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ABSTRACT

J. Propp and T. Roby isolated a phenomenon in which a statistic on a set has the same

average value over any orbit as its global average, naming it homomesy. One set they investigated

was order ideals of partially ordered sets (posets). They proved that the cardinality statistic on

order ideals of the product of two chains poset under rowmotion or promotion exhibits homomesy.

We prove an analogous result in the case of the product of three chains where one chain has two

elements. In order to prove this result, we generalize from two to n dimensions the recombination

technique that D. Einstein and Propp developed to study homomesy. We see that our main homo-

mesy result does not fully generalize to an arbitrary product of three chains, nor to larger products

of chains; however, we have a partial generalization to an arbitrary product of three chains. Addi-

tional corollaries include refined homomesy results in the product of three chains and a new result

on increasing tableaux. We also generalize recombination to any ranked poset and from this, ob-

tain a homomesy result for a type B minuscule poset cross a two-element chain. We conclude by

extending the definition of promotion to infinite posets, exploring homomesy, recombination, and

a connection to monomial ideals.
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1. INTRODUCTION

Homomesy is a surprisingly ubiquitous phenomenon, isolated by J. Propp and T. Roby [30],

that occurs when a statistic on a combinatorial set has the same average value over orbits of that

action as its global average. Homomesy has been found in actions on tableaux [4, 30], actions on

binary strings [31], rotations on permutation matrices [31], toggles on noncrossing partitions [15],

Suter’s action on Young diagrams [30] (with proof due to D. Einstein), linear maps acting on vector

spaces [30], a phase-shift action on simple harmonic motion [30], and others. A motivating instance

of this phenomenon is the action of rowmotion on order ideals of a partially ordered set, or poset.

Rowmotion on an order ideal is defined as the order ideal generated by the minimal poset elements

that are not in the order ideal; this action has generated significant interest in recent algebraic

combinatorics, giving rise to many beautiful results [5, 6, 8, 9, 11, 12, 13, 17, 18, 20, 21, 22, 24,

26, 30, 32, 33, 34, 42, 44]. For a survey of recent homomesy results, see [31]; for an introduction

to dynamical algebraic combinatorics, including rowmotion, see [43]. Our initial motivation for

this dissertation was Propp and Roby’s result that the cardinality statistic on order ideals of the

product of two chains poset [a] × [b] under rowmotion exhibits homomesy [30]. D. Rush and K.

Wang generalized this result by showing all minuscule posets exhibit homomesy under rowmotion

using the cardinality statistic [34]; the product of two chains poset is the type A case of this result.

We investigate homomesy in the product of three chains, or equivalently, a type A minuscule

poset cross a chain. More specifically, we show order ideals of [2]× [a]× [b] exhibit homomesy under

rowmotion with cardinality statistic. However, we observe such a homomesy result does not hold

for a general product of three chains. We also obtain a homomesy result on order ideals of a type B

minuscule poset cross a chain of size two. To prove these results, we generalize the recombination

technique of Einstein and Propp [17] from two to n dimensions. Recombination is a tool that

Einstein and Propp developed to translate homomesy results between rowmotion and a related

action called promotion by J. Striker and N. Williams in [44]. Striker and Williams showed that

there is an equivariant bijection between order ideals of any ranked poset under promotion and

rowmotion. This means that the orbit structure is the same under rowmotion and promotion, so

if we want to study the orbits of rowmotion, we could instead study the orbits of promotion, or
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vice versa. K. Dilks, O. Pechenik, and Striker [11] generalized promotion to higher dimensions.

Furthermore, they showed that for a given poset, there is an equivariant bijection between any of

the multidimensional promotions they defined. Underlying all these results is the toggle group of P.

Cameron and D. Fon-der-Flaass [8], who provided access to the tools of group theory by exhibiting

rowmotion as a toggle group action.

Our first main theorem, Theorem 2.0.1, says that the order ideals of a product of three

chains where one chain is of size two exhibits homomesy with average value ab under promotion

when using the order ideal cardinality statistic. To prove this theorem, we generalize recombination

to n dimensions in our second main theorem, Theorem 2.2.4, then translate a homomesy result on

increasing tableaux to the product of chains setting. We also prove the following additional results.

In Propositions 2.4.1 and 2.4.2, we show that our homomesy result does not generalize to arbitrary

products of three chains, nor to a product of n chains where all chains are of size two. Although

our result does not generalize fully to products of three chains, using Pechenik’s result on frames of

increasing tableaux [28], in Corollary 3.2.4, we partially generalize a homomesy result on a product

of three chains where we consider the “outside” of the poset. Additionally, Corollaries 3.2.1 and

3.2.4 include refinements of our main homomesy result and this partial generalization, respectively.

Theorem 3.3.4 shows an additional refinement of our homomesy result, generalizing a result of

Propp and Roby. In Corollary 3.1.1 we also use our main result to show a new homomesy result on

increasing tableaux under K-promotion. In Theorem 4.1.9, we generalize the recombination result

of Theorem 2.2.4 from a product of chains to any ranked poset. We use this for Corollary 4.2.1, a

homomesy result on the type B minuscule poset cross a two-element chain. Theorem 4.1.5 explicitly

states the bijection between different n-dimensional promotions by presenting a conjugating toggle

group element. With Definition 5.1.2, we generalize the toggle definition of promotion to infinite

posets. With Lemma 5.2.7, we generalize a result of Striker and Williams from a two-dimensional

product of finite chains to N2. In Theorems 5.2.9 and 5.2.10, we investigate how applying promotion

or rowmotion to an order ideal of N2 affects the number of generators of a corresponding monomial

ideal. From this, we obtain a homomesy result on order ideals of N2 in Theorem 5.3.2. Finally, we

generalize recombination to order ideals of Nn in Theorem 5.3.4.

In Chapter 1, we begin with introductory definitions and background material, with Section

1.1 covering posets and Young tableaux, Section 1.2 introducing promotion and rowmotion, and

2



Section 1.3 introducing homomesy. In Chapter 2, we present our main homomesy result. To do

this, we begin with the two-dimensional recombination technique of Einstein and Propp [17] in

Section 2.1, generalize recombination to n-dimensions in Section 2.2, prove the main homomesy

result in Section 2.3, and investigate homomesy in a general product of three chains in Section 2.4.

In Chapter 3, we present several corollaries related to our results from Chapter 2. In Section 3.1, we

obtain a new homomesy on increasing tableaux. In Section 3.2, we obtain refined homomesy results

on columns in the product of three chains, whereas in Section 3.3, we obtain a refined homomesy

results on antipodal elements. In Chapter 4, we generalize recombination. More specifically, in

Section 4.1, we generalize recombination to any ranked poset. We then obtain a corollary involving

the type B minuscule poset in Section 4.2. In Chapter 5, we investigate toggle group actions on

infinite posets. In Section 5.1, we introduce a definition for promotion on an infinite poset. In Sec-

tion 5.2, we define the boundary path for an order ideal of N2, along with connecting toggle actions

to monomial ideals. In Section 5.3, we explore homomesy on order ideals of N2 and recombination

on order ideals of Nn. Lastly, in Chapter 6, we present future avenues of research.

1.1. Partially ordered sets and Young tableaux

In this section, we give some background on partially ordered sets (posets) and Young

tableaux. For a more thorough background on posets, see Chapter 3 of [37]. For further background

on Young tableaux, see [19]. We begin with posets.

Definition 1.1.1. A poset P is a set with a binary relation, denoted ≤, that is reflexive, weakly

antisymmetric, and transitive. In other words, if a, b and c are elements of P , then:

1. a ≤ a.

2. If a ≤ b and b ≤ a, then a = b.

3. If a ≤ b and b ≤ c, then a ≤ c.

Note that by abuse of notation we refer to both the set and the poset as P . Two poset elements a

and b are said to be comparable if a ≤ b or b ≤ a. Additionally, we will use the notation a < b to

indicate a ≤ b and a 6= b.

3



Posets are general mathematical objects, with examples including the natural numbers

under the relation of divisibility and the powerset of a set under the relation of inclusion. Totally

ordered sets, also called chains, are posets as well.

Definition 1.1.2. A chain is a poset P in which every two elements of P are comparable.

We will frequently refer to chains that are subsets of N. As a result, we establish the

following notation.

Definition 1.1.3. Let a ∈ N and let [a] denote the poset {1, 2, . . . , a} with the usual less than or

equal to ≤. This is the chain with a elements.

If we have two posets, we can form a new poset using the usual Cartesian product.

Definition 1.1.4. Let P and Q be posets. The Cartesian product is P×Q = {(p, q) | p ∈ P, q ∈ Q}

where (p, q) ≤ (p′, q′) if p ≤ p′ in P and q ≤ q′ in Q.

Many of our results will involve a product of chains poset.

Definition 1.1.5. A product of chains is a poset of the form [a1] × [a2] × · · · × [an] where

a1, a2, . . . , an ∈ N.

It is useful to be able to reference comparable poset elements that have no elements between

them.

Definition 1.1.6. Given s, t ∈ P , t covers s if s < t and there is no element x ∈ P such that

s < x < t.

With the definition of a cover, we can describe a representation of a finite poset called a

Hasse diagram.

Definition 1.1.7. A Hasse diagram is a visual representation of the poset using vertices and edges.

Vertices in the diagram represent poset elements, while an edge between two vertices represents a

covering relation. In this case, the vertex that is vertically higher in the diagram covers the lower

vertex.

Figure 1.1 shows the Hasse diagrams of two different posets.

Previously mentioned, the Cartesian product is one method of combining two posets to

make a new poset. Another is by taking the ordinal sum of two posets.

4



(a) This is the product of chains poset [3]× [2]. (b) This poset is an example of a Tamari lattice.

Figure 1.1. Hasse diagrams of two posets.

Definition 1.1.8. If P and Q are posets, the disjoint sum of P and Q, denoted P +Q, is a poset

with elements P ∪Q such that s ≤ t in P +Q if either the following hold:

1. s, t ∈ P and s ≤ t in P .

2. s, t ∈ Q and s ≤ t in Q.

We also introduce several classes of posets derived from Lie theory. For further background,

see [23] and [39].

Definition 1.1.9. The type An−1 positive root poset Φ+(An−1) is a poset with elements {ai,j | i, j ∈

{1, . . . , n − 1} and i ≥ j} and covering relations ai,j ≥ ai+1,j and ai,j ≥ ai+1,j+1. A type A

minuscule poset is a product of chains poset [a] × [b]. A type B minuscule poset is a poset of the

form ([a] × [a])/S2. In other words, (x, y) ∼ (y, x) in this poset. The poset ([a] × [a])/S2 can be

viewed as the left half of the Hasse diagram of [a]× [a].

We give an example of Φ+(A3) in Figure 1.2a. The product of chains poset [3] × [2] from

Figure 1.1a is an example of a type A minuscule poset. The poset ([4]× [4])/S2 in Figure 1.2b is a

type B minuscule poset.

Using a special subset of a poset P , we obtain an object called an order ideal. We also

introduce order filters, which are dual to order ideals.

Definition 1.1.10. A subset I of P is called an order ideal if for any t ∈ I and s ≤ t in P , then

s ∈ I. Let J(P ) denote the set of order ideals of P . A subset I of P is called an order filter if for

any t ∈ I and s ≥ t in P , then s ∈ I.

5



(a) The positive root poset Φ+(A3) (b) The type B minuscule poset ([4]× [4])/S2

Figure 1.2. The left figure is an example of the type A3 positive root poset Φ+(A3) while the right
figure is an example of a type B minuscule poset.

The majority of our results will be concerned with order ideals of particular posets. We

show the 6 order ideals of J([2] × [2]) in Figure 1.3. The elements shaded black represent the

elements of the order ideal.

Figure 1.3. In this example, we show the 6 order ideals in J([2]× [2]).

We conclude with several additional definitions relevant to posets.

Definition 1.1.11. A rank function of P is a function rk : P → N such that rk(f) = rk(e) + 1 if f

covers e. We will also use the convention that if e is a minimum element of P , rk(e) = 0. If P has

such a function, we will call P a ranked poset.

Figure 1.1a is an example of a ranked poset, whereas Figure 1.1b is not a ranked poset.

Definition 1.1.12. An interval [a, b] of P is the set of all elements x ∈ P such that a ≤ x ≤ b. P

is locally finite if for all a, b ∈ P , the interval [a, b] is finite.

Definition 1.1.13. A linear extension of a poset P is a bijective function f : P → {1, . . . , n}

where |P | = n such that if p1 < p2 in P then f(p1) < f(p2). Let L(P ) denote the set of linear

extensions of P .

6



We can label the elements in a Hasse diagram to represent a linear extension. See Figure

1.4 for an example.

1

32

5 4

6

Figure 1.4. An example of a linear extension of the poset [3]× [2].

We now introduce standard Young tableaux.

Definition 1.1.14. A partition λ = (λ1, . . . , λk) is a sequence of positive integers where λj ≥ λj+1.

We denote |λ| = ∑k
i=1 λi. A Young diagram is a configuration of boxes in left-justified rows, where

the length of the rows are weakly decreasing. The Young diagram is said to have partition shape,

as the length of the rows written as a vector form a partition.

Definition 1.1.15. A standard Young tableau of shape λ is a filling of the |λ| = n boxes of a

Young diagram with the integers {1, 2, . . . , n} such that the entries strictly increase from left to

right across rows, strictly increase from top to bottom along columns, and each integer is used

exactly once.

We give an example of a standard Young tableau of shape λ = (4, 3, 2) in Figure 1.5.

1 2 4 7

3 5 6

8 9

Figure 1.5. A standard Young tableau of shape λ = (4, 3, 2).

Standard Young tableaux are a special subset of semistandard Young tableaux.
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Definition 1.1.16. A semistandard Young tableau of shape λ with entries at most q is a filling of

boxes of partition shape λ with positive integers {1, 2, . . . , q} such that the entries weakly increase

from left to right across rows and strictly increase from top to bottom along columns. When filling

boxes, integers may be used more than once or not at all.

1.2. A brief history of promotion and rowmotion

In the previous section, we defined order ideals of posets, linear extensions of posets, and

tableaux. In this section, we introduce actions on these objects.

1.2.1. Promotion on standard Young tableaux and linear extensions

Promotion is a natural action defined by M.-P. Schützenberger on standard Young tableaux

and, more generally, linear extensions of finite poset [35], arising from study of evacuation and

the RSK correspondence. We give the definition on linear extensions and then give an alternate

definition.

Definition 1.2.1. Suppose P is a poset with n elements and f ∈ L(P ), then the promotion of

f , denoted Pro(f), is found as follows. We begin by deleting the label 1. We then slide down the

smallest label of all covers of the now unlabeled element to replace the removed label 1; this is

called a jeu de taquin slide. This jeu de taquin sliding process continues with the new unlabeled

element until the unlabeled element is maximal; we then label this with n + 1. By subtracting 1

from every label, we obtain a new linear extension, which is Pro(f).

This is not the only way to view promotion on a linear extension; it can also be defined

using a sequence of involutions. These involutions are a special case of involutions introduced by

E. Bender and D. Knuth on semistandard Young tableaux [2].

Definition 1.2.2. Let the action of the ith Bender-Knuth involution ρi on f ∈ L(P ) be as follows:

swap the labels i and i+ 1 if the result is a linear extension, otherwise do nothing.

Theorem 1.2.3 ([36]). Suppose P is a poset with n elements and f ∈ L(P ). Pro(f) = ρn−1 ◦ · · · ◦

ρ2 ◦ ρ1.

Promotion has many beautiful properties and significant applications in representation the-

ory. See R. Stanley’s survey [36] for many of these properties, including further history and details

on promotion via Bender-Knuth involutions. This survey also discusses evacuation, which is an
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action defined using a series of (partial) promotions. As we reference evacuation in Chapter 3, we

define it here.

Definition 1.2.4 ([35]). Let P be a poset with linear extension f ∈ L(P ). To perform evacuation,

first apply promotion to f . Next, freeze the largest label in f and apply promotion to the unfrozen

labels. Continue this process of freezing the next largest label and applying promotion to the

unfrozen labels until all labels are frozen. The result is the evacuation ε(f). In terms of Bender-

Knuth involutions, this is ε(f) = ρ1 ◦ (ρ2 ◦ ρ1) ◦ · · · ◦ (ρn−3 ◦ · · · ◦ ρ2 ◦ ρ1) ◦ (ρn−2 ◦ · · · ◦ ρ2 ◦ ρ1) ◦

(ρn−1 ◦ · · · ◦ ρ2 ◦ ρ1)(f).

1.2.2. Rowmotion and the toggle group

Rowmotion is an action originally defined on hypergraphs by P. Duchet [13] and generalized

to order ideals of an arbitrary finite poset by A. Brouwer and A. Schrijver [6].

Definition 1.2.5. Let P be a poset and I ∈ J(P ). Row(I) is the order ideal generated by the

minimal elements of P not in I. In other words, if t is a minimal element of P \ I and s ≤ t, then

s ∈ Row(I).

Rowmotion has recently generated significant interest as a prototypical action in the emerg-

ing subfield of dynamical algebraic combinatorics; see [44] for a detailed history and [3, 5, 9, 10,

11, 16, 17, 20, 21, 22, 24, 26, 30, 32, 33, 34, 41, 42, 43] for more recent developments.

In [6], Brouwer and Schrijver studied the order of rowmotion on a product of two chains

poset, [a]× [b].

Theorem 1.2.6 ([6]). J([a]× [b]) under Row has order a+ b.

D. Fon-der-Flaass refined this further with a result on the length of any orbit of J([a]× [b])

under rowmotion [18]. In [36], Stanley showed there exists an equivariant bijection between linear

extensions of two disjoint chains [a] + [b] (or equivalently, standard Young tableaux of disjoint skew

shape) under promotion and J([a]× [b]) under rowmotion.

Theorem 1.2.7 ([36]). J ([a]× [b]) under Row is in equivariant bijection with L ([a]⊕ [b]) under

Pro.
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Another instance where promotion on linear extensions and rowmotion are related is an

equivariant bijection between linear extensions of the product of two chains poset [2] × [n] under

promotion (or alternatively, rectangular, two-row standard Young tableaux under promotion) and

order ideals of the type An−1 positive root poset Φ+(An−1) under rowmotion. This is a restatement

of the Type A case of a result of D. Armstrong, C. Stump, and H. Thomas in [1].

Theorem 1.2.8 ([44, Theorem 3.10]). J (Φ+(An−1)) under Row is in equivariant bijection with

L ([2]× [n]) under Pro.

J. Striker and N. Williams proved a general result [44] relating promotion and rowmotion

which recovers Theorems 1.2.7 and 1.2.8 as special cases. They used the toggle group of P. Cameron

and Fon-der-Flaass [8], which we describe below.

Definition 1.2.9. For any p ∈ P , the toggle tp : J(P )→ J(P ) is defined as follows:

tp(I) =


I ∪ {p} if p /∈ I and I ∪ {p} ∈ J(P )

I \ {p} if p ∈ I and I \ {p} ∈ J(P )

I otherwise.

The toggle group of P is the group generated by the tp for all p ∈ P with operation composition.

Note that each tp is an involution.

Remark 1.2.10. ([8, p. 546]) The toggles tp1 and tp2 commute whenever neither p1 nor p2 covers

the other.

Cameron and Fon-der-Flaass showed a connection between rowmotion and toggling. Specif-

ically, rowmotion can be performed by toggling each element of a poset from top to bottom, that

is, in the reverse order of any linear extension. If the poset is ranked, this is equivalent to toggling

top to bottom by ranks, or rows.

Theorem 1.2.11 ([8, Lemma 1]). Let f ∈ L(P ). Then tf−1(1)tf−1(2) · · · tf−1(n) acts as Row.

The benefit of the toggle perspective is that we can study other actions that are closely

related to rowmotion. In [44], Striker and Williams constructed a toggle group action that corre-

sponds to linear extension promotion in the special cases of Theorems 1.2.7 and 1.2.8; they named

this toggle group action (order ideal-) promotion because of this correspondence. Order ideal pro-

motion first requires projecting to a two-dimensional lattice and defining columns. More specifically,
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order ideal promotion toggles poset elements from left to right by columns; see Example 1.2.14 for

an example. As we will want to perform order ideal promotion in higher dimensions, we omit

the formal definition of columns and instead define an n-dimensional lattice projection formally

in Definition 1.2.21, as columns can be stated in terms of a two-dimensional lattice projection.

Although we used Pro to denote promotion on a linear extension, we will also use Pro to denote

this two-dimensional order ideal promotion; for the rest of this dissertation, we will only refer to

the order ideal promotion Pro. In the following theorem, Striker and Williams showed that order

ideal promotion and rowmotion are conjugate elements in the toggle group, and thus have the same

orbit structure.

Theorem 1.2.12 ([44, Theorem 5.2]). For any poset P with a two-dimensional lattice projection

(in particular, any ranked poset), there is an equivariant bijection between J(P ) under Pro and

J(P ) under Row.

Striker and Williams found that in many cases, it was easier to prove the orbit sizes of

Pro compared to Row. The reason for this in these cases is that the action of Pro on J(P ) is in

equivariant bijection with rotation on another object. As a result, in order to study the orbits of

Row, it is often useful to study Pro and apply Theorem 1.2.12. We will show such a rotation for a

product of chains [a]× [b].

Definition 1.2.13. Define the boundary path of an order ideal I as a path of upsteps and downsteps

that separates I from the rest of the poset. The boundary path sequence, B(I), is a sequence of zeros

and ones where zeros correspond to downsteps and ones correspond to upsteps in the boundary

path.

Example 1.2.14. In Figure 1.6, we show an orbit of J([3] × [2]) under Pro. The red path is the

boundary path; the sequence of zeros and ones below each diagram is the boundary path sequence.

We see that after applying Pro to move forward in the orbit, the boundary path sequence cyclically

shifts to the left.

Striker and Williams showed that applying promotion to an order ideal of [a] × [b] corre-

sponds to applying a leftward cyclic shift on the boundary path sequence of I.
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(0,1,1,0,1) (1,1,0,1,0) (1,0,1,0,1) (0,1,0,1,1) (1,0,1,1,0)

Figure 1.6. An orbit of J([3] × [2]) under Pro with boundary path and boundary path sequence
shown.

Theorem 1.2.15 ([44, Theorem 6.1]). Let I ∈ J([a]× [b]). The boundary path B(Pro(I)) is a left

cyclic shift of B(I).

This immediately gives the order of promotion on order ideals of [a]× [b].

Corollary 1.2.16 ([44]). J([a]× [b]) under Pro has order a+ b.

Additionally, combining this corollary and Theorem 1.2.12 gives an alternate proof of The-

orem 1.2.6, that the order of rowmotion on [a]× [b] is a+ b.

1.2.3. K-promotion on increasing tableaux and rowmotion on the product of three

chains

In [27], O. Pechenik generalized promotion on standard Young tableaux to K-promotion on

increasing tableaux, using the K-jeu de taquin of Thomas and A. Yong [45]. Increasing tableaux, a

special subset of semistandard Young tableaux, first appeared in [7] in the context of K-theoretic

Schubert calculus. We give the definitions of increasing tableaux and K-promotion below.

Definition 1.2.17. An increasing tableau of shape λ is a filling of boxes of partition shape λ with

positive integers such that the entries strictly increase from left to right across rows and strictly

increase from top to bottom along columns. We will use Incq(λ) to indicate the set of increasing

tableaux of shape λ with entries at most q.

Figure 1.7 shows an increasing tableau in Incq(3, 3, 1) where q can be any integer greater

than or equal to 6.

Definition 1.2.18 ([27]). Let T ∈ Incq(λ). Delete all labels 1 from T . Consider the set of boxes

that are either empty or contain 2. We simultaneously delete each label 2 that is adjacent to an

empty box and place a 2 in each empty box that is adjacent to a 2. Now consider the set of boxes

that are either empty or contain 3, and repeat the above process. Continue until all empty boxes are
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1 2 4

2 4 5

6

Figure 1.7. An increasing tableau of shape λ = (3, 3, 1).

located at outer corners of λ. Finally, label those boxes q+ 1 and then subtract 1 from each entry.

The result is the K-promotion of T , which we denote K -Pro(T ). Note that K -Pro(T ) ∈ Incq(λ).

This is not the only way to describe K-promotion, however. In [11], K. Dilks, Pechenik and

Striker showed that K-promotion can be performed using a sequence of local involutions analogous

to those of Bender and Knuth for semistandard Young tableaux [2]. They called these involutions

K-Bender-Knuth involutions, denoted by K -BKi.

Proposition 1.2.19 ([11, Proposition 2.5]). For T ∈ Incq(λ), K -Pro(T ) = K -BKq−1 ◦ · · ·◦K -BK1.

With these K-Bender-Knuth involutions, we can also give an analogue of the evacuation

action defined in Definition 1.2.4 for increasing tableaux.

Definition 1.2.20. Define K-evacuation on an increasing tableaux T as:

E(T ) = K -BK1 ◦(K -BK2 ◦K -BK1) ◦ · · · ◦ (K -BKq−3 ◦ · · · ◦K -BK2 ◦K -BK1)◦

(K -BKq−2 ◦ · · · ◦K -BK2 ◦K -BK1) ◦ (K -BKq−1 ◦ · · · ◦K -BK2 ◦K -BK1)(T ).

In [11], Dilks, Pechenik, and Striker built on Proposition 1.2.19 to give a connection between

increasing tableaux of rectangular shape with entries at most q and order ideals in a product of

three chains poset. While the bijection between the two is straightforward, it is non-trivial that

K-promotion on increasing tableaux is carried equivariantly to a toggle group action they called

hyperplane promotion on order ideals in the product of three chains poset. We give the relevant

definitions below.

Definition 1.2.21 ([11]). We say that an n-dimensional lattice projection of a ranked poset P is

an order and rank preserving map π : P → Zn, where the rank function on Zn is the sum of the

coordinates and x ≤ y in Zn if and only if the componentwise difference y − x is in (Z≥0)n.

Definition 1.2.22 ([11]). Let P be a poset with an n-dimensional lattice projection π, and let

v = (v1, v2, . . . , vn) where vj ∈ {±1}. Let T iπ,v be the product of toggles tx for all elements x of P
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that lie on the affine hyperplane 〈π(x), v〉 = i. If there is no such x, then this is the empty product,

considered to be the identity. Define (hyperplane) promotion with respect to π and v as the toggle

product Proπ,v = . . . T−2π,vT
−1
π,vT

0
π,vT

1
π,vT

2
π,v . . .

Note that for Chapters 2 and 3, we will almost exclusively let P be a product of chains poset

and our lattice projection be a natural embedding into Nn. However, in Chapter 4, we generalize

one of our main results, using an arbitrary poset P with n-dimensional lattice projection. For ease

of notation, whenever we use v we will mean v = (v1, v2, . . . , vn) where vj ∈ {±1}, where n will be

inferred from context.

By Remark 1.2.10, toggles commute if there is no covering relation between their corre-

sponding poset elements. So we note Proπ,v is well-defined in the following way.

Remark 1.2.23 ([11]). Two elements of the poset that lie on the same affine hyperplane 〈π(x), v〉 =

i cannot be part of a covering relation.

Now that we have established Proπ,v and verified it is well-defined, we can relate it to

rowmotion.

Proposition 1.2.24 ([11]). For a finite ranked poset P with n-dimensional lattice projection π,

Proπ,(1,1,...,1) = Row. Additionally, Proπ,(−1,1) is the two-dimensional promotion action Pro.

This proposition and the next theorem show that any hyperplane promotion is conjugate

to the more natural toggle group action of rowmotion.

Theorem 1.2.25 ([11, Theorem 3.25]). Let P be a poset with an n-dimensional lattice projection

π. Let v and w be vectors in Zn with entries in {±1}. Then there is an equivariant bijection

between J(P ) under Proπ,v and J(P ) under Proπ,w.

For order ideals of a product of chains under Row, we also have a bijection to increasing

tableaux under K -Pro.

Theorem 1.2.26 ([11, Theorem 4.4]). J([a]× [b]× [c]) under Row is in equivariant bijection with

Inca+b+c−1(a× b) under K -Pro.

This was a second, more general setting in which rowmotion was shown to have the same

orbit structure as a previously studied promotion action. Along with orbit structure, a phenomenon,
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isolated by Propp and Roby, appears frequently among many posets and will be the subject of the

next section.

1.3. The homomesy phenomenon

In this section, we define homomesy and state known results in two dimensions. We will

generalize these results to higher dimensions in Chapter 2.

Definition 1.3.1. Given a finite set S, a bijective action τ : S → S, and a statistic f : S → K

where K is a field of characteristic zero, the triple (S, τ, f) exhibits homomesy if there exists c ∈ K

such that for every τ -orbit O

1

#O
∑
x∈O

f(x) = c

where #O denotes the number of elements in O. If such a c exists, we will say the triple is c-mesic.

A statistic can be any map from S to K; however, it should have some combinatorial

significance. For many of the results in this dissertation, our statistic will be the cardinality of

an order ideal. Homomesy results have been observed in many well-known combinatorial objects.

Propp and Roby proved the following results on a product of two chains.

Theorem 1.3.2 ([30]). Let f be the cardinality statistic. Then (J([a]× [b]),Pro, f) is c-mesic with

c = ab/2.

Theorem 1.3.3 ([30]). Let f be the cardinality statistic. Then (J([a]× [b]),Row, f) is c-mesic with

c = ab/2.

We will show proofs for both of these as one of our main results, Theorem 2.0.1, generalizes

these theorems. The proof of Theorem 1.3.2 will follow Propp and Roby’s proof in [30] with a few

changes to notation.

Definition 1.3.4 ([30]). Let P = [a] × [b]. Define the file x1 − x2 as all elements (x1, x2) with

constant value x1 − x2. Furthermore, define the height function of I for file k as

hI(k) = |k|+ 2#(elements of I in file k).

We can relate the sum of the height functions to the size of [a]× [b] and the cardinality of I.
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Lemma 1.3.5 ([30]). Let I ∈ J([a]× [b]). Then
a∑

k=−b
hI(k) =

a(a+ 1)

2
+
b(b+ 1)

2
+ 2f(I).

Proof. Summing hI(k) from the files k = −b to k = a means the |k| term of hI(k) will sum from 1

to a and 1 to b, yielding the terms a(a+1)
2 and b(b+1)

2 . Summing two times the number of elements

of I in file k over all files k yields 2f(I).

We now have the background to prove Theorem 1.3.2.

Proof of Theorem 1.3.2. Our strategy will be to show J([a] × [b]) under Pro with statistic hI(k)

is homomesic. From this, we will conclude J([a] × [b]) under Pro with statistic

a∑
k=−b

hI(k) is

homomesic, and by the previous proposition, J([a] × [b]) under Pro with statistic f(I) is as well.

To show the homomesy result for hI(k), we rewrite hI(k) as a telescoping sum hI(k) = hI(−b) +

(hI(−b+ 1)− hI(−b)) + · · · + (hI(k)− hI(k − 1)). As a result, if each term hI(k) − hI(k − 1) for

−b+ 1 ≤ k ≤ a exhibits homomesy, the sum hI(k) will as well.

To show the result for hI(k)−hI(k−1), we will introduce a bijection between hI(k)−hI(k−1)

and the (k+b)th entry of the boundary path sequence of I, B(I). Suppose the (k+b)th component

of B(I) is 1. This corresponds to an upstep between file k − 1 and file k. If k ≤ 0, then

hI(k)−hI(k−1) = −1+2[#(elements of I in file k)−#(elements of I in file k−1)] = −1+2 = 1.

If k ≥ 0, then

hI(k)− hI(k − 1) = 1 + 2[#(elements of I in file k)−#(elements of I in file k − 1)] = 1 + 0 = 1.

In both cases, hI(k) − hI(k − 1) = 1. Similarly, if the (k + b)th component of B(I) is a 0, this

corresponds to a downstep between file k − 1 and file k, which results in hI(k) − hI(k − 1) = −1.

As a result, we have our desired bijection.

A boundary path sequence B(I) for I ∈ J([a] × [b]) must contain a ones and b zeros. By

Theorem 1.2.15, B(I) cyclically shifts to the left when Pro is applied to I. This implies that over

an orbit of Pro, any component of B(I) must average a
a+b ones and b

a+b zeros. By our previous

bijection, this tells us J([a]× [b]) under Pro with statistic hI(k)−hI(k−1) is homomesic and hence,

f(I) is as well.

We have shown (J([a]× [b]),Pro, f) is homomesic, but we still must show the orbit average

is ab/2. Due to rotational symmetry, the order filters of [a] × [b] are in bijection with the order
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ideals of [a] × [b]. More specifically, let I ∈ J([a] × [b]) and let H ∈ J([a] × [b]) be the order ideal

isomorphic to P \ I. Therefore, f(I) + f(H) = ab. As a result, we can say the global average of f

is ab/2, and hence c must also be ab/2.

(1,1)

(2,1)

(3,1)

(1,2)

(2,2)

(3,2)

Figure 1.8. The poset [3] × [2] with order ideal I. The file 1 is denoted by the red line, with
hI(1) = 3.

Example 1.3.6. Figure 1.8 shows the poset [3] × [2] and an order ideal, denoted I. The red

line going through the points (3, 2) and (2, 1) in the diagram shows the file 1, as 3-2 and 2-1 are

both 1. Because hI(k) = |k| + 2#(elements of I in file k), we see hI(1) = 3. Furthermore, if we

write out each hI(k) from k = −b to k = a, we obtain 2, 3, 4, 3, 4, 3. Taking successive differences

hI(k)− hI(k− 1) yields 1, 1,−1, 1,−1. The bijection to a boundary path sequence merely changes

negative ones to zeros, giving us (1, 1, 0, 1, 0). We can see from Figure 1.6 that this is the boundary

path sequence for I.

Propp and Roby also showed refined homomesy results in the product of two chains. In

other words, they showed particular subcollections of elements also exhibited homomesy under

rowmotion and promotion. We define the indicator function in order to state these results.

Definition 1.3.7. Let P be a poset, I ∈ J(P ), and x ∈ P . Denote the indicator function

1x(I) : J(P )→ {0, 1} by

1x(I) =


1 if x ∈ I

0 if x /∈ I
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One refined result of Propp and Roby involves antipodal elements in [a]× [b].

Definition 1.3.8. Let P = [a]× [b]. If x = (x1, x2) and y = (a+ 1− x1, b+ 1− x2), then x and y

are antipodal in P .

Theorem 1.3.9 ([30]). Suppose x and y are antipodal elements in [a] × [b]. Then (J([a] ×

[b]),Row, 1x + 1y) and (J([a] × [b]),Pro, 1x + 1y) are c-mesic with c = 1 if x and y are distinct

and c = 1/2 if x = y.

Theorem 1.3.10 ([30]). Suppose k is a file in [a]× [b]. Then (J([a]× [b]),Row,
∑

x in file k 1x) and

(J([a]× [b]),Pro,
∑

x in file k 1x) are homomesic.

In other words, sets of antipodal elements and sets of files of elements in [a] × [b] exhibit

homomesy under both rowmotion and promotion.

Example 1.3.11. Figure 1.9 contains an orbit of J([3]× [2]) under Pro. The red elements x and

y are antipodal in [3]× [2]. The average cardinality of these elements over this orbit is 1. Theorem

1.3.9 says that if we take any orbit of J([3]× [2]) under Pro, we also obtain an average of 1.

x

y

x

y

x

y

x

y

x

y

Figure 1.9. The average cardinality of x and y over this orbit is
0 + 2 + 1 + 0 + 2

5
= 1.

It is beneficial to study J([a] × [b]) under Pro rather than Row, as J([a] × [b]) under Pro

is in bijection with boundary path sequences of length a + b under a left cyclic shift. This fact

makes the proof of Theorem 1.3.2 fairly straightfoward. Propp and Roby also have a direct proof

of Theorem 1.3.3 in [30]; however, it is much more technical than in the promotion case. Einstein

and Propp found a more elegant way to prove Theorem 1.3.3; we will expand on this in Chapter 2.
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2. HOMOMESY ON J([2]× [a]× [b]) AND RECOMBINATION

In this chapter, we extend homomesy results discussed in Chapter 1 from two dimensions

to three dimensions. We state our first main theorem and the primary motivation for Chapter 2, a

higher dimensional analogue of Theorem 1.3.2 and 1.3.3.

Theorem 2.0.1. Let f be the cardinality statistic. The triple (J([2]× [a]× [b]),Prov, f) is c-mesic

with c = ab.

We begin by introducing the idea of layers in Definition 2.1.2, as these are necessary for

organizing the recombination proof technique of Einstein and Propp, along with our higher dimen-

sional generalization. In Section 2.1, we summarize Einstein’s and Propp’s results. This includes

Theorem 2.1.8, which shows how recombination connects Row and Pro for a two-dimensional prod-

uct of chains. A key aspect of the proof of Theorem 2.0.1 is generalizing recombination to a higher

dimensional product of chains. This appears in Section 2.2 and is our second main result of Chapter

2, Theorem 2.2.4. In Section 2.3, we complete the proof of Theorem 2.0.1 using recombination and

a connection to increasing tableaux. Additionally, Corollaries 2.3.5 and 2.3.6 use symmetry to give

two additional results similar to Theorem 2.0.1. In Section 2.4, we conclude with Propositions 2.4.1

and 2.4.2, showing that Theorem 2.0.1 does not generalize further. In the next chapter, we discuss

a partial generalization. This chapter is based on work from [46].

2.1. An introduction to recombination

In [17] (with further details in [16]), Einstein and Propp found an elegant proof technique

to prove Theorem 1.3.3; they called this technique recombination. The idea behind recombination

is that we may start with an orbit from J([a] × [b]) under Row and take sequential layers from

order ideals to form a new orbit. We first introduce some useful notation.

Definition 2.1.1. Suppose v = (v1, v2, . . . , vn) ∈ Zn. Given γ ∈ {1, . . . , n}, let

vγ̂ = (v1, v2, . . . , vγ−1, vγ+1, . . . , vn).

We define our layers in the following way.

Definition 2.1.2. Define the jth γ-layer of P = [a1]× · · · × [an] as

Ljγ = {(i1, i2, . . . , in) ∈ P | iγ = j}
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and the jth γ-layer of I ∈ J(P ) as

Ljγ(I) = Ljγ ∩ I.

Additionally, given Ljγ and Ljγ(I), define

(Ljγ)γ̂ = {(i1, i2, . . . , in)γ̂ | (i1, i2, . . . , in) ∈ Ljγ},

Ljγ(I)γ̂ = {(i1, i2, . . . , in)γ̂ | (i1, i2, . . . , in) ∈ Ljγ(I)}.

When taking layers, γ determines the component in which we are working. Additionally, j

signifies which of the layers we are taking in that direction.

Einstein and Propp referred to each Lj1 as a negative fiber of P ; we use the notation Ljγ and

Ljγ(I) as it more naturally describes our layers when we generalize recombination to higher dimen-

sions in Section 2.2. Furthermore, we define (Ljγ)γ̂ and Ljγ(I)γ̂ , which remove the jth coordinate,

as it will be useful to view certain layers in the (n− 1)-dimensional setting.

Using the idea of layers, Einstein and Propp defined the concept of recombination and

proved the following proposition, which we restate in the above notation. See Figure 2.2 for an

example.

Definition 2.1.3. Let I ∈ J([a]× [b]). Define the recombination of I as ∆I = ∪jLj1(Rowj−1(I)).

In Theorem 2.2.4, we generalize the notion of recombination to higher dimensional products

of chains. Here, we observe an important property of Row and Pro and how their toggles commute

in the [a] × [b] case that will be helpful when generalizing to higher dimensions. In order to state

this observation, we introduce an additional definition. This definition will also prove useful when

discussing commuting toggles in n-dimensions.

Definition 2.1.4. Let P = [a1] × · · · × [an] and γ ∈ {1, 2, . . . , n}. Define T jPro
vγ̂

as the toggle

product of Provγ̂ on (Ljγ)γ̂ .

The following result is discussed in [44], Theorem 5.4 and in [16], Section 8.

Proposition 2.1.5 ([16, 44]). Let P = [a] × [b]. Row = Pro(1,1) =
∏a
j=1 T

j
Pro

(1,1)1̂
and Pro =∏a

j=1 T
a+1−j
Pro

(−1,1)1̂
.

In other words, we can commute the toggles of Row so we toggle La1, followed by La−11 , and

so on, toggling each layer from top to bottom. To see why, observe the following example.
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Example 2.1.6. In Figure 2.1a, we can commute the toggle of the red element on the left with

both toggles of the blue elements on the right, as the red element does not have a covering relation

with either blue element. Therefore, when performing Row we can toggle both blue elements before

the red element, and hence all of L3
1 before the red element. Similar reasoning applies for each Lj1,

and as a result we can perform Row by toggling in the order denoted in Figure 2.1b, where Layer 1

is first, Layer 2 is second, and Layer 3 third. Additionally, the toggle order in each layer is denoted

with an arrow. Note that for Pro, we would have a similar picture except we would toggle Layer 3

first, then Layer 2, then Layer 1.

(a) We can commute the toggle of either blue ele-
ment with the red element, as there is no covering
relation between them.

1

2

3

(b) We toggle Layer 1, then Layer 2, then Layer 3,
with arrows denoting toggle order in each layer.
This toggle order is equivalent to Row by com-
muting toggles.

Figure 2.1. We commute the toggles of Row as described in Example 2.1.6.

Our goal is to connect Row(I) and Pro(∆I). If we want to apply Pro to ∆I though, we

must first verify that ∆I is an order ideal.

Lemma 2.1.7. Let I ∈ J([a]× [b]). Then ∆I is an order ideal of [a]× [b].

Proof. Suppose (i1, i2) ∈ ∆I. By Definition 2.1.3, (i1, i2 − 1) ∈ ∆I as (i1, i2 − 1) is obtained from

the same layer as (i1, i2). To show that ∆I is an order ideal, it suffices to show (i1 − 1, i2) ∈ ∆I.

If i1 = 1 there is nothing to show. Because (i1, i2) ∈ ∆I, we have (i1, i2) ∈ Li11 (Rowi1−1(I)). By

Proposition 2.1.5, Row =
∏a
j=1 T

j
Pro

(1,1)1̂
, which implies we can commute the toggle relations in

Row so that Li11 is toggled before Li1−11 . As a result, we must have (i1−1, i2) ∈ Li1−11 (Rowi1−2(I)).

Therefore, (i1 − 1, i2) ∈ ∆I.
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The idea behind recombination is the following: we take a single layer from each order

ideal in a sequence of order ideals from a rowmotion orbit to form the layers of a new order ideal.

Theorem 2.1.8 tells us that if we apply promotion to this new order ideal, the result is the same

as if we move one step forward in the rowmotion orbit and apply recombination again. See Figure

2.2 for a specific example.

Theorem 2.1.8 ([16]). Let I ∈ J([a]× [b]). Then Pro(∆I) = ∪jLj1(Rowj(I)) = ∆(Row(I)).

Proof. First, note that ∆I is an order ideal by Lemma 2.1.7. Also note that Row =
∏a
j=1 T

j
Pro

(1,1)1̂

and Pro =
∏a
j=1 T

a+1−j
Pro

(−1,1)1̂
by Proposition 2.1.5. We will show Pro(∆I)=∆(Row(I)) by showing

Lk1(Pro(∆I)) = Lk1(∆(Row(I))) for each k ∈ {1, 2, . . . , a}. There are three cases.

Case 1 < k < a: Let J = Rowk−1(I). We can commute the toggles of Row so that Lk+1
1 of

J is toggled before Lk1 of J , which is toggled before Lk−11 of J . Thus, when applying the toggles of

Row to Lk1 of J , the layer above is Lk+1
1 (Row(J)) whereas the layer below is Lk−11 (J). Additionally,

we can also commute the toggles of Pro so Lk−11 of ∆I is toggled before Lk1 of ∆I, which is toggled

before Lk+1
1 of ∆I. Therefore, when applying the toggles of Pro to Lk1 of ∆I, the layer below

is Lk−11 (Pro(∆I)), whereas the layer above is Lk+1
1 (∆I). However, Lk−11 (Pro(∆I)) = Lk−11 (J),

Lk1(∆I) = Lk1(J), and Lk+1
1 (∆I) = Lk+1

1 (Row(J)). Therefore, when applying Row to Lk1 of J and

Pro to Lk1 of ∆I, both layers are the same and have the same layers above and below them. Because

(−1, 1)1̂ = (1, 1)1̂ = (1), we have Pro
(−1,1)1̂ = Pro

(1,1)1̂
and so the result of toggling this layer is

Lk1(Pro(∆I)), which is the same as Lk1(Row(J)) = Lk1(Rowk(I)) = Lk1(∆(Row(I))).

Case k = 1: As above, when applying Row to L1
1 of I and Pro to L1

1 of ∆I, both of these

layers are the same, along with the layers above them. Because k = 1, there is not a layer below.

As above, Pro
(−1,1)1̂ = Pro

(1,1)1̂
and so we again obtain L1

1(Pro(∆I)) = L1
1(∆(Row(I))).

Case k = a: Again, as above, when applying Row to La1 of J and Pro to La1 of ∆I, both

of these layers are the same along with the layers below them. Because k = a there is not a layer

above. Again, Pro
(−1,1)1̂ = Pro

(1,1)1̂
and so La1(Pro(∆I)) = La1(∆(Row(I))).

Example 2.1.9. To see an example of the proof technique for the 1 < k < a case, we will refer

to Figures 2.2, 2.3, 2.4, and 2.5. We begin with the same orbit under Row as in Figure 2.2. Let

I denote the first order ideal in this orbit; using recombination we form the order ideal ∆I. We
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Row Row Row

Pro

(a) From an orbit of Row, we use
L1
1(I), L2

1(Row(I)), and L3
1(Row2(I)) to form a

new order ideal, denoted here in red.

Row Row Row

Pro

(b) From the same orbit of Row, we use
L1
1(Row(I)), L2

1(Row2(I)), and L3
1(Row3(I)) to

form a new order ideal, denoted here in blue.

Figure 2.2. Performing Pro on the red order ideal results in the blue order ideal.

want to verify that by forming sequential recombination order ideals, we obtain an orbit under Pro.

We will do so by showing that corresponding layers in the Row orbit and the recombination order

ideal result in the same layer after performing Row and Pro, respectively. The boxed purple layers

L2
1(I) in both orbits of Figure 2.3 correspond under recombination. We can commute the toggles of

Row as we did in Figure 2.1b. We can also commute the toggles of Pro so we toggle Layer 3, then

Layer 2, then Layer 1 in Figure 2.1b. This means when performing Row, we first toggle the layer

indicated by the green arrow in Figure 2.4, left. Similarly, when performing Pro, we first toggle the

layer indicated by the green arrow in Figure 2.4, right. Then, the next step of both Row and Pro

is to toggle the boxed purple layer, as seen in Figure 2.5. We see that when we perform this step of

Row and Pro, the boxed purple layer, the layer above, and the layer below are the same. Because

we are toggling the same direction along the boxed purple layer, we are guaranteed the same result

in both cases.

Propp and Roby gave a direct proof of Theorem 1.3.3 in [30]; however, using recombination,

we can prove this result using Theorem 1.3.2. This is the proof technique used by Einstein and

Propp in [16].

Proof of Theorem 1.3.3. Recombination gives a bijection between orbits of J([a] × [b]) under Pro

and J([a] × [b]) under Row which preserves the cardinality of the order ideals. This result then

follows immediately from Theorem 1.3.2.
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Row Row Row

Pro

Figure 2.3. The boxed purple layers correspond under recombination. In Example 2.1.9, we demon-
strate the idea of the proof using the order ideals in the large blue and red boxes.

Figure 2.4. When performing Row on the left order ideal, L3
1 is toggled first in the direction

indicated. When performing Pro on the right order ideal, L1
1 is toggled first in the direction

indicated.
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Figure 2.5. After performing the toggles from Figure 2.4, both order ideals now have L3
1(Row2(I))

above the boxed purple layer and have L1
1(Row(I)) below the boxed purple layer. Therefore, when

performing toggles on the purple layer, the three layers are the same.

2.2. Higher dimensional recombination

In order to prove Theorem 2.0.1, we will define the notion of recombination for a product

of chains in full generality.

Definition 2.2.1. Let P = [a1]× · · · × [an] and I ∈ J(P ). Define ∆γ
vI = ∪jLjγ(Proj−1v (I)) where

γ ∈ {1, . . . , n}. We will call ∆γ
vI the (v, γ)−recombination of I. When context is clear, we will

suppress the (v, γ).

The idea behind recombination is the same as in the two-dimensional case: we take one

layer from each order ideal in a sequence of order ideals from a promotion orbit to form the layers

of a new order ideal. See Figure 2.6 for an example. In addition to generalizing recombination to

n dimensions, we also generalize Proposition 2.1.5 to n dimensions. This is a toggle commutation

result motivated by recombination, as we will make use of it when proving the recombination results

that follow.

Lemma 2.2.2. Let P = [a1]× · · · × [an] and γ ∈ {1, 2, . . . , n}. Then Prov =
∏aγ
j=1 T

α
Pro

vγ̂
where

α =


j if vγ = 1

aγ + 1− j if vγ = −1.

Proof. Suppose x := (x1, . . . , xn), y := (y1, . . . , yn) ∈ P with x ∈ Ljγ and y ∈ Lkγ for some j and k.

We want to show that x and y are toggled in the same relatve order in Prov and
∏aγ
j=1 T

α
Pro

vγ̂
.
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Case j 6= k: Without loss of generality, j > k. Furthermore, we can assume xγ = yγ + 1

and xi = yi for i 6= γ. If this was not the case, x and y could not have a covering relation and we

could commute the toggles.

If vγ = 1, in
∏aγ
j=1 T

α
Pro

vγ̂
, x is toggled before y by definition. Additionally,

〈x, v〉 = v1x1 + · · ·+ vγxγ + · · ·+ vnxn > v1y1 + · · ·+ vγyγ + · · ·+ vnyn = 〈y, v〉

and so x is toggled before y in Prov.

If vγ = −1, in
∏aγ
j=1 T

α
Pro

vγ̂
, y is toggled before x by definition. Additionally,

〈x, v〉 = v1x1 + · · ·+ vγxγ + · · ·+ vnxn < v1y1 + · · ·+ vγyγ + · · ·+ vnyn = 〈y, v〉

and so y is toggled before x in Prov.

Case j = k: In other words, xγ = yγ . Therefore,

〈x, v〉 > 〈y, v〉 ⇐⇒ v1x1 + · · ·+ vγxγ + · · ·+ vnxn > v1y1 + · · ·+ vγyγ + · · ·+ vnyn

⇐⇒ v1x1 + · · ·+ vγ−1xγ−1 + vγ+1xγ+1 + · · ·+ vnxn >

v1y1 + · · ·+ vγ−1yγ−1 + vγ+1yγ+1 + · · ·+ vnyn

⇐⇒ 〈xγ̂ , vγ̂〉 > 〈yγ̂ , vγ̂〉

where xγ̂ , yγ̂ are x and y with xγ and yγ deleted, respectively. Therefore, x can be toggled before

y in Prov if and only if x can be toggled before y in
∏aγ
j=1 T

α
Pro

vγ̂
.

In other words, if we want to apply Prov, we can commute our toggles to toggle by layers of

the form Ljγ instead of using the toggle order given in Definition 1.2.22. More specifically, if vγ = 1,

we toggle in the order of L
aγ
γ , L

aγ−1
γ , . . . , L1

γ . If vγ = −1, we toggle in the order of L1
γ , L

2
γ , . . . , L

aγ
γ .

This means that any promotion can be thought of as sequence of n− 1 dimensional promotions on

the layers of our product of chains poset.

Now that we have established n-dimensional recombination and toggle commutation, we

determine conditions under which n-dimensional recombination results in an order ideal.

Lemma 2.2.3. Let I ∈ J([a1]× · · · × [an]). Suppose we have v and γ such that vγ = 1. Then ∆γ
vI

is an order ideal of P.

Proof. Suppose (i1, . . . , in) ∈ ∆γ
vI. By Definition 2.2.1, (i1, . . . , ij − 1, . . . , in) ∈ ∆γ

vI for j 6= γ

as these are obtained from the same layer as (i1, . . . , in). To show that ∆γ
vI is an order ideal, it

suffices to show (i1, . . . , iγ − 1, . . . , in) ∈ ∆γ
vI for iγ ≥ 2; if iγ = 1 there is nothing to show. Because
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Row

Pro(1,1,−1)

Row

(a) From an orbit of Row, we use L1
3(I) and

L2
3(Row(I)) to form a new order ideal, denoted

here in red.

Row

Pro(1,1,−1)

Row

(b) From the same orbit of Row, we use
L1
3(Row(I)) and L2

3(Row2(I)) to form a new or-
der ideal, denoted here in blue.

Figure 2.6. Performing Pro(1,1,−1) on the red order ideal results in the blue order ideal.

(i1, . . . , in) ∈ ∆γ
vI, we have (i1, . . . , in) ∈ Liγγ (Pro

iγ−1
v (I)). By Lemma 2.2.2, Prov =

∏aγ
j=1 T

j
Pro

vγ̂
,

which implies we can commute the toggle relations in Prov so that L
iγ
γ is toggled before L

iγ−1
γ . As a

result, we must have (i1, . . . , iγ−1, . . . , in) ∈ Liγ−1γ (Pro
iγ−2
v (I)). Therefore, (i1, . . . , iγ−1, . . . , in) ∈

∆γ
vI.

We now state our second main result, which shows how recombination relates different

promotion actions. This result will allow us to prove Theorem 2.0.1.

Theorem 2.2.4. Let I ∈ J([a1]×· · ·×[an]). Suppose we have v = (v1, v2, . . . , vn) where vj ∈ {±1},

u = (u1, u2, . . . , un) where uj ∈ {±1}, and γ such that vγ = 1, uγ = −1, and vγ̂ = uγ̂. Then

Prou(∆γ
vI) = ∆γ

v(Prov(I)).

Proof. First, note that ∆γ
vI is an order ideal by Lemma 2.2.3. Also note that Prov =

∏aγ
j=1 T

j
Pro

vγ̂

and Prou =
∏aγ
j=1 T

aγ+1−j
Pro

uγ̂
by Lemma 2.2.2. We will show Prou(∆γ

vI)=∆γ
v(Prov(I)) by showing

Lkγ(Prou(∆γ
vI)) = Lkγ(∆γ

v(Prov(I))) for each k ∈ {1, 2, . . . , aγ}. There are three cases.

Case 1 < k < aγ: Let J = Prok−1v (I). We can commute the toggles of Prov so that Lk+1
γ of

J is toggled before Lkγ of J , which is toggled before Lk−1γ of J . Thus, when applying the toggles of

Prov to Lkγ of J , the layer above is Lk+1
γ (Prov(J)) whereas the layer below is Lk−1γ (J). Additionally,

we can also commute the toggles of Prou so Lk−1γ of ∆γ
vI is toggled before Lkγ of ∆γ

vI, which is toggled
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before Lk+1
γ of ∆γ

vI. Therefore, when applying the toggles of Prou to Lkγ of ∆γ
vI, the layer below is

Lk−1γ (Prou(∆γ
vI)), whereas the layer above is Lk+1

γ (∆γ
vI). However, Lk−1γ (Prou(∆γ

vI)) = Lk−1γ (J),

Lkγ(∆γ
vI) = Lkγ(J), and Lk+1

γ (∆γ
vI) = Lk+1

γ (Prov(J)). Therefore, when applying Prov to Lkγ of J

and Prou to Lkγ of ∆γ
vI, both layers are the same and have the same layers above and below them.

Because uγ̂ = vγ̂ , we have Prouγ̂ = Provγ̂ and so the result of toggling this layer is Lkγ(Prou(∆γ
vI)),

which is the same as Lkγ(Prov(J)) = Lkγ(Prokv(I)) = Lkγ(∆γ
v(Prov(I))).

Case k = 1: As above, when applying Prov to L1
γ of I and Prou to L1

γ of ∆γ
vI, both of

these layers are the same, along with the layers above them. Because k = 1, there is not a layer

below. As above, Prouγ̂ = Provγ̂ and so we again obtain L1
γ(Prou(∆γ

vI)) = L1
γ(∆γ

v(Prov(I))).

Case k = aγ: Again, as above, when applying Prov to L
aγ
γ of J and Prou to L

aγ
γ of ∆γ

vI,

both of these layers are the same along with the layers below them. Because k = aγ there is not a

layer above. Again, Prouγ̂ = Provγ̂ and so L
aγ
γ (Prou(∆γ

vI)) = L
aγ
γ (∆γ

v(Prov(I))).

Example 2.2.5. We give a three-dimensional example of the proof technique for the k = 1 case.

Note that this is similar to the two-dimensional example from Example 2.1.9. We start with the

partial orbits under Row and Pro(1,1,−1) from Figure 2.6. As before, I denotes the first order ideal

in the orbit of Row. In Figure 2.7, the purple layers L1
3 in the blue and red boxes correspond under

recombination. We want to verify that after applying Row to the order ideal in the top, blue box,

the layer L1
3 of the result is the same as the layer when we apply Pro(1,1,−1) to the order ideal

in the bottom, red box. When applying Row, we can commute the toggles so we first toggle the

layer L2
3 from top to bottom, then L1

3 from top to bottom. On the other hand, when applying

Pro(1,1,−1), we can commute the toggles so we first toggle the layer L1
3 from top to bottom, then

L2
3 from top to bottom. See Figure 2.8. As a result, when applying the toggles of Row to the

purple layer L1
3, the layer above L2

3 has already been toggled and is therefore the layer L2
3(Row(I)).

However, by construction, this is the layer L2
3(∆

3
(1,1,1)I) from the recombination order ideal in the

red box. Hence, in Figure 2.9, the layer L2
3 above the purple layer L1

3 is the same for both order

ideals. Using similar reasoning, if there was a layer below the purple layer, these would also be the

same. Because the purple layer L1
3 is toggled in the same direction in both order ideals and the

layer above is the same for both order ideals, the result of toggling this layer is the same for both

order ideals.
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Row Row

Pro(1,1,−1)

Figure 2.7. The purple layers L1
3 in the blue and red boxes correspond under recombination.

Figure 2.8. When performing Row on the left figure, L2
3 is toggled first from top to bottom. When

performing Pro(1,1,−1) on the right figure, L1
3 is the first layer toggled; in other words, there is no

layer toggled before the purple layer.

Figure 2.9. After performing the toggles from Figure 2.8, both order ideals now have L2
3(Row(I))

above the purple layer. Therefore, when performing toggles on the purple layer, the layer above is
the same, so the result of toggling the purple layer from top to bottom is the same.
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We have three immediate corollaries that will be useful in the proof of Theorem 2.0.1.

Corollary 2.2.6. Pro(1,1,−1)(∆3
(1,1,1)I) = ∆3

(1,1,1)(Pro(1,1,1)(I)).

Proof. v = (1, 1, 1), u = (1, 1,−1), and γ = 3 satisfy the assumptions of Theorem 2.2.4.

Corollary 2.2.7. Pro(−1,1,−1)(∆1
(1,1,−1)I) = ∆1

(1,1,−1)(Pro(1,1,−1)(I)).

Proof. v = (1, 1,−1), u = (−1, 1,−1), and γ = 1 satisfy the assumptions of Theorem 2.2.4.

Corollary 2.2.8. Pro(1,−1,−1)(∆2
(1,1,−1)I) = ∆2

(1,1,−1)(Pro(1,1,−1)(I)).

Proof. v = (1, 1,−1), u = (1,−1,−1), and γ = 2 satisfy the assumptions of Theorem 2.2.4.

Note that recombination gives us a bijection between orbits of order ideals under different

promotion actions. Suppose v and u are as in Theorem 2.2.4. If we find the recombination of each

order ideal in an orbit of Prov, we obtain a sequence of order ideals that form an orbit under Prou.

Remark 2.2.9. Let u, v be as in Theorem 2.2.4 and let O be an orbit of order ideals in J([a1] ×

· · · × [an]) under Prou. There is a unique orbit O′ under Prov where the recombination of O′ is O.

In other words, if we start with an orbit under Prou, we can invert recombination to get an orbit

under Prov. For example, if we start with an orbit of J([2] × [a] × [b]) under Pro(−1,1,−1), we can

acquire an orbit of J([2]× [a]× [b]) under Pro(1,1,−1).

This observation will be used to show J([2]× [a]× [b]) exhibits homomesy under Pro(−1,1,−1)

and Pro(1,−1,−1).

2.3. Proving the main homomesy result

To prove Theorem 2.0.1, we relate the order ideals of our posets to increasing tableaux. To

do so, we first need a map from J([a]× [b]× [c]) to increasing tableaux defined by Dilks, Pechenik,

and Striker. Recall the definitions of increasing tableaux and K -Pro from Definition 1.2.17 and

Definition 1.2.18, respectively.

Definition 2.3.1 ([11]). Define a map Ψ : J([a] × [b] × [c]) → Inca+b+c−1(a × b) in the following

way. Let I ∈ J([a] × [b] × [c]). We can view I as a pile of cubes in an a × b × c box; we then

project onto the a × b face. More specifically, record in position (i, j) the number of boxes of I

with coordinate (i, j, k) for some 0 ≤ k ≤ c − 1. This results in a filling of a Young diagram of
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shape a × b with nonnegative entries that weakly decrease from left to right and top to bottom.

By rotating the diagram 180◦, our Young diagram is now weakly increasing in rows and columns.

Now increase each label by one more than the distance to the upper left corner box. This results

in an increasing tableau, which we denote Ψ(I).

Along with defining Ψ, Dilks, Pechenik, and Striker also showed that Ψ intertwines Pro(1,1,−1)

and K -Pro.

Theorem 2.3.2 ([11]). Ψ is an equivariant bijection between J([a]× [b]× [c]) under Pro(1,1,−1) and

Inca+b+c−1(a× b) under K -Pro.

Furthermore, we can relate the cardinality of I to the sum of the entries in Ψ(I).

Lemma 2.3.3. If I ∈ J([2] × [a] × [b]), the sum of the boxes in Ψ(I) is equal to f(I) + a(a + 2)

where f is the cardinality statistic.

Proof. This follows from the definition of Ψ and the shape of Ψ(I).

As a result of this lemma, if we can find an appropriate homomesy result on increasing

tableaux, we can transfer the result to J([2]× [a]× [b]) under Pro(1,1,−1) using Ψ, then to J([2]×

[a] × [b]) under Row using Corollary 2.2.6. As it turns out, the appropriate homomesy result has

already been discovered by J. Bloom, Pechenik, and D. Saracino.

Theorem 2.3.4 ([4]). Let λ be a 2 × n rectangle for any n, let µ ⊆ λ be a set of elements fixed

under 180◦ rotation, and let σµ be the statistic of summing the entries in the boxes of µ. Then for

any q, (Incq(λ), K-Pro, σµ) is homomesic.

Note that the entire 2× n rectangle is fixed under 180◦ rotation. Moreover, for I ∈ J([2]×

[a] × [b]), Ψ(I) is an increasing tableau of shape 2 × a. With this theorem, we have sufficient

machinery to prove Theorem 2.0.1.

Proof of Theorem 2.0.1. Each orbit of J([2]× [a]× [b]) under Pro(1,1,−1) corresponds under Ψ to an

orbit of Inca+b+1(λ) under K-Pro. Because Lemma 2.3.3 shows that the box sum of an increasing

tableau differs by a constant with the cardinality of the corresponding order ideal, we can translate

the increasing tableaux homomesy of Theorem 2.3.4 to the setting of J([2] × [a] × [b]). In other
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words, this shows that J([2]×[a]×[b]) under Pro(1,1,−1) with cardinality statistic exhibits homomesy.

Moreover, Pro(−1,−1,1) reverses the direction that our hyperplanes sweep through our poset, which

merely reverses our orbits of order ideals. As a result, we may conclude that J([2]× [a]× [b]) also

exhibits homomesy under Pro(−1,−1,1). To prove Theorem 2.0.1 for the remaining v, we begin with

v = (1, 1, 1), which is Row.

Let O1,O2 be orbits of J([2]× [a]× [b]) under Row. Additionally, let R1 = {∆3
(1,1,1)I : I ∈

O1} and R2 = {∆3
(1,1,1)I : I ∈ O2} be the corresponding recombination orbits. Because R1 and

R2 are orbits under Pro(1,1,−1), by Corollary 2.2.6 the average of the cardinality statistic over R1

and R2 must be equal. As a result, the average of the cardinality statistic over O1 and O2 must

be equal. Hence, J([2] × [a] × [b]) is homomesic under Row. Again, because Pro(−1,−1,−1) merely

reverses the direction of hyperplane toggles, we conclude that J([2]× [a]× [b]) is homomesic under

Pro(−1,−1,−1).

We now turn our attention to Pro(−1,1,−1) and Pro(1,−1,−1). Using our recombination results

in Corollaries 2.2.7 and 2.2.8, we can connect the cardinality of orbits of J([2] × [a] × [b]) under

Pro(−1,1,−1) and Pro(1,−1,−1) to orbits of J([2] × [a] × [b]) under Pro(1,1,−1). Therefore, because

J([2]×[a]×[b]) under Pro(1,1,−1) with cardinality statistic exhibits homomesy, we see J([2]×[a]×[b])

exhibits homomesy under both Pro(−1,1,−1) and Pro(1,−1,−1) as well. Furthermore, Pro(1,−1,1) and

Pro(−1,1,1) reverse the orbits of Pro(−1,1,−1) and Pro(1,−1,−1), respectively, so J([2] × [a] × [b]) is

homomesic under both Pro(1,−1,1) and Pro(−1,1,1).

We have shown the desired triples are homomesic, but we still must show the orbit average

is ab. Due to rotational symmetry, the order filters of J([2] × [a] × [b]) are in bijection with the

order ideals of J([2]× [a]× [b]). More specifically, let I ∈ J([2]× [a]× [b]). Let H ∈ J([2]× [a]× [b])

be the order ideal isomorphic to P \ I. Therefore, f(I) + f(H) = 2ab. As a result, we can say the

global average of f is ab, and hence c must also be ab.

We obtain the following corollaries by symmetry.

Corollary 2.3.5. Let f be the cardinality statistic. The triple (J([a]× [2]× [b]),Prov, f) is c-mesic

with c = ab.

Corollary 2.3.6. Let f be the cardinality statistic. The triple (J([a]× [b]× [2]),Prov, f) is c-mesic

with c = ab.
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Proof of Corollaries 2.3.5 and 2.3.6. Given an orbit O of J([a]× [2]× [b]) under Prov, we can use a

cyclic rotation of coordinates and appropriate choice of v′ to obtain an orbit O′ of J([2]× [a]× [b])

under Prov′ such that O and O′ are in bijection. A similar argument applies to J([a]× [b]× [2]).

2.4. General products of chains

We conclude the section by determining that Theorem 2.0.1 does not generalize to an

arbitrary product of three chains, a product of four chains, or a product of arbitrarily many two-

element chains. Homomesy holds on order ideals of [3] × [3] × [3] under Prov with cardinality

statistic; however, this is not the case with order ideals of [3]× [3]× [4].

Proposition 2.4.1. Let f be the cardinality statistic. The triple (J([3] × [3] × [3]),Prov, f) is

homomesic with c = 27/2. However, the triple (J([3]× [3]× [4]),Prov, f) is not homomesic.

Proof. A calculation using SageMath [38] shows that J([3]× [3]× [3]) under Row has 124 orbits, all

with average cardinality 27/2. However, J([3] × [3] × [4]) under Row has 456 orbits with average

cardinality 18, 2 orbits with average cardinality 161/9 ≈ 17.89, and 2 orbits with average cardinality

163/9 ≈ 18.11. Using recombination, we obtain the same result for any Prov.

We can further inquire about homomesy in higher dimensions. We find homomesy in the

poset [2] × [2] × [2] × [2], but a negative result if any of the chains have size three. If we use only

chains of size two, homomesy fails in dimension five.

Proposition 2.4.2. Let f be the cardinality statistic. The triple J([2] × [2] × [2] × [2]),Prov, f)

is c-mesic with c = 8. However, the triple (J([2] × [2] × [2] × [3]),Prov, f) is not homomesic.

Additionally, the triple (J([2]× [2]× [2]× [2]× [2]),Prov, f) is not homomesic.

Proof. A calculation using SageMath [38] shows that J([2] × [2] × [2] × [2]) under Row has 36

orbits, all with average cardinality 8. However, J([2] × [2] × [2] × [3]) has 109 orbits with average

cardinality 12, 6 orbits with average cardinality 82/7 ≈ 11.71, and 6 orbits with average cardinality

86/7 ≈ 12.29. Additionally, J([2]× [2]× [2]× [2]× [2]) has 771 orbits with average cardinality 16,

60 orbits with average cardinality 115/7 ≈ 16.43, 60 orbits with average cardinality 109/7 ≈ 15.57,

30 orbits with average cardinality 61/4 = 15.25, 30 orbits with average cardinality 67/4 = 16.75, 6

orbits with average cardinality 11, and 6 orbits with average cardinality 21. Using recombination,

we once again obtain the same results for any Prov.
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3. TABLEAUX AND REFINED RESULTS

In this chapter, we prove several related results and corollaries of the results in Chapter 2.

Although Proposition 2.4.1 showed that cardinality does not exhibit homomesy with respect to

promotion for order ideals of an arbitrary product of three chains, Corollary 3.2.4 gives a different

statistic such that order ideals of a product of three chains under promotion do exhibit homomesy.

Additionally, we use our main homomesy result, Theorem 2.0.1, to obtain a new homomesy result

on increasing tableaux in Corollary 3.1.1. In Corollary 3.2.1, we use refined homomesy results on

increasing tableaux to state more refined homomesy results on order ideals. Finally, we use results

of Pechenik to obtain an antipodal homomesy result on [2]×[a]×[b] in Theorem 3.3.4. The majority

of this chapter is based on work from [46].

3.1. A corollary on increasing tableaux

For Theorem 2.0.1, we used the bijection Ψ−1 to translate a homomesy result on increasing

tableaux to order ideals of a product of chains poset. Additionally, we used a cyclic rotation of

the axes to obtain Corollary 2.3.6 on the product of chains [a] × [b] × [2]. From this corollary,

we can translate back to increasing tableaux using Ψ to obtain an additional homomesy result on

increasing tableaux. This is in the same spirit as the tri-fold symmetry used by Dilks, Pechenik,

and Striker [11, Corollary 4.7].

Corollary 3.1.1. Let λ be an a× b rectangle and let σλ be the statistic of summing the entries in

the boxes of λ. Then (Inca+b+1(λ), K-Pro, σλ) is c-mesic with c = ab(2+a+b)
2 .

Proof. Each orbit of Inca+b+1(λ) under K-Pro corresponds to an orbit of J([a] × [b] × [2]) under

Pro(1,1,−1). For each I ∈ J([a] × [b] × [2]), σλ(Ψ(I)) = f(I) + ab(a+b)
2 where f is the cardinality

statistic. Applying Corollary 2.3.6, the result follows.

Note that although this corollary is similar to the result of Bloom, Pechenik, and Saracino

we stated as Theorem 2.3.4, the result is distinct as it applies to a larger class of shapes but is

much more restrictive on the largest entry.
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3.2. Refined column homomesy

In this section, we refine the homomesy result of Theorem 2.0.1 using the rotational symme-

try condition of Theorem 2.3.4. Define columns Lj,k1,2 = {(i1, i2, i3) ∈ [2]× [a]× [b] | i1 = j, i2 = k}.

This notation is similar to the layer notation of Definition 2.1.2 with the exception that we fix two

coordinates instead of one. To state this corollary, first recall Definition 1.3.8, the definition of

antipodal elements in [a]× [b].

Corollary 3.2.1. Let Lj1,k11,2 and Lj2,k21,2 be such that the coordinates (j1, k1) and (j2, k2) are antipodal

in [2]× [a]. If fL(I) denotes the cardinality of I on Lj1,k11,2 and Lj2,k21,2 , then (J([2]× [a]× [b]),Prov, fL)

is c-mesic with c = b.

Proof. The antipodal coordinates (j1, k1) and (j2, k2) are chosen so that the columns Lj1,k11,2 and

Lj2,k21,2 correspond to a set of boxes in an increasing tableau fixed under 180◦ rotation. In other words,

we can use the refined homomesy result on increasing tableaux from Theorem 2.3.4 and translate to

J([2]× [a]× [b]) using the bijection Ψ−1. As a result, we know (J([2]× [a]× [b]),Prov, fL) is c-mesic.

What remains to be shown is that c = b. Due to rotational symmetry, the order filters of [2]×[a]×[b]

are in bijection with the order ideals of [2] × [a] × [b]. More specifically, let I ∈ J([2] × [a] × [b]).

Let H ∈ J([2] × [a] × [b]) be the order ideal isomorphic under rotation to the order filter P \ I.

Therefore, fL(I) + fL(H) = 2b. As a result, we can say the global average of fL is b, and hence

c must also be b. This gives us that (J([2] × [a] × [b]),Pro(1,1,−1), fL) is c-mesic with c = b; using

recombination we obtain that (J([2]× [a]× [b]),Prov, fL) is c-mesic with c = b.

Pechenik further generalized the results of [4] and the result stated in Theorem 2.3.4. From

this, we obtain a more general analogue of Corollary 3.2.1. We summarize the relevant definition

and theorem below.

Definition 3.2.2 ([28]). The frame of a partition λ is the set Frame(λ) of all boxes in the first

or last row, or in the first or last column of λ.

Theorem 3.2.3 ([28]). Let S be a subset of Frame(m×n) that is fixed under 180◦ rotation. Then

(Incq(m× n), K-Pro, σS) is c-mesic with c = (q+1)|S|
2 .
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The following is a new corollary of Theorem 3.2.3. It uses the bijection Ψ−1 and techniques

similar to those of Corollary 3.2.1 to prove a more general analogue of Corollary 3.2.1 in the product

of three chains.

Corollary 3.2.4. Let P = [a1] × [a2] × [a3]. Additionally, let Lj1,k11,2 and Lj2,k21,2 be such that the

coordinates (j1, k1) and (j2, k2) are antipodal in [a1]× [a2] where each ji is 1 or a1 and each ki is 1

or a2. If fL(I) denotes the cardinality of I on Lj1,k11,2 and Lj2,k21,2 , then (J([a1]× [a2]× [a3]),Prov, fL)

is c-mesic with c = a3.

Proof. Similarly to the proof of Corollary 3.2.1, the antipodal coordinates (j1, k1) and (j2, k2) are

chosen so that the columns Lj1,k11,2 and Lj2,k21,2 correspond to a set of boxes in an increasing tableau

fixed under 180◦ rotation. Additionally, the columns correspond to boxes in the frame of the

tableau. As a result, we know (J([a1] × [a2] × [a3]),Prov, fL) is c-mesic by translating the refined

homomesy result on increasing tableaux from Theorem 3.2.3 to J([a1]×[a2]×[a3]) using the bijection

Ψ−1. We must now show that c = a3. Due to rotational symmetry, the order filters of P are in

bijection with the order ideals of P . Let I ∈ J(P ) and let H ∈ J(P ) be the order ideal isomorphic

under rotation to the order filter P \ I. Because the two columns Lj1,k11,2 and Lj2,k21,2 each contain a3

elements, fL(I) + fL(H) = 2a3. Therefore, the global average of fL is a3 and as a result, c = a3.

This gives the result for v = (1, 1,−1); using recombination we obtain the result for all v.

3.3. Refined antipodal homomesy

Corollary 3.2.1 is the most natural way to obtain a refined homomesy result from Theorem

2.3.4. However, there is a stronger homomesy result on antipodal elements in [2]× [a]× [b]. In other

words, Theorem 1.3.9 generalizes to [2]× [a]× [b]. We define antipodal elements in [a]× [b]× [c] in

an analogous way to Definition 1.3.8, which specifies antipodal elements in [a]× [b].

Definition 3.3.1. Let x and y be elements in [a] × [b] × [c]. If x = (x1, x2, x3) and y = (a + 1 −

x1, b+ 1− x2, c+ 1− x3), x and y are antipodal in [a]× [b]× [c].

To study antipodal elements in [2] × [a] × [b], we again use the bijection Ψ to increasing

tableaux from Definition 2.3.1. We also use results of Pechenik on increasing tableaux.
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Definition 3.3.2. Let T ∈ Incq(λ) and B a box in λ. Let Dist(T,B) denote the multiset of values

B attains in an orbit of K-Pro. Additionally, let arDist(T,B) denote the alphabet reversal of

Dist(T,B), that is, the multiset of values q + 1− b for every b ∈ Dist(T,B).

For an example of these definitions, see Example 3.3.5. We can now state the following

result of Pechenik.

Lemma 3.3.3 ([29]). Let T ∈ Incq(2× a). Let B and B∗ be boxes in 2× a such that B∗ is the box

180◦ rotated from B. Then Dist(T,B) = arDist(T,B∗).

Proof. Recall K-evacuation E(T ) on an increasing tableaux T from Definition 1.2.20. In [4], Bloom,

Pechenik, Saracino showed that Dist(T,B) = Dist(E(T ), B). Additionally, in [27], Pechenik showed

that if T ∈ Incq(2 × a), then E performs a 180◦ rotation of T with alphabet reversal. As a result,

we obtain Dist(T,B) = arDist(T,B∗).

With Pechenik’s result on rotationally symmetric boxes under K-Pro, we can now show the

homomesy result on antipodal elements of [2]× [a]× [b].

Theorem 3.3.4. Suppose x and y are antipodal elements in [2] × [a] × [b]. Then (J([2] × [a] ×

[b]),Prov, 1x + 1y) is c-mesic with c = 1.

Proof. Let Lx1,x21,2 , Ly1,y21,2 be the two columns containing x = (x1, x2, x3) and y = (y1, y2, y3) and

let B and B∗ be the boxes in 2 × a corresponding with Lx1,x21,2 and Ly1,y21,2 , respectively, under Ψ.

Because x and y are antipodal elements in [2] × [a] × [b], B∗ can be obtained by a 180◦ rotation

from B. Let I ∈ J([2] × [a] × [b]) and O be the orbit under Pro(1,1,−1) containing I. By Lemma

3.3.3, Dist(Ψ(I), B) = arDist(Ψ(I), B∗).

We now relate Dist(Ψ(I), B) and arDist(Ψ(I), B∗) to elements in I. If x ∈ I but (x1, x2, x3+

1) /∈ I, the value of the box in ψ(I) corresponding to Lx1,x21,2 will be 3 + a − x1 − x2 + x3. This is

because x3 counts the number of elements of I in Lx1,x21,2 and 3+a−x1−x2 adjusts for rotation and

the increase in values along diagonals. Let α = 3 + a− x1 − x2 + x3. Note that x ∈ I if and only if

the value of B in Ψ(I) is greater than or equal to α. Because x and y are antipodal in [2]× [a]× [b],

y = (3 − x1, a + 1 − x2, b + 1 − x3). Using the same reasoning as above, y ∈ I if and only if the

value of B∗ in Ψ(I) is greater than or equal to 3 + a − (3 − x1) − (a + 1 − x2) + (b + 1 − x3) =

x1 + x2 − x3 + b if and only if the corresponding value in arDist(Ψ(I), B∗) is less than or equal to
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q+ 1− (x1 +x2−x3 + b) = α− 1. Therefore, because Dist(Ψ(I), B) = arDist(Ψ(I), B∗), each value

that appears in these multisets signifies exactly one of x or y appears in I. Thus, the sum of the

numbers of times x and y appear in orbit O is #O. As a result, (J([2]× [a]× [b]),Pro(1,1,−1), 1x+1y)

is c-mesic with c = 1. Using recombination, we obtain (J([2] × [a] × [b]),Prov, 1x + 1y) is c-mesic

with c = 1 for any v.

Example 3.3.5. In Figure 3.2, we have an orbit of J([2] × [2] × [2]) under Pro(1,1,−1) and the

corresponding orbit of Inc5(2 × 2) under K-Pro. Observe the boxes B and B∗ as indicated by

Figure 3.1. If I denotes any of the order ideals in the orbit, then Dist(Ψ(I), B) = {1, 1, 1, 3, 2},

Dist(Ψ(I), B∗) = {3, 5, 5, 5, 4}, and arDist(Ψ(I), B∗) = {3, 1, 1, 1, 2}. Observe the two antipodal

elements circled in red in Figure 3.2. The top element is in an order ideal when box B has value

greater than or equal to 2. The bottom element is not in an order ideal when box B∗ has value less

than or equal to 5 + 1 − 2 = 4. Because Dist(Ψ(I), B) = arDist(Ψ(I), B∗), #Dist(Ψ(I), B) gives

the cardinality of the antipodal elements over the orbit, which will always be #O. This yields an

average of 1. Theorem 3.3.4 says that if we take any orbit of J([2]× [2]× [2]) under Pro(1,1,−1), we

also obtain an average of 1.

B

B∗

Figure 3.1. In Example 3.3.5, we focus on the shaded boxes B and B∗ in Inc5(2× 2).
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1 2
2 3

1 2
2 5

1 4
4 5

3 4
4 5

2 3
3 4

Figure 3.2. The multisets Dist(Ψ(I), B) = {1, 1, 1, 3, 2}, Dist(Ψ(I), B∗) = {3, 5, 5, 5, 4} and
arDist(Ψ(I), B∗) = {3, 1, 1, 1, 2} corresponding to the K-Pro orbit above. Here, a value is col-
ored red if it corresponds to one of the circled elements being in an order ideal.
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4. BEYOND THE PRODUCT OF CHAINS

In this chapter, we generalize the results of Chapter 2 beyond the setting of a product of

chains to that of more general posets. We opted to state our recombination results in Chapter 2 for

the product of chains rather than in full generality in order to emphasize the important aspects of

the proofs without further complicating the notation. In Section 4.1, we generalize the definition of

layers. We then generalize the work of Section 2.2 by defining recombination for any ranked poset

in Definition 4.1.6, in addition to generalizing Theorem 2.2.4 with Theorem 4.1.9. We also state

a bijection of Striker and Williams and present an n-dimensional analogue of it in Theorem 4.1.5.

In Section 4.2, we utilize a previous homomesy result, Corollary 2.3.6, and our new recombination

result to obtain Corollary 4.2.1, a new homomesy result on order ideals of a type B minuscule poset

cross a two-element chain. We conclude the chapter with Example 4.2.2, illustrating recombination

with an n-dimensional lattice projection. This chapter is based on work from [46].

4.1. Generalized recombination

Recall Definition 1.2.21 of an n-dimensional lattice projection. Promotion with respect

to an n-dimensional lattice projection is defined in Definition 1.2.22. However, we need a notion

of layers with respect to an n-dimensional lattice projection π. When generalizing the layers of

Definition 2.1.2, we would like to define our layers on P , the poset on which we are performing our

toggles. Because the notion of layers comes from Zn and π is not necessarily injective, we will at

times abuse notation in order to capture the same ideas as from Chapter 2.

Definition 4.1.1. Let P be a poset with n-dimensional lattice projection π. If A ⊆ Zn, let π−1(A)

denote the preimage of A in P . Note since π is not necessarily injective, π−1 of a single element

may include multiple poset elements.

Recall Definition 2.1.1 for the notation vγ̂ .

Definition 4.1.2. Let P be a poset with n-dimensional lattice projection π. Define the jth γ-layer

of P as

Ljγ = {π−1(i1, i2, . . . , in) | iγ = j and (i1, i2, . . . , in) ∈ Zn}
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and the jth γ-layer of I ∈ J(P ) as

Ljγ(I) = Ljγ ∩ I.

Additionally, given Ljγ and Ljγ(I), we abuse notation to define

(Ljγ)γ̂ = {π−1((i1, i2, . . . , in)γ̂) | iγ = j and (i1, i2, . . . , in) ∈ Zn},

Ljγ(I)γ̂ = (Ljγ)γ̂ ∩ I,

where π−1((i1, i2, . . . , in)γ̂) denotes forming the poset given by the preimage of the n−1-dimensional

poset obtained from deleting the coordinate γ and (Ljγ)γ̂ ∩ I denotes using elements in the order

ideal I to form an order ideal with the corresponding elements in (Ljγ)γ̂ .

In order to prove results regarding recombination in Chapter 2, we relied heavily on the

ability to commute the toggles of promotion. More specifically, we showed that any promotion

could be thought of as sequence of n − 1 dimensional promotions on the layers of our product of

chains. Here we introduce notation for an analogous result.

Definition 4.1.3. Let P be a poset with n-dimensional lattice projection π and γ ∈ {1, 2, . . . , n}.

We define T jPro
π,vγ̂

as the toggle product of Proπ,vγ̂ on (Ljγ)γ̂ .

This definition allows us to perform an n− 1-dimensional promotion on a single layer of P .

Before we give a general definition of recombination, we present Theorem 5.4 from [44] along with

a higher dimensional analogue. Striker and Williams found a conjugating toggle element; in other

words, the toggles necessary to state the explicit bijection from J(P ) under Row−1 to J(P ) under

Pro. We state this result using our notation.

Theorem 4.1.4 ([44]). Let P be a poset with two-dimensional lattice projection π, v = (−1, 1)

and w = (−1,−1). There exists an equivariant bijection between J(P ) under Proπ,v = Pro and

Proπ,w = Row−1 given by acting on an order ideal by D =
∏b
i=1

∏i
j=1(T

i+1−j
Proπ,(1)

)−1 where Lb2 is the

maximum non-empty layer in P .

We generalize this theorem to n-dimensions by stating the toggle product needed to conju-

gate from one promotion to another.

Theorem 4.1.5. Let P be a poset with n-dimensional lattice projection π, v = (v1, v2, . . . , vn)

where vj ∈ {±1}, w = (w1, w2, . . . , wn) where wj ∈ {±1} such that vγ = 1, wγ = −1, and vγ̂ = wγ̂.
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There exists an equivariant bijection between J(P ) under Proπ,v and Proπ,w given by acting on an

order ideal by Dγ =
∏aγ−1
i=1

∏i
j=1(T

i+1−j
Pro

π,vγ̂
)−1 where L

aγ
γ is the maximum non-empty layer in P .

Proof. Without loss of generality, vγ = 1 and wγ = −1. As a result, Proπ,w =
∏aγ
i=1 T

aγ+1−i
Pro

π,wγ̂

and Proπ,v =
∏aγ
i=1 T

i
Pro

π,vγ̂
. Note that wγ̂ = vγ̂ . We will commute toggles to show Proπ,wDγ =

DγProπ,v. When we expand, we obtain

Proπ,wDγ =T
aγ
Pro

π,wγ̂
T
aγ−1
Pro

π,wγ̂
. . . T 1

Pro
π,wγ̂

(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T aγ−1Pro

π,wγ̂
)−1

(T
aγ−2
Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1

and

DγProπ,v =(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T aγ−1Pro

π,wγ̂
)−1(T aγ−2Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1

T 1
Pro

π,wγ̂
T 2
Pro

π,wγ̂
. . . T

aγ
Pro

π,wγ̂

=(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1T aαPro
π,wγ̂

.

However, we can commute T kPro
π,wγ̂

and T jPro
π,wγ̂

or (T jPro
π,wγ̂

)−1 if |j − k| > 1 because the

elements in these toggles could not share a covering relation. Therefore, we can commute toggles

of Proπ,wDγ to obtain

Proπ,wDγ =(T 1
Pro

π,wγ̂
)−1(T 2

Pro
π,wγ̂

)−1(T 1
Pro

π,wγ̂
)−1 . . . (T 1

Pro
π,wγ̂

)−1T aαPro
π,wγ̂

.

Therefore, Proπ,wDγ = DγProπ,v and so Proπ,v = (Dγ)−1Proπ,wDγ .

We now present our generalized definition of recombination with respect to an n-dimensional

lattice projection.

Definition 4.1.6. Let P be a poset with n-dimensional lattice projection π and I ∈ J(P ). Define

∆γ
π,vI = ∪j(Ljγ(Proj−1π,v (I)) where γ ∈ {1, . . . , n}. We will call ∆γ

π,vI the (π, v, γ)−recombination of

I. When context is clear, we will suppress the (π, v, γ).

The idea is the same as in Chapter 2; we take certain layers from an orbit of promotion

to create a new order ideal. We can now state the analogue of Lemma 2.2.2, our result regarding

toggling commutation, whose proof is similar to the proof of Lemma 2.2.2.

42



Lemma 4.1.7. Let P be a ranked poset with lattice projection π and γ ∈ {1, 2, . . . , n}. Then

Proπ,v =
∏aγ
j=1 T

α
Pro

π,vγ̂
where

α =


j if vγ = 1

aγ + 1− j if vγ = −1.

Proof. Suppose x, y ∈ P , which implies π(x) := (x1, . . . , xn), π(y) := (y1, . . . , yn) ∈ π(P ) with

x ∈ Ljγ and y ∈ Lkγ for some j and k. We want to show that x and y are toggled in the same

relative order in Proπ,v and
∏aγ
j=1 T

α
Pro

π,vγ̂
.

Case j 6= k: Without loss of generality, j > k. Furthermore, we can assume xγ = yγ + 1

and xi = yi for i 6= γ. If this was not the case, x and y could not have a covering relation and we

could commute the toggles of x and y.

If vγ = 1, in
∏aγ
j=1 T

α
Pro

π,vγ̂
, x is toggled before y by definition. Additionally,

〈π(x), v〉 = v1x1 + · · ·+ vγxγ + · · ·+ vnxn > v1y1 + · · ·+ vγyγ + · · ·+ vnyn = 〈π(y), v〉

and so x is toggled before y in Proπ,v.

If vγ = −1, in
∏aγ
j=1 T

α
Pro

π,vγ̂
, y is toggled before x by definition. Additionally,

〈π(x), v〉 = v1x1 + · · ·+ vγxγ + · · ·+ vnxn < v1y1 + · · ·+ vγyγ + · · ·+ vnyn = 〈π(y), v〉

and so y is toggled before x in Proπ,v.

Case j = k: In other words, xγ = yγ . Therefore,

〈π(x), v〉 > 〈π(y), v〉 ⇐⇒ v1x1 + · · ·+ vγxγ + · · ·+ vnxn > v1y1 + · · ·+ vγyγ + · · ·+ vnyn

⇐⇒ v1x1 + · · ·+ vγ−1xγ−1 + vγ+1xγ+1 + · · ·+ vnxn >

v1y1 + · · ·+ vγ−1yγ−1 + vγ+1yγ+1 + · · ·+ vnyn

⇐⇒ 〈π(x)γ̂ , vγ̂〉 > 〈π(y)γ̂ , vγ̂〉

where π(x)γ̂ , π(y)γ̂ are π(x) and π(y) with xγ and yγ deleted, respectively. Therefore, x can be

toggled before y in Proπ,v if and only if x can be toggled before y in
∏aγ
j=1 T

α
Pro

π,vγ̂
.

As in the product of chains setting, we have conditions which guarantee generalized recom-

bination gives us an order ideal. The proof is similar to the proof of Lemma 2.2.3 with the inclusion

of the lattice projection π.

Lemma 4.1.8. Let I ∈ J(P ). Suppose we have v and γ such that vγ = 1. Then ∆γ
π,vI is an order

ideal of P .
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Proof. Suppose x ∈ ∆γ
π,vI where π(x) = (i1, . . . , in). This means x ∈ Liγγ (Pro

iγ−1
π,v (I)). Suppose

y ∈ P such that x covers y. To show ∆γ
π,vI is an order ideal, it suffices to show y ∈ ∆γ

π,vI. Because π

is rank-preserving, π(y) = (i1, . . . , ij−1, . . . , in) for some j. By Definition 4.1.6, y ∈ Liγγ (Pro
iγ−1
π,v (I))

for j 6= γ. As a result, we must show y ∈ Liγγ (Pro
iγ−1
π,v (I)) for j = γ and iγ ≥ 2. If iγ = 1 there

is nothing to show. By Lemma 4.1.7, Proπ,v =
∏aγ
j=1 T

aγ+1−j
Pro

π,vγ̂
, which implies we can commute

the toggle relations in Proπ,v so that L
iγ
γ is toggled before L

iγ−1
γ . As a result, we must have

y ∈ Liγ−1γ (Pro
iγ−2
π,v (I)). Therefore, y ∈ ∆γ

π,vI.

We can now state our general recombination result. The proof is similar to Theorem 2.2.4

with the inclusion of the lattice projection π.

Theorem 4.1.9. Let I ∈ J(P ). Suppose we have v = (v1, v2, . . . , vn) where vj ∈ {±1}, u =

(u1, u2, . . . , un) where uj ∈ {±1}, and γ such that vγ = 1, uγ = −1, and vγ̂ = uγ̂. Then

Proπ,u(∆γ
π,vI) = ∆γ

π,v(Proπ,v(I)).

Proof. First, note that ∆γ
π,vI is an order ideal by Lemma 4.1.8. Also note that Proπ,v =

∏aγ
j=1 T

j
Pro

π,vγ̂

and Proπ,u =
∏aγ
j=1 T

aγ+1−j
Pro

π,uγ̂
by Lemma 4.1.7. We will show Proπ,u(∆γ

π,vI) = ∆γ
v(Proπ,v(I))) by

showing Lkγ(Proπ,u(∆γ
π,vI)) = Lkγ(∆γ

v(Proπ,v(I))) for each k ∈ {1, 2, . . . , aγ}. There are three cases.

Case 1 < k < aγ: Let J = Prok−1π,v (I). We can commute the toggles of Proπ,v so that Lk+1
γ is

toggled before Lkγ , which is toggled before Lk−1γ . Thus, when applying the toggles of Proπ,v to Lkγ of

J , the layer above is Lk+1
γ (Proπ,v(J)) whereas the layer below is Lk−1γ (J). Additionally, we can also

commute the toggles of Proπ,u so Lk−1γ is toggled before Lkγ , which is toggled before Lk+1
γ . Therefore,

when applying the toggles of Proπ,u to Lkγ of ∆γ
π,vI, the layer below is Lk−1γ (Proπ,u(∆γ

π,vI)), whereas

the layer above is Lk+1
γ (∆γ

π,vI). However, Lk−1γ (Proπ,u(∆γ
π,vI)) = Lk−1γ (J), Lkγ(∆γ

π,vI) = Lkγ(J), and

Lk+1
γ (∆γ

π,vI) = Lk+1
γ (Proπ,v(J)). Therefore, when applying Proπ,v to Lkγ of J and Proπ,u to Lkγ of

∆γ
π,vI, both layers are the same and have the same layers above and below them. Because uγ̂ = vγ̂ ,

we have Proπ,uγ̂ = Proπ,vγ̂ and so the result of toggling this layer is Lkγ(Proπ,u(∆γ
π,vI)), which is

the same as Lkγ(Proπ,v(J)) = Lkγ(Prokπ,v(I)) = Lkγ(∆γ
v(Proπ,v(I))).

Case k = 1: As above, when applying Proπ,v to L1
γ of I and Proπ,u to L1

γ of ∆γ
π,vI, both

of these layers are the same, along with the layers above them. Because k = 1, there is not a layer

below. As above, Proπ,uγ̂ = Proπ,vγ̂ and so we again have L1
γ(Proπ,u(∆γ

π,vI)) = L1
γ(∆γ

π,v(Proπ,v(I))).
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Case k = aγ: Again, as above, when applying Proπ,v to L
aγ
γ of J and Proπ,u to L

aγ
γ of

∆γ
π,vI, both of these layers are the same along with the layers below them. Because k = aγ there is

not a layer above. Again, Proπ,uγ̂ = Proπ,vγ̂ and so L
aγ
γ (Proπ,u(∆γ

π,vI)) = L
aγ
γ (∆γ

v(Proπ,v(I))).

4.2. Applications of generalized recombination

Recall the type B minuscule poset from Definition 1.1.9. Using this generalized recombina-

tion result and our homomesy result on J([2]×[a]×[b]), we can obtain an additional homomesy result

on order ideals of the type B minuscule poset cross a two-element chain. Let Pn = ([n] × [n])/S2

denote a type B minuscule poset and let π be the natural embedding of Pn × [2] into Z3.

Corollary 4.2.1. Let f be the cardinality statistic. The triple (J(Pn × [2]),Proπ,v, f) is c-mesic

with c = n2+n
2 .

Proof. Orbits of J(Pn × [2]) under Row are in bijection with orbits of J([n]× [n]× [2]) under Row

where the order ideals are symmetric about the plane x− y = 0. Let O be an orbit of J(Pn × [2])

under Row and O′ be the orbit of J([n]× [n]× [2]) in bijection with O. We note #O = #O′. By

Corollary 2.3.6, the cardinality of order ideals in O′ is (#O′)n2. Alternatively, we can enumerate

the cardinality of order ideals in O′ by doubling the cardinality in O and removing what is double

counted, namely, elements that appear on the plane x− y = 0. The cardinality of these elements is

(#O′)n by Corollary 3.2.1. As a result, we have the following equality: (#O)n2 = 2f(O)− (#O)n

where f(O) is the sum of the cardinalities of all order ideals in O. Rearranging, we get f(O)
#O = n2+n

2 .

Therefore, (J(Pn × [2]),Row, f) is n2+n
2 -mesic. Additionally, because Proπ,(−1,−1,−1) reverses the

orbits of Row, (J(Pn × [2]),Proπ,(−1,−1,−1), f) is n2+n
2 -mesic.

To obtain the result for the remaining v, we will use the recombination result of Theo-

rem 4.1.9. From Theorem 4.1.9, we get Proπ,(1,1,−1)(∆3
π,(1,1,1)I) = ∆3

π,(1,1,1)(Proπ,(1,1,1)(I)) and

Proπ,(1,−1,1)(∆2
π,(1,1,1)I) = ∆2

π,(1,1,1)(Proπ,(1,1,1)(I)) and

Proπ,(−1,1,1)(∆1
π,(1,1,1)I) = ∆1

π,(1,1,1)(Proπ,(1,1,1)(I)). From this, we deduce (J(Pn × [2]),Proπ,v, f)

is n2+n
2 -mesic for v ∈ {(1, 1,−1), (1,−1, 1), (−1, 1, 1)}. Finally, Proπ,(−1,−1,1),Proπ,(−1,1,−1), and

Proπ,(1,−1,−1) reverse the orbits of Proπ,(1,1,−1),Proπ,(1,−1,1), and Proπ,(−1,1,1) respectively. As a re-

sult, (J(Pn× [2]),Proπ,v, f) is n2+n
2 -mesic for v ∈ {(−1,−1, 1), (−1, 1,−1),(1,−1,−1)}, completing

the proof of the result.
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Example 4.2.2. We now give an example of generalized recombination where we cannot use a

simple embedding as our three-dimensional lattice projection. Let our poset be the tetrahedral

poset on the left in Figure 4.1; for more on tetrahedral posets, see [40]. By Proposition 8.5 of [44],

we see the significance of this poset is that its order ideals are in bijection with alternating sign

matrices of size 4 × 4. We note that this poset cannot be embedded in Z3 since the element b is

covered by four elements. We instead use the lattice projection π in Figure 4.1, projecting into Z2.

We note that this lattice projection is not new, as it is used in Figure 18 in [44]. Figure 4.3 shows

how we orient this in Z2.

π

a b c

dg eh

fij

a b c

d e

f

g
h

i j

Figure 4.1. The poset on the left is a tetrahedral poset. For Example 4.2.2, we will use the lattice
projection π to the subposet of Z2 on the right.

Figure 4.2 shows a partial orbit under rowmotion. We see from Figure 4.3 what our layers

are: the first layer consists of a, the second layer consists of b, d, g, and the third layer consists of

c, e, f, h, i, j.

Row

a b c

d e

f

g
h

i j

Row

a b c

d e

f

g
h

i j

Row

a b c

d e

f

g
h

i j

a b c

d e

f

g
h

i j

Figure 4.2. A partial orbit of order ideals under rowmotion. We use this example to demonstrate
generalized recombination.

From the partial orbit, we take the first layer from the first order ideal, the second layer

from the second order ideal, and the third layer from the third order ideal to form a new order

ideal. These are indicated with red in Figures 4.4 and 4.5. We also take the first layer in the second

order ideal, the second layer in the third order ideal, and the third layer from the fourth order ideal
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x1x2

a b c

dg eh

fij

Figure 4.3. We orient this poset in Z2 in the following way. Our three layers are the diagonals with
coordinates x1 = 1, 2, and 3.

to form another new order ideal. These are indicated with blue in Figures 4.4 and 4.5. Generalized

recombination tells us if we apply promotion to the red order ideal, we should obtain the blue order

ideal, which we can see is the case.

Row

a b c

d e

f

g
h

i j

Row

a b c

d e

f

g
h

i j

Row

a b c

d e

f

g
h

i j

a b c

d e

f

g
h

i j

Figure 4.4. We use the red layers and blue layers from the partial orbit to form two new order
ideals.

Pro

a b c

d e

f

g
h

i j

a b c

d e

f

g
h

i j

Figure 4.5. Applying promotion to the red order ideal gives us the blue order ideal.
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5. INFINITE POSETS

In previous chapters, all posets have been finite. Moreover, toggle group actions on infinite

posets have not been well studied. In particular, the promotion actions discussed in previous

chapters have not been defined in the infinite case. In this chapter, our aim is to extend Definition

1.2.22 of promotion to infinite posets.

We begin by providing the framework to utilize toggles in the infinite setting with Definition

5.1.2. We also produce some preliminary results and examples to justify this definition is well

chosen. In Proposition 5.1.8, we show our new definition, Definition 5.1.2, produces the same order

ideal as Definition 1.2.22 of Dilks, Pechenik, and Striker if our poset is finite. In Theorem 5.1.9,

we show that if we have an infinite poset with n-dimensional lattice projection, our new toggle

definition of rowmotion matches the minimal generator definition of rowmotion. We also discuss

the intuition of toggling in the infinite case in Remark 5.1.11, along with noting that promotion

on infinite posets may not result in a bijective action in Remark 5.1.12. Because our action is no

longer bijective and does not necessarily partition our order ideals into orbits, we instead investigate

several interesting results from single applications of an action. More specifically, we connect order

ideals of the poset N2 to monomial ideals. From this, we present two results in terms of minimal

generators of monomial ideals in Theorems 5.2.9 and 5.2.10. We also introduce infinite boundary

paths and in Lemma 5.2.7, generalize the left cyclic shift of the boundary path of a finite product

of two chains under promotion to the infinite product of two chains under promotion. From this

boundary path result, we give a homomesy result in the infinite product of two chains and conclude

the chapter investigating a generalization of recombination for the infinite product of chains.

5.1. Defining rowmotion and promotion for infinite posets

In this section, we discuss what aspects of the intuition of rowmotion and promotion can

be applied from the finite case to the infinite and in what situations this intuition fails. First, we

observe the minimal generator definition of rowmotion from Definition 1.2.5 can still be applied,

even if there are an infinite number of minimal elements of P \ I. If P is a poset and I an order

ideal, we can always form P \ I. If this has minimal elements, these generate Row(I). If this does

not have minimal elements, Row(I) = ∅. As a result, when we refer to Row(I) in this chapter, we
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will be referring to this minimal generator definition. A good toggle definition of rowmotion should

match Row, as for finite posets. With some posets, the intuition of rowmotion or the intuition

of a toggle action may be less clear. We must determine which infinite posets to consider. We

define promotion on an infinite poset with Definition 5.1.2 in the infinite case and justify why this

definition is appropriate.

Remark 5.1.1. We use the notation N = {0, 1, 2, . . . } and N+ = {1, 2, . . . }.

Recall Definition 1.2.21 of an n-dimensional lattice projection. This definition is still valid

if P is infinite and requires P to be ranked. However, in Example 5.1.7, we see we should project

into Nn rather than Zn. In other words, our n-dimensional lattice projection will be an order and

rank preserving map π : P → Nn. It is possible that future work may expand the class of infinite

posets to consider, but for the remainder of this chapter, when we refer to actions on infinite posets,

we will mean posets with an n-dimensional lattice projection π : P → Nn.

Recall Definition 1.2.22 of promotion on a finite poset P with n-dimensional lattice projec-

tion. By truncating at increasing ranks and using a union of finite promotions, we define promotion

on an infinite poset P with an n-dimensional lattice projection into Nn.

Definition 5.1.2. Let P be a poset with an n-dimensional lattice projection π : P → Nn and let

I be an order ideal of P . Let Pk be the subposet of P with elements of rank less than or equal to

k and Ik = I ∩ Pk. Define Proπ,v(I) = ∪k≥1 Proπ,v(Ik).

A concern of this definition is that truncating at a particular rank might yield undesired

elements that do not appear at larger and larger ranks; the use of a union would include these in

the resulting order ideal Proπ,v(I). In the following lemma, we show truncating at larger ranks

gives nested order ideals, so the use of a union is appropriate.

Lemma 5.1.3. Let P be a poset with an n-dimensional lattice projection π : P → Nn and I ∈ J(P ).

Proπ,v(Ik) ⊆ Proπ,v(Ik+1).

Proof. By definition, Ik ⊆ Ik+1. We first look at elements of rank k, then induct on decreasing

rank. Let x ∈ Proπ,v(Ik) such that rkx = k. If x ∈ Ik, because x has no covers in Pk, it would be

toggled out when applying Proπ,v. This implies x /∈ Ik and x is toggled in when applying Proπ,v.

Therefore, x /∈ Ik+1. Because we are toggling Ik+1 in the same direction and the covers of x in
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Pk+1 will not prevent x from being toggled in, x ∈ Proπ,v(Ik+1). Note that if we do have x ∈ Ik,

then x ∈ Ik+1 might not be toggled out when applying Proπ,v(Ik+1), as a cover of x in Pk+1 may

be in the order ideal when tx is applied. As a result, there will be the same or more elements with

rank k in Proπ,v(Ik+1) as Proπ,v(Ik).

Now let x ∈ Proπ,v(Ik) such that rkx = r < k and if y is a cover of x and y ∈ Proπ,v(Ik+1),

then y ∈ Proπ,v(Ik). Also, note that if y is a cover of x and y ∈ Ik+1, then y ∈ Ik. Therefore,

when tx is applied as part of Proπ,v(Ik+1), x will have at least the same or more covers in the order

ideal as when tx is applied as part of Proπ,v(Ik). As a result, x ∈ Proπ,v(Ik+1). Again, Proπ,v(Ik+1)

may have more elements of rank r than Proπ,v(Ik) as it may have more elements toggled in or

not as many toggled out. As a result, if y covers an element of rank r − 1 and y ∈ Proπ,v(Ik),

then y ∈ Proπ,v(Ik+1), which means we can induct to obtain the result for all ranks. Therefore,

Proπ,v(Ik) ⊆ Proπ,v(Ik+1).

We now provide several examples. Examples 5.1.4 and 5.1.5 demonstrate why Definition

5.1.2 is appropriate, as Pro(1,1) is Row for these two examples. We will show this holds more

generally in Theorem 5.1.9. On the other hand, Examples 5.1.6 and 5.1.7 show why we only

consider posets with n-dimensional lattice projections π : P → Nn.

Example 5.1.4. Applying Row to the order ideal in Figure 5.1a results in the order ideal in Figure

5.1b. By truncating the poset and order ideal in Figure 5.1a at rank 2, we obtain the top left order

ideal in Figure 5.2. Because this is a finite poset, we can apply the toggle definition of rowmotion

to obtain the top right order ideal in Figure 5.2. We similarly obtain the middle left and bottom

left order ideals in Figure 5.2 by truncating at rank 3 and rank 4, respectively. We see that when

truncating at successive ranks, the order ideals obtained from applying rowmotion are nested and

asymptotically grow to the desired order ideal.

Example 5.1.4 is an example in which the intuition of rowmotion is similar to the finite case

and we can view rowmotion from the toggle perspective. We give another example on the infinite

comb.

Example 5.1.5. Let P be the infinite comb poset in Figure 5.3 and I the order ideal on the left.

Despite P \ I having an infinite number of minimal generators, Row(I) produces the same order

ideal as Pro(1,1)(I) using Definition 5.1.2.
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(a) The order ideal I in Example 5.1.4 (b) The order ideal generated by the mini-
mal elements of P \ I

Figure 5.1. Using the minimal generator definition of Row, Definition 1.2.5, Row(I) is the order
ideal on the right.

Row

Row

Row

Figure 5.2. By truncating the order ideal in Figure 5.1a at larger and larger ranks before applying
rowmotion, we see the results are nested order ideals that asymptotically grow to the desired order
ideal.
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Row

Figure 5.3. We can apply Row to the order ideal on the left even though P \ I has an infinite
number of minimal elements. For this example, we see Row(I) = Pro(1,1)(I).

We now give a poset where the intuition of the toggle perspective is less clear.

Example 5.1.6. Let P be the poset
{
1
k | k ∈ N+

}
∪{0} ordered by the standard less than or equal

to ≤. With the order ideal I = {0}, P \ I has no minimal elements, so Row(I) = ∅.

This is an untuitive result because when P is finite, Row(I) = ∅ if and only if I = P .

Additionally, because Example 5.1.6 is not ranked, we cannot apply Definition 5.1.2. Using the

work of [12], it could be possible to extend Definition 5.1.2 to nonranked posets. However, this

example would still be difficult to work with, as it is not locally finite. In this chapter, we will not

make this distinction, as we will only consider ranked posets, which are locally finite.

The next example shows why we only consider posets with n-dimensional lattice projections

π : P → Nn.

Example 5.1.7. Let P be the poset Z ordered by the standard less than or equal to ≤. With the

empty order ideal I = ∅, P \ I has no minimal elements, so Row(I) = ∅.

With this example, we might consider truncating in both directions. However, if we did

this, we would lose the nesting property of Lemma 5.1.3, which is useful when proving results. The

nesting property also justifies the use of the union in Definition 5.1.2. With the next result, we see

that Definition 5.1.2 generalizes promotion from [11].

Proposition 5.1.8. Suppose P is a finite poset with n-dimensional lattice projection π : P → Nn

and I ∈ J(P ). The definition of Proπ,v(I) from Definition 5.1.2 coincides with the definition of

Proπ,v(I) in Definition 1.2.22.
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Proof. P is a finite poset with a rank function and I ∈ J(P ). Suppose P has rank r. Then, Pr = P ,

Ir = I, and
⋃
k≥1 Proπ,v(Ik) = ∪k=rk=1 Proπ,v(Ik). By Lemma 5.1.3, ∪k=rk=1 Proπ,v(Ik) = Proπ,v(Ir).

Therefore, ∪k≥1 Proπ,v(Ik) = Proπ,v(Ir) = Proπ,v(I), which is the desired result.

By the previous proposition, when applying promotion to an order ideal of either a finite

or infinite poset, we can use the notation Proπ,v(I) as this is unambigious. In Examples 5.1.4 and

5.1.5, we saw Row matched rowmotion obtained by Definition 5.1.2. We see that this is always the

case.

Theorem 5.1.9. Let P be an infinite poset with n-dimensional lattice projection π : P → Nn and

let I ∈ J(P ). Then Proπ,(1,1,...,1) acts as Row.

Proof. Let I ∈ J(P ). By Proposition 1.2.24, Proπ,(1,1,...,1) acts as Row when our poset is finite.

As a result, ∪k≥1 Proπ,(1,1,...,1)(Ik) = ∪k≥1 Row(Ik). Therefore, to show the theorem, we show

∪k≥1 Row(Ik) produces Row(I), where Row(I) is given by the minimal generators of P \ I.

We first show ∪k≥1 Row(Ik) ⊆ Row(I) by showing each Row(Ik) ⊆ Row(I). Let x ∈

Row(Ik). The minimal generator definition of rowmotion implies there is a minimal element s ∈

Pk \ Ik such that x ≤ s. In order words, s /∈ Ik but every element s covers in Pk is in Ik. By

the definition of Ik, this means s /∈ I and every element s covers in P is in I. Therefore, s

is a minimal element of P \ I and as a result x ∈ Row(I). Hence, Row(Ik) ⊆ Row(I) and so

∪k≥1 Row(Ik) ⊆ Row(I).

We now show Row(I) ⊆ ∪k≥1 Row(Ik). Let x ∈ Row(I). The minimal generator definition

of rowmotion implies there is a minimal element s ∈ P \ I such that x ≤ s. In other words,

s /∈ I but every element s covers in P is in I. Suppose rk s = r. Then s /∈ Ir, but every

element s covers in Pr is in Ir. Therefore, s is a minimal element of Pr \ Ir and as a result,

x ∈ Row(Ir) ⊆ ∪k≥1 Row(Ik). We obtain Row(I) ⊆ ∪k≥1 Row(Ik) and consequently the desired

result, Row(I) = ∪k≥1 Row(Ik) = ∪k≥1 Proπ,(1,1,...,1)(Ik).

Remark 5.1.10. From the previous proof, we determined that if P is a ranked poset, Row(I) =

∪k≥1 Row(Ik). This means that to perform Row(I), we can truncate at increasing ranks, perform

finite rowmotion, and take the union of the results.
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As a result, when referring to Row(I), we can now use the toggle definition of 5.1.2. We

continue with a remark showing that Definition 5.1.2 matches the intuition of what we would expect

from a toggle action on an infinite poset.

Remark 5.1.11. The definition of promotion on an infinite poset gives what one would intuitively

expect. For example, first observe the any of the finite posets and order ideals on the left in Figure

5.2 under rowmotion. Because the first layer L0
1(I) is all of L0

1, when toggling from top to bottom,

we start toggling out elements of L0
1(I) and continue until an element has a cover in L1

1. Now

compare this to the infinite poset and order ideal in Figure 5.1a. Although we cannot toggle from

top to bottom to apply rowmotion, because L0
1(I) is all of L0

1, intuitively we would expect that we

would start toggling elements out of L0
1(I) until an element has a cover in L1

1. We see from Figure

5.1b that this is the case.

On the other hand, suppose we begin with the finite poset and empty order ideal in Figure

5.4. To match the notation of the finite case, we denote the action Pro(−1,1) as Pro. Pro toggles

from left to right, toggling in elements of L0
2 until the entire layer is in the order ideal. Compare

this to the infinite poset and empty order ideal in Figure 5.5. Although we cannot toggle this poset

from left to right, we would expect the same intuition to hold, that elements of L0
2 would be toggled

in until the entire layer is in the order ideal. The figure shows that after applying Definition 5.1.2,

this is the case.

Pro

Figure 5.4. An empty order ideal of a finite poset. Performing Pro adds the layer L0
2 to the order

ideal.

With a finite poset, we saw that Proπ,v resulted in a bijective action. With an infinite poset,

this is not necessarily the case.
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Pro

Figure 5.5. An empty order ideal in N2. Performing Pro adds the layer L0
2 to the order ideal.

Remark 5.1.12. Proπ,v does not necessarily result in a bijective action. Let P = N2, let I1 be

the empty order ideal, and I2 be the order ideal with infinite layer L0
1. However, Pro(−1,−1)(I1)

and Pro(−1,−1)(I2) are both the full order ideal N2. See Figures 5.6 and 5.7 for this example. As a

result, Pro(−1,−1) is not invertible, so Proπ,v is not necessarily bijective.

Pro(−1,−1)

Figure 5.6. Applying Pro(−1,−1) to the empty order ideal results in the full order ideal.

Pro(−1,−1)

Figure 5.7. Applying Pro(−1,−1) to the order ideal with infinite layer L0
1 results in the full order

ideal.

Promotion on an infinite poset was natural to define by truncating at increasing ranks.

However, it is also natural to truncate using increasing finite products of chains [k]n.
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Remark 5.1.13. Here the notation [k] = {0, 1, . . . , k} includes zero to match the inclusion of zero

in our definition of N. This differs from Definition 1.1.3 which did not include the element zero. In

Section 5.2, our poset elements will represent exponents of monomials. We want these exponents to

be non-negative integers, which is why we make this change. Despite this, any result on a product

of chains poset from previous chapters can be rephrased in this new notation and retain its validity,

as we have only shifted the labeling of the poset elements.

We now give Definition 5.1.14, a description of how to apply promotion on an infinite poset

using truncated product of chains posets. In Proposition 5.1.15, we see that this new definition

and Definition 5.1.2 are equivalent. Because we state this for a poset with n-dimensional lattice

projection π, recall Definition 4.1.1 of π−1.

Definition 5.1.14. Let P be a poset with an n-dimensional lattice projection π : P → Nn and let

I be an order ideal of P . Let P ′k = π−1(π(P ) ∩ [k]n) be a subposet of P and I ′k = I ∩ P ′k. Define

Pro′π,v(I) = ∪k≥1 Proπ,v(I
′
k).

Proposition 5.1.15. Suppose P is poset with n-dimensional lattice projection π : P → Nn. Then

Definition 5.1.2 is equivalent to Definition 5.1.14. In other words, for I ∈ J(P ), Pro′π,v(I) results

in the same order ideal as Proπ,v(I).

Proof. First, note that using the same reasoning as in the proof of Lemma 5.1.3, Proπ,v(I
′
j) ⊆

Proπ,v(I
′
j+1). Also, using this same reasoning, for any j, Proπ,v(I

′
j) ⊆ Proπ,v(I2j) ⊆ ∪k≥1 Proπ,v(Ik).

As a result, Pro′π,v(I) = ∪k≥1 Proπ,v(I
′
k) ⊆ ∪k≥1 Proπ,v(Ik) = Proπ,v(I). On the other hand,

for any j, Proπ,v(Ij) ⊆ Proπ,v(I
′
j) ⊆ ∪k≥1 Proπ,v(I

′
k). Therefore, Proπ,v(I) = ∪k≥1 Proπ,v(Ik) ⊆

∪k≥1 Proπ,v(I
′
k) = Pro′π,v(I). As we have subset inclusion in both directions, we obtain Pro′π,v(I) =

Proπ,v(I).

As a result of this proposition, if we wish to apply promotion to an infinite poset, we can

truncate by increasing ranks or truncate by boxes increasing in size; both of these will give the

same result. Therefore, for either case, we can use the notation Proπ,v as this is unambiguous. We

may find this helpful in specific instances, as we have a plethora of results for a finite product of

chains.
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5.2. Boundary paths and monomial ideals

In this section, we connect toggling actions on order ideals of Nn to monomial ideals of

K[x1, x2, . . . , xn]. We then define boundary paths on order ideals in N2 and show that Theorem

1.2.15, the shift of the finite boundary path on [a]× [b] under Pro, generalizes to N2. We conclude

the section with Theorems 5.2.9 and 5.2.10, which investigate how the number of generators of a

monomial ideal changes when applying Pro or Row to the corresponding order ideal I ∈ J(N2).

We begin by defining ideals, monomials, and monomial ideals.

Definition 5.2.1. An ideal I of a ring R is a subset of R such that I under addition is a subgroup

of R under addition and r · x, x · r ∈ I for all x ∈ I, r ∈ R.

With this explicitly stated, we can compare this definition of an ideal with Definition 1.1.10

of an order ideal. We will see how we can connect these two objects once we define monomial ideals.

Definition 5.2.2. Let K be a field and K[x1, x2, . . . , xn] be the polynomial ring over the variables

x1, x2, . . . , xn. A monomial is a term of the form

n∏
i=1

xαii = xα1
1 · xα2

2 . . . xαnn where each αi is a

non-negative integer. A monomial ideal in K[x1, x2, . . . , xn] in an ideal generated by monomials.

Monomial ideals are well-studied by algebraists for a variety of reasons. They are well-

behaved objects with nice properties. They are defined using polynomials, which are fundamental

and natural algebraic objects. Additionally, they can be represented pictorially, giving further

insight into their structure.

Definition 5.2.3. Let P = Nn and I ⊆ P . Define the monomial ideal M(I) ⊆ K[x1, x2, . . . , xn]

such that M(I) ∼= P \ I where elements (α1, . . . , αn) ∈ P \ I correspond to monomials xα1
1 · · ·xαnn ∈

M(I). We denote the minimal set of monomial generators of M(I) as GM(I).

Because P is a product of chains, we use π = id as the lattice projection for the remainder

of this section. Also, although we give this definition for Nn, our initial results focus on N2. Recall

the definition of a boundary path and boundary path sequence from Definition 1.2.13. We use a

similar definition for an infinite poset N2 with order ideal I.

Definition 5.2.4. Define the boundary path of an order ideal I ( N2 as a path of upsteps and

downsteps that separates I from the rest of the poset. The boundary path sequence is B(I) = (aj)
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where j ∈ Z and each aj ∈ {0, 1} where zeros correspond to downsteps and ones correspond to

upsteps in the boundary path. We let a0 correspond to the step immediately to the right of the

line y = x. In this case, our boundary path sequence will have infinite length.

Our goal is to generalize the boundary path result in Theorem 1.2.15. However, the following

remark shows us that the boundary path of an order ideal can aid us in studying the minimal

generators of a corresponding monomial ideal.

Remark 5.2.5. Suppose I ∈ J(N2) has boundary path B(I). The 0, 1 subsequences in B(I) are

in bijection with the minimal generators of N2 \ I. This is because a 0, 1 subsequence gives us an

element p ∈ N2 \ I, but guarantees that both elements covered by p in N2 are in I. As a result, 0, 1

subsequences in B(I) are also in bijection with the minimal generators of M(I), as M(I) ∼= N2 \ I.

Example 5.2.6. Using the order ideal from Figure 5.1b, we show an example of a boundary path

and boundary path sequence in Figure 5.8. The boundary path sequence of this order ideal is

(. . . , a−6, a−5, a−4, a−3, a−2, a−1, a0, a1, a2, a3, a4, a5, . . . ) = (. . . , 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, . . . ).

The result on the order of Pro, Corollary 1.2.16, does not generalize well from the finite case.

However, the shift of the boundary path sequence under Pro of Theorem 1.2.15 does generalize to

N2.

(x3, x2y, y3)
Figure 5.8. The boundary path is indicated in red. The corresponding boundary path sequence is
(. . . , a−5, a−4, a−3, a−2, a−1, a0, a1, a2, a3, a4, a5, . . . ) = (. . . , 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, . . . ).

Lemma 5.2.7. Let P = N2 and B(I) be the boundary path sequence of I ∈ J(P ) where I 6= P .

Then B(Pro(I)) is a left shift of B(I).
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Proof. Since B(I) is a boundary path sequence, B(I) = (aj) where aj ∈ {0, 1}. Denote B(Pro(I)) =

(bj) where bj ∈ {0, 1}. Fix j; we must show bj = aj+1. We use Proposition 5.1.15 to work with the

product of chains definition of Pro. When determining the behavior of the boundary path, we need

to start with a sufficiently large finite poset. We find this by using the boundary paths aj and aj+1.

Note that with a single boundary path step, the initial and terminal points of the boundary path

step combined have at most 6 poset elements adjacent to them. With two consecutive boundary

path steps, this number is at most 8. These will be the elements we use to ensure our box is of large

enough size. Let k be greater than the maximum rank of the (at most) 8 poset elements adjacent

to the boundary path points corresponding to aj and aj+1. Then [k]2 is large enough such that the

boundary path of I ′k = I ∩ [k]2 has aj in position j and aj+1 in position j + 1. By Theorem 1.2.15,

Pro(I ′k) has boundary path sequence aj+1 in position j. Because this hold for all sufficiently large

k, it holds for Pro(I); hence bj = aj+1.

Example 5.2.8. Let I denote the left order ideal in Figure 5.9. The middle order ideal is Pro(I)

and the right order ideal is Pro2(I). We observe the boundary path, denoted in red, is shifted by

an application of Pro. As a result, the corresponding boundary path sequence is shifted to the left.

(x3, x2y, y3)

(..., 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, ...)

(x3y, x2y2, y4)

(..., 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, ...)

(x3y2, x2y3, y5)

(..., 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1...)

Figure 5.9. As described in Example 5.2.8, the boundary path sequence is shifted to the left when
Pro is applied.

Because we can determine the generators of a monomial ideal from the boundary path

sequence, we immediately obtain a result that when P = N2, the number of generators of the

corresponding monomial ideal are invariant under Pro.

Theorem 5.2.9. Let P = N2 and I ∈ J(P ). Then |GM(Pro(I))| = |GM(I)|.

Proof. As mentioned in Remark 5.2.5, if I 6= P , a minimal generator of M(I) corresponds to a

subsequence 0, 1 appearing in the boundary path sequence. Because B(I) has a subsequence of
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infinitely many 0’s to the left and Lemma 5.2.7 shows that promotion cyclically shifts the boundary

path sequence to the left, the number of 0, 1 subsequences in the boundary path sequence will not

change. Hence, |GM(Pro(I))| = |GM(I)|. Now suppose I = P . Then Pro(I) = I, which implies

|GM(Pro(I))| = |GM(I)| = 0. Therefore, for any I, the theorem follows.

Additionally, using a result stated in [25], we see that under rowmotion, the number of

generators of the corresponding monomial ideal increases by one.

Theorem 5.2.10. Let P = N2 and I ∈ J(P ). Then |GM(Row(I))| = |GM(I)|+ 1.

Proof. This is a consequence of Theorem 6.4.7 in [25], which says that if a monomial ideal in 2-

dimensions has j generators, then it has j − 1 corner elements. Suppose I is an order ideal such

that M(I) has j generators. In other words, |GM(I)| = j. Row(I) is the order ideal generated by

the minimal generators of M(I), which means these are the corner points of Row(I). Therefore,

Row(I) has j corner points and as a result, |GM(Row(I))| = j + 1, giving us the desired result.

Example 5.2.11. For this example, we refer to Figure 5.10, which contains the same order ideal

I and Row(I) as from Figure 5.1. Figure 5.10a shows I with the one corner element circled in red

and the two generators of M(I) boxed in blue. Figure 5.10b shows Row(I) with the two corner

elements circled in red and the three generators of M(Row(I)) boxed in blue. We see that the boxed

monomial generators in M(I) become the circled corner elements in Row(I). Because the number

of monomial generators is one more than the number of corner elements for this case, M(Row(I))

has exactly one more generator than M(I).

5.3. Homomesy and recombination

In this section, Theorem 5.3.2 gives us a homomesy result on order ideals of the poset N2.

Additionally, we generalize our recombination result from Theorem 2.2.4 to the infinite poset Nn.

Without finite orbits, we cannot use Definition 1.3.1 to obtain homomesy results. However,

in [31], Roby gives a more general definition of homomesy applicable to actions without finite orbits.

We state this definition as follows.

Definition 5.3.1. Given a set S, an action τ : S → S, and a statistic f : S → K where K is a field

of characteristic zero, then (S, τ, f) exhibits homomesy if there exists c ∈ K such that
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(a) This order ideal I has one corner element.
M(I) is generated by two elements.

(b) This order ideal is Row(I) and has two cor-
ner elements. M(Row(I)) is generated by three
elements.

Figure 5.10. We show I and Row(I) from Example 5.2.11 with the corner elements circled in red
and the generators of the corresponding monomial ideal boxed in blue.

lim
N→∞

1

N

N−1∑
i=0

f(τ i(x)) = c

is independent of the starting point x ∈ S. If such a c exists, we will say the triple is c-mesic.

We note that when τ is an invertible action with finite orbits, this reduces to Definition

1.3.1. Using this more general definition of homomesy, we obtain homomesy results from Lemma

5.2.7 and Theorem 5.2.10. Recall Definition 1.3.7 for the indicator function 1x.

Theorem 5.3.2. Let P = N2, x ∈ P . Then (J(P ),Row, 1x) and (J(P ),Pro, 1x) are both c-mesic

with c = 1.

Proof. Let x ∈ P and I ∈ J(P ). By Theorem 5.2.10, the number of generators of the corresponding

monomial ideal M(I) increases by one after each application of Row. Therefore, there exists an

N such that for all i ≥ N , x ∈ Rowi(I). This implies lim
N→∞

1

N

N−1∑
i=0

1x(Rowi(I)) = 1. Thus,

(J(P ),Row, 1x) is c-mesic with c = 1.

Similarly, by Lemma 5.2.7, the boundary path sequence shifts to the left after each appli-

cation of Pro. Therefore, there exists an N such that for all i ≥ N , x ∈ Proi(I). This implies

lim
N→∞

1

N

N−1∑
i=0

1x(Proi(I)) = 1. As a result, (J(P ),Pro, 1x) is c-mesic with c = 1.

We conclude this chapter by showing the recombination proof technique extends to the

infinite setting. Using a similar approach as in Chapter 2, we let π be the natural embedding into

Nn. When P = Nn, note that our definition for ∆γ
vI from Definition 2.2.1 is still valid. We can see

that with the same conditions as Lemma 5.3.3, performing recombination results in an order ideal.
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Lemma 5.3.3. Let I ∈ J(Nn). Suppose we have v and γ such that vγ = 1. Then ∆γ
vI is an order

ideal of P.

Proof. To show this, we use a similar strategy to the proof of Lemma 2.2.3. Pick (i1, . . . , in) ∈ ∆γ
vI.

Because (i1, . . . , in) ∈ ∆γ
vI, we have (i1, . . . , in) ∈ Liγγ (Pro

iγ−1
v (I)). Using a sufficiently large finite

product of chains, we can show (i1, . . . , iγ − 1, . . . , in) ∈ Liγ−1γ (Pro
iγ−2
v (I)) in a similar manner to

Lemma 2.2.3. Therefore, (i1, . . . , iγ − 1, . . . , in) ∈ ∆γ
vI and so ∆γ

vI is an order ideal.

With the previous lemma, we can state our infinite recombination result. Recall Definition

2.1.1 for the notation vγ̂ .

Theorem 5.3.4. Let I ∈ J(Nn). Suppose we have v = (v1, v2, . . . , vn) where vj ∈ {±1}, u =

(u1, u2, . . . , un) where uj ∈ {±1}, and γ such that vγ = 1, uγ = −1, and vγ̂ = uγ̂. Then

Prou(∆γ
vI) = ∆γ

v(Prov(I)).

Proof. As with Theorem 2.2.4, we would like to show for each layer we have Lkγ(Prou(∆γ
vI)) =

Lkγ(∆γ
v(Prov(I))). If we truncate to a finite product of chains [`]n where ` ≥ k, we have Lkγ((∆γ

vI)′`) =

Lkγ((Prok−1v (I))′`) by definition. Using the same reasoning as in Theorem 2.2.4, our finite recombi-

nation result, Lkγ(Prou((∆γ
vI)′`)) = Lkγ(Prov((Prok−1v (I))′`)). We use this to show subset inclusion

of Lkγ(Prou(∆γ
vI)) = Lkγ(∆γ

v(Prov(I))) in both directions.

Case ⊆: Using Prov((Prok−1v (I))′`) ⊆ Prov(Prok−1v (I)) and the statement above, we ob-

tain Lkγ(Prou((∆γ
vI)′`)) = Lkγ(Prov((Prok−1v (I))′`)) ⊆ Lkγ(Prokv(I)). By definition, Lkγ(Prokv(I)) =

Lkγ(∆γ
v(Prov(I)) and so Lkγ(Prou((∆γ

vI)′`)) ⊆ Lkγ(∆γ
v(Prov(I)). As this is true for all truncated

(∆γ
vI)′`, it holds for ∆γ

vI as well. Therefore, Lkγ(Prou(∆γ
vI)) ⊆ Lkγ(∆γ

v(Prov(I))).

Case ⊇: Again, starting with Lkγ(Prou((∆γ
vI)′`)) = Lkγ(Prov((Prok−1v (I))′`)), we can now

use (∆γ
vI)′` ⊆ ∆γ

vI to obtain Lkγ(Prou(∆γ
vI)) ⊇ Lkγ(Prou((∆γ

vI)′`)) = Lkγ(Prov((Prok−1v (I))′`)). Since

this is true for all truncated (Prok−1v (I))′`, it also holds for Prok−1v (I). Therefore, Lkγ(Prou(∆γ
vI)) ⊇

Lkγ(Prokv(I)) and hence Lkγ(Prou(∆γ
vI)) ⊇ Lkγ(∆γ

v(Prov(I))).

Because we showed subset inclusion in both directions, we obtain Lkγ(Prou(∆γ
vI)) =

Lkγ(∆γ
v(Prov(I))) for any layer, and hence, the desired result.

Note that although we have shown recombination for a product of chains, the same logic

can be used for any infinite poset P with an n-dimensional lattice projection into Nn.
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6. FUTURE WORK

In this chapter, we present possible future avenues of research. In Section 6.1, we discuss

generating all refined homomesies that involve only indicator functions in a product of chains. In

Section 6.2, we theorize a homomesy result using an antichain cardinality statistics as opposed to

our usual cardinality statistic. In Section 6.3, we further discuss minuscule posets cross a chain

and possible homomesy results. In Section 6.4, we suggest possibilities using the work in Chapter

5 on infinite posets. This includes extending the recombination result, searching for additional

homomesy results, and strengthening the connection between toggle dynamics and monomial ideals.

6.1. The subspace of homomesic statistics

Recall Theorems 1.3.9 and 1.3.10. These refined homomesy results of Propp and Roby

showed the cardinality of antipodal elements and the cardinality of files in J([a] × [b]) exhibit

homomesy under Pro or Row. However, Propp and Roby were able to show a stronger result. For

a poset P , consider the span of the set SP = {1x | x ∈ P}.

Theorem 6.1.1 ([30], with proof communicated by Einstein [14]). Suppose P = [a] × [b]. Then

the set {1x + 1y | x, y are antipodal in P} ∪
{∑

x∈k 1x | k is a file in P
}

generates the subspace of

homomesic statistics in span(SP ) for the case of Row acting on J([a]× [b]).

Theorem 6.1.2 ([30], with proof communicated by Einstein [14]). Suppose P = [a] × [b]. Then

the set {1x + 1y | x, y are antipodal in P} ∪
{∑

x∈k 1x | k is a file in P
}

generates the subspace of

homomesic statistics in span(SP ) for the case of Pro acting on J([a]× [b]).

In other words, on J([a]× [b]) under Row or Pro, the only refined homomesic statistics that

are linear combinations of indicator functions must be combinations of antipodal and file statistics.

In Theorem 3.3.4, we generalized the refined antipodal homomesy result to J([2]× [a]× [b])

under Prov for any v. Computations in SageMath [38] suggest that the subspace of homomesic

statistics result should also generalize.

Conjecture 6.1.3. Suppose P = [2]×[a]×[b]. The set {1x + 1y | x, y are antipodal in P} generates

the subspace of homomesic statistics in span(SP ) for the case of Prov acting on J([2] × [a] × [b])

for any v.
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Note that no analogue of files are needed for this conjecture; it only requires antipodal

statistics. This observation is obtained from our SageMath [38] computations. For several exam-

ples under Row, we found all homomesic statistics that are sums of indicator functions. For every

example, the only statistics that appeared were antipodal. Additionally, we note that if the conjec-

ture can be shown for any single Prov, we can obtain the result for all Prov using recombination.

6.2. Antichain cardinality

Recall our main homomesy result, Theorem 2.0.1, is a generalization of Theorems 1.3.2 and

1.3.3 of Propp and Roby. All of three of these theorems used the statistic of order ideal cardinality.

However, Propp and Roby had an additional result using the statistic of antichain cardinality, or

in other words, the cardinality of the generators of the order ideal.

Theorem 6.2.1 ([30]). Let g be the antichain cardinality statistic. Then (J([a] × [b]),Row, g) is

c-mesic with c = ab/(a+ b).

Using SageMath [38] to compute examples, we make the following conjecture.

Conjecture 6.2.2. Let g be the antichain cardinality statistic. Then (J([2]× [a]× [b]),Row, g) and

(J([2]× [a]× [b]),Pro(−1,−1,−1), g) are c-mesic with c = 2ab/(a+ b+ 1).

We note that Propp and Roby showed that Theorem 6.2.1 does not hold for Pro. Similarly,

through computation, we note that homomesy does not hold for all other Prov.

Proposition 6.2.3. Let g be the antichain cardinality statistic. The triple (J([2]×[3]×[2]),Prov, g)

does not exhibit homomesy when v ∈ {(1, 1,−1), (−1,−1, 1), (1,−1, 1), (−1, 1,−1), (−1, 1, 1),

(1,−1,−1)}.

Proof. A calculation using SageMath [38] shows that if v ∈ {(1, 1,−1), (−1,−1, 1), (−1, 1, 1),

(1,−1,−1)} then J([2] × [3] × [2]) under Prov has 1 orbit with average antichain cardinality

7/6 ≈ 1.17, 2 orbits with average antichain cardinality 5/3 ≈ 1.67, 2 orbits with average antichain

cardinality 11/6 ≈ 1.83, 2 orbits with average antichain cardinality 7/3 ≈ 2.33, 2 orbits with av-

erage antichain cardinality 5/2 = 2.5, and 1 orbit with average antichain cardinality 8/3 ≈ 2.67.

If v ∈ {(1,−1, 1), (−1, 1,−1)} then J([2]× [3]× [2]) under Prov has 1 orbit with average antichain

cardinality 1, 2 orbits with average antichain cardinality 5/3 ≈ 1.67, 2 orbits with average antichain
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cardinality 2, 1 orbit with average antichain cardinality 13/6 ≈ 2.17, 3 orbits with average antichain

cardinality 7/3 ≈ 2.33, and 1 orbit with average antichain cardinality 7/2 = 3.5.

6.3. Minuscule posets

Our main homomesy result, Theorem 2.0.1, can be viewed as a result on order ideals of a

poset obtained from taking a two-element chain cross a type A minuscule poset. Similarly, Corollary

4.2.1 is a homomesy result on a type B minuscule cross a two-element chain. However, there are

additional minuscule posets to consider. More specifically, we consider the type D, type E6, and

type E7 minuscule posets, which are sometimes referred to as the propeller, Cayley-Moufang, and

Freudenthal posets, respectively. We show these in Figure 6.1.

Figure 6.1. From left to right, we give examples a type D, the type E6, and the type E7 minuscule
posets.

Based on personal communication with Pechenik and SageMath [38] computations, we make

the following conjectures.
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Conjecture 6.3.1. Let f be the cardinality statistic, P be a type D minuscule poset, and a ≥ 2 an

integer. The triple (J(P × [a]),Prov, f) exhibits homomesy.

Conjecture 6.3.2. Let f be the cardinality statistic, P be the type E6 minuscule poset, and a ≥ 2

an integer. The triple (J(P × [a]),Prov, f) exhibits homomesy.

Conjecture 6.3.3. Let f be the cardinality statistic and P be the type E7 minuscule poset. The

triple (J(P × [2]),Prov, f) exhibits homomesy.

Again, note that if we can show these results for a single Prov, we obtain the results for all

Prov using recombination. Also, if P is the type E7 minuscule poset, a SageMath [38] computation

shows (J(P × [3]),Prov, f) does not exhibit homomesy.

Proposition 6.3.4. Let f be the cardinality statistic and P be the type E7 minuscule poset. (J(P×

[3]),Prov, f) does not exhibit homomesy for any v.

Proof. A calculation using SageMath [38] shows that J(P × [3]) under Row has 1214 orbits with

average cardinality 81/2 = 40.5, 1 orbit with average cardinality 40, and 1 orbit with average

cardinality 41. Using recombination, we obtain the same result for any Prov.

6.4. Infinite posets

In Chapter 5, we introduced Definition 5.1.2 of promotion on an infinite poset P with n-

dimensional lattice projection π : P → Nn. Because this is previously unstudied, there are many

new directions of research we could take with infinite posets. We will mention several natural

extensions to our results in Chapter 5.

Theorem 5.3.4 gave us a recombination result for order ideals of Nn. We should be able

generalize this from Nn to any poset P with n-dimensional lattice projection. Recall Definition

2.1.1 for the notation vγ̂ .

Conjecture 6.4.1. Suppose P is a poset with n-dimensional lattice projection π : P → Nn and

let I ∈ J(P ). Suppose we have v = (v1, v2, . . . , vn) where vj ∈ {±1}, u = (u1, u2, . . . , un) where

uj ∈ {±1}, and γ such that vγ = 1, uγ = −1, and vγ̂ = uγ̂. Then Proπ,u(∆γ
vI) = ∆γ

v(Proπ,v(I)).

Additionally, although we generalized recombination to the infinite case, we did not use it

to prove any new results. If possible, we would like to find a use for recombination in the infinite

case.
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In Theorem 5.3.2, we obtained a homomesy result on N2. It would be natural to search for

further homomesy results similar to this. More specifically, we should be able to generalize to a

wider class of posets in higher dimensions.

In Theorems 5.2.9 and 5.2.10, we investigated how a single application of Pro or Row to

I ∈ J(N2) affects the number of generators of the corresponding monomial ideal M(I) in K[x1, x2].

As K[x1, x2] is a well-understood ring, it would be useful if we could extend our result to higher

dimensions. Finally, to further connect our results to algebra, we would search for other algebraic

properties that are predictable under single applications of promotion.
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Theory Ser. A, 125:357–378, 2014.

[28] O. Pechenik. Promotion of increasing tableaux: frames and homomesies. Electron. J. Combin.,

24(3):Paper 3.50, 14, 2017.

[29] O. Pechenik. Personal communication, 2018.

[30] J. Propp and T. Roby. Homomesy in products of two chains. Electron. J. Combin., 22(3):Paper

3.4, 29, 2015.

[31] T. Roby. Dynamical algebraic combinatorics and the homomesy phenomenon. In Recent

Trends in Combinatorics, pages 619–652, Cham, 2016. Springer International Publishing.

[32] D. B. Rush. On order ideals of minuscule posets III: the CDE property, 2016. arXiv:1607.

08018.

[33] D. B. Rush and X. Shi. On orbits of order ideals of minuscule posets. J. Algebraic Combin.,

37(3):545–569, 2013.

[34] D. B. Rush and K. Wang. On orbits of order ideals of minuscule posets II: homomesy, 2015.

arXiv:1509.08047.

[35] M. P. Schützenberger. Promotion des morphismes d’ensembles ordonnés. Discrete Math.,

2:73–94, 1972.

[36] R. P. Stanley. Promotion and evacuation. Electron. J. Combin., 16(2, Special volume in honor

of Anders Björner):Research Paper 9, 24, 2009.

[37] R. P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, New York,

NY, USA, 2nd edition, 2011.

70

arXiv:1607.08018
arXiv:1607.08018
arXiv:1509.08047


[38] W. Stein et al. Sage Mathematics Software (Version 7.3). The Sage Development Team, 2016.

http://www.sagemath.org.

[39] J. R. Stembridge. On minuscule representations, plane partitions and involutions in complex

Lie groups. Duke Math. J., 73(2):469–490, 1994.

[40] J. Striker. A unifying poset perspective on alternating sign matrices, plane partitions, Catalan

objects, tournaments, and tableaux. Adv. in Appl. Math., 46(1-4):583–609, 2011.

[41] J. Striker. The toggle group, homomesy, and the Razumov-Stroganov correspondence. Elec-

tron. J. Combin., 22(2):Paper 2.57, 17, 2015.

[42] J. Striker. Rowmotion and generalized toggle groups, 2016. arXiv:1601.03710.

[43] J. Striker. Dynamical algebraic combinatorics: promotion, rowmotion, and resonance. Notices

Amer. Math. Soc., 64(6):543–549, 2017.

[44] J. Striker and N. Williams. Promotion and rowmotion. European J. Combin., 33(8):1919–1942,

2012.

[45] H. Thomas and A. Yong. A jeu de taquin theory for increasing tableaux, with applications to

K-theoretic Schubert calculus. Algebra Number Theory, 3(2):121–148, 2009.

[46] C. Vorland. Homomesy in products of three chains and multidimensional recombination,

submitted 2017. arXiv:1705.02665.

71

http://www.sagemath.org
arXiv:1601.03710
arXiv:1705.02665

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Introduction
	Partially ordered sets and Young tableaux
	A brief history of promotion and rowmotion
	Promotion on standard Young tableaux and linear extensions
	Rowmotion and the toggle group
	K-promotion on increasing tableaux and rowmotion on the product of three chains

	The homomesy phenomenon

	Homomesy on J([2] [a] [b]) and recombination
	An introduction to recombination
	Higher dimensional recombination
	Proving the main homomesy result
	General products of chains

	Tableaux and Refined Results
	A corollary on increasing tableaux
	Refined column homomesy
	Refined antipodal homomesy

	Beyond the product of chains
	Generalized recombination
	Applications of generalized recombination

	Infinite posets
	Defining rowmotion and promotion for infinite posets
	Boundary paths and monomial ideals
	Homomesy and recombination

	Future Work
	The subspace of homomesic statistics
	Antichain cardinality
	Minuscule posets
	Infinite posets

	REFERENCES

