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ABSTRACT 

When censored data are present in the linear regression setting, the Expectation-

Maximization (EM) algorithm and the Buckley and James (BJ) method are two algorithms that 

can be implemented to fit the regression model. We focus our study on the EM algorithm 

because it is easier to implement than the BJ algorithm and it uses common assumptions in 

regression theory, such as normally distributed errors.  The BJ algorithm, however, is used for 

comparison purposes in benchmarking the EM parameter estimates, their variability, and model 

selection.  

In this dissertation, validation and influence diagnostic tools are proposed for right 

censored regression using the EM algorithm.  These tools include a reconstructed coefficient of 

determination, a test for outliers based on the reconstructed Jackknife residual, and influence 

diagnostics with one-step deletion.  

To validate the proposed methods, extensive simulation studies are performed to compare 

the performances of the EM and BJ algorithms in parameter estimation for data with different 

error distributions, the proportion of censored data, and sample sizes. Sensitivity analysis for the 

reconstructed coefficient of determination is developed to show how the EM algorithm can be 

used in model validation for different amounts of censoring and locations of the censored data.   

Additional simulation studies show the capability of the EM algorithm to detect outliers for 

different types of outliers (uncensored and censored), proportions of censored data, and the 

locations of outliers.  The proposed formula for the one-step deletion method is validated with an 

example and a simulation study. 
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Additionally, this research proposes a novel application of the EM algorithm for 

modeling right censored regression in the area of actuarial science. Both the EM and BJ 

algorithms are  utilized in modeling health benefit data provided by the North Dakota 

Department of Veterans Affairs (ND DVA). Proposed model validation and diagnostic tools are 

applied using the EM algorithm.  Results of this study can be of great benefit to government 

policy makers and pricing actuaries. 
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CHAPTER 1. INRODUCTION 

Censoring has been extensively discussed as part of survival analysis and a large volume 

of literature is generated in this area. Good information on these topics can be found in books by 

Klein and Moeschberger (2003) and Lee (1997). An observation is right censored at a censoring 

point if when it is above the censoring point, it is recorded as being equal to the censoring point, 

but when it is below the censoring point, it is recorded as its observed value. In medical statistics, 

right censoring is analyzed from the data of patients who are still alive at the end of the study and 

those who terminated the study due to surrender (Miller 1976). In the insurance industry, some 

policies are structured in such a way that the policy limits serve as a restricted amount of 

payment on a given loss. For a loss below or equal to the policy limit, payment is made in the 

amount equal to the loss. If the loss exceeds the policy limit, payment is imputed at the policy 

limit (Guiahi 2001).  

Linear regression models are commonly used in many applications to analyze the 

functional relationship between a response variable and other explanatory variables that are 

perceived to be related to the response variable.   Typically, a normal distribution is assumed for 

the underlying assumption of the error structure. However, these models have limitations when 

the response variable is right censored since they may yield fitted values of the variable of 

interest to exceed its upper or lower bound when the censoring is ignored.  The most popular 

semi-parametric and non-parametric models for right censored regression are the Cox (1972) and 

Buckley-James (BJ) (1979) models, respectively. These two models are available commercially. 

Currently, the normal model for right censored regression based on the Expectation-

Maximization (EM) method introduced by Dempster, Laird, and Rubin (1977) is not 

implemented in any statistical software.  Diagnostic tools for this model have not been 
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sufficiently developed. This is surprising because the right censored regression based on the EM 

algorithm is easy to implement and uses the same assumptions that are used in regression theory.  

One of the goals of a pricing actuary, when dealing with censored losses, is to develop 

the best fitting model based on the historical data reported by claims. Data available to an 

actuary includes: individual losses, the information about the coverage limits, and axillary policy 

information on rating variables. Currently, actuaries group losses by loss size and their risk 

attributes when they deal with censored losses. For each group they develop a separate loss 

distribution. Developing a right censored regression model for losses in the presence of multiple 

rating variables using the EM algorithm would be of a great benefit to a pricing actuary because 

this would allow for modeling individual losses. Model validation and diagnostics based on the 

EM algorithm would allow for better understanding of the model fit, quantifying the influence of 

the individual observations on the parameter estimates, and detecting of outliers. 

The organization of this dissertation is as follows. Chapter 2 reviews literature in the area 

of right censored regression. Chapter 3 introduces notation used in the subsequent chapters. 

Chapter 4 describes the EM method. The proposed EM model, parameter estimates, and 

variability assessment for right censored regression are developed in Chapter 5. The BJ method 

is summarized in Chapter 6 including the proposed model, parameter estimates, variability 

assessment, and model selection. Chapter 7 provides theoretical development of proposed 

validation and diagnostic tools for the EM algorithm. Extensive simulations studies are discussed 

and the results are reported in Chapter 8. Chapter 9 includes an analysis of data provided by the 

North Dakota Department of veterans Affairs. Finally, the conclusion is presented in Chapter 10.   
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CHAPTER 2. REVIEW OF LITERATURE 

The Cox Model (1972), the most popular model in survival analysis, has been used 

extensively to link censored failure times of the variable of interest to a set of related explanatory 

variables (covariates).  The hazard function (age-specific failure rate) models the response 

variable “non-parametrically” or “parametrically” as a function of time, while the set of 

covariates form a regression model in which these variables are modeled “parametrically”. Some 

applications of the model are considered in non-life insurance, such as the occurrence of claims 

(Keiding 1998) or censored payments from property losses that can be explained by some 

individual’s characteristics (Klugman, Panjer, and  Willmot 2004).  

Non-parametric regression models with right censored responses were originally studied 

by Miller (1976), Buckley and James (1979), and Koul, Susarla, and Ryzin (1981).  Miller 

developed a Kaplan-Meier Least Squares estimator which minimizes the weighted sum of 

squares of the residuals. The weights are obtained using the Kaplan-Meier (1958) estimator, well 

known in survival analysis.  Buckley and James developed an estimator known as the BJ 

estimator which is based on the normal equations. This method is a special case of the quasi-

likelihood method incorporated in a framework of Generalized Linear Models (McCullagh and 

Nelder 1983). Kaplan-Meier estimates replace the censored observations, and the inferences 

about the parameters of the model are made using quasi-likelihood, which requires assumptions 

on the first two moments of the data (Wedderburn 1974) and (Yu, Yu, and Liu 2009).  

While the estimators of Miller and Buckley and James both use an iterative procedure, 

Koul, Susarla, and Ruzin (1981) proposed an estimator which is obtained without an iterative 

procedure. However, this estimator is based on the assumption that the distribution of the 
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censored variable does not depend on the covariates. In practice, the dependent variable may be 

sensitive to this assumption. All of these models were mostly applied in area of survival analysis 

with applications in biostatistics and medical research.  

Early studies on parametric methods for right censored regression were dated in the 

1970s. Dempster, Laird, and Rubin (1977) proposed an iterative procedure known as the EM 

Algorithm. The EM algorithm has been extensively used for missing data or data containing 

missing values. Good information on the EM methodology and the applications can be found in  

McLachlan and Krishnan (2007). 

 Schmee and Hahn (1979) analyzed right censored regression data on electrical insulation 

in 40 motorettes tested at four different temperature settings. They recorded the time until failure 

in hours of each motorette.  Observations were right censored if the motorettes were still on test 

without failure at the indicated time. An iterative least square (ILS) method was used to estimate 

the parameters of the simple linear regression model where the response variable was right 

censored and errors were assumed to be normally distributed.  Parameter estimates in each step 

were computed by least squares using the uncensored observations and the conditional 

expectations of the censored observations. They also showed that the ILS estimates performed as 

well as those obtained with maximum likelihood estimation studied by Hahn and Nelson (1974), 

for the same data. The ILS method was prized for computational simplicity and attractiveness to 

non-statisticians as it is easier to explain.   

Aitkin (1981) showed that the parameter estimates for the same data (40 motorettes) can 

be obtained by maximum likelihood using the EM algorithm. In the E-step, censored 

observations were replaced with their conditional expectations given the observed data and the 
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current parameter estimates.  Then in the M-step, the new parameter estimates were computed by 

the maximum likelihood method based on the complete data.  

In 1977, Cook developed a measure based on confidence ellipsoids, which is useful in 

assessing the influence of the ith data point on the estimated regression coefficient. This measure 

is known as “Cook’s Distance”. Cook’s Distance measures the distance between the estimated 

regression coefficient and that obtained when the ith point is deleted from the sample. Cook’s 

Distance is based on the confidence ellipsoid formula for the unknown vector of coefficients, 

which follows the F distribution.   The observations with Cook’s distance at or above the 50th 

percentile of the F distribution are considered influential. Various approaches have been studied 

by Chatterjee and Hadi (1986) to check model validity and influential observations in standard 

linear regression. Aziz and Wang (2009) developed “Cook’s Distance” for the BJ model, which 

extended the application of this model to validation and influence diagnostics.   

 Although, the EM algorithm for right censored regression has been studied, it is rarely 

used largely due to the fact that it is not readily available in statistical software packages.  

Additionally, diagnostic tools for the EM algorithm have not been developed extensively. 

Weissfeld and Schneider (1990) proposed models for assessing the influence of a single 

observation on the estimation of coefficients in the normal model with censored data. Their 

methods include the empirical influence function and one-step deletion methods based on the 

Newton- Raphson and EM algorithms. However, their formula developed for one-step deletion 

method in the case of the EM algorithm is different than the one proposed in this research.  
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CHAPTER 3. NOTATION 

The notations that are used consistently throughout this dissertation are defined here. 

They follow the same convention used in the book Linear Models in Statistics by Rencher and 

Schaalje (2008). Other notations that are less frequently used will be defined later when they are 

introduced for the first time. In terms of script, font, and style, the following is defined:  

 Parameters - not bold,  lower-case Greek letter 

 Parameter space - not bold, upper-case Greek letter 

 Sample space - not bold, upper-case Greek letter 

 Random variable – not-bold, upper-case italic Roman letter 

 Vectors – bold and lower-case  

 Observation – not bold, lower-case italic Roman letter 

 Matrices - bold, upper-case Roman letter 

 Functions - not bold, lower-case italic Roman letter with parenthesis ( )  

 Scalars – not bold, lower-case italic Roman letter 

Mathematical symbols for vectors, functions, matrices, and sizes of datasets are 

consistent with common statistical practices. They are defined as follows: 

n – the total number of observations   

m- the number of censored observations 

p – the number of explanatory variables in the regression model 

, … ,  - the observed-data vector 

, … ,  - the unobservable or incomplete-data vector  

, . . . ,   -  d-dimensional parameter vector  
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	– the likelihood function for Ψ formed based on observed data , … ,  

	– the complete-data likelihood function for Ψ formed based on observed data , … ,  

 – the complete-data log likelihood function for Ψ formed based on observed data , … ,  

-function- conditional expectation of  log  given the observed-data 

- objective function 

X – n  (p+1)- dimensional matrix of explanatory variables in multiple regression 

X1 – (n-m) x (p+1)- dimensional partition matrix of explanatory variables in multiple regression 

containing the observed data 

X2 – m x (p+1)- dimensional partition matrix of explanatory variables in multiple regression 

containing the observed data 

ε – random error vector 

β – vector of coefficients in the linear model  

 maximum likelihood estimates of β 

 probability density function of 	~	 0, 1    

Φ x  cumulative distribution function of 	~	 0, 1    
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CHAPTER 4. EXPECTATION MAXIMIZATION METHOD 

The EM Method is broadly introduced by Dempster, Laird, and Rubin (1977). They call 

this the “EM Algorithm”.  This method is an iterative climbing approach for computing 

maximum likelihood estimates in the presence of incomplete-data (e.g. missing observations, 

truncated or censored data).   The EM methodology is often confused with the “EM Algorithm” 

when in fact there are many examples of EM algorithms built on the idea of the EM method.    

Several sample spaces exist in the presence of incomplete data. The observed data  are 

realizations of the random variable Y0 having sample space . We have only incomplete 

information about the remaining data,  , which is presented by the observation vector z. That 

is, for some function  we have   .  Denote by Yo, Yu, and Z the corresponding 

random variables. Next, we introduce the total data vector , .  Now define  

Yt = (Yo, Yu ). The sample space of corresponding random variable 	we denote by .   

Obviously,  =  	  u, where u is the sample space of the random variable . We 

also introduce a vector	 , , which we call the complete observation vector, and 

corresponding random variable Yc.  Denote by    the sample space of z.  Denote by  (  the set 

of all values 	 ∈ 	  such that .  Assume Ψ contains all parameters of the p.d.f. f  

of the  random variable ; that is , , . Then for every , , 

, 	 , , 	 

is a p.d.f. of the random variable  with sample space o     and vector Ψ of parameters. The 

vector Ψ is not known. The goal of the EM method is to find a reasonable approximation of this 

vector. 
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The EM method consists of two steps that are applied iteratively: the E-step and M-step.  

During the E-step, we find the conditional expectation, or Q-function, of the complete-data log 

likelihood,    given the observed data , based on the current fit for    . Let 	be an initial 

value for . The E-step consists of computing 	 log | , ,	the conditional expectation 

of log  given the observed data  with respect to   with parameters Ψ. 

Denote by  a function of parameters of the p.d.f. of  such that, for some function 

P, we have   = , , .  In this dissertation,  represents the first and second 

moments of the censored observation  given . 

During the E-step of the first iteration, we compute . During the M-step, we 

compute the maximum of , ,  with respect to . The value	  of the 

argument of the maximum is considered as a new approximation of the set of unknown 

parameters Ψ. On the next iteration, during the E-step, we compute again the value of G 	 .  

During the M-step, we maximize , 	,  with respect to Ψ. On the kth iteration, 

during the E-step, we compute the value of .  During M-step, we find the argument 

 which maximizes , , . 

The E-step and M-step are repeated until the relative difference between the values of the 

log likelihood function between two sequential iterations changes by a sufficiently small number.    
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CHAPTER 5. EM ALGORITHAM FOR RIGHT CENSORED REGRESSION 

5.1.  Proposed Model 

Consider the traditional form of the multiple regression model; that is, 

	  , 

where  	~	 0,  and , , … . .  is a vector of unknown parameters.                                               

The matrix, referred to as the design matrix, 	is of size 	 	 1   and is assumed to have 

rank equal to 1	(full column rank).  The goal of traditional multiple regression is to estimate 

the parameter vector , , … . . , 	  .	This can be accomplished by Least-Squares 

method, which minimizes the sum of squares of deviations for the  observed responses,  , 

from their fitted values, .  

Now, consider the censored linear regression model,  

      ∗ ∗ 	 	, 

where  	~	 0,  ,  		and  	 ∗ . The uncensored and censored partition design 

matrices are denoted by X1 and X2, respectively. The uncensored and censored responses are y 

and z, respectively.  

The true value of the censored response is unknown and is estimated using the 

conditional expectation during the E-step of the EM algorithm. This estimated value is referred 

to as the reconstructed or renovated response value. The EM Algorithm is employed to obtain 

parameter estimates as well as the reconstructed values of the censored observations.  
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5.2. Parameter Estimates 

The complete likelihood function, based on the complete information for censored 

regression, is defined as follows:  

													 , , 2 	 		.																									 

The logarithm of this function is defined as	 . The complete log likelihood is   

, , 	
2
log 2

2
log

1
2

2 2 .											 

 

Next, we introduce the Q-function: 

,
2
log 2

2
log  

																			 2 2 	.	                          (5.1) 

Here,  and  are calculated in the E-step as the first and second moments of the conditional 

expectation for censored observations, given that their values are above the censoring point. It is 

straightforward to show that 

                                 | , , 	 	 	 	                               (5.2) 

											 | , , 	 	 	 	 ,               (5.3) 

where 	 ,        	
√

  ,  and   Φ 	 	.	

The E-step consists of computing A and B.  During the next step, the M-step, we maximize the 

Q-function with respect to parameters β and σ using the values A and B. 
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The maximized value of the Q-function will lead to the maximum likelihood estimates 

(MLEs) for the model. Finding the maximum amounts to finding the solutions to the following 

equations: 

0		and 0.  

From this, we have 

,
 , 

and therefore  

 .                                              (5.4)                          

Similarly, 

, 2 2
 

and  

      	 	 2 .                                (5.5) 

Here  and  are MLEs of parameters β and σ2 , respectively. Using norms notation, the 

equation above (5) can be expressed as 

	 ‖ 	 	‖ ‖ . 

Calculation of parameter estimates  and   in each (k + 1) step can be obtained as 

follows:  
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1

	 . . 

5.3. Variability Assessment 

McLachlan and Peel (2000) defined an approach that can be employed for the variability 

assessment of all parameter estimates.  The empirical observed information matrix serves as an 

estimate of the corresponding observed information matrix and is obtained by  

						 ∑ ′ ),                                         

where , 	 σ  represents the vector of parameter estimates, or MLEs, and  q  is the 

gradient vector of the conditional expectation of the complete data log likelihood function 

constructed on the ith observation and evaluated at  . Note that: Q ∑ . For each 

i,  is a vector of length (p + 2) defined by  

											 , .	                                                

Consider a vector  = (1,..0,..1,..0) of length , where a 1 represents a censored 

observation and a 0 represents an uncensored observation. It follows that   

                            
	 	 	                              (5.6)                

and  

	
1

 

. 
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These partial derivatives will be used to assemble the covariance matrix. This covariance matrix 

of the MLEs, which is obtained by taking the inverse of 	can be directly employed for 

testing various hypotheses and finding confidence intervals for the parameters of the model. 

5.4. Model Selection 

 The Akaike Information Criterion (AIC) is a popular model selection procedure 

proposed by Akaike (1974). The AIC considers the  negative log-likelihood plus a penalty term 

that reflects the number of free parameters (  ) in the model.    The form of the AIC is given by  

																																																												 2 2 ,                                                            (5.7) 

where 	  is defined as follows: 

	
2

log 2
2

log
1
2

	  

2
log 2

2
log

1
2

log	 1 Ф . 

The model with the minimum AIC is selected as the best model to fit the data. 

 Another commonly used method in model selection was proposed by Schwarz (1978) and 

is known as Bayesian Information Criterion (BIC). Similar to AIC, the BIC approach adjusts the 

log-likelihood  by a penalty term which considers the number of observations (  in the 

sample in addition to the number of parameters in the model:     

																																																								 2 log                                                        (5.8)                         

The model with the minimum BIC is chosen as the best model to fit the data.  
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CHAPTER 6. BUCKLY AND JAMES METHOD 

6.1. Proposed Model 

Buckley and James (1979) proposed a method that modifies the least squares normal 

equations in order to accommodate for right censoring.  Consider the following model: 

																										 	 											 	~	 ,                             

where  is an 	 1		vector of right censored responses;  is a design matrix of size 	

1  with 	covariates;  is a 1 1  parameter vector estimated by 

β , β , ……… , β ; and ε is an 	 1	error vector with independent and identically 

distributed realizations from an unspecified distribution 	having mean zero and finite variance.  

6.2. Parameter Estimates 

The Buckley-James method replaces the censored responses with their estimated 

expected conditional values, called renovated values, ∗  , using the following equation:    

						 ∗ W ,                                      

 where   is a vector of observed residuals β , β , … β .  The 

matrix of weights is the upper triangular Renovation Weight Matrix defined as follows: 

W diag w  

           = 

δ 							… 														

0 									… 													
⋮ ⋮ ⋱ 													 ⋱ 																⋮

				0												0								 	0									… 															 		
					0												0														0 					…											…											 										

  ,                        
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where 1	 if the observation is uncensored and 0	if the observation is censored, and  the 

weights  are  defined as:  

																																									
								if			 	 ,

0																														otherwise
                          

with  being a probability mass assigned to the uncensored residuals using the Kaplan-Mayer  

product limit estimator : 

1 	∏
	

.; 	                                 

 The process of finding the parameter estimates resembles an EM algorithm.  The initial value of 

 is proposed. Then a new estimated value on the ( 1 	 iteration is calculated as   

																																																				 	 ∗  .                                                 (6.1) 

 

6.3. Variability Assessment 

 Variance estimation by the Buckley-James method has been studied by many researchers 

considering that the original paper by Buckley and James proposed a heuristic variance estimator 

based on uncensored observations only.   Buckley and James substantiated the adequacy of the 

variance estimator through simulation testing. They showed that even in cases when censoring is 

not uniformly distributed along the line, the variance calculation is adequate.    For multiple 

linear regression the covariance matrix is estimated as: 

Σ 	 ∆	 ,                                                                      (6.2) 

where 
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∑ 	 ∑ 	

,     

 

 is the number of uncensored observations, ∆ , and  is the length of the parameter 

vector  in the regression model. The implementation of this method is currently available in the 

R library (rms).   

6.4. Model Selection 

A measure of explained variation was proposed by Hocking (2003) based on the square 

of the Pearson correlation coefficient between the response and predicted response.  Using a 

similar path, Glasson (2007) proposed a measure of explained variation in the BJ model, similar 

to the Pearson correlation coefficient, using the uncensored observations only. Let  and  

represent the sample standard deviation for the actual 	and the predicted response 	based on 

the uncensored data only. The measure of explained variation for the uncensored data based on 

the number of uncensored observations 	is calculated as 

	 , , 

where 

																																																																	
∑ 	

.                                                (6.3) 

It follows that 	0 1. The biggest disadvantage of 	   is that it does not take into account 

censored data. However, Glasson (2007) pointed out that 	 	in practice produces the most 

realistic results for the BJ model and is an adequate measure for assessing its predictive power. 
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CHAPTER 7. VALIDATION AND DIAGNOSTIC TOOLS FOR THE EM ALGORITHM 

7.1. Introduction  

Model validation and diagnostics are well developed procedures in ordinary regression 

theory for checking correct specifications of the model.  In this chapter, we propose formulas for 

computing the coefficient of determination, outlier detection, and influence diagnostics in right 

censored regression based on the EM algorithm. Availability of these tools should promote use 

of the EM algorithm in modeling right censored regression. Users of the EM model will be 

equipped to measure the utility of the model and detect any outliers that may lead to possible 

model misspecifications. Also, influence diagnostics are helpful in detecting influential 

observations that may allow users to better understand the nature of the data.    

7.2. Reconstructed Coefficient of Determination  

It is a standard approach for modeling multiple regression to consider the coefficient of 

determination (R 	as a useful measure of how well the model fits the data. The R  is defined as 

the proportion of total response variation that is explained by the model. The R  is also used as a 

tool in model selection, with higher  R  indicating better model fit. However, R 	alone does not 

indicate whether the model is appropriate.   

The R  for ordinary regression is defined as   

R 1 	
∑ 	

∑ 	
	1 	 , 

where SSE represents the sum of squares for error and TSS is the total sum of squares. The TSS 

measures the variability in the model relative to the horizontal line . The SSE measures the 
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variability in the response y from the fitted line   . For ordinary regression, the best fitted model 

is defined based on the principle of least squares which minimizes the sum of squares of errors 

(SSE).    

For right-censored regression using the EM algorithm, there is no a comparable measure 

developed by researchers. The least squares method cannot be applied due to the presence of 

censored data.  The following proposed R  calculation is based on the idea of maximizing the Q-

function given optimal values of the parameters relative to the maximization of the same 

function assuming the intercept term only.  

Assume p is the number of independent variables in the model. Define the following 

objective function as 

β , β , … . , β 	 ‖ 	 ‖ 	‖ 	 ‖ 	‖ ‖ . 

Next, define   

	min , ,…… , … ,  , 

	min , 0… ,0 	 0 . 

 is the optimal value of the objective function  if we use the whole design partition matrix X.  

	is the optimal value of the same function if we use only the first column of X. 

The proposed R-squared is defined as the reconstructed coefficient of determination:  

																																													R 1 	  .                                                           (7.1) 



20 
 

The R  does not have a closed form solution compared to an ordinary coefficient of 

determination.   

THEOREM: The following statements about R 	are true: 

(i) 0	 	 R 	 1 

(ii) Function R  is non-decreasing with respect to . 

PROOF: 

(i) By definition of Jlin and Jconst, we have 0  ≤  Jlin  ≤   Jconst.  

Therefore 0	 	 R 	 1 

(ii) By definition, Jlin(p) is non-increasing in . Therefore R  is non- decreasing 

with respect to .     

7.3. Reconstructed Jackknife Residuals and Outliers     

A Jackknife residual is commonly used in regression diagnostics to denote a difference 

between the actual response  and the predicted response   for observation i when  is 

deleted from the analysis. That is, 

	 	 . 

For right censored regression based on the EM algorithm, the reconstructed Jackknife residual is 

proposed to accommodate censored observations and is defined as  

															 ∗ 	 	 	
∗ ,                                                               
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where ∗ 	  if the ith observation is uncensored and  ∗ 	  if the ith observation is 

censored.  The parameter estimate  is obtained when the EM algorithm is implemented on the 

data with the ith observation removed.   The actual value of   is known for deleted uncensored 

observations. However, for the ith censored observation the actual value is unknown and can be 

estimated by 	 	 using equation (5.2).    

There are many procedures used to identify outliers. One procedure involves simply 

comparing the residuals for all observations. If one residual is much larger in absolute value than 

the others, then the observation corresponding to this residual is declared an outlier. Another 

procedure for identifying outliers involves comparing a residual to a critical value based on a 

probability distribution. Both of these procedures are discussed below.  

 The variance of a standard residual  ̂ 	 	is not constant. It is estimated by     

	 1 	, 

where 		is ith diagonal element of  the matrix . Scaling the residual by its 

variance and replacing 	by the sample standard deviation s, we obtain the standardized 

residual		 	 	~ 0, 1 .	 The residual   is known as studentized residual.  

The method of scaling Jackknife residuals is based on statistic 	    where 

	~	 / 1 .  Simple computations show that  	 1 	⁄ . If an 

outlier comes from a distribution with a different mean, then the model can be expressed as  

	 	 . The test for an outlier is the same as the test of the hypothesis :	 0.    
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If  | | > / 1 , then  	is rejected and the ith observation is declared an outlier. 

Since a test needs to be performed on all observations, the Bonferroni adjustment to the critical 

value   can be used or observations with relatively large  compared to the other observations 

should be flagged. 

A similar idea can be used for Jackknife residuals in right censored regression. Let ∗  

denote the standard deviation of the model when the ith observation is deleted. If the deleted 

observation is uncensored, then ∗ 	 coincides with the same estimate obtained from the EM 

algorithm. For the censored case, we propose that an approximation is used where ∗ 	 is the 

standard deviation based on all uncensored observations and the ith censored observation.  

For uncensored observations, we calculate a matrix similar to H as  

	, where the ith diagonal element of this matrix is denoted as  , 

1, 2, … , .    In the case of censored observations, we propose to use  = ,	 

where    has matrix dimension 1 1 	that includes the partition matrix  X1 

with  the ith row added from the partition matrix X2. Let the ith diagonal element of  be denoted 

by .  A test statistic for detecting outliers based on the reconstructed Jackknife residuals is 

proposed as  

																																																						 ∗ 	
∗

∗
  ,                                                       (7.2) 

where ∗ 	 ∗ / 1 	   applies when the ith observation is uncensored and   

∗ 	 ∗ / 1 	  applies when ith observation is censored. Similar to regression with 

no censoring, we test the hypothesis  :	 0.  If  | ∗| > / 1 ,	 	 is rejected the 



23 
 

observation is declared an outlier. Since n tests should be performed, a Bonferroni adjustment to 

the critical value of the t-distribution is appropriate to use, or the observations with relatively 

large values of ∗ should be flagged as outliers.  

 7.4. Influence Diagnostics: One-Step Deletion Method  

For assessing the influence of a single observation on the parameter estimates in censored 

regression, the most popular methods include the empirical influence curve and one-step deletion 

method. They are described briefly as follows.  

Assume Λ ,  is a likelihood function depending on parameters θ and observations y. 

Assume F(y) is the c.d.f. of random variable Y. The “average likelihood function” is defined as 

	 Λ , 	. 

The point  that maximizes J is considered the best approximation of parameters θ. Assuming all 

functions are sufficiently smooth, we have   = 0, or 

∂Λ ,
∂

0	. 

Now consider the dependence of   on F. Denote by ∆  the step function at , and define 

 , 1 	 	 ∆  . Also denote ,  as the point that maximizes function 

, 	 Λ , , . 
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Then, →
, 	

	 ,  may be considered as a sensitivity coefficient of the optimal 

likelihood estimator  with respect to an observation at point .  Denote  

, 	 ,
, and 	 	 , 	 . Then 

, , . 

The one-step deletion method measures the change in parameter estimates when the ith 

data point is deleted from the sample. For the EM Algorithm, the formula produced by Weissfeld 

and  Schneider (1990) is 

∆ 	 	 

																																																	
	 	 	

	 	
 ,                                   (7.3) 

where 	 /  and 	ϕ / 1 ϕ . 

This formula is not consistent with formula (7.6), which we derive as follows. The optimal 

values of the parameters in β are given by the following well known formula:     

∗,   

where ∗ 	  is a vector of uncensored and reconstructed censored observations. Now, 

assume that the ith observation is omitted. Then, instead of using matrix X we have to use matrix 

 which is the matrix X with the ith row omitted. For this problem, the optimal model has 

optimal parameters  which can be found using a similar formula:   
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∗ . 

Here, ∗  is the vector of uncensored and reconstructed censored observations based on all 

available observations except for ith observation.  Denote the ith component of the vector of 

observations, ∗,	based on all available observations (including the ith). Denote by  the ith row 

of the matrix X which is omitted in  .   Then,  	  and 

	 ∗ 	 ∗ 	 y∗	. Thus, 

	. 

Multiplying this equation by 	 we obtain: 

  																																												 .                          (7.4) 

Next, if we multiply each side of equation (7.4) by  from the left and regroup the terms, we 

have  

	 	 	  

1 	 	 	  

																																							 	 1 	 	 	 .                          (7.5) 

Substituting (7.5) into the appropriate part of (7.4) we get 

	 	 	
. 

Then, we have 
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∆ 	 	 	 ∗ 	 	 ∗  = 

	 ∗ 	 y∗ 	 	
	

∗  

	
	 ∗ ∗

	 ∗ 	 	 ∗ . 

Finally, we obtain ∆  as 

∆ 	
	

1 	 	 	 ∗ ∗  

																				 	 ∗ 	 	.                                        (7.6) 

 

 By comparing the new formula (7.6) to (7.3), we observe that they are different and coincide if 

∗ ∗ 0. However, if the difference ∗
	

∗ is not equal to zero, then in general, the 

formulas produce different results.  

In order to eliminate the influence of an observation due to its position on the interval of 

x values, the vector ∆  in the formula (7.6) can be divided by the vector   

component-vise providing a valuable measure of the change in the coefficients of the linear 

model. Thus the normalized version of the formula (7.6) is defined as 

																																												 ∆ 	
∆

  = 1,2…p.             (7.7) 
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Relatively large values of this statistic indicate the most influential observations on the coefficient 

estimates of the model. It is important to note that Weissfeld and Schneider (1990) did not address 

this issue when calculating their formula for the one-step deletion based on the EM algorithm.  

7.5. Examples 

An example is presented in this section to illustrate how the one-step deletion method 

performs under different settings. Two scenarios are considered:  

Scenario 1:  the influential observations are closer to the end of the interval, and  

Scenario 2:  the influential observations are in the middle of the interval. 

A fire insurance data set published by Mendenhall and Sincich  (2012) was modeled using 

simple linear regression. All 15 observations reported in Table 7.1 were considered uncensored. 

Distance from the fire station (in miles) represents the independent variable (x) while Fire 

Damage in thousands of dollars represents the dependent variable (y).   

Scatterplots of data presented in Table 7.1 are shown in Figure 7.1. While uncensored 

observations for Scenario 1 and Scenario 2 are represented by circles, the censored observations 

are represented by solid filled black circles. Influential observations stand out compared to all 

other observations and are easily recognizable on scatterplots for Scenario 1 and Scenario 2. 

In Scenario 1, we assume that five randomly selected observations (numbered: 2, 4, 9, 13, 

and 15) were censored, with observation number 13 being censored at a very high level (e.g. 

100) and located toward the upper end of the interval. Table 7.1 shows these censored 

observations in bold. 
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      Table 7.1. Fire Insurance Data Used for Influence Diagnostics    

No. x y Scenario 1 Scenario 2 

1 0.7 14.1 14.1 14.1 

2 1.1 17.3 17.3 17.3 

3 1.8 17.8 100 17.8 

4 2.1 24.0 24.0 24.0 

5 2.3 23.1 23.1 23.1 

6 2.6 19.6 19.6 100 

7 3.0 22.3 22.3 22.3 

8 3.1 27.5 27.5 27.5 

9 3.4 26.1 26.1 100 

10 3.8 26.2 26.2 26.2 

11 4.3 31.3 31.3 31.3 

12 4.6 31.3 31.3 31.3 

13 4.8 36.4 100 36.4 

14 5.5 36.0 36.0 36.0 

15 6.1 43.2 43.2 43.2 

       

        

Observation number 3 was uncensored at a very high level (e.g. 100) and located close to 

the lower end of the interval. Thus, two highly influential observations were created in the data 

and both of them were close to the end of the interval.   
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 Figure 7.1.  Scatterplots of Data Presented in Table 7.1. 
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If the influence on the parameter estimates is calculated without normalization for points 

close to the end of the interval, the results will always recognize these as influential points in the 

data. Influence on the slope is greater than the influence on the intercept for this case. Figure 7.2 

shows the results of the one-step deletion method using formula (7.6) for Case 1.   In figure 7.3, 

formula (7.7) is used to evaluate influence, and the results are much improved in a sense that 

influential points are more easily recognizable for the slope coefficients.  We can observe that 

somewhat more uniform weights are given to other influential observations using formula (7.7) 

compared to the results of formula (7.6). Formula (7.6) gives very little weight to the influence 

of the observations in the middle of the interval.   While in Case 1, we can still recognize the 

influential points for the slope coefficient	even when we use formula (7.6), they are much more 

distinct and easily recognizable when formula (7.7) is used instead.  

The influence for each observation before and after normalization for Case 1 is 

summarized in Table 7.2.  As we expected, it can be easily observed that observations number 3 

and 13 are the most influential. These observations were assigned very high values. These results 

confirm the validity of the new method proposed for identifying influential points using one-step 

deletion.  
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Figure 7.2.  Influence Diagnostics for Scenario 1 Before Normalization 

 

Figure 7.3. Influence Diagnostics for Scenario 1 After Normalization 
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     Table 7.2. Influence Diagnostics Results for Scenario 1 

Scenario 1  
(Influential Points are Close to the end of the Interval) 

No. 
Influence Before 
Normalization 

Influence After 
Normalization 

1 (-11.6529, 2.8758) (-37.5961, -38.7724) 

2 (5.2114, -1.1379) (19.1433, 18.1577) 

3 (21.1148, -3.7902) (102.3876, 89.0805) 

4 (3.5491, -0.6169) (19.9461, 18.1852) 

5 (-3.9668, 0.7501 ) (-24.9365, -26.6245) 

6 (-3.9455, 0.6542) (-30.1672, -33.4652) 

7 (-2.5754, 0.2653) (-27.6726, -32.9662) 

8 (-1.8204, 0.1350) (-21.7653, -26.0957) 

9 (-0.2829, -0.4275) (-16.0450, -28.6000) 

10 (1.0801, 0.0827) (19.5145, 23.9726) 

11 (0.9784, -0.7654) (-33.1519, -26.1035) 

12 (1.9150, -1.0945) (-33.1302, -28.8424) 

13 (-4.9586, 3.8028) (64.6800, 87.0243) 

14 (4.8640, -2.0568) (-34.0926, -32.2269) 

15 (-4.6082, 1.9613) (23.1282, 24.1923) 

 

In Case 2, two influential observations were selected in the middle of the interval. These 

are uncensored observation number 6 and censored observation number 9.  Their values are set at 

100.  Figures 7.4 and 7.5 show the influence diagnostics for each observation on both 

coefficients of the model before and after normalization.   
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Figure 7.4. Influence Diagnostics for Scenario 2 Before Normalization 

 

Figure 7.5. Influence Diagnostics for Scenario 2 After Normalization 
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     Table 7.3. Influence diagnostics results for Scenario 2 

Scenario 2  
(Influential Points are in the Middle of the Interval) 

No. 
Influence Before 
Normalization 

Influence After 
Normalization 

1 (-11.7775, 2.9510) (-37.9981, -39.7872) 

2 (5.2472, -1.1588) (19.2750, 18.4909) 

3 (-6.4686, 1.4292) (-31.3668, -33.5909) 

4 (3.4941, -0.6053) (19.6373, 17.8458) 

5 (-3.9956, 0.7628) (-25.1178, -27.0756) 

6 (11.4242, -1.2712) (87.3493, 65.0263) 

7 (-2.5405, 0.2497) (-27.2977, -31.0275) 

8 (-1.7918, 0.1180) (-21.4235, -22.8198) 

9 (5.5175, 0.6999) (99.6834, 202.8967) 

10 (-0.1501, -0.4876) (-8.5167, -32.6227) 

11 (1.1813, -0.8564) (-40.0262, -29.2067) 

12 (2.1993, -1.2184) (-38.0483, -32.1057) 

13 (-1.5339, 0.9642) (20.0083, 22.0661) 

14 (5.4936, -2.3171) (-38.5054, -36.3058) 

15 (-4.8448, 2.0557) (24.3154, 25.3571) 

                                   

When the influential points are located in the middle of the interval they may not be 

detected using formula (7.6).  Figure 7.4 shows that influence is still driven by points located 

toward the end of the interval. Influence of the points in the middle of the interval is significantly 

worse for the slope than for the intercept.    
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When formula (7.7) is applied in Case 2, the results are much improved.  From figure 7.5, 

we can easily observe observations number 6 and 9 as the most influential. Table 7.3 summarizes 

the magnitude of influence by observation for both coefficients in the model.  It can also be 

observed that censored points in the middle of the interval have a greater impact on the slope 

than on the intercept of the model compared to those uncensored observations in the middle of 

the interval. In conclusion, formula (7.7) provides the most useful way of identifying influential 

points based on the EM algorithm with the one-step deletion method.  
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CHAPTER 8. SIMULATION STUDIES  

8.1. Introduction 

In this chapter a number of simulation studies were performed in order to assess the 

performance of right censored regression using the EM algorithm with application in actuarial 

science and insurance. Insurance data typically carry incomplete information. For example, if 

property losses are capped by their respective policy limits, then the sample data is right 

censored.  Auto policies include liability limits, which is the maximum amount paid by the 

insurance company in case of a liability loss. Some health insurance policies are capped based on 

the type of coverage provided by the insurance company. Limits on insurance policies can vary 

from company to company, by line of business, type of policy, characteristics of the 

policyholder, etc. 

The most important objective in the pricing of insurance products is to find the best 

model to fit the loss distribution in the presence of rating variables. For example, fire property 

losses are related to several rating variables such as building code, type of siding, location of the 

property, distance from the closest fire station, etc.  Most of the methodologies for fitting the loss 

distribution in non-life insurance are based on grouped data which requires grouping losses by 

loss size. This approach is different than the proposed method. Ideally, an insurance company 

would like to determine prices on an individual basis using losses that are not grouped. In this 

case a right censored regression model can be used to link losses to a set of rating variables used 

in pricing.  The objective of the following simulation studies is to help a pricing actuary evaluate 

the performance of the EM algorithm under different assumptions.        
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8.2. Performance of the EM Algorithm 

The first simulation study was carried out to assess the performance of the EM algorithm 

for different amounts of censoring and different error assumptions. Since the EM algorithm is 

based on the assumption of normally distributed errors, the results are compared to those 

generated by the BJ algorithm which does not specify the type of error distribution to be used.    

Data were simulated from the linear regression model: 

	 	 	 ,  

with 1	 and 2. 

The independent variable was designed such that   , 1, 2, … . . ,	 where 	is the sample 

size. Different simulation settings were created by manipulating the sample size ( 150, 60), 

the percentage of points censored (10%, 30%, 50%), and the random distribution of the error 

terms (N(0, 0.182), U(-0.5,0.5), Exp(1)-1). Once the data were generated, censored points were 

selected at random on the entire interval. Their values were compared to a censoring level 

randomly drawn from U (1, 3). If a value of a selected data point was above the censoring level, 

it was trimmed at the censoring level, otherwise it remained uncensored. This procedure was 

repeated until the desired censoring level was achieved. The results of the 150 runs for each 

setting of simulation are summarized in Table 8.1, which shows the average parameter estimates 

and their corresponding mean square errors (MSE) from both the EM and BJ algorithms.    

Overall the results of the EM algorithm are consistent with those produced by the BJ 

algorithm even when the distributional assumptions are violated. In general, the observed MSEs 

are similar for the EM and BJ algorithms. Both algorithms perform best when the errors are 
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normally distributed, as illustrated by the small bias and MSE for all censoring levels and sample 

sizes.  

Table 8.1. Simulation Summary of EM and BJ Algorithms 

Parameter 
Error  

Distribution 

Sample
Size 

 

Censoring
(%) 

EM 
  

BJ 
  

 

N(0, 0.182) 

150 
10 0.9993 (0.0007) 0.9993 (0.0007) 
30 1.0019 (0.0012) 1.0018 (0.0012) 
50 0.9994 (0.0010) 0.9989 (0.0010) 

60 
10 0.9906 (0.0020) 0.9904 (0.0020) 
30 1.0036 (0.0026) 1.0035 (0.0026) 
50 0.9932 (0.0029) 0.9917 (0.0029) 

 

150 
10 1.9970 (0.0025) 1.9970 (0.0025) 
30 2.0090 (0.0049) 2.0093 (0.0049) 
50 2.0173 (0.0048) 2.0184 (0.0049) 

60 
10 2.0150 (0.0071) 2.0155 (0.0071) 
30 1.9974 (0.0090) 1.9976 (0.0091) 
50 2.0304 (0.0123) 2.0343 (0.0126) 

 

U(-0.5, 0.5) 

150 
10 1.0056 (0.0023) 1.0057 (0.0023) 
30 0.9990 (0.0026) 0.9993 (0.0026) 
50 0.9929 (0.0036) 0.9929 (0.0036) 

60 
10 0.9913 (0.0055) 0.9912 (0.0055) 
30 1.0022 (0.0057) 1.0024 (0.0057) 
50 1.0041 (0.0080) 1.0036 (0.0079) 

 

150 
10 1.9905 (0.0073) 1.9906 (0.0073) 
30 2.0110 (0.0086) 2.0117 (0.0086) 
50 2.0553 (0.0169) 2.0574 (0.0176) 

60 
10 2.0094 (0.0145) 2.0098 (0.0146) 
30 2.0083 (0.0199) 2.0087 (0.0203) 
50 2.0511 (0.0319) 2.0533 (0.0325) 

 

Exp(1) - 1 

150 
10 0.9823 (0.0275) 1.0027 (0.0286) 
30 0.9488 (0.0334) 1.0147 (0.0383) 
50 0.8830 (0.0408) 1.0602 (0.0564) 

60 
10 0.9807 (0.0542) 1.0015 (0.0573) 
30 0.9724 (0.0504) 1.0208 ( 0.0581) 
50 0.8418 (0.0954) 0.9478 (0.1098) 

 

150 
10 2.0217 (0.0798) 2.0028 ( 0.0812) 
30 2.0949 (0.0939) 2.0852 (0.1058) 
50 2.4651 (0.3133) 2.4899 (0.3615) 

60 
10 2.0270 (0.1582) 2.0117 (0.1639) 
30 2.0853 (0.1420) 2.0844 (0.1570) 
50 2.5147 (0.5209) 2.5406 (0.5925) 
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Additionally, both algorithms perform better with the large sample size than with the 

small sample size. Based on the censoring level, the algorithms perform better when a small 

percentage of the data are censored; higher censoring level increases the bias and MSE. In the 

case of uniformly distributed errors, the performances of the EM and BJ algorithms are 

comparable to that of a normal model when the sample size is large. Settings in which the errors 

are exponentially distributed show the worst performance for both EM and BJ algorithms, 

especially when the sample size is small and the censoring level is high.   This is partly due to  

being much higher for these simulations than the normal or uniform simulations. 

   

      Figure 8.1. Box Plots of Parameter Estimates Produced by EM and BJ Algorithms for  

            Different Sample Sizes and Censoring Levels in the Normal Model  
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It does not take a large number of simulations to verify the robustness of the EM 

algorithm and its good performance in the case of right censored regression for different models, 

sample sizes, and censoring amounts. Figure 8.2 shows box plots of the parameter estimates 

produced by the EM and BJ algorithms constructed side by side for different sample sizes and 

censoring levels assuming normally distributed errors.    

Because of the similar performances of the EM and BJ algorithms in the estimation of the 

parameters, even when the assumptions underlying the EM algorithm are violated, we will use 

only the EM algorithm with normally distributed errors in the further simulation studies.   

8.3. Sensitivity Analysis for Reconstructed R-squared 

Several simulations were performed to evaluate the sensitivity of R-squared and 

reconstructed R-squared under different simulation settings.  Three different scenarios were 

considered in regard to the location of the censoring points relative to the fitted line: censored 

points fall above and below the line, all censored points fall above the line, and all censored 

points fall below the line.  

Data were simulated from the linear regression model: 

	 	 	 ,  

with 1	 and 2. 

The independent variable was designed such that   , 1, 2, … . . ,	 where 	is the sample 

size. Different simulation settings were created by manipulating the sample size ( 150, 60), 
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the percentage of points censored (10%, 20%, 30%), and the random distribution of the error 

terms (N(0, 0.182), N(0, 0.5)). The censoring levels were modified from the first simulation 

study to accommodate distribution of points above and below the line (e.g. there is no guaranty 

that 50% of the generated data is located below the line).   

Table 8.2. Summary of R-squares using N(0, 0.182) 
Location 

of 
Censored 

Points 

Sample
Size 

 

Censoring 
(%) 

R2   
∆ 	

 

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 91.04% 75.41% 91.07% (0.2762, -0.3629) 
20 91.12% 63.42% 91.11% (0.2408, -0.5040) 
30 90.97% 54.35% 90.98% (0.2132, -0.5616) 

60 
10 91.21% 76.36% 91.23% (0.2801, -0.4063) 
20 91.19% 63.82% 91.19% (0.2838, -0.4409) 
30 90.96% 54.30% 91.07% (0.2323, -0.5451) 

ab
ov

e 
th

e 
li

n
e 

150 
10 91.04% 91.87% 90.97% (0.3332, -0.3416) 
20 90.93% 92.71% 90.67% (0.3119, -0.3524) 
30 91.03% 93.56% 89.94% (0.3118, -0.3592) 

60 
10 91.14% 91.92% 91.04% (0.3299, -0.3400) 
20 91.15% 92.83% 90.79% (0.3244, -0.3531) 
30 91.23% 93.67% 90.16% (0.3227, -0.3682) 

b
el

ow
 t

h
e 

li
n

e 

150 
10 91.00% 80.47% 91.17% (0.3025, -0.3300) 
20 91.20% 72.37% 91.64% (0.2617, -0.3992) 
30 90.95% 63.93% 92.21% (0.2313, -0.4625) 

60 
10 91.14% 80.73% 91.27% (0.2731, -0.4286) 
20 91.15% 72.14% 91.51% (0.2889, -0.4058) 
30 90.99% 63.93% 92.29% (0.2006, -0.4756) 

 

The results of the 150 runs for each setting of simulation are summarized in Tables 8.2 

and 8.3, which show average R-squared based on the original data (R2), the average R-squared 

after censoring (R  ) treating censored values as uncensored, the average reconstructed R-

squared (R 1 ) calculated using equation (7.1), and the average relative changes in the 

parameter estimates before and after the EM algorithm was run. 
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When the censored points are located below the fitted line, their reconstructed values are 

very close to the fitted line. The similarities of R2 and R 1  show that the EM performs well 

in retrieving the original information in the data. The EM algorithm estimates the reconstructed 

value of a censored point as a conditional expectation given the point is above a censoring level. 

Suppose the censoring level is negative infinity. Then the conditional expectation is the same as 

unconditional expectation and the reconstructed value is the mean value.  

 Table 8.3. Summary of R-square using N(0, 0.5)  
Location 

of 
Censored 

Points 

Sample
Size 

 

Censoring
(%) 

R2   
∆ 	

 

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 57.72% 49.81% 57.86% (0.3397, -0.4365) 
20 57.24% 42.51% 57.54% (0.2697, -0.5320) 
30 56.61% 36.82% 56.93% (0.2455, -0.6254) 

60 
10 58.32% 50.78% 58.32% (0.2716, -0.3516) 
20 57.94% 43.92% 58.34% (0.3353, -0.5078) 
30 57.13% 37.96% 57.14% (0.1373, -0.7103) 

ab
ov

e 
th

e 
li

n
e 

150 
10 57.15% 58.99% 57.07% (0.3305, -0.3434) 
20 57.89% 62.48% 57.37% (0.3357, -0.4226) 
30 57.88% 65.58% 56.18% (0.2719, -0.4547) 

60 
10 57.55% 59.46% 57.41% (0.3671, -0.3610) 
20 58.22% 62.62% 57.63% (0.3619, -0.3554) 
30 58.29% 65.31% 55.82% (0.3213, -0.2982) 

b
el

ow
 t

h
e 

li
n

e 

150 
10 57.45% 53.09% 57.65% (0.2289, -0.3189) 
20 57.86% 49.98% 58.71% (0.2203, -0.3294) 
30 56.96% 44.41% 59.93% (0.0429, -0.3610) 

60 
10 58.29% 54.73% 58.95% (0.2729, -0.4019) 
20 57.99% 50.53% 59.26% (0.2614, -0.2409) 
30 57.95% 45.80% 61.67% (0.1729, -0.5699) 

 

This can also be observed from equation (5.2). If the censoring level is negative infinity 

the second term in the equation (5.2) goes to zero resulting in the conditional expectation being 

equal to its unconditional expectation or the mean. If the censoring level is low but larger than 

negative infinity, then the conditional expectation will be little bit bigger than the unconditional 
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expectation, but the reconstructed value will still end up being calculated approximately close to 

the average values and as such will be placed very close to the fitted line. 

When the censored points are located above the line their reconstructed values are even 

higher. The R 1  results are very similar to the original R2 results. Thus the EM performs 

very well in retrieving the original information in the data.  

In cases where the censored points fall both above and below the line and when the 

censored points fall only below the line, R 1  is similar to the original R2. A higher level of 

censoring combined with increased variability decreases R 	 and R 1 , resulting in a poorer 

model fit in general. Missing information in the censored data recovered by the EM algorithm 

adds credibility to the modeling compared to the modeling when censoring is ignored.  

 It is also observed that the reconstructed values for the censoring points change the 

parameter estimates in such a way that the line rotates slightly from the fitted line of full data 

resulting in an increase in slope and a decrease in the intercept.  On average, censoring impacts 

the slope coefficient more than the intercept coefficient. The estimated slope will increase when 

a higher level of censoring is present in the data. This is impacted by the reconstructed values of 

the censored observations being always at or above the censoring level.    

The importance of these findings is significant in insurance applications involving pricing 

based on the fitting loss models through the individual data.  Censoring in insurance will depend 

on the type of policy and coverage provided to the policyholder. For example, limits on 

“Jewelry” coverage may be $2,500, $5,000, or $10,000 which is relatively low compared to 

“Homeowner’s” policy limits in the range of $100,000-$500,000. However, this is relatively 
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lower than “Medical Liability” limits that can go from $1-$5 million. Thus censoring relative to 

the fitted line can occur with any of the three scenarios presented earlier.       

Overall, we conclude that the EM algorithm generally restores the R-squared value well 

when all censored values fall below the line or censored values fall both below and above the 

line for censoring level up to 30%. Thus, R 1 , which is the same as R 	proposed by 

formula (7.1), can be used as a valuable tool in model validation.  

8.4. Outlier Detection via EM Algorithm 

Several simulations were run in order to assess to what extent the EM algorithm is 

capable of detecting outliers.  Three different scenarios were considered in regard to location of 

the censoring points relative to the fitted line: censored points fall above and below the line, all 

censored points fall above the line, and all censored points fall below the line.  

Data were simulated from the linear regression model: 

	 	 	 ,  

with 1	 and 2. 

The independent variable was designed such that   , 1, 2, … . . ,	 where 	is the sample 

size. Different simulation settings were created by manipulating the sample size ( 150, 60), 

the percentage of points censored (10%, 20%, 30%), and the random distribution of the error 

terms (N(0, 0.182), N(0, 0.5)). 

Once the data was generated, 4 and 2 artificial uncensored outliers are added to the data 

with sample sizes 150 and 60, respectively. These outliers were chosen randomly along the 
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interval and had values between 4 and 6 standard deviations from the fitted line.  At this point 

the total number of outliers was counted, where an observation was to be an outlier if its value 

was larger than 2 standard deviations from the fitted line. Next, the censoring was applied. 

Censored points were selected at random (excluding the artificial outliers) above and below the 

line on the entire interval. Their values were compared to the censoring level randomly drown 

from U (1, 3). If a value of a selected data point was above the censoring level, it was trimmed at 

the censoring level, otherwise it remained uncensored. This procedure continued until the desired 

censoring level was achieved. A similar trimming approach was considered when censored 

points fell above the line or when censored points fell below the line. The EM algorithm was run, 

and the formulas proposed in Section 7.2 were used to determine which observations were 

outliers. The number of outliers detected was then recorded. The total number of outliers over all 

150 runs for each setting of simulation is summarized in Tables 8.4 and 8.5.  The number of 

observations declared to be outliers was counted (before censoring), after censoring, and after the 

EM algorithm was run. These counts correspond to the last three columns (A, B, and C) of 

Tables 8.4 and 8.5. Generally, the EM algorithm returned an outlier count similar to that 

generated with the original data, which confirms a good performance of the EM algorithm in 

outlier detection using the proposed formulas from Chapter 7.  All artificial outliers were 

recognized in each simulation. This is not surprising considering that their location is far from 

the fitted line.  

When censored observations were above the line, the observed relationship for columns 

A, B, and C based on the outlier count is such that B	 ⊂ A	 ⊂ C. Column C has a higher number 

compared to column A due to the few censored observations that became outliers after their 
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reconstructed values were estimated. Generally, if the censored points were below the line, the 

observed relationship for columns A, B, and C is such that 	 ⊂ C	 ⊂ B. 

      Table 8.4. Summary of Outlier Detection Based on N(0, 0.182) when Artificial Outliers  
      are Uncensored Observations    

Location 
of 

Censored 
Points 

Sample 
Size 

 

Censoring
(%) 

No. Outliers 
in the 

Beginning 
(A) 

  

No. Outliers 
After 

Trimming 
(B) 

No. Outliers 
From EM 

(C)  

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 607 616 611 
20 605 633 608 
30 607 645 609 

60 
10 302 318 305 
20 300 320 302 
30 302 341 308 

ab
ov

e 
th

e 
li

n
e 

150 
10 607 597 608 
20 603 590 603 
30 604 587 604 

60 
10 301 296 305 
20 303 278 305 
30 302 283 303 

b
el

ow
 t

h
e 

li
n

e 

150 
10 608 693 607 
20 609 755 605 
30 608 727 606 

60 
10 300 315 300 
20 301 316 302 
30 300 311 300 

 
 
 
 

Some censored points below the line were reported as outliers with the original data, but 

their reconstructed values were on the fitted line so they were not counted as outliers in the final 

count.  Column B has a higher count than column A due to the trimming of censored 

observations which values will fall lower than their actual values.   
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     Table 8.5. Summary of Outlier Detection Based on N(0, 0.5) when Artificial Outliers are  
     Uncensored Observations 

Location 
of 

Censored 
Points 

Sample 
Size 

 

Censoring 
(%) 

No. Outliers 
Before 

Trimming 
(A) 

No. Outliers 
After 

Trimming 
(B) 

No. Outliers 
From EM 

(C) 

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 603 627 615 
20 604 668 613 
30 608 681 612 

60 
10 301 323 305 
20 301 337 302 
30 302 341 306 

ab
ov

e 
th

e 
li

n
e 

150 
10 610 603 614 
20 604 607 606 
30 602 600 608 

60 
10 300 297 301 
20 302 291 302 
30 302 300 302 

b
el

ow
 t

h
e 

li
n

e 

150 
10 611 701 612 
20 611 735 610 
30 604 741 604 

60 
10 302 311 303 
20 303 313 303 
30 301 310 301 

        
 

Additional simulations were performed with assumptions that the artificial outliers 

represent censored observations within 4 to 6 standard deviations above the fitted line. Adding 

censored outliers below the fitted line does not make sense considering that the EM algorithm 

would calculate their reconstructed values to be close to the line and they would not be identified 

or counted as outliers. The results of these simulations are summarized in Tables 8.6 and 8.7 for 

each simulation setting. Again, all artificial outliers were detected which confirms that the 

performance of the EM algorithm is consistent with the previous findings.  
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     Table 8.6. Summary of Outlier Detection Based on N(0, 0.182) when Artificial Outliers are  
     Censored Observations 

Location 
of 

Censored 
Points 

Sample 
Size 

 

Censoring 
(%) 

No. Outliers 
Before 

Trimming 
(A) 

No. Outliers 
After 

Trimming 
(B) 

No. Outliers 
From EM 

(C) 

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 610 617 610 
20 611 639 612 
30 605 640 606 

60 
10 300 310 300 
20 300 315 301 
30 300 323 300 

ab
ov

e 
th

e 
li

n
e 

150 
10 605 597 605 
20 609 591 610 
30 610 601 610 

60 
10 300 285 300 
20 302 288 302 
30 300 293 300 

b
el

ow
 t

h
e 

li
n

e 

150 
10 604 697 604 
20 605 736 605 
30 607 740 607 

60 
10 301 317 302 
20 301 325 302 
30 300 330 300 
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  Table 8.7. Summary of Outlier Detection Based on N(0, 0.5) when Artificial Outliers are  
  Censored Observations 

Location of 
Censored 

Points 

Sample 
Size 

 

Censoring 
(%) 

No. Outliers 
Before 

Trimming 
(A) 

No. Outliers 
After 

Trimming 
(B) 

No. Outliers 
From EM 

(C) 

ab
ov

e 
an

d
 

b
el

ow
 t

h
e 

li
n

e 

150 
10 609 619 609 
20 609 636 610 
30 607 645 611 

60 
10 300 311 302 
20 301 323 301 
30 302 342 304 

ab
ov

e 
th

e 
li

n
e 

150 
10 609 600 609 
20 609 601 610 
30 610 600 611 

60 
10 310 300 310 
20 309 301 311 
30 302 297 302 

b
el

ow
 t

h
e 

li
n

e 

150 
10 607 639 609 
20 609 641 609 
30 608 657 608 

60 
10 300 310 300 
20 301 313 301 
30 300 325 300 

         
 

8.5. Influence Diagnostic: One-step Deletion Method via EM Algorithm 

In order to validate the formula (7.7) for assessing the influence of individual 

observations on the parameter estimates, several simulations were performed.  This section 

presents the summary of these results. Simulations were designed as follows. 

Data were simulated from the linear regression model: 

	 	 	 ,  

with 1	 and 2. 
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The independent variable was designed such that   , 1, 2, … . . ,	 where 	is the sample 

size. Different simulation settings were created by manipulating the sample size ( 150, 60), 

the percentage of points censored (10%, 20%, 30%), and the random distribution of the error 

terms N(0, 0.182). 

Censored points were selected at random (excluding the influential points) above and 

below the line on the entire interval. Their values were compared to the censoring level randomly 

drown from U (1, 3). If the value of a selected data point was above the censoring level, it was 

trimmed at the censoring level, otherwise it remained uncensored. This procedure was repeated 

until the desired censoring level was achieved. This random censoring resulted in censored 

points being above and below the fitted line. Now, two scenarios were implemented in order to 

quantify the influence based on the one-step deletion method: 

(1) The magnitude of influence for each individual observation was calculated based on 

the data generated with the stated assumptions above 

(2) The magnitude of influence for each individual observation was calculated after two 

influential observations were created in the same data set in (1).      

Two influential observations in (2) were randomly selected across the entire interval and their 

values were randomly generated from U(5, 15) to replace the values of the original observations.  

The estimates for each component of the parameter vector were compared before and after two 

influential observations were created in the data.  Figure 8.2 shows a snapshot of one simulation 

with 60 observations and 10% censoring using N(0, 0.182) as the distribution of the error terms. 

The magnitude of the influences before influential observations were added is relatively small 

for each observation (graphs in the first column of Figure 8.2).  After adding two influential 
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observations, their influences stand out compared to all other observations in the sample (graphs 

in the second column of Figure 8.2).  

 

Figure 8.2. Influence Diagnostics: One Simulation Run With 60 Observations and 10%  

Censoring Using N(0, 0.182)  

 

The two influential observations have a large influence on both the intercept and slope of 

the model compared to the other observations and are easily detected by visual inspection. A 

summary of all simulation runs for each setting is shown in Figure 8.3. Side-by-side box plots for 

each simulation setting are displayed for each parameter under two different scenarios using  

N(0, 0.182) as the distribution of the error terms. Data used to construct the box plots represent 

the influences from all observations over 150 runs for each simulation setting.   
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Figure 8.3. Summary of Influence Diagnostics by Simulation Setting for N(0, 0.182)  

 

The box plots that were constructed using data without influential points reflect slightly 

skewed distributions with a longer right whisker and many outliers. The length of the right 

whisker depends on the censoring level and sample size. A higher percentage of censoring 

combined with a larger sample size results in a larger number of outliers. These distributions 

have small variance compared to data set without influential points as the width of boxes are 

very small (difference between upper and lower quartile) for all simulation settings. The box 

plots that were constructed using two influential points are severely skewed right with extremely 
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long right whiskers compared to the distributions developed for data sets without influential 

points.   

Clearly, two different types of distributions are observable when influence diagnostics is 

measured between the two scenarios: data without influential points and data with influential 

points.  These results confirm that the one-step deletion formula (7.7) based on the EM algorithm 

works and it is capable of identifying and quantifying influential points in a data set.       
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CHAPTER 9. APPLICATION TO ND DVA DATA  

9.1. Introduction 

There were 22.5 million living veterans in the United States as of 2010, representing 

7.3% of the total population. Veterans are eligible for a number of federal and state benefit 

programs and services offered by the Department of Veterans Affairs (DVA).  According to the 

U.S. Census Bureau, the uninsured rate of veterans decreased from 7.6% in 2000 to 7.2% in 

2009.  As federal and state medical health benefits are available to eligible veterans, the number 

of veterans 18 years and older using these programs increased from 50% in 2000 to 60% in 2009. 

The availability of these programs is critical for veterans who live below poverty level.   Poverty 

rate among veterans, defined as income below 100% of poverty threshold, has increased over the 

past decade, and it was reported at 6.3% in 2009 compared to 5% in 2000.  The Bureau of Labor 

Statistics reported that in 2007, 11.8% of North Dakota’s population was living below the 

poverty level. The national average for the same period was 13%. Considering all of this, a 

researcher might want to answer the question “What are the health benefit needs of the veterans’ 

population in North Dakota”? 

State benefit programs for veterans vary from state to state. In the state of North Dakota, 

ND DVA, working under the supervision of the Administrative Committee of Veterans Affairs 

(ACOVA), administers various state benefit programs available to low income veterans and their 

families. The Hardship Grants Program provides aid to veterans for unmet medical needs and 

encompasses medical benefits for the following categories: dental, denture, hearing, optical, and 

special. The cost of this program is underwritten by the Veterans Post War Trust Fund 

(VPWTF). The State Treasurer is the trustee of this fund, as provided for in the state constitution. 
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This fund relies on its investments in the financial market in order to grow and generate annual 

income for use in grant programs that will benefit veterans.  The ND DVA is responsible for the 

administration of these programs.  The policy and guidelines of these programs are set by the 

ACOVA whose board is made up of veterans. In order to prudently manage the fund and budget 

Hardship Grants Program, it is important to evaluate the medical benefit needs of veterans in 

North Dakota so that appropriate decisions are made at the state level to generate sufficient funds 

to pay eligible veterans and their families in future years.  This study provides statistical models 

and tools which can be applied in the financial assessment of the medical benefit needs for 

veterans in North Dakota and may be used in any other U. S. state where similar programs exist. 

Government and policy makers may also be interested in this study as they want to make 

decisions and provide sound investments for future public policies.     

9.2. Data Set 

Data used in this study were provided by ND DVA. Typically, categories of health 

benefits available to veterans are capped (right censored) or limited at certain level.   The 

censoring points change over time, as they are subject to review and state approval, and they may 

vary across different categories.  For any claim, if the expense exceeds the amount granted, it 

will be reimbursed at the value of granted amount.   

Medical grants are subject to a limit and the annual amount of benefits is capped (right 

censored).  The data provided consist of payment amounts granted to each applicant for years 

2000 through 2010.  Table 9.1 shows the variables provided and their descriptions. 
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Table 9.1. Summary of ND DVA Data  
Variable Description 
VoucherDate Day/Month/Year when the benefit payment is made 

Gender Male (0) or Female (1) 
ApplicationDate Day/Month/Year when the application was filed 
ApprovedDate Day/Month/Year when the application was approved 
BirthDate Birth date of each applicant 
AmountGranted Amount approved by the grant program    
Category Category of benefits (dental, denture, hearing, optical, and special)  
ApplicantTB Applicant’s unique non-identifiable ID  
MonthlyIncome Applicant’s income per month 
Status Status of a person receiving benefits (v- primary beneficiary 

(veteran), vs- spouse of a living veteran and w- widow/widower). 
These are codded as: 000-veteran; 010- spouse; 001- widow/er. 

NoDependants Family size including applicant (seven levels: 1, 2, 3, 4, 5, 6, and 7)  
AmountPaid Benefit amount paid 
ZipCode 5-digit postal code of the applicant address 
County County code of the applicant address 
CountyName County name of the applicant address 

 

About half of the variables listed above were of interest to our project. The difference 

between application year and birth year was used to determine the applicant’s age. Year when 

the application was approved was extracted from the approved date.  An applicant is given only 

90 days to use the grant. In this case approved date and voucher date are only three months apart, 

and the data are available only for those applicants who actually used the grants. Dates for others 

who have not managed to use the grant were provided as cancellations and were ignored in this 

study.  The amount of money granted as well as the amount of money given from 2000 to 2010 

by ND DVA is adjusted for inflation using the Consumer Price Index (CPI) published by the 

Bureau of Labor Statistics, U.S. Department of Labor.     

Historically, benefit categories carry different benefit caps (limits) on an annual basis.  

Dental benefits started with a $500 cap as of 12/2004, then increased to $750 as of 1/2006, and 

finally reached $1000 as of 11/2007.  Dental services sometime require more than one 



57 
 

appointment; in this case applicants receive several payments during the year. Therefore, the data 

for dental category were aggregated by year and applicant.   The data for dentures, hearing, 

optical, and special categories of benefits were excluded since they contained significantly lower 

number of records and as such they may not be reliable.  

The ND DVA uses monthly income level and family size to determine if an applicant 

meets benefit eligibility criteria.  Each income level corresponds to a certain family size. For 

example, a family of two earning less than $1400 per month, or a family of eight earning less 

than $2600 per month, would be eligible for benefits.  Many records were missing family size 

but had income level provided. For this reason, we used income level only and ignored family 

size as these two variables seem to be correlated. 

Dental records show that the applicants’ age vary from 24 to 94 with 84% of the 

individuals being older than 50.  Men represent 287 applicants compared to 81 women. Based on 

status, 26 applicants are spouses of living veterans and 33 applicants are widows or widowers of 

veterans. Living veterans represent 309 individuals or 84% of the sample.   It is observed that 34 

individuals or 9.2% of the sample reported zero income. The highest income reported is $2600 

per month for a large family. Thus, most of these people live below the poverty level.  The 

poverty guidelines are issued each year in the Federal Register by the Department of Health and 

Human Services (HHS). The 2008 income threshold by family size, reported by HHS, for the 48 

contiguous states is summarized in Table 9.2.    

Table 9.2. Department of Human Services –Poverty Guidelines  
Household Size 1 2 3 4 5 6 7 
Annual Income 

Level $10,400 $14,000 $17,600 $21,200 $24,800 $28,400 $32,000 
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North Dakota had 11.8% of its total population living below the poverty level in 2007 

compared to the national average of 13% reported for the same period. Poverty guidelines 

determined by ACOVA on the basis of national statistics are reported in Table 9.3.  

Table 9.3. Eligibility Requirements Set by ACOVA  
Household Size 1 2 3 4 5 6 7 

Annual Income  
Level 

$14,400 $16,800 $19,200 $21,600 $25,200 $28,800 $31,200

 

There were 575 annual aggregate applications for dental benefits used by 368 different 

individuals for years 2000-2010. We identified 274 (48%) applications with a paid amount in 

benefits equal to or higher than the amount granted.  These policies represent right censored data. 

For uncensored data records, paid amount in benefits was greater than zero and less that the 

defined limit (cap or censoring point).  

Finally, the following variables were selected for inclusion in the modeling of dental 

benefits:  year, age, gender, amount granted adjusted for inflation, censored amount adjusted for 

inflation, income level, and applicant’s status.   Application year, age, gender, income level, and 

applicant’s status represented explanatory variables while the amount paid (adjusted for 

inflation) was used as a response variable in the model.   

9.3 Analysis 

The EM and BJ algorithms were applied to illustrate the modeling of veterans’ health 

benefits with a special focus at dental on the benefit category.  First, the right censored 

regression model was considered with all explanatory variables. That is: 
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																																												 	 	 	  .                     (9.1) 

The EM algorithm, employed in modeling parameter estimates and variability assessments, 

indicated that gender, age, income level, and spouse were not significant predictors of the paid 

benefits. Application year and widow /er were significant predictors with the possibility of 

application year entering the model as a quadratic term.  The parameter estimates (and their 

significance) of this model are shown in Table 9.4.   

Table 9.4. Parameter Estimates for the Full EM Model. * Indicates  0.05 significance. 
EM_Parameters  EM_Estimates EM_95% CI EM_p-value 

Intercept 
Application year 

Age 
Gender 

Income Level 
Spouse 

Widower 

 329.60 
   58.37 
  -0.31 
   88.19 
     0.05 
  -54.12 
 -157.45 

 

(116.36, 542.83) 
(42.66, 74.07) 
(-3.30, 2.68) 

(-34.30, 210.69) 
(-0.03, 0.14) 

(-223.15, 114.91) 
(-328.90, 13.99) 

 

   0.0024* 
   0.0000* 
 0.8391 
 0.1582 
 0.2422 
 0.5303 
 0.0718 

 
               

Paid benefit amount is plotted against application year for the simple linear and quadratic 

models in Figure 9.1.  Bold black points represent censored observations. For both the simple 

and quadratic models, dotted lines show the fitted trend ignoring the information from the 

censored observations. Bold dark lines are created from the estimated fits produced by the EM 

algorithm. A curvature trend is obvious in the data. Dotted lines show the trend based on the 

actual data.    As expected, right censored observations will shift the trend upward due to the 

inclusion of the estimated values from the missing information.  Thus the difference between the 

two lines on the same graph represents the amount of missing information due to right censoring, 

estimated via EM algorithm.    
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           Figure 9.1. Trend in Paid Benefit Amount by Application Year   

 

In subsequent model selections, five additional models were examined. A summary of the 

log likelihood values, AIC, and BIC results for these models are shown in Table 9.5.  The 

minimum values of AIC and BIC are reported for Model-6, which is proposed to be the best 

model.  

 Parameter estimates for Model-6 with their confidence intervals and corresponding p-

values are summarized in Table 9.6. If we consider the same portfolio of applicants, the total 

dental benefit needs of ND veterans for the period 2003-2009, calculated based on the EM 

algorithm, was $407,562 compared to the amount of $333,472 actually spent. The difference of 

$74,090 can be used to help ACOVA increase the cap on benefits in the future and suggest to the 

State Treasurer that additional investments were needed in funding this grant program.  
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 Table 9.5. Summary of Different Criteria Used in the EM Model Selection 

 Model Log-likelihood AIC BIC 
Model-1 
Model-2 
Model-3 
Model-4 
Model-5 
Model-6 

-2126.44 
-2128.37 
-2129.39 
-2128.18 
-2129.14 
-2126.92 

4268.88 
4264.74 
4264.78 
4264.37 
4264.28 
4222.08 

4303.72 
4282.16 
4277.84 
4281.78 
4277.35 
4243.85 

 Model-1:  Full Model equation (9.1) 
 Model-2: 	 	  +	  
 Model-3: 	 	 	  
 Model-4: 	 	 	 	  
 Model-5:	 	 	 	  
 Model-6: 	 	 	 	  

  Model-6 suggests that gender is a non-significant variable. According to this model, 

widowers generate $143.42 less in benefit payments on average compared to a living veteran or a 

spouse of a living veteran. On average, female applicants require $71 more in benefits compared 

to a male applicant. While there is a larger proportion of a male veterans compared to female 

veterans or dependents, it seems that females are using benefits more than males. Benefits are 

also a function of money that is available in the state budget for that purpose. When more money 

is available in state budgets more needy veterans will potentially benefit. 

Table 9.6. Parameter Estimates for the EM Model-6. * Indicates  0.05 significance. 
 	 _Parameters  EM_Estimates EM_ 95% CI EM_ p-value 

Intercept 
(Application year)2 

Gender 
Widower 

522.45 
    4.41 
  71.00 
-143.42 

(457.54, 587.36) 
( 3.25,  5.58) 

(-23.25, 165.26) 
(-286.90, 0.05) 

    0.0000* 
    0.0000* 
  0.1300 

    0.0500* 
  

The data show that in more recent years, a higher amount of money was available for 

spending even when the benefits are adjusted for inflation.   The intercept coefficient provides us 

with a fixed cost per person for running this program. In other words, the ND DVA paid, based 
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on Model-6, an amount of about $522.45 per applicant/ per year irrespective of the number of 

applicants and their characteristics. We observe that income level is an insignificant predictor of 

benefits used. If the overall veteran population was considered in the analysis, one might expect 

that the lower income veterans are the most likely to use the benefits.  However, most veterans 

eligible for benefits have income below the 100% poverty threshold. Hence the income level is 

very low and it does not segregate people further into subgroups.  Age is another insignificant 

variable in Model-6 suggesting that benefits are used across all age groups 23-94.  This analysis 

helps our understanding of what are the determinants of the distribution of the available benefit 

funds.  It also helps us determine the total benefit need of the veteran population in ND.  

The reconstructed coefficient of determination for Model-6 is 10.75%, lower than the 

coefficient of determination of 25.74% for the same model when censoring is ignored.  The 

overall fit is poor but this is due to the large variability observed in the data set and the large  

proportion of censored points being above the fitted line. However, the results are in line with the 

findings obtained from the simulation study in Chapter 8.  In addition, the reconstructed values 

for the censored observations can be used to validate the reasonability of the existing benefit 

caps. Based on the selected model, one can obtain more information about the average amount of 

expenses in excess of the existing cap.   

The EM results above were benchmarked using the BJ method.  Even though an R-

library for Buckley-James estimation is available in R with BJ functions, an independent R-code 

was built in R (Appendix) and the results were compared to those generated by the commercially 

available R-functions.  The differences in the results between independent programing and 

automated R-functions were found to be negligible. Model selection based on the R-squared 

formula equation (6.3) is consistent with the results of the EM algorithm above in a sense that 
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Model-6 is selected to be the best fitting model. The R-squared for Model-6 is 23.02%. Gender 

and widow/er have p-values very close to 5% , so they are considered significant predictors.   

 Table 9.7. Parameter Estimates for the Full BJ Model. * Indicates  0.05 significance. 
 BJ_Parameters  BJ_Estimates BJ_95% CI BJ_p-value 

Intercept 
Application year 

Age 
Gender 

Income Level 
Spouse 

Widower 

318.37  
 57.20    
 -0.44 

        91.01 
          0.06 
       -55.90 
     -158.60 

(235.76, 400.97) 
(50.82, 63.58) 
(-1.60, 0.72) 

(37.42, 144.59) 
(0.02, 0.095) 

(-124.72, 12.93) 
(-227.29, -89.91)       

 0.0001* 
 0.0000* 
0.7009 
0.0894 
0.0889 
0.4167 

  0.0209*    
 

Table 9.8. Parameter Estimates for the BJ Model-6. * Indicates  0.05 significance. 
 BJ_Parameters BJ_Estimates BJ_95% CI BJ_p-value 

Intercept 
Application year 

Gender 
Widower 

  342.05 
   56.38 
   73.59 
-151.77 

(300.49, 383.61) 
 (50.09, 62.66) 

  (35.41, 111.77) 
(-205.05, -98.49) 

 0.0000* 
 0.0000* 

              0.0507  
              0.0537   

  

We observe that the Buckley-James variance estimate produces smaller values compared 

to those generated by the EM algorithm. The Buckley-James variance estimate accounts for 

uncensored observations only, while the EM algorithm approach is based on the likelihood of 

both uncensored and censored observations. Parameter estimates produced by the BJ model are 

somewhat smaller than those produced by the EM model. Also application year did not enter this 

model as a quadratic term. Thus from a policy maker’s prospective, the EM model is more 

conservative and it should be the preferred choice between these two models.  

9.4. Application of the New Influence and Diagnostics Tools 

Formulas proposed in Chapter 7 were applied in order to identify outliers in the data and 

analyze the influence diagnostics on the parameter estimates. Six uncensored outliers (1% of the 

total number of observations) were found in the data. These outliers had t-values above the 
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critical value of 1.96 used for their detection. After careful inspection of the data, it was found 

that these observations reported extremely low amounts of benefits in the range of $31 to $75. 

Without additional knowledge as to whether these observations are results of errors or true 

benefit values, it was decided that they should not be removed.    

 

           Figure 9.2. One-step Deletion Results for Four Parameters of the EM Model-6  

Influence diagnostics based on the one-step deletion method were applied to the ND 

DVA dental data. Formula (7.7), proposed in Chapter 7, was used in these calculations. The 

results for the four parameters from Model-6, based on all 575 data points, are plotted in Figure 

9.2.  The highest spikes correspond to the most influential points. By careful inspection, it was 

found that these influential points correspond to most of the censored data reported for years 
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2006 and 2007 as well as uncensored outliers from these years. If we recall that the cap on dental 

benefits increased from $500 to $750 as of 1/2006 and further increased from $750 to $1000 as 

of 11/2007, these results are expected. The jumps in the censoring levels as well as several 

uncensored outliers explain the high influence of the corresponding observations on parameter 

estimates.  
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CHAPTER 10. CONCLUSION  

The primary goal of this research was to study two algorithms for right censored 

regression with application to actuarial science. These algorithms include EM and BJ algorithms.  

The research contribution was made in area of validation and influence diagnostics based on the 

EM algorithm.  The following quantities were proposed: the reconstructed coefficient of 

determination (R-squared), the Jackknife residual and test for outliers, and influence diagnostics 

based on the one-step deletion method.   

Extensive simulation studies were performed to compare the model parameter estimates 

of the EM and BJ algorithms. It was found that the EM algorithm performs very similar to the BJ 

algorithm with the best performance achieved in the case of normally distributed errors. 

Simulation studies also showed that the EM algorithm can improve the R-squared for the model 

when the data are censored low (below the fitted line) and when the data are randomly censored 

above and below the fitted line with larger proportion of points below the fitted line. These 

simulation studies used the new reconstructed R-squared formula.   The EM algorithm is also 

capable of detecting outliers. Several cases were examined based on the type (censored or 

uncensored) and location of the outliers, which confirmed that the EM algorithm successfully 

detects the outliers based on the proposed formulas.    Influence diagnostic based on the 

proposed formula for one-step deletion method was analyzed using insurance data on fire losses. 

This formula successfully assessed the magnitude of influence of each data point on the 

parameter estimates, with influential points reporting the highest influence.    

Finally, real data provided by ND DVA was used to model right censored regression 

based on both the EM and BJ algorithms.  Further model validation and diagnostics were 
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employed for the EM algorithm only.  As the results of modeling ND DVA data would be useful 

to the government policy makers, these methods in general can be used in actuarial science. As it 

is common to see an insurance product with coverage being subject to a certain limit, modeling 

right censored regression with the EM algorithm would allow an actuary to evaluate losses in the 

presence of rating variables and therefore determine the appropriate premium level to be 

charged.   
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APPENDIX . SEVERAL IMPORTANT R-FUNCTIONS  

################### 

###  EM-algorithm ### 

################### 

 E.step<-function(beta,  s, W2, z){ 

 muc <-  W2 %*% beta 

 A <-  pnorm(- (z  -  muc) /  s) 

            Ez <- (muc * A + (s * dnorm((z  -  muc)  /  s)))  /  A  

 Ez2 <- ((muc^2 + s^2) *  A  +  s  *  (muc + z)  * dnorm((z - muc)  /  s))  /  A 

 EzDz <- sum(Ez2) 

return(list(Ez = Ez, EzDz = EzDz)) 

} 

M.step <-function(beta, W1, W2,  y,  Ez,  EzDz){  

 n <- dim(W1)[1] + dim(W2)[1] 

           B <- t(W1)  %*%  W1  +  t(W2)  %*%  W2 

           C <- t(W1)  %*%  y  + t(W2)  %*%  Ez  

           beta <- solve(B)  %*%  (t(W1) %* % y +  (t(W2)  %*%  Ez)) 

           D <-  t(y) %*%  y  +  EzDz  +  t(beta)  %*%  B  %*%  beta – 2 *  t(beta) %*%  C 

 s <- drop(sqrt(D / n))                              

return(list(beta = beta, s = s))  

} 

EM <- function(W){  

 q <- dim(W)[2] 

            u <- W[,2] 

            W11 <- W[(W[,3] == 1),]    # W1 uncensored partition  
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            d1 <- dim(W11)[1] 

            I1 <- rep(1, d1) 

            W1 <- cbind(I1, W11[, 4]) 

            y  <- W11[,2]  

           W22 <- W[(W[,3] == 0),]     # W2 censored partition  

           d2 <- dim(W22)[1] 

           I2 <- rep(1, d2) 

           W2 <- cbind(I2, W22[, 4]) 

            z <- W22[,2] 

            beta <- lm(W[,2] ~ W[,4])$coef 

           beta.old <- rep(Inf, (q - 2)) 

           eps <- 0.000001 

           s <- 0.182 

           iter <- 0 

           while(any(abs(beta  -  beta.old)  >  eps)){ 

  iter <- iter  +  1 

  beta.old <- beta 

  ZZ <- E.step(beta,  s,  W2,  z) 

             Ez <- ZZ$Ez 

  EzDz <- ZZ$EzDz 

             MM <- M.step(beta,  W1,  W2,  y,  Ez,  EzDz) 

  beta <- MM$beta 

  s <- MM$s 

  cat("Iteration", iter, "beta = ", beta, "s = ", s, "\n") 

 } 
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 return(list(beta = beta, s = s, Ez = Ez, EzDz = EzDz, W1 = W1, W2 = W2, y = y)) 

} 

############################################## 

###  Variability Assessment based on EM-algorithm ### 

############################################## 

Cov.par <- function(W1, W2, y, b.new, s, Ez, Ez2){ 

                  n1 <- dim (W1)[1] 

                  n2 <- dim (W2)[1] 

                  n <- n1 + n2 

                  p <- length(b.new)  

                  dqi_par1 <- matrix(NA,  p + 1,  n1) 

                  dqi_par2 <- matrix(NA,  p + 1,  n2) 

                  for (i in 1:n1){ 

                            dqi_par1[1:p,i] <- (1 /s ^ 2)  *  (W1[i, ]  *  y[i]  -  W1[i, ]  %*%  t(W1[i,])  

                           %*%  b.new) 

                           dqi_par1[p+1,i] <- (- 1 / s)  +  (1 / s^3) * (y[i]^2  -  2  *  t(b.new)  %*%  

                           W1[i, ] * y[i]  + t(b.new)  %*%  W1[i, ]  %*%  t(W1[i, ])  %*%  b.new) 

              } 

                  for (i in 1:n2){ 

                   dqi_par2[1:p,i] <- (1/s^2) * (W2[i,] * Ez[i] - W2[i,] %*% t(W2[i,]) %*% b.new) 

                   dqi_par2[p+1,i] <- (-1/s) + (1/s^3)*(Ez2[i] - 2 * t(b.new) %*% W2[i,]* Ez[i] +  

                               t(b.new) %*% W2[i,] %*% t(W2[i,]) %*% b.new)  

      } 

      H <- cbind(dqi_par1, dqi_par2) 
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       Ie <- H %*% t(H)                         

               Cov <- solve(Ie) 

               Var <- diag(Cov)   

             return(Cov) 

 } 

CI <- function(b.new, s, sigma){ 

          par <- c(b.new,  s) 

          p <- length(par) 

          SE <- sqrt(diag(sigma))  

          Lower <- rep(NA,  p) 

          Upper <- rep(NA,  p)  

          CI <- matrix(NA,  p,  2)            

             for (i in 1:p){ 

                      Lower[i] = par[i]  -  qnorm(0.975) *  SE[i] 

           Upper[i] = par[i]  +  qnorm(0.975) *  SE[i] 

              CI[i,] <- cbind(Lower[i],  Upper[i]) 

                       }  

       return(list(CI=CI)) 

} 

p.val <- function(b.new,  s,  sigma){ 

             par <- c(b.new, s) 

            p <- length(b.new) 

            pvalue <- matrix(NA, (p + 1), 1) 
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           SE <- sqrt(diag(sigma))  

                    for (i in 1:(p+1)){ 

                            pvalue[i,] <- round(2  *  pnorm( -abs(par[i] / SE[i,i])), 8)  

                            } 

   return(list(pvalue = pvalue))       

} 

########################### 

###  Log-likelihood Function ### 

########################### 

logL <- function (pars, y, z, W1, W2, Ez, Ez2){ 

 beta <- pars[-1] 

 s <- pars[1] 

 n1 <- length(y) 

 muc <- W2  %*%  beta 

 A <- pnorm(z, mean  =  muc, sd  =  s, lower.tail  =  F) 

 Res <- -n1 * log(2 * pi) / 2  -  n1 * log(s^2) / 2 – 1 / (2 * s^2)  *  (t(y  - W1  %*%  beta)  

                        %*%  (y  -  W1  %*%  beta))  +  sum(A) 

return(-Res) 

} 

########################## 

### Reconstructed R-square ### 

########################## 

Jlin <- function (pars, yu,  Ez,  EzDz,  M1,  M2){ 

            l <- length(pars)-1 
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 beta <-pars[1:l] 

            s <- pars[3] 

         

        Res <- norm(yu - M1 %*% beta, "F")^2 +  norm(Ez  -  M2  %*%  beta, "F")^2  +  

                         EzDz - norm(Ez, "F")^2  

 return(Res) 

} 

J0 <- function (pars, yu, Ez, EzDz){ 

         n1 <- length(yu) 

         m <- length(Ez) 

         beta <-pars[1:2] 

         s <- pars[3] 

        I1 <- rep(1,n1) 

        I2 <- rep(0,  n1) 

        Iu <- cbind(I1,  I2) 

        Ic1 <- rep(1, m) 

        Ic2 <- rep(0, m) 

        Ic <- cbind(Ic1,  Ic2) 

        Res <- norm(yu -  Iu %*% beta, "F")^2  +  norm(Ez  -  Ic  %*%  beta, "F")^2  +  

                  EzDz - norm(Ez, "F")^2  

return(Res) 

} 

OpJlin <- optim(pars,  Jlin, gr = NULL,  method="BFGS",  y,  Ez,  EzDz,  W1,  W2,   
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                hessian = TRUE) 

OpJ0 <- optim(pars, J0,  gr  =  NULL,  method="BFGS",  y,  Ez,  EzDz,  

              hessian  =  TRUE) 

R2c <- 1  -   OpJlin$value /  OpJ0$value 

########################### 

### Buckle-James Algorithm ### 

########################### 

E.step.bj <- function(W,  b.new){  

              n <- dim(W)[1] 

             flag <- 0  

                   yhat <- W[,4] * b.new  

                   residual <- W[, 2] - yhat   

                   workdata <- cbind(W,  residual) 

                  orderr <- order(residual) 

                  workdata <- workdata[orderr,] 

                  if(workdata[n,3] == 0){ 

                                                        flag <- 1 

                                                      workdata[n,3] <- 1} 

                  km <- summary(survfit(Surv(workdata[, 5],  workdata[, 3])  ~  1)) 

                 survival <- km$surv 

                 workdata1 <- workdata[workdata[, 3]  == 1, ]  # uncensored partition  

                 n1 <- dim(workdata1)[1] 

                 jumpsurvival <- c(1, survival[1:length(survival) - 1]) # shift km starting at 1 

                 jump <- (jumpsurvival - survival) / km$n.event 
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                 jump <- rep(jump, km$n.event) 

                survival <- rep(survival, km$n.event) 

                survival <- 1  -  survival 

                survival <- matrix(survival, ncol = 1) 

                jump <- matrix(jump,  ncol  =  1) 

               workdata1 <- cbind(workdata1,  survival) 

               workdata1 <- cbind(workdata1,  jump) 

               workdata2 <- workdata[workdata[, 3] == 0,]  # censored partition  

               n2 <- dim(workdata2)[1] 

               if(sum(workdata[, 2]) == n - 1){ 

               workdata2 <- matrix(workdata2,  nrow = 1)} 

 

             {if(dim(workdata2)[1]! = 0){ 

              zero <- matrix(0,  nrow = dim(workdata2)[1])  

              workdata2 <- cbind(workdata2,  zero) 

              workdata2 <- cbind(workdata2,  zero) 

              workdata <- rbind(workdata1,  workdata2) } 

              else{workdata <- workdata1} 

                           } 

     o <- order(workdata[, 5]) 

     workdata <-workdata[o, ]  

     workdata[, 5] <- workdata[, 5] 

         for (i  in 2 : n){ 
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   if (workdata[i,6] == 0){workdata[i, 6]<-workdata[i - 1, 6]} 

                } 

    denom <- rep(1, n) 

    denom <- denom  - workdata[, 6]  

    workdata <- cbind(workdata, denom) 

    workdata <- cbind(workdata[, 1], workdata[, 2], workdata[, 3], workdata[, 4], 

                                 workdata[, 5], workdata[, 6], workdata[, 8], workdata[, 7])  

return(list(workdata = workdata, flag = flag)) 

 } 

weights <- function(workdata){ 

             n <- dim(workdata)[1] 

             www <- diag(workdata[, 3]) 

                                  for (i in 1 : n){ 

                                             if (www[i, i] == 0){ 

                                                              for (k in (i + 1) : n){ 

                                                                 www[i,k] <- workdata[k, 8] / workdata[i, 7] 

                                      } 

                                } 

                           } 

  return(www) 

} 

EMbj <- function(W){   

n <- dim(W)[1] 



80 
 

eps <- 0.000001 

iter <- 0 

b.new <- 1.9 

b.old <- Inf 

b1 <- vector() 

m <- 0 

                             while(abs(b.new  -  b.old)  >  eps  &&  m  <  10){ 

         iter <- iter  +  1 

                      b.old <- b.new 

                              b1<-c(b1, b.old[1]) 

                              level.old<-levels(as.factor(b1)) 

                              length.old<-length(level.old) 

                ee <- E.step.bj(W,  b.new) 

                    Wdata <- ee$workdata 

                            ff <- ee$flag 

                           Wgt <- weights(Wdata) 

                           X <- Wdata[, 4] - mean(Wdata[, 4]) 

                           A <- solve(t(X) %*% X) %*% t(X) 

                           Ystar <- Wdata[, 4] *  b.new  +  Wgt  %*%  Wdata[, 5]    

                           b.new <- A %*%  Ystar   

                           b1 <- c(b1, b.new[1]) 

                   level.new <- levels(as.factor(b1)) 

                           length.new <- length(level.new)  
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                           if(length.new == length.old) m <- m + 1 

                           else m <- 0     

                            if (ff == 1){W[n, 3] <- 0} 

                            cat("Iteration",  iter,  "b.new=",  b.new,  "\n") 

                      } 

   alpha <- mean(Ystar)  -  b.new  *  mean(Wdata[, 4])  

   return(list(alpha = alpha,  b.new = b.new)) 

} 

##################################################### 

### Generating Normal Data Used in Chapter 8.1 Simulations### 

##################################################### 

Ran <- function(n, l){ 

library(splines) 

library(survival) 

library(rms) 

library(Hmisc) 

b0 <- 1 

b1 <- 2 

i <-1 : n    

x <- i  /  n 

e <- rnorm(n, 0,  0.182) 

y <- b0  +  b1  *  x  +  e 

k <- l * n 

WC <- matrix(NA,  k,  4) 
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cens <- rep(0, k) 

for (j in 1 : k){ 

    repeat{ 

      id <- round(runif(1,  1,  n)) 

      c <- runif(1,  1,  3)  

      if((y[id]  >  c)  &  (!any(id == cens))) break 

    } 

        WC[j,1] <- id 

     WC[j,2] <- c 

     WC[j,3] <- 0 

     WC[j,4] <- id / n 

  cens[j] <- id 

} 

                        WW <- matrix(NA,  n,  4) 

for (i in 1 : n){ 

 if(any(I == cens)){ 

       WW[i,]<- WC[WC[, 1] == i, ] 

     }else{ 

        WW[i, 1] <- i 

        WW[i, 2] <- y[i] 

        WW[i, 3]<- 1 

        WW[i, 4]<- I / n      

 } 
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} 

return(WW) 

} 

######################################## 

### Outlier Detection Chapter 8.3 Simulations### 

######################################## 

OutlierU <- function(M,  M1,  M2,  yu,  zc,  ut){ 

                   alpha <- 0.05 

                   n <- dim(M)[1] 

                    l <- dim(M1)[1] 

                   p <- dim(M)[2] 

                  Out <- matrix(NA, l, 2)   

                  Res_unc <- Udelete(M,  M1,  M2,  yu,  zc,  ut,  beta) 

                 Num <- Res_unc$e 

                 si <- Res_unc$d_sdu  

                 h <- diag(M1 %*% solve(t(M1) %*% M1) %*% t(M1)) 

                 Den <-si/sqrt(1 - h)  

                 t <- abs(Num / Den) 

                 CritVal <- qt(1-alpha/(2*n), df = n - p) 

                        for (i in l : l){ 

                                    if(abs(t[i]) >  CritVal){(Out[i, 1] <- t[i])& (Out[i, 2] <- 1)} 

                                       else 

                                   {(Out[i,1] <- t[i]) & (Out[i, 2] = 0)} 

                           } 

return(list(h = h, Num = Num, Den = Den, Out = Out)) 
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 } 

 

OutlierC <- function(M,  M1,  M2,  yu,  zc,  ut,  AA,  d_sd,  lc){ 

                   alpha <- 0.05 

                    l <- dim(M1)[1] 

                    p <- dim(M)[2] 

                   n <- dim(M)[1] 

                   k <- n - l 

                   Out <- matrix(NA,  k,  p) 

                    h <- rep(NA,  k)  

                    Res_cen <- Cdelete(M,  M1,  M2,  yu,  zc,  ut,  AA) 

                   Num <- Res_cen$e 

                   SS <- Res_cen$d_sd 

                                         for (i in 1 : k){ 

                                                           X <- rbind(M1, M2[i, ]) 

                                                            H <- diag(X %*%  solve(t(X) %*% X)  %*%  t(X)) 

                                                             h[i] <-H[l + 1] 

                                              } 

                    Den <- SS / sqrt(1 - h)  

                    t <- abs(Num / Den) 

                    CritVal <- qt(1 - alpha / (2*n), df  =  n - p) 

                   a <- dim(M2)[1] 

                                           for (i in 1 : a){ 

               if(abs(t[i]) > CritVal){(Out[i, 1] <-  t[i])& (Out[i, 2]<- 1)} 

                                else 
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               {(Out[i,1] <- t[i]) & (Out[i, 2] = 0)} 

     } 

return(list(h  =  h,  Num  =  Num,  Den  =  Den,  Out  =  Out,  t  =  t)) 

} 

###################################### 

### One-step Deletion Used in Chapter 7.3### 

####################################### 

Udelete <- function(M,  M1, M2,  yu,  zc,  ut){  

                 q <- dim(M)[2] 

          m <- length(yu) 

                dbeta <- matrix(NA,  m, q) 

                dbeta_def <- matrix(NA,  m,  q) 

                dr <- matrix(NA,  m,  q) 

                do <- rep(NA,  m) 

                deltau_new <- matrix(NA,  m,  q)  

         for(i in 1 : m) { 

                             ystar <- yu 

                      W1 <- M1[-i, ] 

                      W2 <- M2 

                      y <- yu[-i] 

                      z <- zc 

                      W <- rbind(M1[-i, ], M2) 

                      u <- c(yu[-i], zc)  

                      dr[i, ] <- M1[i, ] 

                      do[i] <- yu[i] 
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                        b.new <- lm(u ~ W[,-1])$coef 

    b.old <- rep(Inf, q) 

    eps <- 0.0000001 

    s <- 1 

    iter <- 0 

     while(any(abs(b.new - b.old) > eps)){ 

      iter <- iter + 1 

      #E-step# 

      muc <- W2 %*% b.new 

      A <- pnorm(-(z - muc) / s) 

            Ez <- (muc * A + (s * dnorm((z - muc) / s))) / A  

      Ez2 <- ((muc^2 + s^2)* A + s * (muc + z) *  

                                                                                    dnorm((z - muc) / s)) / A 

      EzDz <- sum(Ez2) 

      #M-step# 

      b.old <- b.new 

            B <- t(W1) %*% W1 + t(W2) %*% W2 

            C <- t(W1) %*% y +t(W2) %*% Ez  

            b.new <- solve(B) %*% (t(W1)%*%y + (t(W2)  

                                                                                      %*% Ez)) 

            D <- t(y)%*% y + EzDz + t(b.new) %*% B %*%  

       b.new - 2* t(b.new)%*% C 

      s <- drop(sqrt(D/n))                              

           #cat("Iteration", iter, "b.new=", b.new, "s=", s, "\n") 

   } 
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             dbeta[i,] <- b.new 

             dbeta_def[i,] <- (t(beta) - b.new) / solve(t(M) %*% M) %*% dr[i, ] 

             yhat_star <- c(y, Ez)            

             Num1 <- solve(t(M) %*% M)  

             I <- diag(q)  

             Den <- as.numeric(1 - t(dr[i, ]) %*% solve(t(M) %*% M) %*%  dr[i, ])   

             Num2 <- as.numeric(1 - t(dr[i, ]) %*% solve(t(M) %*% M) %*% dr[i, ]) 

             Num3 <- Num2 * I        

             Num4 <- dr[i, ]%*%t(dr[i,])%*%solve(t(M)%*%M)  

             Num5 <- t(W) %*% (u - yhat_star)  

             Num6 <- dr[i, ] %*% (yu[i] - dr[i,]%*% t(beta))  

             deltau_new[i, ] <- abs(Num1 %*% ((Num3 + Num4) %*%  Num5 + Num6)/Den)     

             dbeta_def[i,] <- (deltau_new[i,]) / solve(t(M)%*%M)%*%dr[i,] 

     } 

   return(list(dbeta_def  =  dbeta_def)) 

} 

Cdelete <- function(M,  M1,  M2,  yu,  zc,  ut,  AA){  

            q <- dim(M)[2] 

          m <- length(yu) 

                  n <- dim(M)[1] 

                  k <- n - m 

                 dbeta <- matrix(NA,  k,  q) 

                dbeta_def <- matrix(NA,  k,  q) 

                d_sd <- rep(NA,  k) 

               drc <- matrix(NA,  k,  q) 
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               doc <- rep(NA,  k) 

               z_d <- rep(NA,  k) 

               EZ <- matrix(NA,  k,  k - 1)  

               deltac_new <- matrix(NA,  k,  q)  

                h <- rep(NA,  k)  

  for(i in 1 : k) { 

                                    W2 <- M2[-i,] 

                     W1 <- M1 

                     z <- zc[-i] 

                     y <- yu 

                     W <- rbind(M1, M2[-i, ]) 

                     u <- c(yu, zc[-i])  

                     drc[i,] <- M2[i, ] 

                     doc[i] <- zc[i] 

                       b.new <- lm(u ~ W[,-1])$coef 

   b.old <- rep(Inf,  q) 

   eps <- 0.0000001 

   s <- 1 

   iter <- 0 

    while(any(abs(b.new  -  b.old)  > eps)){ 

    iter <- iter  + 1 

    #E-step# 

    muc <- W2  %*%  b.new 

    A <- pnorm(- (z - muc)  /  s) 

          Ez <- (muc * A + (s  * dnorm((z -  muc)  /  s)))  /  A  
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    Ez2 <- ((muc^2 + s^2) * A  + s * (muc + z)  * dnorm((z - muc)  

                                                            / s)) / A 

    EzDz <- sum(Ez2) 

    #M-step# 

    b.old <- b.new 

          B <- t(W1) %*%  W1 + t(W2)  %*%  W2 

          C <- t(W1) %*% y +t(W2) %*% Ez  

        b.new <- solve(B) %*% (t(W1) %*% y  +  (t(W2)  %*%  Ez)) 

          D <- t(y)  %*%  y  + EzDz  +  t(b.new)  %*%  B  %*%  b.new 

                                                          - 2 * t(b.new) %*%  C 

          s <- drop(sqrt(D / n))                              

   } 

           EZ[i,] <- Ez 

             sigma  <- s 

             h_u <- (doc[i]  -  drc[i,]  %*%  t(beta)) / sigma 

             A <- dnorm(h_u) 

             B <- 1 - pnorm(h_u)  

             h[i] <- A / B 

             dbeta[i,] <- b.new 

                       yhat_star <- c(y,Ez)            

             Num1 <- solve(t(M) %*% M)  

             I <- diag(q)  

             Den <- 1-t(drc[i, ]) %*% solve(t(M) %*% M) %*% drc[i, ]   

             Num2 <- 1-t(drc[i, ]) %*% solve(t(M) %*% M) %*% drc[i, ] 

             Num3 <- as.numeric(Num2) * I        
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            Num4 <- drc[i,] %*% t(drc[i, ]) %*% solve(t(M) %*% M)  

             Num5 <- t(W) %*% (u - yhat_star)  

            Num6 <- drc[i,] %*% (EZ[i] - drc[i,] %*%  t(beta))  

           deltac_new[i,] <- abs(Num1 %*% ((Num3 + Num4) %*%  Num5 +  

                                       Num6) / as.numeric(Den))  

                       dbeta_def[i,] <- (delta_new[i, ]  / solve(t(M) %* %M) %*% drc[i, ] 

         

     } 

   return(list(beta =  beta,  dbeta  =  dbeta,  dbeta_def  =  dbeta_def)) 

} 

######################################## 

### Simulation Function used in Chapter 8.1 ### 

######################################## 

sim <- function(N,  n,  l){ 

            par.bj <- matrix(NA,  N,  2) 

            par.p <- matrix(NA,  2,  N)   

            par.s <- rep(NA,  N) 

                           for (i in 1 : N){ 

              W <- Ran(n, l) 

                      e.bj <- EMbj(W) 

              e.p <- EM(W) 

              par.p[,i] <-e.p$beta 

              par.s[i] <-e.p$s 

              par.bj[i, 1] <- e.bj$alpha 

              par.bj[i, 2] <- e.bj$b.new 
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                     } 

        mean0_p <- mean(par.p[1, ]) 

         mean1_p <- mean(par.p[2, ]) 

        MSE0_p <-  mean((par.p[1, ] - 1)^2) 

        MSE1_p <-  mean((par.p[2, ] - 2)^2)  

        mean0_bj <- mean(par.bj[, 1]) 

        mean1_bj <- mean(par.bj[, 2])  

        MSE0_bj <- mean((par.bj[, 1] - 1)^2) 

        MSE1_bj <- mean((par.bj[, 2] - 2)^2)  

 return(list(mean0_p =  mean0_p, mean1_p  =  mean1_p,  MSE0_p  =  MSE0_p,   

 MSE1_p = MSE1_p,  mean0_bj = mean0_bj,  mean1_bj = mean1_bj,  

MSE0_bj = MSE0_bj, MSE1_bj = MSE1_bj,  par.p=  par.p,  par.bj = par.bj)) 

}      


