normal distribution.

(3) Estimate the filter statistic as the mean of the normalized counts for each gene.

(4) Remove genes with mean normalized counts less than a filtering threshold.

(5) Adjust for multiple hypothesis testing, the p-values corresponding to the subset of
genes that passes the filtering procedure described in step 4 and 5, using the BH
procedure.

5.2.1. Proposed modification for DESeq2 method p-values

To account for asymmetry in the distribution of the test statistic, this research proposes
modifying the estimation of the adjusted p-values used to estimate the FDRs in DESeq2 method.
The following steps outlines the proposed method for a two class experiment;

(1) Run the DESeq2 method to obtain the test statistic and the unadjusted p-values (raw
p-values) that pass the filtering procedure for each gene.

(2) Divide the test statistics (/) into two groups based on the sign of the test statistics

with their corresponding raw p-values. Thus, genes with positive test statistics

W* =W >0 and genes with negative test statistics W~ =W <0.
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(3) Apply the BH method and asymmetric g-value method proposed by Orr et al. (2014)
used to adjust the raw p-values for multiple hypothesis testing to each group
separately.

These procedures will then be referred to as asymmetric BH method and asymmetric g-value
method. All other procedures used in the DESeq2 method remain the same.
5.3. Overview of edgeR method

The edgeR method was developed by Robinson et al., (2010) to examine differential
expression of replicated count data using an over dispersed Poisson model to account for both
biological and technical variability. Robinson et al. (2010) uses an empirical Bayes procedure to
shrink the dispersions towards a suitable value to measure the degree of over dispersion across
transcripts, thereby improving the number of genes that are identified as differentially expressed.
Lastly, to test for differentially expressed genes, likelihood-ratio statistics are estimated to
compare the null hypothesis that a gene is equivalently expressed against a two-sided alternative
that the gene is not equivalently expressed. The BH method proposed by Benjamini and
Hochberg (1995) is then used to adjust the p-values to control the false discovery rate.

An assumption of the edgeR method assumes data can be modeled using a negative

binomial (NB) distribution. For the expression of gene i from experimental unit j (YU) in each

class,

Y, ~ NB (mean =M ,p,., dispersion =g, ); (5.12)
where )/, is the library size, i.e., the total number of reads from a specific experimental unit, ¢
is the dispersion parameter, and p. is the relative abundance of gene i in the class (c) in which

the experimental unit j belongs.
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5.3.1. Proposed method for edgeR method

A similar procedure proposed for modifying the FDR estimation for DESeq2 is employed
here. Unlike DESeq2 which uses the Wald test to determine the test statistic, edgeR uses the log
fold change. Likewise, to account for asymmetry in the distribution of the log fold change, this
research proposes modifying the BH method used to estimate the FDRs in edgeR method. The
following steps outline the proposed method for a two-class experiment;

(1) Run the edgeR method to obtain the log fold change and the p-value for each gene.

(2) Divide the log fold changes (logFCedger) into two groups based on the sign of the

logFCeager With their corresponding p-values. Thus, genes with positive 10gFCedger

log FC},  =log FC,,

wdgeR » > 0 and genes with negative 10gF Cedger

ge.

logfFC,, ,=logFC,, .<0.

edgeR jge

(3) Apply the BH method and asymmetric g-value proposed by Orr et al. (2014) used to

adjust the p-values for multiple hypothesis testing to each group separately.
All other procedures used in the edgeR method remains the same.
5.4. Overview of NBPSeq method

The NBPSeq method, by Yanming et al. (2011), is a statistical method used to assess
differential gene expression using RNA-Seq data. Yanming et al. (2011) proposes the use of
NBP parameterization of the negative binomial distribution to test for DE genes. Their method
extends the exact test proposed by Robinson and Smyth (2007, 2008) by adding an extra
parameter to allow the dispersion parameter to depend on the mean. Robinson and Smyth (2007,
2008) used a constant as a measure for the dispersion parameter to model the count variability

between biological replicates. To test for differentially expressed genes, log fold changes are
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estimated for each gene and the g-value method proposed by Storey (2002) is used to adjust the
p-values to control the false discovery rate.
5.4.1. Proposed method for NBPSeq method

Similar to the procedures discussed in section 5.3.1 for modifying the estimation of the
FDR, to account for asymmetry in the distribution of the log fold changes. This research
proposes modifying the g-value method used to estimate the FDRs in NBPSeq method. The
following steps outlines the proposed method for a two-class experiment.

(1) Run the NBPSeq method to obtain the log fold change and the p-value for each gene.

(2) Divide the log fold changes (logFCnarseq) into two groups based on the sign of the

logFCnspseq with their corresponding p-values. Thus, genes with positive logFCnapseq

log FCyyps., =108 FCyyppg,, >0 and genes with negative 10gFCnsrseq

log FC,pg,, =10g FC, e, <0.

Seq

(3) Apply the asymmetric g-value method proposed by Orr et al. (2014) and BH method

used to adjust the p-values for multiple hypothesis testing to each group separately.
All other procedures used in the NBPSeq method remains the same.
5.5. Simulation studies

Evaluating the performance of proposed BH and g-value methods compared to traditional
BH method (Benjamini and Hochberg, 1995) and traditional g-value method (Storey, 2002) for
estimating false discovery rate; data sets with Negative binomial distributed gene counts were
randomly generated. For each data set, gene counts were randomly generated for m = 10,000

genes in two experiments. For gene 7 in experiment j, the gene count was generated as

G, ~ NB(1;.4,) - (5.13)
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Using procedures implemented by Bi and Liu (2016), the mean 4 and the dispersion parameter
¢ was estimated based on a real RNA-Seq data set “Hammer” (Hammer, P. ez al., 2010). The

experiment was performed to evaluate gene expression in the L4 dorsal root ganglion (DRG) of
rats with chronic neuropathic pain induced by spinal nerve ligation (SNL) of the neighboring
(LS5) spinal nerve at two time points (2 weeks and 2 months after SNL). There were two classes
(2 weeks and 2 months); with a total of 8 samples, 4 two weeks’ samples and 4 two months’
samples. A subset of the data consisting of samples after 2 weeks were used to estimate the mean
and dispersion. The data set contains 29,516 genes, with many of the genes not having any reads.
These genes were removed, and the remaining 18,463 were used. The raw data set is named after
the first author of the paper and is available from ReCount project (Frazee et al., 2011) with an
identifier “Hammer”. The estimation of the fold change is assumed to follow a log-normal

distribution;

fold

change

~ log—normal(log(2),0.510g(2)) . (5.14)
To create differences in simulation settings, simulated data sets with four different

sample sizes,n = {4, 6,10, 12} and four different values for the number of EE genes,

m, = {5000, 7000,9000, 9500} were used. To simulate asymmetry, five set of values representing

the proportion of DE genes that are upregulated and downregulated were used: 7, = (0.5, 0.5) ,

7, =(0.7,0.3), 7, =(0.8,0.2), 7, =(0.9,0.1), and 7z, =(0.95,0.05). For instance, in settings

where 7, = (0.9,0.1) is used, 0.9 represent the proportion of DE genes that are upregulated and

0.1 represent the proportion of DE genes that are downregulated in the data set. This results in

eighty different simulation settings.
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5.5.1. Results

For each simulation setting, 100 data sets were randomly generated. For each data set, all
four methods (traditional BH method, asymmetric BH method, traditional g-value method and
asymmetric g-value method) were used to estimate the FDR for each gene to identify DE genes,
using the DESeq2, edgeR and NBPSeq methods. Controlling FDR at the 5% significance level, S
(the number of DE genes DDE) was determined for each data set. To determine if each method
controlled FDR at 5% significance level, the observed FDR, V/R (proportion of EE genes among
all DDE genes) was calculated for each data set. If no genes were DDE for a particular data set,
V/R was set to zero.

Originally, Deseq2 and edgeR uses the traditional BH method to adjust p-values for
multiple testing. For each simulation setting, paired ¢-tests were performed to test the difference
in the mean S of the traditional BH and asymmetric BH methods, traditional BH and traditional
g-values methods; traditional BH and asymmetric g-value methods, asymmetric BH and
traditional g-value methods, asymmetric BH and traditional g-value methods, and traditional g-
value and asymmetric g-value methods. If the test between these comparisons were significant at
a type I error rate of 5%, then the higher mean S is shown in bold font. If a test between the
asymmetric BH and traditional q-value methods was significant at a type I error rate of 5% with
the traditional q-value method outperforming the asymmetric BH method, the higher mean S is
underlined. Also, if a test between the asymmetric BH and asymmetric q-value methods was
significant at a type I error rate of 5% with the asymmetric gq-value method outperforming the
asymmetric BH method, the higher mean S is italicized. Lastly, if a test between the traditional

g-value method and asymmetric q-value methods was significant at a type I error rate of 5% with
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the asymmetric g-value method outperforming the traditional g-value method, the higher mean S
is underlined.

On the other hand, NBPSeq uses the traditional g-value method to adjust p-values for
multiple testing. Again, for each simulation setting, paired #-tests were performed to test the
difference in the mean S of the traditional g-value and asymmetric g-value methods, traditional
g-value and traditional BH methods, traditional g-value and asymmetric BH methods,
asymmetric g-value and traditional BH methods, asymmetric g-value and asymmetric BH
methods and, traditional BH and asymmetric BH methods. If the test between these comparisons
were significant at a type I error rate of 5%, then the higher mean S is shown in bolded font.
Like, the previous comparisons of the mean S, if a test between the asymmetric g-value and
traditional BH methods was significant at a type I error rate of 5% with the traditional BH
method outperforming the asymmetric g-value method, the higher mean S is underlined. Also, if
a test between the asymmetric g-value and asymmetric BH methods was significant at a type I
error rate of 5% with the asymmetric BH method outperforming the asymmetric g-value method,
the higher mean S is italicized. Lastly, if a test between the traditional BH method and
asymmetric BH methods was significant at a type I error rate of 5% with the asymmetric BH
method outperforming the traditional BH method, the higher mean S is underlined.

Table 8 and Table 9 below presents the mean S and mean V/R for each simulation
setting, respectively for DESeq2 method. Table 10 and Table 11 below presents the mean S and
mean V/R for each simulation setting, respectively for NBPSeq. Table 12 and Table 13 below
presents the mean S and mean V/R for each simulation setting, respectively for edgeR method.

The corresponding standard errors for the mean S and mean V/R are reported in parentheses.
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As expected, the power to detect DE genes increased as the number of EE genes
decreased that is, the number of DE genes (mo) increased. Also, the power to identify DE genes
increased as the sample size increased.

The traditional BH method did not outperform the asymmetric BH, traditional g-value
method and asymmetric g-value method in any of the simulation settings in terms of mean S, as
seen in Table 8 (Deseq2 method). The asymmetric BH method performed better than the
traditional BH method in 64 of the 80 simulation settings with regards to mean S (16 of 20
settings with n =4, 6, 10, and 12). The traditional g-value method performed better than the
traditional BH method in all the simulation settings. Also, the asymmetric g-value method
performed better than the traditional BH method in 76 of the 80 simulations, including all
settings with n = 6, 10, 12, and 16 of 20 settings with n = 4. Furthermore, the traditional g-value
method performed better than the asymmetric BH method in 45 of 80 settings in terms of mean S
(10 of 20 settings with n =4, 11 of 20 settings with n = 6, 12 of 20 settings with n = 10, and 12
of 20 settings with n = 12). The asymmetric g-value method was outperformed by the
asymmetric BH method in 17 of 20 simulation settings with » = 4 in terms of mean S.
Comparing the performance of the traditional g-value method to the asymmetric g-value method,
the asymmetric g-value method performed better than the traditional gq-value method in 52 of the
80 settings in terms of the mean S (6 of 20 settings with n =4, 16 of 20 settings with n =6, 16 of
20 settings with n = 10, and 14 of 20 settings with n = 12).

Although a higher value of mean S was observed in most traditional BH method
compared to the asymmetric BH method, in the 6 of 80 settings (n =4, m0 = {7000, 9000,

9500}, and 7, , n =6, m0 = 9000, 7, n =10, m0 = {7000, 9000} and 7z, , and n =12, m0 = 5000 and 7, );

these differences were not significant. Apart from these settings, a higher value of mean S was
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observed using the asymmetric BH method compared to traditional BH method in 7 of 80
settings, but there were no significant difference in mean S at 5%. Lastly, in settings where n = 6,
m0 = 7000, and 7z, or n =12, m0= 9500 and 7, , the performance of traditional and asymmetric BH
methods were the same in terms of the mean S.

As shown in Table 9, the observed FDR (mean V/R) was comparable among all the
methods, with levels elevated above 5%. Apart from simulation settings with 7, , the asymmetric
g-value method better controlled the observed FDR than the traditional BH method. In most settings, the

asymmetric BH method compared to the traditional BH method better controlled the observed FDR close

to or slightly higher than 5%.

Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting.
DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 | 5000 | 5000 | 4 2174.280 2174.290 2460.440 2231.720
(4.701) (4.688) (5.467) (9.712)
T, 1963.380 1991.810 2266.310 2044.540
(4.823) 4.877) (5.377) (10.610)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), m, = (0.7, 0.3), 73 = (0.8, 0.2), m, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 (5000 | 5000 | 5 1702.370 1762.690 2025.540 1811.050
(4.431) (4.484) (5.605) (9.696)
T, 1337.320 1442.870 1675.200 1450.910
(3.968) 3.919) (5.257) (7.897)
Ty 1134.800 1269.500 1483.530 1248.420
(4.161) (4.750) (5.776) (6.269)
7000 | 3000 | m, 1153.510 1153.490 1230.790 1150.570
(3.221) (3.236) 3.707) (3.804)
[} 1105.340 1125.870 1188.240 1118.810
(3.745) (3.715) 3.972) (3.918)
T3 1025.230 1072.740 1110.960 1059.010
(3.841) (3.584) (4.047) (3.906)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard

errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 (7000 | 1000 | mr, 905.500 999.390 998.770 978.750
(3.154) 3.191) 3.739) (3.684)
s 827.950 949.060 924.000 919.010
(3.298) (3.466) (3.913) (3.628)
9000 | 1000 | m, 298.720 298.110 302.880 294.640
(1.835) (1.819) (1.871) (1.824)
1L} 293.990 299.560 298.330 295.230
(1.873) (1.859) (1.947) (1.899)
T3 285.050 298.480 289.720 294.440
(1.685) (1.642) (1.749) (1.598)
T, 278.090 305.830 283.170 300.400
(1.899) (1.913) (1.972) 1.919)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 (9000 | 1000 | 75 277.430 314.380 281.930 308.460
(1.810) (1.803) (1.839) (1.819)
9500 | S00 | 4 125.210 124.520 125.990 122.460
(1.215) (1.238) 1.237) (1.221)
1L} 130.050 132.140 130.730 129.690
(1.226) (1.262) (1.218) (1.276)
T3 129.470 135.090 130.240 132.930
(1.212) (1.256) (1.209) (1.238)
T, 125.310 138.330 126.290 135.150
(1.301) (1.386) (1.320) (1.349)
Ty 124.990 140.830 125.840 137.650
(1.369) (1.515) (1.401) (1.456)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
6 | 5000 | 5000 | mr, 2885.800 2885.930 3153.090 3151.710
(4.269) (4.275) (4.737) (4.775)
T, 2650.820 2687.500 2964.230 2987.110
(4.310) 4.274) (5.197) (5.242)
T3 2344.490 2419.520 2726.330 2774.560
(3.769) (3.730) (4.601) (4.642)
T, 1940.650 2056.530 2397.020 2468.140
(4.642) (4.942) (6.083) (7.291)
Ty 1710.940 1852.350 2208.920 2271.590
(4.469) (4.191) (5.867) (10.943)
7000 | 3000 | m, 1600.600 1600.600 1678.840 1677.990
(3.260) (3.251) (3.453) (3.476)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
6 | 7000 | 3000 | m, 1532.820 1555.820 1620.580 1635.380
(3.3406) (3.418) (3.820) (3.686)
3 1432.360 1489.320 1534.750 1575.770
(2.947) (3.373) (3.215) (3.454)
T, 1300.370 1400.000 1417.570 1489.160
(3.201) (3.031) (3.235) (3.497)
Ty 1219.550 1347.040 1344.800 1434.740
(3.364) (3.221) (3.548) (4.446)
9000 | 1000 | m, 447.260 447.240 452.750 452.230
(2.014) (2.008) (2.073) (2.034)
[} 443.100 448.810 449.530 453.630
(1.975) (1.957) (1.975) (2.001)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard

errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
6 | 9000 | 1000 | 75 431.580 446.800 437.950 450.500
(1.822) (1.893) (1.867) (1.883)
Ty 423910 451.180 430.520 452.740
(1.913) (1.893) (1.953) (1.900)
s 417.790 454.880 424.820 456.490
(1.890) (1.832) (1.869) (1.848)
9500 | S00 | 201.370 201.400 202.530 202.170
(1.555) (1.552) (.554) (1.537)
T, 199.530 202.310 200.620 202.910
(1.281) (1.319) (1.306) (1.332)
T3 195.320 202.070 196.400 202.740
(1.233) (1.316) (1.246) (1.324)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
6 | 9500 | 500 | m, 195.650 208.510 196.730 208.790
(1.282) (1.198) (1.293) (1.213)
T 194.780 211.520 196.180 211.690
(1.295) (1.355) (1.301) (1.360)
10 | 5000 | 5000 | 4 3560.800 3561.000 3771.300 3770.270
(3.875) (3.880) (3.579) (3.608)
1L} 3307.740 3351.390 3615.770 3633.480
(3.983) (3.662) (4.308) (4.334)
T3 3007.870 3086.580 3442.030 3469.460
(3.254) (3.463) (4.612) (4.535)
T, 2629.850 2735.660 3231.620 3252.110
(3.273) (3.253) (4.957) (4.786)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
10 | 5000 | 5000 | 75 2404.710 2514.990 3107.660 3117.580
(3.405) (3.547) (4.968) (4.686)
7000 | 3000 | 4 2030.620 2030.570 2096.580 2096.180
(2.772) (2.777) (2.963) (2.963)
1L} 1960.560 1985.190 2039.830 2053.590
(3.350) (3.352) (3.401) (3.428)
T3 1866.050 1921.470 1967.220 1999.110
(2.881) (2.790) (2.911) (2.859)
T, 1734.670 1828.880 1869.860 1922.200
(2.774) (2.950) (3.000) (2.968)
Ty 1653.050 1771.060 1810.730 1875.450
(3.162) (3.084) (3.410) (3.350)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard

errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
10 | 9000 | 1000 | 74 608.590 608.480 614.240 614.200
(1.873) (1.858) (1.870) (1.866)
T, 599.490 605.140 605.560 610.630
(1.884) (1.842) (1.907) (1.878)
T3 594.930 608.220 601.400 611.490
(1.6806) (1.720) (1.704) (1.769)
T, 580.640 604.640 587.880 607.020
(1.932) (1.804) (1.914) (1.848)
Ty 571.550 604.710 579.720 606.620
(1.712) (1.656) (1.722) (1.634)
9500 | 500 | m, 283.630 283.780 285.120 285.190
(1.118) (1.124) 1.125) (1.125)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric

BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher

mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,

then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated

and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
10 | 9500 | 500 | 7, 282.610 285.170 284.050 285.970
(1.255) (1.278) (1.233) (1.260)
3 279.240 285.940 280.500 286.440
(1.183) (1.172) (1.173) (1.162)
T, 276.210 287.770 277.650 288.050
(1.178) (1.213) (1.178) (1.198)
Ty 275.670 290.140 277.090 290.250
(1.104) (1.140) (1.113) (1.140)
12 | 5000 | 5000 | 4 3746.020 3745.970 3934.540 3933.660
(3.372) (3.355) (3.237) (3.247)
[} 3506.880 3549.850 3803.040 3818.430
(3.172) (3.148) 3.379) (3.357)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

errors in parentheses for each simulation setting (continued).

The mean S for proposed FDR methods using DESeq2 with associated standard

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
12 | 5000 | 5000 | 7z 3220.380 3297.980 3667.890 3684.800
(3.202) (3.164) (4.402) (4.342)
T, 2848.750 2942.000 3507.860 3508.100
(3.607) 3.594) (5.665) (5.403)
Ty 2642.070 2736.700 3406.540 3395.900
(3.460) (3.362) (5.623) (5.366)
7000 | 3000 | m, 2153.170 2153.300 2213.550 2213.100
(2.158) (2.510) (2.608) (2.612)
[} 2085.230 2109.620 2160.510 2172.230
(2.464) (2.421) (2.763) (2.696)
T3 2000.450 2053.010 2100.480 2127.340
(2.747) (2.668) (2.996) (2.783)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8.

The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
12 | 7000 | 3000 | 7, 1869.150 1961.240 2011.400 2054.430
(3.074) (2.844) (3.229) (3.128)
s 1794.300 1906.540 1964.480 2014.150
(2.791) (2.502) (2.743) (2.829)
9000 | 1000 | m, 656.220 656.370 661.720 661.540
(1.483) (1.492) (1.428) (1.421)
1L} 648.890 654.430 655.020 658.850
(1.622) (1.689) (1.615) (1.676)
T3 641.230 654.110 647.930 657.700
(1.816) (1.730) (1.784) (1.770)
T, 628.450 652.520 635.600 654.310
(1.678) (1.643) (1.715) (1.659)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 8. The mean S for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean S
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
12 | 9000 | 1000 | 75 619.410 651.370 627.490 652.460
(1.639) (1.648) (1.676) (1.667)
9500 | S00 | 4 309.710 309.710 310.830 310.820
(1.250) (1.251) (1.223) (1.229)
1L} 307.800 310.090 309.250 311.050
(1.188) (1.268) (1.207) (1.279)
T3 306.720 311.700 307.680 312.000
(1.160) (1.213) (1.174) (1.225)
T, 300.150 310.350 301.580 310.670
(1.298) (1.287) (1.287) (1.301)
Ty 302.550 316.250 304.130 316.110
(1.274) (1.300) (1.308) (1.302)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 9.

errors in parentheses for each simulation setting.

The mean V/R for proposed FDR methods using DESeq2 with associated standard

DESeq2
Mean V/R
n Mo DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 |5000 | S5000 | 7r; | 0.033 (<0.001) | 0.033 (<0.001) | 0.048 (<0.001) | 0.035(0.001)
m, | 0.051(0.001) | 0.044 (<0.001) | 0.073 (0.001) | 0.049 (0.001)

w3 | 0.077(0.001) | 0.059(0.001) | 0.111(0.001) | 0.066 (0.001)

my | 0.122(0.001) | 0.077(0.001) | 0.172(0.001) | 0.084 (0.001)

s | 0.160 (0.001) | 0.083(0.001) | 0.219 (0.001) | 0.089 (0.001)

7000 | 3000 | r; | 0.053(0.001) | 0.053(0.001) | 0.063(0.001) | 0.053 (0.001)

m, | 0.062(0.001) | 0.054(0.001) | 0.074 (0.001) | 0.054 (0.001)

3 | 0.073(0.001) | 0.052(0.001) | 0.089 (0.001) | 0.053 (0.001)

m, | 0.093 (0.001) | 0.049(0.001) | 0.114(0.001) | 0.050 (0.001)

s | 0.104 (0.001) | 0.040(0.001) | 0.127(0.001) | 0.040 (0.001)

9000 | 1000 | r; | 0.105(0.002) | 0.105(0.002) | 0.108 (0.002) | 0.102 (0.002)

m, | 0.107 (0.002) | 0.098 (0.002) | 0.110(0.002) | 0.095 (0.002)

w3 | 0.110(0.002) | 0.092(0.002) | 0.113(0.002) | 0.090 (0.002)

my | 0.112(0.002) | 0.083(0.001) | 0.116(0.002) | 0.081 (0.001)

s | 0.118(0.002) | 0.078 (0.002) | 0.121 (0.002) | 0.076 (0.002)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 9.

errors in parentheses for each simulation setting (continued).

The mean V/R for proposed FDR methods using DESeq2 with associated standard

DESeq2
Mean V/R
n Mo DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 19500 | 500 | 7y | 0.154(0.002) | 0.154(0.003) | 0.156(0.002) | 0.150 (0.003)
m, | 0.152(0.003) | 0.143 (0.003) | 0.153 (0.003) | 0.140 (0.003)
w3 | 0.151(0.003) | 0.135(0.003) | 0.152(0.003) | 0.132 (0.003)
my | 0.153(0.003) | 0.125(0.003) | 0.154(0.003) | 0.120 (0.003)
s | 0.155(0.003) | 0.116(0.003) | 0.156 (0.003) | 0.112 (0.003)

6 | 5000 | 5000 | ry | 0.034(0.001) | 0.034(<0.001) | 0.052(0.001) | 0.052 (<0.001)
1, | 0.060 (<0.001) | 0.050 (<0.001) | 0.092 (0.001) | 0.081 (0.001)
3 | 0.100 (0.001) | 0.076 (0.001) | 0.153(0.001) | 0.128 (0.001)
m, | 0.166 (0.001) | 0.110(0.001) | 0.241 (0.001) | 0.193 (0.001)
s | 0.211(0.001) | 0.129 (0.001) | 0.269 (0.001) | 0.231 (0.002)

7000 | 3000 | r; | 0.054 (0.001) | 0.054(0.001) | 0.066 (0.001) | 0.066 (0.001)

m, | 0.066 (0.001) | 0.055(0.001) | 0.082(0.001) | 0.071 (0.001)
3 | 0.081(0.001) | 0.055(0.001) | 0.103 (0.001) | 0.075(0.001)
my | 0.108 (0.001) | 0.054(0.001) | 0.139(0.001) | 0.078 (0.001)
s | 0.126 (0.001) | 0.047 (0.001) | 0.163 (0.001) | 0.071 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 9.

The mean V/R for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean V/R
n mo | DE | m; Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

6 | 9000 | 1000 | ry | 0.097 (0.001) | 0.097 (0.001) | 0.102(0.001) | 0.101 (0.001)
, | 0.100 (0.001) | 0.091(0.001) | 0.104(0.001) | 0.096 (0.001)
w3 | 0.101 (0.001) | 0.086 (0.001) | 0.107 (0.001) | 0.089 (0.001)
my | 0.106 (0.002) | 0.073 (0.001) | 0.111(0.002) | 0.076 (0.001)
s | 0.110(0.001) | 0.069 (0.001) | 0.116 (0.002) | 0.072 (0.001)

9500 | 500 | ry | 0.127(0.002) | 0.127(0.002) | 0.129(0.002) | 0.129 (0.002)

m, | 0.133(0.003) | 0.126 (0.002) | 0.135(0.003) | 0.128 (0.002)
3 | 0.130(0.003) | 0.118(0.002) | 0.133(0.003) | 0.120 (0.002)
m, | 0.136 (0.002) | 0.110(0.002) | 0.139(0.002) | 0.111 (0.002)
s | 0.135(0.002) | 0.102(0.002) | 0.138(0.002) | 0.102 (0.002)

10 | 5000 | 5000 | 7r; | 0.033 (<0.001) | 0.033 (<0.001) | 0.054 (<0.001) | 0.054 (<0.001)
my | 0.077 (<0.001) | 0.063 (<0.001) | 0.126 (0.001) | 0.114 (0.001)
3 | 0.138 (0.001) | 0.105(0.001) | 0.244 (0.001) | 0.203 (0.001)
my | 0.237(0.001) | 0.181(0.001) | 0.348 (0.001) | 0.333 (0.001)
s | 0.269 (0.001) | 0.230(0.001) | 0.407 (0.001) | 0.399 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 9.

The mean V/R for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

10 | 7000 | 3000 | 7r; | 0.050 (<0.001) | 0.050 (<0.001) | 0.065(0.001) | 0.064 (0.001)
m, | 0.071(0.001) | 0.057 (0.001) | 0.092 (0.001) | 0.079 (0.001)

3| 0.097 (0.001) | 0.064 (0.001) | 0.131(0.001) | 0.096 (0.001)

m,| 0.138(0.001) | 0.068 (0.001) | 0.191(0.001) | 0.118(0.001)

s | 0.167 (0.001) | 0.066 (0.001) | 0.233(0.001) | 0.131(0.001)

9000 | 1000 | 7r; | 0.084 (0.001) | 0.084(0.001) | 0.090(0.001) | 0.090 (0.001)

m, | 0.088 (0.001) | 0.082(0.001) | 0.094 (0.001) | 0.087 (0.001)

3| 0.092(0.001) | 0.075(0.001) | 0.099 (0.001) | 0.080 (0.001)

my| 0.099 (0.001) | 0.066 (0.001) | 0.106 (0.001) | 0.071 (0.001)

5| 0.103 (0.001) | 0.059 (0.001) | 0.112(0.001) | 0.063 (0.001)

9500 | 500 | m;| 0.110(0.002) | 0.110(0.002) | 0.113(0.002) | 0.113(0.002)

m, | 0.109 (0.002) | 0.104(0.002) | 0.112(0.002) | 0.106 (0.002)

m3| 0.114(0.002) | 0.102 (0.002) | 0.114(0.002) | 0.104 (0.002)

m,| 0.117(0.002) | 0.092(0.002) | 0.121(0.002) | 0.093 (0.002)

s | 0.113(0.002) | 0.081(0.002) | 0.117(0.002) | 0.082 (0.002)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 9.

The mean V/R for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

12 | 5000 | 5000 | 7r; | 0.032 (<0.001) | 0.032 (<0.001) | 0.054 (<0.001) | 0.054 (<0.001)
1, | 0.084 (<0.001) | 0.068 (<0.001) | 0.141(0.001) | 0.129 (0.001)

3| 0.160 (0.001) | 0.124(0.001) | 0.259(0.001) | 0.244 (0.001)

m,| 0.266(0.001) | 0.214(0.001) | 0.388 (0.001) | 0.385(0.001)

s | 0.332(0.001) | 0.278 (0.001) | 0.441(0.001) | 0.444 (0.001)

7000 | 3000 | r; | 0.050(0.001) | 0.050(0.001) | 0.064 (0.001) | 0.064 (0.001)

m, | 0.072(0.001) | 0.057 (0.001) | 0.096 (0.001) | 0.081 (0.001)

3| 0.107 (0.001) | 0.069 (0.001) | 0.145(0.001) | 0.109 (0.001)

my| 0.155(0.001) | 0.078 (0.001) | 0.220(0.001) | 0.145(0.001)

;| 0.187(0.001) | 0.079 (0.001) | 0.267 (0.001) | 0.170 (0.001)

9000 | 1000 | r; | 0.081(0.001) | 0.081(0.001) | 0.086(0.001) | 0.086 (0.001)

m, | 0.084(0.001) | 0.077 (0.001) | 0.090 (0.001) | 0.082(0.001)

3| 0.090 (0.001) | 0.072(0.001) | 0.098 (0.001) | 0.078 (0.001)

| 0.098 (0.001) | 0.064 (0.001) | 0.107 (0.001) | 0.069 (0.001)

s | 0.102 (0.001) | 0.054(0.001) | 0.111(0.001) | 0.058 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 9.

The mean V/R for proposed FDR methods using DESeq2 with associated standard
errors in parentheses for each simulation setting (continued).

DESeq2
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
12 | 9500 | 500 | 7ry| 0.104 (0.002) | 0.104(0.002) | 0.107(0.002) | 0.107 (0.002)
m, | 0.102 (0.002) | 0.096 (0.002) | 0.105(0.002) | 0.100 (0.002)
3| 0.107 (0.002) | 0.094 (0.002) | 0.109(0.002) | 0.096 (0.002)
m,| 0.108 (0.002) | 0.086 (0.002) | 0.112(0.002) | 0.088 (0.002)
ms| 0.112(0.002) | 0.079 (0.001) | 0.116(0.002) | 0.080 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and s = (0.95, 0.05).

The traditional g-value method did not outperform the asymmetric g-value method in

most of the simulation settings in terms of mean S, as seen in Table 10 (NBPSeq method). The

asymmetric g-value method performed better than the traditional g-value method in 65 of the 80

simulation settings with regard to mean S (16 of 20 settings with n =4, 6 and 10 and 17 of 20

settings with n = 12). The traditional g-value method performed better than the traditional BH

method in all the simulation settings. Also, the asymmetric g-value method performed better than

the traditional and asymmetric BH methods in all settings. Furthermore, the traditional g-value

method performed better than the asymmetric BH method in 37 of 80 settings in terms of mean S

(10 of 20 settings with n =4 and 6, 8 of 20 settings with n = 10, and 9 of 20 settings with n = 10).

Comparing the performance of the traditional BH method to the asymmetric BH method, the
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asymmetric BH method performed better than the traditional BH method in 65 of the 80 settings
in terms of the mean S (16 of 20 settings with n =4, 6 and 10, and 17 of 20 settings with n = 12).

Although a higher value of mean S was observed for the traditional g-value method
compared to the traditional BH method in most simulation settings, these differences were not
significant. There were no significant difference in mean S at 5% between all methods in 9 of 80
settings (n =4, m0 = {5000, 9500} and =, n =6, m0= {5000, 7000, 9500} and =,,n =10, m0
= {7000, 9000} and =, n =12, m0 = {5000, 7000} and 7).

As shown in Table 11, the observed FDR (mean V/R) was similar among all the methods,
with levels elevated above 5%. Apart from simulation settings with 7, , the asymmetric g-value

method better controlled the observed FDR than the traditional g-value method. In most settings, the
asymmetric BH method compared to the traditional g-value and asymmetric g-value methods better

controlled the observed FDR close to or slightly higher than 5%.
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting.

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
4 | 5000 | 5000 | 7ry| 2091.990 2091.440 2350.050 2349.010
(4.809) (4.812) (5.713) (5.650)
m,| 1865.770 1898.470 2134.800 2158.050
(5.120) (5.279) (5.520) (5.666)
3| 1595.030 1662.220 1879.190 1938.950
(4.731) (4.945) (5.671) (5.780)
| 1217.340 1331.980 1502.990 1612.020
(4.309) (4.467) (5.821) (5.853)
s | 1002.590 1153.300 1293.160 1435.450
(3.902) (4.468) (5.914) (5.957)
7000 | 3000 | r, | 1087.310 1086.880 1145.890 1145.420
(3.459) (3.477) (3.932) (3.921)
m,| 1037.050 1060.280 1101.070 1118.920
(4.022) (4.049) (4.257) (4.138)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
4 (7000 | 3000 | 75 951.320 1005.000 1017.290 1064.400
(3.959) (3.959) (4.113) (4.010)
T, 828.880 930.410 897.230 988.090
(3.635) (3.667) (3.932) (4.013)
Ty 748.170 883.590 819.990 939.410
(3.482) (3.544) (3.942) (3.787)
9000 | 1000 | T4 267.780 267.920 268.290 268.560
(1.850) (1.828) (1.850) (1.830)
T, 263.930 269.520 264.410 269.470
(2.041) (1.885) (2.052) (1.913)
T3 256.280 272.870 256.800 272.070
(1.695) 1.621) (1.726) (1.659)
my| 248.670 280.940 249.300 279.420
(1.885) (1.895) (1.918) (1.942)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
4 (9000 | 1000 | 75 247.630 288.190 248.300 286.120
(1.732) (1.883) (1.745) (1.908)
9500 | 500 | mq 109.030 108.780 109.030 108.870
(1.210) (1.227) (1.210) (1.225)
1L} 112.950 116.500 112.950 116.360
(1.309) (1.334) (1.309) (1.326)
T3 113.130 120.560 113.130 120.060
(1.236) (1.252) (1.236) (1.249)
T, 109.880 123.960 109.880 123.580
(1.378) (1.459) (1.378) (1.449)
Ty 108.190 126.730 108.220 125.780
(1.375) (1.349) (1.349) (1.339)
6 | 5000 | 5000 | ;| 2812.560 2812.520 3056.840 3055.910
(4.355) (4.336) (4.949) (4.891)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
6 | 5000 5000 | m,| 2565.210 2604.030 2853.280 2880.140
(4.185) (4.095) (5.559) (5.560)
3| 2248.480 2329.500 2600.520 2657.860
(3.963) (4.240) (4.727) (4.757)
m,| 1831.860 1965.700 2251.000 2344.580
(4.817) (5.063) (6.377) (6.153)
my| 1593.450 1755.150 2042.880 2155.190
(4.450) (4.274) (5.916) (5.805)
7000 | 3000 | 7w, | 1544.050 1543.470 1601.510 1600.440
(3.276) (3.301) (3.437) (3.438)
m,| 1472.670 1497.330 1540.730 1559.470
(3.705) (3.757) (3.999) (4.013)
my| 1371.180 1432.510 1452.890 1497.590
(3.210) (3.263) (3.370) (3.427)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
6 | 7000 | 3000 | r,| 1235.090 1347.300 1333.260 1414.650
(3.181) (3.269) (3.611) 3.397)
5| 1151.390 1294.590 1256.480 1368.340
(3.219) 3.113) (3.374) (3.392)
9000 | 1000 | T4 417.710 417.740 418.370 418.350
(1.985) (1.966) (1.990) (2.001)
T, 416.850 423.640 418.000 423.580
(2.031) (1.992) (2.029) (2.008)
T3 406.570 423.500 407.480 422.210
(1.834) (1.936) (1.858) (1.944)
T, 399.380 430.830 400.570 428.010
(1.930) (1.952) (1.915) (1.967)
Ty 394.720 436.860 396.620 433.910
(1.765) (1.829) (1.777) (1.835)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
6 | 9500 | 500 | m, 185.870 185.900 185.870 185.890
(1.498) (1.501) (1.498) (1.499)
T, 185.360 188.140 185.390 187.850
(1.367) 1.373) (1.366) (1.382)
T3 181.500 188.540 181.500 188.090
(1.259) (1.247) (1.259) (1.257)
T, 182.810 195.910 182.870 195.210
(1.227) 1.214) (1.228) (1.206)
Ty 182.470 200.990 182.550 199.840
(1.264) (1.264) (1.260) (1.278)
10 | 5000 | 5000 | T, | 3528.990 3528.740 3720.190 3720.320
(3.918) (3.935) (3.667) (3.684)
my |  3268.830 3314.150 3552.550 3575.570
(3.860) (3.827) (4.385) (4.247)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
10 | 5000 | 5000 | m3| 2957.440 3044.690 3363.750 3402.370
(3.616) (3.645) (4.480) (4.364)
M, | 2556.780 2679.950 3130.980 3170.250
(3.570) (3.392) (5.011) (4.912)
s | 2319.730 2450.820 2991.400 3021.540
(3.301) (3.534) (4.616) (4.361)
7000 | 3000 | r, | 2003.400 2003.010 2055.020 2054.840
(2.951) (2.983) (3.024) (3.002)
m,| 1935.480 1961.800 2000.800 2015.290
(3.334) (3.365) (3.400) (3.441)
3| 1836.870 1895.580 1922.360 1957.900
(2.704) (2.673) (2.759) (2.837)
m,| 1700.230 1801.760 1816.190 1877.320
(2.877) (2.848) (2.909) (3.060)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
10 | 7000 | 3000 | 75| 1617.430 1746.590 1753.280 1830.940
(3.198) (3.231) (3.596) 3.597)
9000 | 1000 | 7r4 594.700 594.550 596.130 595.940
(1.962) (1.964) (1.999) (1.993)
T, 588.240 593.450 589.810 594.080
(1.699) (1.740) (1.724) (1.755)
T3 583.540 598.080 585.370 596.910
(1.751) (1.807) (1.803) (1.829)
T, 570.500 597.700 572.910 594.870
(1.975) (1.976) (2.004) (2.010)
Ty 562.880 597.970 565.610 594.940
(1.682) (1.644) (1.689) (1.668)
9500 | 500 | 4 275.510 275.510 275.540 275.600
(1.110) (1.122) (1.110) (1.130)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
10 | 9500 | 500 | m, 275.400 277.830 275.470 277.650
(1.310) (1.296) (1.311) (1.290)
3 273.410 279.680 273.430 279.110
(1.207) (1.146) (1.206) (1.130)
T, 272.210 283.250 272.230 281.870
(1.237) (1.226) (1.237) (1.212)
s 271.050 286.800 271.090 285.370
(1.193) (1.183) (1.189) (1.193)
12 | 5000 | 5000 | T, | 3724.160 3724.060 3894.170 3894.140
(3.275) (3.321) (3.353) (3.356)
m, | 3480.230 3526.930 3751.650 3771.640
(3.374) (3.347) (3.691) 3.613)
3| 3180.510 3264.240 3601.520 3628.800
(3.268) (3.139) (4.377) (4.302)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
12 | 5000 | 5000 | T, | 2788.960 2897.990 3418.100 3432.790
(3.466) (3.705) (5.737) (5.526)
5| 2573.970 2685.680 3308.950 3312.840
(3.471) (3.115) (5.685) (5.392)
7000 | 3000 | r, | 2135.850 2135.860 2183.390 2183.390
(2.533) (2.508) (2.663) (2.638)
m, | 2068.930 2092.990 2130.220 2143.780
(2.487) (2.569) (2.688) (2.699)
3| 1982.130 2036.520 2066.420 2097.200
(2.744) (2.539) (2.816) (2.780)
m,| 1845.480 1944.980 1970.920 2023.190
(2.758) (2.946) (3.253) (3.132)
s | 1766.510 1889.140 1916.740 1978.880
(2.884) (2.666) (3.101) (2.899)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
12 | 9000 | 1000 | 74 645.960 646.090 647.230 647.370
(1.516) (1.518) (1.493) (1.485)
T, 641.600 646.880 643.470 647.350
(1.756) 1.757) (1.765) (1.752)
T3 635.950 648.330 637.660 647.550
(1.706) 1.637) (1.707) (1.654)
T, 622.020 648.680 624.680 645.720
(1.699) (1.853) (1.747) (1.882)
Ty 614.550 647.140 617.680 643.750
(1.743) (1.750) (1.773) (1.817)
9500 | 500 | 303.170 303.520 303.200 303.580
(1.248) (1.224) (1.249) (1.220)
T, 303.790 306.160 303.820 305.800
(1.177) a.207) (1.178) (1.218)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7; = (0.5, 0.5), &, = (0.7, 0.3), 3 = (0.8, 0.2), T, =
(0.9, 0.1) and m5 = (0.95, 0.05).
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Table 10. The mean S for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting (continued).

NBPSeq
Mean S
n Mo | DE | m; | Traditional | Asymmetric | Traditional Asymmetric
BH BH Qv Qv
12 | 9500 | 500 | m; 304.070 309.150 304.100 308.530
(1.231) (1.324) (1.233) (1.301)
Ty 297.830 309.340 297.910 308.070
(1.204) (1.155) (1.207) (1.145)
Ty 299.710 314.280 299.780 312.430
(1.325) (1.355) (1.325) (1.361)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the asymmetric BH method has a significant higher mean S compared to the traditional
BH method, then the mean S is underlined. The m;’s represent the proportion of DE genes that
are upregulated and downregulated. 7, = (0.5, 0.5), &, = (0.7, 0.3), 73 = (0.8, 0.2), T, =
(0.9, 0.1) and 5 = (0.95, 0.05).

Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard
errors in parentheses for each simulation setting.

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 | 5000 | 5000 | ry | 0.030(<0.001) | 0.030 (<0.001) | 0.041 (<0.001) | 0.041 (<0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and s = (0.95, 0.05).

105




Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 |5000 | 5000 | T, | 0.044 (0.001) | 0.038 (0.001) | 0.061(0.001) | 0.054 (0.001)
3| 0.066 (0.001) | 0.049 (0.001) | 0.091(0.001) | 0.071 (0.001)

my| 0.102(0.001) | 0.060 (0.001) | 0.141(0.001) | 0.090 (0.001)

| 0.132(0.001) | 0.060 (0.001) | 0.181(0.001) | 0.094 (0.001)

7000 | 3000 | r; | 0.048 (0.001) | 0.048 (0.001) | 0.055(0.001) | 0.055(0.001)

| 0.056 (0.001) | 0.049 (0.001) | 0.063 (0.001) | 0.056 (0.001)

3| 0.063 (0.001) | 0.046 (0.001) | 0..073 (0.001) | 0.053 (0.001)

m,| 0.078 (0.001) | 0.041(0.001) | 0.091(0.001) | 0.049 (0.001)

5| 0.086 (0.001) | 0.033 (0.001) | 0.102(0.001) | 0.040 (0.001)

9000 | 1000 | 7r; | 0.098 (0.002) | 0.098 (0.002) | 0.099 (0.002) | 0.099 (0.002)

1, | 0.099 (0.002) | 0.092 (0.002) | 0.100 (0.002) | 0.092 (0.092)

3| 0.101(0.002) | 0.088 (0.002) | 0.102(0.002) | 0.088 (0.002)

my| 0.105(0.002) | 0.079 (0.002) | 0.105(0.002) | 0.079 (0.002)

5| 0.107 (0.002) | 0.074 (0.002) | 0.108 (0.002) | 0.074 (0.002)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 9500 | 500 | ry| 0.155(0.003) | 0.157(0.003) | 0.155(0.003) | 0.157(0.003)
1, | 0.146 (0.003) | 0.140 (0.003) | 0.146 (0.003) | 0.141 (0.003)
3| 0.147(0.003) | 0.132(0.003) | 0.147(0.003) | 0.132(0.003)
my| 0.147(0.003) | 0.122(0.003) | 0.147(0.003) | 0.122(0.003)
s | 0.152(0.003) | 0.115(0.003) | 0.152(0.003) | 0.114 (0.003)

6 | 5000 | 5000 | r;| 0.030 (<0.001) | 0.030 (<0.001) | 0.043 (<0.001) | 0.043 (<0.001)
1, | 0.050 (<0.001) | 0.041 (<0.001) | 0.074 (0.001) | 0.064 (0.001)
3| 0.082 (0.001) | 0.059 (0.001) | 0.125(0.001) | 0.099 (0.001)
my| 0.136(0.001) | 0.080 (0.001) | 0.205(0.001) | 0.146 (0.001)
5| 0.175(0.001) | 0.087(0.001) | 0.256 (0.001) | 0.173 (0.002)

7000 | 3000 | r; | 0.046 (0.001) | 0.046 (0.001) | 0.053 (0.001) | 0.054 (0.001)

| 0.055(0.001) | 0.046 (0.001) | 0.065(0.001) | 0.055(0.001)
3| 0.066 (0.001) | 0.045(0.001) | 0.080 (0.001) | 0.057(0.001)
m,| 0.087(0.001) | 0.041(0.001) | 0.107 (0.001) | 0.055(0.001)
s | 0.100 (0.001) | 0.034(0.001) | 0.125(0.001) | 0.048 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

6 | 9000 | 1000 | ry| 0.088(0.001) | 0.089 (0.001) | 0.089 (0.001) | 0.089 (0.001)
1, | 0.085(0.001) | 0.080 (0.001) | 0.086 (0.001) | 0.080 (0.001)
3| 0.090 (0.001) | 0.077 (0.001) | 0.091 (0.001) | 0.077 (0.001)
| 0.091(0.001) | 0.066 (0.001) | 0.092(0.001) | 0.066 (0.001)
5| 0.092 (0.001) | 0.061 (0.001) | 0.093 (0.001) | 0.061 (0.001)

9500 | 500 | m,| 0.120(0.002) | 0.121(0.002) | 0.120(0.002) | 0.121 (0.002)

m,| 0.124(0.002) | 0.117 (0.002) | 0.124(0.002) | 0.118 (0.002)
3| 0.121(0.002) | 0.114(0.002) | 0.121(0.002) | 0.114 (0.002)
m, | 0.127(0.002) | 0.104 (0.002) | 0.127(0.002) | 0.103 (0.002)
5| 0.125(0.002) | 0.097 (0.002) | 0.125(0.002) | 0.097 (0.002)

10 | 5000 | 5000 | T4 | 0.028 (<0.001) | 0.028 (<0.001) | 0.044 (<0.001) | 0.044 (<0.001)
1y | 0.062 (<0.001) | 0.049 (<0.001) | 0.103 (0.001) | 0.090 (0.001)
3| 0.114(0.001) | 0.080 (0.001) | 0.192(0.001) | 0.164 (0.001)
m,| 0.201(0.001) | 0.133(0.001) | 0.318(0.001) | 0.290 (0.001)
s | 0.258 (0.001) | 0.170(0.001) | 0.382(0.001) | 0.361 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

10 | 7000 | 3000 | T4 | 0.044 (<0.001) | 0.044 (<0.001) | 0.053 (<0.001) | 0.052 (<0.001)
m, | 0.057 (0.001) | 0.046 (0.001) | 0.071(0.001) | 0.059 (0.001)

3| 0.077 (0.001) | 0.048 (<0.001) | 0.101 (0.001) | 0.069 (0.001)

m,| 0.108 (0.001) | 0.048 (0.001) | 0.148 (0.001) | 0.077 (0.001)

s | 0.131(0.001) | 0.043 (0.001) | 0.184(0.001) | 0.078 (0.001)

9000 | 1000 | r; | 0.074 (0.001) | 0.074 (0.001) | 0.075(0.001) | 0.075(0.001)

m,| 0.078 (0.001) | 0.073 (0.001) | 0.079 (0.001) | 0.074 (0.001)

3| 0.081(0.001) | 0.068 (0.001) | 0.082(0.001) | 0.068 (0.001)

my| 0.086 (0.001) | 0.061 (0.001) | 0.087(0.001) | 0.061 (0.001)

5| 0.089 (0.001) | 0.055(0.001) | 0.092(0.001) | 0.055(0.001)

9500 | 500 | m,| 0.107(0.002) | 0.108 (0.002) | 0.107(0.002) | 0.108 (0.002)

| 0.104 (0.002) | 0.098 (0.002) | 0.104 (0.002) | 0.098 (0.002)

3| 0.107 (0.002) | 0.097 (0.002) | 0.107 (0.002) | 0.097 (0.002)

my| 0.111(0.002) | 0.090(0.002) | 0.111(0.002) | 0.089 (0.002)

ms| 0.104 (0.001) | 0.080 (0.001) | 0.104 (0.001) | 0.078 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

12 | 5000 | 5000 | T4 | 0.028 (<0.001) | 0.028 (<0.001) | 0.044 (<0.001) | 0.044 (<0.001)
1, | 0.069 (<0.001) | 0.054 (<0.001) | 0.117 (0.001) | 0.103 (0.001)

3| 0.133(0.001) | 0.095(0.001) | 0.229 (0.001) | 0.206 (0.001)

m,| 0.232(0.001) | 0.165(0.001) | 0.363 (0.001) | 0.353(0.001)

5| 0.296 (0.001) | 0.219 (0.001) | 0.423 (0.001) | 0.421 (0.001)

7000 | 3000 | 7r; | 0.044 (0.001) | 0.044 (0.001) | 0.053 (0.001) | 0.053 (<0.001)

1, | 0.059 (<0.001) | 0.047 (<0.001) | 0.075(0.001) | 0.062 (0.001)

3| 0.085(0.001) | 0.052(0.001) | 0.113(0.001) | 0.078 (0.001)

my| 0.122(0.001) | 0.054 (0.001) | 0.174 (0.001) | 0.096 (0.001)

5| 0.148 (0.001) | 0.049 (0.001) | 0.215(0.001) | 0.103 (0.001)

9000 | 1000 | r; | 0.074 (0.001) | 0.074 (0.001) | 0.075(0.001) | 0.075(0.001)

m,| 0.076 (0.001) | 0.070 (0.001) | 0.077 (0.001) | 0.071 (0.001)

3| 0.081(0.001) | 0.067 (0.001) | 0.083(0.001) | 0.068 (0.001)

| 0.086 (0.001) | 0.060 (0.001) | 0.088 (0.001) | 0.060 (0.001)

5| 0.086 (0.001) | 0.050(0.001) | 0.089 (0.001) | 0.050 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 11. The mean V/R for proposed FDR methods using NBPSeq with associated standard

errors in parentheses for each simulation setting (continued).

NBPSeq
Mean V/R
n mo | DE |m; | Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
12 | 9500 | 500 | T4 | 0.104 (0.002) | 0.104(0.002) | 0.104 (0.002) | 0.104 (0.002)
m, | 0.102 (0.002) | 0.097 (0.002) | 0.102(0.002) | 0.097 (0.002)
3| 0.105(0.001) | 0.093 (0.001) | 0.105(0.002) | 0.093 (0.001)
m, | 0.105(0.002) | 0.087(0.002) | 0.105(0.002) | 0.086 (0.002)
s | 0.108 (0.002) | 0.082(0.001) | 0.108 (0.002) | 0.080 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and s = (0.95, 0.05).

As seen in Table 12 (edgeR method), the traditional BH method did not outperform the

asymmetric BH, traditional g-value or asymmetric q-value methods in any of the simulation

settings in terms of mean S. The asymmetric BH method performed better than the traditional

BH method in 64 of the 80 simulation settings with regard to mean S (16 of 20 settings with n =

4,6, 10, and 12). The traditional g-value method performed better than the traditional BH

method in 72 of 80 settings in terms of mean S (15 of 20 settings with n =4, 17 of 20 settings

with n = 6, and 20 of 20 settings with n = 10 and 12). Also, the asymmetric g-value method

performed better than the traditional BH method in 76 of the 80 simulations settings with regard

to mean S (19 of 20 settings with n =4, 6, 10, and 12). Furthermore, the traditional g-value

method performed better than the asymmetric BH method in 41 of 80 settings in terms of mean S

(14 of 20 settings with n =4, 9 of 20 settings with n =6, 10 and 12). The asymmetric g-value
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method was never outperformed by the asymmetric BH method in 77 of 80 simulation settings in
terms of mean S. Comparing the performance of the traditional g-value method to the
asymmetric g-value method, the asymmetric g-value method performed better than the
traditional g-value method in 68 of the 80 settings in terms of the mean S (16 of 20 settings with
n=4,6,and 10, and 17 of 20 settings with n = 12).

Although a higher value of mean S was observed in most traditional BH method

compared to the asymmetric BH method, in the 9 of 80 settings (» =4 m0 = {7000, 9000} and 7,
,n==6andz ,n=10m0= {5000, 9500} and r,, and n =12, m0 = 7000 and 7, ); these differences were

not significant. Also, higher values of mean S were observed in the asymmetric BH method
compared to the traditional BH method, there were no significant differences between these two

methods in 4 of 80 settings (n = 10 m0 =700 and 7, , and n =12 m0 = {5000, 9000, 9500} and
7). On the other hand, there was no significant difference in mean S at 5% between all methods
with n =4, m0=9500 and 7.

As shown in Table 13, the observed FDR (mean V/R) was comparable among all the

methods, with levels elevated above 5%. Apart from simulation settings with z, , the asymmetric

BH and asymmetric g-value methods better controlled the observed FDR than the traditional BH
and traditional g-value methods. In most settings, the traditional BH method compared to the
asymmetric BH method, the asymmetric BH method better controlled the observed FDR close to

or slightly higher than 5%.
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting.

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
4 | 5000 | 5000 | rq 2100.580 2099.920 2358.420 2358.140
(4.658) (4.692) (5.437) (5.438)
T, 1879.470 1909.010 2153.490 2179.340
(4.938) (5.292) (5.842) (5.815)
T3 1620.000 1685.270 1909.510 1971.170
(4.759) 4.712) (5.601) (5.882)
T, 1249.390 1362.290 1542.760 1651.560
(4.3306) (4.190) (5.571) (5.413)
Ty 1042.500 1191.840 1342.330 1488.370
(4.421) (5.029) (5.959) (6.197)
7000 | 3000 | Ty 1095.360 1094.530 1154.360 1154.180
(3.243) (3.287) (3.604) (3.664)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
4 (7000 | 3000 | r, 1046.320 1069.200 1112.200 1131.210
(3.856) 3.917) (4.110) (4.103)
3 969.970 1019.400 1036.710 1083.080
(3.871) (3.950) (4.193) (3.891)
T, 853.090 953.580 924.490 1016.600
(3.503) (3.600) 3.957) (3.910)
Ty 777.220 907.650 849.250 969.100
(3.439) 3.817) (3.927) (3.964)
9000 | 1000 | T4 272.130 272.130 272.920 273.300
(1.897) (1.904) 1.925) (1.904)
T, 267.940 274.450 268.620 274.720
(2.009) (1.948) (2.024) (1.980)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
4 19000 | 1000 | 3 259.520 275.960 260.330 275.850
(1.610) (1.610) (1.634) (1.642)
Ty 252.260 283.780 253.180 283.100
(1.861) (1.968) (1.888) (2.001)
Ty 251.470 292.820 252.440 291.810
(1.858) (1.857) (1.888) (1.884)
9500 | 500 | 110.680 110.990 110.730 110.850
(1.172) (1.186) (1.176) (1.171)
T, 114.320 117.350 114.360 117.240
(1.190) (1.254) (1.193) (1.248)
T3 113.970 121.390 113.980 121.200
(1.207) (1.221) (1.206) 1.23)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
4 (9500 | 500 |m, 110.440 124.000 110.470 123.590
(1.383) (1.396) (1.383) (1.396)
T 109.300 127.520 109.340 127.000
(1.378) (1.416) (1.375) (1.404)
6 | 5000 | 5000 | 7y 2833.860 2833.360 3072.530 3072.470
(4.548) (4.565) (4.835) (4.835)
1L} 2595.670 2633.940 2883.080 2910.790
(4.276) (4.380) (5.307) (5.287)
T3 2291.410 2370.960 2641.800 2697.600
(3.813) (4.014) (4.380) (4.592)
T, 1887.380 2014.910 2299.340 2395.980
(4.767) (5.109) (5.945) (5.734)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
6 | 5000 | 5000 | 75 1655.300 1813.270 2109.320 2220.380
(4.433) (4.592) (5.908) (5.689)
7000 | 3000 | 4 1559.790 1559.720 1621.810 1621.480
(3.380) (3.432) 3.427) (3.442)
1L} 1496.170 1518.850 1566.060 1583.690
(3.5906) (3.426) (3.801) (2.941)
T3 1398.440 1456.750 1480.940 1527.280
(3.261) (3.262) (3.241) (3.649)
T, 1274.760 1377.080 1367.020 1450.690
(3.250) (3.183) (3.404) (3.311)
Ty 1198.010 1333.240 1296.030 1408.980
(3.382) (3.264) (3.627) (3.482)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
6 | 9000 | 1000 | 4 427.430 427.200 428.660 428.270
(2.029) (2.027) (2.040) (2.046)
T, 423.990 430.410 425.520 431.520
(1.975) (1.940) (1.996) (1.966)
T3 413.320 429.890 414.720 430.300
(1.814) (1.913) (1.821) (1.950)
T, 407.440 437.120 409.220 436.200
(1.909) (1.952) (1.907) (1.960)
Ty 402.360 442.150 404.400 441.170
(1.853) (1.914) (1.899) (1.930)
9500 | 500 | m4 190.350 190.210 190.400 190.370
(1.5206) (1.543) (1.521) (1.533)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
6 | 9500 | 500 |m, 189.170 192.080 189.170 192.060
(1.350) (1.338) (1.350) (1.340)
3 184.740 192.190 184.770 191.740
(1.364) (1.323) (1.366) a.315)
T, 185.200 198.790 185.260 198.430
(1.252) (1.212) (1.255) 1.210)
Ty 184.990 203.250 185.050 202.100
(1.201) (1.271) (1.201) (1.284)
10 | 5000 | 5000 | 4 3541.010 3540.830 3732.970 3732.940
(4.031) (4.009) 3.754) (3.764)
T, 3292.040 3336.910 3575.120 3598.460
(3.948) (3.985) (4.396) (4.525)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
10 | 5000 | 5000 | 5 3000.480 3082.070 3392.540 3432.650
(3.497) 3.724) (4.501) (4.630)
T, 2622.760 2740.02 3178.550 3217.380
(3.209) (3.28) (4.934) (4.705)
Ty 2400.130 2523.180 3045.570 3080.840
(3.487) 3.574) (5.067) (4.817)
7000 | 3000 | Ty 2016.610 2016.730 2070.450 2070.210
(2.865) (2.853) (2.950) (2.931)
T, 1950.220 1973.910 2016.210 2031.980
(3.381) (3.395) (3.475) (3.383)
T3 1862.010 1917.520 1944.790 1980.600
(2.750) 2.799) (2.943) (2.980)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
10 | 5000 | 5000 | 5 3000.480 3082.070 3392.540 3432.650
(3.497) 3.724) (4.501) (4.630)
T, 2622.760 2740.02 3178.550 3217.380
(3.209) (3.28) (4.934) (4.705)
Ty 2400.130 2523.180 3045.570 3080.840
(3.487) 3.574) (5.067) (4.817)
7000 | 3000 | Ty 2016.610 2016.730 2070.450 2070.210
(2.865) (2.853) (2.950) (2.931)
T, 1950.220 1973.910 2016.210 2031.980
(3.381) (3.395) (3.475) (3.383)
T3 1862.010 1917.520 1944.790 1980.600
(2.750) 2.799) (2.943) (2.980)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
10 | 7000 | 3000 | 7, 1740.210 1835.260 1849.880 1909.720
(2.734) (2.929) (3.019) (2.988)
s 1662.770 1784.100 1788.810 1867.550
(3.226) 3.212) 3.395) (3.348)
9000 | 1000 | T4 601.180 601.180 603.200 603.090
(1.915) (1.923) 1.916) (1.941)
1L} 593.500 598.110 595.690 599.360
(1.860) (1.825) (1.880) (1.866)
T3 589.650 603.220 592.290 603.830
(1.711) (1.590) (1.732) (1.647)
Ty 576.600 600.760 579.590 599.890
(1.908) (1.835) (1.939) (1.894)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
10 | 9000 | 1000 | 75 569.330 602.860 572.940 601.860
(1.717) (1.651) (1.739) 1.654)
9500 | 500 | mq 278.460 278.400 278.500 278.560
(1.157) (1.154) (1.158) (1.162)
1L} 278.040 281.150 278.260 281.160
(1.233) (1.267) (1.211) (1.256)
T3 275.600 281.110 275.720 280.730
(1.174) (1.173) (1.174) a.164)
T, 273.110 284.570 273.250 283.780
(1.245) (1.181) (1.242) a.165)
Ty 272.200 287.730 272.310 287.630
(1.148) (1.157) (1.149) a.177)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors

in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
12 | 5000 | 5000 | 7, 3735.490 3735.550 3909.540 3909.540
(3.453) (3.477) 3.352) (3.354)
T, 3503.510 3546.260 3771.940 3793.020
(3.244) (3.160) 3.224) (3.237)
T3 3221.560 3302.500 3628.670 3656.110
(3.088) 3.213) (4.198) (4.184)
T, 2850.340 2952.850 3456.240 3474.640
(3.701) (3.695) (5.184) (4.9212)
Ty 2649.000 2755.540 3358.700 3367.940
(3.521) (3.493) (5.945) (5.572)
7000 | 3000 | Ty 2145.130 2145.060 2193.500 2193.690
(2.580) (2.579) (2.698) (2.688)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
12 | 7000 | 3000 | r, 2082.840 2106.650 2144.910 2159.300
(2.553) (2.428) (2.657) (2.595)
3 2006.030 2056.890 2088.100 2118.430
(2.701) (2.522) (2.830) (2.591)
T, 1882.080 1973.600 1997.450 2050.680
(3.314) (2.852) (3.155) (2.925)
Ty 1812.500 1926.300 1948.750 2014.390
(2.934) (2.712) (2.957) (3.115)
9000 | 1000 | T4 651.320 651.380 653.720 653.540
(1.513) (1.507) (1.463) (1.472)
T, 645.090 651.160 647.700 652.370
(1.652) (1.664) (1.678) (1.638)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
12 | 9000 | 1000 | 75 639.270 651.110 641.860 651.640
(1.768) (1.723) (1.763) (1.743)
T, 627.890 651.950 631.420 651.370
(1.675) (1.670) (1.707) (1.698)
Ty 619.870 651.920 624.060 650.540
(1.597) (1.706) (1.656) 1.710)
9500 | 500 | m4 307.110 307.150 307.280 307.310
(1.256) (1.253) (1.254) (1.260)
T, 305.330 307.690 305.660 307.740
(1.273) (1.214) (1.276) (1.236)
T3 304.630 309.670 304.700 309.350
(1.203) (1.214) (1.208) 1.207)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), 7, = (0.7, 0.3), m3 = (0.8, 0.2), my, = (0.9, 0.1) and

s = (0.95, 0.05).
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Table 12. The mean S for proposed FDR methods using edgeR with associated standard errors
in parentheses for each simulation setting (continued).

edgeR
Mean S
n mo | DE |m; | Traditional Asymmetric | Traditional | Asymmetric
BH BH Qv Qv
12 | 9500 | 500 | m, 299.080 309.450 299.380 308.810
(1.264) (1.263) (1.261) a.261)
s 301.270 315.500 301.620 315.810
(1.345) (1.336) (1.352) 1.339)

For each setting, the significant higher mean S value at 5% significance level is shown in bolded
fonts. If the traditional QV method has a significant higher mean S compared to the asymmetric
BH method, then the mean S is underlined. If the asymmetric QV method has a significant higher
mean S compared to the asymmetric BH method, then the mean S is italicized. Also, if the
asymmetric QV method has a significant higher mean S compared to the traditional QV method,
then the mean S is underlined. The m;’s represent the proportion of DE genes that are upregulated
and downregulated. m; = (0.5, 0.5), m, = (0.7, 0.3), 73 = (0.8, 0.2), r, = (0.9, 0.1) and

s = (0.95, 0.05).

Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in
parentheses for each simulation setting.

edgeR
Mean V/R
n mo | DE | m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv
4 | 5000 | 5000 | 7r4| 0.029 (<0.001) | 0.029 (<0.001) | 0.041 (<0.001) | 0.041 (<0.001)
1,| 0.043 (<0.001) | 0.037 (<0.001) | 0.062 (0.001) | 0.055(0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), m, = (0.7, 0.3), 3 = (0.8, 0.2), m, = (0.9, 0.1) and m5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in

parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 5000 | 5000 | r5| 0.065 (0.001) | 0.049(0.001) | 0.092(0.001) | 0.071 (0.001)
1| 0.102 (0.001) | 0.060 (0.001) | 0.142(0.001) | 0.090 (0.001)

ms| 0.133(0.001) | 0.059 (0.001) | 0.182(0.001) | 0.094 (0.001)

7000 | 3000 | 7r4| 0.046 (0.001) | 0.047 (0.001) | 0.053(0.001) | 0.053 (0.001)

1| 0.053 (0.001) | 0.046 (0.001) | 0.061 (0.001) | 0.053 (0.001)

m3| 0.060 (0.001) | 0.042(0.001) | 0.070(0.001) | 0.050 (0.001)

1| 0.074 (0.001) | 0.038 (0.001) | 0.087 (0.001) | 0.045 (0.001)

ms| 0.081(0.001) | 0.029 (0.001) | 0.096 (0.001) | 0.036 (0.001)

9000 | 1000 | 7r4| 0.088(0.002) | 0.088(0.002) | 0.088(0.002) | 0.089 (0.002)

m,| 0.088(0.002) | 0.082(0.001) | 0.089 (0.002) | 0.082(0.001)

3| 0.091(0.002) | 0.077 (0.001) | 0.091(0.002) | 0.077 (0.001)

1| 0.093 (0.002) | 0.069 (0.001) | 0.094 (0.002) | 0.069 (0.001)

ms| 0.094 (0.002) | 0.065(0.001) | 0.095(0.002) | 0.066 (0.001)

9500 | 500 | m4| 0.127(0.003) | 0.127(0.003) | 0.127(0.003) | 0.127 (0.003)

m,| 0.125(0.003) | 0.121(0.003) | 0.125(0.003) | 0.121 (0.003)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in

parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

4 (9500 | 500 | m;| 0.122(0.003) | 0.111(0.003) | 0.122(0.003) | 0.111 (0.003)
1| 0.122(0.003) | 0.101(0.003) | 0.122(0.003) | 0.101 (0.003)

ms| 0.125(0.003) | 0.095(0.003) | 0.125(0.003) | 0.095 (0.003)

6 | 5000 | 5000 | T;| 0.030 (<0.001) | 0.030 (<0.001) | 0.044 (<0.001) | 0.044 (<0.001)
15| 0.051 (<0.001) | 0.043 (<0.001) | 0.077 (<0.001) | 0.068 (0.001)

m3| 0.085(0.001) | 0.063 (0.001) | 0.130(0.001) | 0.104 (0.001)

1| 0.142(0.001) | 0.086 (0.001) | 0.209 (0.001) | 0.153(0.001)

| 0.182(0.001) | 0.095(0.001) | 0.260 (0.001) | 0.181 (0.002)

7000 | 3000 | 7r4| 0.046 (0.001) | 0.046 (0.001) | 0.054 (0.001) | 0.054 (0.001)

1| 0.055(0.001) | 0.046 (0.001) | 0.065(0.001) | 0.056 (0.001)

13| 0.065(0.001) | 0.044 (0.001) | 0.080 (0.001) | 0.056 (0.001)

1| 0.085(0.001) | 0.040 (0.001) | 0.106 (0.001) | 0.053 (0.001)

ms| 0.097 (0.001) | 0.033 (0.001) | 0.122(0.001) | 0.046 (0.001)

9000 | 1000 | 7r4| 0.080(0.001) | 0.080(0.001) | 0.081(0.001) | 0.081 (0.001)

m,| 0.081(0.001) | 0.075(0.001) | 0.082(0.001) | 0.076 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in

parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

6 | 9000 | 1000 | r3| 0.083(0.001) | 0.070 (0.001) | 0.084(0.001) | 0.071 (0.001)
1| 0.083 (0.001) | 0.061(0.001) | 0.085(0.001) | 0.060 (0.001)

ms| 0.086 (0.001) | 0.056 (0.001) | 0.087(0.001) | 0.056 (0.001)

9500 | 500 | 7ry| 0.104(0.002) | 0.103 (0.002) | 0.104(0.002) | 0.104 (0.002)

1| 0.104(0.002) | 0.101(0.002) | 0.105(0.002) | 0.101 (0.002)

m3| 0.103 (0.002) | 0.097 (0.002) | 0.104(0.002) | 0.096 (0.002)

1| 0.109 (0.002) | 0.089 (0.002) | 0.109 (0.002) | 0.089 (0.002)

ms| 0.107 (0.002) | 0.082(0.002) | 0.107 (0.002) | 0.081 (0.002)
10 | 5000 | 5000 | 74| 0.029 (<0.001) | 0.029 (<0.001) | 0.047 (<0.001) | 0.047 (<0.001)
1, 0.067 (<0.001) | 0.053 (<0.001) | 0.110(0.001) | 0.097 (0.001)

3| 0.120 (0.001) | 0.087 (0.001) | 0.194(0.001) | 0.167 (0.001)

1, 0.209 (0.001) | 0.146 (0.001) | 0.316 (0.001) | 0.288 (0.001)

ms| 0.264 (0.001) | 0.184(0.001) | 0.376 (0.001) | 0.354(0.001)

7000 | 3000 | 4| 0.044 (<0.001) | 0.044 (<0.001) | 0.054(0.001) | 0.054 (0.001)

m,| 0.059 (0.001) | 0.047 (0.001) | 0.074 (0.001) | 0.063 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in

parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

10 | 7000 | 3000 | r3| 0.079 (0.001) | 0.050(0.001) | 0.102(0.001) | 0.071 (0.001)
1| 0.109 (0.001) | 0.048 (0.001) | 0.146 (0.001) | 0.077 (0.001)

ms| 0.130(0.001) | 0.043 (0.001) | 0.177 (0.001) | 0.074 (0.001)

9000 | 1000 | 7r4| 0.069 (0.001) | 0.069 (0.001) | 0.071(0.001) | 0.071 (0.001)

m,| 0.072(0.001) | 0.067 (0.001) | 0.074 (0.001) | 0.069 (0.001)

3| 0.075(0.001) | 0.061(0.001) | 0.077 (0.001) | 0.062 (0.001)

1| 0.080 (0.001) | 0.054(0.001) | 0.083(0.001) | 0.055(0.001)

ms| 0.083 (0.001) | 0.048 (0.001) | 0.086 (0.001) | 0.049 (0.001)

9500 | 500 | m4| 0.089(0.002) | 0.089(0.002) | 0.089(0.002) | 0.089 (0.002)

1| 0.088(0.002) | 0.083 (0.002) | 0.089 (0.002) | 0.083 (0.002)

3| 0.092 (0.002) | 0.082(0.002) | 0.092(0.002) | 0.082 (0.002)

1| 0.094(0.002) | 0.075(0.002) | 0.094(0.002) | 0.074 (0.002)

ms| 0.091(0.002) | 0.066 (0.001) | 0.091(0.002) | 0.063 (0.001)
12 | 5000 | 5000 | 7r4| 0.029 (<0.001) | 0.029 (<0.001) | 0.047 (<0.001) | 0.047 (<0.001)
15| 0.074 (<0.001) | 0.058 (<0.001) | 0.123 (0.001) | 0.109 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in

parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

12 | 5000 | 5000 | z3| 0.140 (0.001) | 0.103 (0.001) | 0.230(0.001) | 0.208 (0.001)
1| 0.240 (0.001) | 0.179 (0.001) | 0.360 (0.001) | 0.347 (0.001)

g 0.300 (0.001) | 0.232(0.001) | 0.416 (0.001) | 0.411(0.001)

7000 | 3000 | 7r,| 0.044 (<0.001) | 0.044 (<0.001) | 0.055 (<0.001) | 0.055(0.001)

1,| 0.060 (0.001) | 0.047 (<0.001) | 0.078 (0.001) | 0.065 (0.001)

3| 0.087(0.001) | 0.054(0.001) | 0.115(0.001) | 0.080 (0.001)

m,| 0.122(0.001) | 0.055(0.001) | 0.169 (0.001) | 0.095 (0.001)

ms| 0.146 (0.001) | 0.049 (0.001) | 0.204 (0.001) | 0.097 (0.001)

9000 | 1000 | 7r4| 0.068 (0.001) | 0.068 (0.001) | 0.070(0.001) | 0.070 (0.001)

1| 0.070 (0.001) | 0.064 (0.001) | 0.072(0.001) | 0.065 (0.001)

13| 0.075(0.001) | 0.060 (0.001) | 0.077 (0.001) | 0.062 (0.001)

1| 0.080 (0.001) | 0.054(0.001) | 0.083(0.001) | 0.055(0.001)

ms| 0.081(0.001) | 0.045(0.001) | 0.085(0.001) | 0.046 (0.001)

9500 | 500 | 74| 0.086(0.001) | 0.086(0.001) | 0.086(0.002) | 0.087(0.001)

m,| 0.083 (0.001) | 0.078 (0.001) | 0.083 (0.001) | 0.079 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), 3 = (0.8, 0.2), 7, = (0.9, 0.1) and w5 = (0.95, 0.05).
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Table 13. The mean V/R proposed FDR methods using edgeR with associated standard errors in
parentheses for each simulation setting (continued).

edgeR
Mean V/R
n mo | DE |m;| Traditional Asymmetric Traditional Asymmetric
BH BH Qv Qv

12 [ 9500 | 500 | 73| 0.087(0.002) | 0.078 (0.002) | 0.087 (0.001) | 0.078 (0.002)

m,| 0.087(0.002) | 0.071 (0.001) | 0.088(0.001) | 0.070 (0.001)

| 0.092 (0.002) | 0.067 (0.001) | 0.092(0.002) | 0.062 (0.001)

The m;’s represent the proportion of DE genes that are upregulated and downregulated. m; =
(0.5, 0.5), T, = (0.7, 0.3), m3 = (0.8, 0.2), m, = (0.9, 0.1) and 5 = (0.95, 0.05).

5.6. Real data analysis

In this section, RNA-Seq data from a real gene expression experiment described by
Bottomly et al. (2011) is reanalyzed using the traditional and asymmetric BH methods, and the
traditional and asymmetric q-value methods for the DESeq2, NBPSeq, and edgeR methods. The
description of the data was previously discussed in section 3.5. The data consist of two classes
(B6 and D2); with a total of n =21 samples, n; = 10 B6 samples and n> =11 D2 samples. The
data set contains 36,536 genes, the total number of genes m = 13,932 were analyzed after
filtering to remove genes without any reads.

The number of genes declared to be DE using all methods for estimating FDR (traditional
and asymmetric BH and traditional and asymmetric g-value) for DESeq2, NBPSeq, and edgeR
methods while controlling FDR at 5% are summarized in Figure 5, 6 and 7 respectively below.
The total number of genes declared to be DE using all FDR methods for DESeq2, NBPSeq and

edgeR are summarized in Table 14, 15, 16 respectively below.
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The analysis was performed on a real, not simulated, data set, therefore genes that are EE
and DE are not known. Thus, evaluating the true FDR associated with each method cannot be
done. However, because the sample size for each class is relatively large with a small degree of
asymmetry, the estimation of the FDR is being adequately controlled at 5% based on the results

of the simulation study in section 5.4.

Asymmetric BH Method Traditional g-value Method

Traditional BH Method 0 Asymmetric g-value Method

12693

Figure 5. Venn diagram of genes declared to be DE for DESeq2 method using all FDR
methods.

There were 1163 genes that were DDE by all methods. The asymmetric g-value method
declared 1 more gene to be DE. The asymmetric q-value method declared more genes to be DE.

This is not surprising based on the results from the simulation studies in section 5.4.
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Table 14. Total number of genes declared to be differentially expressed using all FDR methods
for DESeq2 method.

Method Total number of genes DDE
Traditional BH 1199
Asymmetric BH 1199
Traditional g-value 1202
Asymmetric g-value 1203

Asymmelric g-value Method Traditional BH Method

Traditional g-value Method e ) i Asymmeiric BH Method

Sy

12623

Figure 6. Venn diagram of genes declared to be DE for NBPSeq method using all FDR
methods.

There were 871 genes that were DDE by all methods. An additional 12 genes were DDE
by the traditional g-value and BH methods. Both the asymmetric BH and g-value methods
declared 22 more genes to be DE. Asymmetric BH method declared additional 11 genes to be
DE. Hence, both the asymmetric g-value and BH methods declared the most genes to be DE, this

is not surprising based on the results from the simulation studies in section 5.4.

135



Table 15. Total number of genes declared to be differentially expressed using all FDR methods
for NBPSeq method.

Method Total number of genes DDE
Traditional g-value 888
Asymmetric g-value 893
Traditional BH 888
Asymmetric BH 909

Asymmetric BH Method Traditional g-value Method

Traditional BH Method 0 Asymmetric ¢-value Method

12749

Figure 7. Venn diagram of genes declared to be DE for edgeR method using all FDR methods.
There were 1127 genes that were DDE by all methods. Additional 31 genes were DDE by
both the traditional BH and g-value methods. Both the asymmetric BH and g-value methods
declared 15 more genes to be DE. Asymmetric BH method declared additional 3 genes to be DE.
Hence, both the traditional BH and g-value methods declared the most genes to be DE, this is not

surprising based on the results from the simulation studies in section 5.4.

136



Table 16 Total number of genes declared to be differentially expressed using all FDR methods
for the edgeR method.

Method Total number of genes DDE
Traditional BH 1165
Asymmetric BH 1145
Traditional g-value 1165
Asymmetric g-value 1149

5.7. Discussion

The asymmetric BH and g-value methods for estimating FDR, when there exists
asymmetry in the distribution of the test statistics, has observed advantages over the traditional
BH and g-value methods. The observed FDRs for DESeq2, NBPSeq, and edgeR were elevated in
most of these settings where the degree of asymmetry was high (80%, 90%, and 95% of genes
upregulated). For DESeq2 method, using the asymmetric BH or g-value methods is
recommended but preferably, the asymmetric g-value method should be used to estimate FDR
when the degree of asymmetry is high. The asymmetric g-value method should be used to
estimate FDR for the NBPseq method rather than the traditional g-value method. For the edgeR
method, using the asymmetric BH and g-value methods is recommended, but preferably, the
asymmetric BH method should be used when the degree of asymmetry is high. When the
estimated percentage of EE genes is high and the proportion of genes that are upregulated and
downregulated are the same, use of the original methods used to estimate FDR are recommended
for DESeq2, NBPSeq, and edgeR.

Using real RNA-Seq data, the traditional and asymmetric and g-value methods declared

more genes to be DE than the other methods at 5% significance level for DESeq2, which is
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consistent with the simulation results. Asymmetric BH and g-value methods declared more genes
to be DE than the other methods at 5% significance level for NBPSeq. For edgeR, traditional BH
and g-value methods declared more genes to be DE than the other methods at 5% significance

level.
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CHAPTER 6. CONCLUSION

The performance of proposed methods I and II that takes into account asymmetry found
in the distribution of the effect sizes in Chapters 3 and 4 indicates that the observed FDR was
adequately controlled for larger sample sizes (n = 6, 10, 12) and when the degree of asymmetry
is high (80%, 90%, and 95% of genes upregulated). In terms of the mean S from the simulation
studies and the number of genes declared to DE using real gene expression experiment, the
proposed methods I and II identified and declared more genes to DE compared to the traditional
method (SAMseq). For smaller sample sizes, the SAMseq method and proposed methods I and 1T
are not recommended. Other commonly-used methods such DESeq2, NBPSeq, and edgeR
methods should be used.

For any analysis where the distribution of the data is unknown, proposed methods I and II
should be used over the other methods evaluated in this paper. Preferably, proposed method II
should be used since it controls the observed FDR better than the other methods compared in this
research and has higher power than proposed method I. Also, the probability of type 1 error was
not compared. There is the possibility that proposed methods I and II could have higher
probability of type 1 error compared to other commonly-used methods; however, this was not
investigated because FDR is a more appropriate error rate to control in gene expression
experiments, and FDR was adequately controlled for all sample sizes except sample size of four
(n = 4) for both proposed methods.

The performance of all the methods used to estimate FDR (traditional BH method,
asymmetric BH method, traditional g-value method and asymmetric g-value method) in Chapter
5 indicates that the observed FDR was not adequately controlled at 5% significance level when

the degree of asymmetry was high (80%, 90%, and 95% of genes upregulated) in most
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simulation settings. In simulation settings where the degree of asymmetry was low (50%, and
70% of genes upregulated), all methods used to estimate the observed FDRs for DESeq?2,

NBPSeq and edgeR were adequately controlled close to 5% significance level.
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APPENDIX. R CODE

library(samr)
library(impute)

## Note: parts of the samr functions, modified to implements proposed method
I and 11
##functions
##sequencing depth
seq.depth <- function(x) {
iter <- 5
cmeans <- colSums(x)/sum(x)
for (i in 1:iter) {
n0 <- rowSums(x) %*% t(cmeans)
prop <- rowSums((x - n0)"2/(n0 + 1e-08))
qs <- quantile(prop, c(0.25, 0.75))
keep <- (prop >= gs[1]) & (prop <= gs[2])
cmeans <- colMeans(x[keep, 1)
cmeans <- cmeans/sum(cmeans)

}
depth <- cmeans/mean(cmeans)
return(depth)

##ranking within column (function to rank the data within #column)
rankcol <- function(X) {

# ranks the elements within each col of the matrix X

# and returns these ranks in a matrix

n <- nrow(x)

p <- ncol(x)

mode(n) <- "integer"

mode(p) <- "integer”

mode(x) <- ''single"

ifT (Nis.loaded(*“rankcol'™)) {

#dyn.load("/home/tibs/PAPERS/jun2/test/rankcol .so")
}

junk = _Fortran('rankcol™, x, n, p, xr = integer(n * p),
integer(n), PACKAGE = 'samr'™)

xr = matrix(Junk$xr, nrow = n, ncol = p)

return(xr)

}

#Hresampling of the data
resample <- function(x, d, nresamp = 20) {
ng <- nrow(x)
ns <- ncol(x)
dbar <- exp(mean(log(d)))
xresamp <- array(0, dim = c(ng, ns, nresamp))
for (k in l:nresamp) {
for (J in 1:ns) {
xresamp[, J, k] <- rpois(n = ng, lambda = (dbar/d[j]) * X[,
J1 + runif(ng) * 0.1
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}
for (k in 1l:nresamp) {

xresamp[, , kK] <- t(rankcol(t(xresamp[, , k])))

return(xresamp)

}

#itest statistic (Wilcoxon two class unpaired)
##ordered test statistic with its rank
wi lcoxon.unpaired.seq.func <- function(xresamp, y) {
tt <- rep(0, dim(xresamp)[1])
for (i in 1:dim(xresamp)[3]) {
tt <- tt + rowSums(xresamp[, v == 2, i]) - sum(y == 2) *
(length(y) + 1)/2

tt <- tt/dim(xresamp)[3]
or.tt <- sort(tt,decreasing=FALSE)
rk.tt <- rank(tt)

return(list(tt = tt, ordered.tt = or.tt, rank.tt = rk.tt ))

##permuted test statistics
insert.value <- function(vec, newval, pos) {
if (pos == 1)
return(c(newval, vec))
Ivec <- length(vec)
if (pos > lvec)
return(c(vec, newval))
return(c(vec[l:pos - 1], newval, vec[pos:lvec]))

}

permute <- function(elem) {
# generates all perms of the vector elem
if (Imissing(elem)) {
it (length(elem) == 2)
return(matrix(c(elem, elem[2], elem[1]), nrow = 2))

last.matrix <- permute(elem[-1])

dim.last <- dim(last.matrix)

new.matrix <- matrix(0, nrow = dim.last[1] *
(dim_.last[2] + 1), ncol = dim.last[2] + 1)

for (row in 1:(dim.last[1])) {
for (col in 1:(dim.last[2] + 1)) new.matrix[row +
(col - 1) * dim_.last[1], ] <-
insert.value(last.matrix[row, ],
elem[1], col)
}

return(new.matrix)

}

else cat("'Usage: permute(elem)\n\twhere elem is a
vector\n')

}

getperms <- function(y, nperms) {
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total.perms = factorial(length(y))
it (total._perms <= nperms) {
perms = permute(1:length(y))
all._perms.flag = 1
nperms.act = total.perms

if (total.perms > nperms) {
perms = matrix(NA, nrow = nperms, ncol =
length(y))
for (i in 1l:nperms) {
perms[i, ] = sample(l:length(y), size =
length(y))
}

all.perms.flag = O

nperms.act = nperms
}
return(list(perms = perms, all._perms_flag =
all _perms.flag, nperms.act = nperms.act))

#itestimate piOs
pi <- function(testS.p, testS, m){
qq <- quantile(testS.p, c(0.25, 0.75))
piOh <- sum(testS$tt > qq[1] & testS$tt < qq[2])7(0.5
* length(testS$tt))

npos <- sum(testS$tt >= 0) # number of genes with
#positive test statistic

nneg <- sum(testS$tt < 0) # number of genes with
#negative test statistic

piOhpos <- (piOh*m/2)/npos # estimate of proportion
#of EE genes with positive test statistics
piOhneg <- (piOh*m/2)/nneg # estimate of proportion
#of EE genes with negative test statistics

return(list(piOh = piOh, piOhpos = piOhpos, piOhneg =
piOhneqg))

##estimate cutup, cutdown, number of significant positive and #negative genes
cut.updn.nsig <- function(testS, deli, tt.bar) {

tag <- order(testS$tt)

res.mat <- data.frame(tt = testS$tt[tag], evo =
tt.bar, dif = testS$tt[tag] - tt.bar)

res.up <- res.mat[res.mat$evo > 0, ]

res.lo <- res.mat[res.mat$evo < 0, ]

cutup <- rep(le+10, length(deli))

cutlow <- rep(-le+10, length(deli))
nsig.up <- nsig.-lo <- rep(0, length(deli))
it (nrow(res.up) > 0) {
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res.up <- data.frame(dif = res.up$dif, tt =
res.up$tt, num = nrow(res.up):1)

## get the upper part

Jj<-1

i <=1

while (J <= nrow(res.up) & i1 <= length(deli)) {

if (res.up$dif[j] > deli[ii]) {

cutup[ii] <- res.up$tt[j]
nsig.up[ii] <- res.up$Snum[j]
i<-iai+1

}

else {
J<-j3+1

}

it (nrow(res.l1o) > 0) {
res.lo <- data.frame(dif = res.lo$dif, tt =
res.lo$tt, num = l:nrow(res.lo))
## get the lower part
J <- nrow(res.lo)
il <-1
while ( >= 1 & ii <= length(deli)) {
if (res.lo$dif[j] < -deli[ii]) {
cutlow[ii] <- res.lo$tt[j]
nsig.lo[ii] <- res.lo$num[j]
i <-ii +1

}

nsig <- nsig.up + nsig.lo

return(list(cutup = cutup, cutlow = cutlow, nsig
nsig, nsig.up = nsig.up, nsig.lo = nsig.lo))

##estimate the number of falsely called genes

nfalse <- function(testS.p, cpdn) {
nfc.up <- matrix(NA, ncol = length(cpdn$cutup), nrow =
ncol (testS.p))
nfc.low <- matrix(NA, ncol = length(cpdn$cutlow), nrow
ncol (testS.p))

cutup.rank <- rank(cpdn$cutup, ties.method = "min')
cutlow.rank <- rank(-cpdn$cutlow, ties.method = "min"

for (Jj in 1l:ncol(testS.p)) {
keep.up <- keep.dn <- testS.p[, jjl
nfc.up[jj, 1 <- length(keep.up) - (rank(c(cpdn$cutup,
keep.up), ties.method =

"min")[1:length(cpdn$cutup)]
- cutup.rank)
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nfc.low[jj, ] <- length(keep.dn) - (rank(c(-
cpdn$cutlow, -keep.dn),ties.method
= "min")[1:length(cpdn$cutlow)] -
cutlow.rank)

}

nfc <- nfc.up + nfc.low
return(list(nfc = nfc, nfc.up = nfc.up, nfc.low = nfc.low))

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
# Proposed Method I and 11

X <- data # data set

m <- dim(x)[1] # total number of genes

y <- c(rep(l, dim(x)[2]72), rep(2, dim(x)[2]172)) # indicator
#for a two class unpaired data

d <- seqg.depth(x) # sequencing depth

xresamp <- resample(x,d) # resample data

testS <- wilcoxon.unpaired.seq.func(xresamp, y) # test

#statistic

perm <- getperms(y,100) # permutation

b <- perm$nperms.act # actual number of permutations

permsy <- matrix(y[perm$perms], ncol = length(y)) # 1ndicator
#for permutations based on y

nresamp.perm <- 20 # number of resamples

testS.p <- matrix(0, nrow = nrow(x), ncol = dim(perm$perms)[1])
test statistics
for(h in 1:dim(perm$perms)[1]){
xresamp.p <- xresamp[, , l:nresamp.perm]
y-p <- permsy[h, ]
testS.p[, h] <- wilcoxon.unpaired.seq.func(xresamp.p,
y-p)$tt # permuted test statistics

cat("perm = ", 0 + h, "\n")

# permuted ordered test statistics
or.testS.p <- apply(testS.p, 2, function(x) -1*sort(-1*x))
or.testS.p <- t(apply(or.testS.p, 1, sort))

# expected ordered statistics
tt._bar <- apply(or.testS.p, 1, mean)
tt.bar <- tt.bar[length(tt.bar):1]
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# permuted



or.tt <- testS$ordered.tt # ordered test statistic

# estimate for proposed piOs
pis <- pi(testS.p, testS, m)

# delta values
deli <- seq(0.01, 1, 0.001)

# estimate cutup, cutdown, number of significant positive(+) and #negative(-)
genes for all delta values
cpdn <- cut.updn.nsig(testS, deli, tt.bar)

# estimate the number of falsely called genes (+/-) for all delta values
nfcb <- nfalse(testS.p, cpdn)

# estimate the median number of falsely called genes (+/-) for #all delta

values

med.nfc.up <- apply(nfcb$nfc.up, 2, median) # number of falsely
#called positive genes

med.nfc.dn <- apply(nfcb$nfc.low, 2, median) # number of falsely
#called negative genes

### FDR ESTIMATION ###

### PROPOSED METHOD 1 ###

p-fdrl <- ((pis$piOhpos * med.nfc.up) +
(pis$piOhneg*med.nfc.dn)) 7/ (pmax(cpdn$nsig, 1))

### PROPOSED METHOD 11 ###
# FDR for genes with positive test statistics
fdr2._pos <- (pis$piOhpos * med.nfc.up) / (pmax(cpdn$nsig-up,l))

# FDR for genes with negative test statistics
fdr2.neg <- (pis$piOhneg * med.nfc.dn) / (pmax(cpdn$nsig-lo,l1))
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