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ABSTRACT

The existing statistical methods do not provide a satisfactory solution to determining the

spatial pattern in spatially referenced data, which is often required by research in many areas

including geology, agriculture, forestry, marine science and epidemiology for identifying the source

of the unusual environmental factors associated with a certain phenomenon. This work provides

a novel algorithm which can be used to delineate the boundary of an area of hot spots accurately

and efficiently. Our algorithm, first of all, does not assume any pre-specified geometric shapes

for the change-curve. Secondly, the computation complexity by our novel algorithm for change-

curve detection is in the order of O(n2), which is much smaller than 2O(n2) required by the CUSP

algorithm proposed in Müller&Song [8] and Carlstein’s [2] estimators. Furthermore, our novel

algorithm yields a consistent estimate of the change-curve as well as the underlying distribution

mean of observations in the regions. We also study the hypothesis test of the existence of the

change-curve in the presence of independence of the spatially referenced data. We then provide

some simulation studies as well as a real case study to compare our algorithm with the popular

boundary estimation method : Spatial scan statistic.
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1. INTRODUCTION

With the recent advance in remote censoring technology, which makes big spatially refer-

enced data accessible to researchers in many areas: Environmental science, agriculture, forestry,

marine science, and epidemiology among many others, the issue of identifying the spatial pattern

eclipsed by the wealth of big data receive more and more attention in practice, as it is indispensable

for researchers to locate the related influential environmental factors. For instance, Riggan et al. [11]

reported the heavy concentration of cancer of trachea, bronchus and lung in United States south-

eastern region and attributed it to the region’s cash crop and employment in the manufacturing

industries which has extensive exposure to airborne fibers and dusts.

A spatial pattern could be characterized by a change-curve or boundary in statistics, which

partitions the whole area of interest in such a way that the distribution of the observations made

within each subareas has a distinct mean. Therefore, identifying the spatial pattern amounts to

detecting the boundary of the subareas. The major statistical approaches in literature applied

for the change-curve detection problem include: 1. the spatial clustering methods which classify

health data into clusters (by distribution mean); 2. the change-curve detecting methods which

search for the boundary (change-curve) between subareas of distinct distribution means. However,

none of these existing methods provide a satisfactory solution, because they assume independence

of data or restrictive shapes of the boundary and most are very computationally expensive. Like

many other statistical studies, we start with a simplified scenario of lattice design: Observations

are made at the n×n grid nodes formed by the equally spaced divisions along each coordinate axis

on the R2 plane and the coordinates of all the nodes are then rescaled into the unit square [0, 1]2;

there might exist a change-curve that splits the unit square into two different regions, region of

hot spots and cold spots, respectively. The two regions differ in mean of the spatially referenced

observations, see e.g. Carlstein & Krishnamoorthy [2].

To be specific, let Ys be the spatially referenced observations made at location s, s ∈ (0, 1]2

(unit square in R2). We assume Ys = µs + εs, where εs is strictly stationary noise with Eεs = 0

and εs = σ2. In order not to interrupt introduction of the change-curve problem, we postpone our

circumscription of the spatial structure of {εs}, s ∈ (0, 1]2 to §3.5. We assume that there may exist
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θ0 ⊂ (0, 1]2 such that

µs =

{
µ1, s ∈ θ0

µ2, s ∈ θc0.

With µ1 6= µ2, the boundary of θ0, ∂θ0, is the change-curve that separates the the two regions θ0

and θc0 in (0, 1]2. Figure 1.1 below illustrates the setting of the problem as discussed above.

Figure 1.1. Grid with Boundary, the Two-Dimensional Case: n=20

Here we want to emphasize that the spatial location s at which observation Ys is made is

deterministic in this work. This is different from a boundary analysis or edge detection where the

locations themselves may be random and Wombling methods [18] which are generally considered

to detect regions of rapid change, typically lines or curves on the interpolated spatial surface.
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2. LITERATURE REVIEW

This simplified dichotomous setting for the change-curve problem in §1, is actually con-

sidered by Müller&Song [8] among many others, e.g., Carlstein&Krishnamoorthy [2] studied the

boundary between territories with relatively high and low cancer mortality rates in United States,

though the hypothesized mortality rate actually varies from county to county and is not of di-

chotomous nature. Here we provide a brief review of the major existing statistical methods for the

change-curve detection problem.

2.1. Spatial clustering methods

Spatial clustering methods determine whether spatial clusters exist and identify their shape

and size via a global or local scale statistic, such as Moran’s I statistic [7], Ripley’s K function [12],

or the scan statistic [6, 9, 14, 15]. The standard purely spatial scan statistic imposes circular win-

dow which is centered on each of several possible nodes positioned throughout the study region.

For each node, the radius of the window varies continuously in size from zero to some pre-specified

upper limit. In this way, the method creates a large number of distinct geographical circles flex-

ible both in location and size which may serve as possible candidate clusters. Kulldorff et al. [6]

further developed an elliptic version of the spatial scan statistic, using a scanning window of vari-

able location, shape (eccentricity), angle and size. Jacquez et al. [5] proposed a new distribution

free technique technique for cluster detection based on the b-statistic between the adjacent areas.

Though their method relaxes the assumption of some unrealistic pre-specified cluster shapes that

underpin almost all spatial clustering methods, it is essentially heuristic and the underlying theory

is not well established.

2.2. Change-curve detecting methods

Carlstein&Krishnamoorthy [2] proposed a nonparametric method for finding out the change-

curve from a class of candidates under some regularity conditions including smoothness of the

change-curve. Their approach is exhaustively searching the change-curve within the candidate

class that maximizes the criterion function and applicable to the linear or Lipschitz boundary.

However, depending on the size of the class of candidate curves, this method could be very

3



computationally expensive. Moreover, the consistency of this method requires the independence of

the spatially referenced observations.

Müller&Song [8] suggested a cube splitting method (CUSP) which also searches the bound-

ary by maximizing of a criterion function over the unions of cubes of aggregated pixels. It starts

with an initial guess of the change-curve on a coarse level of approximation, then splits the periph-

eral cubes (near the boundary) into smaller cubes and verify whether the allocation of the cubes to

the regions could increase the value of the criterion function. This cube splitting (refinement) step

may then be iterated until the desired level of resolution is achieved. The central advantage of the

CUSP method is its numerical feasibility and the number of cubes under consideraton for inclusion

in the proposed regions may be kept small. However, the CUSP method is still computationally

expensive and the related theory of this method is not well developed.

2.3. Kernel-based methods

Qiu [10] introduced a consistent estimator of the jump location curve for independent data

based on difference of the two one-sided kernel smoothers. However, like other kernel-based methods

which use a moving window for boundary detection and necessarily involve smoothing, it may

wash out spatial heterogeneity by averaging observations within the chosen kernel and result in an

inaccurate estimate.
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3. BOUNDARY ESTIMATE

The change-curve detection method studied in this work is based on a criterion function

similar to that in Carlstein&Krishnamoorthy [2] and Müller&Song [8]. Our estimate of the change-

curve is essentially based on the projection of the spatially referenced data onto the unit square

which utilizes a sort of monotonicity to search for the change-curve. It does not rely on the

assumption of any pre-specified geometric shapes or independence of the spatially referenced data.

Our change-curve estimator turns out to be computationally efficient and consistent.

3.1. Boundary candidates

We need some regularity conditions (RC) to circumscribe θ0 within a suitable class of

regions, Θ, which is large enough to cover the “regular” geometric shapes such as ellipsoid and

polygons, and meanwhile small enough to allow a consistent estimate of the boundary from spatially

referenced observations. We require ∀ θ ∈ Θ,

RC1: θ ∈ B ∩ (0, 1]2, where B is Borel σ-algebra in R2.

RC2: θ ∈ C ∩ (0, 1]2, where C is a Vapnik-Čhervonenkis (VC) class of sets in in R2.

RC3: ε0<λ(θ)<1−ε0 for some ε0>0, where λ(·) is the Lebesgue measure on R2.

The regularity conditions above jointly define the suitable class of sets, Θ, in which we consider θ0

resides.

Like many research works in the literature, our approach for the boundary detection also

starts from the lattice design, which assumes that the spatially referenced observations Ys are

made at the n× n equally spaced nodes of (0, 1]2, i.e., s ∈ Jn , {( in ,
j
n) : i, j = 1, . . . , n}. We shall

emphasize here that later in this work when we talk about Ys, it is tacitly understood that s ∈ Jn

and likewise, Ys, s ∈ θ, actually means s ∈ θ ∩ Jn. We drop off “∩Jn” from “θ ∩ Jn” for ease of the

notation.

Let As be the lower-left orthant of size 1
n ×

1
n with respect to node s ∈ Jn, i.e., As =

( i−1
n , in ] × ( j−1

n , jn ], and Hn be the algebra generated by all these lower-left orthants. Clearly, Hn

is monotonously increasing as n increases. Let θ̂n be any estimate of θ0 based on Ys, s ∈ Jn.
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Clearly, for any fixed n, it makes sense only if θ̂n ∈ Hn. Following Carlstein & Krishnamoorthy [2],

throughout this work the error of estimation is defined to be λ(θ̂n∆θ0)∧ λ(θ̂cn∆θ0), where ∆ is the

symmetric difference between the two sets, i.e.

A∆B , (A ∩Bc) ∪ (Ac ∩B),

and a∧b = min(a, b). The following lemma indicates that the Lebesgue measure of the symmetric

difference is a suitable metric for the estimation error.

Lemma 3.1.1. Lebesgue measure of the symmetric difference, λ(∆), is a pseudo-metric of the

distance between two sets in Lebesgue σ-algebra.

Proof. For any set A,B,C ∈ B (Borel), need to verify

1. non-negativity: λ(A∆A) = λ(∅) = 0;

2. symmetry: λ(A∆B) = λ((A ∩Bc) ∪ (Ac ∩B)) = λ(B∆A);

3. subadditivity: λ(A∆C) ≤ λ(A∆B) + λ(B∆C). This is so because λ(A∆B) = λ(A ∩ Bc) +

λ(Ac ∩B) and

λ(A ∩Bc) = λ(A ∩Bc ∩ C) + λ(A ∩Bc ∩ Cc) ≤ λ(Bc ∩ C) + λ(A ∩ Cc),

λ(Ac ∩B) = λ(Ac ∩B ∩ C) + λ(Ac ∩B ∩ Cc) ≤ λ(Ac ∩ C) + λ(B ∩ Cc),

together with the fact λ(A∆B) = λ(A∩Bc)+λ(Ac∩B) and λ(B∆C) = λ(B∩Cc)+λ(Bc∩C).

To develop our new boundary detection algorithm, we introduce the following mappings

µ̄(·) and x̄n(·), Θ 7→ R
1, which associate the spatially referenced observations with their locations.

1. µ̄(θ) = 1
λ(θ)

∫
θ µsλ(ds), where λ(·) is the Lebesgue measure on R2. For instance, with µ1 = 1

and µ2 = 0, µ̄(θ) = λ(θ∩θ0)
λ(θ) .

2. x̄n(θ) = 1
](θ)

∑
s∈θ Ys, where ](·) is the counting measure of the nodes contained in θ ∈ R2

with mesh size n−1×n−1. For instance, with Ω = (0, 1]2, ](Ω) = n2.
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To simplify our notations, we also introduce the empirical measure of θ ∈ Θ, namely, ]n(θ) , 1
n2 ](θ).

Clearly, ]n(θ) = λ(θ) for ∀ n, if θ ∈ Hn.

The regularity condition RC1 ensures that for ∀ θ ∈ Θ and ε > 0, ∃ Nθ and ψθ (ψθ ⊆ θ)

such that ψθ ∈ Hn for ∀ n ≥ Nθ and 0 ≤ λ(ψθ∆θ) < ε. The regularity condition RC2 further

guarantees such an approximation of θ via ψθ is uniform, i.e.,

Lemma 3.1.2. for ∀ ε > 0, ∃ N such that ∃ ψθ ∈ Hn for ∀ n ≥ N (ψθ ⊆ θ) and supθ∈Θ λ(ψθ∆θ) <

2ε.

Proof. Θ is a VC class hence totally bounded, viz. Vaart & Wellner [17](§2), i.e., for ∀ ε > 0, ∃

θ1, . . . , θM ∈ Θ (M < ∞) such that min
1≤k≤M

λ(θ∆θk) < ε for ∀ θ ∈ Θ. Clearly, ∃ N < ∞ and

ψk ⊆ θk (k = 1, . . . ,M) such that ψk ∈ HN for ∀ n ≥ N and max
1≤k≤M

λ(ψk∆θk) < ε. Note that both

M and N above are independent of θ and λ(ψk∆θ) ≤ λ(θ∆θk) + λ(ψk∆θk), then the conclusion

follows.

3.2. Criterion function

Following Müller & Song [8] and Carlstein & Krishnamoorthy [2], we consider the following

criterion function,

g(θ) = λ(θ)λ(θc)|µ̄(θ)− µ̄(θc)|, θ ∈ B ∩ (0, 1]2.

Lemma 3.2.1. Suppose there exists θ0 ∈ Θ and constants µ1, µ2 such that

µs =

{
µ1, s ∈ θ0

µ2, s ∈ θc0,

then θ maximizes g(θ) if and only if λ(θ∆θ0) ∧ λ(θc∆θ0) = 0.
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Proof. Observe that |µ1 − µ2| can be rescaled to 1, so without loss of generality, assume µ1 = 1

and µ2 = 0. Clearly

g(θ) = λ(θ)λ(θc)|µ̄(θ)− µ̄(θc)| = λ(θ)λ(θc)|λ(θ ∩ θ0)

λ(θ)
− λ(θc ∩ θ0)

λ(θc)
|

= |λ(θc)λ(θ0)− λ(θc)λ(θc ∩ θ0)− λ(θ)λ(θc ∩ θ0)|

= |λ(θc)λ(θ0)− λ(θc ∩ θ0)|

= |λ(θ0)[λ(θc0 ∩ θc) + λ(θ0 ∩ θc)]− λ(θ0 ∩ θc)|

= |λ(θ0)λ(θc0 ∩ θc)− λ(θc0)λ(θ0 ∩ θc)|

= λ(θ0)λ(θc0)|λ(θc0 ∩ θc)
λ(θc0)

− λ(θ0 ∩ θc)
λ(θ0)

| ≤ λ(θ0)λ(θc0)

The last inequality is due to the fact 0≤λ(θc0∩θc)
λ(θc0) , λ(θ0∩θc)

λ(θ0) ≤1. The equality holds if and only if

λ(θc0 ∩ θc) = λ(θc0) and λ(θ0 ∩ θc) = 0 or λ(θc0 ∩ θc) = 0 and λ(θ0 ∩ θc) = λ(θ0), which implies

λ(θ∆θ0) ∧ λ(θc∆θ0) = 0.

Note that with µ1 = 1 and µ2 = 0, g(θ0) = λ(θ0)λ(θc0). Lemma 3.2.1 simply implies that θ0

is the unique global maxima of the criterion function g(θ) (unique in the sense of Lebesgue measure

of symmetric difference is 0). This motivates the M-estimator of θ0: maxima of the empirical

version of g(θ), i.e., let

gn(θ) = ]n(θ)]n(θc)|x̄n(θ)− x̄n(θc)|, θ ∈ B ∩ (0, 1]2,

then for any fixed n, based on the fact maxθ∈Hn gn(θ) = maxθ∈B gn(θ), we may define

θ̃n , arg max
θ∈Hn

gn(θ).

3.3. VC class

VC class is systematically discussed in Vaart & Wellner [17](§2.6). For self-containing

purpose, we provide its definition and main properties here.

Let C be a class of subsets of a set X . For an arbitrary set {x1, . . . , xk}, we say that C picks

out a certain subset of {x1, . . . , xk} if the subset can be expressed as C ∩ {x1, . . . , xk} for some

8



C ∈ C. The collection C is said to shatter {x1, . . . , xk} if each of its 2k subsets can be picked out.

The VC-index V (C) of the class C is the smallest k for which no set of size k is shattered by C.

Clearly, the more refined C is, the larger its index is. The index V (C) is formally defined as

V (C) = inf{k : max
x1,...,xk

4k(C, x1, . . . , xk) < 2k}

where 4k(C, x1, . . . , xk) is the number of subsets of {x1, . . . , xk} picked out by C. A class of sets C

is called VC if V (C) <∞.

As indicated in Vaart & Wellner [17], §2.6, let C and D be VC-classes of sets in a set X and

φ : X 7→ Y and ψ : Z 7→ X fixed functions, then

(1) Cc = {Cc : C ∈ C} is VC;

(2) C ∩ D = {C ∩D : C ∈ C, D ∈ D} is VC;

(3) C ∪ D = {C ∪D : C ∈ C, D ∈ D} is VC;

(4) φ(C) is VC if φ is one-to-one;

(5) ψ−1(C) is VC;

(6) the sequential closure of C for pointwise convergence of indicator functions is VC; for VC-

classes C and D in sets X and Y,

(7) C × D is VC in X × Y.

Moreover, by Theorem 2.6.4 in Vaart & Wellner [17], there exists a universal constant K such that

for any VC class C of dimension ν and any ε ∈ (0, 1),

N(ε, C, λ(∆)) ≤ Kν(4e)νε−(ν−1)

where N(ε, C, λ(∆)) is the covering number of the class C under radius ε (based on the pseudo-

metric λ(∆) as defined in §3.2). Clearly, an immediate consequence of this result is that VC class

is totally bounded.

It turns out that a VC class may cover many commonly seen 2-dimension geometric shapes,

including circles, ellipses and convex m-gons (m≤c0<∞). Unlike some other change-curve detection
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methods, we do not presume the change-curve to have specific geometric shapes. Instead, our

regularity condition RC2 only assumes the change-curve belonging to a VC class. Note that the

union and intersection of finite VC classes are still VC, the regularity condition RC2 actually enable

us to consider the change-curve in a much larger class than the class of presumed geometric shapes,

say, circles by scan statistics method.

3.4. Estimation algorithm

Note the cardinality of Hn, |Hn| = 2n
2
. A naive approach of obtaining M-estimator of

the change-curve θ0, θ̃n, is to search the global maxima of gn(θ) across all the possible 2n
2

can-

didate sets in Hn, which is necessarily computationally expansive. In this work, we introduce a

new computationally efficient algorithm for detecting the change-curve θ0 which utilizes a sort of

monotonicity in mapping the change-curve. Its computational complexity turns out to be up to n2

instead of 2n
2
.

To be specific, for fixed n, let Ty ,
⋃
Ys≥y

As, T
c
y ,

⋃
Ys<y

As, where As is the lower-left orthant

of size 1
n×

1
n with respect to the node s ∈ Jn. Then Ty, T

c
y ∈ Hn and gn(Ty) = ]n(Ty)]n(T cy )|x̄n(Ty)−

x̄n(T cy )|. Let y∗ = arg maxy∈R gn(Ty), our estimator of θ0 is simply θ̂n = Ty∗ . Clearly, for ∀ {Ys}s∈J ,

where J =
⋃∞
n=1 Jn, {Ty}y∈R is a VC-class of dimension 2 by definition and gn(Ty) has at most n2

distinct values, each of which occurs at the value of the observed response. It turns out

Lemma 3.4.1. For any fixed n, if all Ys are distinct, then max
θ∈Hn

gn(θ) = max
y∈R

gn(Ty).

Proof. Clearly max
θ∈Hn

gn(θ) ≥ max
y∈R

gn(Ty), since Ty ∈ Hn for any real value y. Therefore, it only

remains to show max
θ∈Hn

gn(θ) ≤ max
y∈R

gn(Ty). Observe that for ∀ θ ∈ Hn with ]n(θ) = ]n(Ty),

|x̄n(θ)− x̄n(θc)| ≤ |x̄n(Ty)− x̄n(T cy )|. Then

]n(θ)]n(θc)|x̄n(θ)− x̄n(θc)| ≤ ]n(Ty)]n(T cy )|x̄n(Ty)− x̄n(T cy )|

So with ]n(θ) = ]n(Ty), gn(θ) ≤ gn(Ty). The conclusion follows by first taking supy∈R on the

righthand side and then taking supθ∈Hn on the lefthand side of the inequality above.

Lemma 3.4.1 indicates though it’s possible λ(θ̂n∆θ̃n)∧λ(θ̂n∆θ̃cn) 6= 0, gn(θ̂n) = gn(θ̃n) always holds.
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3.5. Spatial autocorrelation

As discussed in §3.1, the location of the spatially referenced data Ys in the lattice design

on (0, 1]2 with mesh size n−1×n−1 is re-scaled to fit in the unit square. Therefore, the Euclidean

distance between the any two arbitrary observations Yv and Yw, v, w ∈ (0, 1]2, is actually n‖v−w‖

rather than ‖v − w‖ , where ‖ · ‖ is the Euclidean distance. Now we circumscribe the spatial

structure of the noise εs to the spatially referenced data Ys in this lattice design. In addition to

{εs}, s ∈ (0, 1]2, being strict stationary with Eεs = 0 and var εs = σ2, we further assume that {εs}

has autocorrelation ρn(d) satisfying ρn(d) = o((nd)−2), where d is the scaled Euclidean distance

between the location of two arbitrary observations in the unit square.

Let ρ(·) be the autocorrelation of {εs} at unscaled Euclidean distance. Clearly, ρn(d) =

ρ(nd). The polynomial rate decaying of ρn(d) or equivalently ρ(nd) guarantees that {εs} satisfies

the ρ-mixing condition as discussed in Goldie & Greenwood [3] and Goldie & Greenwood [4] with

the exponent of regularity being 2. This requirement on ρn(d) concerns only the limiting situation

of spatial correlation of ρ(·), hence it virtually accommodates many popular correlogram models in

geostatistics, including

1. spherical correleogram: ρ(d) = c{1− 3
2(dr ) + 1

2(dr )3}1{d≤r};

2. powered exponential correleogram: ρ(d) = c exp{−(dr )p};

3. Matérn correleogram: ρ(d) = c
Γ(ν)2ν−1 (

√
2ν dr )νKν(

√
2ν dr );

where r is the practical range of spatial dependency, c ∈ (0, 1], p ∈ (0, 2] and ν > 0 are some

universal constants, and Kν(·) is the 2nd type modified Bessel function.

Lemma 3.5.1. Let Ys be as defined in §3.1. Suppose that {εs}, s ∈ (0, 1]2, is strict stationary with

Eεs = 0, var εs = σ2, and ρ(d) = o(d−2) (as d → ∞), then there exists γ > 1 such that for any

θ ∈ Θ,

λ(θ) ≤ lim
n→∞

var(n−1
∑
s∈θ

Ys/σ) ≤ lim
n→∞

var(n−1
∑
s∈θ

Ys/σ) ≤ γλ(θ).

Proof. Observe that for any θ ∈ Θ,

σ2n2]n(θ) ≤ var(
∑
s∈θ

Ys) ≤ σ2n2]n(θ) + σ2n2]n(θ)

√
2n∑

k=1

8kρn(kn−1),

11



so

]n(θ) ≤ var(n−1
∑
s∈θ

Ys/σ) ≤ ]n(θ)
{

1 + 8
+∞∑
k=1

kρ(k)
}
.

Note ρ(k) = o(k−2), then
∑+∞

k=1 kρ(k) < +∞. Let γ , 1+8
∑+∞

k=1 kρ(k), the conclusion follows.

Observe x̄n(θ) = 1
n2]n(θ)

∑
s∈θ Ys, an immediate consequence of this lemma is that for ∀

θ ∈ Θ, var x̄n(θ) = O(n−2).

3.6. Consistency of Estimator

Let θ̂n = arg maxθ∈Θ gn(θ), θ̂n turns out to be consistent in the sense of λ(θ̂n∆θ0) ∧

λ(θ̂cn∆θ0) → 0 as n → ∞. To prove this result, we will show |gn(θ) − g(θ)| p→ 0 as n → ∞

for ∀ θ ∈ Θ. Thanks to Lemma 3.6.1 as below (cf. Vaart [16], §5, Theorem 5.7), the consistency of

θ̂n then follows if uniformity of the convergence holds, i.e., supθ∈Θ |gn(θ)− g(θ)| p→ 0.

Lemma 3.6.1. Let θ0 = arg maxθ∈Θ g(θ) and δ(θ0, ε) be the neighborhood of θ0, i.e., λ(θ∆θ0) < ε,

∀ θ ∈ δ(θ0, ε). Suppose g(θ0) > g(θ) if θ /∈ δ(θ0, ε) for ∀ ε > 0 and supθ∈Θ |gn(θ)− g(θ)| p→ 0, then

λ(θ̂n∆θ0)
p→ 0.

Proof. Observe g(θ0) ≥ g(θ̂n) and gn(θ̂n) ≥ gn(θ0), then

0 ≤ g(θ0)− g(θ̂n) = [g(θ0)− gn(θ0)] + [gn(θ̂n)− g(θ̂n)] + [gn(θ0)− gn(θ̂n)]

≤ |gn(θ0)− g(θ0)|+ sup
θ∈Θ
|gn(θ)− g(θ)|,

so 0 ≤ g(θ0)−g(θ̂n) ≤ op(1) by the virtue of supθ∈Θ |gn(θ)−g(θ)| p→ 0. Appealing to the assumption

g(θ0) > g(θ̂n) if θ̂n /∈ δ(θ0, ε), the conclusion follows.

Before we show the uniform convergence in probability of gn(θ) to g(θ), we need one more

important result.

Lemma 3.6.2. Suppose that {εs}, s ∈ (0, 1]2, is strict stationary with Eεs = 0, var εs = σ2, and

ρ(d) = o(d−2) (as d→∞), then supθ∈Θ |x̄n(θ)− µ̄(θ)| p→ 0.
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Proof. Without loss of generality, let µ1 = 1, µ2 = 0. Then µ̄(θ) = λ(θ∩θ0)
λ(θ) for ∀ θ ∈ Θ. Hence

|x̄n(θ)− µ̄(θ)| = | 1

](θ)

∑
s∈θ

Ys −
λ(θ ∩ θ0)

λ(θ)
|

≤ | 1

](θ)
{
∑

s∈θ∩θ0

(Ys − 1) +
∑

s∈θ∩θc0

Ys}|+ |
]n(θ ∩ θ0)

]n(θ)
− λ(θ ∩ θ0)

λ(θ)
|.

First, observe | ]n(θ∩θ0)
]n(θ) −

λ(θ∩θ0)
λ(θ) | ≤

1
λ(θ){|]n(θ)−λ(θ)|+ |]n(θ∩ θ0)−λ(θ∩ θ0)|}, inf

θ∈Θ
λ(θ) > ε0, and

|]n(θ)− λ(θ)|, |]n(θ ∩ θ0)− λ(θ ∩ θ0)| ≤ supθ∈Θ λ(ψθ∆θ), then

sup
θ∈Θ
|]n(θ ∩ θ0)

]n(θ)
− λ(θ ∩ θ0)

λ(θ)
| = o(1)

follows, by taking supθ∈Θ over the LHS of the last inequality above and appealing to Lemma 3.1.2.

Second, observe Ys − 1, ∀ s ∈ θ ∩ θ0 and Ys, ∀ s ∈ θ ∩ θc0 are identically distributed with

mean 0. Appealing to Lemma 3.5.1, var{ 1
](θ) [

∑
s∈θ∩θ0(Ys−1)+

∑
s∈θ∩θc0

Ys]} = o(1). So, by Cauchy

inequality, | 1
](θ){

∑
s∈θ∩θ0(Ys − 1) +

∑
s∈θ∩θc0

Ys}| = op(1).

Note that Θ is a VC class hence a Gilivenko-Cantelli (GC) class (viz. Vaart & Wellner [17],

§2.6), i.e., | 1
](θ){

∑
s∈θ∩θ0(Ys − 1) +

∑
s∈θ∩θc0

Ys}| = op(1) implies

sup
θ∈Θ
| 1

](θ)
{
∑

s∈θ∩θ0

(Ys − 1) +
∑

s∈θ∩θc0

Ys}| = op(1).

Combine the two equations above, the conclusion follows.

Now we may proceed to to show the uniform convergence in probability of gn(θ) to g(θ) for

∀ θ ∈ Θ.

Theorem 3.6.1. In the same setting as Lemma 3.6.2, supθ∈Θ |gn(θ)− g(θ)| p→ 0.
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Proof. Without loss of generality, let µ1 = 1, µ2 = 0. Then 0 ≤ µ̄(θ) = λ(θ∩θ0)
λ(θ) ≤ 1 for ∀ θ ∈ Θ.

Observe

|gn(θ)− g(θ)| = |]n(θ)]n(θc)|x̄n(θ)− x̄n(θc)| − λ(θ)λ(θc)|µ̄(θ)− µ̄(θc)||

≤ |]n(θ)]n(θc)[x̄n(θ)− x̄n(θc)]− λ(θ)λ(θc)[µ̄(θ)− µ̄(θc)]|

≤ |]n(θ)]n(θc)x̄n(θ)− λ(θ)λ(θc)µ̄(θ)|+ |]n(θ)]n(θc)x̄n(θc)− λ(θ)λ(θc)µ̄(θc)|

≤ |]n(θ)]n(θc)− λ(θ)λ(θc)|µ̄(θ) + ]n(θ)]n(θc)|x̄n(θ)− µ̄(θ)|

+|]n(θ)]n(θc)− λ(θ)λ(θc)|µ̄(θc) + ]n(θ)]n(θc)|x̄n(θc)− µ̄(θc)|

≤ 4 sup
θ∈Θ
|]n(θ)− λ(θ)|+ 2 sup

θ∈Θ
|x̄n(θc)− µ̄(θc)|

Note θc ∈ Θ, |]n(θ)−λ(θ)| ≤ supθ∈Θ λ(φθ∆θ) = o(1) by the virtue of Lemma 3.1.2 and supθ∈Θ |x̄n(θ)−

µ̄(θ)| = o(1) by Lemma 3.6.2, then take supθ∈Θ over the LHS of the inequality above the conclusion

follows.

With the help of Lemma 3.4.1, Lemma 3.6.1 and Theorem 3.6.1, the consistency of θ̂n or

θ̃n for θ0 holds. The estimator for µ(θ0) = µ1, µ(θc0) = µ2 and σ2 could be defined as follows:

µ̂
(n)
1 = x̄n(θ̂n), µ̂

(n)
2 = x̄n(θ̂cn),

σ̂2
n =

1

n2

{∑
s∈θ̂n

(Ys − x̄n(θ̂n))2 +
∑
s∈θ̂n

(Ys − x̄n(θ̂n))2

}
.

Now we prove consistency of these estimates.

Theorem 3.6.2. Suppose θ0 ∈ Θ, Θ satisfies the regularity conditions RC1-RC3, and εs satisfies

the assumptions in Lemma 3.6.2, then µ̂
(n)
1

p→ µ1 and µ̂
(n)
2

p→ µ2. Moreover, if Eε4s<∞ and ε2s has

autocorrelation ρ?(d) = d−2 (d unscaled distance), then σ̂2
n

p→ σ2.

Proof. Without loss of generality, we assume µ1 = 1 and µ2 = 0 as before. Observe |µ(θ̂n)−µ(θ0)| =

| 1
λ(θ̂n)

∫
θ̂n∩θ0 ds−1| = λ(θ̂n)−λ(θ̂n∩θ0)

λ(θ̂n)
= op(1) by Lemma 3.1.2 and |x̄n(θ̂n)−µ(θ̂n)| = op(1) by Lemma

3.6.2, then

|x̄n(θ̂n)− µ(θ0)| ≤ |x̄n(θ̂n)− µ(θ̂n)|+ |µ(θ̂n)− µ(θ0)| = op(1),

So µ̂
(n)
1

p→ µ1. Similarly, µ̂
(n)
2

p→ µ2. Note λ(θ̂n∆θ0) = op(1), x̄n(θ̂n)−1 = op(1), and x̄n(θ̂cn) = op(1),
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then

σ̂2
n =

1

n2

{∑
s∈θ̂n

[Ys − x̄n(θ̂n)]2 +
∑
s∈θ̂cn

[Ys − x̄n(θ̂cn)]2
}

=
1

n2

{∑
s∈θ̂n

(Ys − 1)2 +
∑
s∈θ̂cn

Y 2
s

}
+ op(1)

=
1

n2

{ ∑
s∈θ̂n∩θ0

ε2s +
∑

s∈θ̂cn∩θc0

ε2s

}
+

1

n2

{ ∑
s∈θ̂n∩θc0

(Ys − 1)2 +
∑

s∈θ̂cn∩θ0

Y 2
s

}
+ op(1)

Note ε2s, s ∈ (0, 1]2 is strictly stationary, and additionally Eε4s<∞, ρ?(d) = d−2, then

1

n2

{ ∑
s∈θ̂n∩θ0

ε2s +
∑

s∈θ̂cn∩θc0

ε2s

}
= σ2 + op(1).

So σ̂2
n = σ2 + op(1) follows.

3.7. Existence of boundary

Now we develop a statistical hypothesis test to examine whether or not the change-curve

exists. This is also an important issue to the boundary detection problem. In the setting of the

boundary detection problem as described in the beginning of of this section, the hypothesis test of

the existence of the change-curve could be simply formulated as follows:

H0 : µ1 = µ2 vs Ha : µ1 6= µ2.

Before presenting our test statistic of this test, we shall study the asymptotic behavior of n]n(θ)[x̄n(θ)−

µ̄(θ)], a stochastic process indexed by θ ∈ Θ. Without loss of generality, we assume µ1 = µ2 = 0

under H0, then µ̄(θ) ≡ 0. Observe that

n]n(θ)x̄n(θ) = n−1
∑
s∈θ

Ys,

by Theorem 2.2 in Alexander & Pyke [1] or Theorem 2.5.1 in Vaart & Wellner [17], §2.5, one has
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Lemma 3.7.1. Suppose the noise εs, s ∈ (0, 1]2 are iid, then n−1
∑

s∈θ Ys/σ
d→ W (θ), where

W (θ) is a standard Wiener process indexed by θ in Θ with EW (θ1) = 0 and cov(W (θ1),W (θ2)) =

λ(θ1 ∩ θ2) for ∀ θ1, θ2 ∈ Θ, if Ys are iid with EYs = 0 and varYs = σ2, s ∈ Jn.

Now we propose out test statistic Tn , n supθ∈Θ |gn(θ)|/σ̂n, which is simply sup of the

scaled criterion function gn(θ) = ]n(θ)]n(θc)|x̄n(θ) − x̄n(θc)|, θ ∈ Θ, where σ̂n is as defined in

Theorem 3.6.2. We consider its null limiting distribution here.

Theorem 3.7.1. Suppose the noise εs, s ∈ (0, 1]2 are iid, under H0

n sup
θ∈Θ
|gn(θ)|/σ̂n

d→ sup
θ∈Θ
|B(θ)|

where B(θ) is the standard Brownian bridge stochastic process indexed by θ in Θ, i.e., B(θ) =

W (θ)− λ(θ)W (Ω), where Ω = (0, 1]2.

Proof. Observe ]n(θ)x̄n(θ)+]n(θc)x̄n(θc) = x̄n(Ω), then x̄n(θ)−x̄n(θc) = x̄n(θ)−x̄n(Ω)
1−]n(θ) . So n|gn(θ)| =

|n−1
∑

s∈θ Ys − ]n(θ)n−1
∑

s∈Ω Ys|. Appeal to Theorem 1.1 in Vaart & Wellner [17] (Extended

continuous mapping) and note that by Lemma 3.1.2 supθ∈Θ |λ(θ) − ]n(θ)| → 0, [n−1
∑

s∈θ Ys −

]n(θ)n−1
∑

s∈Ω Ys]/σ
d→ [W (θ) − λ(θ)W (Ω)]. Therefore with σ̂n/σ

p→ 1, the conclusion follows

according to Slutsky’s theorem [13].

By Lemma 3.2.1, ngn(θ0) = nλ(θ0)λ(θc0) → ∞ if θ0 is the true change-curve under Ha.

Therefore, given σ, a large test score of Tn is a support of Ha. So given σ = 1, at significance level

α, Ha is concluded if Tn > cα, where cα is the upper αth percentile of supθ∈Θ |B(θ)|. Unfortunately,

supθ∈Θ |B(θ)| does not have an explicit distribution. We obtain c0.05 via numeric simulation.

Below is the histogram of the simulated values test score of Tn in 1, 000 simulations of n = 20 with

Ys
iid∼ N(0, 1). c0.05 turns out to be 0.191 in this case.
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Figure 3.1. Histogram of Tn scores; n=20

As for the case of Ys being spatially correlated, e.g. the noise εs satisfies the assump-

tion in Lemma 3.5.1, though σ̂2
n is consistent for σ2 and var x̄n(θ) = O(n−2), ∀ θ ∈ Θ, but

limn→∞ var(n−1
∑

s∈θ Ys/σ) does not necessarily exist. Even if it exists, one has n−1
∑

s∈θ Ys/σ
d→

ξ(θ), where ξ(θ) is some Gaussian stochastic process indexed by θ in Θ, not the standard Weiner

process W (θ). This is so because var(n−1
∑

s∈θ Ys/σ) depends on the shape of θ, not purely λ(θ).
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4. NUMERIC STUDY

4.1. Simulation data

In this section, we conduct numeric study to examine the performance of our new algorithm

in detection of the change-curve and compare it with that of the popular spatial clustering method:

Scan statistics. To be compliant with the setting of the change-curve detection problem as discussed

in §1, our simulation study is solely confined to the n × n lattice design in the unit square (0, 1]2

with n = 30, which has a change-curve splitting the unit square (0, 1]2 into two regions: θ0 and θc0.

We consider two cases of the change-curve as described below:

C1 : {(x, y) ∈ (0, 1]2 | y =
√
x},

C2 : {(x, y) ∈ (0, 1]2 | (x− 0.5)2 + (y − 0.5)2 = 0.42},

We set the noise εs having a marginal distribution N(0, 1) for ∀ s ∈ (0, 1]2. We also consider the

following two cases of its spatial autocorrelation

D1 : ρ(d) = 0,

D2 : ρ(d) = exp{−20d},

where d is the scaled Euclidean distance.

For each combination of the change-curve C1, C2 and spatial autocorrelation D1, D2, we

first simulate the observations Ys = µs + εs at all the nodes with µs = 100 if s ∈ θ0 and µs = 0 if

s ∈ θc0, then apply our algorithm and the scan statistics to determine the change-curve in the unit

square, respectively. Computation of the change-curve via scan statistics method is implemented in

the SaTScan software. The two resulting estimates of the change-curve in each case are compared

for the estimation error λ(θ̂n∆θ0) ∧ λ(θ̂n∆θc0).

4.1.1. Independent data

The following four plots illustrate how our method and spatial scan statistic works for the

independent case, D1. When the true boundary is a circle, the spatial scan statistic works great.

However, when the boundary has a hyperbolic shape, the spatial scan statistic does not perform as

well as our method.
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(d) C1&D1, Spatial Scan Statistic

Figure 4.1. Comparison between Our Method and Spatial Scan Statistic; n = 30
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This can also be demonstrated by calculating the symmetric difference between the true

boundary and the boundary estimate given by our method and spatial scan statistics, which is

listed in the following table.

Table 4.1. Symmetric Difference between the True Boundary and the Boundary Estimate:
Independent Data

Circular Hyperbolic

Our Method 0.0833 0.1110

Spatial Scan Statistic 0.0079 0.1493

4.1.2. Correlated data

The following four plots shows the boundary estimate given by our method if the data are

exponentially correlated with the autocorrelation function given in D2. Similar with the indepen-

dent case, we can see that the boundary estimate is close to the true boundary when n = 30. We

also compare the boundary estimate given by our method and spatial scan statistic for both the

circular case and the hyperbolic case. Obviously, the spatial scan statistic performs better than our

method when the boundary is a circular shape yet our method precedes the spatial scan statistic

when the boundary is a hyperbolic shape.
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(d) C1&D2, Spatial Scan Statistic

Figure 4.2. Comparison between Our Method and Spatial Scan Statistic; n = 30

Similar to the independent case, we provide the symmetric difference of the true boundary

and the boundary estimate given by our method and spatial scan statistic for the correlated case in

the following table, which can also be used to compare the performance of our method and spatial

scan statistic.
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Table 4.2. Symmetric Difference between the True Boundary and the Boundary Estimate:
Correlated Data

Circular Hyperbolic

Our Method 0.0600 0.0267

Spatial Scan Statistic 0.0079 0.1378

The following two figures show how our method works when y =
√
x is the true change curve

with the points from the upper part form a standard normal distribution and these of the lower

part form a normal distribution with the same standard error and 100 as their mean respectively

with the unit square equally spaced into a 20×20 and 30×30 grid. It is clear that the larger the

n is, the greater the method works, which might suggest that our estimate is consistent. Besides,

the symmetric difference between the regions constructed by the true boundary and our boundary

estimate for n = 20 is about 0.135 while that for n = 30 is about 0.111, which also suggest that

our boundary estimate is consistent when n goes to infinity.
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Figure 4.3. Consistency of Our Method
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4.2. Live data

This data set we pick includes the daily precipitation on July 15th, 2014 from 10 southeast-

ern states based on the definition of the Association of American Geographers: Alabama, Florida,

Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee, Virginia, and West

Virginia. It also has the information of the min and max of daily temperature which is useless

here. The useful variables we will use are longitude, latitude, elevation and precipitation (PRCP).

We also translated the longitude and latitude into X and Y coordinates which is a usual practice

when we deal with a relatively small geographic region. Originally, this data set has about 4000

observations, each of which is a specific weather station. We removed those with missing values on

the variables of interest and we end up with 3840 observations. First of all, we created two plots as

following, one shows the shape of the area and the other one shows the distribution of precipitation

over this region.
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(a) Shape of the Area (b) Distribution of the Precipitation over the Area

Figure 4.4. Live Data
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To be compliant with the setting as discussed in §1, we first rescale the region into a unit

square (0, 1]2 and then equally space it into a 30×30 grid. Within each small cube, we define the

observation to be the mean of the precipitation of those points that fall in the small cube. and the

value of the observation is simply set to 0 for those small cubes which do not have any point. Then

we conduct our boundary estimate analysis using both our method and spatial scan statistics. The

first plot of the following two plots show the boundary estimate obtained by our method while the

second one show the boundary estimate obtained by spatial scan statistic.
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Figure 4.5. Application of Our Method and Spatial Scan Statistic to Live Data
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5. CONCLUDING REMARKS

In conclusion, we develop an algorithm in this work to detect the change-curve of spatially

referenced data, by profiling the spatially referenced data and using the criterion function as pro-

posed by Müller&Song [8]. Our estimator of the change-curve is simply the maxima of the criterion

function. Our algorithm is robust because it does not assume any pre-specified geometric shapes

for the change-curve and is computationally efficient because it uses monotonicity in search of the

boundary. In the lattice design with mesh size n−1×n−1, the computation complexity by our novel

algorithm for change-curve detection is in the order of O(n2), much smaller than 2O(N2) required by

the CUSP algorithm proposed in Müller&Song [8] and Carlstein’s [2] estimators. Our novel algo-

rithm yields a consistent estimate of the change-curve as well as the underlying distribution mean

of observations in the regions. We also study the hypothesis test of the existence of the change-

curve in the presence of independence of the spatially referenced data. We apply our algorithm

and spatial scan statistic to simulated data for both the independent case and the correlated case

with the true boundary is circular shaped and hyperbolic shaped. We conclude that although our

method does not perform as well as spatial scan statistic works for the circular shaped boundaries,

it seems outperform the scan statistic method when the boundary is hyperbolic shaped.

We will apply our algorithm to some other shaped boundaries and compare the results with

some other methods in the future. Besides, though our work is on a simplified dichotomous lattice

design like many other interesting studies, it can be extended to a more complicated scenario.
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