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ABSTRACT

This dissertation studies a couple of variance-dependent instruments in the financial mar-
ket. Firstly, a number of aspects of the variance swap in connection to the Barndorff-Nielsen and
Shephard model are studied. A partial integro-differential equation that describes the dynamics
of the arbitrage-free price of the variance swap is formulated. Under appropriate assumptions for
the first four cumulants of the driving subordinator, a Vecef-type theorem is proved. The bounds
of the arbitrage-free variance swap price are also found. Finally, a price-weighted index modulated
by market variance is introduced. The large-basket limit dynamics of the price index and the “er-
ror term” are derived. Empirical data driven numerical examples are provided in support of the
proposed price index.

We implemented Feynman path integral method for the analysis of option pricing for cer-
tain Lévy process-driven financial markets. For such markets, we find closed form solutions of
transition probability density functions of option pricing in terms of various special functions.
Asymptotic analysis of transition probability density functions is provided. We also find expres-
sions for transition probability density functions in terms of various special functions for certain

Lévy process-driven markets where the interest rate is stochastic.
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1. INTRODUCTION

In modern markets swaps are becoming increasingly useful for hedging and speculation of
volatility. A swap is a financial derivative in which two counterparties exchange cash flows of two
securities, interest rates, or other financial instruments for the mutual benefit of the exchangers.
The benefit depends on the type of financial instruments involved. There are various types of swap
in a market. In this study, we focus mainly on the variance swap. The variance swap is a forward
contract on the square of future realized volatility, which is referred to as the variance. Since swaps
are relatively recent financial instruments that can be used by traders for volatility hedging and
speculation. The variance swap is usually very profitable when the traders have some insight on
the level of the future fluctuation of the underlying stock price.

The literature devoted to the variance swap is developing rapidly. In [19] the authors pro-
vided an analytical approximation for the valuation of volatility swaps and analyzed other options
with such analytic estimation. In [41] the authors discussed the valuation and hedging of volatility
swaps within the frame of a GARCH(1,1) stochastic volatility model: A general partial differen-
tial equation approach was used to determine the first two moments of the realized variance in a
continuous or discrete context. In [61] a new probabilistic approach using the Heston model is pro-
posed to study various swaps for financial markets. In [62, 63] variance swaps for financial markets
with underlying asset and stochastic volatilities with delay were considered; and additionally some
analytical approximate formal asymptotic forms were obtained for expectation and variance of the
realized continuously sampled variance for stochastic volatility with delay. The variance swap was
evaluated with delay both in a risk-neutral world and in the physical world. An upper bound for
delay as a measure of risk was obtained and two numerical examples as applications using S&P 60
Canada Index (1998-2002) and S&P 500 Index (1990-1993) were provided to price variance swaps
with delay. As observed in [62], variance swaps for stochastic volatility with delay is similar to vari-
ance swaps for stochastic volatility in the Heston model. However, for stochastic volatility models
with delay, more parameters are present compared to the Heston model. In [64], the Heston model
is presented with a variance drift-adjusted version that leads to a significant improvement of the

market volatility surface fitting compared to the Heston model.



In order to study swaps it is essential to model the “riskiness” of the underlying assets.
Classical Black-Scholes model assumes that the volatility of stock, which is a measure of riskiness
of the underlying asset, is a constant. Obviously such assumptions for financial models are not
compatible with derivative prices observed in the market. One of the most popular approaches in
recent literature to address this issue is connected with the stochastic volatility scenario. Financial
time series of different assets share many common features such as heavy tailed distributions of
log-returns, aggregational Gaussianity, and quasi long-range dependence. Many such facts are
successfully captured by models in which stochastic volatility of log-returns is constructed through
Ornstein-Uhlenbeck (OU) type stationary stochastic process driven by a subordinator, where a
subordinator is a Lévy process with no Gaussian component and positive increments. Using Lévy
processes as driving noise, a large family of mean reverting jump processes with linear dynamics
can be constructed. On these processes various properties such as positiveness or choice of marginal
distribution can be imposed. These Lévy-driven processes are known as non-Gaussian Ornstein-
Uhlenbeck processes or simply Ornstein-Uhlenbeck processes. Non-Gaussian processes of OU type
are one of the most significant candidates for being the building blocks of models of financial
economics. These models offer the possibility of capturing important distributional deviations
from Gaussianity and thus are more practical models of dependence structures. This model is
introduced in various works (see [9, 12, 13]) of Barndorff-Nielsen and Shephard and is known in
modern literature as the BN-S model. In [16] the authors investigate swaps written on powers of
realized volatility in the stochastic volatility model proposed by Barndorff-Nielsen and Shephard.
In [34] the arbitrage free pricing of variance and volatility swaps for Barndorff-Nielsen and Shephard
type Lévy process driven financial markets are studied. One of the major challenges in arbitrage
free pricing of swap is to obtain an accurate pricing expression which can be used with good
computational accuracy. In [34], the authors obtain various approximate expressions for the pricing
of volatility and variance swaps. It is shown that with the approximate formulas obtained from the
Barndorff-Nielsen and Shephard model the error estimation in fitting the delivery price is much less
than the existing models with comparable parameters. Numerical results are provided in support
of the accuracy of approximate formulas. A similar analysis for the covariance swap is provided in

[33].



In the Chapter 3 of the present dissertation we study various aspects of the variance swap
in connection to the BN-S model.

A stock index or stock market index is a market statistic of the value of a section of the
stock market. It is typically computed using some weighted average of selected stocks. In general,
a price index can be thought of as a weighted sum of the prices of stocks in the index basket. It is a
tool used by investors and financial managers to describe the market, and to compare the return on
specific investments. Two of the most popular index types are price-weighted and capitalisation-
weighted indices. There has been an increasing trend in recent years to create index funds, a
passively managed mutual funds that are based on market indices.

Some indices, such as the S&P 500, have multiple versions. These versions can differ based
on the weights and dividends. For example, there are three versions of the S&P 500 index: price
return, which only considers the price of the components, total return, which accounts for dividend
reinvestment, and net total return, which accounts for dividend reinvestment after the deduction of
a withholding tax. In the Section 4.1 of the present dissertation we introduce a price-weighted index
modulated by market variance/volatility. As variance swaps can be used by traders for volatility
speculation, the presented price index is strongly connected to the pricing of variance swap. We
assume a BN-S type asset-price model for the component stocks with stochastic volatility. This
is a generalized model compared to the existing simple single-sector model in [20]. We consider
the index as a weighted sum of the product of these stock-price processes with the square of the
volatility. The main results focus on the large-basket limit dynamics of the price index and limit
behavior of the “error term” for the large basket dynamics. In [35] the price index is derived for the
processes with jumps in the asset-prices. In that work each asset follows a jump diffusion model
with constant drift and instantaneous volatility. The asset-prices are correlated via a single market
factor capturing global economic effects and each asset has its own idiosyncratic noise consisting of
a Brownian component and a jump component. The model presented in this dissertation considers
stochastic volatility, and the asset-price dynamics is more general compared to the model in [35].

In the Chapter 4 of the present dissertation we introduce and analyze a new price index
that is dependent on the market variance.

The path integral method is proposed by R. Feynman in [30] and nowadays it becomes

one of the most powerful methods in theoretical physics. A path integral is defined as a limit of



the sequence of finite-dimensional integrals, in a similar way as the Riemannian integral is defined
as a limit of the sequence of finite sums. Over the last few decades it finds its application in
various other disciplines such as statistics, polymer physics, financial markets etc. (see [45, 54,
57]). In financial markets path integral methodology has been successfully implemented in options
pricing for reasonably simple models. In [47] a review of some applications of the path integral
methodology of quantum mechanics to financial modeling and options pricing is provided. In the
papers [4, 5], describing physical analogies, the path integral method is applied to a series of financial
problems. In [17] using Feynman path integral the evolution operator kernel for the Merton-Garman
Hamiltonian is constructed. Based on this calculation option pricing formula, which generalizes
the Black-Scholes result, is obtained. In [18] a general formula to price European path-dependent
options on multidimensional assets is obtained and implemented by means of various flexible and
efficient algorithms. In a recent paper [44] explicit formulas are given for computing the bond
pricing function in Black-Karasinski model in the analog of quantum mechanical “semiclassical”
approximation.

The organization of this dissertation is as follows: The remainder of Chapter 1 includes
some preliminaries of Lévy processes, a brief introduction to path integrals and a brief summary of
the Barndorff-Nielsen and Shephard model aslo known in literature as the BNS-model. In Chapter
2, we present some already known results in the literature. We present the works of B. M. Hambly
and J. Vaicenavicius [35], J. Vecef and M. Xu 2.2, J. Vecef [65, 66, 60], S. Habtemicael and I.
SenGupta [34], N. Bellamy and M. Jeanblanc [15] and B. Baaquie 2.5. In Chapter 3, after giving
a brief overview of pricing procedure of variance swap and the Barndorff-Nielsen and Shephard
(BN-S) model. We formulate a partial intrgro-differential equation that describes the dynamics
of the arbitrage-free price of the variance swap. Under appropriate assumptions for the first four
cumulants of the driving subordinator, we prove a Vecef-type theorem that gives the arbitrage-
free price of the variance swap. Finally we find the bounds of the arbitrage-free variance swap
price. In Chapter 4, we introduce a price-weighted index modulated by market variance and study
the index dynamics for the large basket limit case. We also study numerical examples based on
empirical data in support of the proposed price index [37]. In Chapter 5 of this dissertation, we
implement the method of Feynman path integral for the analysis of option pricing for certain Lévy

process driven financial markets. For a Lévy process driven financial market, we find closed form
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solution of the transition probability density function (or, the pricing kernel) of option pricing in
terms of various special functions. Asymptotic analysis of transition probability density function
is provided to represent the option pricing formulas for “sufficiently large” horizon date. We also
provide formulas for transition probability density function for certain Lévy process driven markets
where the interest rate is stochastic [38]. Chapter 6 is devoted the conclusion of the present
dissertation as well some recommendations for further research.
1.1. Lévy processes: definitions and properties

In this section we introduce Lévy processes together with some definitions and properties.
Lévy processes are much like Brownian motion (a process with stationary and independent incre-
ments) but have discontinuous paths or have jumps. In financial mathematics, Lévy processes are
becoming extremely useful because they can describe the observed reality of financial markets in
a more accurate way than models based on classical Brownian motion. Such processes have been
proposed to incorporate many empirical features in the return of financial stock prices. In this
section we follow the excellent textbooks on Lévy processes by R. Cont and P. Tankov [23], W.
Schoutens [56], D. Applebaum [3] and J. Jacod and A. N. Shiryaev [39].

Definition 1.1.1 (Lévy process [23]). A cddldg (sample paths are almost surely right continuous
with left limits) stochastic process X = (Xy)i>0 on (Q,F, (Fi)i>0, P) with values in R? such that

Xo =0 is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times ty, . . . , t, the random variables

Xigs Xty — Xty ooy Xy, — Xy, are independent.
2. Stationary increments: the law of X1 — Xy does not depend on t.
3. Stochastic continuity: Ye > 0, limp_o P (| X¢4n — Xi| > €) = 0.

Definition 1.1.2 (Lévy measure [23]). Let (X;)i>0 be a Lévy process on RY. The measure v on R
defined by:
v(A)=E[#{t€[0,1] : AX; #0,AX; € A}],

for A € B(R), is called the Lévy measure of X. v(A) can be interpreted as the expected number of

Jumps whose size is an element of A per unit time, see [23].



Definition 1.1.3 (Poisson process [23]). Let (7;)i>1 be a sequence of independent exponential ran-

Az

dom variables with parameter X that is, with cumulative distribution function P[r; > x] = e=** and

T, => i 7i. The process (N¢)¢>o0 defined by

Ny =)l

n>1

1s called a Poisson process with intensity \.

The sample paths of a Poisson process [23] are piecewise constant, almost surely right
continuous with left limits and with jump size of 1. The jumps [23] occur at times 7; and the inter-
val between jumps are exponential distributed. Poisson process have independent and stationary

increments. For every ¢t > 0, N; follows the Poisson distribution with parameter At, that is

A (/\t)".

P[N;=n]=e p

The characteristic function of a Poisson process is given by

on,(u) =E [ei“N’*] = exp{At (em - 1)}

Definition 1.1.4 (Compound Poisson process [23]). Let (Ni)i>0 be a Poisson process with intensity
A > 0 and (Y;)i>1 be a sequence of i.i.d random variables with distribution f, and which are

independent of (N¢)i>0. The stochastic process X; defined as

Ny

Xe=) Y

i=1
1s called compound Poisson process.

The sample paths of a Poisson process are piecewise constant, almost surely right continuous
with left limits but the jump sizes are random with distribution f. Compound Poisson process has
independent and stationary increments. The distribution of compound Poisson process is known

explicitly but the characteristic function [23] is given by

ox,(u) =E [ei“X’f] = exp{)\t/ (e™ —1) f(dz)}.

R
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To every cadlag process (X¢)¢>0 one can define an integer-valued random measure Jx (w; dt, dz)

as

Tx (widt, dz) =Y " 1{ax,(w)£010(s, A%, () (dt, dz),

where § denotes the Dirac measure. The measure Jx, can be interpreted as a counter which
increase whenever within a time increment dt a jump occurs whose size falls into dt. For any Borel

measurable function f, one can define

> r@x) = [ [ raxar.as)

0<s<t

Definition 1.1.5 ([52]). Let (X;)i>0 be a Lévy process and let D == {z € C : E [eR#X1] < oo}

The cumulant function k: D — C for t > 0 is defined as
en(z)t - F [er1] )

The cumulant function exists for z € C with R(z) = 0 and in which case k(iu) agrees with

the characteristic exponent of X1

Y(u) = log [eZXl] .

The characteristic exponent of X7 usually has a simpler form than the distribution of X; for which

it determines uniquely. For further details, we refer the reader to [23] and [52].

Theorem 1.1.6 (Lévy-Khintchine formula [23]). Let (X¢)i>0 be a Lévy process. Let h: R — R be
a bounded measurable function such that h(x) = x in a neighbourhood of zero. Then there exists a

triplet (vy,02,v) such that the cumulant function can be written for z € D as

k(z) =vz+ 30222 + /R (e** =1 — zh(x)) v(dz),

wherey and o® are constants, and v is the Lévy measure. (02,v,7) is called the characteristic triplet
of the Lévy process (X¢)i>0. Different choices of h do not affect 0> and v but v depends on the
choice of h.



If X is a a Lévy process with characteristic triplet (o2, v,7), then [23]

t
X, X =0"t+ ) ]AXS\2:02t—|—/ /yQJX(dt,dy)
s€0,t] 0 JR
AX#0

is called the quadratic variation X.

Theorem 1.1.7 (It6 formula for multidimensional Lévy process [23]). Let X; = (X},...,X{)
be a multidimensional Lévy process with characteristic (A,v7y). Then for any CY? function f :

[0,T] x R? — R,

t t
%0 = 10,0 = [ S s xaxi+ [ s xas

o1 81.1 5 0 0
1t & O2f
_ A X.
+ 2 /0 i:lzjzl K 8.’131‘8(13]‘(  Xo—)ds
AX#0 d of
+ f(37Xs—+AXs)_f( XS—)_ZAXgi( XS—)
0<s<t i=1 0

1.2. Path integrals

In this section, we introduce path integrals following an excellent book of S. Albeverio,
R. Hgegh-Krohn, S. Mazzucchi [2]. In quantum mechanics the state of the particle at time ¢
is described by a function (z,t) which belongs to Lo(R™) for every ¢ and satisfies Schrédinger
equation of motion

9y

-5 = H, (1.1)

with ¢ (z,t) = g(x), where H is Hamiltonian of the quantum particle. In [2, 43] M. Kac provided a
solution to (1.1) when H = —%A + V(z), where A is the Laplacian operator on R"™. The solution
is the celebrated Feynman-Kac formula:

la,t) = /Wt

e {- [ t V (wls))ds | g(u(0)dPra () (12)

s



where Wy , = {w € [C[0,t];R] : w(0) = «} and P, ; is the Wiener measure on W; ;. Now explain how
the Wiener measure P, [22] can be constructed on the space of all continuous paths w : [0,t] — R
such that w(0) = z. Consider a cylinder set of paths defined by time 0 < t; < ty < --+ < t,, and
real intervals I; = (ai, b;), (1 = 1,2,...,n) as C(t1,ta, ..., ty; [1,..., In) = {w(t) € Wi, : w(t;) €
I; for all 1 < i < n}. The cylinder C(t1,to;I1,I2) consists of all continuous functions w(.) such
that a1 < w(t1) < by and ag < w(te) < by. That is, C(ty,ta; I1, I2) consists of all continuous paths
that are observed at ¢; to be between the levels a1 and by and at ts to be between as and bs.
The collection Z of finite disjoint unions of cylinder sets is an algebra which generates the product
sigma-algebra F. We can define a measure p on a cylinder set and then extend p to all sets in Z
such that p is finitely-additive on Z. By Caratheodory Extension Theorem, it can be shown that
i can be extended to a unique countably additive measure P, on F called the Wiener measure.
For further detail on the construction of the Wiener measure, we refer the reader to [22].

The integral (1.2) is called a path integral. For a thorough investigation of Feynman path
integral, we refer the reader to [2].
1.3. Barndorff-Nielsen and Shephard model

Consider a frictionless financial market where a riskless asset with constant return rate r
and a stock are traded up to a fixed horizon date 7. Assume that (see [12, 13]) the price process
of the stock S = (S¢)¢>0 is defined on some filtered probability space (2, F, (Ft)o<i<T, P) and is

given by:

St = So exp(X¢), (1.3)
dX; = (u+ Bo?)dt + oy AWy + pdZy, (1.4)
do? = —Xoldt +dZy, o >0, (1.5)

where the parameters pu, 8, p, A € R with A > 0 and p < 0. W = (W;) is a Brownian motion and the
process Z = (Zy) is a subordinator. Barndorff-Nielsen and Shephard refer to Z as the background

driving Lévy process (BDLP). Also W and Z are assumed to be independent and (F;) is assumed



to be the usual augmentation of the filtration generated by the pair (W, Z). This model is known in
literature as Barndorff-Nielsen and Shephard model (BN-S model). In (1.4) the Brownian motion
and the Lévy process appear as a linear combination and therefore the dynamics of the process
is linear. Also, the negative sign appearing in (1.5) makes the associated process mean-reverting.
Observe that the fact that (1.5) is driven by Z (instead of W) makes the process non-Gaussian.
We denote the interval (0,00) by R+. We assume that Z satisfies the assumptions as

described in [48]. The assumptions are as follows.
Assumption 1.3.1. Z has no deterministic drift and its Lévy measure has density w(x).

From Assumption 1.3.1 it follows from [55] (Theorem 19.3) that the cumulant transform

k(0) = log E[e?%1], where it exists, takes the form

k(0) = / (" — V)w(z) da.
R+
Assumption 1.3.2. Letting 0 = sup{f € R : k(f) < +o00}, then 6 > 0.
Assumption 1.3.3. lim, ,;x(f) = +oc.

An important concept that will be useful for the next theorem is that of a stochastic
exponential of a Lévy process ((X):>0 also known as a Doléans-Dade exponential. For the proof of

the following proposition, see [23].

Proposition 1.3.4 (Doléans-Dade exponential [23]). Let (X )>0 is a Lévy process with Lévy triplet

(02,v,7). There exists a unique cddldg process (Zi)i>o such that
dZy = Zy_dXy, Zy=1.

Z 1is given by:
02
7, = X" [T a+ax)ea¥.

0<s<t

Iff |x|v(dx) < oo then the jumps of X have finite variation and the stochastic exponential

of X can be expressed as

10



2
theXtc_Tt H (1+AX3)€_AXS,

0<s<t

where X§ s the continuous martingale part of X;.

Z is called the stochastic exponential or Doléans-Dade exponential of X and is denoted by
Z = E(X). It is shown in [48] that there exists an equivalent martingale measure (EMM) under
which equations (1.4) and (1.5) preserve their structures. We summarize the related theorem from

[48] (Theorem 3.2).

Theorem 1.3.5 (E. Nicolato and E. Venardos [48]). Let y € V' where V' = {y : Ry —

Ry| fR+(\/y(x) —1)2w(z) dx < +oo}. Then the process

Yi= (== (B4 5oF — M¥(p),

Ot

where kKY(0) = fR+ (e — V)wY(z) dz, for real part of § < 0, and w¥(z) = y(z)w(z), are such that

T
P(/O ¢§ds<oo)=1,

and

LI=EW W+ (y—1)*(uz —vz)), 0<t<T

1 a density process.
The probability measure QY defined by dQY = L% dP is an EMM under which equations

(1.4) and (1.5) can be written as:

dXy =bydt + o, dWy + pdZyy, (16)
do? = —XoZdt +dZy, o8 >0, (1.7)
where
1
b= (r = At (p) = 507), (18)
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where Wy and Zy; are QY-Brownian motion and QY-Lévy process respectively. The processes W

and Z are independent under QY.

For the rest of this section we assume that the risk-neutral dynamics of the stock price and
volatility are given by (1.6), (1.6) and (1.7). Let the random measure associated with the jumps
of Z, and Lévy density of Z be given by Jz and vz respectively. The compensator for Jz(Adt, dx)
is Av(dz)dt and we define Jz(\dt,dz) = Jz(\dt,dx) — Avz(dz)dt. Clearly, with respect to the

risk-neutral measure, the dynamics of S; is given by

d ~
ﬂ = rdt + op dW; + / (eP” —1)Jz(Adt,dzx). (1.9)
St R+
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2. MOTIVATION AND ALREADY KNOWN RESULTS

The aim of this chapter which consist of five main sections, is to present some already
known results in the literature. The chapter consist of four main sections. In section 2.1, we
present results of B. M. Hambly and J. Vaicenavicius [35] concerning a simple single-sector model.
In section 2.2, we present some results of J. Vecer and M. Xu [67] for the arithmetic Asian options
when the stock is driven by special semimartingale processes and results of J. Vecer [65, 66, 60]
for arithmetic Asian options when the stock is driven by geometric Brownian motion. Section 2.2
is devoted to the results of S. Habtemicael and I. SenGupta[34], where the authors studied the
variance swap for Gaussian models such as the Hull-White model [36] and non-Gaussian model
such the Barndorff-Nielsen and Shephard Model. In section 2.4, we present N. Bellamy and M.
Jeanblanc [15] for range of the European claim prices. Section 2.5 is devoted to the results of B.
Baaquie for path integrals and Hamiltonian for financial markets. The material covered in this

chapter forms the basis of our dissertation.

2.1. Price index approximations and weak convergence theorems

In this section, we present some results of B. M. Hambly and J. Vaicenavicius who studied
the price-weighted index for simple single-sector model where all assets have the same constant drift,
instantaneous volatility, and are correlated via a single market factor capturing global economic

effects. In [35] B. M. Hambly and J. Vaicenavicius considered the following problem:

e Consider a probability space (Q", F™,P™) corresponding to a market with n risky assets and

a riskless asset.

e Suppose the prices process S;(t) where i = 1, ..., n for the risky assets evolve under a measure

P™ according to the jump diffusion process

O — o+ opddt (1) + 0T EW + [ (DNt (2)
Si(t—) R\{0}
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o M, W, are Brownian motions, /N; is a Poisson random measure with a finite Lévy intensity
measure v = \g, where \ is the intensity of the Poisson counting process N*(t) and g is the
probability density function of the jumps .7,:,' occurring at random times T,i in the compound

Poisson process

N'(t)

t
R;(t) :/ / eN;(du, dx) = Y Jf.
0 JR\{0} k=1
with the jumps occurring at random times T,i. The process M, Wy,..., Wy, Ry,..., R, are

independent. « is a drift coefficient, the total instantaneous expected return per unit time is

given by u = o+ fR{O}(ex — 1)v(dz) where p > 0.

e The instantaneous volatility, arising from the Brownian motion terms, is denoted by o > 0;
and p € (0,1) is the correlation coefficient which is assumed to be strictly positive (although

provided p = 0 we could take p < 0).

e The riskless money market account is assumed to pay a constant rate of interest r satisfying

0<r<u.

e Define the price-weighted market index
In(t) = =) Si(h). (2.2)
i=1
e Combining model (2.1) and (2.2), the index process has dynamics

L (1) = /0 L (u—)[(c+ Bo)du + podM (u)] + ——TL, (1)

b
vn
where the process I, (t) is given by

n

_ VLN a4 L Ve — VN (L d
1 (1) = P Z/O Si( >dm<>+ﬁ;/ﬂ§\{o}sl< (e — 1) Ny(dt, de).
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e More generally, define the k-th empirical moment process
1 n

19() = - 3" 8kw)
i=1

e In [35], B. M. Hambly and J. Vaicenavicius found an approximation process driven by fewer
randomness which approximates the index process I, for large values of n. Hambly and
Vaicenavicius showed that the process IL,(t) = /n (In(t) — Ir(Ll)(t)) converges weakly to a

non-trivial process II.
e The following theorem is a summary of the main result of Hambly and Vaicenavicius [35].

Theorem 2.1.1 (B.M. Hambly, J. Vaicenavicius [35]). Let k,i € N and suppose that
E[5;(0)*] < 0o and [, e***v(dx) < co. Then I = 1™ a5 n — oo, where the process 1)

is given by

—1
dI®(t) = <k‘a + MGQ + ﬁk> I® (@) dt + kopI™® (t)dM,

and

I, = II := /t§\/1(2)(u)dB(u) as m — oo,
0

where = a+ P, v =0%(1—p?), k= Po — 2B = fR\{O}(em —1)?v(dx), B = fR\{O}(ek’” —
1)2v(dz) € = /7 + k and where B and M are independent Brownian.

2.2. Pricing Asian options

In this section, we present some results of J. Vecet and M. Xu [67] concerning the arithmetic
Asian options when the stock is driven by special semimartingale processes. J. Veéef and M. Xu
showed that the inherently path dependent problem of pricing Asian options can be transformed
into a problem without path dependency in the payoff function. J. Vecef and M. Xu also showed
that the price satisfies a simpler integro-differential equation when the stock price is driven by a

process with independent increments, where Lévy processes are a special case. J. Vecet [60, 66]
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studied a unifying approach for pricing Asian options when the underlying stocks follows a geometric

Brownian motion. In [67, 66] J. Vecef and M. Xu considered the following problem:

e Let S be a real-valued, strictly positive semimartingale on the stochastic basis (Q2, F,F =

(Ft)t>0,P) that satisfies the usual conditions.

e Assume that €S, is a martingale under P, where r is constant interest rate and P is a

risk-neutral measure .

e Define a new measure Q by

aQ _ s,
dP - Soe”

(2.3)

and a numeraire process Z; = g—; This change of numeraire technique was introduced by H.

Geman, N. El Jaroui, J.-C. Rochet [31].

Theorem 2.2.1 (J. Vecei and M. Xu [67]). Let V*(0, So, K1, K2), the price of the Asian

option be defined as

V)\(Oa SO7K17 KQ) = EP

T (/OT SydA(t) — K157 — 1@)1 .

Then
VX0, So, K1, K2) = So - E9 [Zy — K1) 7],
where Q is defined (2.3), X, is the self-financing portfolio
dXy = q—dSy + r(Xy— — ¢S )dt,

with the initial condition Xo = qoSo — e "T Ko and trading strateqy q; = e™"" tT e"SdA(s),

where \(t) is the averaging factor and Zy = )5{—:

e J. Vecer and M. Xu [67] considered the stock price with the following dynamics:

dS; = S,_dH,, (2.4)
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where H is a semimartingale. Using the notation in J. Jacod and A. N. Shiryaev [39] H has

the canonical decomposition :

H,=rt+ H + / / w(ds,dz) — v(ds,dx)),
with Hy = 0, Hy is the continuous martingale part, u(dt, dz) is the random measure associated

with the jumps of H and v(dt,dx) is the compensator.

e J. Vecef and M. Xu [67] proved the following integro-differential equation for the price of the

Asian option.

Theorem 2.2.2 (J. Vecer and M. Xu [67]). Suppose that H is a process with independent
increment given by (2.4). The value of the Asian option is a function of t and Z;, denoted
by v(t, Zy), such that V7(0,S0, K1, K2) = Sov(0,Zp). Assume v, v, and v, exist and are

continuous. Then the following integro-differential equation holds:

/Ot /OO {vs <s,ZS_+(qs_ —Zs_)lix>}v(ds,dx)
/ / { )+ oa(s, Zo) (gs —Zs—)lix}v(ds,dx)

1
+/ vs(s, Zs—)ds + 21’22(3=Zs—)((15— - Zs—)Qd <Hc>s =0
0

for0<t<T.

e J. Vecer [60, 65, 66] considered an Asian call option whose payoff at T is given

17 -
=| = Sit)dt — K
(7 [ sta-x) .
where K is the strike price and the underlying asset S(t) follows a geometric Brownian motion:

dS(t) = rS(t)dt + o S(t)dW (t),

where W(t), 0 <t <T,is a Brownian motion under the risk-neutral measure P.
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e It is shown in S. E. Shreve [60] that the value of the Asian option
olt, (1), Y (1) = E [ TOV(D)| F ()]

where Y (t) = f(f S(u)du satisfies the following partial differential equation:

1
v(t, z,y) + revg(t, x,y) + xvy(t, z,y) + 5029021)“(@ z,y) = rvg(t, z,y),

and the boundary conditions
Jr
u(t,0,y) = e 7T (% _ K) 0<t<T,ycR,

lim v(t,z,y) =0,0<t< T,z >0,
yd—oo

and

Y +
U(T,.’I;',y):<T_K> 7x207y€R

e J. Vecer [60, 65, 66] showed in the following theorem that the dimensionality of pricing the

Asian option can be reduced with simplified boundary conditions.

Theorem 2.2.3 (J. Vecer [60, 65, 66]). For 0 <t <T, the risk-neutral pricing
V(1) = E [0V (1) | F (1)

at time t of the Asian call option is

where g(t,y) satisfies

1
a(tsy) + 507 (v(t) - Y2 gyy(t,y) =0, 0<t<T, yeR,
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and X (t) is given by

L(1—-e)S(t) — e mTYEK, 0<t<T—ec
L1—eT)S(t) + e*"(T*t)% fr}_c S(uydu —e"T-DK, T —c<t<T.

The boundary conditions for g(t,y) are

g(T,y) =y ",y R,

lim g(t,y)=0,0<t<T

y——00

and

lim (g(t,y) —y)=0,0<t<T.

Yy—>—00

2.3. Pricing variance swap for stochastic volatility model
In [34] S. Habtemicael and I. SenGupta studied the variance swap for Gaussian models such
as the Hull-White model [36] and for non-Gaussian model such the Barndorff-Nielsen and Shephard

Model. S. Habtemicael and I. SenGupta [34] considered the following problem:

e Consider a probability space (Q,F,F = (Fi)i>0,P) with a risky asset (St)¢>0 and riskless

asset with constant interest rate r.
e Assume that the stock price process (S;);cr+ satisfies the following dynamics:

dSy = rSydt + 04 Sy dW} (2.5)

do? = ko? dt + Co? dW? (2.6)
where r is the risk-free interest rate, x < 0 and ( are real constant, W,' and W7 are indepen-
dent Wiener processes and the variance process oy follows Hull-White model [36].

e S. Habtemicael and I. SenGupta [34] proved the following theorem concerning the arbitrage
of the variance swap Pyq = E [e‘rT (012%(5’) — KVM)], where Ky, is the delivery price or

exercise price for the variance swap and 0%(S) is the realized variance defined as the average
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of the instantaneous variance which is given by:

1 (T
o%(S) = T/o o2ds.

Theorem 2.3.1 (S. Habtemicael and I. SenGupta [34]). The arbitrage free price of variance
swap for the stock dynamics (2.5) and volatility dynamics (2.6) is given by
T ‘78 T
PVG/I" = eir <Kﬂ_‘(€ﬁ — 1) — KVar) .

e S. Habtemicael and I. SenGupta [34] prove the following theorem related to the arbitrage-free

pricing of variance swaps when the underlying stock price process follows the Barndorfi-

Nielsen and Shephard Model .
Theorem 2.3.2 (S. Habtemicael and I. SenGupta [34]). The arbitrage free price of the
variance swap Pyor = E [ (0%(S) — Kvar)] for the BNS-Model (1.6), (1.7) is given by

1
Py, = e T [T ()\71 (1 — e*)‘T> (0(2) — m) + /ﬂT) + p2)\/£2 — Kvyurl|

where k1 and ko are the first cumulant (i.e., the expected value) and the second cumulant

(i.e., the variance) of Z1 respectively.

2.4. Range of prices

In this section, we present some results of N. Bellamy and M. Jeanblanc [15]. It is well known
that for an incomplete market, there are several equivalent martingale measures, which means it
is not always possible perfectly hedge every contingent claim. Therefore to price options, one has
to choose a particular martingale measure and any choice of an equivalent martingale measure will
correspond to an arbitrage free price. In [15] N. Bellamy and M. Jeanblanc determined the range
of European and American claim prices. Here I present the following problem for the range of the

European claim prices, for more detail see N. Bellamy and M. Jeanblanc [15].
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e Consider a financial market (Q, F, F = (F;):>0, P) with riskless asset with deterministic return

r and a risky asset (S¢)¢>0 with the following dynamics under the historical probability:
dSt = St_ (b(t)dt + O'(t)th + ¢(t)th)

where b, 0 and ¢ are deterministic bounded functions with |o(t)| > ¢, ¢(t) > —1, % <|o(t)| <
¢ where c¢ is a strictly positive constant. W is a Brownian motion and M; = N; — At is the

compensated martingale associated with a Poisson process with deterministic intensity A.

e Since the market is incomplete, it is not possible to hedge a price for every contingent claim
H € Fr. Consider the set of values of EQ[R(T) H|F;], where R(T) = e~ Jo () and Q describes
the set of risk-neutral measures. N. Bellamy and M. Jeanblanc denote this set as the set of

viable prices, see [15, 25, 42] .

e Let V7(t) be a time ¢ viable price for the contingent claim H be defined by

RV (t) = EY[R(T)H|F,).

under the martingale measure P7, where the set of equivalent martingale measures is parametrized

by mean of a process «y valued in (—1, 00).
e The range of viable prices is an interval given by |inf;cr V7 (¢), super V7 (1)].

e N. Bellamy and M. Jeanblanc [15, 25] studied the range of viable prices which is an interval

given by [inf;er V7 (¢), supyer V7(t)], where T is the set of predictable processes « such that

L7 .= % ‘ 7 is a P7-square integrable strictly positive martingale. For more detail definition

of L7, see Proposition 3.1 in [15].

e Consider the Black-Scholes function C such that

R(t)CO(t, X;) = E[R(T)(X7 — K)"[Xy], C(T,2) = (z — K)",
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when the dynamics of X are given by

dXt == Xt(T‘(t)dt + O'(t)th), X(] = .

e (' is a convex function of z with 0,C(¢,x) < 1 and satisfies
L(O) ¢, x) = rC(t, 2),

where

1 2
L(f)(t,x) = g{(t,x) + rxg‘i(t,x) + 2x202296“£(t,x).
e N. Bellamy and M. Jeanblanc [15, 25] proved the following theorem related to the time ¢

viable price V7 (¢).

Theorem 2.4.1 (N. Bellamy, M. Jeanblanc, [15, 25]). Let P? € Q. Then the associated viable
price is bounded below by the Black-Scholes function, evaluated at the underlying asset value,

and bounded above by the underlying asset value, i.e.,
R(t)C(t,S) <EY [R(T)(Sr — K)T|F] < R(t)S,

where R} = E7 [ftT R(s)(1 4 7s)A(s)AH(s, Ss)ds\}"t} :

e The range of viable prices V7 (t) = %EW [R(T) (St — K)T|F] is exactly the interval |C(t, St), St[,

for more details see [15, 25].
2.5. Path integrals for financial markets
In this section, we present some results of B. Baaquie [4, 5] concerning path integrals
formulation for pricing of options. Path integrals have many applications, among which are in the
financial markets, quantum mechanics and polymer physics [45]. In [4, 5, 6, 7] B. Baaquie studied
applied concepts of quantum mechanics to the modeling of interest rates and the theory of option
pricing. B. Baaquie [4] studied path integrals and hamiltonians for options and interest rates. In

[5] B. Baaquie studied path integral approach to option pricing with stochastic volatility. In [4] B.
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Baaquie considered applied the path integral approach to pricing a European call option for the

Black-Scholes model.

e Consider a financial market (Q, F,F = (F;)t>0, P) with a riskless asset paying a constant rate

of return 7 and a stock S = (St)+>0 modeled by the geometric Brownian motion [60]:
dS(t) = S(t) (udt + odW (t)),
where the constant p is the expected rate of return, the constant o is the volatility of the

stock price process and W (t) is a Brownian motion.

e Consider the price of a European call option C’(t,S) on underlying security S that pays

(S(T) — K)™T. The strike price K is some nonnegative constant.
e The famous Black-Scholes equation for the option C(t, S) is given by [60, 4]:

oC(t, S) oC(t,S)
ot T o

1, ,0C(,S) -
+ 502 = rC( 9), (2.7)

for all t € [0,T) and satisfies the final condition C(T,S) = (S(T) — K)*.

e Consider a change of variable in (2.7) with S = e”, where —oo < 2 < oo and denote C(t, %) =
C(t,z) and C(T,z) = (z — K)*. This yield the Schrodinger type-equation for the Black-

Scholes equation (2.7):

%?:Hmo (2.8)
Clt,z) = (x — K)* (2.9)

where Hpg is called the Black-Scholes Hamiltonian and is given by

0'2 82 1 2 (9
HBS = —7@ + <20' — 7’) % + 7. (210)

e Introducing a quantum mechanical formalism, one can interpret the option price C(t,z) as a

ket |C) in the basis |z), the logarithm of the underlying stock price.
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Using Dirac notation, one can reinterpret the option price C(t,z) = (z|C(t,x)) as a wave

function |C) in the position space.
Using Dirac notation [27], (2.8) can be expressed as

o|C(t, x))

T Hps|C(t,x)). (2.11)

Using the final value condition at ¢t = 7', (2.11) can be solved explicitly as
C(t,2)) = e T C(T, 2))

where C(0,z) = g(x) is the final condition.
Hence using the completeness equation [*°_|2/)(2|da’ = I, where I is the identity operator,

B. Baaquie [4, 5] obtained

C(t,x) = (z[C(t, 2))
= (zle”T=01s|0(T, 2))

- / (ale~T=DH53|g!) (o/|C(T, 7)) da’

_ / (zle T=DHBS |2\ O(T, 2')da'. (2.12)

The expression (z|e~(T=9H5s |3’} describes the probability of transition from a security price

2 at time T to a security price z at time t.

The completeness equation for the momentum space basis |p) is given by

1 o0
o Ip)(pldp = 1, (2.13)

with scalar product

(zp) = €" ; (plz) = e " (2.14)
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e To compute (z|e~T=DH |2’} one needs to first find the eigenfunctions of Hpg. For this, B

Baaquie [4, 5] considered the matrix elements of Hpg which is given by

(z|Hps|p) = Hps(z|p)

_ HBSeipac
o? 92 1, 0 ipx
= _?W + 20 —-Tr 87 +7r]e
o2 9%etpr 1, Detpr
= —?W + 20’ -Tr O + 7“6

1 1 ;
= (202]92 +1i (202 — r) p+ r> e'P*, (2.15)

e B. Baaquie [4, 5] observed from (2.15) that e’ is an eigenfunction of Hpg with corresponding

eigenvalue of (302p® +i (302 —r)p+7).

e From this observation, one can see that e’* is also an eigenfunction of e85 with a corre-

sponding eigenvalue of {377 +i(50°—r)p+7}  Hence

(z|e”THBS |p) = e~ THBS (]p)

— e*THBse’pr

7_(1 2,2

—e o°p +z(20 —r)p—l—r) sz_ (2.16)

e To compute (z|e~T=DH|z/) B. Baaquie [4, 5] used (2.13), (2.14) and (2.16) with 7 =T — ¢

to obtain

(T— [ (T—
(ale™ 0y = o [ Gale 0 ) ol dp
—00

ie—r(T t) /OO —(T-¢) "2 p?—(T— t)(QO‘ fr)zpeip(z—a:’)dp
(T t)/ e~ 3@ ip((a—a)+(T=1)(r—30)) g,
)

:e (T

76 ~ sz {a—a +HT-0(r=0? D)} (2.17)
on(T — 1)o?
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e Expression (2.17) means that 2 — 2’ has a normal distribution with mean —(7'—¢)(r — %) and
variance (T — t)o?, which further implies that log S(7") has a normal distribution with mean
log S(t) + (T —t)(r — %2) and variance (T — t)o? and this is exactly expected for the Black-
Scholes model with constant volatility and where the underlying asset follows a geometric

Brownian motion, for further details see [60].

e Finally, plugging (2.17) into (2.12), B. Baaquie [4, 5] obtained the price European call option:

o a0 oo g

WPy -
—oco \/ 27T(T — t)0'2

for more details see [4, 5, 6, 7, 8].
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3. ANALYSIS OF VARIANCE SWAP FOR THE BN-S
MODEL

In this chapter, we present our main results for the price of variance swap for the Barndorfl-
Nielsen and Shephard Model. Firstly, we prove a theorem related to the dynamics of arbitrage free
price of variance swap. Secondly, we prove a Vecef-type theorem for the price of variance swap.

Finally, we prove a theorem related to the range of prices for variance swap.

3.1. Properties of the variance swap price with respect to the BN-S model

Realized volatility or(.9) is a statistical quantity which is the annualized standard deviation
of the stock returns during a fixed period of time, which is called the exercise date of the option.
The subscript R denotes the observed or realized volatility for some given underlying asset S. When
the underlying asset is clear from the context, realized volatility is denoted simply as og. If oy,
0 <t < T is a stochastic volatility for a given underlying asset S, then the realized volatility o

over the life time of a contract is given by

= 1/T 2dt (3.1)
OR = T J, opdt. .

Usually op is quoted in annual terms. The realized variance is 012% over the life of the contract is

defined as

1 T
0% = T/o o? dt. (3.2)

Definition 3.1.1. A wvariance swap is a forward contract on realized variance. The payoff of
variance swap at the maturity T is given by N(O‘% — Kvyar), where Kyg, is the annualized delivery
price or exercise price of the variance swap, and N is the notional amount of the dollars per

annualized volatility point squared.

The holder of the variance swap at expiration receives N dollars for every point by which
the stock’s realized variance 01%2 has exceeded the variance delivery price Kvy,,. Without loss of

generality we take N = 1. The arbitrage free price of the variance swap is the expectation of the
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present value of the payoff in the risk-neutral world and it is given by F [ —r(T- t)( Kvar)]]-}]

0 <t < T, where E(-) is the expectation with respect to some equivalent martingale measure and
F: is the o-field generated by the history of the process up to time t. Note that for calculating
arbitrage free variance swap price it is sufficient to compute E(UR) IfV, = fo o2 dt, then by above
expression, given a fixed horizon date T', we consider Py, (t, S, V;) as a function of ¢, S; and V;

with the final condition (independent of S) given by

Vi
PVar(Ta ST7 VT) = U%{ — Kvar = ?T — Kvar.

We make the following assumptions related to the integrated volatility V;.

Assumption 3.1.2. We assume the Lévy measure v satisfies fy>1 eu(dy) < oo. Also, assume

when Vi = 0, there exists ¢ € (0,2) such that liminf_,oe ¢ [j 2?v(dz) > 0.

With Assumption 3.1.2 we prove the following theorem related to the dynamics of the
arbitrage-free price of variance swap. For the rest of this section we denote the price of variance

swap PVar(ta St; W) by P(ta St; W)

Theorem 3.1.3. Consider the BN-S model given by (1.3), (1.6) and (1.7). Then, the arbitrage
free value of P(t, Sy, Vi), with respect to the equivalent martingale measure Q¥ (defined in Theorem

1.3.5), is almost surely given by

or  .oP 12S28P 0P

SrP g T s T 952 "7t gv
P
+/ (P(t, Sy_ef* Vi) — P(t,Si—, Vi) — a—St (eP* — 1)> vz(dz) =0, (3.3)
R+ 08
with final condition
P(T> Sr, VT) = % — Ky (3.4)

Proof. Suppose P(t, Sy, Vi) = e M= P(t,S,,V;). Then by construction,

P(t,8;,V;) = [(‘;T KVar) \ft]
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is a martingale, where the expectation is taken with respect to the equivalent martingale measure
@Y (defined in Theorem 1.3.5). Denote the continuous part of the stochastic processes S and V' by
S¢ and V¢ respectively and denote the quadratic variation/covariation by the notation [-,-]. Using

the two-dimensional It6 formula for ]5, we obtain

. opP oP oP 19%P 10%P
— T(T_t) — R _ _ = C c - C c
dP(t,S,V)=e K rP + 8t)dt+asds+avdv+2aszd[s,S](t)+zav2d[v,V](t)
o’P . . opP oP

For the present context
dlVe,Ve(t) =0, d[S°,V°(t)=0 and AV =0,
and
P(t,8,V;) — P(t,8,-,Vi-) = P(t,S—e>*,V;) — P(t, S, Vi ).

Also, as V is continuous V;_ = V;. Therefore we obtain dpt = a(t) dt + dR;, where

OP oP 1 0%P OP
— Tt _.p Z° o 1 50717 201
a(t)=-e [—rP + e +r585+20t5 552 Jt(’?V
P
+/ <P(t,Stepa’,V;)P(t,St,Vt)aSt(e’”l)) vz(dx)]
R+ oS

and

dR; = "= [atsggdwt + / (P(t,S;_eP* Vi) — P(t,S,_,V})) Jz(\dt, dac)] :
R+

With the use of Assumption 3.1.2 and procedures in [24], it is clear that R; is a martingale
and hence P, — Ry is a (square integrable) martingale. But P, — R, = fot a(u) du is a continuous
process with finite variation. Hence a(t) = 0 almost surely with respect to the equivalent martingale

measure QY. This gives (3.3). O
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We denote x,, = fR+ y"v(dy), n =1,2,.... Note that x, > 0 for all n when subordinators
are considered. The following theorem can be considered as a Vecei- type theorem (see [60, 66, 67])
for the variance swap. Contrary to Theorem 3.1.3, for the next theorem we assume that at time ¢,
the price P is explicitly dependent on o7 and not explicitly dependent on S;. We denote the price

of variance swap P(t,o2,V;).

Theorem 3.1.4. Suppose that the cumulants of Z satisfy the following conditions:

|
M1 3.9
s < b (3.5)
and
kg [ K1 3/2
() 1 (3.6)
K1 \ K3
Define
K1
0y = —. 3.7
2 p (3.7)
Then

t
P(t,O'tQ,Vt) _ ert—l—)ﬁyﬂT}\I((t))’ 0<t<T,

where X (t) is a stochastic process given by

dX () = rX(t) dt +7(t)(dA(t) — rA(¢) db), (3.8)

—rT

where A(t) = p(t)of, and y(t) = (e — e ), and

x() = (7 [ ot xvr) = (V2 - ). (39)

and

M (t) = exp [t(r + A2k1) + )\t/

At }
(1 + O2y) — Ooyl(dy) + / / (1 + Oay)Jz(ds, dy) | .
R+ 0 R+

(3.10)
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Proof. We consider a portfolio process X (t) with value at time 7" given by (3.9). We begin with
a deterministic function of time v(t), 0 < ¢ < T, which will be the number of shares of a proxy of
variance A(t) = u(t)o? held by the portfolio, where ju(t) is a deterministic function to be determined
later.

An agent who holds v(t) shares of A(t) at each time ¢ and finances by investing or borrowing
at the interest rate r will have a portfolio whose value evolves according to the stochastic differential

equation (3.8). We choose ju(t) = ("t to obtain

dA(t) — rA(t) dt = e+ /R yJz(\dt, dy). (3.11)
+
Consequently
d(e" DX (1)) = ~(t)e"THM / yJz(\dt, dy). (3.12)
R+

—rT

To study the variance swap with payoff (3.9) we take y(t) = (e —e™*T), 0 <t < T, and

X(0) = 4(0)02 — e K. (3.13)
From (3.12) we obtain (using v(7") = 0)
T
X(T)—eTX(0) = eTT/ y(t)eMdZy,.
0

But for the present model

1 /T o?dt = L(1 —e o2 + L /T(l — e MY dz

T )y °t AT 0T J, AL
Thus using the initial value of X (0) from (3.13) we obtain,

X(T) = (; /OT oldt — KVar> : (3.14)
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The price of the variance swap at time ¢ prior to expiration is
P(t, 5, V) = Ele " T X(T)|F], (3.15)

where F is the expectation with respect to the risk-neutral measure QY (defined in Theorem 1.3.5).

To calculate the right hand side of (3.15) we use a change-of-numéraire argument. We define

X(t) e X(t)
M(t) e TtM(t)’

where M (t) is defined as the solution of

AM(t) = M(#)(rdt+ | 6ayJ,(Adt,dy)), M(0) =1,
R+

= M(0)((r + Mory) dt + /R OaT 5 (Ndt, dy)), (3.16)
+

where 65 is a constants which will be chosen later. Solution of this equation is given by (3.10). We

proceed to compute the differential of Y (¢). We find

d(e "X (1)) = —re "X (t)dt +e "M dX(t)
= ~(t)eM /R . yJz(\dt, dy)

= ~y(t)eM <)\m dt —I—/R yjz()\dt,dy)> .
+

Similarly,

d(e "M (1)) = e "M (t) [/\92/<c1 dt + /R 9zyjz(Adtvdy>]v

+

and

d(e™ "M (1) = —(e7"" M (1) [/\(92161 — O3r2) dt +/R O2y(1 — Oay)Jz(Adt, dy)} :

+
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Therefore

dY (t) = d[(e" X () (e M (1)) "]

= _])\2((?) |:)\(921i1 - 9%/‘62) dt + /R+ 923/(1 — (92y)jz()\dt, dy):|

,y(t)e(r—i-)\)t |:

M(t) )\(—92/@ + 9%/13 + K1) dt + /

(y — y202(1 — Oay)) Jz(Adt, dy)] :
R+

Define

Z1(t) = exp [ /0 t /R (L= Oy T, dy) + /0 t /R (1= 0y)+ Hy)u(dy)dt}
—exp [ /0 t /R (1 ) )+ /R n(1 =) + Qy)y(dy)} , (3.17)

where 6 < 1 will be chosen later. Clearly (by [23], Proposition 8.23, page- 288) Z;(t) is martingale
and hence E(Z;(\T)) = E(Z,(T)) = 1. We choose —1 < 63 < 0 such that § = —f5. The quantity

05 is chosen as the solution of

— 92y2 (1 = b2y(1 — O2y)) v(dy) = —O2k2 + 9%/13 + K1, (3.18)
R+

which implies

—03K4 = K. (3.19)

Define a new measure @ by dQ(w) = Z;(AT)dP(w), where P is the risk neutral measure used so

far in the proof. With respect to @, the dynamics of dY (t) becomes (see [49], Chapter 1),

X(t ~
dY(t) = —]w((t)) /\(92%1 - 9%/@3) dt + 92y(1 - Ggy)JZQ()\dt, dy) + M1 (t),
R+

where J 70 is the compensated Poisson measure and M;(¢) is a martingale with respect to Q. If
021 — 03k3 = 0, then clearly we have

K1 = O3k (3.20)

Then Y (¢) is martingale with respect to Q- measure. Hence the condition we need are (3.5) and

(3.6). In that case we choose 02 by (3.7). Then both (3.19) and (3.20) are satisfied and 6 < 1. We
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observe with the value of 02 defined in (3.7)
e "TM(T) = X277 72, (AT).
Then clearly Y (t) is a martingale with respect to the () measure. Now we have

P(t,5;, Vi) = Ele 7T OX(T)|F] = e " TV E[M(T)Y (T)|F)
— E [e)‘e?“lTZl()\T)Y(T)U-}]
— e’r’t-i-)\ezfilTEQ [Y(T)‘ft}

t)
— T‘t-}—)\eglﬂTY t) = rt+X0ok1T ( )
€ ( ) € M(t)

O]

We conclude this section with a lower and upper bound on the set of prices spanned by
the value of a claim with respect to various equivalent martingale measures (EMM) of the BN-S
model. This analysis is motivated by [15, 40]. Note that the set of EMMs for the BN-S model is
derived in [48]. For generalized BN-S model the EMMs are derived in [58]. We restrict our analysis
to contracts with payoff H(Xr, Yr), where H is the function expressing the payoff in terms of the

underlying stock. We define the corresponding Black-Scholes type function H/ (¢, z,y) by
H(t,a,y) = E | T H(X, Y1) X = 2,Y; = y|, #/(T,2,9) = H(,y),
where the dynamics of X and Y are given by

dXt = Xt(rdt + ftth), XO =x,

dn:flfzdt7 YOZ%

where f; is a deterministic and continuous functions. Let H™ (¢, z,y) be the Black-Scholes function
corresponding to fs = m(s), where m(s) = oy exp (—%(s —t)), s > t. Then using (1.5) it is easy to
show that 02 > m(s)? for s > t. We make the following assumptions related to H™ and the pay-off

function H.
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Assumption 3.1.5. We assume that H is convex with respect to the first variable and satisfies

0 < H(x,y) <z forx>0. Also, the “delta” of H™ is bounded, i.e.,

agLTm‘ < C, for some C > 0.

First we prove the following theorem related to the dynamics of the Black-Scholes function

corresponding to the deterministic and continuous fs.

Theorem 3.1.6. If H/(t,x,y) belongs to C1? then

oMY (t,x,y) o, OHS
+ It

o (taxay) +Ty8?—[f(t,:c,y) 2 QaQHf(tvxay)

1
- — it =0. 21
o7 oy FY i 012 rH! (t,x,y) = 0. (3.21)

Proof. Applying Ito’s formula to H7 (t,z,7), we obtain

oM/ (t,x,y) oM (t, 2, y) oM (t, 2, y) 1LO*H/ (t, 2, y)
f _ ) ) X 3 &y Y, - )y X. X
dH’ (t,z,y) o dt + o dX; + 78?; dY; + 5 o2 d[X, X](t)
LO*H/ (t, 2, y) 1O*H (t,2,y)
———— Y, Y(t) + - ——————Fd[ X, Y (¢t
f f f f
ot Ox Ox dy
1, L PHI (1, 2,y)
+ ki - a— dt
_ aHf(t,x,y) 8Hf(t7$7y) 8Hf(t7xay) 1 2 282Hf(t7$7y)
=" +rx o + gt ay + 7% fi e dt
f
of M EY)
or
By letting H = e"T—DHS (¢, x,y), we have dH; = a(t) dt + dR;, where
a(t) _ e'r(T—t) a/Hf(t,l‘,y) +Tx6,Hf(t7xay) 4+ 8Hf(t,33‘,y) 1$2f282,Hf(t7x7y) - T‘?‘[f(t T )
N ot o I oy 2" T o2 Y
and

oM (t,z,y)

dR; = "D |z f "

dWy| .

It is clear that R; is a martingale and hence H, — Ry is a (square integrable) martingale. But
Hy — Ry = fg a(u) du is a continuous process with finite variation. Hence a(t) = 0 almost surely

with respect to the some equivalent martingale measure. This gives (3.21). O
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We proceed to prove the last main result for this section related to the arbitrage-free price

of the variance swap P(t, Sy, V;) with pay-off at T' given by (3.4),

Vi
H(STa VT) = ?T - Kvar.

Theorem 3.1.7. Let Q be an arbitrary EMM for the BN-S model. Then the arbitrage-free price
of the variance swap at time t corresponding to @) is bounded above by S; and is bounded below by

e"R(t, T) + H™(t,St, Vi), where

R(t,T) = Ce~r+NT M (meM —og +r1)  eMof—r1)  me?
7 T+ A T+ 2A r

e~ (r+A)t (rA(08 — K1) + Ak (r + 2X)eM)

+C r(r + N 120

(3.22)
Proof. The arbitrage-free price of the variance swap at time ¢ corresponding to () is given by
EQ [T (T, S, Vi) F| = B9 |e T H (S, Vi) | 7|

Proving the upper bound is trivial with the application of Assumption 5.35 and martingale property

r(T—t)

of the process e~ S with respect to Q. We proceed to prove the result related to the lower

bound. Applying It6 ’s formula to (H™ (T, St, V7)), we obtain the following.
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T OH™
T

e—'rTer(T’ S, VT) — e—rt’}-[m(t, Sk, VYt) + / d (e—'l“sSS)
t

ot Ox 58 255_82

T m m 29 /m
+/ e "® (8?—[ +rS 767-[ +o 2 0H™ 1 0252 OH” r?—[m> ds
t

+ Z < S Ssv‘/s) %m(sa sza VS*) - 87-[A‘st)

Ox
t<s<T
T m
— €_rth(t,St,Vt) +/ aH d (e—rsss)
t
r OH™ OH™ ZJOH™ 1 )
+/t ¢ [m* P ga H ) T gl S

T*T‘S]‘ aHm T*?"S
+/t e 5(03— ())55282d8+/t e (02 —m*(s)) 3y

+ Y e <7—l s, S5, Ve) — H (s,SS_,VS_)—aASS>.

T
t<s<T

Using Assumption 5.35 and the fact that 02 > m?(s) for s > ¢, we obtain

T 1 29/m
/ e "* E(JQ—m (s)) 53_687{2 ds > 0.
t

For any convex and differentiable function f we have

f@) = fly) = f'(x)(z—y) > 0.

Consequently

oo (”Hm(s,ss,vs) —H™(s, S5, Vi) — aHAS)

t<s<T ay

Note that by (3.21)

OH™(t,z,y) OH™(t,z,y) QOH™(t,x,y) 1 9 Qazﬂm(t,x,y)
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— r%m] ds
87—[’”

(3.23)

—rH™(t,z,y) = 0.



Using all these results in (3.23) we obtain

e "TH™(T, Sy, V) > e TP H™(t, S, Vi) +

Therefore

T OH™

T OH™
—rs -rs (.2 __ 2
. on d(e SS) —i—/t e (O'S m (s))

Jy

ds < e "TH™(T, St, Vi) — e " H™(t, Sy, V).

Taking the expectation on both sides we have

T m -
EQ{ (e _”SS)\J-'t]JrEQ[ e (02— m(s) s
;  Ox o
< EQ [ TH™ (T, S, V)| Fi] — B9 [ (1 1, Vi) | -

Clearly EQ [fT (%[md (e775S5) |.7:t} = 0. Therefore

T m
E® { / e (0 —m?(s)) 8;‘ ds]}}] + e TH™(t, Sy, Vi) < B9 [eTTH™(T, St, V)| F
t

=K [e ™" H(Sr, V)| ] -
From (1.7) we can derive 02 = e 03 + [ e ~Ms=wdZy, and consequently

s

S
EC[0?] = e *0d + )\Iil/ e AWy = e M02 1y (1 - 6_>\s> :
0

Hence

m

oH T —rsmQ 2 2
9y ds|F;| <C | e E% [(oF —m*(s)) | F] ds
t

2 [[ e (o2 - mo)

= C’/tT e " (1 — e*)‘(sft)> [ Mol 4k (1 — e*)‘5>] ds,

where the integral above is given by R(¢,T') in (3.22).
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4. ANALYSIS OF VARIANCE DEPENDENT PRICE INDEX

In this Chapter, we introduce a price-weighted index modulated by market variance and
study the index dynamics for the large basket limit case. We also study numerical examples based
on empirical data in support of the proposed price index.

4.1. Variance-dependent price index and large-basket limit analysis

The VIX is used as an indicator of the S&P 500 market. However, it is well known that the
VIX is much more of a short-term than a long-term market indicator. The VIX, which is officially
known as the Chicago Board Options Exchange (CBOE) Volatility Index, is considered by many
to be a gauge of fear and greed in the stock market. More precisely, the VIX measures the implied
volatility in S&P 500 options. Through the use of a wide variety of option prices, the index gives
an estimation of thirty-day implied volatility as priced by the S&P 500 index option market. This
index can be used to estimate the nature of market movement that the option prices are projecting
on the S&P 500 over the next 30-day (or may be shorter) period. Empirical evidence shows that
a good statistic that captures the performance of the S&P 500 should depend on the VIX index
(see [53]). Based on such empirical evidences, in this section, we introduce a new price index that
is dependent on the market volatility /variance.

In this section we formulate a BN-S type market model with stochastic volatility. Then
we proceed to prove the main convergence theorem describing the behavior of the volatility (or,
variance) dependent price index in the large-basket limit. Under additional assumptions for the
model we prove a convergence theorem related to the behavior of the “error term” in the large-
basket limit. We conclude this section with empirical data driven numerical examples.

Consider a probability space (2", F",P") corresponding to a market with n assets whose
prices S;(t) for i = 1,...,n, evolve, under the measure P", according to the following equations.
We denote the expectation with respect to this probability measure by E. Note that we are not

restricting jump processes to subordinators.

dg"(%) —avdt+o(t) <p1dM + ﬂdﬂ@) + /R (€927 — 1)Ny(dt, dz), (4.1)
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with
1 n
do?(t) = —Ao(t)*dt +— ) / eN;(dt, dx), (4.2)
’I’Lji1 R

where the parameters A > 0, —1 < p; < 1, a1, a0 € R, M, W; are Brownian motions, and N; a
Poisson random measures related to the jump of the i-th asset price for i = 1,...,n. We assume
that N;, ¢ = 1,...,n are identically distributed with Lévy density v. Denote the set of natural
numbers by N. Also, we assume that {S;(0)}? ; is a family of independent identically distributed
(0, 00)-valued random variables and this family is independent of M, W; and N;, for i € N. As in

[35] we denote the compound Poisson process

t N
Ri(t):/ /mNi(du,da:)z S 7 ieN,
0 Jr =

where Jg are jumps occurring at random times Tg. As described in the beginning of this section,
empirical evidence shows the dependence of price indices on the volatility of the market. We define

a market index modulated by volatility by

L(t) = % S o2 (0)Si(1). (4.3)
=1

In fact, the index defined above depends on the square of the volatility- i.e., on the variance. We

also define a “k-th empirical moment process modulated by volatility /variance” as
1 n
IP(t) = - 2t)Sk@t), keN, 4.4
n (t) n;U()z()v € (4.4)
Note that L(q,l)(t) = I,,(t). We can find

d (o2(1)Si(t)) = Si(t)o?(t) (ar — A) dt + Si(t)o®(t)prdM + S;(t)o> (t)\/1 — p3dW;

Si(t) /R 2(e2* — 1)N;(dt, dz),

n

(62" — )N, do) + 22 ;/R N, (dt, dar) +
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and from this we can derive

I, (t) = In(t) (a1 — N) dt + o (t)p1 L, (t)dM (t) m 25 D
@ - . eazz _ ) . i n o n | . )
+ ;sz(t)/R( 1)N;(dt,d )+n2;;sz(t)/R N;(dt, dx)

n

1 T ) T
+n2;si(t)/Rx(e 1)Ni(dt, dz).

Similarly,

dI? () = 12 (1) (201 + 0®(t) — \) dt + 20(t)p1](2) (t)dM(t)

3 n
20 (t m ZSzQ £)dW; (¢ ZSQ / Qazx — 1)Ny(dt, dx)
1 n n 1 n .
oz > D S /RwNj(du dr) + — > St /Ra:(62 2 _ 1) N;(dt, d).
i=1 j=1 i=1

In general, for k£ € N, the k-th empirical moment process modulated by volatility /variance satisfies

the following stochastic differential equation.

_ 3 M _ 2"
dIF) () =1 (1) <ka1 4 Kk 5 D o (t) — )\> dt + ko (t)py ISP (£)dM + ko V1 = py > SFE)aw,
n
=1

U2(t) - k kaox k

+7§ SP(t) [ (€792 — 1)N;(dt, dx) +— S j(dt, dx)
i - k T ekazx o : "

Tz X;S (t)/R ( 1) Ny (dt, de).

With

- [ stan,

and

B = /R<e’“aw—1>u<dx>7 i, = /Rx(e’“aﬁ—nv(dx» keN,
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we obtain

dI(t) = <ka1 o ME =) oy

> ali >I(k)(t)dt

~
o?(t)  no?(t)) "

1—
+ ko (t)pr IP) (£)dM (t) + k(1) plZsk VAW (t

@n k ekazw_ l’ 7 k: T
+ ;Sl(t)/R( DNt do) + ZZS / (dt, de)

i=1 j=1

S Y k z(eF2® — 1)N; x
o ;S ) /R ( 1) N (dt, dz). (4.5)

Note that, from (4.1), with respect to a risk-neutral measure we have a; + 1 = r. At
first, we proceed to prove a result concerning the weak convergence of the stochastic process IT(Lk)
as n — oo. We denote the limit process by I*) for k € N. The following Lemma is obtained for

a simple model in [35]. It is straight forward to show that this can be generalized for the present

model.

Lemma 4.1.1. Suppose that E[S;(t)?*] < oo for allt > 0. Then for any T >0 and k € N,

sup — 0, as n — oo.
<t<T \f/ )

The main tool that we use for the convergence analysis is the following theorem due to
R. Rebolledo [51]. The present version can be found in [29, 35]. An important concept that will
be useful for the next theorem is that of weak convergence of sequence of random variables [21].
Consider a sequence of probabilities (P,)neny on (R, Br). The sequence of probabilities (Py,)nen

converges weakly to P if

lim [ fdP, = / fdP

n—o0

for all f: R — R continuous and bounded [21].

Definition 4.1.2 (Weak convergence [21]). Let (X, )nen be a sequence o of random variables the
probability space (2, F,P) and X a random variable defined on the same probability space (0, F,P).

(Xn)nen converges in distribution to X if the sequence Po X1 converges weakly to Po X% and is
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denoted by

as n — 00.

Theorem 4.1.3 (R. Rebolledo [51, 29, 35]). Let a = ((ai;j)) be a continuous, symmetric, non-

negative definite, d x d matriz-valued function on R% and let b : R* — R? be continuous. Let

A(a, b) = {(f, Gf = %Zam@,@f + Zbﬂ%f) cf € Cgo(Rd)} ,

where C°(R?) denotes the class of compactly supported infinitely differentiable functions on R?,
and suppose that the Cral0,00) martingale problem for A is well-posed. For n € {1,2,...}, let
X, and B, be processes with sample paths in Dga[0,00), and let A, = ((AY)) be a symmetric
d x d matriz-valued process such that A has sample paths in Dgal0,00) and A,(t) — An(s) is
non-negative definite for t > s > 0. Set FJ* = 0(Xn(s), Bn(s), An(s) : s < t).

Let 77 =inf{t > 0: | X,,(t)| >r or |X,(t—)|>r}, and suppose that
M, = X, — B,,
and
MIMI — A9 4 5=1,...,d,
are { F{*}-local martingales, and that for each v >0, T >0 andi,j=1,...,d,

sup | X, (t) — Xn(t—)\2 =0,
t<TATE

lim E

n—oo

lim E [ sup |By(t) — Bn(t_)‘Q =0,

N0 1 <TAT

lim E [ sup \Aff(t) — Ag(t_)‘ =0,
n—oo  |4<TArr
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_ t
sup B,?L(t)—/ bi(Xn(s))ds| — 0, in probability,
t<TATE 0
.. t
sup A;‘{(t)—/ a;j(Xn(s))ds| = 0, in probability. (4.6)
t<TAT; 0

Suppose that Po X,(0)™! = n € P(RY). Then {X,} converges in distribution to the solution of

the martingale problem for (A,n).

We now proceed to state a weak convergence theorem describing the behavior of the index

process in the large-basket limit.

Theorem 4.1.4. Let k,i € N and suppose that E[S;(0)"*] < oo, [, e™**27y(dx) < oo, and for
€ [0,T], |e(t)]? < C, for some C > 0. Further assume that ju < oo for k € N. Then for
€[0,77], L(qk) = I®) g5 n — oo, where the process I®) is given by

k(k—1) ,
2

o*(t) —

dI) () = 1) (1) (kzal + > dt + ko (t)p I (£)d M,

o?(t)
with T®)(0) = E[S;(0)*].

Proof. The dynamics of Lgk) is given by (4.5). Let

Butt) = [ 19 (ke + 20200 -

JJU)) du.

Clearly, with X, = IV(Lk) we have M, = X,, — B,, a local martingale, where

Mut) = [ kol 1 )ans ’“ﬂz [ st
+Z/ /S’“ G )(027(1“)+52)N du, dz) +ZZ/ /S’“ )N, (du, dz).

=1 j=1

Next, we define A,,(t) = [My,, M,](t). By construction, clearly A, (t)— Ay(s) is non-negative definite

for t > s > 0. By Doob-Meyer decomposition M2 — A,, is a local martingale. Since the jumps occur
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at distinct times almost surely, we have

E

1 2
sup | Xn (t) — Xn(t)|2] =E [ Sup sup ((02(75)55@) = 02@)55(73))) ]
t<T 1<i<n t<T \ 1

sup sup SZK(t)| .
1<i<n t<T

Since the jump sizes | A, (t) — A, (t—)| are essentially same as | X, (t) — X, (t—)|?,

E

2
sup |An(t) - An(t_)|] < %E [ Sup sup Sf?k(t)
t<T n 1<i<n t<T

Assumptions of this theorem (E[S;(0)**] < oo, [ e***2%y(dz) < 0o, and for ¢ € [0,T], |o(t)]> < C)

imply (see [35]) that for ¢ € [0, 7], E[Si(t)*] < co. Hence by [35] (Lemma 4.3) we obtain

t<T

E |sup | X, (t) — Xn(t—)|2] — 0,
t<T
and
E |sup |An(t) — An(t—)\2] — 0,

as n — oo. Also, since By, is continuous lim, o E [sups<p | By (t) — Bn(t—)[*] = 0. We observe

that
[ _ [T k(k=1) 5.\ g i
B.(1) /0 b(X () du = /0 1) (b + 5o w) =3+ B+ i+ )
1w (ke FE=D 2 g}
[ 9 (rar+ 2 o2 a3 a

1 t
- / é% IR (w)du — 0, in probability,
n Jo o*(u)

by Lemma 4.1.1 and the assumption of the theorem. Thus all the conditions except (4.6) are

verified for Theorem 4.1.3. Next, we proceed to verify (4.6). We denote
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Gult) =+ [ 120 = ot I ()

1 ':i””” t k(w)S* (u)z2 N, (du, dx
mm.ﬁgggﬁéwﬁu>wmm

2 '—3 - [ 2k (1) o (u)z(eF2® — 1)2N; (du, dx
H0):= 5 3 [ [ 00 el — 17N ),
3 _in ¢ 2k 2( kaszr _ 1\2nT.
Hn(t)._n4Z/0 RS" (u)z?(e 1)2N;(du, dz),

6 _3” - [ F(u)S¥ (u)o? (u)z(eh2® (du, dx
%@m;;AA&UW><H DN (du, d).
Consider
t 2 6 ) 2
E sup An(t)—/0 a(Xn(?)| | <E ngan(t)vL;fgan(t)) ]

< 8E

6
+8) E [sEIT) |HZL(t)\2] . (4.7)
=1 =

sup |G (t)[?
t<T t

To verify (4.6), it is sufficient to show that E [sup,<r |Gn(t)|?] and E [sup,<q |H (¢)[*] for 1 <i <6

converge to 0 as n — oo. Clearly, by Lemma 4.1.1 and boundedness of o2, we obtain

E sup

t<T

/t (74(’&) I(Qk) (u)du
o vn "

k‘4 1— 2\2
m@mﬂz(mE
t<T n

2
]—>0, as m — 0o.
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Also,
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In a similar procedure as in the case of H2(t), we can show

E |sup |H;‘;(t)|2] < % (supE[Silk(t)O E[(jjl)Q(ek“ﬂf ~DYEINY(T)?] =0, as n — occ.
t<T n t<T

Next,

Finally,
E sup\HS(t)|2 =K [Hg(T)Z]
t<T
2
_ SE(u (w)x(eb2® — 1) N;(du, dz)
(22/ st /|
g 2 k kagx w. dx i
< eE 2;(//5 N, (d d))]
S%E Z ST (ehoa? 1)2]
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2
Combining all these results we obtain from (4.7) that E [SUPth ‘An(t) - fg a(Xn(t))‘ ] — 0 as
n — oo. Hence (4.6) is verified and consequently all the assumptions in Theorem 4.1.3 are verified.

Hence the proof is complete. ]

We define the “error term” by

ie.,

g Z//S o (de, du) +Z//S " —1 )(Uj/(g)+;g>m(du,dx).

=1 j=1

(4.9)

As observed in [35], IT,, can be thought of as a scaled fluctuation of I,,(¢) around the approximation

I(t) = IM(t). The final result in this section is the large n limit behavior of II,,. For the simplicity

of computation we derive the result when p; = 1 in (4.1). We also assume as > 0 and N;
(i=1,2,...,n) are subordinators. Suppose that
1L, (%
Xo(t) := () : (4.10)
&1 ()
and

fo Eo(u)\/I?) (u)dB(u)

X(t) := , (4.11)
e (t)

where B is a standard Brownian motion independent of M and

2 = e®?® — 1)y (dz). )
5—/R+( 120 (dx) (4.12)
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By Theorem 4.1.4 we obtain the dynamics of I as

dI® (t) = 13 (¢) <2a1 + o2(t) — ) dt + 20 (t) 1P (t)dM (t).

o?(t)

From (4.11) we obtain

0
dX(t) = dt
€ (201 + a2 (1) = A+ Bo + 535 ) 1O(1)
N Eo(t)\/IP)(t) 0 dB(t)
0 2620 (1) 1P (t) dM (t)

We use Theorem 4.1.3 to show that X, converges weakly to the solution of a well-posed martingale

problem solved by X with generator

0
b(lﬁ,y) = )
(201 +02() = A+ 5o + 7305 ) v
2
aey) = | 7 )y 0
0 402(t)y?
We define
0
By(t) =

g?fg(2a1+a2() At Bo+ = t)) 12 (w)du

Clearly M,, = X,, — B, has no drift part and is a local martingale. Also, since B, (t) is continuous,

Iim E

n—oo

sw@()Bmadz, (4.13)
t<T

and trivially for ¢ =1, 2,

sup — 0 in probability. (4.14)

t<T

%@—Amuum%
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By the Doob-Meyer decomposition we choose

A () = [M, M](1), 1<id,j <2,
where
n n t
M= =3 / Sy(u)e N, (dz, du)
nz ;| =1 0 JR+
noort o?(u) T\ -
+ / Si(u)(e*?® —1 ( + > N;(du, dx),
S [ st =1 (S84 ) Nt ao
t
M) =€ [ 201 M ()
0
noot 2 ~
+§22/ SE(U)(G2Q2Z 1) <U (U) T 2> z(dg{?,d’uz)
iz Jo JR+ n
52 n n t B
+ 222/ S2(w)xN;(du, dz)
i=1 j=170 JR+
We write
AJ(6)=GJ(t) + HI(t), 1<ij<2,
where
G}ll(t) - 07
n n n t
HM(t) = 13222/ / Sy (u)Sy(w)x? N;(du, dx)
=l g=1 =1 /0 JR+
+z”:/t SQ(U)(GQQm*1)2 <O-2(u)+x)2]\7(du dx)
— Jo Jr+ ‘ Vn n2 o
2
o (u) n %
n2

o1



H2(t) = H'(t) = 5—21 z”:z”:z”:/t/ Sp(u)Sg(u)x2Ni(du,dx)
n2 0 JR+

p=1g=1 i=1
ﬁn i (1) S? (u)xz(e?2® — o* () X (du. da
+n§zj§:j/0 [ swsiwate -1 (T4 L) N
ﬁn ; t (1) S2(u)z(eX2® — 02(u) X (du. da
+n§§/o [ siwsi 1><ﬁ +ng>Nj(d,d)
0

2 . K 3 200 eazw_ g i
vy [ [ st e (TR0 )
62 =¢ | " 402(u) (12 ()2 ds,
0

22 _ﬁ""”t 2(1)S?(w) 2 N;(du, dx
220 =500 [ St N, dz)

p=1 g=1 i=1

4 — [ 4 2001 2 ‘72(“) z\* ,
¢ Z;/O [ st -1 <n+nQ) Ni(du, dz)

+ 2524 3 /Ot /R+ S2(u) S (u)z (22 — 1) (UQT(ZU) + ;) N; (du, dz).

i=1 j=1

We state two lemmas that are essential in proving Theorem 4.1.7, the convergence theorem de-
scribing the behavior of the “error term” in the large-basket limit. Note that Lemma 4.1.5 holds
irrespective of the assumptions g > 0 and N; (i = 1,2,...,n) are subordinators. We provide a

general proof for Lemma 4.1.5. However, for Lemma 4.1.6 we need those assumptions.

Lemma 4.1.5. Suppose that E[S;(0)*] < co and [ e*2%v(dx) < oo, for 1 < k < 8. Also, suppose

that for t € [0,T), |o(t)|> < C, for some C >0 and p; < oo for l =1,2. Then fori,j € {1,2},

lim E [sup |X,(t) — X,(t-)|*| =0, (4.15)

n—oo t<T
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Iim E
n—oo

sup [ A}/ (t) — A?(t—)!] =0, (4.16)
t<T

and

sup
t<T

AT (1) — /0 01 (X (s)) ds

— 0, in probability. (4.17)

Proof. By (4.8) jumps of II,,(t) are same as jumps of v/nl,(t). Hence,

E [sup | X, (t) —Xn(t—)\zl =
t<T

i=1 =1
) n 2 2 2
—_— J— . J— _ 2 — 2 —

<CE§£(Q52;&@ &a»>+(nﬁf&w &u>0)]
< —E |sup zn:(SZ(t) —Si(t=))?| + C—£4E sup zn:(S-Z(t) — 52(t—))?

no<T n? <737 ’ ‘

2| L CE! 4]

< —E | sup supS;(t)| + —E | sup supS;(?)|,

n 1<i<n t<T n 1<i<n t<T

where we have used repeatedly the fact that no two jumps occur at the same time almost surely.

Hence (4.15) is proved. Proof of (4.16) is similar and is as follows,

E [sup|A,'(t) —Akl(t—)\] —E |sup > (0 (t)Si(t) - 03(t—)5i<t—))2]
t<T t<T N
sCEswswﬁwr
n 1<i<n t<T
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and

E |sup |AL2(t) — A}f(t)\]

t<T
B |supen~? Z 03082 () — o (1-)S2 ()| (B)Si(t) - of’)(t)sz-(t)\]
< Cgn 3K fggzw SIS s<t—>|]

< CEn73E | sup sup|SE() - SP(t-)|ISi(t) - Si(t—)\]

1<i<n t<T

§C§2n_%E sup sup S3(t)| ,
[ 1<i<nt<T

and
fﬁ? |AZ2(t) — A ()| | = ngT) " Z 3(t—)53(t—))2]
2 2
f&?Z (52 >>]

on 1<i<n t<T

—541@ S
5 sup supS; ()

Hence (4.16) is proved. Now we proceed to prove (4.17).

(i) Case: i =j = 1. We define

p=1g=1i=1"0
+Zz:;/ot/IR{S?(u)(eW—1)2 <Uf/(g) é)zNi(du,dx)

54



After simplification of the above expression, and using (4.12), we obtain the following expres-

sion for Uy (t).

Un(t) =

_ % Y Y /0 /R S, () S, (u)a Ny(du, dz)

p=1g=1 i=1

1 w— /!
> /0 /R S2(w)22 (€™ — 1)2N;(du, dz)
=1

ln t 2ua4ue“2x— 27 . da
+n;/O/RSl<> ()€™ — 12 (du, o)

b3 [ SHue* (e - )N (du,da)

Py / Si(u) S (w)a2(e2>* — 1)N;(du, dz)

i=1 =170 /R

+ % Z Z/ Asi(u)sj(u)a2(u)x(ea2x —1)N;(du, dx)

i=1 j=1"0

. (4.18)

A similar proof for Theorem 4.1.4 (in particular, the analysis related to sup,<; |H},(t)|?, for

i=1,2,3,4,5,6) can be used to show that for 0 < ¢ < T, each of the terms
side of (4.18) is converging to 0 in probability as n — co. Consequently

Elsup;<r |Un(t)[’] = 0 as n — oo.

(ii) Case: i =1, j = 2. In this case clearly fot a12( Xy, (u))du = 0.

- | ara(Xo(w))du = G2(1) + HI2() - / 12X (w))du

_ﬁn”"t 1) S?(w) 2z N;(du, dx
S [ syt ian, dr)

p=1g=1 i=1

+ f; zn; zn; /O t /R Si(u)S2 (u)z (€22 — 1) <”27(L“) + ;’;) N;(du, dx)
n f;z;z:/ot /R Si(w)S2 (u)w (e — 1) ("j/(%‘) + n@) N;(du, dx)
ve s [ o v (e ) (S04 5
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in the right hand

we conclude that



and this can be simplified to

52 )22 N;(du, dz)

=,
S—
2
=
S
E
Il
\] nf‘r‘r
L[]
L[]
L[]
S—
o —
él)

0 2 p=1g¢=1i=170 JR
2752" - [ (1) S?%(u)o? (u)z(e22® u, dx
+n3;;AASZ<>SJ<><>< )N;(du do)
. Si(u 52 2%(e**2® — 1)N;(du, dx)
;;/ / )
//53 )(e292% — 1)(e%2® — 1) N;(du, dz)

+ 2—52 > / / 53 (u)o? (u)x(e22® — 1)(e*2 — 1)Ny(du, dx)

Once again, a similar procedure as in Theorem 4.1.4 (in particular, the analysis related to
sup;<p | H} (t)|?, for i = 1,2,3,4,5,6) can be used to show that for 0 < ¢ < T, each of the

terms in the right hand side of the above expression is converging to 0 in probability as

n — Q.

(iii) Case: i = j = 2. We have fot ag2( Xy, (u))du = §4f 402(u) (I (w))2du.

A%2(t) — /Ot a9 (X (w))du = G*(t) + H*(t) — /t ago(Xp(u))du

0

= ¢! / 4012 ) — / o) (12 )l

+4ii2//52 )52 (w)z® Ni(du, dx)

p=1g=1 i=1

+ ¢t Z/ / SHu—)(e22® — 1)2 <"27§“) + ;)2 Ni(du, dx)
254 zn: 3 / / 2 (u) S (u)z(e®2* — 1) ("272“) + ;) N;(du, dz).

i=1 j=1

After expanding the above expression, a similar procedure as in Theorem 4.1.4 (in particular,

the analysis related to sup,<p |H}(t)|?, for i = 1,2,3,4,5,6) can be implemented to show that
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for 0 <t < T, each of the terms in the right hand side of the above expression is converging

to 0 in probability as n — oo.
Combining all the above three cases we complete the proof of (4.17). O
Lemma 4.1.6. For anyt > s >0, A,(t) — A,(s) is non-negative definite.
Proof. For any t > s > 0, it is enough to show that G,(t) — Gy (s) and H,(t) — H,(s) are non-

negative definite. Since

G, () = Gil(t) = G2 () = 0,

n
therefore

0 0
0 GR(t) — G72(s)

Gn(t) — Gp(s) =

Since by construction G2? is increasing hence G,,(t) — Gy (s) is trivially non-negative definite. It
remains to show that

M) — o (s) = | O HA) H2) — ()

HEHt) — Hi'(s) HZP(t) — H(s)
is non-negative definite. Thus it is sufficient to show that all the principal minors are nonnegative.
However this is obvious from the expressions of HY (i,j € {1,2}) given that as > 0 and N;

(1 =1,2,...,n) are subordinators. O

We conclude this section with the weak convergence theorem describing the behavior of the

“error term” in the large-basket limit.

Theorem 4.1.7. Suppose X,,(t) and X (t) are given by (4.10) and (4.11) respectively. Also, suppose
that py =1, as > 0 and N; (i = 1,2,...,n) are subordinators in (4.1). Suppose that E[S;(0)¥] < oo
and [ e"2%v(dz) < oo, for 1 < k < 8. Also, suppose that for t € [0,T], |o(t)|* < C, for some

C > 0. Further assume that p; < oo, forl =1,2. Then X,, = X asn — .
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Proof. All the conditions of the Theorem 4.1.3 are checked in (4.13), (4.14), Lemma 4.1.5, and

Lemma 4.1.6. Hence the proof follows from Theorem 4.1.3. O

We conclude this section with the following analysis based on the S&P 500 data. We use the
data for the S&P 500 index from January 23, 2017 to March 3, 2017. We compute the characteristic
function from this empirical data. We use the variance independent price index model proposed
in [35] for the fitting of the characteristic function of the empirical data. The root-mean-square
error (RMSE) is obtained to be 1.30728. Finally, we use the variance dependent price index model
proposed in this dissertation for the fitting of the characteristic function of the empirical data. The
RMSE in this case is 0.000915226. The plots are shown in Figure 1 and Figure 2 respectively. In
the plots (Figure 1 and Figure 2), the red and green dots indicate the characteristic functions of
the data and the model fit respectively. This shows an empirical evidence of the usefulness of a
variance dependent price index model. Figure 3 is the combined plot of Figure 1 and Figure 2. In
Figure 3, red, green, and blue dots indicate the characteristic functions of the data, the variance

independent model fit, and the variance dependent model fit, respectively.

’ i L l ¢ I I
0.02 0.04 0.06 0.08 0.10

Figure 4.1. Fitting of the characteristic function of the empirical data (red) by the variance-
independent model (green).
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Figure 4.2. Fitting of the characteristic function of the empirical data (red) by the variance-
dependent model (green).

Figure 4.3. Fitting of the characteristic function of the empirical data (red) by the variance-
independent model (green) and the variance-dependent model (blue).
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5. ANALYSIS OF TRANSITION PROBABILITY DENSITIES
FOR SOME LEVY DRIVEN FINANCIAL MARKETS

Chapter 5 has five main sections. Section 5.1 is devoted to the formulation of the Feynman
path integral for Lévy driven markets.In section 5.2, we present a brief introduction of some special
functions. In section 5.3, we implement the method of the Feynman path integral for the analysis
of option pricing for certain Lévy process driven financial markets. For such a Lévy process driven
financial market, we find closed form solution of the transition probability density function (or, the
pricing kernel) of option pricing in terms of various special functions. In section 5.4, we provide
asymptotic analysis of transition probability density function which represent the option pricing
formulas for “sufficiently large” horizon date. In section 5.5, we provide formulas for transition
probability density function for certain Lévy process driven markets where the interest rate is
stochastic.

5.1. Formulation of Feynman path integral for Lévy-driven markets
In this section we consider exponential Lévy models where at time ¢ the risk-neutral dy-

namics of the stock price S; is given by
Sy = Spertt X (5.1)

where r is the risk free interest rate and X; is a Lévy process under the risk neutral mea-

sure with characteristic triplet (o,~,v). Arbitrage-free condition in financial market implies that

2 00

f‘y|>1 eYv(dy) < oo, and v = —% — [° (e¥ — 1 —ylj,|<1)v(dy). It is shown in [24] (Proposition 2)

that under appropriate conditions the option price value C (t,S) is given by

aC(t,S)

oC(t,8) 0282 0%C(t,S)
ot *

oS 2 052

rS

—rC(t,5)

+/R (é(t, Se¥) — C(t,S) — S(e¥ — 1)808(’;S)> V(dy)] .
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With the transformation S = e*, and denoting C(t,e®) = C(t,z), we obtain

5 5 T 9u2 +(r——)—5—-—-rC(t,x)

2 ox
+/R (C(t,y +x)—C(t,x) — (e¥ — 1)808(7;’:6)> I/(dy):| ' (5.2)

oC(tx) [02 920 (t, z) o2 C(t,x)

Following Dirac’s notation (see [27]) we denote the “ket” vector by |-) and corresponding
“bra” vector by (-|. Also, if k, is an eigenvalue of some operator K, the corresponding eigenvector
(when unique) is denoted as |k,). We work in the units for which Planck’s constant A = 1 (see
26, 27]). The one-dimensional momentum operator is given by P = —i% and thus P? = —(%22.
It is well known that if |z) and |p) are state vectors corresponding to position operator X and

momentum operator P respectively, then [ |z)(z|dz = [*_ |p)(p|dp = I, where I is the

oo —o0 27
identity operator (see e.g., [45]). The scalar products are given by (z|p) = P and (p|x) = e =%,
We denote |C) = |C(t,z)) to be the state vector with associated “cost function” C'(t,z). We
use “cost function” in the present financial setting to represent the same thing as “wave function”
in quantum mechanics. Note that the “shift” in position by amount y is given by the operator
Uy) = e~Pv In general, if S(z) is the cost function corresponding to the state vector |S(x)), then
for a fixed y € R, S(x — y) is the cost function corresponding to the state vector |S(z + y)). Thus
the state vector corresponding to the cost function S(z+y) is given by |S(x—y)) = U(—y)|S(x)) =
ey S(2)).
Returning to (5.2), we observe the state vector corresponding to the cost function C(t, y+x),

for a fixed y, is given by |C(t,x — y)) and
e™|C(t,2)) = |C(t,z — y)).

With these notations the dynamics of |C) is given by

2

o |2 (v = vyuian)] o), 5.3
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where =1 — "72 — Jp(e¥ = 1)v(dy). We denote

H= ‘szﬁ —iBP + 1 — /(eiﬁy — l)y(dy)] , (5.4)
2 R

and therefore (5.3) can be written as

91C) _ »
o = HI0). (5.5)

Given the end time ¢t = T', (5.5) can be solved as
C(t.) = TIHO(T, ).
Therefore we may find the cost function C(¢,x) associated with the state vector |C(t,z)) as

CO(t,z) = (2|C(t,2)) = (zle” T |O(T, 2))

oo N
—/ (xle ™ |2"\C(T, 2') da’, where 7=T —t. (5.6)
—00
Clearly the transition probability density function is given by <m|e‘7ﬁ |z’). Given 7, we divide the
time interval t, = to = 0 to t, = ty4+1 = 7 in N + 1 equally spaced subintervals {t1,to,...,tn},
such that the spacing is given by e =t,, —t,_1 = (t]l(,_jf), n=2,3,...,N. We also set g = z, = 2’

and xy11 = xp = 2.

Note that in the present case we may consider H = H(P,t,). Therefore

o

—eH —€eH (P dpn,
(@nle™Hlznor) = [ (eale™ M o) prlnor) T

0 . dpn,
= / eXp[an(:En - xn—l) - €H(pn, tn)] P

oo o
Consequently, we obtain the following:

o N+1

oo™ |za) = / dn [ (onle |z 1)

—© n=1

N+1

L IS

n=1

N
n=1
N
n=1
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where

N+1
AN =3 " [po(@n — 2n1) + icH (pn, tn)] (5.7)
n=1
As N — oo, AN — Alp], where
Al = [ p(0ate) + (0, )

We use the notation of Feynman path integral as follows:

N ) N+1 00 z(tp)
d b D
lim [/ dmn] H [/ pn} = / o'z [ 22, (5.8)
N—o00 el o il 0o 2w z(ta) 2
Therefore we can write the transition probability in terms of Feynman path integral as

. z(ty)=zp Dp .

(zple” ™ |2,) = / @':c/ “Z i Al (5.9)
z(ta)=%a 2m
In the present case
N+1 0_2 ‘

AN =) [ o (Tn — Tp1) + i€ <2pi —iBpp + 1 — /(ezypn - 1)y(dy)>] : (5.10)

n=1 R

At this point, we consider some special cases of the Lévy density v.

1. For Inverse-Gaussian (IG) process,

132

3/2,—1

v(dr) = ar~ Tdx,

V2r

where a,,b > 0, and = > 0. In this case
/(eiyp" —v(dy) =a (b — /b = 2ipn) :
R

2. For Gamma (I") process,
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where a,,b > 0, and x > 0. In this case

/R (eP — 1)u(dy) = alog ( ; _bz,p) .

. For Variance-Gamma process,

—C< dr, x <0

efMa:

v(dx) =

C dr, x>0,

xT

where C, G, M > 0. In this case

/R@iypn ~ Lvldy) = Clog [(Gfip) <M]l4ipn)} '

. For CGMY process,

CeC(—x) " Ydz, x<0
v(dx) =
Ce Mrg=1=Y dg >0,

where C,G, M > 0 and Y < 2. In this case

/ (e — 1)v(dy) = CT(=Y) [-GY — MY + (G +ip,)" + (M —ip,)"].
R
. For Tempered Stable process,

_ HL —k—1 _1 1/k
v(dr) = a2 - H)x exp ( 2b a:) dz,

where a,b > 0, and 0 < k < 1. In this case

WYpn v = ak F(_R)
[ = 1iay) = an

i (—b + (bR Qipn)”> .

Note that Tempered Stable process becomes IG process when k = %
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5.2. Special functions

For R(a) > 0, the Gamma function I'(a) can be defined as

F(a):/ e 1t ldt,
0

when R(a) < 0, I'(a) can be defined by analytic continuation. It is a meromorphic function the
complex plane with simple poles at a = 0,—1,—2,..., (see, [50, 5.2.1]).

The incomplete gamma functions are defined by the integral

xT
’y(oz,x):/ e 't 1dt,
0

and

F(a,m):/ et at.

The definition of y(a, x) requires that R(«) > 0. It is well-known that if z = A, A € (0,1), the
incomplete gamma function y(«, z) has the following asymptotic expansion:
. .
- (—a)’b;(N)
(0% x
Ve, z) ~ —ae Zm
§=0
as a — oo in the sector |arg(a)| < 5 — 6 < T (see, e.g., [50, 8.11.ii]). It is also well-known in
[50, 8.11.iii] that, if z = A\, A > 1, the incomplete gamma function I'(c, ) has an asymptotic
expansion

= (b,
= (;p — a)2]+1

DN, x) ~ %™

J

as a — oo in the sector |arg(a)| < 2F —§ < 2 (see, e.g., [50, 8.1L.ii]). The first few coefficients
bj(A) are bo(A) = 1, bi(A\) = A, ba(A) = A(2A\% + 1) [50, Eq. 8.11.8]. Computations of higher

coefficients b;(A) for j > 1 can be found using the recurrence relation [50, Eq. 8.11.9]

bi(\) = A1 = A,_ () + (25 — DAb;_1 (A).
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An interesting recurrence relation in [50, Eq. 8.8.7] for the incomplete gamma function v(«, ) is

H

given by
B I'a+m) e i

Fa—l—]—l—l

.

,_\

and in [50, Eq. 8.8.9] for the incomplete gamma function I'(a, z) is given by
m—

Ia+m) .
Platm,z) = =iy T z) +ate” Foz—l—j—l—l)
=0

.

where m =0,1,2,3,.
Consider the following differential equation [1, Eq. 19.1.2]
(5.11)

d? 1
4y _ <4x2+a>y:0.

dx?

The solutions to (5.11) are called parabolic cylinder functions. One of the standard solutions [1,

Eq. 19.3.1] to (5.11) is denoted by U(a,z). Another notation for the parabolic cylinder function is

in terms of the well-known Whittaker and Watson’s function D, (x) [1, 68, 69]

Do) = U <_y _ ;:1:) .

The parabolic cylinder function U(a,z) may be expressed as

1 1 ) 1 1
Ula,z) = D,a,%(l‘) =cosT <4 + 2a) Y] —sinm (4 + 2a> Yo,

where
1 1
y,— 1 F(Z_ia)yl
Vroogsts T
3 1
Yy — L F(z—ia)yz
VA e B

where



and

n 3:3+ 2+3 :n5+ 4+13 x7+
=r+a— a4+ = | — a4+ —=a)—=+--.
Y2 30 2 ) 2 %)

It is known that for large values of x and a fixed, the parabolic cylinder function U(a,x) has the

following asymptotic expansion [1, Eq. 19.8.1]

Ulae) ~ et aé{1_ (a—i—%)x(;z%-g)+(a+§)(a+2§)iz4+g)(a+g)+'“}.

5.3. Computation of Feynman path integrals
The objective of this section is to compute (5.9) when the Lévy densities are in the form as

described at the end of Section 5.1. We start this section with the following Lemma.

Lemma 5.3.1. For a sufficiently smooth function L,

[P ew (Ni (ipnlatn — 2n) + eL(pn»)

n=1

= [ expliptan —20) + 7)) 32

Jlim ﬁ UOO da:n] Jﬁl /_OO d;::] exp <NZ+:1 (ipn(n — Tn—1) + EL(pn)))

N N
e 00 dpn .
= J&g)noog_ll |:/_C>O dl’n:| 11 |:/_OO 27T:| €Xp ('L (p]\f—‘rlwb — P1%q — nz:lxn(pn—i-l _pn)> + €L(pn)>
N r e NHLE oo g N
= ngnoonl_ll [/_OO dxn] [/_OO 2:} exp(—1 an(pnﬂ — pn)) exp (i(pN+12p — P1%a) + €L(pn)) -

n=1

(5.12)

We note that

N o N N » » N

. n+1 — Pn
H / exp <_7' § wn(pn—i-l _pn)> dx, = H o (_—~_27r> = H 270 (Pnt1 — Pu) - (5-13)
n=177"> n=1 n=1

n=1
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Using (5.13) in (5.12) we obtain

N o N4Lr oo g N+1
]\}i_r>noo 11 [/_Oo dxn} nl;Il [/_oo %] exp (; (ipn(xn, — Tn—1) + €L(pn))
. > . dp
= lim exp (ip(xp — a) + €(N +1)L(p)) 5—
N—oo J_ 21
— [ expliptan — ) + 7L() 57

We consider three special cases as described below:

Case I:

/R (%P — 1)u(dy) = alog ( g _bipn> ,

)

where a,b > 0. Gamma process is an example of this case. In such case, from (5.10) we obtain

2
N o . 0" 92 . _ b
A —Z |:n(xn xnl)+le(2pn iB8pn + 1 a10g<b_ipn>>:|~

In this case using (5.9) and Lemma 5.3.1 we obtain

N 00 2 b
(wple™ ™ |azq) = / exp [ip(wb — o) — T <02p2 —ifp+r —alog (b —
e ip

b b ar 02 dp
. —Tr 2, s
- [ (i25) e[ Er g

where

q=—(zp —xq) — 70.
With p = —p — 4b, we can obtain

To2b? b(lT
2

~ [e’e} 2
(zple ™H |zg) = e*”*ql”fg / (ip) " exp [—mﬁ2 —i(ro%b — q)ﬁ] dp
— 00

ar 21 \2 2y _
_ e—ﬂ'r—qb-i-L’jl72 b (\EU)anl exp <_ (TU b 2‘]) )D—aT (TU b—q

V2m
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dp
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where at < 1 and Dg(+) is the parabolic cylinder function of order 5 (see [69]). The last equality
is obtained from [32].

Case II:

/(eiyp" — Dv(dy) = c1 + ca(es + ipn)™* + ca(es — ipp)™,
R

where c1,co, c3,cq,c5 are some real constants and v; > 0. Inverse-Gaussian, Tempered Stable,

CGMY processes are the examples of this case. In such case, from (5.10) we obtain

N+1 2
. g . . .
AN = E [ n(Tn — Tp_1) + i€ < 5 pi —iBpn + (r — 1) — ca(es + ipn)"t — ca(es — zpn)”)] .
n=1

In this case using (5.9) and Lemma 5.3.1 we obtain
(e aq)

—00

o] 2
= / exp |:ip(-rb - l'a) - T <(T2p2 —ifp + (’I" - Cl) — 62(03 + ’ip)yl — 04(05 — ip)”1>] dp

o0 2,2 d
= e Tlrme) / exp [— TUQP —igp + Tca(es +ip)”t + Tea(es — ip)yl] d

. 27
ef‘r(rfcl) 0o 7'02]?2 . 00 - . .
= — exp |— —qp Z [62(03 + Zp) '+ C4(05 - zp) l]l dp
27 oo 2 — l!
—r(r—c;) > 1 l l 0o 2,2
T ( )TC’Q”CZ_m / exp [_ - iqp] (e3 -+ ip)™" (e5 — ip) ™) dp,
27 LT \m ! oo 2

(5.17)
where ¢ is given by (5.15). In Theorem 5.3.3 we provide an expression for the computation of the
integral in (5.17).

Interesting subcases of Case II can be obtained when c2 = 0. In this case as shown below
we can obtain a much simpler expression than the result provided in Theorem 5.3.3. For example,

IG process falls into this category with ¢; = ab, ¢4y = —v/2a, ¢5 = %, and 11 = % Tempered Stable

process also falls into this category with ¢; = —bak 1P((1_—’2)7 cqy = 2%ak FF((1_—’2)7 c5 = #, and v| = K.
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In this case using (5.9) and Lemma 5.3.1 we obtain

d,
fle ) = T [~ e [T (e 0" | o
e—T r—ci) 7_0.2p2 ' 00 ) .
S /_Oo exp { 5 qu] Z Jrcales —ip)™ dp
—T r—ci) 7_0.2 2 . .
= Z l'c4/ exp [ — qu} (5 — ip)™* dp, (5.18)
where ¢ is given by (5.15). With p = —p — ic5, we can obtain
N —7(r—c1)—qes+1 2
(avle o) = S Z [ e [-T3p — itro%en i dp
2.2
_ _ s To“C —ly—
_ec T(r—c1)—qes+—52 i Llcl (v/T0) vi-1 exp _(70205 — q)2 D T0%c5 — ¢ (5.19)
o — n4 o 4102 b1 TOo ’ '

where v1 > 0 and Dg(-) is the parabolic cylinder function of order 3 (see [69]). The last equality is

obtained from [32].

Case III:

/R(eiypn ~ vldy) = Clog [(Gfip) (M]l/[ipnﬂ ’

where C, G, M > 0. Variance-Gamma process is an example of this case. In such case, from (5.10)

we obtain

N+1 )
AN: Z |: n(xn_wn—l)—i_ie (Oépzz_iﬁpn‘i‘T—ClOg [(szp > (M]YZP >:|>:| .

n=1

In this case using (5.9) and Lemma 5.3.1 we obtain

(ple™ ™ |zq)

- e foton 507 (30 [ () ()] 2

—rT M TC 2.2
_ e meM)™ / exp {— Ta2p - Z'qp] (G +ip) "¢ (M — ip)~"C dp, (5.20)

2
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where ¢ is given by (5.15). In Theorem 5.3.4 we provide an expression for the computation of the

integral in (5.20).

We conclude this section with two theorems for the computation of the expressions in (5.17)

and (5.20). For the next theorems we use the incomplete gamma functions as defined by:

Y(a, ) = / et tdt,  R(a) >0,
0

and

F(a,x):/ ettt at.

We start with the following lemma.

Lemma 5.3.2. For R(v1),R(e) >0,

> . \V . \vo _—ax?—bix acg—ﬁ > n(QGC)n > V2 vo—k k
/ (a1 +ix)"" (a2 +ix)e dr =¢e% "1y (—1) ' Z [a;f I + azla| ,

n
—00 n=0 k=

o

where
i vi+n+k 1 U1—|—7’L—|—k' 1
L =|— - 2
=() ae (et
—i\"E T itk 1 )
— - 5.21
+<\/a) 2\/a7< 2 —|—2,a\a3]>, ( )
and

. vitve+n+tk
1 k 1
12:<z> F(V1+U2+7’L+ +,a]a3|2>

Va 2\/a 2 2

g\ itttk m+wmt+n+k 1

— r - 2 5.22
+<\/a) NG ( 5 +2,aasl), (5.22)

andagzag—al,c:al—l—%.
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Proof. 1t is easy to show that

[o¢]
/ (a1 +i2)" (a2 + ix)”Qe_mQ_bmdx

—00
2 X 2ac) [
_ eaCQ_fTa Z(_l)n( CLC') / (,L-x)ulJrn (a3 + Z'l‘)yze_aﬂdl-,
n:
n=0 oo

where a3 = ag — a1, c = a1 + %. Using the binomial expansion from (5.23) we obtain:

[e.o]
/ (a1 +i2)"" (g + ix)"2e % VT gy

We define

a3
_ . \vi+n+k  —az? _ los| . \vitn+k  —ax?
L = (ix) e dr = (ix) e " dx
x| <|es] —las]

_ /|a3| (ix)ernJrk e_‘”Qda: + (_1)(1/1+n+k) /|a3| (i:c)"l””rk e_‘dem.
0 0

Clearly

o] . \vitn+k 2
/ (ix)™ e "dr =
0

g

vitn+k 1 alas|? vi+ntk | 1
——+5-1_—x
— T 2 2 e Ydx
2v/a Jo

vi+n+k 1 y1+n+k N 1 | ‘2
—,a| .
N ) 9 413

- 4=
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Therefore

vi+n+k
1 v+n+k 1
> 2va < +’aa‘?’|2>

-

-

Vva 2 2
. i vi+n+k 1 vi+n+k n 1 ‘ |2
—— —,al .
Ja 2va 2 9418

Similarly we define

. ko am2
I, :/ (Zx)l/l—i-Vz—i-n ke az® Jo.
|z[>]as]

= /OO (im)”l-ﬁ-l/g—l—n—k E_QIZdl’ + (_1)(V1+V2+n—k) /OO (ix)u1+y2+n_k €_a$2dl’.
|

043| |a3|

Clearly
(o, ¢] k 9

/ (Z-l.)V1+V2+n— e~ Iy — <
|

N

vitvatnthk R vitvotntk | 1
—s—+5-1_—x
— x 2 2 e Ydx
2\/5 alas|?

vi+va+n+tk
) 1 F(V1+V2+n+k+1,a|a3\2>,
2v/a

- 5

2 2

and therefore

I L vi+vo+n+k 1 . V1+V2+n+k+1a’a |2
> \Va 2./a 2 g 1%

g\ tetnth vi+uvm+n+k 1
+(> F<1 2 +Maﬁ>.

Ja 2V/a 2 2

From the expressions (5.24), (5.21), and (5.22), the required result follows immediately. O

Theorem 5.3.3. For R(v1),R(r2) >0,

> RN 21 . \vo_—ax?—bix achﬁ . n-+u: (2ac)n - 1P vo—k k
(a1 +ix)" (g —ix)e dr = e " 1a Z(—l) 2 Z h [a3 I + azls| ,

|
.
—o0 n=0 k=0

where I1 and Iz are given by (5.21) and (5.22) respectively, and as = —ag — aq, ¢ = aq + %.
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Proof. From Lemma 5.3.2 it is clear that for R(rv1), R (2) > 0 and A € C,

o RN 21 . \vo —ax?—bix acg—ﬁ > n(QGC)n = V2 vo—k k
(a1 + iz)"* (A + iz)"2e de =™~ 3 3 (1) > (7 [a3 I + kD),

|
mn.
- n=0 k=0

(5.25)

where I; and I are given by (5.21) and (5.22) respectively, and a3 = A — a1, ¢ = ag + %. Hence

the theorem follows immediately by taking A = —ag in (5.25). O

Theorem 5.3.4. For R(v) > 0,

> _ 2_p; 2_ b2 > (QCLC)n > —U k k
/ (a1 +ix) ™" (ag —iz) Ve Ty = A Y (—1)" T Z ( > [%T”f I3+ a3[4] ,

|
—o° n=0 [ — k
where
i\ vtrtR g —v+n+k 1
I3— = vy +7) |O[3|2
Va 2\/a 2 2
N vtk —v+n+k 1 s
— — ala
a 2va 2 g st )
and

. —2v+n+k
) 1 —2v+n+k 1
Iy = () 5 1N ( + — a|a3|2)

Va Va 2 2’
.\ —2v+n+k
—1 1 —2v+n+k 1 9
_ r z
+<\/6> 2/a < ;s )

andagzag—i-al,c:ozl—k%.

Proof.

oo
/ (a1 +i2) 7" (g — iz) Ve b gy

— 00

2 i~ 2ac)" [P
= (Ziffaeac2 Z(—I)HJFVM (iy)*V*Fn (a3 + iy)iyeiadey,
ot n! oo
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where a3 = a9 + a1, c = a3 + % . Using the following well known identity

(o]
r
(r+y) = Z <k> a"kyk
k=0
for |z| > |y|, we have that
%) ) 9 X 2 n X _
/ (o +iz) " (g — ix)*”e*ax%b”da: — o Z(—l)”*”( ac) ( V) CES_V_kIg
n! k
o0 o0
+ea62_% (—1)"tv (2a0)” v a§I4,
n! k
n=0 k=0

where

i\ vt g —v+n+k 1
I3 = / (,L'.,L,)—l/-f'n-f'k e—ax2dx — <> f'}/ ( + ,0/043) —
jel<las) va 2Va 2 2
1
2

and

. —2uv+n-+k
1 —2 k1
Iy = / ) L <Z> r ( venthk 5 aas) -
2| >|as| va 2V/a 2 2

.\ —2v+n+k
—1 1 —2v+n+k 1
— r — ) 2
( a> 2/a < 2 +2’a0‘3> (5.27)

5.4. Asymptotic expansions of transition probability density

In this section we find asymptotic expansions for the formulas derived in Theorem 5.3.3 and
Theorem 5.3.4 in Section 5.3. These formulas will correspond to the cases when 7 is very large.
From the option pricing point of view, therefore, the formulas in this section correspond to the
expressions of transition probability densities when the exercise date (or, horizon date) of option is
sufficiently large.

We remark that though the goal of this section is what we stated in the last paragraph, for
the sake of generalization, we extend the settings of the last section. In this section we also provide

a framework of finding asymptotic expansions for integrals which are similar to the ones derived

75



in Theorem 5.3.3 and Theorem 5.3.4 of Section 5.3. We start this section by Watson’s Lemma for

Complex Integral [68].

Theorem 5.4.1. Let
I(t) = / e F(1)d.

0

Let f(t) be such that
Ft) ~ ) antont?
n=0

ast— 0", a >0 and Re(B8) > —1. Then

< 2 a(an+ B +1)
/0 € f(t)dt ~ 7;) zan+p+1 ’

as z — +oo in the sector |argz| < § —6 < § (with 0 < § < 5 being fized), provided that the

abscissa of convergence is not +o0o, where 2P+ has its principal value.
Theorem 5.4.1 is essential to prove the following theorems.

Theorem 5.4.2. If |arg(y;)| <7 and 0; > 0 for i = 1,2, then as p — +oo with |arg(u)| < 7§,

o] o1 .02 X T n+1
/0 (11 +i2)7" (2 + i2)72 e H da ~ N 272 Z an, (Lfl ) :
n=0 w2

where the coefficients are given by

- (oa] g9 ) k ) n-k
ap = — — .
=2 ()62 6E) G
Proof. We write the given integral as

) 5 [e'e) T o1 T g2 5
/ (1 +i2)7 (72 + i) e d:c:vfwé”/ (1”> (1”) o
0 0 st 72

> 1 \/{f 7 \/7? 72
o1 02 - - —ut
=7ty — |1+ z) (1 + z) e Hdt.
12 /0 2\/7E ( it Y2
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Now for small t, we have

B () SR )

o]
n—1
fr ant 2 s
n=0
where
" (o o9 i\* /i \"Fk
w2 (67 E) )
=0 k n—=k Y1 Y2
Therefore, the required result is clear from with the application of Watson’s lemma. ]

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.3. If |arg(y;)| <7 and o; > 0 for i = 1,2, then as p — +oo with |arg(u)| < 7§,

00 —01,,—02 0 T (ntl
/O (71 + ix)—al (72 _ ’il‘)_UQ e_MIle' -~ N 272 Z an (Lfl )
n=0 w2

9

where the coefficients is given

w2 (TG ()

Proof. To prove Theorem 5.4.3, write the above integral as

o0 _ _ 2 o° x\ ! x\ 72 2
/ (1 +iz) "7 (2 —dz) " e M da = 4 Ty, 7 / <1 * Z) <1 - Z) o
0 0

71
> 1 AN t\ 7
e [ () ()
0 2Vt 1 V2

—01 —02
Observe that the quantity % (1 + z%) (1 — z%) with o; > 0 for ¢ = 1, 2 is continuous for

t > 0. Now for small ¢, we have

(-5 70 TR (B G ()¢

o
t
= antQ’

n=0
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where

=2 ()G ()

Whence, by Watson’s lemma, we deduce

0 1 " —01 t g2 0'1 702 0
- 172—02/ <1—i\[> (1_2»\[) ot g Z“n/ 5Lt gy
0o 2Vt M V2
01 —02 o0 i

2
gan s

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.4. If |arg(v;)| < 7 and o; > 0 for i = 1,2, then as p — +oo with |arg(p)| <

s
27

oo 01,02 X n+1
/0(71+z‘x)“1(72 ix)7 e 1 dar ~ %72 Z ( )

e T

1 I

where the coefficients are given by

=2 (D07 () ()

Proof. To prove Theorem 5.4.4, write the above integral as

'] T o1 T o2 5 [e’e) 1 \/E o1 \/E [ep)
o1 092 . . — T o1 02 - —ut
¥ty 1+z) <1z> e dr =7 / <1+ > (1 Z) e Hdt.
! 2 /0 ( ,71 ’72 1 72 0 2\/

V2

Now for small ¢, we have

ot () -SRI ()

k=0
o0
t
= E ant 2 R
n=0

where
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Whence, by Watson’s lemma, we deduce

o 1 Vi ‘”( \/i>"2 7‘”7"2 >
1,92 —(1-:= 1—i— ) e Mt~ -1 2 / e Mt
g [ (1-12) S

4! V2

o1 0200

It ’72 Z i

Proof of the following theorem is similar to the proof of Theorem 5.4.2 and is as follows,

Theorem 5.4.5. If |arg(y;)| <7 and o; > 0 for i = 1,2, then as p — +oo with |arg(u)| < 7§,

00 701702 o0 ( +1)
/ (1 — i2)™ (q2 —ix)? e dr ~ L2 N g, 2
0 n=0 o2

where the coefficients are given by

w3 (D)) () (2)

Proof. To prove Theorem 5.4.5, write the above integral as

[ere] g1 g2 o0 1 t o1 t 02
V71 / (1 - zx> <1 = zx> e dp = 471G / — <1 = i\[> (1 = i\[> e M.
0 M V2 0 2Vt M 72

Now for small ¢, we have

(o) (o) =S EO) ) ()7)

where
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Whence, by Watson’s lemma, we deduce

. o1 o2 01 .02 X
731752/ L <1iﬁ) <1¢\/i> et ~ 12 72 Z / " e Pt
0 2Vt gl V2

o1 0200

It ’72 Z i

O

We now state and prove the theorems related to the asymptotic expansions related to

integrals of the form of Theorem 5.3.3.

Theorem 5.4.6. If |arg(a;)| < m and v; > 0 fori = 1,2, then as a — +o0 with |arg(a)| < 7,
0o ) 2 (g + DA (e — D)2 X T (ntl
/ (al + Z-x)m (042 _ ,L'l,)uze—azz—bza:d.r ~ e—g—a ( 1 2a) ( 2a) Z cn (nfl ) ,
oo 2 a2
n=0
where the coefficients are given by
cn =0, (5.28)

when n is odd, and

Cn = 2" kzn::o(_l)k ('2) <n”_2 k) (ali;:)k <a2 i 22)71—1:’ (5.29)

when n is even.
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Proof. We have

© 2 bi b2 o0 b )2
/ (a1 +1i2)" (g — i2)2e™ ™ "dr = e 4a / (aq +ix)"" (g — ix)"? e~ (@t 2e) gy

—00 —00

2 o0 b V1 b v

=c i / <a1 + -+ iy) <a2 5~ Zy) e dy
o0 2a 2a

2 o] b v b v2

=i / <a1 + - iy) <a2 ——+ iy) e*ay2dy

0 2a 2a

b

2 [ b Vi vz 2
+e 4 <a1 +—+ iy) (ag — — — z‘y) e”Ydy
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mn n+1 Y
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where a, and b,, can be obtained from Theorem 5.4.4, with

n . k ) n—k

V2 V1 7 7
e =y + by = ( )( ) LA B (R

kZ:O k n—=k o —% 041-1—%

n . k . n—k
V1 9] 1 7

+) — | | :
ko(k><”_k> <041+2ba> ( 042—2131>

After relabelling the intex we thus obtain

o)) () () e

The required expressions for ¢, are clear from the above result. O

™

Theorem 5.4.7. If |arg(a;)| <7 and v; > 0 fori=1,2, then as a — 400 with |arg(a)| < 7§,

o8] ) 2 (g + b\ oo + b \¥2 o0 T n+1
/ (041 + ix)ljl (Olz + Z-x)mefa:ﬁszxdx ~ efi—a ( 1 2a) 2( 2 2a) Z Cn (L21 )
oo n=0 a 2
where the coefficients are given by
cn =0, (5.30)
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when n is odd, and

n k n—k
) Z 141 1) 1 1
CnZQZn y 531
k:1<k><”_k> (Oé1+2l;) <a2+2€1> ( )

when n is even.

Proof. We have

0 2

2 .
(a1 + iw)yl (g + i:z)VQ e_a(x"‘%z) dx

o0
/ (a1 + ix)m (g + Z'I)We*aﬁ*bmdgj = effTa /

— 60 —00
0

2
ol ) ) T
2 n=0 a 2
pet ) (e ) S, TR
2 n=0 a 2
— e »2 (o1 + Qba) 12(042 + QIzz)V2 iCnF (:?11)’
n=0 a2

£ () ()

The required expressions for ¢, are clear from the above result. O

We conclude this section with a theorem of asymptotic expansions related to integrals of

the form of Theorem 5.3.4.

oe . 2 (o — b\TY oo - b\ TV I (ntl
/ (al + iﬂj‘)_y (042 B ix)—ue—axz—bwdl, ~ e—g—a ( 1 2a) 2( 2 2a) Z cn (L21 ) ’
-0 n=0 a 2
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where the coefficients are given by

cp, =0,

when n is odd, and

when n 18 even.

Proof. We have

o0

o _ 2_pi b2 -~ b A2
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Clearly ¢, = 0 for all n odd. When n is even

n W\ ([ —v i\ i\
%22254ﬁ<k><n—é>@“+£> &w—i)

5.5. Option pricing with stochastic interest rate
Let the dynamics of stock price be given by (5.1). In addition to that, we assume that the

interest rate dynamics is given by the stochastic differential equation

dr = aqrdt + BrdXo, (5.32)

where X (in (5.1)) and X5 are independent Brownian motions and p, o, a1, 31 are constants. If

|C(t,S,r)) is the state vector of arbitrage free option price, then a similar computation as in [59]

can be used to show that the option price C(t, S, r) follows the equation

oC(t, S, r) oC(t,S,r) o028292C(t,S,r) =~
— = rS 59 + 5 552 —rC(t,S,r)
+ [(Cttsern) - 05,r) - s(er - ZEE D) ay)
R 08
1 _, ,0%C(t,S,r) oC(t,S,r)
+ §ﬁ17" T + (Oél - )\/Bl)TT~

With the transformation S = e, r = €2, and denoting C(t,e®, e*) = C(t, z, ), we obtain

B 12 oC(t,z, z)

oC(t,x,z)  [c?9?C(t,x,2) z z
__[25w (€~ ) —€Ctz.2)

ot
Y oC(t,z,z)
—i—/R(C(t,y +x,2) = C(t,z,2z) — (¥ — 1)T)V(dy)
1 ,0%C(t,z,2) oC(t,x, z)

+ Pl 022 0z ’

+ b2 (5.33)

where B2 = a1 — AP — %ﬁ%
We denote P(*) = —ia% and P*) = —i%. We also denote |C) = |C(t,z, 2)) to be the state

vector with associated cost function C(t, z, z).
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Thus the evolution of the state vector can be written as

o10)

= H .34
o = H(C), (53

where H = (ﬁl + ﬁg), and from the momentum perspective Hy and Ho depend on P@) and P®)

respectively. The quantities are given by

0'2 o p(x
= |G PR gD P e = [ (@~ ttay)] (5.35)

with 8(Z) = eZ — %2 — Jp(e¥ = 1)v(dy), and

1, — [@f@(z))? _ wzp@} . (5.36)

In the present case we may consider H = H (p,tn). For a given 7, we divide the time

interval t, = tgp = 0 to ¢, = ty41 = 7 in N + 1 equally spaced subintervals {t1,%2,...,tx}, such

that the spacing is given by € = t,, — t,—1 = (tf(,jrtf), n=23,...,N. We also set zg = x, and
TnN+1 = xp and zg = zg and zy4+1 = 2. A similar computation as in the last section can be used to

show that

<xna Zn|€_EH|xn71a Zn71>

dpl? dp'?)
2 2w

~ / / eXp[ipq(mx) ($n - xn—l) + 'ip%z) (Zn - Zn—l) - GH(p7(7, )7p£1 )7 Zn tn)]

(z) 7 (2)

—_— Ny ) O dp®
—/ / exp[zp%)(xn—xn—1)+1p7(1)(zn—2n—1)—G(Hl(P%)’Znatn)+H2(p7(1)’t”))]12)7 12)7r '

Therefore we obtain the following:

N N+1 )
<l‘b72b‘€ ’xmza ~ H/ dan/ dzn xnu2n|676H|xn—1azn—1>

N o oo N+1 o oo 4 (@) 4 (2)
_ dpr,’ dpy, N
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where
N+1

AN = 37 P @ = wae) + e = zn) + e (B, 2 ta) + Ha(pD )] (5.38)

n=1
As N — oo, AN — A[p™@, pl®) 2, 2], where

ty=T

Ap®,p® z 2] = /
t

a=0

PO @i() + 9O (020 + i (H(pP (1), 2(0),0) + Ha(p® (0),0)) | at.

We use the notation of Feynman path integral as follows:

N+1 z(tp),2(ty) () (2)
lim {/ / dxndzn] / / / DDz Dp'*) Dp .
N—>oo 271' 271' z(ta),z(ta) 2 2

(5.39)

Therefore we can write the transition probability density in terms of Feynman path integral as

. z(ty)=zb,2(ts) =20 (@) Dp2) o) (s
<xbazb|eiTH’xaaza> - / @/1‘9/2/ 2 Qp A[P( » )%Z}' (5.40)
a(

to)=Ta,z(ta)=2a 2T 2w

Theorem 5.5.1. For the stock dynamics (5.1) and interest rate dynamics (5.32), the transition

probability density given by Feynman path integral (5.40) can be computed as

N
A [e.e] dz
—TH n Yo\l
; arZa) = li exp(iC™), 5.41
ale ez = Jim oo TT| [ ewiic™) (5.41)
where
= € Zn — Zn—1 2
N . n n—
_ . n—1 —F(z)], 42
0> o (B2t ) - FG (5.2
n=1
with € = (tjﬁfjf). In the above expression
R N o NALT roo g () )
F(Z) =log | lim [ / dmn] / Pn_ | expiBY (2))] (5.43)
N—)oon 157 n=1 —0 27
where
. N+1
BY(2) = 3 [P0 = w1) + e, 2,1
n=1
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Proof. We note that from (5.37) and (5.38) it is possible to obtain

(wp, 2le™ ™ | 2a, 2a) & (5.44)
N 0 N+1 0 dp Z) N 0 N+1 0 dp(l’)
= H [/ dzn] H [/ o ] exp(iBY) H [/ dxn] H [/ o ] exp(iBY (z,)),
n=1 - n=1 - n=1 - n=1 -
(5.45)
where
N+1
BV =% [p;Z>(zn — 1) —|—ieH2(p£f),tn)} , (5.46)
n=1
and
N—+1
Bév(zn) = |: g{”) («Tn - xn—l) +ieH; (p%r)7 Zn, tn)} . (547)
n=1

Using (5.43) we can write the transition probability density (xp, zb|e_7H |Ta, 2a) as

N 00 N+1 (2) N+1
—rh o dpn, .
Galtale ) = i T [ / dzn] I [ / k ] exp(iBY + 3 F(zn))

—0o0

n=1 n=1
N oo N+1 (2) N+1
o dpn S () (2n — 2o
N A}E%Onﬂ {/oodzn] nli[1 [/oo 2 ] o <n—1 (PG = Znoa b ) = 2 ( ) +F(zn))> ‘

We use Gauss’ formula

* a2 d 1
/ 6_5102\/% = ﬁ’ m(Oé) > O,

to obtain (5.41) and (5.42). Hence the theorem is proved. O

Note that as H; is independent of x,,, for reasonable Lévy density v, we can compute

R N 00 N+1 00 (x) .
exo(F(2) = Jim TT | [~ dna] T [/ w ]exp@'BéV(Z)), (5.48)
n=1 -0 n=1 -0

by the methods as described in the Section 4.1. All the results in that section produce the quantity

(5.48) when r (in the formulas of Section 5.3) is replaced by eZ.

Remark 5.5.2. A very similar derivation for transition probability can be obtained when the volatil-

ity o is considered to be stochastic
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6. CONCLUSIONS AND RECOMMENDATIONS

In this dissertation, we have presented a new approach based on the Barndorfl-Nielsen and
Shephard model to obtain the arbitrage-free pricing equation and an analytical solution for the
variance swap. We have also presented a new variance driven price index for the financial market.
The stochastic models that are used for analysis are empirically reasonable as well as having many
appealing features from a theoretical finance perspective. The results derived in this dissertation
are potentially important given the empirical fact that the considered financial instruments are
variance driven. The improvement of numerical results in the analysis is very significant over the
existing (non-variance driven) model. More generally, the results obtained in this dissertation have
important implications for their use in, for example, energy markets. Crude oil and natural gas are
one of the most liquid option markets among all commodities. Variance or volatility risk premia for
energy commodities, crude oil and natural gas, is becoming increasingly popular and the approach
considered in this dissertation can be further developed to analyze such markets. The price index
proposed in this dissertation can be considered to be an effective indicator of such markets.

We have also shown that the Feynman path integral method can be used for the analysis of
transition probability density functions for option pricing for certain Lévy process driven financial
markets. Implementing the close connection of certain integrals with special functions, various
interesting results are derived in terms of parabolic cylinder functions and incomplete gamma
functions. A very similar derivation for transition probability can be obtained when the volatility o
is considered to be stochastic. In our future work we plan to extend this method to more complicated
option pricing models in financial market and obtain asymptotic expansions of solutions in those
cases. We also plan to implement this method to other Lévy process driven financial instruments-
for example-variance, volatility, and covariance swaps.

Financial institutions such as banks face the risk of losing their earnings from investing
in various financial products. Management of a portfolio of asset is risky and a central problem
for financial industry. Therefore it is extremely important for financial managers to develop a
hedging strategies which can fully eliminate or minimize this risk associated with investing in volatile

financial products. Financial companies have adopted sophisticated hedging strategies for hedging
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risks associated with investing in a financial products. In energy market, investors sell futures to
hedge the risk associate with holding a commodity. The Barndorff-Nielsen and Shephard differs
from other models because it incorporates jumps in the model which destroys market completeness.
This makes BNS-model more efficient for modelling financial instruments since market completeness
is not a robust property. In an incomplete market, it is not possible to replicate every contingent
claim even though it is possible to price claim with respect to an equivalent martingale measure.
This is also means that in an incomplete market one cannot construct a heding strategy that can
fully elimate risks associate with a volatile asset. There are several approaches to pricing and
hedging in an incomplete market and the most commonly used approaches are: Merton’s approach,
utility maximization, and quadratic hedging [23]. Quadratic hedging can be defined as the choice
of a hedging strategy which minimizes the hedging error in a mean-square sense [23]. Further
research will be to implement Barndorff-Nielsen and Shephard (BNS) model with variance swaps
to find optimal hedging strategies for for the energy market. An optimal amount of the underlying

commodity that hast to be held for minimizing the hedging error can be determined.
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