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ABSTRACT

In this thesis, a subfractal is the subset of points in the attractor of an iterated function

system in which every point in the subfractal is associated with an allowable word from a subshift

on the underlying symbolic space. In the case in which (1) the subshift is a subshift of finite

type with an irreducible adjacency matrix, (2) the iterated function system satisfies the open set

condition, and (3) contractive bounds exist for each map in the iterated function system, we find

bounds for both the Hausdorff and box dimensions of the subfractal, where the bounds depend both

on the adjacency matrix and the contractive bounds on the maps. We extend this result to sofic

subshifts, a more general subshift than a subshift of finite type, and to allow the adjacency matrix

to be reducible. The structure of a subfractal naturally defines a measure on Rn. For an iterated

function system which satisfies the open set condition and in which the maps are similitudes, we

construct an invariant measure supported on a subfractal induced by a subshift of finite type. For

this specific measure, we calculate the local dimension for almost every point, and hence calculate

the Hausdorff dimension for the measure.
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1. CHAPTER ONE - INTRODUCTION

The idea of a fractal was developed to help mathematically define objects that exist in

nature. Often times in mathematics, one considers smooth curves, spheres, boxes, or other familiar

geometric shapes; however, natural objects can rarely be described using conventional geometric

shapes. Consider a snowflake or coastline, both of which are natural objects with highly irregular

structures. The term “fractal” was used to describe these chaotic structures, and an entire branch

of rich mathematics has been developed to study fractals. While the rise in popularity of fractal

geometry is relatively recent, mathematical fractal-like structures were studied as early as the late

1800’s.

1.1. Background

The first fractal in the sense of the modern definition is the everywhere continuous and

nowhere differentiable function on R defined as

f(x) =
∞∑
k=1

bk cos(πanx), a ∈ Z+, 0 < b < 1.

The function was constructed in 1872 by Karl Weierstraß [27]. Soon after in 1883, as part of

his investigation of the set theory and the cardinality of infinite sets, Georg Cantor introduced

the famous Cantor Set [3]. While Weierstraß’ function was based on analytic construction, in

1904 Helge von Koch used only geometric methods to construct another everywhere continuous

and nowhere differentiable function, which we know today as the Koch curve [18]. Inspired by

this work, in 1915 Waclaw Sierpiński constructed the well-known Sierpiński Gasket and Sierpiński

Carpet [24]. In 1918, while investigating the global structures of iterations of analytic functions,

Gaston Julia and Pierre Fatou independently discovered what is known today as the Julia Set in

their papers submitted for the Grand Prix of the French Academy of Sciences [12–14,17].

Although these works constitute the earliest results in fractal geometry, none of these mathe-

maticians realized that the objects they studied have self-similarity properties and scaling structure.

This was partly due to the irregular structure of the objects and the need for deeper computations to

reveal their true fractal nature. Another reason was due to the way they were presented, which was
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not fashionable at the time of their introduction. Hence, for approximately 60 years such math-

ematical objects were largely ignored. It was due to the pioneering work of Benoit Mandelbrot

around the late 1970’s that these and many other fractals were brought back to the mathematical

realm, and their systematic study began [20, 21]. The major works that laid the foundations and

fundamental properties of fractal geometry as we know today were done by J.E. Hutchinson [16],

K. Falconer [10,11] and R.D. Mauldin and S.C. Williams [22] in the early 1980’s.

By a fortunate coincidence, while early examples of fractals were being introduced, some

other mathematicians were developing the theory of dimension, that would come very handy later

on in the structural investigation of fractals. Felix Hausdorff, in his research on the topology of

metric spaces, extended the definition of topological dimension to allow for sets to have non-integer

dimension values [15]. Later, via covering theorems of Abram Besicovitch, this definition was

extended to geometric measure theory resulting in what we know today as the Hausdorff measure

and Hausdorff dimension. Following these, the box dimension was introduced by Georges Bouligand

around 1939 [2] and the packing dimension was introduced by Claude Tricot around 1982 [26].

1.2. Hausdorff space

As mentioned in the previous section, one can identify or describe a fractal by using prop-

erties like self-similarity or recursion, but a more precise process is needed to formally define a

fractal. For example, the middle-third Cantor set can be described as follows: start with an inter-

val of length one, cut the interval into three equal pieces and remove the center piece. Repeat this

process with the two remaining intervals of length 1
3 . Continue this process. This explanation is

easy to visualize, but is too vague to fully understand and investigate all of the unique and inter-

esting properties of the Cantor set. Hence, a more rigorous mathematical approach was developed

using an iterated function system (IFS) to define not only the Cantor set, but also a wide class of

fractal sets. In order to properly define an IFS, one must first understand the space in which these

types of fractals reside.

Let K be a compact metric space with metric d. For purposes of this thesis, we will assume

that K is a compact subset of Rn equipped with the Euclidean metric, but it should be noted that

in many cases we can extend the theory to a more general metric space setting.

2



Definition 1.2.1. Let A ⊂ K and r > 0. We define the open r-neighborhood of A as

Nr(A) = {y : d(x, y) < r for some x ∈ A}.

Definition 1.2.2. Let A,B ⊆ K and r > 0. The Hausdorff distance DH : K×K → R is defined as

DH(A,B) = inf{r : A ⊆ Nr(B) and B ⊆ Nr(A)}.

If we examine DH on our space K defined above, then DH fails to meet all of the properties

of a well defined metric, in particular when A or B is not closed. Since an IFS will be defined on

compact sets, we will let H denote the collection of all nonempty, compact subsets of K.

Proposition 1.2.3. The Hausdorff metric DH is a metric on the set H .

A proof of this proposition can be found in [1]. Essentially, a fractal is the limiting set of

a convergent sequence of sets, so it will be useful to work in a complete metric space. The metric

space (H , DH), commonly referred to as the Hausdorff space, will be used to define fractals, so

the following theorem will be useful for work with fractals.

Theorem 1.2.4. (H , DH) is a complete metric space.

A proof of this theorem can be found in [1] or [6].

1.3. Iterated function systems

An iterated function system (IFS) is used to define a class of fractals in a compact metric

space, which is typically a compact subset of Rn. Many of the standard definitions and terminology

we will state below can be found in [1, 6, 9, 16]. Hutchinson provided the most foundational work

with IFSs, and Falconer gives a comprehensive overview of IFSs and their properties [8, 9, 16].

Definition 1.3.1. An iterated function system is a finite collection of maps f = {fi : 1 ≤ i ≤ N},

where each map fi : K → K is well-defined on K for 1 ≤ i ≤ N .

The IFS is applied to K, and the first iteration set is the union of the images of each map

in the IFS. More specifically,

f(K) =
N⋃
i=1

fi(K).

3



This is the first step taken to define a fractal. To continue the process, take repeated iterations of

the IFS on K. The fractal is formed by considering the limiting case,

F = lim
k→∞

fk(K),

where fk denotes the composition of f with itself k − 1 times, for k ≥ 1. It is natural to ask

whether this limit exists, and the answer to that question depends on the maps {fi}Ni=1. In the

simplest case, one can assume that each fi is a similarity, so that for each fi there exists a constant

0 < ci < 1 such that

d(fi(x), fi(y)) = cid(x, y),

for all x, y ∈ K, 1 ≤ i ≤ N . Notice that by letting r = cmax = max{ci : 1 ≤ i ≤ N}, we have

{fi(x) : 1 ≤ i ≤ N} ⊂ Nr({fi(y) : 1 ≤ i ≤ N}) and {fi(y) : 1 ≤ i ≤ N} ⊂ Nr({fi(x) : 1 ≤ i ≤ N})

for all x, y ∈ K. Hence, DH(f(A), f(B)) ≤ cmaxDH(A,B), where f denotes the IFS, and for all

A,B ∈H . Therefore, in this case the IFS f itself is a contractive map. By the contractive mapping

principle, the limit exists and is non-empty. In this thesis, we consider a more general case in which

each fi is hyperbolic, which means for each fi, there exist constants 0 < si ≤ s̄i < 1 such that

sid(x, y) ≤ d(fi(x), fi(y)) ≤ s̄id(x, y)

for all x, y ∈ K and 1 ≤ i ≤ N . Since the resulting IFS is contractive, again it follows that the limit

(and hence, the fractal) exists.

Now, consider a slightly different case in which the IFS contains a finite set of contractive

maps and also the identity map. This specific IFS variant is called a tree-IFS (TIFS). A tree fractal

is much like the trees we observe in nature; it has a base and branches, which continue to break into

smaller and smaller branches. The identity function in the TIFS ensures that the “branches” are

included in the entire fractal, as each finite iteration appears in the fractal. Due to the inclusion

of the identity map, it is not immediately obvious that the TIFS is a contractive map. Hence,

we must prove that a tree fractal actually exists without using the contractive mapping principle.

This will be discussed explicitly in the Section 1.5, but we need some tools from symbolic dynamics

before we can prove that statement.
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1.4. Symbolic dynamics

Each finite IFS, say {f1, . . . fN} is naturally associated with a finite alphabetA = {1, . . . , N},

where each letter from A is associated with a map from the IFS. As mentioned in the previous

section, while constructing a fractal we consider all compositions of the maps from the IFS in all

possible orders. This can be tedious to write out, so we use symbolic dynamics with this alphabet

to simplify the process.

Let A = {1, . . . , N} be a finite alphabet and consider X = AN, the collection of all infinite

one-sided strings in which each coordinate is occupied by a letter from A. This space is often times

called a shift space because it is typically equipped with both a metric and the shift map (to be

defined below). First, let us define a metric on X. While it is not the only metric on X, one

of the most frequently used metrics is defined as follows: let ω, τ ∈ X, where we denote specific

coordinates by ω = ω1ω2ω3 . . . , τ = τ1τ2τ3 . . ., and

dX(ω, τ) =


1
2k
, where k = min{i : ωi 6= τi} for ω 6= τ

0 for ω = τ.

By the definition of dX , we immediately obtain (1) dX(ω, ω) = 0, (2) d(ω, τ) = 0 implies that ω = τ ,

and (3) dX(ω, τ) = dX(τ, ω). Let ω, τ, ξ ∈ X and suppose dX(ω, ξ) = 1
2d1

and dX(ξ, τ) = 1
2d2

. Now,

suppose dX(ω, τ) = 1
2d0

so that ωi = τi for 1 ≤ i < d0. Suppose d1 ≤ d0. Then the inequality

1
2d0
≤ 1

2d1
+ 1

2d2
follows immediately. Now, assume that d1 > d0. This means that ωi = ξi for

1 ≤ i < d1, which implies that ωd0 = ξd0 . Hence, τd0 6= ξd0 and d0 = d2. Therefore, 1
2d0
≤ 1

2d1
+ 1

2d2
.

Thus, the map dX satifies dX(ω, τ) ≤ dX(ω, ξ) + dX(ξ, τ); that is, dX is indeed a metric on X.

The shift map σ : X → X is defined as, for ω1ω2 . . . ∈ X,

σ(ω1ω2ω3 . . .) = ω2ω3ω4 . . . .

Notice that for ε > 0 there exists an m > 1 such that 1
2m < ε. If we choose δ = 1

2m+1 and select

ω, τ ∈ X with dX(ω, τ) < δ, then dX(σ(ω), σ(τ)) < 1
2m < ε. Hence, the shift map is continuous. It

should also be noted that σ is an onto function, so that σ(X) = {σ(ω) : ω ∈ X} = X. The shift

map will be used extensively in Chapter 3.
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The following are common notations used in symbolic dynamics. A finite word of length

n is of the form ω = ω1ω2 . . . ωn where ωi ∈ A for 1 ≤ i ≤ n, and we will use `(ω) to denote the

length of the word ω. Let Bn(X) = {ω = ω1 . . . ωn : ωi ∈ A, 1 ≤ i ≤ n} denote the set of all

finite words of length n and B∗(X) =
⋃
n≥1

Bn(X) denote the set of all words of finite length. For

ω ∈ Bn(X), τ ∈ Bm(X), and ξ ∈ X, we will use the following notations:

ωτ = ω1 . . . ωnτ1 . . . τm

ω− = ω1 . . . ωn−1

ξ|k = ξ1 . . . ξk for all k ≥ 1.

In the more familiar metric space Rn, open balls are the “building blocks” of the space,

in the sense that any set can be approximated by open balls with minimal error. Fortunately,

an analogous structure exists in X, called a cylinder set, to serve as the open ball and help in

understanding the structure of X. In particular, it is instrumental in constructing measures on this

space. A cylinder set with base ω ∈ Bn(X) is the set

[[ω]] = {τ ∈ X : τi = ωi for 1 ≤ i ≤ n}.

Fix a cylinder set [[ω]] and let τ ∈ [[ω]]. Suppose `(ω) = n and let N > n. Now, consider

another point ξ ∈ X such that dX(τ, ξ) < 1
2N

. Then, τi = ξi for 1 ≤ i < N , and in particular,

for 1 ≤ i ≤ n. Hence, ξ ∈ [[ω]] and the cylinder set [[ω]] is open. Next, let {τ1, τ2, . . .} ⊂ [[ω]] be a

convergent sequence, say τ i → τ . Again, choose N > n. Since the sequence is convergent, there

exists τk in the sequence such that dX(τk, τ) < 1
2N

. Hence, τi = τki for 1 ≤ i < N , and in particular

for 1 ≤ i ≤ n. Hence, τ ∈ [[ω]] and the cylinder set [[ω]] is closed. Therefore, cylinder sets in X are

both open and closed. More information on shift spaces can be found in [19].

Now, this language can be used to define a fractal using an IFS. To simplify the notation,

for ω ∈ Bn(X) we will use the notation fω = fωn ◦ fωn−1 ◦ · · · ◦ fω1 . The n-th iteration of an IFS

can now be written as

fn(K) =
⋃

ω∈Bn(X)

fω(K),

6



and hence, the attractor of the IFS can be written as

lim
n→∞

⋃
ω∈Bn(X)

fω(K).

Since we will frequently work in both X and on the attractor F , it will be helpful to define the

associated coding map π : X → F by π(ω) = lim
n→∞

fω|n(K).

1.5. Examples

Example 1.5.1 (Cantor Set). One of the most simple examples of a fractal is the Cantor set. Let

K = [0, 1], and define the following maps in the IFS:

f0(x) =
1

3
x and f1(x) =

1

3
x+

2

3
.

The first four iterations of the Cantor set are pictured below.

Figure 1.1. Cantor Set

Notice that every end point of every interval in any iteration is a point in the Cantor set.

For example, 1
3 and 8

9 are points in the Cantor set. It may be tempting to assume that all points in

the Cantor set are rational, but some quick analysis using symbolic dynamics reveals that irrational

points exist in the Cantor set. Consider a point x in the Cantor set with π(ω) = x, where π denotes

the coding map and for some ω ∈ {0, 1}N. Now, replace each 1 in ω with a 2 so that ω ∈ {0, 2}N.

We can calculate the location of the point as follows,

x =
∞∑
i=1

ωi
3i
.

For any periodic or eventually periodic sequence ω, x will be a rational number. However, if

7



ω is non-repeating, x will be an irrational number. It can also be shown that the Cantor set is

uncountable, but has zero Lebesgue measure (or length). For this reason, the Cantor set is a popular

counterexample for many problems in analysis. It is also an example of a totally disconnected set,

which means that the only connected subsets of the Cantor set are singletons.

Example 1.5.2 (Sierpiński’s Triangle). Another well-known and frequently used fractal is Sierpiński’s

triangle. Let K be a compact set in R2. For simplicity, we may assume that K is an equilateral

triangle of side length 1, with the left-most vertex at the origin. Define the maps in the IFS as

follows,

f0(x, y) =

(
1

2
x,

1

2
y

)
, f1(x, y) =

(
1

2
x+

1

2
,
1

2
y

)
, and f2(x, y) =

(
1

2
x+

1

4
,
1

2
y +

√
3

2

)
.

The first four iterations of Sierpiński’s triangle are pictured below.

Figure 1.2. Sierpiński’s triangle

Unlike the Cantor set, Sierpiński’s triangle is not totally disconnected. In fact, the boundary

of every triangle that appears in every finite iteration is part of Sierpiński’s triangle, meaning

that line segments exist within Sierpiński’s triangle. However, the Lebesgue measure (or area) of

Sierpiński’s triangle is zero.

1.6. Tree fractals

Let A0 ⊂ K be a compact, connected set with finite boundary, and consider a collection of

contractive maps fi : K → K defined by

fi(x) = cix+ αi, where 0 < ci < 1 and αi ∈ K for 1 ≤ i ≤ N.

Define f = {f0, f1, . . . , fN}, where f0 : X → X is given by f0(x) = x, and let f(A0) =
N⋃
i=0

fi(A0).

8



We will choose αi for 1 ≤ i ≤ N such that f(A0) is a connected set. The iterated function system

f = {f0, f1, . . . , fN} is called the tree iterated function system (TIFS).

Since f0 is the identity map, and fi is a contractive map for 1 ≤ i ≤ N , then for a large

enough choice of k, the Hausdorff distance between fk(A0) and fk+1(A0) be can arbitrarily small.

Since f : H →H is “almost” a contractive map, but not necessarily a contractive map, one needs

to check that the sequence {fk(A0)}∞k=0 converges.

Proposition 1.6.1. Let A0 ∈ H and f be a TIFS. The sequence {fk(A0)}k≥0 converges in

(H , D).

Proof. Let f = {fi}Ni=0 where f0 is the identity map, and each fi is a contractive map with

contractive factor ci for 1 ≤ i ≤ N . First, notice that fk(A0) ⊂ fk+1(A0). Also, notice that if

ω ∈ Bk(X) contains 0 as an entry, then fω contains the identity map, and hence, can be represented

by fτ for some τ ∈ Bm(X) with m < k. Hence, fω(A0) ⊂ fm(A0) ⊆ fk−1(A0). So, we can write

fk+1(A0) = fk(A0) ∪

 ⋃
ω∈Bk+1(Y )

fω(A0)

, where Y is the full shift with respect to the alphabet

Â = {1, 2, . . . , N}.

Using this observation, we obtainDH(fk(A0), fk+1(A0)) = DH(fk(A0),
⋃
ω∈Bk+1(Y ) fω(A0)).

Let cmax = max{ci : 1 ≤ i ≤ N} and d0 = |A0| = diam(A0). Then, DH(fk(A0),
⋃
ω∈Bk+1(Y ) fω(A0))

≤ ck+1
maxd0. Since cmax < 1, then we can choose k large enough such that DH(fk(A0), fk+1(A0)) can

be made arbitrarily small. Hence, for ε > 0, we can find M such that
cM+1
max

1− cmax
d0 < ε. Then, for

m,n ≥M with m < n, we have:

DH(fm(A0), fn(A0)) ≤
n−m−1∑
l=0

DH(fm+l(A0), fm+l+1(A0)) ≤
n−m−1∑
l=0

cm+l+1
max d0

=
cmmax − cnmax

1− cmax
cmaxd0 <

cm+1
max

1− cmax
d0 ≤

cM+1
max

1− cmax
d0 < ε.

This implies that the sequence {fk(A0)}∞k=0 is a Cauchy sequence in the space (H , DH). Hence,

the sequence {fk(A0)}∞k=0 must be convergent since (H , DH) is a complete metric space [16].

By Proposition 1.6.1, F = lim
k→∞

fk(A0), is well-defined. The set F is the attractor of the

TIFS, and we will call F the (full) tree fractal. The attractor F depends on the set A0, since the

contractive mapping principle does not apply to the TIFS.
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A tree fractal is interesting on its own, but the canopy is much more interesting due to its

fractal-like structure. In order to identify the canopy of a tree fractal, which is the attractor of an

IFS f̂ = {f1, f2, . . . , fN}, we observe that the main role of the identity map is preserving the “trunk”

of the tree; hence, the “branches” of the tree are built by the remaining contractions f1, . . . , fN ,

and then preserved under the identity map. Notice that f is not a contractive map on (H , D).

However, f̂ is an IFS, just like the IFSs that were introduced in section 1.3. Therefore, we know

an attractor exists with respect to f̂ . We define the canopy of the TIFS to be Fc = lim
n→∞

f̂n(A0).

Example 1.6.2 (T-tree). Let X0 = {(0, y) : 0 ≤ y ≤ 1} ∪ {(x, 1) : −1 ≤ x ≤ 1} be our initial set

and {f0, f1, f2} be the IFS with

f0(x, y) = (x, y), f1(x, y) =

(
1

2
x− 1,

1

2
y + 1

)
and f2(x, y) =

(
1

2
x+ 1,

1

2
y + 1

)
.

Notice that in the case of the T-tree, the maps fi will not map from X0 → X0, but we can find a

compact set K such that F ⊂ K so that fi : K → K for all 0 ≤ i ≤ 2. However, we are interested

in the image of X0. The first two iterations of the T-tree are displayed below.

Figure 1.3. T-tree

The contractive factors chosen for this example (both 1
2) create an interesting situation,

where the canopy of this T-tree is the full line segment {(x, 2) : −2 ≤ x ≤ 2}. By varying the

contractive ratios, other interesting examples arise. For instance, take the similarity ratios for both

f1 and f2 to be 1
3 . In this case, the canopy will form a Cantor set. By choosing different contractive

ratios for each map, say 1
3 for f1 and 1

2 for f2, the resulting canopy will not longer be a subset of a

line, but will rather be scattered in a diagonal-like pattern.

Example 1.6.3 (Sierpiński’s Triangle Tree). Let X0 = l1∪ l2∪ l3, where each li is a line segment of

length 1, emanating from the origin with 2π
3 angle of separation between each line. (We will assume

10



l1 has endpoints (0, 0) and (0, 1), l2 has endpoints (0, 0) and (−
√

3
2 ,−

1
2), and l3 has endpoints (0, 0)

and (
√

3
2 ,−

1
2).) Next, let

f1(x, y) =

(
1

2
x,

1

2
y + 1

)
, f2(x, y) =

(
1

2
x−
√

3

2
,
1

2
y − 1

2

)
, and f3(x, y) =

(
1

2
x+

√
3

2
,
1

2
y − 1

2

)
.

In this case, the canopy of the tree fractal will form Sierpiński’s triangle. The first two iterations

are pictured below.

Figure 1.4. Sierpiński Triangle Tree
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2. CHAPTER TWO - FRACTAL DIMENSIONS

Since fractals behave in a way that defies our normal conventions for measurement, like

countability and Lebesgue measure, the concept of fractal dimension was developed as a way to

quantify the space filled by a fractal. Although fractal dimensions can be defined in vastly different

ways, they each serve a purpose for different types of problems. In this chapter, we will formally

define three types of fractal dimensions and will discuss the foundations for fractal dimension

calculations for IFSs.

2.1. Fractal dimension definitions

In order for a fractal dimension to make sense, there are desirable properties for such a

dimension to satisfy. Let us consider the following properties for a fractal dimension, denoted by

dim(·) [9].

• Monotonicity: For any subset A ⊂ B, the dimension satisfies dim(A) ≤ dim(B).

• Countable stability: If {E1, E2, . . .} is a countable collection of sets, then dim (
⋃∞
i=1Ei) =

supi≥1{dim(Ei)}.

• Countable sets: Let A be a countable set. Then, dim(A) = 0.

• Open sets in Rn: Let A ⊂ Rn be an open set. Then, dim(A) = n.

Although this is not an exhaustive list of desirable properties, it gives basic expectations for a

dimension to satisfy.

One of the most frequently used fractal dimensions is Hausdorff dimension. The popularity

of Hausdorff dimension is due to the fact it is defined by a measure, which means many problems

involving Hausdorff dimension can be solved by exploiting properties of the measure. However,

in practice, Hausdorff dimension can be quite difficult to calculate. In order to formally define

Hausdorff dimension, we must first define Hausdorff measure. Let E ⊆ K. Letting Hsε(E) =

inf
U∈O

∑
U∈U

(diam(U))s, where O is the collection of all open ε-covers of E and s ≥ 0 is fixed, the s-

dimensional Hausdorff outer measure is defined to be Hs = lim
ε→0
Hsε. Restricting the outer measure
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to measurable sets, one defines the s-dimensional Hausdorff measure, Hs. The Hausdorff dimension

of E, denoted dimH(E), is defined as the unique value of h such that:

Hs(E) =

 0, s > h

∞, s < h.

Hausdorff dimension satisfies a number of properties, including all of the properties listed at the

beginning of this section [9].

Another commonly used fractal dimension is box dimension. Box dimension is popular

because it is easy to define and to use in practice. For example, scientists estimate box dimension

to quantify the complexity of a natural fractal-like object, such as a coast line. For a non-empty,

bounded set E ⊂ K, let Nr(E) denote the smallest number of sets of diameter at most r that can

cover E. The lower and upper box dimensions of E are defined, respectively, as

dimB(E) = lim inf
r→0

logNr(E)

− log r
and dimB(E) = lim sup

r→0

logNr(E)

− log r
.

In the case in which the limit exists so that the upper and lower box dimensions are equal, we refer

to this as the box dimension [9], and denote it by dimB(·)

Box dimension is relatively easy to use in calculations, but is sometimes difficult to build

theory upon due to its definition. Another major disadvantage with box dimension is that it is not

countably stable. It can be shown that for a set E, dimB(E) = dimB(Ē), where Ē denotes the

closure of E [9]. Consequently, a dense subset has the same box dimension as the set in which it is

dense. For example, Q∩ [0, 1] is dense in [0, 1], and hence dimB(Q∩ [0, 1]) = dimB([0, 1]) = 1. The

set Q∩ [0, 1] is countable with dimB(x) = 0 for all x ∈ Q∩ [0, 1]. Therefore, box dimension cannot

be countably stable.

The definitions of Hausdorff and box dimensions are vastly different, with Hausdorff dimen-

sion relying on a measure and box dimension relying on a covering. Another fractal dimension,

called packing dimension, was developed by defining a measure using a packing (instead of a cov-

ering) of disjoint balls of varying diameters. More formally, let a δ-packing of E be a countable

13



collection of disjoint balls, {Bi}, of radii at most δ > 0 with centers in E. For δ > 0, define functions

P sδ (E) = sup

{ ∞∑
i=1

(diam(Bi))
s : {Bi}i≥1 is a δ-packing of E

}

and P s0 (E) = lim
δ→0

P sδ (E). Now, the s-dimensional packing measure of E is defined as

P s(E) = inf

{ ∞∑
i=1

P s0 (Ei) : E ⊂
∞⋃
i=1

Ei

}
.

The packing dimension of E, denoted dimP (E), is the unique value of s such that:

P r(E) =

 0, r > s

∞, r < s.

For E ⊂ K, the following inequalities are well-known [6,9]

dimH(E) ≤ dimP (E) ≤ dimB(E) and dimH(E) ≤ dimB ≤ dimB(E).

2.2. Fractal dimension of IFS attractor

Given the definitions of fractal dimensions, one may assume that actual dimension calcula-

tions would be difficult. However, in certain cases for IFSs, the fractal dimensions of the attractors

can be obtained via relatively straight-forward calculations, provided they satisfy a well-known

condition.

Definition 2.2.1. An IFS {K; f1, . . . , fN} satisfies the open set condition (OSC) if there exists

some non-empty, bounded, open subset U ⊂ K such that
N⋃
i=1

fi(U) ⊂ U, where the union is disjoint.

The following result exists for IFSs containing similarities which satisfy the OSC [9,16].

Proposition 2.2.2. Let {K; f1, . . . , fN} be an IFS satisfying the OSC, where each fi is a similarity

with similarity ratio 0 < ci < 1 for 1 ≤ i ≤ N . Then, dimH(F) = s, where F is the attractor and

s satisfies
N∑
i=1

csi = 1.
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If each fi is a contractive mapping instead of a similarity with cid(x, y) ≤ d(fi(x), fi(y)) ≤

c̄id(x, y) for each 1 ≤ i ≤ N and all x, y ∈ K, then s ≤ dimH(F) ≤ s̄ where
N∑
i=1

csi = 1 =
N∑
i=1

c̄s̄i [9].

One variation of an IFS attractor is a Markov attractor of an IFS, which is defined via N

contractive functions and an associated N × N matrix A. The Markov attractor of an IFS only

contains those points associated with an admissible sequence with respect to matrix A, which is a

sequence of integers (il)l≥1 such that (A)il,il+1
6= 0 for all l ≥ 1. A matrix A is primitive if there

exists some integer M such that (AM )ij > 0 for all 1 ≤ i, j ≤ N , where (AM )ij denotes the ij-entry

of AM .

Let FA denote the Markov attractor, i.e. the collection of all points in F which are associated

with an admissible sequence with respect to A. An IFS is called disjoint if fi(F) ∩ fj(F) = ∅ for

all i 6= j and 1 ≤ i, j ≤ N , which is a stronger condition than the OSC. In [7], Ellis and Branton

proved the following theorem about the Hausdorff dimension of a Markov attractor of an IFS.

Theorem 2.2.3. Let A be a primitive N × N (0,1)-matrix and FA be the Markov attractor of a

disjoint IFS (K; f1, . . . , fN ). Suppose that sid(x, y) ≤ d(fi(x), fi(y)) ≤ s̄id(x, y), for all x, y ∈ K,

1 ≤ i ≤ N , and for some constants 0 < si ≤ si < 1. Then,

dimH(FA) ≤ u, for the value u which satisfies ρ(AS̄u) = 1,

where ρ(·) denotes the spectral radius and S̄u is the diagonal matrix with diag(s̄1
u, . . . , s̄n

u).

In the same paper [7], Ellis and Branton made the following conjecture for the lower bound:

dimH(FA) ≥ l where ρ(ASl) = 1 and Sl is a diagonal matrix with diag(s1
l, . . . , sn

l).

An N × N matrix A is called irreducible if given i, j, 1 ≤ i, j ≤ N , there exists some

M such that (AM )ij 6= 0. Every primitive matrix is irreducible, but there exist matrices which

are irreducible and not primitive [19]. Roychowdhury proved the conjecture proposed by Ellis

and Branton, and also generalized Theorem 2.2.3 by allowing the matrix A to be irreducible and

requiring the IFS only satisfy the OSC [23].

In Chapter 3, we will relate the attractors of the systems in these results to subfractals. In

Chapter 4, we will extend the results of Roychowdhury to include an analogous result for attractors

induced by reducible matrices and more general subfractals.
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2.3. Examples

Example 2.3.1 (Cantor Set). Recall the construction of the Cantor set in Chapter 1. Each map

in the IFS for the Cantor set is a similitude with similarity ratio 1
3 . Also, the IFS is disjoint, so by

applying Theorem 2.2.2, we are looking for the value h which satisfies

1

3

h

+
1

3

h

= 1.

Hence, the Hausdorff dimension of the Cantor set is given by dimH(F) = log 2
log 3 .

Using the known relationships between different fractal dimensions, log 2
log 3 is a lower bound

for the box dimension of the Cantor set. Notice at the first iteration that we have two intervals,

each of length 1
3 , and at the second iteration we have four intervals, each of length 1

9 . Continuing

this pattern, we notice that at iteration k, we have 2k intervals, each of length 1
3k

. Let 0 < r < 1

be given and choose k such that 1
3k+1 ≤ r ≤ 1

3k
. Notice for this value of r, it must be true that

Nr(F) < 2k+1. Then, we obtain

dimB(F) = lim
r→0

log(Nr(F))

− log r
≤ lim

k→∞

log(2k+1)

log(3k)
=

log 2

log 3
.

Hence, the box dimension of the Cantor set is given by dimB(F) = log 2
log 3 .

Example 2.3.2 (Sierpiński’s Triangle). Sierpiński’s Triangle also has an IFS containing three

similitudes, each with similarity ratio 1
2 . The IFS satisfies the OSC in this case, so again by

Theorem 2.2.2, we obtain dimH(F) = log 3
log 2 . Following the same arguments as in the Cantor set

example, the box dimension of Sierpiński’s triangle is also given by dimB(F) = log 3
log 2 .

Example 2.3.3 (Markov attractor of Cantor set IFS). Now, let the Cantor set be as defined above,

but now let A =

1 1

1 0

. Let FA denote the set of all points in the Cantor set which correspond to

an admissible sequence with respect to A. Since A is a primitive matrix (and therefore irreducible

matrix), we can apply Theorem 2.2.3. First, let us calculate the matrices

S =

1
3 0

0 1
3

 and AS(h) =

1
3

h 1
3

h

1
3

h
0
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necessary for the theorem. We are looking for the value of h such that ρ(AS(h)) = 1. Notice that

the eigenvalues of AS(h) are λ1 = 1
3

h · 1+
√

5
2 and λ2 = 1

3

h · 1−
√

5
2 . Hence, by Theorem 2.2.3, the

Hausdorff dimension is given by

dimH(FA) =
log(1+

√
5

2 )

log 3
.

It should be noted here that Example 2.3.3 is not surprising, given that each map in the

IFS has the same contractive factor. The matrix A chosen for this example is related to a special

subshift, called the Golden Mean Shift, and we see that the spectral radius of A is the golden

ratio, 1+
√

5
2 . The true flavor of Theorem 2.2.3 appears in examples in which the IFS has varying

contractive ratios for different maps. The reader can find more interesting examples later in Chapter

4, after a more thorough explanation of subshifts is given.
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3. CHAPTER THREE - SUBFRACTALS

Finding a definition for a subfractal is not a trivial task. Due to the recursive behavior of

fractals, an arbitrary subset of a fractal will likely inherit most of the properties of the fractal as a

whole. In particular, the Hausdorff and box dimensions of the subset may be equal to the Hausdorff

and box dimensions, respectively, of the whole fractal. Is there a way to define a “subfractal” such

that the set is genuinely different than the whole fractal, in the sense that the fractal dimensions

of the subfractal and whole fractal are not equal?

The answer to that question is yes, but we must first develop a deeper understanding of

the associated symbolic space. In particular, we will examine different types of subshifts of the full

shift space, X, and will eventually define a subfractal using specific types of subshifts.

3.1. Subshift of finite type

Let (X,σ) be a shift space. Let us consider a subset Y ⊆ X that is shift invariant, which

means that σ(Y ) = {σ(ω) : ω ∈ Y } = Y .

Definition 3.1.1. A subshift of X is a subset Y ⊆ X that is both shift invariant and closed.

One way to define a subshift is by using a list of forbidden words. Given a subshift Y ⊂ X,

a forbidden word is a finite string ω ∈ B∗(X) that does not appear anywhere in τ for all τ ∈ Y .

Definition 3.1.2. A subshift of finite type (SFT) is a subshift which can be described with a finite

list of forbidden words.

SFTs are not only easy to describe, but also have valuable connections with matrices and

graphs that help us understand its properties in detail.

In order to formally describe the connection between SFTs and matrices, we must first

define an operation on finite words. Let ω, ξ ∈ Bk−1(X). The word ω is compatible with ξ if

ω2 . . . ωk−1 = ξ1 . . . ξk−2. A compatible pair is a pair (ω, ξ) ∈ Bk−1(X) × Bk−1(X), where ω is

compatible with ξ. Let (Bk−1(X) × Bk−1(X))comp denote the collection of all compatible pairs

(ω, ξ) ∈ Bk−1(X) × Bk−1(X). Define an operation � : (Bk−1(X) × Bk−1(X))comp → Bk(X) by

ω � ξ = ω1ω2 . . . ωk−1ξk−1 (= ω1ξ1ξ2 . . . ξk−1).

18



Let X be the full shift with alphabet A = {1, . . . ,m}. Let XF be an SFT with forbidden

words F = {τ1, . . . , τ l}. Suppose that `(τ i) < `(τ j) for some 1 ≤ i, j ≤ l. If `(τ j) = n, then we can

replace τ i with finitely many words, each of length n, which contain the string τ i. Without loss of

generality, we can assume τ i ∈ Bk(X) for all 1 ≤ i ≤ l. Let N = mk−1, where m = |A|. We will

construct an N x N adjacency matrix A as follows. Label the rows with all possible words (both

allowable and forbidden) of length k − 1, i.e. label the rows with {ω1, . . . , ωN} = Bk−1(X). Label

the corresponding columns similarly. Let the entry be aij = 0 if ωi is not compatible with ωj or

aij = 0 if ωi is compatible with ωj but ωi � ωj ∈ F . The entry aij = 1 if ωi is compatible with ωj

and ωi � ωj ∈ Bk(XF ).

For the sake of clarity, consider the following examples. First, consider the SFT on the

alphabet A = {0, 1} with forbidden word F1 = {11}. The forbidden word has length 2, and

therefore the adjacency matrix will be 2 × 2 since |B1(X)| = 2. The adjacency matrix will be of

the form:

1 1

1 0

 .
Next, let us consider an SFT on the same alphabet A = {0, 1} but with forbidden word

list F2 = {001, 100, 111}. Since each forbidden word has length 3, we will need to consider a 4 x 4

matrix since |B2(X)| = 4. We will choose the following labeling of rows: R1 → 00, R2 → 01, R3 →

10, R4 → 11. The corresponding matrix will be of the form:



1 0 0 0

0 0 1 1

0 1 0 0

0 0 1 0


.

Here, the entries a12 = a31 = a44 = 0 correspond to the forbidden words 001, 100, 111,

respectively. The entries a13 = a14 = a21 = a22 = a33 = a34 = a41 = a42 = 0 correspond to pairs

which are not compatible. The 1’s in the matrix all correspond to compatible pairs which are also

allowable words. For the remainder of the paper, we will use XA to denote the subshift, where A

is the adjacency matrix.
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To each such N x N adjacency matrix, we can associate a directed graph GA = (V,E)

where V = {v1, v2, . . . , vN} and E = {eij}Ni,j=1 where eij is an edge from vi to vj if the entry aij = 1

from A. A directed graph G = (V,E) is called strongly connected if for any two vertices vi, vj ∈ V ,

there exists a path from vi to vj .

Proposition 3.1.3. A matrix A is irreducible iff it is associated with a graph GA which is strongly

connected.

For details on Proposition 3.1.3, see [19]. By Perron-Frobenius Theorem, we know that if A

is an irreducible matrix, then A has a positive eigenvector vA corresponding to a positive eigenvalue

λA ∈ R such that |µ| ≤ λA where µ is any eigenvalue of A [19]. For any non-negative irreducible N

x N matrix A with a positive eigenvector and corresponding positive maximal eigenvalue λ, there

exist constants k1, k2 > 0 independent of n such that

k1λ
n ≤

N∑
i,j=1

(An)ij ≤ k2λ
n,

for all n ≥ 1. We will utilize this consequence of the Perron-Frobenius Theorem while calculating

the fractal dimensions for subfractals in Chapter 4.

Example 3.1.4 (Golden Mean Shift). Let us take a closer look at the Golden Mean Shift (GMS),

one of the most famous SFTs. Let A = {0, 1} be an alphabet and F = {11} be the forbidden word

list. The adjacency matrix for this subshift, as briefly mentioned above, is

A =

1 1

1 0.

 .
The graph associated with this SFT is displayed below.

0 1

Figure 3.1. GMS graph
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Example 3.1.5. Another SFT was defined above to illustrate the construction of an adjacency

matrix. Let A = {0, 1} and F = {001, 100, 111}. The graph associated with this SFT is displayed

below.

00 01

10 11

Figure 3.2. SFT graph

It should be noted here that A is a reducible matrix, and hence this graph presentation of

this subshift is not strongly connected. However, there exist two strongly connected subgraphs, a

fact we will utilize later in Chapter 4.

3.2. Sofic Subshifts

We now turn our attention to a wider class of subshifts called sofic subshifts. Every SFT is

a sofic subshift, but there exist sofic subshifts which are not SFTs [19]. Much like an SFT, there

exists a graphical presentation for each sofic subshift. However, the graphs used to represent sofic

subshifts are labeled graphs, which means each edge on the graph carries a label. The graphs used

to describe SFTs had no labels on the edges but the vertices represented the letters (or finite words)

associated with the symbolic space.

Let G = (G,L) be a labeled graph, consisting of a graph G on finitely many vertices with

edge set E and a labeling L : E → A, where A is the finite alphabet. Given a path π = e1e2 . . . en

on G, we define the label of path π as L(π) = L(e1)L(e2) . . .L(en), for any n ≥ 1. If ξ is an infinite

path, say ξ = e1e2e3 . . ., similarly we define the label of the path as L∞(ξ) = L(e1)L(e2)L(e3) . . . .

The set of all labels of infinite paths on G is denoted by

XG = {x ∈ X : x = L∞(ξ) for some infinite path ξ on G}.
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Definition 3.2.1. A subset Y ⊆ X is a sofic subshift if Y = XG for some labeled graph G.

We emphasize that the definition only requires that Y is a subset, not necessarily a subshift. It

can be shown by using the definition that the subset Y must be a subshift if it has a labeled graph

presentation. Given a sofic subshift, a labeled graph G which represents the subshift (i.e. Y = XG)

is not necessarily unique. However, a little more can be said about the properties of such a graph.

It is known that every sofic shift has a right-resolving graph presentation, which means that

for each vertex v in G, all edges leaving v have different labels [19]. Hence, if XG is a sofic subshift,

we will assume that G is a right-resolving presentation. A minimal right-resolving presentation of

a sofic subshift Y is a presentation with the fewest vertices among all right-resolving presentations

of Y . A minimal right-resolving presentation is not necessarily unique, but it allows one to fix

the number of vertices for a presentation of the subshift Y . Notice that a minimal right-resolving

presentation G has k total vertices for some fixed value k. Now, define a k × k adjacency matrix

MG by defining the entries as mij =
∑

eij
L(eij), where eij is an edge from vertex vi to vj in the

graph G. For more information on sofic subshifts and associated graphs, see [19].

Other characterizations of sofic subshifts have been discovered, each of which has a purpose

for different types of problems. A common characterization of a sofic subshift (Y, σ) is that it must

be a factor of some SFT, say (X,σ). That is, there exists a continuous map ψ : X → Y such that

σ ◦ ψ = ψ ◦ σ. Another helpful characterization involves the number of follower sets for a subshift.

The follower set of a word ω ∈ B∗(Y ) for some subshift Y is the set of all finite words that can

follow ω, denoted by FY (ω) = {τ ∈ B∗(Y ) : ωτ ∈ B∗(Y )}. For example, the follower set of any

finite word ξ ∈ B∗(X) for the full shift X is FX(ξ) = B∗(X). A subshift is sofic if and only if it

has a finite number of distinct follower sets.

Example 3.2.2 (Golden Mean Shift). In the previous section, we showed that the Golden Mean

shift is an SFT, and hence must also be sofic. Let A = {0, 1} and F = {11}. Let XA denote the

Golden Mean shift. Notice that the language of XA (or collection of all finite words in XA) is given

by

B∗(XA) = {0, 1, 00, 01, 10, 000, 001, 010, 100, 101, . . .}.
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Next, notice that the follower sets of 0 and 1 are given by

FXA(0) = {0, 1, 00, 01, 10, 000, 001, 010, 100, 101, . . .} = B∗(XA) and

FXA(1) = {0, 00, 01, 000, 001, 010, 0000, 0001, 0010, 0100, 0101, . . .}.

These two follower sets determine the follower set of every finite word since FXA(ω0) = FXA(0)

and FXA(ω1) = FXA(1) for any ω ∈ B∗(XA). Therefore, the Golden Mean shift has two distinct

follower sets.

Example 3.2.3 (Even Shift). Let A = {0, 1} and F = {101, 10001, 1000001, . . .} be the list of

forbidden words. In this subshift, allowable words satisfy the property that consecutive 1’s are

separated by an even number of 0’s, hence the name “Even Shift”. Notice the list of forbidden

words is not finite and it is impossible to find a finite list of forbidden words to represent this

subshift, meaning that this subshift is not an SFT. However, a graph presentation for this subshift

exists and is displayed below.

1

0

0

Figure 3.3. Even shift graph

Therefore, the even shift is a sofic subshift. This graph is of particular interest because it resembles

the graph for the Golden Mean Shift.

Next, let us find the follower sets for the even shift. Let

B∗(Y ) = {0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 110, 111, . . .}

be the language of Y , the even shift. First, consider the follower set of 0, denoted by FY (0). Notice

that any word ω ∈ B∗(Y ) in the language is allowed to follow 0, i.e. 0ω ∈ B∗(Y ). Therefore,

the follower set of 0 is given by FY (0) = B∗(Y ). However, the follower set of 1 is not the entire
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language, as 01 ∈ B∗(Y ) but 101 ∈ F . We find that

FY (1) = {0, 1, 00, 10, 11, 000, 001, 100, 110, 111, . . .}.

Next, notice that any word ending in 1 will have a follower set equal to FY (1). Also notice that

any finite string of 0’s will have the same follower set as FY (0). The only words that will produce

a new follower set are of the form ω10n for any ω ∈ B∗(Y ) and any n ≥ 1. We find that

FY (10) = {0, 00, 01, 000, 010, 011, . . .}.

Now, notice that for any ω ∈ B∗(Y ),

FY (ω10n) = FY (1) for n even ,

FY (ω10n) = FY (10) for n odd .

Hence, the even shift has three distinct follower sets, FY (0), FY (1), and FY (10).

Example 3.2.4 (S-gap shifts). S-gap shifts are a class of subshifts defined by a subset S ⊂ N∪{0}.

Let A = {0, 1}, and let X = AZ be the collection of all two-sided infinite sequences from A.

Allowable words follow the rule that any consecutive pair of 1’s is separated by n 0’s, where n ∈ S.

It should be noted that if the set S is infinite, then to ensure that the subshift is closed it must also

contain all strings that start or end with an infinite string of 0’s. Both the golden mean shift and

the even shift are examples of S-gap shifts, with SGMS = {1, 2, 3, . . .} for the golden mean shift

and Seven = {0, 2, 4, . . . , 2n, . . .} for the even shift.

An S-gap shift can be an SFT, sofic, or neither. An S-gap shift is sofic if the gaps between

consecutive elements of S are eventually periodic [4]. More precisely, let S = {s0, s1, s2, . . .} with

si < si+1 for all i ≥ 0. Let D = {s0, d1, d2, d3, . . .} where di = si− si−1. If D is eventually periodic,

then the S-gap shift is sofic.

3.3. Entropy of a subshift

In Chapter 1, we discussed the necessity of having a property to distinguish fractals, and the

answer to that problem was fractal dimensions. In symbolic dynamics, there is a similar problem
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with finding a way to quantify a subshift, but in this case, the answer is entropy. It is, in some

sense, a measure of the complexity of the system. Entropy is often used to characterize a dynamical

system because it is invariant under conjugacy, which is an important feature in ergodic theory.

Defining entropy can be a tedious process in a general dynamical system, but we can simplify this

process with the following basic definition for symbolic spaces.

Definition 3.3.1. The entropy of a subshift Y is given by

h(Y ) = lim
n→∞

1

n
log |Bn(Y )|,

where | · | denotes cardinality.

Although this is a simple definition, actual calculations of entropy for subshifts can be

complicated. In the case of SFTs and sofic subshifts, the adjacency matrices along with the Perron-

Frobenius Theorem help to simplify entropy calculations.

First, consider an SFT, XA, with forbidden words of length k > 1 and N × N adjacency

matrix A. Then,

|Bn(XA)| =
N∑

i,j=1

(An+k−1)ij .

Assuming that A is irreducible, one may apply the Perron-Frobenius Theorem, as seen in Section

3.1. Hence, it must be the case that the entropy of an SFT XA is given by

h(XA) = log(λA),

where λA is the maximal eigenvalue of A.

In the sofic case, an adjacency matrix can be constructed similarly. Every sofic subshift has

a labeled graph presentation, say G = (G,L). Let AG denote the adjacency matrix with respect to

the underlying graph G. If AG is an irreducible matrix, the entropy of a sofic subshift is given by

h(XG) = log(λAG), where λAG denotes the maximal eigenvalue of AG [19]. Later in this chapter,

we will discuss the connection between the entropy of a subshift and the Hausdorff dimension of a

subfractal induced by that subshift.

25



Example 3.3.2 (Golden Mean Shift). The eigenvalues of A, the adjacency matrix given in Example

3.1.3, are λ1 = 1+
√

5
2 and λ2 = 1−

√
5

2 . Hence, the entropy of the golden mean shift is h(XA) =

log(1+
√

5
2 ).

Example 3.3.3 (Even Shift). Notice that the underlying graph with respect to the labeled graph

of the even shift (given in Example 3.2.2) is identical to the graph presentation of the golden mean

shift. Therefore, the entropy of the even shift is also given by h(X) = log(1+
√

5
2 ).

It is tempting to assume that the even shift and the golden mean shift are conjugate because

they have equal entropy values, but it is not true. Even though entropy is invariant with respect

to conjugacy, two distinct and very different subshifts may have the same entropy.

Example 3.3.4 (S-gap shifts). The entropy of an S-gap shift is given by log(λ), where λ is the

unique positive solution of ∑
n∈S

1

xn+1
= 1.

See [25] for details.

3.4. Subfractals induced by SFTs or sofic subshifts

Let {K; f1, . . . fm} be a hyperbolic IFS, F denote the attractor of the IFS, and ci, c̄i denote

the contractive bounds on the functions cid(x, y) ≤ d(fi(x), fi(y)) ≤ c̄id(x, y) for 1 ≤ i ≤ m. Let

A = {1, . . . ,m} be an alphabet, and let X denote the full shift with alphabet A. Define the

associated coding map π : X → F by π(ω) = lim
n→∞

fω|n(K).

For each such IFS, we can define a subfractal of F induced by subshift XA by only con-

sidering the points associated with an allowable word from the subshift. Let XA be an SFT and

define FXA = {π(ω) : ω ∈ XA}.

As defined in section 2, fix an N ×N adjacency matrix A. Let Bk−1(X) = {τ1, τ2, . . . , τN},

where N = mk−1. Define two other N ×N matrices, S0 and S, as follows:

S0 =



cτ1 0 · · · 0

0 cτ2 · · · 0

...
...

. . .
...

0 0 · · · cτN .


and S =



ci1 0 · · · 0

0 ci2 · · · 0

...
...

. . .
...

0 0 · · · ciN


,
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where ij ∈ A for all 1 ≤ j ≤ N and the order of the i′js is chosen so that

N∑
i,j=1

(S0AS)i,j =
∑

ω∈Bk(XA)

cω.

Similarly, we define

S̄0 =



c̄τ1 0 · · · 0

0 c̄τ2 · · · 0

...
...

. . .
...

0 0 · · · c̄τN


and S̄ =



c̄i1 0 · · · 0

0 c̄i2 · · · 0

...
...

. . .
...

0 0 · · · c̄iN


.

Example 3.4.1 (Cantor subfractal-Golden Mean Shift). Let {K; f1, f2} be the IFS with K = [0, 1],

f0(x) = 1
3x, and f1(x) = 1

3x + 2
3 . Let XA be the Golden Mean Shift (from Example 3.1.4) with

forbidden word list {11}. The first four iterations of the subfractal induced by this IFS and the

Golden Mean Shift are pictured below.

Figure 3.4. GMS Cantor subfractal

Example 3.4.2 (Another Cantor subfractal). Let the IFS be the same as in Example 3.4.1, and

let XA be the subshift from Example 3.1.5 with forbidden word list {001, 100, 111}. The first four

images of the subfractal induced by the IFS and XA are pictured below.
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Figure 3.5. Cantor subfractal

Example 3.4.3 (Sierpiński’s Triangle Subfractal). Let {K; f1, f2, f3} be the IFS with K as in

Example 1.4.2, f0(x, y) = (1
2x,

1
2y), f1(x, y) = (1

2x+ 1
2 ,

1
2), and f2(x, y) = (1

2x+ 1
4 ,

1
2y+

√
3

2 ). Let XA

be a SFT with forbidden word list {12, 21}. The first three iterations of the subfractal are pictured

below.

Figure 3.6. Sierpiński’s triangle subfractal

Recall the Markov attractor of an IFS used by Ellis, Branton, and Roychowdhury in

Chapter 2. A Markov attractor of an IFS is defined via m contractive maps and an m×m matrix

A, where the Markov attractor only contained those points associated with an admissible sequence

with respect to matrix A. Notice that a system of this form coincides with a subfractal induced by

an SFT which is defined by a forbidden word list in which each word has length 2.

Now, let us consider a subfractal induced by a sofic subshift. Let {K; f1, . . . , fm} be a

hyperbolic IFS with cid(x, y) ≤ d(fi(x), fi(y)) ≤ cid(x, y) for 1 ≤ i ≤ m and all x, y ∈ K. For

purposes of dimension calculations, we introduce a real-valued variable t ∈ R. We will define two

k × k matrices, AG,t and AG,t similar to the matrix MG in Section 3.2. Let AG,t be defined by the
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entries a
(t)
ij =

∑
eij
ct(L(eij))

, where a
(t)
ij denotes the (i, j)-th entry of AG,t. Let AG,t be defined by the

entries a
(t)
ij =

∑
eij
ct(L(eij))

.

Recall that a finite word from a sofic subshift, say XG , is associated with a finite labeled

path in the graph G, but that path is not necessarily unique. For this reason, we require that the

right-resolving graph presentation of the sofic subshift be minimal. In Chapter 4, specifically in

Lemma 3.2.1, we will see that

1

k

k∑
i,j=1

(AnG,t)i,j ≤
∑

ω∈Bn(XG)

ctω ≤
k∑

i,j=1

(AnG,t)i,j ,

for any n ≥ 1, where k denotes the number of vertices in G.

Example 3.4.4 (Cantor subfractal - Even shift). Let {K; f1, f2} be the IFS of the Cantor set and

XG be the even shift (as seen in Example 3.1.5). The first four iterations of the subfractal induced

by this IFS and subshift are pictured below.

Figure 3.7. Even shift Cantor subfractal
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4. CHAPTER 4 - FRACTAL DIMENSION OF

SUBFRACTALS

In this chapter, we will develop a technique that enables us to calculate some fractal di-

mensions of subfractals. For certain types of IFSs, a topological pressure function is related to the

Hausdorff dimension of the attractor. In particular, the zero of the topological pressure function

is equal to the Hausdorff dimension for some select classes of IFSs. For example, consider the

attractor of a disjoint IFS containing m similarity maps with similarity ratios ci for 1 ≤ i ≤ m.

Finding the zero of a topological pressure function associated with such an IFS simplifies to finding

the value the value h which satisfies
m∑
i=1

chi = 1,

as we saw in Chapter 1. In this chapter, we will formally define a more general topological pressure

function. Then, using the zeros of topological pressure functions, we will find bounds for the

Hausdorff and upper box dimension of subfractals, for the specific classes discussed in Chapter 3.

4.1. Topological Pressure

In the broadest sense, pressure functions serve various purposes in ergodic theory, often in

problems associated with entropy. For purposes of this paper, we define two specific topological

pressure functions associated with an IFS {K; , f1, . . . , fm} and SFT XA as follows.

Definition 4.1.1. The lower topological pressure function of FXA is given by

P (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ctω

 ,

where ci is the lower contractive bound on the map fi for 1 ≤ i ≤ m. Similarly, we define the upper

topological pressure function by

P̄ (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

c̄tω

 ,

where c̄i is the the upper contractive bound on fi for 1 ≤ i ≤ m.
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Proposition 4.1.2. The lower and upper topological pressure functions P (t) and P̄ (t) are strictly

decreasing, convex, and continuous on R.

Proof. We will show the proof for P (t). The proof for P̄ (t) follows similarly. Let δ > 0. By using

the fact that cω ≤ cnmax for all ω ∈ Bn(XA), where cmax = max1≤i≤m{ci}, we have

P (t+ δ) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ct+δω

 ≤ lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ctωc
nδ
max


= lim

n→∞

1

n
log

cnδmax ∑
ω∈Bn(XA)

ctω

 = lim
n→∞

1

n
[nδ log(cmax)] + P (t)

= δ log(cmax) + P (t) < P (t),

since 0 < cmax < 1. Hence, P (t) is strictly decreasing. If t1, t2 ∈ R and a1, a2 > 0 with a1 + a2 = 1,

then, by Hölder’s inequality, we have

P (a1t1 + a2t2) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

(cω)a1t1+a2t2


= lim

n→∞

1

n
log

 ∑
ω∈Bn(XA)

((cω)t1)a1((cω)t2)a2


≤ lim

n→∞

1

n
log

 ∑
ω∈Bn(XA)

(cω)t1

a1  ∑
ω∈Bn(XA)

(cω)t2

a2

= a1P (t1) + a2P (t2).

Hence, P (t) is a convex function and strictly decreasing, and thus must be continuous.

Proposition 4.1.3. There is a unique value h ∈ [0,∞) such that P (h) = 0.

Proof. If t = 0, then

P (0) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

c0
ω

 = lim
n→∞

1

n
log(|Bn(XA)|) ≥ 0.
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Next, in the case in which t→∞, we obtain

P (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ctω

 ≤ lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

cntmax


= t log(cmax) + lim

n→∞

1

n
log(|Bn(XA)|) ≤ t log(cmax) + lim

n→∞

1

n
log(mn)

= t log(cmax) + log(m).

Since 0 < cmax < 1, we must have [t log(cmax) + log(m)]→ −∞ as t→∞, and hence lim
t→∞

P (t) =

−∞. By Proposition 4.1.2, there exists a unique value h such that P (h) = 0.

Following the same steps as in the proof above, we obtain the following proposition.

Proposition 4.1.4. There is a unique value H ∈ [0,∞) such that P̄ (H) = 0.

Proposition 4.1.5. Let h and H be the unique values such that P (h) = 0 = P̄ (H). Then, h ≤ H.

Proof. Assume that h > H. Then, P̄ (h) < P̄ (H) = 0. We also know that cω ≤ c̄ω for all

ω ∈ Bn(XA). Hence,

0 = P (h) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

chω

 ≤ lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

c̄hω

 = P̄ (h) < 0,

which is a contradiction. Hence, h ≤ H.

Recall the definitions of S and S0 from Chapter 3. For t ∈ R, define

S(t) =



cti1 0 · · · 0

0 cti2 · · · 0

...
...

. . .
...

0 0 · · · ctiN


,

and define S
(t)
0 , S̄(t), and S̄

(t)
0 similarly.

Lemma 4.1.6. Let {K; fi : 1 ≤ i ≤ m} be a hyperbolic IFS and XA be a subshift of the full shift,

X, on alphabet A = {1, . . . ,m}. Let S0 and S be matrices associated with the subfractal FXA, as
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above. Then, the associated lower and upper topological pressure functions P (t) and P̄ (t) can be

written, respectively, as

P (t) = lim
n→∞

1

n
log

 N∑
i,j=1

[S
(t)
0 (AS(t))n−k+1]i,j

 and

P̄ (t) = lim
n→∞

1

n
log

 N∑
i,j=1

[S̄
(t)
0 (AS̄(t))n−k+1]i,j

 .

Proof. Recall that if F is a list of forbidden words, all of length k, then A is an N x N matrix,

where N = |Bk−1(X)| = mk−1. We will prove the assertion by induction. First, the nonzero entries

of A correspond to the allowable words of length k. Hence, by definition of A,S0, and S, we have

N∑
i,j=1

[S0AS]ij =
∑

ω∈Bk(XA)

cω.

Now, assume that
N∑

i,j=1

[S0(AS)n]ij =
∑

ω∈Bn+k−1(XA)

cω for some n > 1. The entries of S0(AS)n

consist of sums of contractive factors associated with allowable words of length n + k − 1. Now,

consider the matrix S0(AS)n(AS). By the definition of A and S, this multiplication will result in

entries consisting of sums of contractive factors associated with allowable words of length n+k. Since

S0(AS)n contains all allowable words of length n+ k − 1, then we must have
N∑

i,j=1

[S0(AS)n+1]ij =∑
ω∈Bn+k(XA)

cω. Hence,

P (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ctω

 = lim
n→∞

1

n
log

 N∑
i,j=1

[S
(t)
0 (AS(t))n−(k−1)]ij

 .

The proof follows similarly for the upper topological pressure function.

4.2. Main Result for SFTs

We begin with a technical lemma that will provide bounds needed for the main result.

Lemma 4.2.1. Let S0, A, and S be defined as in Chapter 3, where A is an irreducible matrix.
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Then, for any t > 0, there exist positive constants K,L such that

c
(k−1)t
min Kλn

AS(t) ≤
N∑

i,j=1

[S
(t)
0 (AS(t))n]ij ≤ c(k−1)t

max Lλn
AS(t) ,

where cmin = min
1≤i≤m

{ci}, cmax = max
1≤i≤m

{ci}, λAS(t) is the maximal eigenvalue of AS(t).

Proof. Notice that for every non-zero entry of S0, we have ck−1
min ≤ (S0)ij ≤ ck−1

max, for all 1 ≤ i, j ≤ N .

Hence, by the Perron-Frobenius Theorem, we have constants K and L such that

c
(k−1)t
min KλnASt ≤ c

(k−1)t
min

N∑
i,j=1

[(AS(t))n]ij ≤
N∑

i,j=1

[S
(t)
0 (AS(t))n]ij

≤ c(k−1)t
max

N∑
i,j=1

[(AS(t))n]ij ≤ c(k−1)t
max Lλn

AS(t)

Remark 1. By Lemma 4.2.1, one can show that, for fixed value t ∈ [0,∞],

P (t) = lim
n→∞

1

n
log

 N∑
i,j=1

[S
(t)
0 (AS(t))n]ij


≤ lim

n→∞

1

n
log(c(k−1)t

max Lλn
AS(t)) = log(λAS(t)) = log(ρ(AS(t)),

where ρ(AS(t)) denotes the spectral radius of AS(t). Similarly, we can show that log(ρ(AS(t))) ≤

P (t), and hence P (t) = log(ρ(AS(t)). Therefore, the unique value h such that P (h) = 0 is also the

value of h such that ρ(AS(h)) = 1. Analogously, we can show that the value H such that P̄ (H) = 0

is also the value of H that satisfies ρ(AS̄(H)) = 1.

Proposition 4.2.2. Let h be the unique zero of the lower topological pressure function. There exist

positive constants K0, L0 such that

K0 ≤
∑

ω∈Bn(XA)

chω ≤ L0,

for all n ≥ 1.
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Proof. Let s < h. Then, P (s) > P (h) = 0. So, we have

0 < P (s) = lim
p→∞

1

np
log

 ∑
ω∈Bnp(XA)

csω

 ≤ lim
p→∞

1

np
log

 ∑
ω∈Bn(XA)

csω

p

=
1

n
log

 ∑
ω∈Bn(XA)

csω

 .

Hence,
∑

ω∈Bn(XA)

csω > 1, and it follows that
∑

ω∈Bn(XA)

chω ≥ 1.

Now, assume that s > h. Then, 0 = P (h) > P (s). So, by Lemma 4.2.1, we have

0 > P (s) = lim
p→∞

1

np
log

 ∑
ω∈Bnp(XA)

csω

 = lim
p→∞

1

np
log

 N∑
i,j=1

[S
(s)
0 (AS(s))np]i,j


≥ lim

p→∞

1

np
log
(
c

(k−1)s
min Kλnp

AS(s)

)
=

1

n
log(λn

AS(s))

≥ 1

n
log

 1

Lc
(k−1)s
max

N∑
i,j=1

[S
(s)
0 (AS(s))n]i,j

 =
1

n
log

 1

Lc
(k−1)s
max

∑
ω∈Bn(XA)

csω

 .

Hence,
∑

ω∈Bn(XA)

csω < Lc(k−1)s
max , which implies that

∑
ω∈Bn(XA)

chω ≤ Lc(k−1)h
max .

Following similar steps in the proof of Proposition 4.2.2, we obtain the following proposition.

Proposition 4.2.3. Let H be the unique zero of the upper topological pressure function. There

exist positive constants K1, L1 such that

K1 ≤
∑

ω∈Bn(XA)

c̄Hω ≤ L1.

In order to show that h is a lower bound for dimH(FXA), we will utilize the uniform mass

distribution principle from Falconer [9]. Hence, we must define an appropriate Borel probability

measure to satisfy the principle. Let h be the unique value such that P (h) = 0. Let ω ∈ Bn(X)

and let [[ω]] = {τ ∈ X : τi = ωi, 1 ≤ i ≤ n} be the cylinder set with base ω. We will use the fact
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that cωτ = cωcτ . Define

νn([[ω]]) =

∑
ωτ∈Bn+`(ω)(XA)

chωτ∑
τ∈Bn+`(ω)(XA)

chτ
.

For all n ≥ 1 and any ω ∈ B∗(XA), we have by Proposition 4.2.2,

0 ≤

∑
ωτ∈Bn+`(ω)(XA)

chωτ

L0
≤ νn([[ω]]) ≤

chω
∑

τ∈Bn(XA)

chτ∑
τ∈Bn+`(ω)(XA)

chτ
≤ L0

K0
chω <∞.

Hence, for all ω ∈ B∗(XA), Limn→∞νn([[ω]]) exists, where Lim denotes the Banach limit. Let

ν([[ω]]) = Limn→∞νn([[ω]]). Also, notice that

m∑
i=1

ν([[ωi]]) = Limn→∞

m∑
i=1

∑
ωiτ∈Bn+`(ωi)(XA)

chωiτ∑
τ∈Bn+`(ωi)(XA)

chτ

= Limn→∞

∑
ωτ∈Bn+1+`(ω)(XA)

chωτ∑
τ∈Bn+1+`(ω)(XA)

chτ
= ν([[ω]]).

Hence, by applying Kolmogorov extension theorem, we can extend ν to a unique Borel

probability measure γ on XA. Let µh = γ ◦π−1, where π is the coding map. Hence, µh is supported

on FXA .

Corollary 4.2.4. There exist constants K0, L0 > 0 such that

µh(fω(K)) ≤ L0

K0
chω.
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Proof. By definition of µh and Proposition 4.2.2, we have

µh(fω(K)) = ν([[ω]]) =

∑
ωτ∈Bn(XA)

chωτ∑
τ∈Bn+`(ω)(XA)

chτ
≤

chω
∑

τ∈Bn(XA)

chτ∑
τ∈Bn+`(ω)(XA)

chτ
≤ chω

L0

K0
.

Proposition 4.2.5. For 0 < r < 1 and x ∈ FXA, the ball B(x, r) intersects at most M elements

of Ur = {fω(K) : |fω(K)| ≤ r < |fω−(K)|}, where M is finite and independent of r.

Proof. Let 0 < r < 1 and x ∈ FXA . Let Wr = {ω ∈ B∗(XA) : fω(K) ∩ B(x, r) 6= ∅, fω(K) ∈ Ur}

and |Wr| = M . Let y ∈ B(x, r) and z ∈ fω(K) where ω ∈Wr. Notice that

d(y, z) ≤ |B(x, r)|+ |fω(K)| ≤ 3r.

Hence, {fω(K) : ω ∈Wr} ⊂ B(x, 3r). For any fω(K) ∈ Ur, we have

|fω(K)| ≥ cmin|fω−(K)| > cminr.

Due to the open set condition, there exists a ball Ba of radius a > 0 such that Ba ⊂ K and

fω(Ba) ∩ fτ (Ba) = ∅ for ω, τ ∈ Wr. For each ω ∈ Wr, we have fω(Ba) ⊂ fω(K). Let m denote

Lebesgue measure on K. Since the balls are disjoint and contained in B(x, 3r), we have

∑
ω∈Wr

m(fω(Ba)) ≤ m(B(x, 3r)).

Using the fact that |fω(K)| > cminr, we have

M ·m(B(x, acminr)) ≤ m(B(x, 3r).

Hence, M ≤ m(B(x, 3r)

m(B(x, acminr))
. Since the ratio compares concentric balls, each with a radius equal

to a constant multiple of r, we can let M ≤
⌈

m(B(x,3r))
m(B(x,cminr))

⌉
< ∞, which satisfies the assertion of

the proposition.
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Theorem 4.2.6. Let h,H be the unique values such that P (h) = 0 = P̄ (H). Then, h ≤

dimH(FXA) ≤ H.

Proof. Let Un = {fω(K) : ω ∈ Bn(XA)}. Notice that Un is a cover for all n ≥ 1. Hence, by

Proposition 4.2.3, we have

HH(FXA) = lim
ε→0

inf
U

∑
E∈U
|E|H ≤ lim

n→∞

∑
ω∈Bn(XA)

|fω(K)|H

≤ lim
n→∞

∑
ω∈Bn(XA)

|K|H c̄Hω ≤ |K|H · L1 <∞,

where U denotes an arbitrary ε-cover of FXA .

Thus, dimH(FXA) ≤ H. Let r > 0 and B(x, r) be a ball centered at x ∈ FXA . By

Proposition 4.2.5, B(x, r) intersects at most M elements of the cover Ur. Let UM denote the subset

of Ur consisting of all elements that intersect B(x, r) and WM denote all allowable words associated

with an element of UM . By Corollary 4.2.4, we have

µh(B(x, r))

rh
≤
∑

fω(K)∈UM µh(fω(K))

rh
≤
∑

ω∈WM

L0
K0
chω

rh

≤
M L0

K0
|K|−hrh

rh
= M

L0

K0
|K|−h.

Hence, lim sup
r→0

µh(B(x, r))

rh
≤M L0

K0
|K|−h <∞. By the uniform mass distribution principle [9], we

have Hh(F) ≥
M L0

K0
|K|−h

µh(FXA)
> 0. Thus, dimH(FXA) ≥ h.

Theorem 4.2.7. Let h,H be the unique values such that P (h) = 0 = P̄ (H). Then, h ≤

dimB(FXA) ≤ H.

Proof. The following relationship between Hausdorff and box dimensions is well-known:

dimH(F) ≤ dimB(F) ≤ dimB(F).

Hence, it suffices to show that dimB(FXA) ≤ H. Let Ur = {fω(K) : |fω(K)| ≤ r < |fω−(K)|},
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k = min{|ω| : fω(K) ∈ Ur}, and Ok = {fω(K) : ω ∈ Bk(XA)}. Notice that
⋃

fω(K)∈Ur

fω(K) ⊆⋃
fω(K)∈Ok

fω(K). Hence, by Proposition 4.2.4, we have

∑
fω(K)∈Ur

|fω(K)|H ≤
∑

fω(K)∈Ok

|fω(K)|H ≤ |K|H
∑

ω∈Bk(XA)

c̄Hω ≤ |K|HL1.

Also, for fω(K) ∈ Ur,

|fω(K)| ≥ |fω−(K)| · cmin > rcmin.

Let Nr(FXA) denote the smallest number of sets of diameter at most r which form a cover

of FXA . Then,

(rcmin)HNr(FXA) ≤ |fω(K)|HNr(FXA) ≤
∑

fω(K)∈Ur

|fω(K)|H ≤ |K|HL1.

Hence, Nr(FXA) ≤ (rcmin)−H |K|HL1, and thus

log(Nr(FXA))

− log(r)
≤ log(L1|K|H)−H log(rcmin)

− log(r)
=

log(L1|K|H)

− log(r)
+
H log(cmin)

log(r)
+H.

By the definition of upper box dimension, we have

dimB(FXA) = lim sup
r→0

log(Nr(FXA))

− log(r)
≤ lim sup

r→0

[
log(L1|K|H)

− log(r)
+
H log(cmin)

log(r)

]
+H = H.

Remark 2. As seen in Chapter 2, the following inequalities are well-known for E ⊂ K:

dimH(E) ≤ dimP (E) ≤ dimB(E) and dimH(E) ≤ dimB ≤ dimB(E).

Hence, we have also shown that

h ≤ dimP (FXA) ≤ H and h ≤ dimB(FXA) ≤ H,
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and in the case that h = H,

dimH(FXA) = dimP (FXA) = dimB(FXA) = dimB(FXA).

4.3. Main result for sofic subshifts

In this section, we will extend the assertions from Theorem 4.2.6 and Theorem 4.2.7 to sofic

subshifts.

Lemma 4.3.1. Let XG be a sofic subshift, where G = (G,L). If G has k vertices, then

1

k

k∑
i,j=1

[AnG,t]i,j ≤
∑

ω∈Bn(XG)

ctω ≤
k∑

i,j=1

[AnG,t]i,j .

Proof. Let ω ∈ Bn(XG) for some n ≥ 1. Notice that there may be more than one path for ω in

G. Since
k∑

i,j=1

[AnG ]ij sums contractive factors related to all labeled paths of length n in G, then

∑
ω∈Bn(XG)

ctω ≤
k∑

i,j=1

[AnG,t]ij . Now, if G has k vertices, then G also has k vertices. By assumption,

G is right-resolving, meaning no two edges leaving the same vertex have the same label. Hence,

any ω ∈ Bn(XG) can have at most k paths in G. Therefore, for fixed value k,
1

k

k∑
i,j=1

[AnG,t]i,j ≤∑
ω∈Bn(XG)

ctω.

Theorem 4.3.2. Let {K; f1, . . . , fm} be a hyperbolic IFS with cid(x, y) ≤ d(fi(x), fi(y)) ≤ cid(x, y)

for 1 ≤ i ≤ m and all x, y ∈ K. Let XG be a sofic subshift on the alphabet A = {1, . . . ,m} and FG

be the subfractal defined by the IFS and XG. Suppose AG is irreducible. If P (h) = 0 and P̄ (H) = 0,

then

h ≤ dimH(FG) ≤ H and h ≤ dimB(FG) ≤ H.

Proof. By Lemma 4.3.1, we can rewrite the lower and upper topological pressure functions as

P (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XG)

ctω

 = lim
n→∞

1

n
log

 k∑
i,j=1

[AnG,t]i,j

 and
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P (t) = lim
n→∞

1

n
log

 k∑
i,j=1

[A
n
G,t]i,j

 .

The remainder of the proof follows as in Theorem 4.2.6 and Theorem 4.2.7.

Remark 3. Similar to Remark 1, the values of h and H such that P (h) = 0 = P̄ (H) also satisfy

ρ(AG,h) = 1 = ρ(AG,H).

Remark 4. Similar to Remark 2, due to known relationships between Hausdorff, packing, upper

and lower box dimensions, we also have

h ≤ dimP (FG) ≤ H and h ≤ dimB(FG) ≤ H.

4.4. Generalization to reducible matrices

In this section, we will eliminate the irreducibility condition on the matrices in the case of

Hausdorff dimension. Consider the case where AG (or AG if we have an SFT) is a reducible matrix.

Let A be a reducible m ×m (0,1)- matrix, and G be the associated graph. Since A is a reducible

matrix, the graph G is not strongly connected, but it contains a finite number of strongly connected

components, say C1, . . . , Ck. To each component, we can associate a submatrix A1, . . . Ak where

Ai is irreducible for 1 ≤ i ≤ k. Now, we can simultaneously permute the rows and columns of A to

obtain:

Ã =



Ak 0 0 · · · 0

∗ Ak−1 0 · · · 0

∗ ∗ Ak−2 · · · 0

...
...

...
. . .

...

∗ ∗ ∗ · · · A1


.

For further details on this process, see [19].

The process used to obtain Ã from A will not affect the characteristic polynomial, and hence

A and Ã have the same eigenvalues. Also, by simultaneously interchanging rows and columns of

A, each entry of An will appear in Ãn, although possibly in a different entry position. Hence, we
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can assume

m∑
i,j=1

(An)ij =

m∑
i,j=1

(Ãn)ij [19]. Without loss of generality, we will assume that A is in

the form of Ã.

If AG is a reducible m × m matrix with irreducible components A1, . . . , Ak, let Ai be an

mi ×mi matrix for 1 ≤ i ≤ k. For l < k, we define the set

trn(Al, Ap) = {aij 6= 0 :
k∑

s=l+1

ms ≤ i ≤
k∑
s=l

ms,
k∑

s=p+1

ms ≤ j ≤
k∑
s=p

ms}

of all non-zero entries from AG corresponding to a transitional edge in G from component Cl

(associated with Al) to the component Cp (associated with Ap). Let Btrn(XG) ⊂ B∗(XG) denote

all finite words corresponding to a transitional edge from the graph G.

Each strongly connected component of the graph, Ci, corresponds to an irreducible subma-

trix, Ai, and a subshift XAi , 1 ≤ i ≤ k. For simplicity, we will talk about the construction of words

in XG by using the strongly connected components Ci, 1 ≤ i ≤ k from G. Given the structure of

the entire graph G and direction of the transitional edges, words in XG must begin in a component

Ci, move through components Cj , and end in component Cl where 1 ≤ i ≤ j ≤ l ≤ k. To formalize

this in the subshift setting, we introduce the following notation. For 1 ≤ i < j ≤ k, let

XAi ~XAj = {ω ∈ XG : ω = τaξ, where τ ∈ B∗(XAi), a ∈ Btrn(XG), ξ ∈ XAj}.

Similarly, for 1 ≤ i1 < i2 < · · · < il ≤ k, we define XAi1
~ · · · ~ XAil

= {ω ∈ XG : ω =

τ1a1τ2 · · · al−1ξ, where τj ∈ B∗(XAij
), aj ∈ Btrn(XG) for 1 ≤ j < l, ξ ∈ XAil

}.

Lemma 4.4.1. If G has k irreducible components for k ≥ 2, then

XG =

(
k⋃
i=1

XAi

)
∪

 k⋃
j=2

k⋃
i1,...,ij=1

XAi1
~ · · ·~XAij

 ,

where il < il+1 for 1 ≤ l < j.

Proof. We will use induction for this argument. If G has two strongly connected components, C1 and

C2, with at least one transitional edge from C1 to C2 then it follows that XA1∪XA2∪(XA1~XA2) ⊆

XG . Now, let ω ∈ XG . Then, ω must begin in either C1, C2, or on a transitional edge. If ω starts
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in C2, then ω ∈ XA2 because there are no transitional edges leaving C2 in G. If ω starts on a

transitional edge, then ω ∈ (XA1 ~XA2) because it is of the form ω = τaξ where τ is the empty

word from B∗(XA1). If ω starts in C1, then either ω ∈ XA1 or ω ∈ (XA1 ~XA2). Hence, we must

have

XA1 ∪XA2 ∪ (XA1 ~XA2) = XG .

Now, assume G is a connected graph with k strongly connected components, and consider the

subgraph, say G|(k−1), consisting of the first k − 1 components. Assume that

XG|(k−1)
= (

k−1⋃
i=1

XAi) ∪ (
k−1⋃
j=2

k−1⋃
i1,...ij=1

XAi1
~ · · ·~XAij

).

By comparing the graphs G and G|(k−1) and their corresponding subshifts XG and XG|(k−1)
, we can

conclude that any word in XG −XG|(k−1)
will end in Ck. Hence,

XG = XG|(k−1)
∪XAk ∪

 k−1⋃
i1,...ij=1

XAi1
~ · · ·~XAij

~XAk

 ,

which satisfies the assertion.

Proposition 4.4.2. Let AG be a reducible matrix with irreducible components A1, . . . , Ak. Then,

hij ≤ dimH(FXAi1~···~XAij ) ≤ Hij ,

where

hij ≤ dimH(FXAij ) ≤ Hij

and hij , Hij are the bounds from Theorem 4.3.2.

Proof. Consider a finite word τ1a1τ2a2 . . . τj−1aj−1 where τl ∈ B∗(XAil
) and al ∈ trn(Ail , Ail+1)

for 1 ≤ l ≤ j − 1. For any n ≥ 1, there are finitely many words τl ∈ B∗(XAil
) with `(τl) ≤

n, for all 1 ≤ l ≤ j. Hence, there are finitely many words of the form τ1a1 · · · τj−1aj−1 of

length n. So, the collection S = {τ1a1 · · · τj−1aj−1 : τl ∈ B∗(XAil
) for 1 ≤ l ≤ j − 1, al ∈

trn(Ail , Ail+1), `(τ1a1 · · · τj−1aj−1) < ∞} is at most countable since B∗(XAil
) is countable for
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i ≤ il ≤ k. For ω ∈ S, let ωXAij
= {ωξ ∈ XG : ξ ∈ XAij

}. Then, dimH((FXAi11~···~XAij ) =

sup
ω∈S

dimH(FωXAij ).

Next, notice that FωXAi = {fωξ(x) : ξ ∈ XAi and x ∈ K} for any 1 ≤ i ≤ k. Recall that

fωξ(x) = fξ ◦ fω(x) and fω(x) ∈ K for all x ∈ K. Hence, FωXAi ⊆ FXAi . Hence,

dimH(FωXAi ) ≤ dimH(FXAi ) ≤ Hi,

where Hi is the bound from Theorem 4.3.2.

Let ω ∈ S with `(ω) = m and Ai be an irreducible block in A. Consider dimH(FωXAi ).

Although ωXAi is not necessarily a subshift itself, we can apply similar techniques used to prove

Theorem 4.3.2 to show that the zero of the lower topological pressure function

Pω,i(t) = lim
n→∞

1

n
log

 ∑
τ∈Bn(ωXAi )

ctτ

 is a lower bound for dimH(FωXAi ). Notice that

Pω,i(t) = lim
n→∞

1

n
log

 ∑
τ∈Bn(ωXAi )

ctτ

 = lim
n→∞

1

n
log

 ∑
τ∈Bn−m(XAi )

ctωc
t
τ


= lim

n→∞

1

n

log(ctω) + log

 ∑
τ∈Bn−m(XAi )

ctτ


= lim

n→∞

1

n−m
log

 ∑
τ∈Bn−m(XAi )

ctτ


= Pi(t),

where Pi(t) is the lower topological pressure function associated with the subfractal FXAi . Hence,

hi ≤ dimH(FωXAi ).

Thus,

dimH(FXAi11~···~XAij ) = sup
ω∈S

dimH(FωXAij ) ≤ Hij and

hij ≤ dimH(FXAi11~···~XAij ),
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where hij and Hij are the zeros of the upper and lower topological pressure functions Pij (t) and

P ij (t) with respect to the subfractal FXAij for some 1 ≤ ij ≤ k.

For a similar statement about subshifts with a reducible matrix A, we have, by Lemma

4.4.1,

FXG =

(
k⋃
i=1

FXAi

)
∪

 k⋃
j=2

⋃
1≤i1<···<ij≤k

FXAi1~···~XAij

 .

Thus, by Proposition 4.4.2, we have the following theorem.

Theorem 4.4.3. Let XG be a sofic subshift with associated matrix AG. Assume AG has irreducible

components A1, . . . , Ak. Let FXG and FXAi denote the subfractals associated with the subshifts XG

and XAi, respectively. Then,

max
1≤i≤k

{hi} ≤ dimH(FXG ) ≤ max
1≤i≤k

{Hi},

where Pi(hi) = 0 = P̄i(Hi) given in Theorem 4.3.2 for all 1 ≤ i ≤ k.

Theorem 4.4.3 extends the results of Theorem 4.3.2 in the case of Hausdorff dimension only.

Recall from Chapter 2 that box dimension is not countably stable, which is vital to the proof of

Proposition 4.4.2 with respect to Hausdorff dimension. Therefore, the results were not extended

in the case of box dimension and it remains an open question whether the bounds exist for box

dimension of a subfractal induced by a reducible matrix.

Example 4.4.4. Consider the subfractal of the Cantor set introduced in Example 3.4.2. Since the

maps are similarities with the same similarity ratio of 1
3 , we can calculate the Hausdorff dimension

of the subfractal. Recall that the adjacency matrix, A, for this subshift is reducible with two

irreducible components, A1 and A2, and no transitional edges, where

A =



1 0 0 0

0 0 1 1

0 1 0 0

0 0 1 0


, A1 =

[
1

]
, A2 =


0 1 1

1 0 0

0 1 0

 .

Notice that the subfractal induced by XA1 is a single point, and hence has zero Hausdorff dimension.
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By Theorem 4.4.3,

dimH(FXA) = dimH(FXA2
).

Next, construct that matrices S0 =


1
9 0 0

0 1
9 0

0 0 1
9

 and S =


1
3 0 0

0 1
3 0

0 0 1
3

 . We find that

dimH(FXA) =
log(λ)

log 3
,

where λ denotes the maximal eigenvalue of A.

Example 4.4.4 should not be surprising, knowing that the entropy of the subshift XA is

given by h(XA) = log(λ). If an IFS is composed of similarity ratios, each of which was the same

similarity ratio c, the topological pressure function simplifies to

P (t) = lim
n→∞

1

n
log

 ∑
ω∈Bn(XA)

ctω

 = lim
n→∞

1

n
log(|Bn(XA)|cnt) = h(XA) + log(ct).

Therefore, the Hausdorff dimension of the subfractal will be given by

dimH(FXA) =
h(XA)

− log c
,

where h(XA) denotes the entropy of the subshift XA. Because of this, we are more interested

in IFSs which contain maps with different similarity ratios (or different contractive bounds). To

emphasize this point, let us consider a variation of the previous example.

Example 4.4.5. Let XA be the subshift given in Example 4.4.4, but let the IFS be a variation

of the Cantor set with f0(x) = 1
3x and f1(x) = 1

2x + 1
2 . As we saw in the previous example, the

Hausdorff dimension of the subfractal will be determined by the subfractal induced by XA2 .
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So, we construct the matrices

S0 =


1
6 0 0

0 1
6 0

0 0 1
4

 , S =


1
2 0 0

0 1
3 0

0 0 1
2

 , and A2S =


0 1

3
1
2

1
2 0 0

0 1
3 0

 .

The Hausdorff dimension of the subfractal is given by the value of h such that ρ(AS(h)) = 1.
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5. CHAPTER FIVE - MULTIFRACTAL ANALYSIS

Thus far, we have studied attractors of IFSs (fractals) and subsets of the attractor of an

IFS (subfractals). If a weight is assigned to each map in the IFS, the resulting attractor now

contains more information than the usual attractor of an IFS. One way to visualize this is to

think of the weights as values on a grayscale so that the weights determine how dark parts of

the attractor appear. An illustration of this type of fractal would appear with varying levels of

darkness. Consider a measure in Rn that is defined by the weights and that is supported on the

fractal. What kinds of properties does the measure satisfy?

Alternatively, one can define a measure using information from a weighted IFS (or in our

case, a weighted subfractal), and then study the support of the measure. By varying the weights,

the “density” of the measure will vary for different points in the support set. This method allows

one to study an array of fractals for the price of one measure. A modification of this process

was developed for a recurrent IFS by replacing the weights on each map with a row-stochastic

probability matrix and initial distribution vector. In this chapter, we will build our understanding

of self-similar measures, measures supported on the attractor of a recurrent IFS, and measures

supported on subfractals defined in previous chapters. We will also examine different properties of

these measures, including local dimension and Hausdorff dimension.

5.1. Self-similar measures

Let {K; f1, . . . fm} be a disjoint IFS of similitudes with similarity ratios ci for 1 ≤ i ≤ m.

Assign to each map a probability pi such that
∑m

i=1 pi = 1. The goal is to construct a measure

which is supported on the attractor of the IFS, using the probabilities assigned to each map.

Let A = {1, . . . ,m} be an alphabet with full shift space (X,σ). Define a measure ν on X

such that

ν([[ω]]) = pω1 · · · pωn ,
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for any cylinder set [[ω]]. Notice that

m∑
i=1

ν([[ωi]]) =
m∑
i=1

pω1 · · · pωnpi = pω1 · · · pωn
m∑
i=1

pi

= pω1 · · · pωn = ν([[ω]]).

Hence, by the Kolmogorov extension theorem, ν can be extended to a measure on all of X. Now,

using the coding map π : X → F , define a measure µ on Rn by µ = ν ◦π−1. Let F be the attractor

of the IFS, and let Fω = fω(F) for any ω ∈ Bn(X). Notice that the measure µ on Rn satisfies

µ(Fω) = pω1 · · · pωn .

Now, consider the support of the measure. In particular, we would like to calculate the

“density” of the measure at certain points in the attractor of the IFS. The upper and lower local

dimensions µ with respect to x ∈ F are defined as [8]

dimlocµ(x) = lim inf
r→0

logµ(B(x, r))

log r
and dimlocµ(x) = lim sup

r→0

logµ(B(x, r))

log r
.

If the upper and lower local dimensions of µ at x are equal, we call this value the local

dimension of µ at x and denote it by dimloc µ(x). Local dimension gives a value to describe how

concentrated a measure is at a specific point x, where a greater value corresponds to a less dense

concentration of the measure at that point. For example, if µ is a measure supported on the

attractor of an IFS, say F , notice that dimloc µ(x) =∞ for x /∈ F .

Recall that the Hausdorff dimension is an important property for distinguishing sets in

fractal geometry. One reason for the special interest in local dimension of a measure is that it has a

strong connection with Hausdorff dimension of a set. More precisely, the following is an equivalent

definition for Hausdorff dimension of a set [8]:

dimH(E) = sup{s : there exists µ with 0 < µ(E) <∞ and

dimlocµ(x) ≥ s for µ-almost every x ∈ E}.
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Another way to quantify the complexity of a measure supported on a fractal is to define

the Hausdorff dimension of a measure µ as follows

dimH(µ) = sup{s : dimlocµ(x) ≥ s for µ-almost every x},

or equivalently

dimH(µ) = inf{dimH(E) : E is a Borel set with µ(E) > 0}.

The following theorem from L.-S. Young highlights the connection between the Hausdorff dimension

of a measure and the local dimension of a measure µ at a point x [28].

Theorem 5.1.1. Let Λ ⊂ Rn be a measurable set with µ(Λ) > 0. Suppose that for every x ∈ Λ,

δ ≤ lim inf
ρ→0

logµ(B(x, ρ))

log ρ
≤ lim sup

ρ→0

logµ(B(x, ρ))

log ρ
≤ δ.

Then,

δ ≤ dimH(µ) ≤ δ.

To emphasize the importance of this theorem, let us consider the following example of a

self-similar measure on [0, 1] ⊂ R.

Example 5.1.2. Let {f0, f1} be an IFS with f0(x) = 1
2x and f1(x) = 1

2x+ 1
2 for all x ∈ I = [0, 1]

and A = {0, 1} be the alphabet with full shift (X,σ). Now, let 0 ≤ p0 ≤ 1
2 be the probability

associated with f0 and p1 = 1− p0 be the probability associated with f1, and let µ be the measure

defined by µ(Iω) = pω, where Iω = fω(I) for any ω ∈ B∗(X), and extended to all of I in the usual

way. For µ-a.e. x ∈ [0, 1], the local dimension of µ is given by

dimloc µ(x) = s(p0, p1), where s(p0, p1) =
p0 log p0 + p1 log p1

log 2
.

So, by Theorem 5.1.1, the Hausdorff dimension of the measure is given by dimH(µ) = s(p0, p1).

For more details on this example, see [8]. Observe that one can define uncountably many distinct

measures of this form.
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5.2. Measure supported on a recurrent IFS attractor

Let {fi : 1 ≤ i ≤ M} be a collection of similitudes with similarity ratios ci for 1 ≤ i ≤ M .

Let P = (pij)
M
i,j=1 be an M ×M row stochastic matrix, i.e.

∑M
j=1 pij = 1 for all 1 ≤ i ≤M . Then,

{K; pij , fi : 1 ≤ i, j ≤M} is called a recurrent IFS. If P is an irreducible matrix, then there exists

a unique initial distribution vector m = (m1, . . . ,mM ) such that

M∑
i=1

mipij = mj

for all 1 ≤ j ≤M .

Now, define a probability measure Q on cylinder sets from the symbolic space as follows:

for ω = ω1 . . . ωn ∈ Bn(X),

Q([[ω]]) = mωnpωnωn−1 . . . pω2ω1 .

Since Q is well-defined on cylinder sets, by standard arguments one can extend Q to the entire

symbolic space. Then, for a Borel set B ⊂ Rn, define a measure µ as follows:

µ(B) = Q{ω ∈ X : π(ω) ∈ B}.

Notice that µ is invariant with respect to {f1, . . . , fM}. For a measure µ constructed in this way,

A. Deliu, J.S. Geronimo, R. Shonkwiler, and D. Hardin proved the following [5]:

Theorem 5.2.1. Let {P, fi; 1 ≤ i ≤M} be a recurrent IFS with invariant measure µ as constructed

above. Suppose that

1. fi is a similitude for 1 ≤ i ≤M with 0 < c1 ≤ c2 ≤ . . . ≤ cM < 1

2. the open set condition is satisfied and

3. the row stochastic matrix P is irreducible.

Then, for µ-a.e. x ∈ Rn,

lim
ρ→0

logµ(B(x, ρ))

log ρ
= α,

where

α =

∑M
i=1

∑M
j=1mipij log(pij)∑M
i=1mi log(ci)

.
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Now, combining Theorem 5.2.1 with Theorem 5.1.1, it follows immediately that

dimH(µ) = α,

for the value α given in Theorem 5.2.1.

5.3. Measure supported on subfractal induced by SFT

Let XA be an SFT with forbidden words all of length k, for some k ≥ 2. We will construct

a sliding block code from the full shift space (X,σ) to a new subshift space (Y, σ) with the alphabet

Ā = {β1, . . . βN}, where N = Mk−1 and each letter βi corresponds to a word ωi ∈ Bk−1(X). Let

Φ : Bk−1(X)→ Ā be a block code which assigns each string of length k − 1 from alphabet A to a

letter in Ā. Since we have exactly one letter in βi ∈ Ā for each word ωi ∈ Bk−1, the map Φ must

be bijective. Now, let φ : X → Y be the sliding block code given by

ω1ω2 . . . 7→ Φ(ω1 . . . ωk−1)Φ(ω2 . . . ωk)Φ(ω3 . . . ωk+1) . . . ,

where Y = φ(X) ⊂ ĀN. For more information on sliding block codes, see [19]. The map Φ−1 is

clearly well-defined, but the map φ−1 requires a more detailed construction.

We can extend the operation � defined in Chapter 3 so that � : (Bn(X)×Bk−1(X))comp →

Bn+1 for all n ≥ k ≥ 2, where a word ω ∈ Bn(X) is compatible with ξ ∈ Bk−1 if ωn−k+2 . . . ωn =

ξ1 . . . ξk−2. In this case, ω � ξ = ω1 . . . ωnξk−1 for all compatible pairs (ω, ξ). Now, we can define

φ−1 : Y → X by

φ−1(τ1τ2 . . .) = Φ−1(τ1)� Φ−1(τ2)� Φ−1(τ3)� · · · .

We have defined both φ and φ−1 on infinite strings from X and Y , respectively. Both maps

can be applied naturally to finite words Bn(X) and Bq(Y ), for n ≥ k − 1 and q ≥ 1, as follows:

φ(ω) = Φ(ω1 . . . ωk−1) . . .Φ(ωn−k+1 . . . ωn)

φ−1(ξ) = Φ−1(ξ1)� . . .� Φ−1(ξq)

for all n ≥ k and all q ≥ 1.
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Now, let P = (pij)1≤i,j≤N be an N×N row stochastic probability matrix, i.e.

N∑
j=1

pij = 1 for

1 ≤ i ≤ N , with pij = 0 if and only if aij = 0 for entries from the adjacency matrix A = (aij)1≤i,j≤N .

If P is an irreducible matrix, then there exists a unique initial probability distribution vector

m = (m1, . . . ,mN ) such that mP = m.

Proposition 5.3.1. Let X, Y , and φ be as above. Then, there exists an invariant probability

measure on X.

Proof. Let ξ = ξ1 . . . ξn ∈ Bn(Y ) and [[ξ]] denote the cylinder set with base ξ. Define

ν([[ξ]]) = mξnpξnξn−1 . . . pξ2ξ1 .

First, we will show that ν is an invariant measure with respect to cylinder sets. Using the fact that

P is row stochastic, we obtain

ν(σ−1([[ξ]])) =
∑
βi∈Ā

ν([[βiξ]]) =
∑
βi∈Ā

mξnpξnξn−1 · · · pξ2ξ1pξ1βi

= mξnpξnξn−1 · · · pξ2ξ1 = ν([[ξ]]),

as desired. Next, we will extend the measure to the entire symbolic space. Using the fact that∑
βi∈Ā

mipij = mj , we obtain

∑
βi∈Ā

ν([[ξβi]]) =
∑
βi∈Ā

mβipβiξnpξnξn−1 · · · pξ2ξ1

= pξnξn−1 · · · pξ2ξ1
∑
βi∈Ā

mβipβiξn

= mξnpξnξn−1 · · · pξ2ξ1

= ν([[ξ]]).

By applying the Kolmogorov extension theorem, we can extend ν to a measure defined on all of Y .

Now, let γ = ν ◦ φ, where φ is the sliding block code.
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Using the invariant probability measure γ from Proposition 5.3.1, we can construct a mea-

sure µ on Rn which is supported on the subfractal. For Borel set B ⊂ Rn, we define a measure µ

as follows:

µ(B) = γ{ω ∈ X : π(ω) ∈ B}.

5.4. Result for measures supported on a subfractal

For the remainder of this paper, we will assume that for given SFT XA, the forbidden words

are all of length k, for fixed k ≥ 2. A common technique in fractal dimension calculations is to use

a Moran covering of the form Oρ = {fω(O) : |fω(O)| < ρ ≤ |fω−(O)|}, where O is a compact set

such that F ⊂ O, where F denotes the attractor of the IFS and | · | denotes the diameter of a set.

For ρ > 0, we will define and utilize a variation of a Moran cover of the form

Uρ ={fω(K) : ω = ω1 . . . ωq(k−1) and

|fω1...ωq(k−1)
(K)| < ρ ≤ |fω1...ω(q−1)(k−1)

(K)| for some q ∈ Z+}.

Lemma 5.4.1. For 0 < ρ < 1 and x ∈ F , the ball B(x, ρ) intersects at most L elements of Uρ,

where L is finite and independent of ρ.

Notice that Lemma 5.4.1 is almost identical to Proposition 4.2.5., with the difference being

in the definitions of Ur and Uρ. The proof follows almost exactly as the same steps for the proof

of Proposition 4.2.5, except we find that L ≤
⌈

mL(B(x,3ρ))

mL(B(x,ac
(k−1)
min ρ))

⌉
, where mL denotes Lebesgue

measure. Hence, we will omit the details.

Now, let Uρ be as in Lemma 5.4.1, µ be the measure from Section 5.3 and let Mρ,x = {ω ∈

B∗(XA) : fω(K) ∈ Uρ and fω(K) ∩B(x, ρ) 6= ∅}.

Lemma 5.4.2. Let XA be an SFT as described above with associated IFS {fi : 1 ≤ i ≤ M}, each

fi a similitude with similarity ratio ci, respectively, 1 ≤ i ≤ M . Suppose the OSC is satisfied, and

that probability matrix P is irreducible. Then, there exist positive constants K1,K2 such that for

any ρ > 0 and x ∈ F ,

Kα
1 ρ

α
m(φ(ω|q))`(φ(ω|q))p(φ(ω|q))

cα(ω|q)
≤ µ(B(x, ρ)) ≤ Kα

2 ρ
α
∑

ξ∈Mρ,x

mφ(ξ)`(φ(ξ))pφ(ξ)

cαξ
,
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where π(ω) = x and

α =
(k − 1)

∑N
i=1

∑N
j=1mipij log(pij)∑N

i=1mi log(cφ−1(βi))
.

Proof. Without loss of generality, we will assume K = F . We will show the lower bound first. Let

ω ∈ XA such that π(ω) = x for some x ∈ F . Let q be the least integer such that fω1...ωq(k−1)
(K) ⊂

B(x, ρ). If φ(ω) = τ , then φ(ω1 . . . ωq(k−1)) = τ1 . . . τl where l = q(k−1)−(k−2). Hence, we obtain

µ(B(x, ρ)) ≥ µ(fω1...ωq(k−1)
(K)) = mτlpτlτl−1

· · · pτ2τ1 .

Also, by our choice of q, we must have

cω1 · · · cωq(k−1)
|K| ≤ 2ρ < cω1 · · · cω(q−1)(k−1)

|K|.

Therefore, if we let cmin = min1≤i≤M{ci}, we have

2ρck−1
min < cω1 · · · cωq(k−1)

|K|.

Using these two inequalities, we obtain

µ(B(x, ρ)) ≥ mτlpτlτl−1
· · · pτ2τ1 ·

(2ρc
(k−1)
min )α

(cω1 · · · cωq(k−1)
|K|)α

= Kα
1 ρ

α ·
mτlpτlτl−1

· · · pτ2τ1
(cω1 · · · cωq(k−1)

)α

= Kα
1 ρ

α
m(φ(ω|q(k−1)))`(φ(ω|q(k−1)))

p(φ(ω|q(k−1)))

cα(ω|q(k−1))

,

where K1 =
2c

(k−1)
min

|K|
.

Now, we will prove the upper bound. Notice that the measure µ is supported on F . For

M̃ρ,x = {fω(K) : ω ∈Mρ,x}, we have
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µ(B(x, ρ)) ≤ µ(M̃ρ,x) =
∑

ω∈Mρ,x

µ(fω(K))

=
∑

ω∈Mρ,x

mφ(ω)`(φ(ω))pφ(ω)

=
∑

ω∈Mρ,x

mφ(ω)`(φ(ω))pφ(ω)

cαω
· cαω

≤ Kα
2 ρ

α
∑

ω∈Mρ,x

mφ(ω)`(φ(ω))pφ(ω)

cαω
,

where K2 = |K|−1.

Lemma 5.4.3. For µ-a.e. ω ∈ B∗(Y ),

lim
q→∞

1

q
log(pωqωq−1 . . . pω2ω1) =

N∑
i=1

N∑
j=1

mipij log(pij)

and

lim
q→∞

1

q
log(cω1···ωq(k−1)

) =
N∑
i=1

mi log(cΦ−1(βi)).

Proof. Since P is irreducible and our system is ergodic, then by the Ergodic Theorem, for µ-a.e.

ω ∈ B∗(Y ), we have

lim
q→∞

1

q
log(pωqωq−1 · · · pω2ω1)

= lim
q→∞

1

q

q−1∑
i=1

log(pωi+1ωi)

=

N∑
i=1

N∑
j=1

mipij log(pij).
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Again, by the Ergodic Theorem, we have

lim
q→∞

1

q
log(cω1ω2...ωq(k−1)

)

= lim
q→∞

1

q

q−1∑
i=0

log(cωi(k−1)+1
. . . cω(i+1)(k−1)

)

=

N∑
i=1

mi log(cΦ−1(βi)),

where βi ∈ Ā, 1 ≤ i ≤ N.

Recall that Uρ = {fω(K) : |fω1...ωq(k−1)
(K)| < ρ ≤ |fω1...ω(q−1)(k−1)

(K)| for some q ∈ Z+}, and

hence as ρ→ 0, it must be the case that q →∞.

Lemma 5.4.4. Let Mρ,x be as above and q be the integer such that ω = ω1 . . . ωq(k−1) ∈ Mρ,x for

some x ∈ F . Then,

lim
ρ→0

log(ρ)

q
=

N∑
i=1

mi log(cΦ−1(βi)).

Proof. By the definition of Mρ,x, q is the least integer such that

cω1 . . . cωq(k−1)
|K| < ρ ≤ cω1 . . . cω(q−1)(k−1)

|K|.

Hence,

c
(k−1)
min ρ ≤ cω1...ωq(k−1)

|K| < ρ.

By this inequality and Lemma 5.4.3, we obtain

lim
ρ→0

log ρ

q
=

N∑
i=1

mi log(cΦ−1(βi)).

Theorem 5.4.5. Let {fi : 1 ≤ i ≤ M} be an IFS satisfying the OSC and containing similitudes

fi with similarity ratios ci, respectively, for 1 ≤ i ≤ M . Let XA be an SFT on the alphabet

A = {1, . . . ,M} and P be an N ×N irreducible, row stochastic probability matrix corresponding to
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XA where N = Mk−1. Then for µ-a.e. x ∈ Rn,

lim
ρ→0

log(µ(B(x, ρ))

log ρ
= α,

where

α =
(k − 1)

∑N
i=1

∑N
j=1mipij log(pij)∑N

i=1mi log(cφ−1(βi))
.

Proof. Recall that |Mρ,x| ≤ L for all ρ > 0 and x ∈ F . Since µ is supported on F , then we will only

consider ω ∈ Mρ,x such that γ([[ω]]) > 0, where γ is the measure constructed in Section 5.3. Since

L is independent of ρ, there must exist some ξ ∈ XA satisfying
pφ(ω)
cω
≤

pφ(ξ|q(k−1))

cξ|q(k−1)

for all ω ∈ Mρ,x

with `(ω) = q(k − 1), and which also satisfies the assertion of Lemma 5.4.3. Hence, it follows that

lim
ρ→0

log

 ∑
ω∈Mρ,x

pφ(ω)

cω

 ≤ lim
ρ→0

log

(
L ·

pφ(ξ|q(k−1))

cξ|q(k−1)

)
.

Using Lemma 5.4.3 and Lemma 5.4.4, and the fact that L is independent of q, we have

lim
ρ→0

log
(∑

ω∈Mρ,x

pφ(ω)
cαω

)
log ρ

≤ lim
ρ→0

log

(
L ·

pφ(ξ|q(k−1))

cα
ξ|q(k−1)

)
log ρ

≤ lim
q→∞

(k − 1) log(pτ1...τq(k−1)
)

q(k − 1)
∑N

i=1mi log(cΦ−1(βi))
− lim
q→∞

log(cαξ1...ξq(k−1)
)

q
∑N

i=1mi log(cΦ−1(βi))

=
(k − 1)

∑N
i=1

∑N
j=1mipij log(pij)∑Nk−1

i=1 mi log(cΦ−1(βi))
− α = 0.

We also have

lim
ρ→0

log

 ∑
ω∈Mρ,x

pφ(ω)

cω

 ≥ lim
ρ→0

log

(
pφ(ω)

cω

)
,

for any ω ∈Mρ,x. Therefore, it follows that

lim
ρ→0

log
(∑

ω∈Mρ,x

pφ(ω)
cαω

)
log ρ

≥ lim
q→∞

log(pτ1...τq(k−1)
)

q
∑N

i=1mi log(cΦ−1(βi))
− lim
q→∞

log(cαω1...ωq(k−1))
)

q
∑N

i=1mi log(cΦ−1(βi))
= 0.
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Thus, by Lemma 5.4.2, we have

lim
ρ→0

log(µ(B(x, ρ)))

log ρ

≤ lim
ρ→0

log

(
ρα
∑

Mρ,x

mξqpξ
cα
φ−1(ξ)

)
log ρ

= α.

Similarly, by Lemma 5.4.2, we obtain

lim
ρ→0

log(µ(B(x, ρ))

log ρ
≥ α.

The following Corollary follows immediately from Theorem 5.4.5 and Theorem 5.1.1.

Corollary 5.4.6. Let µ be the measure in Theorem 5.4.5. Then,

dimH(µ) = α,

where α is the value given in Lemma 5.4.2.

Example 5.4.7. In this example, we will illustrate for a specific choice of values for the entries of

P , we have

dimH(µ) = dimH(F),

where F is the attractor of an IFS in which we only consider allowable points with respect to an

SFT on the symbolic space. By Theorem 4.2.6, the Hausdorff dimension of the attractor of this

form is given by the nonnegative real number h such that

ρ(AS(h)) = 1,

where A is the adjacency matrix, S is a diagonal matrix with the contractive factors on the diagonal

arranged with respect to the matrix A, and S(h) contains corresponding entries of S raised to the

h power. Let A = {0, 1} and XA be an SFT with forbidden word list {τ1, . . . , τ l} where `(τi) = 3

for 1 ≤ i ≤ l. We will assume A is an irreducible 4 × 4 matrix. Let h be the value such that
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ρ(AS(h)) = 1. Through standard calculations, we can show that the characteristic polynomial of

S
(h/2)
0 A is equal to the characteristic polynomial of AS(h), where S0 is a diagonal matrix with

contractive factors associated with strings of length 2 arranged on the diagonal with respect to A.

Hence, ρ(S
(h/2)
0 A) = 1. Since S

(h/2)
0 A is irreducible, then by the Perron-Frobenius theorem there

exists a positive eigenvector v = (v1, v2, v3, v4) ∈ R4 associated with eigenvalue 1.

Let pij =
vj
vi
c

(h/2)

ωi
aij where c

(h/2)

ωi
aij is the ij-th entry of S

(h/2)
0 A for 1 ≤ i, j ≤ 4. Using the

fact that v is an eigenvector associated with eigenvalue 1, we have

4∑
j=1

vj
vi
c

(h/2)

ωi
aij = 1,

so that P is row stochastic. We also notice that pij log(aij) = 0 for all 1 ≤ i, j ≤ 4 and

4∑
i=1

4∑
j=1

mipij log(vj) =
4∑
j=1

mj log(vj) =
4∑
i=1

4∑
j=1

mipij log(vi).

Hence, by Theorem 5.4.5, we obtain

α =
2
∑4

i=1

∑4
j=1mipij log(pij)∑4

i=1mi log(cωi)

=
2
∑4

i=1

∑4
j=1mipij [log(vj)− log(vi) + h

2 log(cωi) + log(aij)]∑4
i=1mi log(cωi)

= h.
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