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ABSTRACT

This dissertation studies a couple of variance-dependent instruments in the financial mar-

ket. Firstly, a number of aspects of the variance swap in connection to the Barndorff-Nielsen and

Shephard model are studied. A partial integro-differential equation that describes the dynamics

of the arbitrage-free price of the variance swap is formulated. Under appropriate assumptions for

the first four cumulants of the driving subordinator, a Večeř-type theorem is proved. The bounds

of the arbitrage-free variance swap price are also found. Finally, a price-weighted index modulated

by market variance is introduced. The large-basket limit dynamics of the price index and the “er-

ror term” are derived. Empirical data driven numerical examples are provided in support of the

proposed price index.

We implemented Feynman path integral method for the analysis of option pricing for cer-

tain Lévy process-driven financial markets. For such markets, we find closed form solutions of

transition probability density functions of option pricing in terms of various special functions.

Asymptotic analysis of transition probability density functions is provided. We also find expres-

sions for transition probability density functions in terms of various special functions for certain

Lévy process-driven markets where the interest rate is stochastic.
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1. INTRODUCTION

In modern markets swaps are becoming increasingly useful for hedging and speculation of

volatility. A swap is a financial derivative in which two counterparties exchange cash flows of two

securities, interest rates, or other financial instruments for the mutual benefit of the exchangers.

The benefit depends on the type of financial instruments involved. There are various types of swap

in a market. In this study, we focus mainly on the variance swap. The variance swap is a forward

contract on the square of future realized volatility, which is referred to as the variance. Since swaps

are relatively recent financial instruments that can be used by traders for volatility hedging and

speculation. The variance swap is usually very profitable when the traders have some insight on

the level of the future fluctuation of the underlying stock price.

The literature devoted to the variance swap is developing rapidly. In [19] the authors pro-

vided an analytical approximation for the valuation of volatility swaps and analyzed other options

with such analytic estimation. In [41] the authors discussed the valuation and hedging of volatility

swaps within the frame of a GARCH(1,1) stochastic volatility model: A general partial differen-

tial equation approach was used to determine the first two moments of the realized variance in a

continuous or discrete context. In [61] a new probabilistic approach using the Heston model is pro-

posed to study various swaps for financial markets. In [62, 63] variance swaps for financial markets

with underlying asset and stochastic volatilities with delay were considered; and additionally some

analytical approximate formal asymptotic forms were obtained for expectation and variance of the

realized continuously sampled variance for stochastic volatility with delay. The variance swap was

evaluated with delay both in a risk-neutral world and in the physical world. An upper bound for

delay as a measure of risk was obtained and two numerical examples as applications using S&P 60

Canada Index (1998-2002) and S&P 500 Index (1990-1993) were provided to price variance swaps

with delay. As observed in [62], variance swaps for stochastic volatility with delay is similar to vari-

ance swaps for stochastic volatility in the Heston model. However, for stochastic volatility models

with delay, more parameters are present compared to the Heston model. In [64], the Heston model

is presented with a variance drift-adjusted version that leads to a significant improvement of the

market volatility surface fitting compared to the Heston model.
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In order to study swaps it is essential to model the “riskiness” of the underlying assets.

Classical Black-Scholes model assumes that the volatility of stock, which is a measure of riskiness

of the underlying asset, is a constant. Obviously such assumptions for financial models are not

compatible with derivative prices observed in the market. One of the most popular approaches in

recent literature to address this issue is connected with the stochastic volatility scenario. Financial

time series of different assets share many common features such as heavy tailed distributions of

log-returns, aggregational Gaussianity, and quasi long-range dependence. Many such facts are

successfully captured by models in which stochastic volatility of log-returns is constructed through

Ornstein-Uhlenbeck (OU) type stationary stochastic process driven by a subordinator, where a

subordinator is a Lévy process with no Gaussian component and positive increments. Using Lévy

processes as driving noise, a large family of mean reverting jump processes with linear dynamics

can be constructed. On these processes various properties such as positiveness or choice of marginal

distribution can be imposed. These Lévy-driven processes are known as non-Gaussian Ornstein-

Uhlenbeck processes or simply Ornstein-Uhlenbeck processes. Non-Gaussian processes of OU type

are one of the most significant candidates for being the building blocks of models of financial

economics. These models offer the possibility of capturing important distributional deviations

from Gaussianity and thus are more practical models of dependence structures. This model is

introduced in various works (see [9, 12, 13]) of Barndorff-Nielsen and Shephard and is known in

modern literature as the BN-S model. In [16] the authors investigate swaps written on powers of

realized volatility in the stochastic volatility model proposed by Barndorff-Nielsen and Shephard.

In [34] the arbitrage free pricing of variance and volatility swaps for Barndorff-Nielsen and Shephard

type Lévy process driven financial markets are studied. One of the major challenges in arbitrage

free pricing of swap is to obtain an accurate pricing expression which can be used with good

computational accuracy. In [34], the authors obtain various approximate expressions for the pricing

of volatility and variance swaps. It is shown that with the approximate formulas obtained from the

Barndorff-Nielsen and Shephard model the error estimation in fitting the delivery price is much less

than the existing models with comparable parameters. Numerical results are provided in support

of the accuracy of approximate formulas. A similar analysis for the covariance swap is provided in

[33].
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In the Chapter 3 of the present dissertation we study various aspects of the variance swap

in connection to the BN-S model.

A stock index or stock market index is a market statistic of the value of a section of the

stock market. It is typically computed using some weighted average of selected stocks. In general,

a price index can be thought of as a weighted sum of the prices of stocks in the index basket. It is a

tool used by investors and financial managers to describe the market, and to compare the return on

specific investments. Two of the most popular index types are price-weighted and capitalisation-

weighted indices. There has been an increasing trend in recent years to create index funds, a

passively managed mutual funds that are based on market indices.

Some indices, such as the S&P 500, have multiple versions. These versions can differ based

on the weights and dividends. For example, there are three versions of the S&P 500 index: price

return, which only considers the price of the components, total return, which accounts for dividend

reinvestment, and net total return, which accounts for dividend reinvestment after the deduction of

a withholding tax. In the Section 4.1 of the present dissertation we introduce a price-weighted index

modulated by market variance/volatility. As variance swaps can be used by traders for volatility

speculation, the presented price index is strongly connected to the pricing of variance swap. We

assume a BN-S type asset-price model for the component stocks with stochastic volatility. This

is a generalized model compared to the existing simple single-sector model in [20]. We consider

the index as a weighted sum of the product of these stock-price processes with the square of the

volatility. The main results focus on the large-basket limit dynamics of the price index and limit

behavior of the “error term” for the large basket dynamics. In [35] the price index is derived for the

processes with jumps in the asset-prices. In that work each asset follows a jump diffusion model

with constant drift and instantaneous volatility. The asset-prices are correlated via a single market

factor capturing global economic effects and each asset has its own idiosyncratic noise consisting of

a Brownian component and a jump component. The model presented in this dissertation considers

stochastic volatility, and the asset-price dynamics is more general compared to the model in [35].

In the Chapter 4 of the present dissertation we introduce and analyze a new price index

that is dependent on the market variance.

The path integral method is proposed by R. Feynman in [30] and nowadays it becomes

one of the most powerful methods in theoretical physics. A path integral is defined as a limit of
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the sequence of finite-dimensional integrals, in a similar way as the Riemannian integral is defined

as a limit of the sequence of finite sums. Over the last few decades it finds its application in

various other disciplines such as statistics, polymer physics, financial markets etc. (see [45, 54,

57]). In financial markets path integral methodology has been successfully implemented in options

pricing for reasonably simple models. In [47] a review of some applications of the path integral

methodology of quantum mechanics to financial modeling and options pricing is provided. In the

papers [4, 5], describing physical analogies, the path integral method is applied to a series of financial

problems. In [17] using Feynman path integral the evolution operator kernel for the Merton-Garman

Hamiltonian is constructed. Based on this calculation option pricing formula, which generalizes

the Black-Scholes result, is obtained. In [18] a general formula to price European path-dependent

options on multidimensional assets is obtained and implemented by means of various flexible and

efficient algorithms. In a recent paper [44] explicit formulas are given for computing the bond

pricing function in Black-Karasinski model in the analog of quantum mechanical “semiclassical”

approximation.

The organization of this dissertation is as follows: The remainder of Chapter 1 includes

some preliminaries of Lévy processes, a brief introduction to path integrals and a brief summary of

the Barndorff-Nielsen and Shephard model aslo known in literature as the BNS-model. In Chapter

2, we present some already known results in the literature. We present the works of B. M. Hambly

and J. Vaicenavicius [35], J. Večeř and M. Xu 2.2, J. Večeř [65, 66, 60], S. Habtemicael and I.

SenGupta [34], N. Bellamy and M. Jeanblanc [15] and B. Baaquie 2.5. In Chapter 3, after giving

a brief overview of pricing procedure of variance swap and the Barndorff-Nielsen and Shephard

(BN-S) model. We formulate a partial intrgro-differential equation that describes the dynamics

of the arbitrage-free price of the variance swap. Under appropriate assumptions for the first four

cumulants of the driving subordinator, we prove a Večeř-type theorem that gives the arbitrage-

free price of the variance swap. Finally we find the bounds of the arbitrage-free variance swap

price. In Chapter 4, we introduce a price-weighted index modulated by market variance and study

the index dynamics for the large basket limit case. We also study numerical examples based on

empirical data in support of the proposed price index [37]. In Chapter 5 of this dissertation, we

implement the method of Feynman path integral for the analysis of option pricing for certain Lévy

process driven financial markets. For a Lévy process driven financial market, we find closed form

4



solution of the transition probability density function (or, the pricing kernel) of option pricing in

terms of various special functions. Asymptotic analysis of transition probability density function

is provided to represent the option pricing formulas for “sufficiently large” horizon date. We also

provide formulas for transition probability density function for certain Lévy process driven markets

where the interest rate is stochastic [38]. Chapter 6 is devoted the conclusion of the present

dissertation as well some recommendations for further research.

1.1. Lévy processes: definitions and properties

In this section we introduce Lévy processes together with some definitions and properties.

Lévy processes are much like Brownian motion (a process with stationary and independent incre-

ments) but have discontinuous paths or have jumps. In financial mathematics, Lévy processes are

becoming extremely useful because they can describe the observed reality of financial markets in

a more accurate way than models based on classical Brownian motion. Such processes have been

proposed to incorporate many empirical features in the return of financial stock prices. In this

section we follow the excellent textbooks on Lévy processes by R. Cont and P. Tankov [23], W.

Schoutens [56], D. Applebaum [3] and J. Jacod and A. N. Shiryaev [39].

Definition 1.1.1 (Lévy process [23]). A cádlág (sample paths are almost surely right continuous

with left limits) stochastic process X = (Xt)t≥0 on (Ω,F , (Ft)t≥0, P ) with values in Rd such that

X0 = 0 is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn the random variables

Xt0, Xt1 −Xt0, . . . , Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0, limh→0 P (|Xt+h −Xt| ≥ ε) = 0.

Definition 1.1.2 (Lévy measure [23]). Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on R

defined by:

ν(A) = E [# {t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}] ,

for A ∈ B(R), is called the Lévy measure of X. ν(A) can be interpreted as the expected number of

jumps whose size is an element of A per unit time, see [23].

5



Definition 1.1.3 (Poisson process [23]). Let (τi)i≥1 be a sequence of independent exponential ran-

dom variables with parameter λ that is, with cumulative distribution function P [τi ≥ x] = e−λx and

Tn =
∑n

i=1 τi. The process (Nt)t≥0 defined by

Nt =
∑
n≥1

1t≥Tn

is called a Poisson process with intensity λ.

The sample paths of a Poisson process [23] are piecewise constant, almost surely right

continuous with left limits and with jump size of 1. The jumps [23] occur at times Ti and the inter-

val between jumps are exponential distributed. Poisson process have independent and stationary

increments. For every t > 0, Nt follows the Poisson distribution with parameter λt, that is

P [Nt = n] = e−λ
(λt)n

n!
.

The characteristic function of a Poisson process is given by

φNt(u) = E
[
eiuNt

]
= exp{λt

(
eiu − 1

)
}.

Definition 1.1.4 (Compound Poisson process [23]). Let (Nt)t≥0 be a Poisson process with intensity

λ > 0 and (Yi)i≥1 be a sequence of i.i.d random variables with distribution f , and which are

independent of (Nt)t≥0. The stochastic process Xt defined as

Xt =

Nt∑
i=1

Yi

is called compound Poisson process.

The sample paths of a Poisson process are piecewise constant, almost surely right continuous

with left limits but the jump sizes are random with distribution f . Compound Poisson process has

independent and stationary increments. The distribution of compound Poisson process is known

explicitly but the characteristic function [23] is given by

φXt(u) = E
[
eiuXt

]
= exp{λt

∫
R

(
eiu − 1

)
f(dx)}.

6



To every cádlág process (Xt)t≥0 one can define an integer-valued random measure JX(ω; dt, dx)

as

JX(ω; dt, dx) =
∑
s

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx),

where δ denotes the Dirac measure. The measure JX , can be interpreted as a counter which

increase whenever within a time increment dt a jump occurs whose size falls into dt. For any Borel

measurable function f , one can define

∑
0<s≤t

f(∆Xs) =

∫ t

0

∫
R
f(x)JX(dt, dx).

Definition 1.1.5 ([52]). Let (Xt)t≥0 be a Lévy process and let D := {z ∈ C : E
[
eR(z)X1

]
< ∞}.

The cumulant function κ : D → C for t > 0 is defined as

eκ(z)t = E
[
ezX1

]
.

The cumulant function exists for z ∈ C with R(z) = 0 and in which case κ(iu) agrees with

the characteristic exponent of X1

ψ(u) := log
[
ezX1

]
.

The characteristic exponent of X1 usually has a simpler form than the distribution of X1 for which

it determines uniquely. For further details, we refer the reader to [23] and [52].

Theorem 1.1.6 (Lévy-Khintchine formula [23]). Let (Xt)t≥0 be a Lévy process. Let h : R→ R be

a bounded measurable function such that h(x) = x in a neighbourhood of zero. Then there exists a

triplet (γ, σ2, ν) such that the cumulant function can be written for z ∈ D as

κ(z) = γz +
1

2
σ2z2 +

∫
R

(ezx − 1− zh(x)) ν(dx),

whereγ and σ2 are constants, and ν is the Lévy measure. (σ2, ν, γ) is called the characteristic triplet

of the Lévy process (Xt)t≥0. Different choices of h do not affect σ2 and ν but γ depends on the

choice of h.

7



If X is a a Lévy process with characteristic triplet (σ2, ν, γ), then [23]

[X,X]t = σ2t+
∑
s∈[0,t]

∆Xs 6=0

|∆Xs|2 = σ2t+

∫ t

0

∫
R
y2JX(dt, dy)

is called the quadratic variation X.

Theorem 1.1.7 (Itô formula for multidimensional Lévy process [23]). Let Xt =
(
X1
t , . . . , X

d
t

)
be a multidimensional Lévy process with characteristic (A, νγ). Then for any C1,2 function f :

[0, T ]× Rd → R,

f(t,Xt)− f(0, 0) =

∫ t

0

d∑
i=1

∂f

∂xi
(s,Xs−)dXi

s +

∫ t

0

∂f

∂s
(s,Xs)ds

+
1

2

∫ t

0

d∑
i=1,j=1

Aij
∂2f

∂xi∂xj
(s,Xs−)ds

+

∆Xs 6=0∑
0≤s≤t

[
f(s,Xs− + ∆Xs)− f(s,Xs−)−

d∑
i=1

∆Xi
s

∂f

∂xi
(s,Xs−)

]
.

1.2. Path integrals

In this section, we introduce path integrals following an excellent book of S. Albeverio,

R. Høegh-Krohn, S. Mazzucchi [2]. In quantum mechanics the state of the particle at time t

is described by a function ψ(x, t) which belongs to L2(Rn) for every t and satisfies Schrödinger

equation of motion

−∂ψ
∂t

= Hψ, (1.1)

with ψ(x, t) = g(x), where H is Hamiltonian of the quantum particle. In [2, 43] M. Kac provided a

solution to (1.1) when H = −1
2∆ + V (x), where ∆ is the Laplacian operator on Rn. The solution

is the celebrated Feynman-Kac formula:

ψ(x, t) =

∫
Wt,x

exp

{
−
∫ t

0
V (w(s))ds

}
g(w(t))dPt,x(w) (1.2)

8



whereWt,x = {w ∈ [C[0, t];R] : w(0) = x} and Pt,x is the Wiener measure onWt,x. Now explain how

the Wiener measure Pt,x [22] can be constructed on the space of all continuous paths w : [0, t]→ R

such that w(0) = x. Consider a cylinder set of paths defined by time 0 ≤ t1 < t2 < · · · < tn and

real intervals Ii = (ai, bi), (i = 1, 2, . . . , n) as C(t1, t2, . . . , tn; I1, . . . , In) = {w(t) ∈ Wt,x : w(ti) ∈

Ii for all 1 ≤ i ≤ n}. The cylinder C(t1, t2; I1, I2) consists of all continuous functions w(.) such

that a1 < w(t1) < b1 and a2 < w(t2) < b2. That is, C(t1, t2; I1, I2) consists of all continuous paths

that are observed at t1 to be between the levels a1 and b1 and at t2 to be between a2 and b2.

The collection I of finite disjoint unions of cylinder sets is an algebra which generates the product

sigma-algebra F . We can define a measure µ on a cylinder set and then extend µ to all sets in I

such that µ is finitely-additive on I. By Caratheodory Extension Theorem, it can be shown that

µ can be extended to a unique countably additive measure Pt,x on F called the Wiener measure.

For further detail on the construction of the Wiener measure, we refer the reader to [22].

The integral (1.2) is called a path integral. For a thorough investigation of Feynman path

integral, we refer the reader to [2].

1.3. Barndorff-Nielsen and Shephard model

Consider a frictionless financial market where a riskless asset with constant return rate r

and a stock are traded up to a fixed horizon date T . Assume that (see [12, 13]) the price process

of the stock S = (St)t≥0 is defined on some filtered probability space (Ω,F , (Ft)0≤t≤T , P ) and is

given by:

St = S0 exp(Xt), (1.3)

dXt = (µ+ βσ2
t ) dt+ σt dWt + ρ dZλt, (1.4)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (1.5)

where the parameters µ, β, ρ, λ ∈ R with λ > 0 and ρ ≤ 0. W = (Wt) is a Brownian motion and the

process Z = (Zλt) is a subordinator. Barndorff-Nielsen and Shephard refer to Z as the background

driving Lévy process (BDLP). Also W and Z are assumed to be independent and (Ft) is assumed
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to be the usual augmentation of the filtration generated by the pair (W,Z). This model is known in

literature as Barndorff-Nielsen and Shephard model (BN-S model). In (1.4) the Brownian motion

and the Lévy process appear as a linear combination and therefore the dynamics of the process

is linear. Also, the negative sign appearing in (1.5) makes the associated process mean-reverting.

Observe that the fact that (1.5) is driven by Z (instead of W ) makes the process non-Gaussian.

We denote the interval (0,∞) by R+. We assume that Z satisfies the assumptions as

described in [48]. The assumptions are as follows.

Assumption 1.3.1. Z has no deterministic drift and its Lévy measure has density w(x).

From Assumption 1.3.1 it follows from [55] (Theorem 19.3) that the cumulant transform

κ(θ) = logE[eθZ1 ], where it exists, takes the form

κ(θ) =

∫
R+

(eθx − 1)w(x) dx.

Assumption 1.3.2. Letting θ̂ = sup{θ ∈ R : κ(θ) < +∞}, then θ̂ > 0.

Assumption 1.3.3. limθ→θ̂ κ(θ) = +∞.

An important concept that will be useful for the next theorem is that of a stochastic

exponential of a Lévy process ((X)t≥0 also known as a Doléans-Dade exponential. For the proof of

the following proposition, see [23].

Proposition 1.3.4 (Doléans-Dade exponential [23]). Let (X)t≥0 is a Lévy process with Lévy triplet

(σ2, ν, γ). There exists a unique cádlág process (Zt)t≥0 such that

dZt = Zt− dXt, Z0 = 1.

Z is given by:

Zt = eXt−
σ2t
2

∏
0≤s≤t

(1 + ∆Xs) e
−∆Xs .

If
∫ 1
−1 |x|ν(dx) <∞ then the jumps of X have finite variation and the stochastic exponential

of X can be expressed as

10



Zt = eX
c
t−

σ2t
2

∏
0≤s≤t

(1 + ∆Xs) e
−∆Xs ,

where Xc
t is the continuous martingale part of Xt.

Z is called the stochastic exponential or Doléans-Dade exponential of X and is denoted by

Z = E(X). It is shown in [48] that there exists an equivalent martingale measure (EMM) under

which equations (1.4) and (1.5) preserve their structures. We summarize the related theorem from

[48] (Theorem 3.2).

Theorem 1.3.5 (E. Nicolato and E. Venardos [48]). Let y ∈ Y ′ where Y ′ := {y : R+ →

R+|
∫
R+

(
√
y(x)− 1)2w(x) dx < +∞}. Then the process

ψt =
1

σt
(r − µ− (β +

1

2
σ2
t − λκy(ρ)),

where κy(θ) =
∫
R+

(eθx − 1)wy(x) dx, for real part of θ < 0, and wy(x) = y(x)w(x), are such that

P

(∫ T

0
ψ2
s ds <∞

)
= 1,

and

Lyt = E(ψ ·W + (y − 1) ? (µZ − νZ))t, 0 ≤ t ≤ T

is a density process.

The probability measure Qy defined by dQy = LyT dP is an EMM under which equations

(1.4) and (1.5) can be written as:

dXt = bt dt+ σt dWt + ρ dZλt, (1.6)

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0, (1.7)

where

bt = (r − λκy(ρ)− 1

2
σ2
t ), (1.8)
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where Wt and Zλt are Qy-Brownian motion and Qy-Lévy process respectively. The processes W

and Z are independent under Qy.

For the rest of this section we assume that the risk-neutral dynamics of the stock price and

volatility are given by (1.6), (1.6) and (1.7). Let the random measure associated with the jumps

of Z, and Lévy density of Z be given by JZ and νZ respectively. The compensator for JZ(λdt, dx)

is λν(dx) dt and we define J̃Z(λdt, dx) = JZ(λdt, dx) − λνZ(dx) dt. Clearly, with respect to the

risk-neutral measure, the dynamics of St is given by

dSt
St

= rdt+ σt dWt +

∫
R+

(eρx − 1)J̃Z(λdt, dx). (1.9)
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2. MOTIVATION AND ALREADY KNOWN RESULTS

The aim of this chapter which consist of five main sections, is to present some already

known results in the literature. The chapter consist of four main sections. In section 2.1, we

present results of B. M. Hambly and J. Vaicenavicius [35] concerning a simple single-sector model.

In section 2.2, we present some results of J. Večeř and M. Xu [67] for the arithmetic Asian options

when the stock is driven by special semimartingale processes and results of J. Večeř [65, 66, 60]

for arithmetic Asian options when the stock is driven by geometric Brownian motion. Section 2.2

is devoted to the results of S. Habtemicael and I. SenGupta[34], where the authors studied the

variance swap for Gaussian models such as the Hull-White model [36] and non-Gaussian model

such the Barndorff-Nielsen and Shephard Model. In section 2.4, we present N. Bellamy and M.

Jeanblanc [15] for range of the European claim prices. Section 2.5 is devoted to the results of B.

Baaquie for path integrals and Hamiltonian for financial markets. The material covered in this

chapter forms the basis of our dissertation.

2.1. Price index approximations and weak convergence theorems

In this section, we present some results of B. M. Hambly and J. Vaicenavicius who studied

the price-weighted index for simple single-sector model where all assets have the same constant drift,

instantaneous volatility, and are correlated via a single market factor capturing global economic

effects. In [35] B. M. Hambly and J. Vaicenavicius considered the following problem:

• Consider a probability space (Ωn,Fn,Pn) corresponding to a market with n risky assets and

a riskless asset.

• Suppose the prices process Si(t) where i = 1, . . . , n for the risky assets evolve under a measure

Pn according to the jump diffusion process

dSi(t)

Si(t−)
= αdt+ σρdM(t) + σ

√
1− ρ2dWi(t) +

∫
R\{0}

(ex − 1)Ni(dt, dx). (2.1)
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• M,Wi are Brownian motions, Ni is a Poisson random measure with a finite Lévy intensity

measure ν = λg, where λ is the intensity of the Poisson counting process N i(t) and g is the

probability density function of the jumps J ik occurring at random times τ ik in the compound

Poisson process

Ri(t) =

∫ t

0

∫
R\{0}

xNi(du, dx) =

N i(t)∑
k=1

J ik .

with the jumps occurring at random times τ ik. The process M,W1, . . . ,Wn, R1, . . . , Rn are

independent. α is a drift coefficient, the total instantaneous expected return per unit time is

given by µ = α+
∫
R{0}(e

x − 1)ν(dx) where µ > 0.

• The instantaneous volatility, arising from the Brownian motion terms, is denoted by σ > 0;

and ρ ∈ (0, 1) is the correlation coefficient which is assumed to be strictly positive (although

provided ρ = 0 we could take ρ < 0).

• The riskless money market account is assumed to pay a constant rate of interest r satisfying

0 < r < µ.

• Define the price-weighted market index

In(t) =
1

n

n∑
i=1

Si(t). (2.2)

• Combining model (2.1) and (2.2), the index process has dynamics

In(t) =

∫ t

0
In(u−)[(α+ β1)du+ ρσdM(u)] +

1√
n

Πn(t)

where the process Πn(t) is given by

Πn(t) =
σ
√

1− ρ2

√
n

n∑
i=1

∫ t

0
Si(u−)dWi(u) +

1√
n

n∑
i=1

∫
R\{0}

Si(u−)(ex − 1)Ñi(dt, dx).
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• More generally, define the k-th empirical moment process

I(k)
n (t) =

1

n

n∑
i=1

Ski (t).

• In [35], B. M. Hambly and J. Vaicenavicius found an approximation process driven by fewer

randomness which approximates the index process In for large values of n. Hambly and

Vaicenavicius showed that the process Πn(t) =
√
n
(
In(t)− I(1)

n (t)
)

converges weakly to a

non-trivial process Π.

• The following theorem is a summary of the main result of Hambly and Vaicenavicius [35].

Theorem 2.1.1 (B.M. Hambly, J. Vaicenavicius [35]). Let k, i ∈ N and suppose that

E[Si(0)4k] < ∞ and
∫
R e

4kxν(dx) < ∞. Then I
(k)
n ⇒ I(k) as n → ∞, where the process I(k)

is given by

dI(k)(t) =

(
kα+

k(k − 1)

2
σ2 + βk

)
I(k)(t)dt+ kσρI(k)(t)dM,

I(k)(0) = E[S1(0)k],

and

Πn ⇒ Π :=

∫ t

0
ξ
√
I(2)(u)dB(u) as n→∞,

where µ = α + β1, γ = σ2(1 − ρ2), κ = β2 − 2β1 =
∫
R\{0}(e

x − 1)2ν(dx), βk =
∫
R\{0}(e

kx −

1)2ν(dx) ξ =
√
γ + κ and where B and M are independent Brownian.

2.2. Pricing Asian options

In this section, we present some results of J. Večeř and M. Xu [67] concerning the arithmetic

Asian options when the stock is driven by special semimartingale processes. J. Večeř and M. Xu

showed that the inherently path dependent problem of pricing Asian options can be transformed

into a problem without path dependency in the payoff function. J. Večeř and M. Xu also showed

that the price satisfies a simpler integro-differential equation when the stock price is driven by a

process with independent increments, where Lévy processes are a special case. J. Večeř [60, 66]
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studied a unifying approach for pricing Asian options when the underlying stocks follows a geometric

Brownian motion. In [67, 66] J. Večeř and M. Xu considered the following problem:

• Let S be a real-valued, strictly positive semimartingale on the stochastic basis (Ω,F ,F =

(Ft)t≥0,P) that satisfies the usual conditions.

• Assume that ertSt is a martingale under P, where r is constant interest rate and P is a

risk-neutral measure .

• Define a new measure Q by

dQ
dP

=
St
S0ert

(2.3)

and a numeraire process Zt = Xt
St
. This change of numeraire technique was introduced by H.

Geman, N. El Jaroui, J.-C. Rochet [31].

Theorem 2.2.1 (J. Večeř and M. Xu [67]). Let V λ(0, S0,K1,K2), the price of the Asian

option be defined as

V λ(0, S0,K1,K2) = EP

[
e−rT

(∫ T

0
Stdλ(t)−K1ST −K2

)+
]
.

Then

V λ(0, S0,K1,K2) = S0 · EQ [ZT −K1)+
]
,

where Q is defined (2.3), Xt is the self-financing portfolio

dXt = qt−dSt + r(Xt− − qt−St−)dt,

with the initial condition X0 = q0S0 − e−rTK2 and trading strategy qt = e−rT
∫ T
t ersdλ(s),

where λ(t) is the averaging factor and Zt = Xt
St
.

• J. Večeř and M. Xu [67] considered the stock price with the following dynamics:

dSt = St−dHt, (2.4)
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where H is a semimartingale. Using the notation in J. Jacod and A. N. Shiryaev [39] H has

the canonical decomposition :

Ht = rt+Hc
t +

∫ t

0

∫ ∞
−∞

x (µ(ds, dx)− ν(ds, dx)) ,

with H0 = 0, Hc
t is the continuous martingale part, µ(dt, dx) is the random measure associated

with the jumps of H and ν(dt, dx) is the compensator.

• J. Večeř and M. Xu [67] proved the following integro-differential equation for the price of the

Asian option.

Theorem 2.2.2 (J. Večeř and M. Xu [67]). Suppose that H is a process with independent

increment given by (2.4). The value of the Asian option is a function of t and Zt, denoted

by v(t, Zt), such that V γ(0, S0,K1,K2) = S0v(0, Z0). Assume vt, vz and vzz exist and are

continuous. Then the following integro-differential equation holds:

∫ t

0

∫ ∞
−∞

{
vs

(
s, Zs− + (qs− − Zs−)

x

1 + x

)}
v(ds, dx)

−
∫ t

0

∫ ∞
−∞

{
v(s, Zs−) + vz(s, Zs−)(qs− − Zs−)

x

1 + x

}
v(ds, dx)

+

∫ t

0
vs(s, Zs−)ds+

1

2
vzz(s, Zs−)(qs− − Zs−)2d 〈Hc〉s = 0

for 0 ≤ t ≤ T .

• J. Večeř [60, 65, 66] considered an Asian call option whose payoff at T is given

V (T ) =

(
1

T

∫ T

0
S(t)dt−K

)+

,

where K is the strike price and the underlying asset S(t) follows a geometric Brownian motion:

dS(t) = rS(t)dt+ σS(t)dW̃ (t),

where W̃ (t), 0 ≤ t ≤ T , is a Brownian motion under the risk-neutral measure P̃.
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• It is shown in S. E. Shreve [60] that the value of the Asian option

v(t, S(t), Y (t)) = Ẽ
[
e−r(T−t)V (T )|Ft(t)

]
,

where Y (t) =
∫ t

0 S(u)du satisfies the following partial differential equation:

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rvx(t, x, y),

and the boundary conditions

v(t, 0, y) = e−r(T−t)
( y
T
−K

)+
, 0 ≤ t ≤ T, y ∈ R,

lim
y↓−∞

v(t, x, y) = 0, 0 ≤ t ≤ T, x ≥ 0,

and

v(T, x, y) =
( y
T
−K

)+
, x ≥ 0, y ∈ R.

• J. Večeř [60, 65, 66] showed in the following theorem that the dimensionality of pricing the

Asian option can be reduced with simplified boundary conditions.

Theorem 2.2.3 (J. Večeř [60, 65, 66]). For 0 ≤ t ≤ T , the risk-neutral pricing

V (t) = Ẽ
[
e−r(T−t)V (T )|F(t)

]

at time t of the Asian call option is

V (t) = S(t)g

(
t,
X(t)

S(t)

)
,

where g(t, y) satisfies

gt(t, y) +
1

2
σ2 (γ(t)− y)2 gyy(t, y) = 0, 0 ≤ t ≤ T, y ∈ R,
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and X(t) is given by

X(t) =


1
rc (1− e−rc)S(t)− e−r(T−t)K, 0 ≤ t ≤ T − c,
1
rc (1− e−rc)S(t) + e−r(T−t) 1

c

∫ t
T−c S(u)du− e−r(T−t)K, T − c ≤ t ≤ T.

.

The boundary conditions for g(t, y) are

g(T, y) = y+, y ∈ R,

lim
y→−∞

g(t, y) = 0, 0 ≤ t ≤ T

and

lim
y→−∞

(g(t, y)− y) = 0, 0 ≤ t ≤ T.

2.3. Pricing variance swap for stochastic volatility model

In [34] S. Habtemicael and I. SenGupta studied the variance swap for Gaussian models such

as the Hull-White model [36] and for non-Gaussian model such the Barndorff-Nielsen and Shephard

Model. S. Habtemicael and I. SenGupta [34] considered the following problem:

• Consider a probability space (Ω,F ,F = (Ft)t≥0,P) with a risky asset (St)t≥0 and riskless

asset with constant interest rate r.

• Assume that the stock price process (St)t∈R+ satisfies the following dynamics:

dSt = rStdt+ σtStdW
1
t (2.5)

dσ2
t = κσ2

t dt+ ζσ2
t dW

2
t (2.6)

where r is the risk-free interest rate, κ < 0 and ζ are real constant, W 1
t and W 2

t are indepen-

dent Wiener processes and the variance process σt follows Hull-White model [36].

• S. Habtemicael and I. SenGupta [34] proved the following theorem concerning the arbitrage

of the variance swap PV ar = E
[
e−rT

(
σ2
R(S)−KV ar

)]
, where KV ar is the delivery price or

exercise price for the variance swap and σ2
R(S) is the realized variance defined as the average
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of the instantaneous variance which is given by:

σ2
R(S) =

1

T

∫ T

0
σ2
sds.

Theorem 2.3.1 (S. Habtemicael and I. SenGupta [34]). The arbitrage free price of variance

swap for the stock dynamics (2.5) and volatility dynamics (2.6) is given by

PVar = e−rT
(
σ2

0

κT
(eκT − 1)−KVar

)
.

• S. Habtemicael and I. SenGupta [34] prove the following theorem related to the arbitrage-free

pricing of variance swaps when the underlying stock price process follows the Barndorff-

Nielsen and Shephard Model .

Theorem 2.3.2 (S. Habtemicael and I. SenGupta [34]). The arbitrage free price of the

variance swap PV ar = E
[
e−rT

(
σ2
R(S)−KV ar

)]
for the BNS-Model (1.6), (1.7) is given by

PVar = e−rT
[

1

T

(
λ−1

(
1− e−λT

) (
σ2

0 − κ1

)
+ κ1T

)
+ ρ2λκ2 −KVar

]
,

where κ1 and κ2 are the first cumulant (i.e., the expected value) and the second cumulant

(i.e., the variance) of Z1 respectively.

2.4. Range of prices

In this section, we present some results of N. Bellamy and M. Jeanblanc [15]. It is well known

that for an incomplete market, there are several equivalent martingale measures, which means it

is not always possible perfectly hedge every contingent claim. Therefore to price options, one has

to choose a particular martingale measure and any choice of an equivalent martingale measure will

correspond to an arbitrage free price. In [15] N. Bellamy and M. Jeanblanc determined the range

of European and American claim prices. Here I present the following problem for the range of the

European claim prices, for more detail see N. Bellamy and M. Jeanblanc [15].
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• Consider a financial market (Ω,F ,F = (Ft)t≥0,P) with riskless asset with deterministic return

r and a risky asset (St)t≥0 with the following dynamics under the historical probability:

dSt = St− (b(t)dt+ σ(t)dWt + φ(t)dMt)

where b, σ and φ are deterministic bounded functions with |σ(t)| > c, φ(t) > −1, 1
c < |φ(t)| <

c where c is a strictly positive constant. W is a Brownian motion and Mt = Nt − λt is the

compensated martingale associated with a Poisson process with deterministic intensity λ.

• Since the market is incomplete, it is not possible to hedge a price for every contingent claim

H ∈ FT . Consider the set of values of EQ[R(T )H|Ft], where R(T ) = e−
∫ T
0 r(s) and Q describes

the set of risk-neutral measures. N. Bellamy and M. Jeanblanc denote this set as the set of

viable prices, see [15, 25, 42] .

• Let V γ(t) be a time t viable price for the contingent claim H be defined by

R(t)V γ(t) = Eγ [R(T )H|Ft].

under the martingale measure Pγ , where the set of equivalent martingale measures is parametrized

by mean of a process γ valued in (−1,∞).

• The range of viable prices is an interval given by ] inft∈Γ V
γ(t), supt∈Γ V

γ(t)[.

• N. Bellamy and M. Jeanblanc [15, 25] studied the range of viable prices which is an interval

given by [inft∈Γ V
γ(t), supt∈Γ V

γ(t)], where Γ is the set of predictable processes γ such that

Lγ := dPγ
dP
∣∣
Ft is a Pγ-square integrable strictly positive martingale. For more detail definition

of Lγ , see Proposition 3.1 in [15].

• Consider the Black-Scholes function C such that

R(t)C(t,Xt) = E[R(T )(XT −K)+|Xt], C(T, x) = (x−K)+,
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when the dynamics of X are given by

dXt = Xt(r(t)dt+ σ(t)dWt), X0 = x.

• C is a convex function of x with ∂xC(t, x) ≤ 1 and satisfies

L(C)(t, x) = rC(t, x),

where

L(f)(t, x) =
∂f

∂t
(t, x) + rx

∂f

∂x
(t, x) +

1

2
x2σ2∂

2f

∂x2
(t, x).

• N. Bellamy and M. Jeanblanc [15, 25] proved the following theorem related to the time t

viable price V γ(t).

Theorem 2.4.1 (N. Bellamy, M. Jeanblanc, [15, 25]). Let Pγ ∈ Q. Then the associated viable

price is bounded below by the Black-Scholes function, evaluated at the underlying asset value,

and bounded above by the underlying asset value, i.e.,

R(t)C(t, St) ≤ Eγ
[
R(T )(ST −K)+|Ft

]
≤ R(t)St,

where Rγt = Eγ
[∫ T
t R(s)(1 + γs)λ(s)ΛH(s, Ss)ds|Ft

]
.

• The range of viable prices V γ(t) = R(T )
R(t) E

γ [R(T )(ST −K)+|Ft] is exactly the interval ]C(t, St), St[,

for more details see [15, 25].

2.5. Path integrals for financial markets

In this section, we present some results of B. Baaquie [4, 5] concerning path integrals

formulation for pricing of options. Path integrals have many applications, among which are in the

financial markets, quantum mechanics and polymer physics [45]. In [4, 5, 6, 7] B. Baaquie studied

applied concepts of quantum mechanics to the modeling of interest rates and the theory of option

pricing. B. Baaquie [4] studied path integrals and hamiltonians for options and interest rates. In

[5] B. Baaquie studied path integral approach to option pricing with stochastic volatility. In [4] B.
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Baaquie considered applied the path integral approach to pricing a European call option for the

Black-Scholes model.

• Consider a financial market (Ω,F ,F = (Ft)t≥0,P) with a riskless asset paying a constant rate

of return r and a stock S = (St)t≥0 modeled by the geometric Brownian motion [60]:

dS(t) = S(t) (µdt+ σdW (t)) ,

where the constant µ is the expected rate of return, the constant σ is the volatility of the

stock price process and W (t) is a Brownian motion.

• Consider the price of a European call option C̃(t, S) on underlying security S that pays

(S(T )−K)+. The strike price K is some nonnegative constant.

• The famous Black-Scholes equation for the option C̃(t, S) is given by [60, 4]:

∂C̃(t, S)

∂t
+ rS

∂C̃(t, S)

∂S
+

1

2
σ2S2∂

2C̃(t, S)

∂S2
= rC̃(t, S), (2.7)

for all t ∈ [0, T ) and satisfies the final condition C̃(T, S) = (S(T )−K)+.

• Consider a change of variable in (2.7) with S = ex, where −∞ ≤ x ≤ ∞ and denote C̃(t, ex) =

C(t, x) and C(T, x) = (x − K)+. This yield the Schrodinger type-equation for the Black-

Scholes equation (2.7):

∂C

∂t
= HBSC (2.8)

C(t, x) = (x−K)+ (2.9)

where HBS is called the Black-Scholes Hamiltonian and is given by

HBS = −σ
2

2

∂2

∂x2
+

(
1

2
σ2 − r

)
∂

∂x
+ r. (2.10)

• Introducing a quantum mechanical formalism, one can interpret the option price C(t, x) as a

ket |C〉 in the basis |x〉, the logarithm of the underlying stock price.
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• Using Dirac notation, one can reinterpret the option price C(t, x) = 〈x|C(t, x)〉 as a wave

function |C〉 in the position space.

• Using Dirac notation [27], (2.8) can be expressed as

∂|C(t, x)〉
∂t

= HBS |C(t, x)〉. (2.11)

• Using the final value condition at t = T , (2.11) can be solved explicitly as

|C(t, x)〉 = e−(T−t)H |C(T, x)〉

where C(0, x) = g(x) is the final condition.

• Hence using the completeness equation
∫∞
−∞ |x

′〉〈x′|dx′ = I, where I is the identity operator,

B. Baaquie [4, 5] obtained

C(t, x) = 〈x|C(t, x)〉

= 〈x|e−(T−t)HBS |C(T, x)〉

=

∫ ∞
−∞
〈x|e−(T−t)HBS |x′〉〈x′|C(T, x)〉dx′

=

∫ ∞
−∞
〈x|e−(T−t)HBS |x′〉C(T, x′)dx′. (2.12)

• The expression 〈x|e−(T−t)HBS |x′〉 describes the probability of transition from a security price

x′ at time T to a security price x at time t.

• The completeness equation for the momentum space basis |p〉 is given by

1

2π

∫ ∞
−∞
|p〉〈p|dp = I, (2.13)

with scalar product

〈x|p〉 = eipx ; 〈p|x〉 = e−ipx. (2.14)
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• To compute 〈x|e−(T−t)H |x′〉, one needs to first find the eigenfunctions of HBS . For this, B.

Baaquie [4, 5] considered the matrix elements of HBS which is given by

〈x|HBS |p〉 = HBS〈x|p〉

= HBSe
ipx

=

(
−σ

2

2

∂2

∂x2
+

(
1

2
σ2 − r

)
∂

∂x
+ r

)
eipx

=

(
−σ

2

2

∂2eipx

∂x2
+

(
1

2
σ2 − r

)
∂eipx

∂x
+ reipx

)
=

(
1

2
σ2p2 + i

(
1

2
σ2 − r

)
p+ r

)
eipx. (2.15)

• B. Baaquie [4, 5] observed from (2.15) that eipx is an eigenfunction of HBS with corresponding

eigenvalue of
(

1
2σ

2p2 + i
(

1
2σ

2 − r
)
p+ r

)
.

• From this observation, one can see that eipx is also an eigenfunction of eHBS with a corre-

sponding eigenvalue of e{
1
2
σ2p2+i( 1

2
σ2−r)p+r}. Hence

〈x|e−τHBS |p〉 = e−τHBS 〈x|p〉

= e−τHBSeipx

= e−τ(
1
2
σ2p2+i( 1

2
σ2−r)p+r)eipx. (2.16)

• To compute 〈x|e−(T−t)H |x′〉, B. Baaquie [4, 5] used (2.13), (2.14) and (2.16) with τ = T − t

to obtain

〈x|e−(T−t)H |x′〉 =
1

2π

∫ ∞
−∞
〈x|e−(T−t)H |p〉〈p|x′〉dp

=
1

2π
e−r(T−t)

∫ ∞
−∞

e−(T−t)σ
2

2
p2−(T−t)( 1

2
σ2−r)ipeip(x−x

′)dp

=
1

2π
e−r(T−t)

∫ ∞
−∞

e−
1
2

(T−t)σ2p2eip((x−x′)+(T−t)(r− 1
2
σ2))dp

= e−r(T−t)
1√

2π(T − t)σ2
e
− 1

2(T−t)σ2 {x−x′+(T−t)(r−σ2/2)}2
(2.17)
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• Expression (2.17) means that x−x′ has a normal distribution with mean −(T −t)(r− σ2

2 ) and

variance (T − t)σ2, which further implies that logS(T ) has a normal distribution with mean

logS(t) + (T − t)(r − σ2

2 ) and variance (T − t)σ2 and this is exactly expected for the Black-

Scholes model with constant volatility and where the underlying asset follows a geometric

Brownian motion, for further details see [60].

• Finally, plugging (2.17) into (2.12), B. Baaquie [4, 5] obtained the price European call option:

C(t, x) = e−r(T−t)
∫ ∞
−∞

1√
2π(T − t)σ2

e
− 1

2(T−t)σ2 {x−x′+(T−t)(r−σ2/2)}2
C(T, x′)dx′,

for more details see [4, 5, 6, 7, 8].

26



3. ANALYSIS OF VARIANCE SWAP FOR THE BN-S

MODEL

In this chapter, we present our main results for the price of variance swap for the Barndorff-

Nielsen and Shephard Model. Firstly, we prove a theorem related to the dynamics of arbitrage free

price of variance swap. Secondly, we prove a Večeř-type theorem for the price of variance swap.

Finally, we prove a theorem related to the range of prices for variance swap.

3.1. Properties of the variance swap price with respect to the BN-S model

Realized volatility σR(S) is a statistical quantity which is the annualized standard deviation

of the stock returns during a fixed period of time, which is called the exercise date of the option.

The subscript R denotes the observed or realized volatility for some given underlying asset S. When

the underlying asset is clear from the context, realized volatility is denoted simply as σR. If σt,

0 ≤ t ≤ T is a stochastic volatility for a given underlying asset S, then the realized volatility σR

over the life time of a contract is given by

σR =

√
1

T

∫ T

0
σ2
t dt. (3.1)

Usually σR is quoted in annual terms. The realized variance is σ2
R over the life of the contract is

defined as

σ2
R =

1

T

∫ T

0
σ2
t dt. (3.2)

Definition 3.1.1. A variance swap is a forward contract on realized variance. The payoff of

variance swap at the maturity T is given by N(σ2
R − KVar), where KVar is the annualized delivery

price or exercise price of the variance swap, and N is the notional amount of the dollars per

annualized volatility point squared.

The holder of the variance swap at expiration receives N dollars for every point by which

the stock’s realized variance σ2
R has exceeded the variance delivery price KVar. Without loss of

generality we take N = 1. The arbitrage free price of the variance swap is the expectation of the

27



present value of the payoff in the risk-neutral world and it is given by E
[
e−r(T−t)(σ2

R −KVar)|Ft
]
,

0 ≤ t ≤ T , where E(·) is the expectation with respect to some equivalent martingale measure and

Ft is the σ-field generated by the history of the process up to time t. Note that for calculating

arbitrage free variance swap price it is sufficient to compute E(σ2
R). If Vt =

∫ t
0 σ

2
t dt, then by above

expression, given a fixed horizon date T , we consider PVar(t, St, Vt) as a function of t, St and Vt

with the final condition (independent of S) given by

PVar(T, ST , VT ) = σ2
R −KVar =

VT
T
−KVar.

We make the following assumptions related to the integrated volatility Vt.

Assumption 3.1.2. We assume the Lévy measure ν satisfies
∫
y>1 e

2yν(dy) < ∞. Also, assume

when Vt = 0, there exists ζ ∈ (0, 2) such that lim infε→0 ε
−ζ ∫ ε

0 x
2ν(dx) > 0.

With Assumption 3.1.2 we prove the following theorem related to the dynamics of the

arbitrage-free price of variance swap. For the rest of this section we denote the price of variance

swap PVar(t, St, Vt) by P (t, St, Vt).

Theorem 3.1.3. Consider the BN-S model given by (1.3), (1.6) and (1.7). Then, the arbitrage

free value of P (t, St, Vt), with respect to the equivalent martingale measure Qy (defined in Theorem

1.3.5), is almost surely given by

− rP +
∂P

∂t
+ rS

∂P

∂S
+

1

2
σ2
t S

2∂
2P

∂S2
+ σ2

t

∂P

∂V

+

∫
R+

(
P (t, St−e

ρx, Vt)− P (t, St−, Vt)−
∂P

∂S
St−(eρx − 1)

)
νZ(dx) = 0, (3.3)

with final condition

P (T, ST , VT ) =
VT
T
−KVar. (3.4)

Proof. Suppose P̂ (t, St, Vt) = er(T−t)P (t, St, Vt). Then by construction,

P̂ (t, St, Vt) = Ẽ

[(
VT
T
−KVar

)
|Ft
]
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is a martingale, where the expectation is taken with respect to the equivalent martingale measure

Qy (defined in Theorem 1.3.5). Denote the continuous part of the stochastic processes S and V by

Sc and V c respectively and denote the quadratic variation/covariation by the notation [·, ·]. Using

the two-dimensional Itô formula for P̂ , we obtain

dP̂ (t, S, V ) = er(T−t)
[(
−rP +

∂P

∂t

)
dt+

∂P

∂S
dS+

∂P

∂V
dV +

1

2

∂2P

∂S2
d[Sc, Sc](t)+

1

2

∂2P

∂V 2
d[V c, V c](t)

+
∂2P

∂S∂V
d[Sc, V c](t) + P (t, St, Vt)− P (t, St−, Vt−)− ∂P

∂S
∆S − ∂P

∂V
∆V

]
.

For the present context

d[V c, V c](t) = 0, d[Sc, V c](t) = 0 and ∆V = 0,

and

P (t, St, Vt)− P (t, St−, Vt−) = P (t, St−e
∆X , Vt)− P (t, St−, Vt−).

Also, as V is continuous Vt− = Vt. Therefore we obtain dP̂t = a(t) dt+ dRt, where

a(t) = er(T−t)[−rP +
∂P

∂t
+ rS

∂P

∂S
+

1

2
σ2
t S

2∂
2P

∂S2
+ σ2

t

∂P

∂V

+

∫
R+

(
P (t, St−e

ρx, Vt)− P (t, St−, Vt)−
∂P

∂S
St−(eρx − 1)

)
νZ(dx)]

and

dRt = er(T−t)
[
σtS

∂P

∂S
dWt +

∫
R+

(P (t, St−e
ρx, Vt)− P (t, St−, Vt)) J̃Z(λdt, dx)

]
.

With the use of Assumption 3.1.2 and procedures in [24], it is clear that Rt is a martingale

and hence P̂t − Rt is a (square integrable) martingale. But P̂t − Rt =
∫ t

0 a(u) du is a continuous

process with finite variation. Hence a(t) = 0 almost surely with respect to the equivalent martingale

measure Qy. This gives (3.3).
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We denote κn =
∫
R+ y

nν(dy), n = 1, 2, . . . . Note that κn > 0 for all n when subordinators

are considered. The following theorem can be considered as a Večeř- type theorem (see [60, 66, 67])

for the variance swap. Contrary to Theorem 3.1.3, for the next theorem we assume that at time t,

the price P is explicitly dependent on σ2
t and not explicitly dependent on St. We denote the price

of variance swap P (t, σ2
t , Vt).

Theorem 3.1.4. Suppose that the cumulants of Z satisfy the following conditions:

κ1

κ3
< 1, (3.5)

and

κ4

κ1

(
κ1

κ3

)3/2

= 1. (3.6)

Define

θ2 = −
√
κ1

κ3
. (3.7)

Then

P (t, σ2
t , Vt) = ert+λθ2κ1T

X(t)

M(t)
, 0 ≤ t ≤ T,

where X(t) is a stochastic process given by

dX(t) = rX(t) dt+ γ(t)(dΛ(t)− rΛ(t) dt), (3.8)

where Λ(t) = µ(t)σ2
t , and γ(t) = e−rT

rT (e−λt − e−λT ), and

X(T ) =

(
1

T

∫ T

0
σ2
t dt−KVar

)
=

(
VT
T
−KV ar

)
, (3.9)

and

M(t) = exp

[
t(r + λθ2κ1) + λt

∫
R+

[ln(1 + θ2y)− θ2y]ν(dy) +

∫ λt

0

∫
R+

ln(1 + θ2y)J̃Z(ds, dy)

]
.

(3.10)
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Proof. We consider a portfolio process X(t) with value at time T given by (3.9). We begin with

a deterministic function of time γ(t), 0 ≤ t ≤ T , which will be the number of shares of a proxy of

variance Λ(t) = µ(t)σ2
t held by the portfolio, where µ(t) is a deterministic function to be determined

later.

An agent who holds γ(t) shares of Λ(t) at each time t and finances by investing or borrowing

at the interest rate r will have a portfolio whose value evolves according to the stochastic differential

equation (3.8). We choose µ(t) = et(r+λ) to obtain

dΛ(t)− rΛ(t) dt = et(r+λ)

∫
R+

yJZ(λdt, dy). (3.11)

Consequently

d(er(T−t)X(t)) = γ(t)erT+λt

∫
R+

yJZ(λdt, dy). (3.12)

To study the variance swap with payoff (3.9) we take γ(t) = e−rT

rT (e−λt − e−λT ), 0 ≤ t ≤ T , and

X(0) = γ(0)σ2
0 − e−rTKVar. (3.13)

From (3.12) we obtain (using γ(T ) = 0)

X(T )− erTX(0) = erT
∫ T

0
γ(t)eλtdZλt.

But for the present model

1

T

∫ T

0
σ2
t dt =

1

λT
(1− e−λT )σ2

0 +
1

λT

∫ T

0
(1− e−λ(T−t)) dZλt.

Thus using the initial value of X(0) from (3.13) we obtain,

X(T ) =

(
1

T

∫ T

0
σ2
t dt−KVar

)
. (3.14)
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The price of the variance swap at time t prior to expiration is

P (t, St, Vt) = Ẽ[e−r(T−t)X(T )|Ft], (3.15)

where Ẽ is the expectation with respect to the risk-neutral measure Qy (defined in Theorem 1.3.5).

To calculate the right hand side of (3.15) we use a change-of-numéraire argument. We define

Y (t) =
X(t)

M(t)
=
e−rtX(t)

e−rtM(t)
,

where M(t) is defined as the solution of

dM(t) = M(t)(r dt+

∫
R+

θ2yJZ(λdt, dy)), M(0) = 1,

= M(t)((r + λθ2κ1) dt+

∫
R+

θ2yJ̃Z(λdt, dy)), (3.16)

where θ2 is a constants which will be chosen later. Solution of this equation is given by (3.10). We

proceed to compute the differential of Y (t). We find

d(e−rtX(t)) = −re−rtX(t) dt+ e−rt dX(t)

= γ(t)eλt
∫
R+

yJZ(λdt, dy)

= γ(t)eλt
(
λκ1 dt+

∫
R+

yJ̃Z(λdt, dy)

)
.

Similarly,

d(e−rtM(t)) = e−rtM(t)

[
λθ2κ1 dt+

∫
R+

θ2yJ̃Z(λdt, dy)

]
,

and

d(e−rtM(t))−1 = −(e−rtM(t))−1

[
λ(θ2κ1 − θ2

2κ2) dt+

∫
R+

θ2y(1− θ2y)J̃Z(λdt, dy)

]
.
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Therefore

dY (t) = d[(e−rtX(t))(e−rtM(t))−1]

= −X(t)

M(t)

[
λ(θ2κ1 − θ2

2κ2) dt+

∫
R+

θ2y(1− θ2y)J̃Z(λdt, dy)

]
+
γ(t)e(r+λ)t

M(t)

[
λ(−θ2κ2 + θ2

2κ3 + κ1) dt+

∫
R+

(y − y2θ2(1− θ2y))J̃Z(λdt, dy)

]
.

Define

Z1(t) = exp

[∫ t

0

∫
R+

ln(1− θy)J̃Z(dt, dy) +

∫ t

0

∫
R+

(ln(1− θy) + θy)ν(dy)dt

]
= exp

[∫ t

0

∫
R+

ln(1− θy)J̃Z(dt, dy) + t

∫
R+

(ln(1− θy) + θy)ν(dy)

]
, (3.17)

where θ < 1 will be chosen later. Clearly (by [23], Proposition 8.23, page- 288) Z1(t) is martingale

and hence Ẽ(Z1(λT )) = Ẽ(Z1(T )) = 1. We choose −1 < θ2 < 0 such that θ = −θ2. The quantity

θ2 is chosen as the solution of

−
∫
R+

θ2y
2 (1− θ2y(1− θ2y)) ν(dy) = −θ2κ2 + θ2

2κ3 + κ1, (3.18)

which implies

−θ3
2κ4 = κ1. (3.19)

Define a new measure Q by dQ(ω) = Z1(λT )dP̃ (ω), where P̃ is the risk neutral measure used so

far in the proof. With respect to Q, the dynamics of dY (t) becomes (see [49], Chapter 1),

dY (t) = −X(t)

M(t)

[
λ(θ2κ1 − θ3

2κ3) dt+

∫
R+

θ2y(1− θ2y)J̃ZQ(λdt, dy)

]
+M1(t),

where J̃ZQ is the compensated Poisson measure and M1(t) is a martingale with respect to Q. If

θ2κ1 − θ3
2κ3 = 0, then clearly we have

κ1 = θ2
2κ3. (3.20)

Then Y (t) is martingale with respect to Q- measure. Hence the condition we need are (3.5) and

(3.6). In that case we choose θ2 by (3.7). Then both (3.19) and (3.20) are satisfied and θ < 1. We
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observe with the value of θ2 defined in (3.7)

e−rTM(T ) = eλθ2κ1TZ1(λT ).

Then clearly Y (t) is a martingale with respect to the Q measure. Now we have

P (t, St, Vt) = Ẽ[e−r(T−t)X(T )|Ft] = e−r(T−t)Ẽ[M(T )Y (T )|Ft]

= ertẼ
[
eλθ2κ1TZ1(λT )Y (T )|Ft

]
= ert+λθ2κ1TEQ [Y (T )|Ft]

= ert+λθ2κ1TY (t) = ert+λθ2κ1T
X(t)

M(t)
.

We conclude this section with a lower and upper bound on the set of prices spanned by

the value of a claim with respect to various equivalent martingale measures (EMM) of the BN-S

model. This analysis is motivated by [15, 40]. Note that the set of EMMs for the BN-S model is

derived in [48]. For generalized BN-S model the EMMs are derived in [58]. We restrict our analysis

to contracts with payoff H(XT , YT ), where H is the function expressing the payoff in terms of the

underlying stock. We define the corresponding Black-Scholes type function Hf (t, x, y) by

Hf (t, x, y) = E
[
e−r(T−t)H(XT , YT )|Xt = x, Yt = y

]
, Hf (T, x, y) = H(x, y),

where the dynamics of X and Y are given by

dXt = Xt(rdt+ ftdWt), X0 = x,

dYt = f2
t dt, Y0 = y,

where ft is a deterministic and continuous functions. Let Hm(t, x, y) be the Black-Scholes function

corresponding to fs = m(s), where m(s) = σt exp
(
−λ

2 (s− t)
)
, s ≥ t. Then using (1.5) it is easy to

show that σ2
s ≥ m(s)2 for s ≥ t. We make the following assumptions related to Hm and the pay-off

function H.
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Assumption 3.1.5. We assume that H is convex with respect to the first variable and satisfies

0 ≤ H(x, y) ≤ x for x > 0. Also, the “delta” of Hm is bounded, i.e.,
∣∣∂Hm
∂x

∣∣ < C, for some C > 0.

First we prove the following theorem related to the dynamics of the Black-Scholes function

corresponding to the deterministic and continuous fs.

Theorem 3.1.6. If Hf (t, x, y) belongs to C1,2 then

∂Hf (t, x, y)

∂t
+ f2

t

∂Hf (t, x, y)

∂x
+ ry

∂Hf (t, x, y)

∂y
+

1

2
y2f2

t

∂2Hf (t, x, y)

∂y2
− rHf (t, x, y) = 0. (3.21)

Proof. Applying Ito’s formula to Hf (t, x, y), we obtain

dHf (t, x, y) =
∂Hf (t, x, y)

∂t
dt+

∂Hf (t, x, y)

∂x
dXt +

∂Hf (t, x, y)

∂y
dYt +

1

2

∂2Hf (t, x, y)

∂x2
d[X,X](t)

+
1

2

∂2Hf (t, x, y)

∂y2
d[Y, Y ](t) +

1

2

∂2Hf (t, x, y)

∂x∂y
d[X,Y ](t)

=
∂Hf (t, x, y)

∂t
dt+ rx

∂Hf (t, x, y)

∂x
dt+ xf

∂Hf (t, x, y)

∂x
dWt + gt

∂Hf (t, x, y)

∂y
dt

+
1

2
x2f2

t

∂2Hf (t, x, y)

∂x2
dt

=

[
∂Hf (t, x, y)

∂t
+ rx

∂Hf (t, x, y)

∂x
+ gt

∂Hf (t, x, y)

∂y
+

1

2
x2f2

t

∂2Hf (t, x, y)

∂x2

]
dt

+ xf
∂Hf (t, x, y)

∂x
dWt.

By letting Ĥ = er(T−t)Hf (t, x, y), we have dĤt = a(t) dt+ dRt, where

a(t) = er(T−t)
[
∂Hf (t, x, y)

∂t
+ rx

∂Hf (t, x, y)

∂x
+ gt

∂Hf (t, x, y)

∂y
+

1

2
x2f2

t

∂2Hf (t, x, y)

∂x2
− rHf (t, x, y)

]
,

and

dRt = er(T−t)
[
xf
∂Hf (t, x, y)

∂x
dWt

]
.

It is clear that Rt is a martingale and hence Ĥt − Rt is a (square integrable) martingale. But

Ĥt − Rt =
∫ t

0 a(u) du is a continuous process with finite variation. Hence a(t) = 0 almost surely

with respect to the some equivalent martingale measure. This gives (3.21).
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We proceed to prove the last main result for this section related to the arbitrage-free price

of the variance swap P (t, St, Vt) with pay-off at T given by (3.4),

H(ST , VT ) =
VT
T
−KVar.

Theorem 3.1.7. Let Q be an arbitrary EMM for the BN-S model. Then the arbitrage-free price

of the variance swap at time t corresponding to Q is bounded above by St and is bounded below by

ertR(t, T ) +Hm(t, St, Vt), where

R(t, T ) = Ce−(r+2λ)T

(
eλT

(
κ1e

λt − σ2
0 + κ1

)
r + λ

+
eλt(σ2

0 − κ1)

r + 2λ
− κ1e

2λT

r

)

+ C
e−(r+λ)t

(
rλ(σ2

0 − κ1) + λκ1(r + 2λ)eλt
)

r(r + λ)(r + 2λ)
. (3.22)

Proof. The arbitrage-free price of the variance swap at time t corresponding to Q is given by

EQ
[
e−r(T−t)Hm(T, ST , VT )|Ft

]
= EQ

[
e−r(T−t)H(ST , VT )|Ft

]
.

Proving the upper bound is trivial with the application of Assumption 5.35 and martingale property

of the process e−r(T−t)St with respect to Q. We proceed to prove the result related to the lower

bound. Applying Itô ’s formula to (Hm(T, ST , VT ))T≥t we obtain the following.
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e−rTHm(T, ST , VT ) = e−rtHm(t, St, Vt) +

∫ T

t

∂Hm

∂x
d
(
e−rsSs

)
+

∫ T

t
e−rs

(
∂Hm

∂t
+ rSs−

∂Hm

∂x
+ σ2

s

∂Hm

∂y
+

1

2
σ2
sS

2
s−
∂2Hm

∂x2
− rHm

)
ds

+
∑
t≤s≤T

e−rs
(
Hm(s, Ss, Vs)−Hm(s, Ss−, Vs−)− ∂Hm

∂x
∆Ss

)

= e−rtHm(t, St, Vt) +

∫ T

t

∂Hm

∂x
d
(
e−rsSs

)
+

∫ T

t
e−rs

[
∂Hm

∂t
+ rSs−

∂Hm

∂x
+m(s)2∂Hm

∂y
+

1

2
m(s)2S2

s−
∂2Hm

∂x2
− rHm

]
ds

+

∫ T

t
e−rs

1

2

(
σ2
s −m2(s)

)
S2
s−
∂2Hm

∂x2
ds+

∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂y

ds

+
∑
t≤s≤T

e−rs
(
Hm(s, Ss, Vs)−Hm(s, Ss−, Vs−)− ∂Hm

∂x
∆Ss

)
. (3.23)

Using Assumption 5.35 and the fact that σ2
s ≥ m2(s) for s ≥ t, we obtain

∫ T

t
e−rs

1

2

(
σ2
s −m2(s)

)
S2
s−
∂2Hm

∂x2
ds ≥ 0.

For any convex and differentiable function f we have

f(x)− f(y)− f ′(x)(x− y) ≥ 0.

Consequently

∑
t≤s≤T

e−rs
(
Hm(s, Ss, Vs)−Hm(s, Ss−, Vs−)− ∂Hm

∂y
∆Ss

)
≥ 0.

Note that by (3.21)

∂Hm(t, x, y)

∂t
+ rx

∂Hm(t, x, y)

∂x
+m(t)2∂Hm(t, x, y)

∂y
+

1

2
m(t)2x2∂

2Hm(t, x, y)

∂x2
− rHm(t, x, y) = 0.
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Using all these results in (3.23) we obtain

e−rTHm(T, ST , VT ) ≥ e−rtHm(t, St, Vt) +

∫ T

t

∂Hm

∂x
d
(
e−rsSs

)
+

∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂y

ds.

Therefore

∫ T

t

∂Hm

∂x
d
(
e−rsSs

)
+

∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂y

ds ≤ e−rTHm(T, ST , VT )− e−rtHm(t, St, Vt).

Taking the expectation on both sides we have

EQ
[∫ T

t

∂Hm

∂x
d
(
e−rsSs

)
|Ft
]

+ EQ
[∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂y

ds|Ft
]

≤ EQ
[
e−rTHm(T, ST , VT )|Ft

]
− EQ

[
e−rtHm(t, St, Vt)|Ft

]
.

Clearly EQ
[∫ T
t

∂Hm
∂y d (e−rsSs) |Ft

]
= 0. Therefore

EQ
[∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂x

ds|Ft
]

+ e−rtHm(t, St, Vt) ≤ EQ
[
e−rTHm(T, ST , VT )|Ft

]
= EQ

[
e−rTH(ST , VT )|Ft

]
.

From (1.7) we can derive σ2
s = e−λsσ2

0 +
∫ s

0 e
−λ(s−u)dZλu and consequently

EQ[σ2
s ] = e−λsσ2

0 + λκ1

∫ s

0
e−λ(s−u)du = e−λsσ2

0 + κ1

(
1− e−λs

)
.

Hence

EQ
[∫ T

t
e−rs

(
σ2
s −m2(s)

) ∂Hm
∂y

ds|Ft
]
≤ C

∫ T

t
e−rsEQ

[(
σ2
s −m2(s)

)
|Ft
]
ds

= C

∫ T

t
e−rs

(
1− e−λ(s−t)

) [
e−λsσ2

0 + κ1

(
1− e−λs

)]
ds,

where the integral above is given by R(t, T ) in (3.22).
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4. ANALYSIS OF VARIANCE DEPENDENT PRICE INDEX

In this Chapter, we introduce a price-weighted index modulated by market variance and

study the index dynamics for the large basket limit case. We also study numerical examples based

on empirical data in support of the proposed price index.

4.1. Variance-dependent price index and large-basket limit analysis

The VIX is used as an indicator of the S&P 500 market. However, it is well known that the

VIX is much more of a short-term than a long-term market indicator. The VIX, which is officially

known as the Chicago Board Options Exchange (CBOE) Volatility Index, is considered by many

to be a gauge of fear and greed in the stock market. More precisely, the VIX measures the implied

volatility in S&P 500 options. Through the use of a wide variety of option prices, the index gives

an estimation of thirty-day implied volatility as priced by the S&P 500 index option market. This

index can be used to estimate the nature of market movement that the option prices are projecting

on the S&P 500 over the next 30-day (or may be shorter) period. Empirical evidence shows that

a good statistic that captures the performance of the S&P 500 should depend on the VIX index

(see [53]). Based on such empirical evidences, in this section, we introduce a new price index that

is dependent on the market volatility/variance.

In this section we formulate a BN-S type market model with stochastic volatility. Then

we proceed to prove the main convergence theorem describing the behavior of the volatility (or,

variance) dependent price index in the large-basket limit. Under additional assumptions for the

model we prove a convergence theorem related to the behavior of the “error term” in the large-

basket limit. We conclude this section with empirical data driven numerical examples.

Consider a probability space (Ωn,Fn,Pn) corresponding to a market with n assets whose

prices Si(t) for i = 1, . . . , n, evolve, under the measure Pn, according to the following equations.

We denote the expectation with respect to this probability measure by E. Note that we are not

restricting jump processes to subordinators.

dSi(t)

Si(t)
= α1 dt+ σ(t)

(
ρ1dM +

√
1− ρ2

1dWi

)
+

∫
R

(eα2x − 1)Ni(dt, dx), (4.1)
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with

dσ2(t) = −λσ(t)2 dt+
1

n

n∑
j=1

∫
R
xNj(dt, dx), (4.2)

where the parameters λ > 0, −1 ≤ ρ1 ≤ 1, α1, α2 ∈ R, M , Wi are Brownian motions, and Ni a

Poisson random measures related to the jump of the i-th asset price for i = 1, . . . , n. We assume

that Ni, i = 1, . . . , n are identically distributed with Lévy density ν. Denote the set of natural

numbers by N. Also, we assume that {Si(0)}ni=1 is a family of independent identically distributed

(0,∞)-valued random variables and this family is independent of M , Wi and Ni, for i ∈ N. As in

[35] we denote the compound Poisson process

Ri(t) =

∫ t

0

∫
R
xNi(du, dx) =

N i(t)∑
p=1

J ip , i ∈ N,

where J ip are jumps occurring at random times τ ip. As described in the beginning of this section,

empirical evidence shows the dependence of price indices on the volatility of the market. We define

a market index modulated by volatility by

In(t) =
1

n

n∑
i=1

σ2(t)Si(t). (4.3)

In fact, the index defined above depends on the square of the volatility- i.e., on the variance. We

also define a “k-th empirical moment process modulated by volatility/variance” as

I(k)
n (t) =

1

n

n∑
i=1

σ2(t)Ski (t), k ∈ N. (4.4)

Note that I
(1)
n (t) = In(t). We can find

d
(
σ2(t)Si(t)

)
= Si(t)σ

2(t) (α1 − λ) dt+ Si(t)σ
3(t)ρ1dM + Si(t)σ

3(t)
√

1− ρ2
1dWi

+ σ2(t)Si(t)

∫
R

(eα2x − 1)Ni(dt, dx) +
Si(t)

n

n∑
j=1

∫
R
xNj(dt, dx) +

Si(t)

n

∫
R
x(eα2x − 1)Ni(dt, dx),
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and from this we can derive

dIn(t) = In(t) (α1 − λ) dt+ σ(t)ρ1In(t)dM(t) +
σ3(t)

√
1− ρ2

1

n

n∑
i=1

Si(t)dWi(t)

+
σ2(t)

n

n∑
i=1

Si(t)

∫
R

(eα2x − 1)Ni(dt, dx) +
1

n2

n∑
i=1

n∑
j=1

Si(t)

∫
R
xNj(dt, dx)

+
1

n2

n∑
i=1

Si(t)

∫
R
x(eα2x − 1)Ni(dt, dx).

Similarly,

dI(2)
n (t) = I(2)

n (t)
(
2α1 + σ2(t)− λ

)
dt+ 2σ(t)ρ1I

(2)
n (t)dM(t)

+
2σ3(t)

√
1− ρ2

1

n

n∑
i=1

S2
i (t)dWi(t) +

σ2(t)

n

n∑
i=1

S2
i (t)

∫
R

(e2α2x − 1)Ni(dt, dx)

+
1

n2

n∑
i=1

n∑
j=1

S2
i (t)

∫
R
xNj(dt, dx) +

1

n2

n∑
i=1

S2
i (t)

∫
R
x(e2α2x − 1)Ni(dt, dx).

In general, for k ∈ N, the k-th empirical moment process modulated by volatility/variance satisfies

the following stochastic differential equation.

dI(k)
n (t) =I(k)

n (t)

(
kα1 +

k(k − 1)

2
σ2(t)− λ

)
dt+ kσ(t)ρ1I

(k)
n (t)dM +

kσ3(t)
√

1− ρ2
1

n

n∑
i=1

Ski (t)dWi

+
σ2(t)

n

n∑
i=1

Ski (t)

∫
R

(ekα2x − 1)Ni(dt, dx) +
1

n2

n∑
i=1

n∑
j=1

Ski (t)

∫
R
xNj(dt, dx)

+
1

n2

n∑
i=1

Ski (t)

∫
R
x(ekα2x − 1)Ni(dt, dx).

With

γ =

∫
R
xν(dx),

and

βk =

∫
R

(ekα2x − 1)ν(dx), µk =

∫
R
x(ekα2x − 1)ν(dx), k ∈ N,
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we obtain

dI(k)
n (t) =

(
kα1 +

k(k − 1)

2
σ2(t)− λ+ βk +

γ

σ2(t)
+

µk
nσ2(t)

)
I(k)
n (t)dt

+ kσ(t)ρ1I
(k)
n (t)dM(t) +

kσ3(t)
√

1− ρ2
1

n

n∑
i=1

Ski (t)dWi(t)

+
σ2(t)

n

n∑
i=1

Ski (t)

∫
R

(ekα2x − 1)Ñi(dt, dx) +
1

n2

n∑
i=1

n∑
j=1

Ski (t)

∫
R
xÑj(dt, dx)

+
1

n2

n∑
i=1

Ski (t)

∫
R
x(ekα2x − 1)Ñi(dt, dx). (4.5)

Note that, from (4.1), with respect to a risk-neutral measure we have α1 + β1 = r. At

first, we proceed to prove a result concerning the weak convergence of the stochastic process I
(k)
n

as n → ∞. We denote the limit process by I(k) for k ∈ N. The following Lemma is obtained for

a simple model in [35]. It is straight forward to show that this can be generalized for the present

model.

Lemma 4.1.1. Suppose that E[Si(t)
2k] <∞ for all t ≥ 0. Then for any T > 0 and k ∈ N,

E

(sup
t≤T

1√
n

∫ t

0
I(k)
n (u) du

)2
→ 0, as n→∞.

The main tool that we use for the convergence analysis is the following theorem due to

R. Rebolledo [51]. The present version can be found in [29, 35]. An important concept that will

be useful for the next theorem is that of weak convergence of sequence of random variables [21].

Consider a sequence of probabilities (Pn)n∈N on (R,BR). The sequence of probabilities (Pn)n∈N

converges weakly to P if

lim
n→∞

∫
fdPn =

∫
fdP

for all f : R→ R continuous and bounded [21].

Definition 4.1.2 (Weak convergence [21]). Let (Xn)n∈N be a sequence o of random variables the

probability space (Ω,F ,P) and X a random variable defined on the same probability space (Ω,F ,P).

(Xn)n∈N converges in distribution to X if the sequence P ◦X−1
n converges weakly to P ◦X−1 and is
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denoted by

Xn =⇒ X

as n→∞.

Theorem 4.1.3 (R. Rebolledo [51, 29, 35]). Let a = ((aij)) be a continuous, symmetric, non-

negative definite, d× d matrix-valued function on Rd and let b : Rd → Rd be continuous. Let

A(a, b) =

{(
f,Gf ≡ 1

2

∑
aij∂i∂jf +

∑
bi∂if

)
: f ∈ C∞c (Rd)

}
,

where C∞c (Rd) denotes the class of compactly supported infinitely differentiable functions on Rd,

and suppose that the CRd [0,∞) martingale problem for A is well-posed. For n ∈ {1, 2, . . . }, let

Xn and Bn be processes with sample paths in DRd [0,∞), and let An = ((Aijn )) be a symmetric

d × d matrix-valued process such that Aijn has sample paths in DRd [0,∞) and An(t) − An(s) is

non-negative definite for t > s ≥ 0. Set Fnt = σ(Xn(s), Bn(s), An(s) : s ≤ t).

Let τ rn = inf{t ≥ 0 : |Xn(t)| ≥ r or |Xn(t−)| ≥ r}, and suppose that

Mn ≡ Xn −Bn,

and

M i
nM

j
n −Aijn , i, j = 1, . . . , d,

are {Fnt }-local martingales, and that for each r > 0, T > 0 and i, j = 1, . . . , d,

lim
n→∞

E

[
sup

t≤T∧τrn
|Xn(t)−Xn(t−)|2

]
= 0,

lim
n→∞

E

[
sup

t≤T∧τrn
|Bn(t)−Bn(t−)|2

]
= 0,

lim
n→∞

E

[
sup

t≤T∧τrn
|Aijn (t)−Aijn (t−)|

]
= 0,

43



sup
t≤T∧τrn

∣∣∣∣Bi
n(t)−

∫ t

0
bi(Xn(s))ds

∣∣∣∣→ 0, in probability,

sup
t≤T∧τrn

∣∣∣∣Aijn (t)−
∫ t

0
aij(Xn(s))ds

∣∣∣∣→ 0, in probability. (4.6)

Suppose that P ◦Xn(0)−1 =⇒ η ∈ P(Rd). Then {Xn} converges in distribution to the solution of

the martingale problem for (A, η).

We now proceed to state a weak convergence theorem describing the behavior of the index

process in the large-basket limit.

Theorem 4.1.4. Let k, i ∈ N and suppose that E[Si(0)4k] < ∞,
∫
R e

4kα2xν(dx) < ∞, and for

t ∈ [0, T ], |σ(t)|2 ≤ C, for some C > 0. Further assume that µk < ∞ for k ∈ N. Then for

t ∈ [0, T ], I
(k)
n ⇒ I(k) as n→∞, where the process I(k) is given by

dI(k)(t) = I(k)(t)

(
kα1 +

k(k − 1)

2
σ2(t)− λ+ βk +

γ

σ2(t)

)
dt+ kσ(t)ρ1I

(k)(t)dM,

with I(k)(0) = E[S1(0)k].

Proof. The dynamics of I
(k)
n is given by (4.5). Let

Bn(t) =

∫ t

0
I(k)
n (u)

(
kα1 +

k(k − 1)

2
σ2(u)− λ+ βk +

γ

σ2(u)

)
du.

Clearly, with Xn = I
(k)
n we have Mn = Xn −Bn a local martingale, where

Mn(t) =

∫ t

0
kσ(u)ρ1I

(k)
n (u)dM(u) +

k
√

1− ρ2
1

n

n∑
i=1

∫ t

0
σ3(u)Ski (u)dWi(u)

+

n∑
i=1

∫ t

0

∫
R
Ski (u)(ekα2x − 1)

(
σ2(u)

n
+

x

n2

)
Ñi(du, dx) +

1

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Ski (u)xÑj(du, dx).

Next, we define An(t) = [Mn,Mn](t). By construction, clearly An(t)−An(s) is non-negative definite

for t ≥ s ≥ 0. By Doob-Meyer decomposition M2
n−An is a local martingale. Since the jumps occur
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at distinct times almost surely, we have

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]
= E

[
sup

1≤i≤n
sup
t≤T

(
1

n
(σ2(t)Ski (t)− σ2(t−)Ski (t−))

)2
]

≤ C2

n2
E

[
sup

1≤i≤n
sup
t≤T

S2k
i (t)

]
.

Since the jump sizes |An(t)−An(t−)| are essentially same as |Xn(t)−Xn(t−)|2,

E

[
sup
t≤T
|An(t)−An(t−)|

]
≤ C2

n2
E

[
sup

1≤i≤n
sup
t≤T

S2k
i (t)

]
.

Assumptions of this theorem (E[Si(0)4k] <∞,
∫
R e

4kα2xν(dx) <∞, and for t ∈ [0, T ], |σ(t)|2 ≤ C)

imply (see [35]) that for t ∈ [0, T ], E[Si(t)
k] <∞. Hence by [35] (Lemma 4.3) we obtain

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]
→ 0,

and

E

[
sup
t≤T
|An(t)−An(t−)|2

]
→ 0,

as n → ∞. Also, since Bn is continuous limn→∞ E
[
supt≤T |Bn(t)−Bn(t−)|2

]
= 0. We observe

that

Bn(t)−
∫ t

0
b(Xn(u))du =

∫ t

0
I(k)
n (u)

(
kα1 +

k(k − 1)

2
σ2(u)− λ+ βk +

γ

σ2(u)
+

µk
nσ2(u)

)
du

−
∫ t

0
I(k)
n (u)

(
kα1 +

k(k − 1)

2
σ2(u)− λ+ βk +

γ

σ2(u)

)
dt

=
1

n

∫ t

0

µk
σ2(u)

I(k)
n (u)du → 0, in probability,

by Lemma 4.1.1 and the assumption of the theorem. Thus all the conditions except (4.6) are

verified for Theorem 4.1.3. Next, we proceed to verify (4.6). We denote
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Gn(t) : =
1

n

∫ t

0
k2(1− ρ2

1)σ4(u)I(2k)
n (u)du

H1
n(t) : =

1

n4

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
Skp (u)Skq (u)x2Ni(du, dx),

H2
n(t) : =

2

n3

n∑
i=1

∫ t

0

∫
R
S2k
i (u)σ2(u)x(ekα2x − 1)2Ni(du, dx),

H3
n(t) : =

1

n4

n∑
i=1

∫ t

0

∫
R
S2k
i (u)x2(ekα2x − 1)2Ni(du, dx),

H4
n(t) : =

1

n2

n∑
i=1

∫ t

0

∫
R
S2k
i (u)σ4(u)(ekα2x − 1)2Ni(du, dx),

H5
n(t) : =

2

n4

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Ski (u)Skj (u)x(ekα2x − 1)Nj(du, dx),

H6
n(t) : =

2

n3

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Ski (u)Skj (u)σ2(u)x(ekα2x − 1)Nj(du, dx).

Consider

E

[
sup
t≤T

∣∣∣∣An(t)−
∫ t

0
a(Xn(t))

∣∣∣∣2
]
≤ E

(sup
t≤T
|Gn(t)|+

6∑
i=1

sup
t≤T
|H i

n(t)|

)2


≤ 8E

[
sup
t≤T
|Gn(t)|2

]
+ 8

6∑
i=1

E

[
sup
t≤T
|H i

n(t)|2
]
. (4.7)

To verify (4.6), it is sufficient to show that E
[
supt≤T |Gn(t)|2

]
and E

[
supt≤T |H i

n(t)|2
]

for 1 ≤ i ≤ 6

converge to 0 as n→∞. Clearly, by Lemma 4.1.1 and boundedness of σ2, we obtain

E

[
sup
t≤T
|Gn(t)|2

]
=
k4(1− ρ2

1)2

n
E

[
sup
t≤T

∣∣∣∣∫ t

0

σ4(u)√
n
I(2k)
n (u)du

∣∣∣∣2
]
→ 0, as n→∞.
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Also,

E

[
sup
t≤T
|H1

n(t)|2
]

= E
[
H1
n(T )2

]
=

1

n6
E

 n∑
p=1

n∑
q=1

N1(T )∑
r=1

Skp (τ1
r )Skq (τ1

r )(J 1
r )2

2
=

1

n4
E

N1(T )∑
r=1

S2k
1 (τ1

r )(J 1
r )2

2 ≤ 1

n4
E

N1(T )

N1(T )∑
r=1

S4k
1 (τ1

r )(J 1
r )4


≤ 1

n4

∞∑
N=1

N2

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )4]P(N1(T ) = N)

≤ 1

n4

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )4]E[N1(T )2]→ 0, as n→∞.

E

[
sup
t≤T
|H2

n(t)|2
]

= E
[
H2
n(T )2

]
=

4

n6
E

( n∑
i=1

∫ T

0

∫
R
S2k
i (u)σ2(u)x(ekα2x − 1)2Ni(du, dx)

)2


≤ 4C

n5
E

[
n∑
i=1

(∫ T

0

∫
R
S2k
i (u)x(ekα2x − 1)2Ni(du, dx)

)2
]

≤ 4C

n4
E

N1(T )

N1(T )∑
j=1

S4k
1 (τ1

j )(J 1
j )2(ekα2J 1

j − 1)4


≤ 4C

n4

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)4]E[N1(T )2]→ 0, as n→∞.

E

[
sup
t≤T
|H3

n(t)|2
]

= E
[
H3
n(T )2

]
= E

( 1

n4

n∑
i=1

∫ T

0

∫
R
S2k
i (u)x2(ekα2x − 1)2Ni(du, dx)

)2


≤ 1

n7
E

[
n∑
i=1

(∫ T

0

∫
R
S2k
i (u)x2(ekα2x − 1)2Ni(du, dx)

)2
]

≤ 1

n7
E

 n∑
i=1

N i(T )∑
j=1

S2k
i (τ ij)x

2(ekα2J ij − 1)2

2
≤ 1

n6

∞∑
N=1

N2

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )4(ekα2J 1
j − 1)4]P(N1(T ) = N)

≤ 1

n6

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )4(ekα2J 1
j − 1)4]E[N1(T )2]→ 0, as n→∞.
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In a similar procedure as in the case of H2
n(t), we can show

E

[
sup
t≤T
|H4

n(t)|2
]
≤ C

n3

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)4]E[N1(T )2]→ 0, as n→∞.

Next,

E

[
sup
t≤T
|H5

n(t)|2
]

= E
[
H5
n(T )2

]
= E

 2

n4

n∑
i=1

n∑
j=1

∫ T

0

∫
R
Ski (u)Skj (u)x(ekα2x − 1)Nj(du, dx)

2
≤ 4

n8
E

n2
n∑
i=1

n∑
j=1

(∫ T

0

∫
R
Ski (u)Skj (u)x(ekα2x − 1)Nj(du, dx)

)2


≤ 4

n4
E

N1(T )

N1(T )∑
j=1

S4k
1 (τ1

r )(J 1
r )2(ekα2J 1

r − 1)2


≤ 4

n4

∞∑
N=1

N2

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)2]P(N1(T ) = N)

≤ 4

n4

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)2]E[N1(T )2]→ 0, as n→∞.

Finally,

E

[
sup
t≤T
|H6

n(t)|2
]

= E
[
H6
n(T )2

]
= E

 2

n3

n∑
i=1

n∑
j=1

∫ T

0

∫
R
Ski (u)Skj (u)σ2(u)x(ekα2x − 1)Nj(du, dx)

2
≤ 4C

n6
E

n2
n∑
i=1

n∑
j=1

(∫ T

0

∫
R
Ski (u)Skj (u)x(ekα2x − 1)Nj(du, dx)

)2


≤ 4C

n2
E

N1(T )

N1(T )∑
j=1

S4k
1 (τ1

r )(J 1
r )2(ekα2J 1

r − 1)2


≤ 4C

n2

∞∑
N=1

N2

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)2]P(N1(T ) = N)

≤ 4C

n2

(
sup
t≤T

E[S4k
1 (t)]

)
E[(J 1

j )2(ekα2J 1
j − 1)2]E[N1(T )2]→ 0, as n→∞.
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Combining all these results we obtain from (4.7) that E
[
supt≤T

∣∣∣An(t)−
∫ t

0 a(Xn(t))
∣∣∣2] → 0 as

n→∞. Hence (4.6) is verified and consequently all the assumptions in Theorem 4.1.3 are verified.

Hence the proof is complete.

We define the “error term” by

Πn(t) =
√
n(In(t)− I(1)(t)), (4.8)

i.e.,

Πn(t) =
1

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)xÑj(dx, du) +

n∑
i=1

∫ t

0

∫
R
Si(u)(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Ñi(du, dx).

(4.9)

As observed in [35], Πn can be thought of as a scaled fluctuation of In(t) around the approximation

I(t) = I(1)(t). The final result in this section is the large n limit behavior of Πn. For the simplicity

of computation we derive the result when ρ1 = 1 in (4.1). We also assume α2 ≥ 0 and Ni

(i = 1, 2, . . . , n) are subordinators. Suppose that

Xn(t) :=

 Πn(t)

ξ2I
(2)
n (t)

 , (4.10)

and

X(t) :=

 ∫ t
0 ξσ(u)

√
I(2)(u)dB(u)

ξ2I(2)(t)

 , (4.11)

where B is a standard Brownian motion independent of M and

ξ2 =

∫
R+

(eα2x − 1)2ν(dx). (4.12)
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By Theorem 4.1.4 we obtain the dynamics of I(2) as

dI(2)(t) = I(2)(t)

(
2α1 + σ2(t)− λ+ β2 +

γ

σ2(t)

)
dt+ 2σ(t)I(2)(t)dM(t).

From (4.11) we obtain

dX(t) =

 0

ξ2
(

2α1 + σ2(t)− λ+ β2 + γ
σ2(t)

)
I(2)(t)

 dt

+

 ξσ(t)
√
I(2)(t) 0

0 2ξ2σ(t)I(2)(t)


 dB(t)

dM(t)

 .

We use Theorem 4.1.3 to show that Xn converges weakly to the solution of a well-posed martingale

problem solved by X with generator

b(x, y) =

 0(
2α1 + σ2(t)− λ+ β2 + γ

σ2(t)

)
y

 ,

a(x, y) =

 σ2(t)|y| 0

0 4σ2(t)y2

 .

We define

Bn(t) =

 0

ξ2
∫ t

0

(
2α1 + σ2(u)− λ+ β2 + γ

σ2(t)

)
I

(2)
n (u)du

 .

Clearly Mn = Xn−Bn has no drift part and is a local martingale. Also, since Bn(t) is continuous,

lim
n→∞

E

[
sup
t≤T
|Bn(t)−Bn(t−)|2

]
= 0, (4.13)

and trivially for i = 1, 2,

sup
t≤T

∣∣∣∣Bi
n(t)−

∫ t

0
bi(Xn(s))ds

∣∣∣∣→ 0 in probability. (4.14)
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By the Doob-Meyer decomposition we choose

Aijn (t) = [M i
n,M

j
n](t), 1 ≤ i, j ≤ 2,

where

M1
n(t) =

1

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

Si(u)xÑj(dx, du)

+

n∑
i=1

∫ t

0

∫
R+

Si(u)(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Ñi(du, dx),

M2
n(t) = ξ2

∫ t

0
2σ(u)I(2)

n (u)dM(u)

+ ξ2
n∑
i=1

∫ t

0

∫
R+

S2
i (u)(e2α2x − 1)

(
σ2(u)

n
+

x

n2

)
Ñi(dx, du)

+
ξ2

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

S2
i (u)xÑj(du, dx).

We write

Aijn (t) = Gijn (t) +H ij
n (t), 1 ≤ i, j ≤ 2,

where

G11
n (t) = 0,

H11
n (t) =

1

n3

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R+

Sp(u)Sq(u)x2Ni(du, dx)

+
n∑
i=1

∫ t

0

∫
R+

S2
i (u)(eα2x − 1)2

(
σ2(u)√

n
+

x

n
3
2

)2

Ni(du, dx)

+
2

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

Si(u)Sj(u)x(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Nj(du, dx),
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G12
n (t) = G21

n (t) = 0,

H12
n (t) = H21

n (t) =
ξ2

n
7
2

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R+

Sp(u)S2
q (u)x2Ni(du, dx)

+
ξ2

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

Si(u)S2
j (u)x(e2α2x − 1)

(
σ2(u)

n
+

x

n2

)
Nj(du, dx)

+
ξ2

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

Si(u)S2
j (u)x(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Nj(du, dx)

+ ξ2
n∑
i=1

∫ t

0

∫
R+

S3
i (u)(e2α2x − 1)(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)(
σ2(u)

n
+

x

n2

)
Ni(du, dx),

G22
n (t) = ξ4

∫ t

0
4σ2(u)(I(2)

n (u))2 du,

H22
n (t) =

ξ4

n4

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R+

S2
p(u)S2

q (u)x2Ni(du, dx)

+ ξ4
n∑
i=1

∫ t

0

∫
R+

S4
i (u)(e2α2x − 1)2

(
σ2(u)

n
+

x

n2

)2

Ni(du, dx)

+
2ξ4

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R+

S2
i (u)S2

j (u)x(e2α2x − 1)

(
σ2(u)

n
+

x

n2

)
Nj(du, dx).

We state two lemmas that are essential in proving Theorem 4.1.7, the convergence theorem de-

scribing the behavior of the “error term” in the large-basket limit. Note that Lemma 4.1.5 holds

irrespective of the assumptions α2 ≥ 0 and Ni (i = 1, 2, . . . , n) are subordinators. We provide a

general proof for Lemma 4.1.5. However, for Lemma 4.1.6 we need those assumptions.

Lemma 4.1.5. Suppose that E[Si(0)k] <∞ and
∫
R e

kα2xν(dx) <∞, for 1 ≤ k ≤ 8. Also, suppose

that for t ∈ [0, T ], |σ(t)|2 ≤ C, for some C > 0 and µl <∞ for l = 1, 2. Then for i, j ∈ {1, 2},

lim
n→∞

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]
= 0, (4.15)
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lim
n→∞

E

[
sup
t≤T
|Aijn (t)−Aijn (t−)|

]
= 0, (4.16)

and

sup
t≤T

∣∣∣∣Aijn (t)−
∫ t

0
aij(Xn(s))ds

∣∣∣∣→ 0, in probability. (4.17)

Proof. By (4.8) jumps of Πn(t) are same as jumps of
√
nIn(t). Hence,

E

[
sup
t≤T
|Xn(t)−Xn(t−)|2

]
=

E

sup
t≤T

(
1√
n

n∑
i=1

(σ2(t)Si(t)− σ2(t−)Si(t−))

)2

+

(
ξ2

n

n∑
i=1

(σ2(t)S2
i (t)− σ2(t−)S2

i (t−))

)2


≤ CE

sup
t≤T

( 1√
n

n∑
i=1

(Si(t)− Si(t−))

)2

+

(
ξ2

n

n∑
i=1

(S2
i (t)− S2

i (t−))

)2


≤ C

n
E

[
sup
t≤T

n∑
i=1

(Si(t)− Si(t−))2

]
+
Cξ4

n2
E

[
sup
t≤T

n∑
i=1

(S2
i (t)− S2

i (t−))2

]

≤ C

n
E

[
sup

1≤i≤n
sup
t≤T

S2
i (t)

]
+
Cξ4

n2
E

[
sup

1≤i≤n
sup
t≤T

S4
i (t)

]
,

where we have used repeatedly the fact that no two jumps occur at the same time almost surely.

Hence (4.15) is proved. Proof of (4.16) is similar and is as follows,

E

[
sup
t≤T
|A11

n (t)−A11
n (t−)|

]
= E

[
sup
t≤T

1

n

n∑
i=1

(σ3(t)Si(t)− σ3(t−)Si(t−))2

]

≤ C

n
E

[
sup

1≤i≤n
sup
t≤T

S2
i (t)

]
,
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and

E

[
sup
t≤T
|A12

n (t)−A12
n (t−)|

]

= E

[
sup
t≤T

ξ2n−
3
2

n∑
i=1

|σ3(t)S2
i (t)− σ3(t−)S2

i (t−)||σ3(t)Si(t)− σ3(t−)Si(t−)|

]

≤ Cξ2n−
3
2E

[
sup
t≤T

n∑
i=1

|S2
i (t)− S2

i (t−)||Si(t)− Si(t−)|

]

≤ Cξ2n−
3
2E

[
sup

1≤i≤n
sup
t≤T
|S2
i (t)− S2

i (t−)||Si(t)− Si(t−)|

]

≤ Cξ2n−
3
2E

[
sup

1≤i≤n
sup
t≤T

S3
i (t)

]
,

and

E

[
sup
t≤T
|A22

n (t)−A22
n (t−)|

]
= E

[
sup
t≤T

ξ4

n2

n∑
i=1

(σ3(t)S2
i (t)− σ3(t−)S2

i (t−))2

]

≤ Cξ4

n2
E

[
sup
t≤T

n∑
i=1

(S2
i (t)− S2

i (t−))2

]

≤ Cξ4

n2
E

[
sup

1≤i≤n
sup
t≤T

S4
i (t)

]
.

Hence (4.16) is proved. Now we proceed to prove (4.17).

(i) Case: i = j = 1. We define

Un(t) := A11
n −

∫ t

0
a11(Xn(u))du

= G11
n +H11

n −
∫ t

0
a11(Xn(u))du

= −ξ2

∫ t

0
σ2(u)I(2)

n (u)du+
1

n3

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
Sp(u)Sq(u)x2Ni(du, dx)

+
n∑
i=1

∫ t

0

∫
R
S2
i (u)(eα2x − 1)2

(
σ2(u)√

n
+

x

n
3
2

)2

Ni(du, dx)

+
2

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)Sj(u)x(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Nj(du, dx).
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After simplification of the above expression, and using (4.12), we obtain the following expres-

sion for Un(t).

Un(t) =

=
1

n3

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
Sp(u)Sq(u)x2Ni(du, dx)

+
1

n3

n∑
i=1

∫ t

0

∫
R
S2
i (u)x2(eα2x − 1)2Ni(du, dx)

+
1

n

n∑
i=1

∫ t

0

∫
R
S2
i (u)σ4(u)(eα2x − 1)2Ñi(du, dx)

+
2

n2

n∑
i=1

∫ t

0

∫
R
S2
i (u)σ2(u)x(eα2x − 1)2Ni(du, dx)

+
2

n4

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)Sj(u)x2(eα2x − 1)Nj(du, dx)

+
2

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)Sj(u)σ2(u)x(eα2x − 1)Nj(du, dx). (4.18)

A similar proof for Theorem 4.1.4 (in particular, the analysis related to supt≤T |H i
n(t)|2, for

i = 1, 2, 3, 4, 5, 6) can be used to show that for 0 ≤ t ≤ T , each of the terms in the right hand

side of (4.18) is converging to 0 in probability as n → ∞. Consequently we conclude that

E[supt≤T |Un(t)|2]→ 0 as n→∞.

(ii) Case: i = 1, j = 2. In this case clearly
∫ t

0 a12(Xn(u))du = 0.

A12
n (t)−

∫ t

0
a12(Xn(u))du = G12

n (t) +H12
n (t)−

∫ t

0
a12(Xn(u))du

=
ξ2

n
7
2

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
Sp(u)S2

q (u)x2Ni(du, dx)

+
ξ2

n
3
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)S2

j (u)x(e2α2x − 1)

(
σ2(u)

n
+

x

n2

)
Nj(du, dx)

+
ξ2

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)S2

j (u)x(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)
Nj(du, dx)

+ ξ2
n∑
i=1

∫ t

0

∫
R
S3
i (u)(e2α2x − 1)(eα2x − 1)

(
σ2(u)√

n
+

x

n
3
2

)(
σ2(u)

n
+

x

n2

)
Ni(du, dx),
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and this can be simplified to

A12
n (t)−

∫ t

0
a12(Xn(u))du =

ξ2

n
7
2

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
Sp(u)S2

q (u)x2Ni(du, dx)

+
2ξ2

n
5
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)S2

j (u)σ2(u)x(e2α2x − 1)Nj(du, dx)

+
2ξ2

n
7
2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
Si(u)S2

j (u)x2(e2α2x − 1)Nj(du, dx)

+
ξ2

n
3
2

n∑
i=1

∫ t

0

∫
R
S3
i (u)σ4(u)(e2α2x − 1)(eα2x − 1)Ni(du, dx)

+
2ξ2

n
5
2

n∑
i=1

∫ t

0

∫
R
S3
i (u)σ2(u)x(e2α2x − 1)(eα2x − 1)Ni(du, dx)

+
ξ2

n
7
2

n∑
i=1

∫ t

0

∫
R
S3
i (u)x2(e2α2x − 1)(eα2x − 1)Ni(du, dx).

Once again, a similar procedure as in Theorem 4.1.4 (in particular, the analysis related to

supt≤T |H i
n(t)|2, for i = 1, 2, 3, 4, 5, 6) can be used to show that for 0 ≤ t ≤ T , each of the

terms in the right hand side of the above expression is converging to 0 in probability as

n→∞.

(iii) Case: i = j = 2. We have
∫ t

0 a22(Xn(u))du = ξ4
∫ t

0 4σ2(u)(I
(2)
n (u))2du.

A22
n (t)−

∫ t

0
a22(Xn(u))du = G22

n (t) +H22
n (t)−

∫ t

0
a22(Xn(u))du

= ξ4

∫ t

0
4σ2(u)(I(2)

n (u))2du− ξ4

∫ t

0
4σ2(u)(I(2)

n (u))2du

+
ξ4

n4

n∑
p=1

n∑
q=1

n∑
i=1

∫ t

0

∫
R
S2
q (u)S2

q (u)x2Ni(du, dx)

+ ξ4
n∑
i=1

∫ t

0

∫
R
S4
i (u−)(e2α2x − 1)2

(
σ2(u)

n
+

x

n2

)2

Ni(du, dx)

+
2ξ4

n2

n∑
i=1

n∑
j=1

∫ t

0

∫
R
S2
i (u)S2

j (u)x(e2α2x − 1)

(
σ2(u)

n
+

x

n2

)
Nj(du, dx).

After expanding the above expression, a similar procedure as in Theorem 4.1.4 (in particular,

the analysis related to supt≤T |H i
n(t)|2, for i = 1, 2, 3, 4, 5, 6) can be implemented to show that
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for 0 ≤ t ≤ T , each of the terms in the right hand side of the above expression is converging

to 0 in probability as n→∞.

Combining all the above three cases we complete the proof of (4.17).

Lemma 4.1.6. For any t > s ≥ 0, An(t)−An(s) is non-negative definite.

Proof. For any t > s ≥ 0, it is enough to show that Gn(t) − Gn(s) and Hn(t) − Hn(s) are non-

negative definite. Since

G11
n (t) = G21

n (t) = G12
n (t) = 0,

therefore

Gn(t)−Gn(s) =

 0 0

0 G22
n (t)−G22

n (s)

 .

Since by construction G22 is increasing hence Gn(t) − Gn(s) is trivially non-negative definite. It

remains to show that

Hn(t)−Hn(s) =

 H11
n (t)−H11

n (s) H12
n (t)−H12

n (s)

H21
n (t)−H21

n (s) H22
n (t)−H22

n (s)

 ,

is non-negative definite. Thus it is sufficient to show that all the principal minors are nonnegative.

However this is obvious from the expressions of H ij
n (i, j ∈ {1, 2}) given that α2 ≥ 0 and Ni

(i = 1, 2, . . . , n) are subordinators.

We conclude this section with the weak convergence theorem describing the behavior of the

“error term” in the large-basket limit.

Theorem 4.1.7. Suppose Xn(t) and X(t) are given by (4.10) and (4.11) respectively. Also, suppose

that ρ1 = 1, α2 ≥ 0 and Ni (i = 1, 2, . . . , n) are subordinators in (4.1). Suppose that E[Si(0)k] <∞

and
∫
R e

kα2xν(dx) < ∞, for 1 ≤ k ≤ 8. Also, suppose that for t ∈ [0, T ], |σ(t)|2 ≤ C, for some

C > 0. Further assume that µl <∞, for l = 1, 2. Then Xn ⇒ X as n→∞.
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Proof. All the conditions of the Theorem 4.1.3 are checked in (4.13), (4.14), Lemma 4.1.5, and

Lemma 4.1.6. Hence the proof follows from Theorem 4.1.3.

We conclude this section with the following analysis based on the S&P 500 data. We use the

data for the S&P 500 index from January 23, 2017 to March 3, 2017. We compute the characteristic

function from this empirical data. We use the variance independent price index model proposed

in [35] for the fitting of the characteristic function of the empirical data. The root-mean-square

error (RMSE) is obtained to be 1.30728. Finally, we use the variance dependent price index model

proposed in this dissertation for the fitting of the characteristic function of the empirical data. The

RMSE in this case is 0.000915226. The plots are shown in Figure 1 and Figure 2 respectively. In

the plots (Figure 1 and Figure 2), the red and green dots indicate the characteristic functions of

the data and the model fit respectively. This shows an empirical evidence of the usefulness of a

variance dependent price index model. Figure 3 is the combined plot of Figure 1 and Figure 2. In

Figure 3, red, green, and blue dots indicate the characteristic functions of the data, the variance

independent model fit, and the variance dependent model fit, respectively.

0.02 0.04 0.06 0.08 0.10
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2
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4

Figure 4.1. Fitting of the characteristic function of the empirical data (red) by the variance-
independent model (green).
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Figure 4.2. Fitting of the characteristic function of the empirical data (red) by the variance-
dependent model (green).

0.02 0.04 0.06 0.08 0.10

1

2

3

4

Figure 4.3. Fitting of the characteristic function of the empirical data (red) by the variance-
independent model (green) and the variance-dependent model (blue).
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5. ANALYSIS OF TRANSITION PROBABILITY DENSITIES

FOR SOME LÉVY DRIVEN FINANCIAL MARKETS

Chapter 5 has five main sections. Section 5.1 is devoted to the formulation of the Feynman

path integral for Lévy driven markets.In section 5.2, we present a brief introduction of some special

functions. In section 5.3, we implement the method of the Feynman path integral for the analysis

of option pricing for certain Lévy process driven financial markets. For such a Lévy process driven

financial market, we find closed form solution of the transition probability density function (or, the

pricing kernel) of option pricing in terms of various special functions. In section 5.4, we provide

asymptotic analysis of transition probability density function which represent the option pricing

formulas for “sufficiently large” horizon date. In section 5.5, we provide formulas for transition

probability density function for certain Lévy process driven markets where the interest rate is

stochastic.

5.1. Formulation of Feynman path integral for Lévy-driven markets

In this section we consider exponential Lévy models where at time t the risk-neutral dy-

namics of the stock price St is given by

St = S0e
rt+Xt , (5.1)

where r is the risk free interest rate and Xt is a Lévy process under the risk neutral mea-

sure with characteristic triplet (σ, γ, ν). Arbitrage-free condition in financial market implies that∫
|y|>1 e

yν(dy) <∞, and γ = −σ2

2 −
∫∞
−∞(ey − 1− y1|y|<1)ν(dy). It is shown in [24] (Proposition 2)

that under appropriate conditions the option price value C̃(t, S) is given by

∂C̃(t, S)

∂t
=−

[
rS
∂C̃(t, S)

∂S
+
σ2S2

2

∂2C̃(t, S)

∂S2
− rC̃(t, S)

+

∫
R

(
C̃(t, Sey)− C̃(t, S)− S(ey − 1)

∂C̃(t, S)

∂S

)
ν(dy)

]
.

60



With the transformation S = ex, and denoting C̃(t, ex) = C(t, x), we obtain

∂C(t, x)

∂t
=−

[
σ2

2

∂2C(t, x)

∂x2
+ (r − σ2

2
)
∂C(t, x)

∂x
− rC(t, x)

+

∫
R

(
C(t, y + x)− C(t, x)− (ey − 1)

∂C(t, x)

∂x

)
ν(dy)

]
. (5.2)

Following Dirac’s notation (see [27]) we denote the “ket” vector by |·〉 and corresponding

“bra” vector by 〈·|. Also, if kn is an eigenvalue of some operator K̂, the corresponding eigenvector

(when unique) is denoted as |kn〉. We work in the units for which Planck’s constant ~ = 1 (see

[26, 27]). The one-dimensional momentum operator is given by P̂ = −i ∂∂x and thus P̂ 2 = − ∂2

∂x2
.

It is well known that if |x〉 and |p〉 are state vectors corresponding to position operator X̂ and

momentum operator P̂ respectively, then
∫∞
−∞ |x〉〈x| dx =

∫∞
−∞

1
2π |p〉〈p| dp = I, where I is the

identity operator (see e.g., [45]). The scalar products are given by 〈x|p〉 = eipx and 〈p|x〉 = e−ipx.

We denote |C〉 = |C(t, x)〉 to be the state vector with associated “cost function” C(t, x). We

use “cost function” in the present financial setting to represent the same thing as “wave function”

in quantum mechanics. Note that the “shift” in position by amount y is given by the operator

U(y) = e−iP̂ y. In general, if S(x) is the cost function corresponding to the state vector |S(x)〉, then

for a fixed y ∈ R, S(x− y) is the cost function corresponding to the state vector |S(x+ y)〉. Thus

the state vector corresponding to the cost function S(x+y) is given by |S(x−y)〉 = U(−y)|S(x)〉 =

eiP̂ y|S(x)〉.

Returning to (5.2), we observe the state vector corresponding to the cost function C(t, y+x),

for a fixed y, is given by |C(t, x− y)〉 and

eiP̂ y|C(t, x)〉 = |C(t, x− y)〉.

With these notations the dynamics of |C〉 is given by

∂|C〉
∂t

=

[
σ2

2
P̂ 2 − iβP̂ + r −

∫
R

(eiP̂ y − 1)ν(dy)

]
|C〉, (5.3)
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where β = r − σ2

2 −
∫
R(ey − 1)ν(dy). We denote

Ĥ =

[
σ2

2
P̂ 2 − iβP̂ + r −

∫
R

(eiP̂ y − 1)ν(dy)

]
, (5.4)

and therefore (5.3) can be written as

∂|C〉
∂t

= Ĥ|C〉. (5.5)

Given the end time t = T , (5.5) can be solved as

|C(t, x)〉 = e−(T−t)Ĥ |C(T, x)〉.

Therefore we may find the cost function C(t, x) associated with the state vector |C(t, x)〉 as

C(t, x) = 〈x|C(t, x)〉 = 〈x|e−(T−t)Ĥ |C(T, x)〉

=

∫ ∞
−∞
〈x|e−τĤ |x′〉C(T, x′) dx′, where τ = T − t. (5.6)

Clearly the transition probability density function is given by 〈x|e−τĤ |x′〉. Given τ , we divide the

time interval ta = t0 = 0 to tb = tN+1 = τ in N + 1 equally spaced subintervals {t1, t2, . . . , tN},

such that the spacing is given by ε = tn− tn−1 = (tb−ta)
N+1 , n = 2, 3, . . . , N . We also set x0 = xa = x′

and xN+1 = xb = x.

Note that in the present case we may consider Ĥ = H(P̂ , tn). Therefore

〈xn|e−εĤ |xn−1〉 =

∫ ∞
−∞
〈xn|e−εH(P̂ ,tn)|pn〉〈pn|xn−1〉

dpn
2π

=

∫ ∞
−∞

exp[ipn(xn − xn−1)− εH(pn, tn)]
dpn
2π

.

Consequently, we obtain the following:

〈xb|e−τĤ |xa〉 =
N∏
n=1

∫ ∞
−∞

dxn

N+1∏
n=1

〈xn|e−εĤ |xn−1〉

=
N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp(iAN ),
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where

AN =
N+1∑
n=1

[pn(xn − xn−1) + iεH(pn, tn)] . (5.7)

As N →∞, AN → A[p], where

A[p] =

∫ tb=τ

ta=0
[p(t)ẋ(t) + iH(p(t), t)] dt.

We use the notation of Feynman path integral as follows:

lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
=

∫ x(tb)

x(ta)
D′x

∫
Dp

2π
. (5.8)

Therefore we can write the transition probability in terms of Feynman path integral as

〈xb|e−τĤ |xa〉 =

∫ x(tb)=xb

x(ta)=xa

D′x

∫
Dp

2π
eiA[p]. (5.9)

In the present case

AN =

N+1∑
n=1

[
pn(xn − xn−1) + iε

(
σ2

2
p2
n − iβpn + r −

∫
R

(eiypn − 1)ν(dy)

)]
. (5.10)

At this point, we consider some special cases of the Lévy density ν.

1. For Inverse-Gaussian (IG) process,

ν(dx) =
1√
2π
ax−3/2e−

1
2
b2x dx,

where a, , b > 0, and x > 0. In this case

∫
R

(eiypn − 1)ν(dy) = a
(
b−

√
b2 − 2ipn

)
.

2. For Gamma (Γ) process,

ν(dx) = a
e−bx

x
dx,
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where a, , b > 0, and x > 0. In this case

∫
R

(eiypn − 1)ν(dy) = a log

(
b

b− ipn

)
.

3. For Variance-Gamma process,

ν(dx) =

 −C
eGx

x dx, x < 0

C e−Mx

x dx, x > 0,

where C,G,M > 0. In this case

∫
R

(eiypn − 1)ν(dy) = C log

[(
G

G+ ipn

)(
M

M − ipn

)]
.

4. For CGMY process,

ν(dx) =

 CeGx(−x)−1−Y dx, x < 0

Ce−Mxx−1−Y dx, x > 0,

where C,G,M > 0 and Y < 2. In this case

∫
R

(eiypn − 1)ν(dy) = CΓ(−Y )
[
−GY −MY + (G+ ipn)Y + (M − ipn)Y

]
.

5. For Tempered Stable process,

ν(dx) = a2κ
κ

Γ(1− κ)
x−κ−1 exp

(
−1

2
b1/κx

)
dx,

where a, b > 0, and 0 < κ < 1. In this case

∫
R

(eiypn − 1)ν(dy) = aκ
Γ(−κ)

Γ(1− κ)

(
−b+ (b1/κ − 2ipn)κ

)
.

Note that Tempered Stable process becomes IG process when κ = 1
2 .
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5.2. Special functions

For R(α) > 0, the Gamma function Γ(α) can be defined as

Γ(α) =

∫ ∞
0

e−1tα−1dt,

when R(α) ≤ 0, Γ(α) can be defined by analytic continuation. It is a meromorphic function the

complex plane with simple poles at α = 0,−1,−2, . . . , (see, [50, 5.2.i]).

The incomplete gamma functions are defined by the integral

γ(α, x) =

∫ x

0
e−ttα−1dt,

and

Γ(a, x) =

∫ ∞
x

e−ttα−1dt.

The definition of γ(α, x) requires that R(α) > 0. It is well-known that if x = λα, λ ∈ (0, 1), the

incomplete gamma function γ(α, x) has the following asymptotic expansion:

γ(α, x) ∼ −xαe−x
∞∑
j=0

(−α)jbj(λ)

(x− α)2j+1

as α → ∞ in the sector | arg(α)| ≤ π
2 − δ <

π
2 (see, e.g., [50, 8.11.iii]). It is also well-known in

[50, 8.11.iii] that, if x = λλ, λ > 1, the incomplete gamma function Γ(α, x) has an asymptotic

expansion

Γ(α, x) ∼ xαe−x
∞∑
j=0

(−α)jbj(λ)

(x− α)2j+1

as α → ∞ in the sector | arg(α)| ≤ 3π
2 − δ <

3π
2 (see, e.g., [50, 8.11.iii]). The first few coefficients

bj(λ) are b0(λ) = 1, b1(λ) = λ, b2(λ) = λ(2λ2 + 1) [50, Eq. 8.11.8]. Computations of higher

coefficients bj(λ) for j ≥ 1 can be found using the recurrence relation [50, Eq. 8.11.9]

bj(λ) = λ(1− λ)b′j−1(λ) + (2j − 1)λbj−1(λ).
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An interesting recurrence relation in [50, Eq. 8.8.7] for the incomplete gamma function γ(α, x) is

given by

γ(α+m,x) =
Γ(α+m)

Γ(α)
γ(α, x)− xαe−x

m−1∑
j=0

Γ(α)

Γ(α+ j + 1)
,

and in [50, Eq. 8.8.9] for the incomplete gamma function Γ(α, x) is given by

Γ(α+m,x) =
Γ(α+m)

Γ(α)
Γ(α, x) + xαe−x

m−1∑
j=0

Γ(α)

Γ(α+ j + 1)
,

where m = 0, 1, 2, 3, . . . .

Consider the following differential equation [1, Eq. 19.1.2]:

d2y

dx2
−
(

1

4
x2 + a

)
y = 0. (5.11)

The solutions to (5.11) are called parabolic cylinder functions. One of the standard solutions [1,

Eq. 19.3.1] to (5.11) is denoted by U(a, x). Another notation for the parabolic cylinder function is

in terms of the well-known Whittaker and Watson’s function Dν(x) [1, 68, 69] :

Dν(x) = U

(
−ν − 1

2
, x

)
.

The parabolic cylinder function U(a, x) may be expressed as

U(a, x) = D−a− 1
2
(x) = cosπ

(
1

4
+

1

2
a

)
Y1 − sinπ

(
1

4
+

1

2
a

)
Y2,

where

Y1 =
1√
π

Γ
(

1
4 −

1
2a
)

2
a
2

+ 1
4

y1,

Y2 =
1√
π

Γ
(

3
4 −

1
2a
)

2
a
2
− 1

4

y2,

where

y1 = 1 + a
x2

2!
+

(
a2 +

1

2

)
x2

4!
+

(
a3 +

7

2
a

)
x6

6!
+ · · · ,
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and

y2 = x+ a
x3

3!
+

(
a2 +

3

2

)
x5

5!
+

(
a4 +

13

2
a

)
x7

7!
+ · · · .

It is known that for large values of x and a fixed, the parabolic cylinder function U(a, x) has the

following asymptotic expansion [1, Eq. 19.8.1]

U(a, x) ∼ e−
1
4
x2x−a−

1
2

{
1−

(a+ 1
2)(a+ 3

2)

2x2
+

(a+ 1
2)(a+ 3

2)(a+ 5
2)(a+ 7

2)

2 · 4x4
+ · · ·

}
.

5.3. Computation of Feynman path integrals

The objective of this section is to compute (5.9) when the Lévy densities are in the form as

described at the end of Section 5.1. We start this section with the following Lemma.

Lemma 5.3.1. For a sufficiently smooth function L,

lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp

(
N+1∑
n=1

(ipn(xn − xn−1) + εL(pn))

)

=

∫ ∞
−∞

exp (ip(xb − xa) + τL(p))
dp

2π
.

Proof.

lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp

(
N+1∑
n=1

(ipn(xn − xn−1) + εL(pn))

)

= lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp

(
i

(
pN+1xb − p1xa −

N∑
n=1

xn(pn+1 − pn)

)
+ εL(pn)

)

= lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp(−i

N∑
n=1

xn(pn+1 − pn)) exp (i(pN+1xb − p1xa) + εL(pn)) .

(5.12)

We note that

N∏
n=1

∫ ∞
−∞

exp

(
−i

N∑
n=1

xn(pn+1 − pn)

)
dxn =

N∏
n=1

δ

(
−pn+1 − pn

2π

)
=

N∏
n=1

2πδ (pn+1 − pn) . (5.13)
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Using (5.13) in (5.12) we obtain

lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dpn
2π

]
exp

(
N+1∑
n=1

(ipn(xn − xn−1) + εL(pn))

)

= lim
N→∞

∫ ∞
−∞

exp (ip(xb − xa) + ε(N + 1)L(p))
dp

2π

=

∫ ∞
−∞

exp (ip(xb − xa) + τL(p))
dp

2π
.

We consider three special cases as described below:

Case I: ∫
R

(eiypn − 1)ν(dy) = a log

(
b

b− ipn

)
,

where a, b > 0. Gamma process is an example of this case. In such case, from (5.10) we obtain

AN =
N+1∑
n=1

[
pn(xn − xn−1) + iε

(
σ2

2
p2
n − iβpn + r − a log

(
b

b− ipn

))]
.

In this case using (5.9) and Lemma 5.3.1 we obtain

〈xb|e−τĤ |xa〉 =

∫ ∞
−∞

exp

[
ip(xb − xa)− τ

(
σ2

2
p2 − iβp+ r − a log

(
b

b− ip

))]
dp

2π

= e−τr
∫ ∞
−∞

(
b

b− ip

)aτ
exp

[
−τσ

2

2
p2 − iqp

]
dp

2π
, (5.14)

where

q = −(xb − xa)− τβ. (5.15)

With p = −p̃− ib, we can obtain

〈xb|e−τĤ |xa〉 = e−τr−qb+
τσ2b2

2
baτ

2π

∫ ∞
−∞

(ip̃)−aτ exp

[
−τσ

2

2
p̃2 − i(τσ2b− q)p̃

]
dp̃

= e−τr−qb+
τσ2b2

2
baτ√
2π

(√
τσ
)aτ−1

exp

(
−(τσ2b− q)2

4τσ2

)
D−aτ

(
τσ2b− q√

τσ

)
, (5.16)
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where aτ < 1 and Dβ(·) is the parabolic cylinder function of order β (see [69]). The last equality

is obtained from [32].

Case II:

∫
R

(eiypn − 1)ν(dy) = c1 + c2(c3 + ipn)ν1 + c4(c5 − ipn)ν1 ,

where c1, c2, c3, c4, c5 are some real constants and ν1 > 0. Inverse-Gaussian, Tempered Stable,

CGMY processes are the examples of this case. In such case, from (5.10) we obtain

AN =
N+1∑
n=1

[
pn(xn − xn−1) + iε

(
σ2

2
p2
n − iβpn + (r − c1)− c2(c3 + ipn)ν1 − c4(c5 − ipn)ν1

)]
.

In this case using (5.9) and Lemma 5.3.1 we obtain

〈xb|e−τĤ |xa〉

=

∫ ∞
−∞

exp

[
ip(xb − xa)− τ

(
σ2

2
p2 − iβp+ (r − c1)− c2(c3 + ip)ν1 − c4(c5 − ip)ν1

)]
dp

2π

= e−τ(r−c1)

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp+ τc2(c3 + ip)ν1 + τc4(c5 − ip)ν1

]
dp

2π

=
e−τ(r−c1)

2π

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp

] ∞∑
l=0

τ l

l!
[c2(c3 + ip)ν1 + c4(c5 − ip)ν1 ]l dp

=
e−τ(r−c1)

2π

∞∑
l=0

l∑
m=0

(
l

m

)
τ l

l!
cm2 c

l−m
4

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp

]
(c3 + ip)mν1(c5 − ip)ν1(l−m) dp,

(5.17)

where q is given by (5.15). In Theorem 5.3.3 we provide an expression for the computation of the

integral in (5.17).

Interesting subcases of Case II can be obtained when c2 = 0. In this case as shown below

we can obtain a much simpler expression than the result provided in Theorem 5.3.3. For example,

IG process falls into this category with c1 = ab, c4 = −
√

2a, c5 = b2

2 , and ν1 = 1
2 . Tempered Stable

process also falls into this category with c1 = −baκ Γ(−κ)
Γ(1−κ) , c4 = 2κaκ Γ(−κ)

Γ(1−κ) , c5 = b1/κ

2 , and ν1 = κ.
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In this case using (5.9) and Lemma 5.3.1 we obtain

〈xb|e−τĤ |xa〉 = e−τ(r−c1)

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp+ τc4(c5 − ip)ν1

]
dp

2π

=
e−τ(r−c1)

2π

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp

] ∞∑
l=0

τ l

l!
cl4(c5 − ip)lν1 dp

=
e−τ(r−c1)

2π

∞∑
l=0

τ l

l!
cl4

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp

]
(c5 − ip)lν1 dp, (5.18)

where q is given by (5.15). With p = −p̃− ic5, we can obtain

〈xb|e−τĤ |xa〉 =
e−τ(r−c1)−qc5+

τσ2c25
2

2π

∞∑
l=0

τ l

l!
cl4

∫ ∞
−∞

(ip̃)lν1 exp

[
−τσ

2

2
p̃2 − i(τσ2c5 − q)p̃

]
dp̃

=
e−τ(r−c1)−qc5+

τσ2c25
2

2π

∞∑
l=0

τ l

l!
cl4

(
√
τσ)
−lν1−1

√
2π

exp

(
−(τσ2c5 − q)2

4τσ2

)
Dlν1

(
τσ2c5 − q√

τσ

)
, (5.19)

where ν1 > 0 and Dβ(·) is the parabolic cylinder function of order β (see [69]). The last equality is

obtained from [32].

Case III:

∫
R

(eiypn − 1)ν(dy) = C log

[(
G

G+ ipn

)(
M

M − ipn

)]
,

where C,G,M > 0. Variance-Gamma process is an example of this case. In such case, from (5.10)

we obtain

AN =

N+1∑
n=1

[
pn(xn − xn−1) + iε

(
σ2

2
p2
n − iβpn + r − C log

[(
G

G+ ipn

)(
M

M − ipn

)])]
.

In this case using (5.9) and Lemma 5.3.1 we obtain

〈xb|e−τĤ |xa〉

=

∫ ∞
−∞

exp

[
ip(xb − xa)− τ

(
σ2

2
p2 − iβp+ r

)][(
G

G+ ip

)(
M

M − ip

)]τC dp

2π

=
e−rτ (GM)τC

2π

∫ ∞
−∞

exp

[
−τσ

2p2

2
− iqp

]
(G+ ip)−τC(M − ip)−τC dp, (5.20)
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where q is given by (5.15). In Theorem 5.3.4 we provide an expression for the computation of the

integral in (5.20).

We conclude this section with two theorems for the computation of the expressions in (5.17)

and (5.20). For the next theorems we use the incomplete gamma functions as defined by:

γ(α, x) =

∫ x

0
e−ttα−1 dt, R(α) > 0,

and

Γ(α, x) =

∫ ∞
x

e−ttα−1 dt.

We start with the following lemma.

Lemma 5.3.2. For R(ν1),R(ν2) ≥ 0,

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2e−ax
2−bixdx = eac

2− b
2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∞∑
k=0

(
ν2

k

)[
αν2−k3 I1 + αk3I2

]
,

where

I1 =

(
i√
a

)ν1+n+k 1

2
√
a
γ

(
ν1 + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)ν1+n+k 1

2
√
a
γ

(
ν1 + n+ k

2
+

1

2
, a|α3|2

)
, (5.21)

and

I2 =

(
i√
a

)ν1+ν2+n+k 1

2
√
a

Γ

(
ν1 + ν2 + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)ν1+ν2+n+k 1

2
√
a

Γ

(
ν1 + ν2 + n+ k

2
+

1

2
, a|α3|2

)
, (5.22)

and α3 = α2 − α1, c = α1 + b
2a .
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Proof. It is easy to show that

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2e−ax
2−bixdx

= eac
2− b

2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∫ ∞
−∞

(ix)ν1+n (α3 + ix)ν2e−ax
2
dx, (5.23)

where α3 = α2 − α1, c = α1 + b
2a . Using the binomial expansion from (5.23) we obtain:

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2e−ax
2−bixdx

= eac
2− b

2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

[∫
|x|<|α3|

(ix)ν1+n (α3 + ix)ν2e−ax
2
dx

+

∫
|x|>|α3|

(ix)ν1+n (α3 + ix)ν2e−ax
2
dx

]

= eac
2− b

2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∞∑
k=0

(
ν2

k

)
αν2−k3

∫
|x|<|α3|

(ix)ν1+n+k e−ax
2
dx

+ eac
2− b

2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∞∑
k=0

(
ν2

k

)
αk3

∫
|x|>|α3|

(ix)ν1+ν2+n−k e−ax
2
dx

= eac
2− b

2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∞∑
k=0

(
ν2

k

)[
αν2−k3

∫
|x|<|α3|

(ix)ν1+n+k e−ax
2
dx

+αk3

∫
|x|>|α3|

(ix)ν1+ν2+n−k e−ax
2
dx

]
. (5.24)

We define

I1 =

∫
|x|<|α3|

(ix)ν1+n+k e−ax
2
dx =

∫ |α3|

−|α3|
(ix)ν1+n+k e−ax

2
dx

=

∫ |α3|

0
(ix)ν1+n+k e−ax

2
dx+ (−1)(ν1+n+k)

∫ |α3|

0
(ix)ν1+n+k e−ax

2
dx.

Clearly

∫ |α3|

0
(ix)ν1+n+k e−ax

2
dx =

(
i√
a

)ν1+n+k 1

2
√
a

∫ a|α3|2

0
x
ν1+n+k

2
+ 1

2
−1e−xdx

=

(
i√
a

)ν1+n+k 1

2
√
a
γ

(
ν1 + n+ k

2
+

1

2
, a|α3|2

)
.
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Therefore

I1 =

(
i√
a

)ν1+n+k 1

2
√
a
γ

(
ν1 + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)ν1+n+k 1

2
√
a
γ

(
ν1 + n+ k

2
+

1

2
, a|α3|2

)
.

Similarly we define

I2 =

∫
|x|>|α3|

(ix)ν1+ν2+n−k e−ax
2
dx

=

∫ ∞
|α3|

(ix)ν1+ν2+n−k e−ax
2
dx+ (−1)(ν1+ν2+n−k)

∫ ∞
|α3|

(ix)ν1+ν2+n−k e−ax
2
dx.

Clearly

∫ ∞
|α3|

(ix)ν1+ν2+n−k e−ax
2
dx =

(
i√
a

)ν1+ν2+n+k 1

2
√
a

∫ ∞
a|α3|2

x
ν1+ν2+n+k

2
+ 1

2
−1e−xdx

=

(
i√
a

)ν1+ν2+n+k 1

2
√
a

Γ

(
ν1 + ν2 + n+ k

2
+

1

2
, a|α3|2

)
,

and therefore

I2 =

(
i√
a

)ν1+ν2+n+k 1

2
√
a

Γ

(
ν1 + ν2 + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)ν1+ν2+n+k 1

2
√
a

Γ

(
ν1 + ν2 + n+ k

2
+

1

2
, a|α3|2

)
.

From the expressions (5.24), (5.21), and (5.22), the required result follows immediately.

Theorem 5.3.3. For R(ν1),R(ν2) ≥ 0,

∫ ∞
−∞

(α1 + ix)ν1 (α2 − ix)ν2e−ax
2−bixdx = eac

2− b
2

4a

∞∑
n=0

(−1)n+ν2 (2ac)n

n!

∞∑
k=0

(
ν2

k

)[
αν2−k3 I1 + αk3I2

]
,

where I1 and I2 are given by (5.21) and (5.22) respectively, and α3 = −α2 − α1, c = α1 + b
2a .
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Proof. From Lemma 5.3.2 it is clear that for R(ν1),R(ν2) ≥ 0 and A ∈ C,

∫ ∞
−∞

(α1 + ix)ν1 (A+ ix)ν2e−ax
2−bixdx = eac

2− b
2

4a

∞∑
n=0

(−1)n
(2ac)n

n!

∞∑
k=0

(
ν2

k

)[
αν2−k3 I1 + αk3I2

]
,

(5.25)

where I1 and I2 are given by (5.21) and (5.22) respectively, and α3 = A− α1, c = α1 + b
2a . Hence

the theorem follows immediately by taking A = −α2 in (5.25).

Theorem 5.3.4. For R(ν) ≥ 0,

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−ax
2−bixdx = eac

2− b
2

4a

∞∑
n=0

(−1)n+ν (2ac)n

n!

∞∑
k=0

(
−ν
k

)[
α−ν−k3 I3 + αk3I4

]
,

where

I3 =

(
i√
a

)−ν+n+k 1

2
√
a
γ

(
−ν + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)−ν+n+k 1

2
√
a
γ

(
−ν + n+ k

2
+

1

2
, a|α3|2

)
,

and

I4 =

(
i√
a

)−2ν+n+k 1

2
√
a

Γ

(
−2ν + n+ k

2
+

1

2
, a|α3|2

)
+

(
−i√
a

)−2ν+n+k 1

2
√
a

Γ

(
−2ν + n+ k

2
+

1

2
, a|α3|2

)
,

and α3 = α2 + α1, c = α1 + b
2a .

Proof.

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−ax
2−bixdx

= e−
b2

4a eac
2
∞∑
n=0

(−1)n+ν (2ac)n

n!

∫ ∞
−∞

(iy)−ν+n (α3 + iy)−νe−ay
2
dy,
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where α3 = α2 + α1, c = α1 + b
2a . Using the following well known identity

(x+ y)r =
∞∑
k=0

(
r

k

)
xr−kyk

for |x| > |y|, we have that

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−ax
2−bixdx = eac

2− b
2

4a

∞∑
n=0

(−1)n+ν (2ac)n

n!

∞∑
k=0

(
−ν
k

)
α−ν−k3 I3

+ eac
2− b

2

4a

∞∑
n=0

(−1)n+ν (2ac)n

n!

∞∑
k=0

(
−ν
k

)
αk3I4,

where

I3 =

∫
|x|<|α3|

(ix)−ν+n+k e−ax
2
dx =

(
i√
a

)−ν+n+k 1

2
√
a
γ

(
−ν + n+ k

2
+

1

2
, aα3

)
−(

−i√
a

)−ν+n+k 1

2
√
a
γ

(
−ν + n+ k

2
+

1

2
, aα3

)
, (5.26)

and

I4 =

∫
|x|>|α3|

(ix)−2ν+n−k e−ax
2
dx =

(
i√
a

)−2ν+n+k 1

2
√
a

Γ

(
−2ν + n+ k

2
+

1

2
, aα3

)
−(

−i√
a

)−2ν+n+k 1

2
√
a

Γ

(
−2ν + n+ k

2
+

1

2
, aα3

)
. (5.27)

5.4. Asymptotic expansions of transition probability density

In this section we find asymptotic expansions for the formulas derived in Theorem 5.3.3 and

Theorem 5.3.4 in Section 5.3. These formulas will correspond to the cases when τ is very large.

From the option pricing point of view, therefore, the formulas in this section correspond to the

expressions of transition probability densities when the exercise date (or, horizon date) of option is

sufficiently large.

We remark that though the goal of this section is what we stated in the last paragraph, for

the sake of generalization, we extend the settings of the last section. In this section we also provide

a framework of finding asymptotic expansions for integrals which are similar to the ones derived
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in Theorem 5.3.3 and Theorem 5.3.4 of Section 5.3. We start this section by Watson’s Lemma for

Complex Integral [68].

Theorem 5.4.1. Let

I(t) =

∫ ∞
0

e−ztf(t)dt.

Let f(t) be such that

f(t) ∼
∞∑
n=0

ant
αn+β

as t→ 0+, α > 0 and Re(β) > −1. Then

∫ ∞
0

e−ztf(t)dt ∼
∞∑
n=0

anΓ(αn+ β + 1)

zαn+β+1
,

as z → +∞ in the sector | arg z| ≤ π
2 − δ <

π
2 (with 0 < δ ≤ π

2 being fixed), provided that the

abscissa of convergence is not +∞, where zαn+β+1 has its principal value.

Theorem 5.4.1 is essential to prove the following theorems.

Theorem 5.4.2. If | arg(γi)| < π and σi > 0 for i = 1, 2, then as µ→ +∞ with | arg(µ)| < π
2 ,

∫ ∞
0

(γ1 + ix)σ1 (γ2 + ix)σ2 e−µx
2
dx ∼ γσ11 γσ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

,

where the coefficients are given by

an =

n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k ( i

γ2

)n−k
.

Proof. We write the given integral as

∫ ∞
0

(γ1 + ix)σ1 (γ2 + ix)σ2 e−µx
2
dx = γσ11 γσ22

∫ ∞
0

(
1 + i

x

γ1

)σ1 (
1 + i

x

γ2

)σ2
e−µx

2
dx

= γσ11 γσ22

∫ ∞
0

1

2
√
t

(
1 + i

√
t

γ1

)σ1 (
1 + i

√
t

γ2

)σ2
e−µtdt.
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Now for small t, we have

1√
t

(
1 + i

√
t

γ1

)σ1 (
1 + i

√
t

γ2

)σ2
=
∞∑
n=0

(
n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k ( i

γ2

)n−k)
t
n−1
2

=

∞∑
n=0

ant
n−1
2 ,

where

an =
n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k ( i

γ2

)n−k
.

Therefore, the required result is clear from with the application of Watson’s lemma.

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.3. If | arg(γi)| < π and σi > 0 for i = 1, 2, then as µ→ +∞ with | arg(µ)| < π
2 ,

∫ ∞
0

(γ1 + ix)−σ1 (γ2 − ix)−σ2 e−µx
2
dx ∼ γ−σ11 γ−σ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

,

where the coefficients is given

an =

n∑
k=0

(
−σ1

k

)(
−σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k
.

Proof. To prove Theorem 5.4.3, write the above integral as

∫ ∞
0

(γ1 + ix)−σ1 (γ2 − ix)−σ2 e−µx
2
dx = γ−σ11 γ−σ22

∫ ∞
0

(
1 + i

x

γ1

)−σ1 (
1− i x

γ2

)−σ2
e−µx

2
dx

= γ−σ11 γ−σ22

∫ ∞
0

1

2
√
t

(
1 + i

√
t

γ1

)−σ1 (
1− i

√
t

γ2

)−σ2
e−µtdt.

Observe that the quantity 1√
t

(
1 + i

√
t

γ1

)−σ1 (
1− i

√
t

γ2

)−σ2
with σi > 0 for i = 1, 2 is continuous for

t > 0. Now for small t, we have

(
1 + i

√
t

γ1

)−σ1 (
1− i

√
t

γ2

)−σ2
=

∞∑
n=0

(
n∑
k=0

(
−σ1

k

)(
−σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k)
t
t
2

=
∞∑
n=0

ant
t
2 ,
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where

an =
n∑
k=0

(
−σ1

k

)(
−σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k
.

Whence, by Watson’s lemma, we deduce

γ−σ11 γ−σ22

∫ ∞
0

1

2
√
t

(
1− i

√
t

γ1

)−σ1 (
1− i

√
t

γ2

)σ2
e−µtdt ∼ γ−σ11 γ−σ22

2

∞∑
n=0

an

∫ ∞
0

t
n−1
2 e−µtdt

∼ γ−σ11 γ−σ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

.

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.4. If | arg(γi)| < π and σi > 0 for i = 1, 2, then as µ→ +∞ with | arg(µ)| < π
2 ,

∫ ∞
0

(γ1 + ix)σ1 (γ2 − ix)σ2 e−µx
2
dx ∼ γσ11 γσ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

,

where the coefficients are given by

an =
n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k
.

Proof. To prove Theorem 5.4.4, write the above integral as

γσ11 γσ22

∫ ∞
0

(
1 + i

x

γ1

)σ1 (
1− i x

γ2

)σ2
e−µx

2
dx = γσ11 γσ22

∫ ∞
0

1

2
√
t

(
1 + i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
e−µtdt.

Now for small t, we have

(
1 + i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
=

∞∑
n=0

(
n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k)
t
t
2

=

∞∑
n=0

ant
t
2 ,

where

an =

n∑
k=0

(−1)n
(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k (
− i

γ2

)n−k
.
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Whence, by Watson’s lemma, we deduce

γσ11 γσ22

∫ ∞
0

1

2
√
t

(
1− i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
e−µtdt ∼ γσ11 γσ22

2

∞∑
n=0

an

∫ ∞
0

t
n−1
2 e−µtdt

∼ γσ11 γσ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

.

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.5. If | arg(γi)| < π and σi > 0 for i = 1, 2, then as µ→ +∞ with | arg(µ)| < π
2 ,

∫ ∞
0

(γ1 − ix)σ1 (γ2 − ix)σ2 e−µx
2
dx ∼ γσ11 γσ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

,

where the coefficients are given by

an =
n∑
k=0

(−1)n
(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k ( i

γ2

)n−k
.

Proof. To prove Theorem 5.4.5, write the above integral as

γσ11 γσ22

∫ ∞
0

(
1− i x

γ1

)σ1 (
1− i x

γ2

)σ2
e−µx

2
dx = γσ11 γσ22

∫ ∞
0

1

2
√
t

(
1− i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
e−µtdt.

Now for small t, we have

(
1− i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
=

∞∑
n=0

(
n∑
k=0

(
σ1

k

)(
σ2

n− k

)(
− i

γ1

)k (
− i

γ2

)n−k)
t
t
2

=

∞∑
n=0

ant
t
2 ,

where

an =
n∑
k=0

(−1)n
(
σ1

k

)(
σ2

n− k

)(
i

γ1

)k ( i

γ2

)n−k
.
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Whence, by Watson’s lemma, we deduce

γσ11 γσ22

∫ ∞
0

1

2
√
t

(
1− i

√
t

γ1

)σ1 (
1− i

√
t

γ2

)σ2
e−µtdt ∼ γσ11 γσ22

2

∞∑
n=0

an

∫ ∞
0

t
n−1
2 e−µtdt

∼ γσ11 γσ22

2

∞∑
n=0

an
Γ
(
n+1

2

)
µ
n+1
2

.

We now state and prove the theorems related to the asymptotic expansions related to

integrals of the form of Theorem 5.3.3.

Theorem 5.4.6. If | arg(αi)| < π and νi > 0 for i = 1, 2, then as a→ +∞ with | arg(a)| < π
2 ,

∫ ∞
−∞

(α1 + ix)ν1 (α2 − ix)ν2e−ax
2−bixdx ∼ e−

b2

4a

(
α1 + b

2a

)ν1 (
α2 − b

2a

)ν2
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

,

where the coefficients are given by

cn = 0, (5.28)

when n is odd, and

cn = 2in
n∑
k=0

(−1)k
(
ν1

k

)(
ν2

n− k

)(
1

α1 + b
2a

)k(
1

α2 − b
2a

)n−k
, (5.29)

when n is even.
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Proof. We have

∫ ∞
−∞

(α1 + ix)ν1 (α2 − ix)ν2e−ax
2−bixdx = e−

b2

4a

∫ ∞
−∞

(α1 + ix)ν1 (α2 − ix)ν2 e−a(x+ b
2a
i)

2

dx

= e−
b2

4a

∫ ∞
−∞

(
α1 +

b

2a
+ iy

)ν1 (
α2 −

b

2a
− iy

)ν2
e−ay

2
dy

= e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
− iy

)ν1 (
α2 −

b

2a
+ iy

)ν2
e−ay

2
dy

+ e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
+ iy

)ν1 (
α2 −

b

2a
− iy

)ν2
e−ay

2
dy

∼ e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 − b

2a

)ν2
2

∞∑
n=0

an
Γ
(
n+1

2

)
a
n+1
2

+ e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 − b

2a

)ν2
2

∞∑
n=0

bn
Γ
(
n+1

2

)
a
n+1
2

= e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 − b

2a

)ν2
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

,

where an and bn can be obtained from Theorem 5.4.4, with

cn = an + bn =
n∑
k=0

(
ν2

k

)(
ν1

n− k

)(
i

α2 − b
2a

)k(
− i

α1 + b
2a

)n−k

+
n∑
k=0

(
ν1

k

)(
ν2

n− k

)(
i

α1 + b
2a

)k(
− i

α2 − b
2a

)n−k
.

After relabelling the intex we thus obtain

cn = in
n∑
k=0

(−1)k
(
ν1

k

)(
ν2

n− k

)(
1

α1 + b
2a

)k(
1

α2 − b
2a

)n−k
((−1)n + 1) .

The required expressions for cn are clear from the above result.

Theorem 5.4.7. If | arg(αi)| < π and νi > 0 for i = 1, 2, then as a→ +∞ with | arg(a)| < π
2 ,

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2e−ax
2−bixdx ∼ e−

b2

4a

(
α1 + b

2a

)ν1 (
α2 + b

2a

)ν2
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

where the coefficients are given by

cn = 0, (5.30)
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when n is odd, and

cn = 2in
n∑
k=1

(
ν1

k

)(
ν2

n− k

)(
1

α1 + b
2a

)k(
1

α2 + b
2a

)n−k
, (5.31)

when n is even.

Proof. We have

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2e−ax
2−bixdx = e−

b2

4a

∫ ∞
−∞

(α1 + ix)ν1 (α2 + ix)ν2 e−a(x+ b
2a
i)

2

dx

= e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
− iy

)ν1 (
α2 +

b

2a
− iy)

)ν2
e−ay

2
dy

+ e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
+ iy

)ν1 (
α2 +

b

2a
+ iy)

)ν2
e−ay

2
dy

∼ e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 + b

2a

)ν2
2

∞∑
n=0

an
Γ
(
n+1

2

)
a
n+1
2

+ e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 + b

2a

)ν2
2

∞∑
n=0

bn
Γ
(
n+1

2

)
a
n+1
2

= e−
b2

4a

(
α1 + b

2a

)ν1 (
α2 + b

2a

)ν2
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

,

where

cn =
n∑
k=0

(−1)k
(
ν1

k

)(
ν2

n− k

)(
i(

α1 + b
2a

))k( i(
α2 + b

2a

))n−k

+
n∑
k=0

(
ν1

k

)(
ν2

n− k

)(
i(

α1 + b
2a

))k( i(
α2 + b

2a

))n−k .
The required expressions for cn are clear from the above result.

We conclude this section with a theorem of asymptotic expansions related to integrals of

the form of Theorem 5.3.4.

Theorem 5.4.8. If | arg(αi)| < π and ν > 0 for i = 1, 2, then as a→ +∞ with | arg(a)| < π
2 ,

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−ax
2−bixdx ∼ e−

b2

4a

(
α1 − b

2a

)−ν (
α2 + b

2a

)−ν
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

,
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where the coefficients are given by

cn = 0,

when n is odd, and

cn = 2

n∑
k=0

(−1)k
(
−ν
k

)(
−ν
n− k

)(
i

α1 + b
2a

)k(
i

α2 − b
2a

)n−k
,

when n is even.

Proof. We have

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−ax
2−bixdx = e−

b2

4a

∫ ∞
−∞

(α1 + ix)−ν (α2 − ix)−νe−a(x+ b
2a
i)

2

dx

= e−
b2

4a

∫ ∞
−∞

(
α1 +

b

2a
+ iy

)−ν (
α2 −

b

2a
− iy

)−ν
e−ay

2
dy

= e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
+ iy

)−ν (
α2 −

b

2a
− iy

)−ν
e−ay

2
dy

+ e−
b2

4a

∫ ∞
0

(
α1 +

b

2a
− iy

)−ν (
α2 −

b

2a
+ iy

)−ν
e−ay

2
dy

∼ e−
b2

4a

(
α1 + b

2a

)−ν (
α2 − b

2a

)−ν
2

∞∑
n=0

an
Γ
(
n+1

2

)
a
n+1
2

+ e−
b2

4a

(
α1 + b

2a

)−ν (
α2 − b

2a

)−ν
2

∞∑
n=0

bn
Γ
(
n+1

2

)
a
n+1
2

= e−
b2

4a

(
α1 + b

2a

)−ν (
α2 − b

2a

)−ν
2

∞∑
n=0

cn
Γ
(
n+1

2

)
a
n+1
2

.

After applying the above theorem, we collect the coefficients an and bn given by:

cn = an + bn

=

n∑
k=0

(
−ν
k

)(
−ν
n− k

)(
i

α1 + b
2a

)k(
− i

α2 − b
2a

)n−k

+

n∑
k=0

(
−ν
k

)(
−ν
n− k

)(
− i

α1 + b
2a

)k(
i

α2 − b
2a

)n−k

=
n∑
k=0

(
−ν
k

)(
−ν
n− k

)(
i

α1 + b
2a

)k(
i

α2 − b
2a

)n−k
((−1)n−k + (−1)k).
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Clearly cn = 0 for all n odd. When n is even

cn = 2

n∑
k=0

(−1)k
(
−ν
k

)(
−ν
n− k

)(
i

α1 + b
2a

)k(
i

α2 − b
2a

)n−k
.

5.5. Option pricing with stochastic interest rate

Let the dynamics of stock price be given by (5.1). In addition to that, we assume that the

interest rate dynamics is given by the stochastic differential equation

dr = α1rdt+ β1rdX2, (5.32)

where X (in (5.1)) and X2 are independent Brownian motions and µ, σ, α1, β1 are constants. If

|C̃(t, S, r)〉 is the state vector of arbitrage free option price, then a similar computation as in [59]

can be used to show that the option price C̃(t, S, r) follows the equation

∂C̃(t, S, r)

∂t
=−

[
rS
∂C̃(t, S, r)

∂S
+
σ2S2

2

∂2C̃(t, S, r)

∂S2
− rC̃(t, S, r)

+

∫
R

(C̃(t, Sey, r)− C̃(t, S, r)− S(ey − 1)
∂C̃(t, S, r)

∂S
)ν(dy)

]

+
1

2
β2

1r
2∂

2C̃(t, S, r)

∂r2
+ (α1 − λβ1)r

∂C̃(t, S, r)

∂r
.

With the transformation S = ex, r = ez, and denoting C̃(t, ex, ez) = C(t, x, z), we obtain

∂C(t, x, z)

∂t
=−

[
σ2

2

∂2C(t, x, z)

∂x2
+ (ez − σ2

2
)
∂C(t, x, z)

∂x
− ezC(t, x, z)

+

∫
R

(C(t, y + x, z)− C(t, x, z)− (ey − 1)
∂C(t, x, z)

∂x
)ν(dy)

]
+

1

2
β2

1

∂2C(t, x, z)

∂z2
+ β2

∂C(t, x, z)

∂z
, (5.33)

where β2 = α1 − λβ1 − 1
2β

2
1 .

We denote P̂ (x) = −i ∂∂x and P̂ (z) = −i ∂∂z . We also denote |C〉 = |C(t, x, z)〉 to be the state

vector with associated cost function C(t, x, z).
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Thus the evolution of the state vector can be written as

∂|C〉
∂t

= Ĥ|C〉, (5.34)

where Ĥ = (Ĥ1 + Ĥ2), and from the momentum perspective Ĥ1 and Ĥ2 depend on P̂ (x) and P̂ (z)

respectively. The quantities are given by

Ĥ1 =

[
σ2

2
(P̂ (x))2 − iβ(Ẑ)P̂ (x) + eẐ −

∫
R

(eiyP̂
(x) − 1)ν(dy)

]
, (5.35)

with β(Ẑ) = eẐ − σ2

2 −
∫
R(ey − 1)ν(dy), and

Ĥ2 =

[
β2

1

2
(P̂ (z))2 − iβ2P̂

(z)

]
. (5.36)

In the present case we may consider Ĥ = H(P̂ , tn). For a given τ , we divide the time

interval ta = t0 = 0 to tb = tN+1 = τ in N + 1 equally spaced subintervals {t1, t2, . . . , tN}, such

that the spacing is given by ε = tn − tn−1 = (tb−ta)
N+1 , n = 2, 3, . . . , N . We also set x0 = xa and

xN+1 = xb and z0 = za and zN+1 = zb. A similar computation as in the last section can be used to

show that

〈xn, zn|e−εĤ |xn−1, zn−1〉

≈
∫ ∞
−∞

∫ ∞
−∞

exp[ip(x)
n (xn − xn−1) + ip(z)

n (zn − zn−1)− εH(p(x)
n , p(z)

n , zn, tn)]
dp

(x)
n

2π

dp
(z)
n

2π

=

∫ ∞
−∞

∫ ∞
−∞

exp[ip(x)
n (xn − xn−1) + ip(z)

n (zn − zn−1)− ε(H1(p(x)
n , zn, tn) +H2(p(z)

n , tn))]
dp

(x)
n

2π

dp
(z)
n

2π
.

Therefore we obtain the following:

〈xb, zb|e−τĤ |xa, za〉 ≈
N∏
n=1

∫ ∞
−∞

dxn

N∏
n=1

∫ ∞
−∞

dzn

N+1∏
n=1

〈xn, zn|e−εĤ |xn−1, zn−1〉

=

N∏
n=1

[∫ ∞
−∞

∫ ∞
−∞

dxndzn

]N+1∏
n=1

[∫ ∞
−∞

∫ ∞
−∞

dp
(x)
n

2π

dp
(z)
n

2π

]
exp(iAN ), (5.37)
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where

AN =
N+1∑
n=1

[
p(x)
n (xn − xn−1) + p(z)

n (zn − zn−1) + iε
(
H1(p(x)

n , zn, tn) +H2(p(z)
n , tn)

)]
. (5.38)

As N →∞, AN → A[p(x), p(z), x, z], where

A[p(x), p(z), x, z] =

∫ tb=τ

ta=0

[
p(x)(t)ẋ(t) + p(z)(t)ż(t) + i

(
H1(p(x)(t), z(t), t) +H2(p(z)(t), t)

)]
dt.

We use the notation of Feynman path integral as follows:

lim
N→∞

N∏
n=1

[∫ ∞
−∞

∫ ∞
−∞

dxndzn

]N+1∏
n=1

[∫ ∞
−∞

∫ ∞
−∞

dp
(x)
n

2π

dp
(z)
n

2π

]
=

∫ x(tb),z(tb)

x(ta),z(ta)
D′xD′z

∫
Dp(x)

2π

Dp(z)

2π
.

(5.39)

Therefore we can write the transition probability density in terms of Feynman path integral as

〈xb, zb|e−τĤ |xa, za〉 =

∫ x(tb)=xb,z(tb)=zb

x(ta)=xa,z(ta)=za

D′xD′z

∫
Dp(x)

2π

Dp(z)

2π
eiA[p(x),p(z),x,z]. (5.40)

Theorem 5.5.1. For the stock dynamics (5.1) and interest rate dynamics (5.32), the transition

probability density given by Feynman path integral (5.40) can be computed as

〈xb, zb|e−τĤ |xa, za〉 = lim
N→∞

1√
2πεβ1

N∏
n=1

[∫ ∞
−∞

dzn√
2πεβ1

]
exp(iCN ), (5.41)

where

CN = i

N+1∑
n=1

[
ε

2β2
1

(
zn − zn−1

ε
+ β2

)2

− F (zn)

]
, (5.42)

with ε = (tb−ta)
N+1 . In the above expression

F (Ẑ) = log

[
lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dp
(x)
n

2π

]
exp(iBN

2 (Ẑ))

]
, (5.43)

where

BN
2 (Ẑ) =

N+1∑
n=1

[
p(x)
n (xn − xn−1) + iεH1(p(x)

n , Ẑ, tn)
]
.
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Proof. We note that from (5.37) and (5.38) it is possible to obtain

〈xb, zb|e−τĤ |xa, za〉 ≈ (5.44)

=
N∏
n=1

[∫ ∞
−∞

dzn

]N+1∏
n=1

[∫ ∞
−∞

dp
(z)
n

2π

]
exp(iBN

1 )
N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dp
(x)
n

2π

]
exp(iBN

2 (zn)),

(5.45)

where

BN
1 =

N+1∑
n=1

[
p(z)
n (zn − zn−1) + iεH2(p(z)

n , tn)
]
, (5.46)

and

BN
2 (zn) =

N+1∑
n=1

[
p(x)
n (xn − xn−1) + iεH1(p(x)

n , zn, tn)
]
. (5.47)

Using (5.43) we can write the transition probability density 〈xb, zb|e−τĤ |xa, za〉 as

〈zb|〈xb|e−τĤ |xa〉|za〉 = lim
N→∞

N∏
n=1

[∫ ∞
−∞

dzn

]N+1∏
n=1

[∫ ∞
−∞

dp
(z)
n

2π

]
exp(iBN

1 +
N+1∑
n=1

F (zn))

= lim
N→∞

N∏
n=1

[∫ ∞
−∞

dzn

]N+1∏
n=1

[∫ ∞
−∞

dp
(z)
n

2π

]
exp

(
N+1∑
n=1

(ip(z)
n (zn − zn−1 + εβ2)− εβ2

1

2
(p(z)
n )2 + F (zn))

)
.

We use Gauss’ formula ∫ ∞
−∞

e−
α
2
p2 dp√

2π
=

1√
α
, R(α) > 0,

to obtain (5.41) and (5.42). Hence the theorem is proved.

Note that as H1 is independent of xn, for reasonable Lévy density ν, we can compute

exp(F (Ẑ)) = lim
N→∞

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
n=1

[∫ ∞
−∞

dp
(x)
n

2π

]
exp(iBN

2 (Ẑ)), (5.48)

by the methods as described in the Section 4.1. All the results in that section produce the quantity

(5.48) when r (in the formulas of Section 5.3) is replaced by eẐ .

Remark 5.5.2. A very similar derivation for transition probability can be obtained when the volatil-

ity σ is considered to be stochastic
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6. CONCLUSIONS AND RECOMMENDATIONS

In this dissertation, we have presented a new approach based on the Barndorff-Nielsen and

Shephard model to obtain the arbitrage-free pricing equation and an analytical solution for the

variance swap. We have also presented a new variance driven price index for the financial market.

The stochastic models that are used for analysis are empirically reasonable as well as having many

appealing features from a theoretical finance perspective. The results derived in this dissertation

are potentially important given the empirical fact that the considered financial instruments are

variance driven. The improvement of numerical results in the analysis is very significant over the

existing (non-variance driven) model. More generally, the results obtained in this dissertation have

important implications for their use in, for example, energy markets. Crude oil and natural gas are

one of the most liquid option markets among all commodities. Variance or volatility risk premia for

energy commodities, crude oil and natural gas, is becoming increasingly popular and the approach

considered in this dissertation can be further developed to analyze such markets. The price index

proposed in this dissertation can be considered to be an effective indicator of such markets.

We have also shown that the Feynman path integral method can be used for the analysis of

transition probability density functions for option pricing for certain Lévy process driven financial

markets. Implementing the close connection of certain integrals with special functions, various

interesting results are derived in terms of parabolic cylinder functions and incomplete gamma

functions. A very similar derivation for transition probability can be obtained when the volatility σ

is considered to be stochastic. In our future work we plan to extend this method to more complicated

option pricing models in financial market and obtain asymptotic expansions of solutions in those

cases. We also plan to implement this method to other Lévy process driven financial instruments-

for example-variance, volatility, and covariance swaps.

Financial institutions such as banks face the risk of losing their earnings from investing

in various financial products. Management of a portfolio of asset is risky and a central problem

for financial industry. Therefore it is extremely important for financial managers to develop a

hedging strategies which can fully eliminate or minimize this risk associated with investing in volatile

financial products. Financial companies have adopted sophisticated hedging strategies for hedging
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risks associated with investing in a financial products. In energy market, investors sell futures to

hedge the risk associate with holding a commodity. The Barndorff-Nielsen and Shephard differs

from other models because it incorporates jumps in the model which destroys market completeness.

This makes BNS-model more efficient for modelling financial instruments since market completeness

is not a robust property. In an incomplete market, it is not possible to replicate every contingent

claim even though it is possible to price claim with respect to an equivalent martingale measure.

This is also means that in an incomplete market one cannot construct a heding strategy that can

fully elimate risks associate with a volatile asset. There are several approaches to pricing and

hedging in an incomplete market and the most commonly used approaches are: Merton’s approach,

utility maximization, and quadratic hedging [23]. Quadratic hedging can be defined as the choice

of a hedging strategy which minimizes the hedging error in a mean-square sense [23]. Further

research will be to implement Barndorff-Nielsen and Shephard (BNS) model with variance swaps

to find optimal hedging strategies for for the energy market. An optimal amount of the underlying

commodity that hast to be held for minimizing the hedging error can be determined.
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probability densities of some Lévy driven financial markets, Journal of Applied Mathematics

and Computing, 54(3), 159–182 (2017).

[39] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag Berlin

(2002).

[40] P. Jakubenas, On Option Pricing in Certain Incomplete Markets, Tr. Mat. Inst. Steklova,

237, 123-142 (2002).

[41] A. Javaheri, P. Wilmott and E. Haug, GARCH and volatility swaps, Wilmott Technical

Article, January (2002).

[42] M. Jeanblanc, M. Yor and M. Chesney Mathematical Methods for Financial Markets,

Springer-Verlag London (2009).

[43] M. Kac, Integration in function spaces and some of its applications, [Fermi Lectures] Ac-

cademia Nazionale dei Lincei, Scoula Normal Superiore, Lezioni Fermiane, Pisa (1980).

[44] Z. Kakushadze, Path Integral and Asset Pricing, Quantitative Finance, 15(11), 1759-1771

(2015).

[45] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial

Markets, 3-rd ed., World Scientific Publishing Co., Inc., River Edge, New Jersey (2004).

[46] D. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in

incomplete security markets, Probability Theory and Related Fields, 105, 459-479 (1996).

93



[47] V. Linetsky, The Path Integral Approach to Financial Modeling and Options Pricing, Com-

putational Economics, 11, 129-163 (1998).

[48] E. Nicolato and E. Venardos, Option Pricing in Stochastic Volatility Models of the Ornstein-

Uhlenbeck type, Mathematical Finance, 13, 445-466 (2003).

[49] B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, Springer-Verlag

Berlin Heidelberg (2007).

[50] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.18

of 2018-03-27.
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[56] W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, Wiley: New York

(2003).

[57] L. S. Schulman, Techniques and Applications of Path Integration, John Wiley & Sons, Inc.,

New York, 1981 (1981).

[58] I. SenGupta, Generalized BN-S stochastic volatility model for option pricing, International

Journal of Theoretical and Applied Finance, 19 (02), 1650014 [23 pages] (2016).

[59] I. SenGupta, Option pricing with transaction costs and stochastic interest rate, Applied Math-

ematical Finance, 21(5), 399-416 (2014).

94

http://dlmf.nist.gov/


[60] S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer Finance

Textbooks (2004).

[61] A. Swishchuk, Modeling of Variance and Volatility Swaps for Financial Markets with Stochas-

tic Volatilities, Wilmott Magazine, September, Technical article No 2, 64-72 (2004).

[62] A. Swishchuk, Modeling and Pricing of Variance Swaps for Multi-Factor Stochastic Volatilities

with Delay, Canadian Applied Mathematics Quarterly, 14(4), 439-67 (2006).

[63] A. Swishchuk, Modeling and Pricing Of Swaps For Financial and Energy Markets with

Stochastic Volatilities, World Scientific Publishing Company (2013).

[64] A. Swishchuk and N. Vadori, Smiling for the Delayed Volatility Swaps, Wilmott, November

2014, 62-73 (2014).
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