
CODUALIZING MODULES AND COMPLEXES

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Richard Kenneth Wicklein

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Mathematics

July 2013

Fargo, North Dakota



North Dakota State University 
Graduate School 

 
Title 

  

Codualizing Modules And Complexes 

  

  
  By   
  

Richard Kenneth Wicklein 
  

     
    
  The Supervisory Committee certifies that this disquisition complies with North Dakota State 

University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  
    
  

 Sean Sather-Wagstaff 
 

  Chair  
  

Jim Coykendall 
 

  
Benton Duncan 

 

  
 Jane Schuh 

 

    
    

  Approved:  
   
 July 2, 2013   Dogan Comez   
 Date  Department Chair  
    

 



ABSTRACT

A finitely generated R-module C is semidualizing if the R-module homomorphism

χRC : R → HomR(C,C) given by χRC(r)(c) = rc is an isomorphism and ExtiR(C,C) = 0

for all i > 1. When (R,m) is local, an artinian R-module T is quasidualizing if the map

χR̂
m

T : R̂m → HomR(T, T ) is an isomorphism and ExtiR(T, T ) = 0 for all i > 1. In this

dissertation we unify these two definitions under one “umbrella” definition. For an ideal a,

an R-module M is a-codualizing if the R-module ExtiR(R/a,M) is finitely generated for

all i, the small support of M is contained in V(a), one has ExtiR(M,M) = 0 for all i > 1,

and the map χR̂a

M : R̂a → HomR(M,M) given by χR̂a

T (r)(c) = rc is an isomorphism. We

study the a-codualizing condition of modules and R-complexes. We show that RΓa(R) is

always an example of an a-codualizing complex. We also study the Auslander and Bass

classes in the context of a-codualizing complexes. In particular, we prove a version of

Foxby equivalence in this context.
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1. INTRODUCTION

In this dissertation the term “ring” is short for “commutative, noetherian ring with

identity.” The term “module” is short for “unital module.”

Throughout this dissertation let R be a ring, let a ( R be a proper ideal of R, and let

R̂a be the a-adic completion of R.

The study of dualities is fundamental to many branches of mathematics. A funda-

mental operation on a given field k and a vector space V is the duality V 7→ Homk(V, k).

The study of rings and modules in this manner can be traced back at least to work of

Grothendieck and Hartshorne [22], Auslander and Bridger [2], and Foxby [17], using the

following notion which is central to this dissertation.

Definition 1.1. A finitely generated R-module C is semidualizing if it satisfies the follow-

ing conditions:

(i) the map χRC : R→ HomR(C,C) given by χRC(r)(c) = rc is an isomorphism, and

(ii) ExtiR(C,C) = 0 for all i > 1.

For any ring R, the ring itself as an R-module is an example of a semidualizing

module. Also, D is a dualizing module if and only if D is semidualizing and has finite

injective dimension. Loosely speaking, among finitely generated modules, semidualizing

modules are good for studying dualities. For instance, the example of R gives the duality

M 7→ HomR(M,R) from [2], and when D is dualizing, this recovers Groethendieck’s

local duality M 7→ HomR(M,D) from [22].

However, in the study of dualities, semidualizing modules miss some important

examples, such as Matlis duality: when (R,m, k) is a local noetherian ring, this is the

duality M 7→ HomR(M,E) where E is the injective hull of the residue field (that is, E is

the “smallest” injective module in which k can be embedded). Kubik [26] introduced the

next definition to cover this deficiency.
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Definition 1.2. Let (R,m) be local, and let T be an artinian R-module. The fact that T is

artinian implies that it is m-torsion so it has the structure of an R̂m-module. In particular,

the map χR̂m

T : R̂m → HomR(T, T ) given by χR̂m

T (r)(c) = rc is a well-defined R-module

homorphism. The R-module T is quasidualizing if it satisfies the following conditions:

(i) the map χR̂m

T : R̂m → HomR(T, T ) is an isomorphism, and

(ii) ExtiR(T, T ) = 0 for all i > 1.

One always has an example of quasidualizing module since the injective hull of

the residue field is a quasidualizing R-module [26, Example 1.17]. The point of this

dissertation is to unify these two notions under the following “umbrella” notion.

Definition 1.3. An R-module M is a-codualizing if it satisfies the following conditions:

(i) the R-module ExtiR(R/a,M) is finitely generated for all i, and V(a) contains the

“small support” of M , that is, the set

suppR(M) := {p ∈ Spec(R) : TorRi (R/p,M)p 6= 0 for some i},

(ii) ExtiR(M,M) = 0 for all i > 1, and

(iii) the map χR̂a

M : R̂a → HomR(M,M) given by χR̂a

T (r)(c) = rc is an isomorphism.

This map is a well-defined R-module homomorphism as in Definition 1.2. See also

Remark 3.3.

Note that one recovers the definitions of semidualizing and quasidualizing with a = 0

and a = m respectively; see Propositions 3.5 and 3.6. There is some flexibility condition

in (i) due to the following theorem of Melkersson [31], which does not assume that M is

finitely generated; if M is finitely generated, then the equivalent conditions are automati-

cally satisfied because R is assumed to be noetherian.
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Fact 1.4. [31, Theorem 2.1] Let a = (x1, ..., xn) and let M be an R-module. Then the

following conditions are equivalent:

(i) the R-module ExtiR(R/a,M) is finitely generated over R for all i,

(ii) the R-module TorRi (R/a,M) is finitely generated over R for all i, and

(iii) the Koszul homology modules Hi(x;M) are finitely generated overR for i = 0, ..., n.

While modules are a well-defined setting to study the a-codualizing condition, it is

more natural to consider this property in the derived category. This follows the tradition

of studying dualizing properties in the derived category as in work of Grothedieck and

Hartshorne [22], Avramov and Foxby [3], and Christensen [10]. See Chapter 2 for back-

ground information.

Definition 1.5. A homologically bounded R-complex X is a-codualizing if it satisfies the

following conditions:

(i) ExtiR(R/a, X) is finitely generated for all i,

(ii) one has suppR(X) ⊆ V(a), and

(iii) the natural homothety map χR̂a

C : R̂a → RHomR(X,X) is an isomorphism in the

derived category D(R).

We prove the following analogue of Melkersson’s result for R-complexes in Theo-

rem 3.15. It provides flexibility in studying the a-codualizing condition. It is the main

result of Section 3.2.

Theorem 1.6. Let M be a homologically bounded R-complex. Then the following condi-

tions are equivalent:

(i) the R-complex K(x)⊗L
R M is homologically finite for some (equivalently, for every)

generating sequence x of a,

3



(ii) the R-complex M ⊗L
R R/a is homologically degree-wise finite, and

(iii) the R-complex RHomR(R/a,M) is homologically degree-wise finite.

The next result shows that, as in the semidualizing and quasidualizing cases, one

always has an example of an a-codualizing complex. It is Theorem 3.24, which is the main

result of Section 3.3.

Theorem 1.7. The R-complex RΓa(R) is a-codualizing.

In the semidualizing case, two well-studied classes of complexes are the Auslander

and Bass classes. We study these classes and show that the behavior in the a-codualizing

case deviates from the semidualizing case in some surprising ways.

Definition 1.8. Let M be an a-codualizing R-complex. Let X and Y be homologically

bounded R-complexes.

(a) The complex X is in the Auslander class AM(R) if the R-complex M ⊗L
R X is

homologically bounded and the natural morphism γMX : X → RHomR(M,M ⊗L
R X)

is an isomorphism in D(R).

(b) The complex Y is in the Bass class BM(R) if the R-complex RHomR(M,Y ) is ho-

mologically bounded and the natural morphism ξMY : M ⊗L
R RHomR(M,Y ) → Y is

an isomorphism in D(R).

One of the main theorems about the Auslander and Bass Classes in the semidualizing

case is so-called “Foxby equivalence.” This notion connects the two classes via functors

involving semidualizing complexes. To understand these classes in the a-codualizing case,

we need to understand various support conditions. The following result is our version of

Foxby equivalence in this setting. It is proved in Theorem 3.40. It is the main result of

Section 3.4.
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Theorem 1.9 (Foxby equivalence). Let M is a-codualizing complex. Then we have that

the functors RHomR(M,−) : BM(R) → AM(R) and M ⊗L
R − : AM(R) → BM(R) are

quasi-inverse equivalences. Further, we have the following.

(a) An R-complex Y is in BM(R) if and only if the R-complex RHomR(M,Y ) ∈ AM(R)

and suppR(Y ) ⊆ V(a).

(b) If X ∈ AM(R), then M ⊗L
R X ∈ BM(R) and co-suppR(X) ⊆ V(a).

(c) If dim(R) <∞ andM⊗L
RX ∈ BM(R) and co-suppR(X) ⊆ V(a), thenX ∈ AM(R).

5



2. BACKGROUND

2.1. Homological Constructions

The origins of homological algebra can be traced back at least to the work of Cartan

and Eilenberg [8]. We begin with some basic definitions and facts about homological

algebra that are necessary for the subsequent chapters. For details on the constructions

and proofs the interested reader may wish to consult Rotman [33].

Definition 2.1. A sequence of R-module homomorphisms

X = · · · // Xi+1

∂Xi+1 // Xi

∂Xi // Xi−1
// · · ·

is a chain complex (or simply an R-complex) if ∂Xi ◦ ∂Xi+1 = 0 for each i. The module Xi is

said to be in the ith degree of X . The ith homology module of X is

Hi(X) = Ker(∂Xi )/ Im(∂Xi+1).

We write |x| to denote the degree of an element of X . By this we mean if |x| = n, then

x ∈ Xn. Let n ∈ Z. The nth suspension (or shift) of X is the complex ΣnX such that

(ΣnX)i := Xi−n and ∂ΣnX
i = (−1)n∂Xi−n. We set ΣX := Σ1X .

Definition 2.2. Let X be an R-complex. If Xi = 0 for i � 0, i � 0, or |i| � 0, then

X is bounded above, bounded below, or bounded, respectively. If Hi(Xi) = 0 for i � 0,

i� 0, or |i| � 0, then X is homologically bounded above, homologically bounded below,

or homologically bounded respectively. If Hi(Xi) = 0 for |i| � 0 and each module Hi(Xi)

is finitely generated, then X is homologically finite.
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Definition 2.3. Let X be an R-complex. The infimum, supremum, and amplitude of X are

inf(X) = inf{i ∈ Z : Hi(X) 6= 0}

sup(X) = sup{i ∈ Z : Hi(X) 6= 0}

amp(X) = sup(X)− inf(X).

Definition 2.4. Let X and Y be R-complexes. A sequence {αi : Xi → Yi} of R-module

homomorphisms such that the following diagram commutes

X = · · · // Xi

∂Xi //

αi

��

Xi−1
//

αi−1

��

· · ·

Y = · · · // Yi
∂Yi // Yi−1

// · · ·

is a chain map. We denote this as α : X → Y . The chain map α is a quasiisomorphism

if any induced map on homology is an isomorphism, that is, for all i, we have that the

map Hi(α) : Hi(X) → Hi(Y ) is an isomorphism. Quasiisomorphisms are identified by

the symbol '. The category of R-complexes is the category C(R) with objects equal to the

R-complexes and morphisms equal to the chain maps.

We often use the mapping cone to study complexes and chain maps.

Definition 2.5. Let f : X → Y be a chain map. The mapping cone of f is the R-complex

Cone(f) = · · · //

Yi

⊕

Xi−1

(
∂Yi fi−1

0 −∂Xi−1

)
//

Yi−1

⊕

Xi−2

// · · · .

Fact 2.6. Let f : X → Y be a chain map. Then f is a quasiisomorphism if and only if

Cone(f) is exact.

7



Definition 2.7. A chain map α : X → Y is null-homotopic if there is a sequence of

homomorphisms βi : Xi → Yi+1 such that αi = βi−1∂
X
i + ∂Yi+1βi for all i ∈ Z.

X = · · · // Xi+1

∂Xi+1 //

αi+1

��

Xi

∂Xi //

αi

��βi||

Xi−1
//

αi−1

��βi−1||

· · ·

Y = · · · // Yi+1
∂Yi+1

// Yi
∂Yi

// Yi−1
// · · ·

The chain map α is a homotopy equivalence if there exists a chain map γ : Y → X such

that idX −γα and idY −αγ are null-homotopic.

Fact 2.8. Let α : X → Y be a chain map.

(a) If α is an isomorphism, then α is a homotopy equivalence.

(b) If α is a homotopy equivalence, then α is a quasiisomorphism.

Definition 2.9. Let M be an R-module. An augmented projective resolution P+ of M is

an exact sequence of modules

P+ = · · · // Pi+1
// · · · // P1

// P0
τ //M // 0

such that each Pi is projective over R. The complex

P = · · · // Pi+1
// · · · // P1

// P0
// 0

is a projective resolution of M .

Definition 2.10. Let M be an R-module. An augmented flat resolution F+ of M is an

exact sequence of modules

F+ = · · · // Fi+1
// · · · // F1

// F0
ζ //M // 0

8



such that each Fi is flat over R. The complex

F = · · · // Fi+1
// · · · // F1

// F0
// 0

is a flat resolution of M .

Definition 2.11. Let M be an R-module. An augmented injective resolution +J of M is

an exact sequence of modules

+J = 0 //M
ε // J0

// J1
// · · · // Ji // · · ·

such that each Ji is injective over R. The complex

J = 0 // J0
// J1

// · · · // Ji // · · ·

is an injective resolution of M .

Remark 2.12. If M is an R-module with projective resolution P and injective resolution

J , then P and J are not usually exact. In fact, we have Hi(P ) = 0 = Hi(J) for all i 6= 0

and H0(P ) ∼= M ∼= H0(J).

We next define two fundamental tools of homologically algebra. Note that these are

defined using the projective and injective resolutions previously defined, and that these

definitions are independent of choice of projective and injective resolution.

Definition 2.13. Let M and N be R-modules and P a projective resolution of M . Then

ExtiR(M,N) := H−i(HomR(P,N)).

Fact 2.14. Let M and N be R-modules, P a projective resolution of M , and J an injective

resolution of N . Then ExtiR(M,N) = H−i(HomR(P,N)) ∼= H−i(HomR(M,J)).

9



Definition 2.15. Let M and N be R-modules and P a projective resolution of M . Then

TorRi (M,N) := Hi(P ⊗R N).

Fact 2.16. Let M and N be R-modules, P a flat resolution of M , and Q a flat resolution

of N . Then TorRi (M,N) = Hi(P ⊗R N) ∼= Hi(M ⊗R Q).

As much of our attention in the sequel is given to studying the a-codualizing con-

dition in regards to complexes, we introduce some fundamental notions related to R-

complexes, many of which are analogous to definitions related to R-modules.

Definition 2.17. Let X and Y be R-complexes.

1. The Hom complex HomR(X, Y ) is defined as follows. In degree n, we have that

HomR(X, Y )n :=
∏

p∈Z HomR(Xp, Yp+n) with differentials ∂HomR(X,Y )
n ({fp}) :=

{∂Yp+nfp − (−1)nfp−1∂
X
p }.

2. The tensor product complex X ⊗R Y is defined as follows. In degree n, we have

(X ⊗R Y )n := ⊕p∈ZXp ⊗R Yn−p. One defines the differentials on the generators as

follows

∂X⊗RY
n (. . . , 0, xp ⊗ yn−p, 0, . . .) =

(. . . , 0, ∂Xp (xp)⊗ yn−p, (−1)pxp ⊗ ∂Yn−p(yn−p), 0, . . .).

Definition 2.18. Let α : X → Y be a chain map, and let V be an R-complex. Then there

are well-defined induced chain maps

HomR(V, α) : HomR(V,X)→ HomR(V, Y ) f = {fp} 7→ {αp+|f |fp}

HomR(α, V ) : HomR(Y, V )→ HomR(X, V ) {fp} 7→ {fpαp}

V ⊗R α : V ⊗R X → V ⊗R Y vp ⊗ xq 7→ vp ⊗ αq(xq)

α⊗R V : X ⊗R V → Y ⊗R V xp ⊗ vq 7→ αp(xp)⊗ vq.

10



The preceding definition describes the functorial properties of the constructions of

Definition 2.17. These properties are analogous to the functorial properties in the context

of R-modules.

Fact 2.19. It is straightforward to show that the constructions from Definition 2.18 are

functorial, that is, that they respect compositions and identities.

Along with these constructions come a number of natural isomorphisms that are

analogous to well-known results for modules. We record them here.

Fact 2.20. Let X, Y and Z be R-complexes.

Hom cancellation: HomR(R,X) ∼= X .

Tensor cancellation: R⊗R X ∼= X .

Associativity: X ⊗R (Y ⊗R Z) ∼= (X ⊗R Y )⊗R Z.

Adjointness: HomR(X ⊗R Y, Z) ∼= HomR(X,HomR(Y, Z)).

Definition 2.21. Let x = x1, . . . , xn ∈ R. The Koszul complex on xi is defined as

K(xi) = 0 // R
xi // R // 0

The Koszul complex on x is defined inductively as

K(x) = K(x1, . . . , xn) = K(x1)⊗R · · · ⊗R K(xn).

11



The Koszul complex may be defined as above or in terms of mapping cones or in

terms of an exterior algebra. Each of these has its utility. For our purposes, the exterior

algebra structure is particularly useful, so we describe it next.

Construction 2.22. Let n ∈ N and let e1, . . . , en ∈ Rn be a basis. Let x = x1, . . . , xn ∈ R.

The ith exterior power of Rn, denoted
∧iRn, is the free R-module of rank

(
n
i

)
with basis

vectors given by the formal symbols of the form ej1 ∧ · · ·∧ eji with 1 6 j1 < · · · < ji 6 n.

In
∧2Rn, define

ej2 ∧ ej1 :=


−ej1 ∧ ej2 whenever 1 6 j1 < j2 6 n

0 whenever 1 6 j1 = j2 6 n.

Extending this bilinearly, we define α ∧ β for all α, β ∈
∧1Rn = Rn: write α =

∑
p αpep

and β =
∑

q βqeq, and define

α ∧ β =

(∑
p

αpep

)
∧

(∑
q

βqeq

)
=
∑
p,q

αpβqep ∧ eq =
∑
p<q

(αpβq − αqβp)ep ∧ eq.

For example, we have

(e1 + e2) ∧ (e1 + e3) = e1 ∧ e3 − e1 ∧ e2 + e2 ∧ e3.

This extends to a multiplication
∧1Rn ×

∧tRn →
∧1+tRn, which in turn extends (by

induction on s) to a multiplication
∧sRn×

∧tRn →
∧s+tRn using the following formula

when 1 6 i1 < . . . < is 6 n and 1 6 j1 < · · · < jt 6 n:

(ei1 ∧ · · · ∧ eis) ∧ (ej1 ∧ · · · ∧ ejt) := ei1 ∧ [(ei2 ∧ · · · ∧ eis) ∧ (ej1 ∧ · · · ∧ ejt)].

This multiplication is denoted as (α, β) 7→ α∧β. When s = 0, since
∧0Rn = R, the usual

12



scalar multiplication R×
∧tRn →

∧tRn describes the multiplication
∧0Rn ×

∧tRn →∧tRn, and similarly when t = 0. This further extends to a well-defined multiplication on∧
Rn :=

⊕
i

∧iRn:

ej1 ∧ · · · ∧ ejt :=


0 if jp = jq for some p 6= q

ej1 ∧ (ej2 ∧ · · · ∧ ejt) if jp 6= jq for all p 6= q.

This endows the Koszul complex K(x) with the structure of a graded commutative R-

algebra. Using this notation, the differential on K(x) is given by the following:

∂
KR(x)
i (ej1 ∧ · · · ∧ ejt) =

t∑
s=1

(−1)s+1xjsej1 ∧ · · · ∧ êjs ∧ · · · ∧ ejt .

Here, the hat signifies that a particular basis element has been removed. For instance, we

have e1 ∧ ê2 ∧ e3 = e1 ∧ e3.

Definition 2.23. Let x = x1, . . . , xn ∈ R. The Čech complex on x is the complex defined

first for a single element

Č(x1) = 0 // R
f // Rx1

// 0

where f : R→ Rx1 is defined by f(r) = r
1
. Then one has

Č(x) = Č(x1)⊗R . . .⊗R Č(xn).

Definition 2.24. Let X be an R-complex.

(a) A projective resolution of X is a quasiisomorphism P
'−→ X , where P is a bounded

below complex of projective modules.

13



(b) A flat resolution of X is a quasiisomorphism F
'−→ X , where F is a bounded below

complex of flat modules.

(c) An injective resolution of X is a quasiisomorphism X
'−→ J , where J is a bounded

above complex of injective modules.

Example 2.25. In the case that X is an R-module concentrated in degree 0, these def-

initions coincide with the definitions for modules. The augmented projective, flat, and

injective resolutions

P+ = · · · // Pi+1
// · · · // P1

// P0
τ // X // 0

F+ = · · · // Fi+1
// · · · // F1

// F0
ζ // X // 0

+J = 0 //M ε // J0
// J1

// · · · // Ji // · · ·

give rise to the following quasiisomorphisms.

P = · · · //

f
��

Pi+1
//

0
��

· · · // P1

0
��

// P0
//

τ
��

0

X = · · · // 0 // · · · // 0 // X // 0

F = · · · //

g

��

Fi+1
//

0
��

· · · // F1

0
��

// F0
//

ζ
��

0

X = · · · // 0 // · · · // 0 // X // 0

X = 0 //

h
��

X //

ε
��

0 //

0
��

· · · // 0 //

0
��

· · ·

J = 0 // J0
// J1

// · · · // Ji // · · ·

Note that these examples show quasiisomorphisms are not true isomorphisms, as

there is no inverse chain map. This motivates our study of the derived category below.
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Fact 2.26. Let X and Y be R-complexes.

(a) If X is bounded above, then X has an injective resolution.

(b) If Y is bounded below, then Y has a projective resolution. Therefore, there exists a flat

resolution of Y .

Definition 2.27. Let X be a homologically bounded R-complex. The injective dimension

of X is defined as

idR(X) = inf{sup{i ∈ Z : J−i 6= 0} : J is an injective resolution of X}.

The flat dimension of X is defined as

fdR(X) = inf{sup{i ∈ Z : Fi 6= 0} : F is a flat resolution of X}.

2.2. Artinian And Torsion Modules

In this section we discuss artinian and torsion modules. This is essential for under-

standing the construction of “minimal injective resolutions” in Section 2.4 and understand-

ing how the a-codualizing condition captures quasidualizing modules as an example.

Definition 2.28. Let M be an R-module. Set

Γa(M) = {x ∈M : anx = 0 for n� 0}.

The module M is a-torsion if Γa(M) = M .

Fact 2.29. Given an R-module homomorphism f : M → N we have f(Γa(M)) ⊆ Γa(N).

Definition 2.30. Given anR-module homomorphism f : M → N the induced map Γa(f) :

Γa(M)→ Γa(N) is defined by restricting the domain and codomain of f .
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Fact 2.31. It is straightforward to show that Γa is a functor.

Fact 2.32. [30, Theorem 18.4] Let p ∈ Spec(R).

(a) If x ∈ R \ p, then multiplication by x is an automorphism on ER(R/p).

(b) For any x ∈ ER(R/p) there exists a positive integer n such that pnx = 0. This is to

say, ER(R/p) is p-torsion. Moreover, if p ∈ V(a), then ER(R/p) is a-torsion.

The preceding fact can be stated succinctly as follows.

Fact 2.33. Let a be an ideal of R and p ∈ Spec(R). Then we have

Γa(ER(R/p)) =


ER(R/p) if p ∈ V(a)

0 if p 6∈ V(a).

In a similar vein, we describe the behavior of injective hulls under localization.

Fact 2.34. [12, Theorems 3.3.3 and 3.3.8(vi)] Let U be a multiplicatively closed set in R

and p ∈ Spec(R). Then we have

U−1(ER(R/p)) =


ER(R/p) ∼= EU−1R(U−1R/pU−1R) if p ∩ U = ∅

0 if p ∩ U 6= ∅.

Fact 2.35. [28, Fact 2.1(a)] If M is an a-torsion R-module, then the natural map M →

R̂a ⊗RM is an isomorphism.

Fact 2.36. [12, Theorem 3.4.3] Let (R,m, k) be local, and let E be the injective hull of the

residue field k. Then an R-module M is artinian if and only if M ⊆ En for some n > 1.

16



2.3. The Derived Category

One of the difficulties in working with complexes is that quasiisomorphisms are not

invertible. To remedy this deficiency, Verdier [34] introduced the “derived category” of

R-complexes. In this setting, quasiisomorphisms are formally inverted, turning them into

isomorphisms.

Definition 2.37. The derived category of R is the category D(R) with objects equal to the

R-complexes and morphisms X → Y equal to certain equivalence classes of diagrams of

chain maps of the form X → J
'←− Y .

The definition of the equivalence relation used for the morphisms inD(R) is technical

and is not used in the sequel, so we do not describe it here. On the other hand, the next fact

documents some useful properties.

Fact 2.38. There is a natural functor F : C(R) → D(R) given on objects by the formula

F(X) = X . For a chain map α : X → Y , the morphism F(α) : X → Y is the equivalence

class of the diagram X
α−→ Y

=←− Y . The morphism F(α) is an isomorphism in D(R) if

and only if α is a quasiisomorphism.

Each morphism β : X → Y in D(R) induces a well defined R-module homomor-

phism Hi(β) : Hi(X) → Hi(β) for each i. In the case that β = F(α), then we have

Hi(F(α)) = Hi(α).

To save space (and following tradition), we write α in place of F(α). When we write

α and there is a danger of confusion, we specify whether we are working in C(R) or D(R).

Remark 2.39. The category D(R) is “triangulated”, which is a technical condition on a

category similar to (but different from) being “abelian”. In short, it means thatD(R) comes

equipped with a class of “distinguished triangles” which are diagrams

X → Y → Z → ΣX

17



of morphisms in D(R) subject to certain technical axioms. To save space (and following

tradition) we abbreviate the above distinguished triangle as

X → Y → Z →

since the codomain of the third morphism is always the shift of the domain of the first

morphism.

We give some important properties of the distinguished triangles in D(R) next.

Fact 2.40. We use the notation from Fact 2.38.

Every distinguished triangleX
β−→ Y

γ−→ Z
σ−→ inD(R) induces a long exact sequence

in homology:

· · · Hi+1(σ)−−−−→ Hi(X)
Hi(β)−−−→ Hi(Y )

Hi(γ)−−−→ Hi(Z)
Hi(σ)−−−→ Hi−1(X)

Hi−1(β)−−−−→ · · · .

Also, distinguished triangles can be “rotated” in the sense that the following diagrams are

also distinguished triangles in D(R):

Σ−1Z
Σ−1σ−−−→ X

β−→ Y
γ−→

Y
γ−→ Z

σ−→ ΣX
Σβ−→ .

Given any short exact sequence of chain maps

0→ U
ζ−→ V

ν−→ W → 0

there is distinguished triangle

U
ζ−→ V

ν−→ W →

such that the induced long exact sequences from these two diagrams are the same. For
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instance, given a chain map α : X → Y , the standard mapping cone exact sequence

0→ Y
ε−→ Cone(α)

τ−→ ΣX → 0

induces a distinguished triangle

Y
ε−→ Cone(α)

τ−→ ΣX
Σα−→

which we can rotate into the form

X
α−→ Y

ε−→ Cone(α)
τ−→ .

Fact 2.41. Given a distinguished triangle X → Y → Z → and the associated long exact

sequence in homology, if two of the complexes are homologically degree-wise finite, then

so is the third one.

The derived category is the natural habitat for derived functors, which we describe

next. Note that our definitions are not the most general, but they avoid certain technical

constructions and suffice for our work.

Definition 2.42. Let X be a homologically bounded below R-complex and Y be any R-

complex. Let P '−→ X be a projective resolution. Then the right derived homomorphism

complex and left derived tensor product are defined respectively as

RHomR(X, Y ) := HomR(P, Y ) X ⊗L
R Y := P ⊗R Y.

For each i, we set

ExtiR(X, Y ) := H−i(RHomR(X, Y )) TorRi (X, Y ) := H−i(X ⊗L
R Y ).
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We next discuss well-definedness and “balance” for derived functors.

Fact 2.43. Let X be a homologically bounded below R-complex with projective resolu-

tions P '−→ X
'←− Q and flat resolution F '−→ X , and let Y be an R-complex. Then we have

isomorphisms HomR(P, Y ) ' HomR(Q, Y ) and P ⊗R Y ' F ⊗R Y in D(R). It follows,

in particular, that RHomR(X, Y ) and X ⊗L
R Y are independent of choice of resolution

(hence, well-defined) as are ExtiR(X, Y ) and TorRi (X, Y ) for all i.

One can also define Y ⊗L
R X with no boundedness condition on Y (still assuming

that X is homologically bounded below) as Y ⊗L
R X = Y ⊗R P . This is independent of

P , as in the previous paragraph. Also, if Y is homologically bounded below, then it can be

computed as G⊗R X ' G⊗R F for any flat resolution G '−→ Y .

Similarly, given a homologically bounded above R-complex Z, one can also define

RHomR(Y, Z) as RHomR(Y, Z) = HomR(Y, J) for any injective resolution Z
'−→ J .

This is independent of J and agrees with the previous definition when Y is homologically

bounded below.

Derived functors are actually functors, as follows.

Fact 2.44. Given a morphism α : X → Y in D(R) and an R-complex V , there are well-

defined induced morphisms in D(R).

RHomR(V, α) : RHomR(V,X)→ RHomR(V, Y )

RHomR(α, V ) : RHomR(Y, V )→ RHomR(X, V )

V ⊗L
R α : V ⊗L

R X → V ⊗L
R Y

α⊗L
R V : X ⊗L

R V → Y ⊗L
R V

These are essentially induced from Definition 2.18 and are appropriately functorial.1 They
1According to our definitions, one needs to make reasonable boundedness assumptions to ensure that the

domain and codomain of a given morphism are defined. To avoid dealing with a large number of cases, we
leave the analysis of these assumptions to the interested reader.
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also respect distinguished triangles, as follows. Given a distinguished triangle

X
α−→ Y

β−→ Z
γ−→

in D(R), the induced diagrams

RHomR(V,X)
RHom(V,α)−−−−−−→ RHomR(V, Y )

RHom(V,β)−−−−−−→ RHomR(V, Z)
RHom(V,γ)−−−−−−→

RHomR(Z, V )
RHom(β,V )−−−−−−−→ RHomR(Y, V )

RHom(α,V )−−−−−−−→ RHomR(X, V )
ΣRHom(γ,V )−−−−−−−−→

V ⊗L
R X

V⊗L
Rα−−−→ V ⊗L

R Y
V⊗L

Rβ−−−→ V ⊗L
R Z

V⊗L
Rγ−−−→

X ⊗L
R V

α⊗L
RV−−−→ Y ⊗L

R V
β⊗L

RV−−−→ Z ⊗L
R V

γ⊗L
RV−−−→

are also distinguished triangles in D(R).

Definition 2.45. Let P '−→ X be a projective resolution and Y
'−→ J be an injective

resolution. The left-derived local homology and right-derived local cohomology complexes

with respect to a are defined respectively as follows:

LΛa(X) := Λa(P ) := P̂ a RΓa(Y ) = Γa(J).

Fact 2.46. The operations RΓa(−) and LΛa(−) are functorial (covariant) and respect

distinguished triangles, as in Fact 2.44; see, e.g., Fact 2.29. Also, by [1, Section 1],

we know that LΛa(X) can be computed as Λa(F ) for any flat resolution F
'−→ X . If

X is homologically both degree-wise finite and bounded below, then there is a natural

isomorphism LΛa(X) ' R̂a ⊗L
R X by [21, Proposition 2.7].

Let Y '−→ J be an injective resolution, and let P '−→ X be a projective resolution.

The natural chain maps Γa(J) → J and P → P̂ a induce morphisms RΓa(Y ) → Y and

X → LΛa(X), which are natural in Y and X; see [1, Theorem (0.3)∗].

Let x be a generating sequence for a. Then one has RΓa(R) ' Č(x). Moreover, if
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X is homologically bounded, then there are natural isomorphisms

RΓa(X) ' RΓa(R)⊗L
R X ' Č(x)⊗L

R X

LΛa(X) ' RHomR(RΓa(R), X) ' RHomR(Č(x), X).

See [1, Theorem (0.3)∗] and [29, Proposition 3.1.2].

2.4. Support And Co-Support

Since Definition 1.3 uses the notion of the “small support” we record some definitions

and facts here for the sequel.

Definition 2.47. Let M be an R-module.

1. The “small,” or “homological,” support of M is

suppR(M) = {p ∈ Spec(R) : TorRi (R/p,M)p 6= 0 for some i}.

2. The “large” support of M is SuppR(M) = {p ∈ Spec(R) : Mp 6= 0}.

There is always a containment of the small support in the large support. When M is

a finitely generated R-module they are equal.

Definition 2.48. Let X be an R-complex.

(a) The “small,” or “homological,” support of X is

suppR(X) = {p ∈ Spec(R) : κ(p)⊗L
R X 6' 0}.

(b) The “large” support of X is SuppR(X) = {p ∈ Spec(R) : Xp 6' 0}.

Fact 2.49. Let X be an R-complex. Then SuppR(Γa(X)) ⊆ V(a).
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Fact 2.50. [16, Proposition 14.11] If X is a bounded below R-complex, then X ' 0 if and

only if suppR(X) = ∅.

Fact 2.51. [20, Theorem 7.1(c)] Let X and Y be R-complexes. If X and Y are homologi-

cally bounded below, then suppR(X ⊗L
R Y ) = suppR(X)

⋂
suppR(Y ).

Corollary 2.52. Let X and Y be homologically bounded below R-complexes. Then we

have suppR(X ⊗L
R Y ) ⊆ suppR(X).

Definition 2.53. Let X be an R-complex. The co-support of X is defined as

co-suppR(X) = {p ∈ Spec(R) : κ(p)⊗L
Rp

RHomR(Rp, X) 6' 0}.

Proposition 2.54. If X, Y are R-complexes where X is homologically bounded below or

Y is homologically bounded above, then co-suppR(RHomR(X, Y )) ⊆ SuppR(X).

Proof. If p 6∈ SuppR(X), then one has

κ(p)⊗L
Rp

RHomR(Rp,RHomR(X, Y )) 'κ(p)⊗L
Rp

RHomR(Rp ⊗L
R X, Y )

'κ(p)⊗L
Rp

RHomR(Xp, Y )

'κ(p)⊗L
Rp

RHomR(0, Y )

'0.

Thus, p 6∈ co-suppR(RHomR(M,Y )), so co-suppR(RHomR(M,Y )) ⊆ SuppR(M).

2.5. Minimal Resolutions

In this section, we discuss two types of minimal resolutions: minimal injective res-

olutions of homologically bounded above R-complexes and minimal flat resolutions of

R-modules. We begin with two bookkeeping tools.

Definition 2.55. Let (R,m, k) be a local ring. Let X be an R-complex.

23



(a) The ith Bass number of X with respect to p is µip = rankκ(p)(ExtiRp
(κ(p), Xp). When

the µim are finite, the Bass series of X is the formal series IXR (t) =
∑

i∈Z µ
i
m(X)ti.

(b) The ith Betti number of X is βRi = rankk(TorRi (X, k)). When the βRi are finite, the

Poincaré series of X is the formal series PR
X (t) =

∑
i∈Z β

R
i (X)ti.

Definition 2.56. Let N ⊆ M be R-modules. Then N is an essential submodule of M if

for each submodule L of M , the condition N ∩ L = 0 implies N = 0.

Definition 2.57. [9] Let X be an R-complex. An injective resolution J of X is minimal if

for all i the kernel of the differential ∂Ji : Ji → Ji+1 is an essential submodule of Ji.

Fact 2.58. Every homologically bounded above R-complex M has a minimal injective

resolution M '−→ J such that Ji = 0 for all i > sup(M). Furthermore, if M '−→ I is

another injective resolution, then there is an exact bounded above complex I ′ of injective

R-modules and an isomorphism I ∼= J ⊕ I ′; if I is minimal, then I ′ = 0. See [4, 2.11.3.5

Theorem and 2.12.2.1 Theorem].

Lemma 2.59. Let M be a homologically bounded above R-complex, and let S be a mul-

tiplicatively closed subset of R. Given a (minimal) injective resolution M
'−→ J , the

localization S−1M
'−→ S−1J is a (minimal) injective resolution over S−1R.

Proof. Localization is exact, so it respects quasiisomorphisms, and we have a quasiiso-

morphism S−1M
'−→ S−1J over S−1R. Since R is noetherian, we know that each S−1Ji is

injective over S−1R, so the quasiisomorphism S−1M
'−→ S−1J is an injective resolution.

Furthermore, it is well-known that the “essential” property for submodules localizes (see,

e.g., the proof of [7, Lemma 3.2.5]). Since localization is exact, if the original resolution is

minimal over R, then the localized resolution is minimal over S−1R.

Lemma 2.60. Assume that (R,m, k) is local, and let J be a minimal bounded above

complex of injective R-modules, i.e., a minimal injective resolution of itself. Then the

complex Γm(J) is also a minimal bounded above complex of injective R-modules.
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Proof. Γm(J) is a bounded above complex of injective R-modules by Fact 2.32(b). Thus,

it remains to show that Γm(J) is minimal. Since Γm is left-exact, for each i we have

Ker(∂
Γm(J)
i ) = Ker(Γm(∂Ji )) = Γm(Ker(∂Ji )) ⊆ Γm(Ji−1).

Since the inclusion Ker(∂Ji ) ⊆ Ji−1 is essential, it is straightforward to show that the

inclusion Γm(Ker(∂Ji )) ⊆ Γm(Ji−1) is also essential, so Γm(J) is minimal.

Fact 2.61. Let M be a homologically bounded R-complex. By [16, (14.20)], we have

suppR(M) =
⋃
i∈Z

{p ∈ Spec(R) | µip(M) 6= 0}

= {p ∈ Spec(R) | RHomR(R/p,M)p 6' 0}.

Remark 2.62. Lemma 2.64 is used frequently in our proofs. Before we state and prove it,

we give some background information about it.

In [5, Remark 9.2], the authors claim that Lemma 2.64 is proved in [19], but do not

cite a specific result from [19]. As best we can ascertain, they are extrapolating from [19,

2.9 Remark], which only specifically deals with the case where R is a module. However,

the proof given in [19, 2.9 Remark] is somewhat unconvincing, and we do not see how the

claim of [5, Remark 9.2] follows. Furthermore, from [9, Remark 2.3], we learn that there is

some confusion as to what is actually true in [5, Remark 9.2]. Thus, given the importance

of this result for our work, we include a proof here, which may be along the lines of the

intentions of [19, 2.9 Remark] and [5, Remark 9.2].

Lemma 2.63. Assume that (R,m, k) is local, and let M be a homologically bounded R-

complex with minimal injective resolution M '−→ J . Then m ∈ suppR(M) if and only if

ER(R/m) is a summand of Ji for some i.
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Proof. Assume first that m ∈ suppR(M). Fact 2.61 implies that

0 6' RHomR(R/m,M)m ' RHomR(R/m,M) ' HomR(R/m, J).

In particular, we have 0 6= HomR(R/m, J), so for some i we have

0 6= HomR(R/m, J)i ∼= (0 :Ji m) ⊆ Γm(Ji).

Write Ji ∼= ⊕p∈Spec(R)ER(R/p)(µip) for some sets µip. It follows from Fact 2.32(b) that

0 6= Γm(Ji) ∼= ⊕p∈Spec(R)Γm(ER(R/p))(µip) ∼= ER(R/m)(µim).

We conclude that µim 6= ∅, so ER(R/m) is a summand of Ji, as desired.

For the converse, assume that ER(R/m) is a summand of Ji for some i ∈ Z. It

follows that Γm(J) 6= 0. Lemma 2.60 implies that Γm(J) is a minimal injective resolution

of itself, so it follows that Γm(J) 6' 0. Since Γm(J)p = 0 for all p ∈ Spec(R) r {m}, we

have ∅ 6= suppR(Γm(J)) ⊆ SuppR(Γm(J)) ⊆ {m}. We conclude that m ∈ suppR(Γm(J)).

Consider the exact sequence

0→ Γm(J)
⊆−→ J → J/Γm(J)→ 0.

Since J/Γm(J) is a bounded above complex of injective R-modules, it is a direct summand

of a minimal injective resolution J ′ ' J/Γm(J). Fact 2.32(b) implies that for all i the

module ER(R/m) is not a summand of Ji/Γm(Ji) = (J/Γm(J))i, so it is not a summand

of J ′. Thus, the first paragraph of this proof implies that m /∈ suppR(J/Γm(J)). We need

to show that J/Γm(J) is homologically bounded. For this, it suffices to show that Γm(J)

is homologically bounded. This follows from the isomorphisms Γm(J) ' Č(m) ⊗L
R J '

Č(m) ⊗L
R J

′, where J ′ is a truncation of J that is bounded and such that J ′ ' J . Since
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Č(m) and J ′ are bounded, we have Č(m) ⊗L
R J

′ (homologically) bounded. Applying the

functor RHomR(R/m,−) ' RHomR(R/m,−)m to the above exact sequence, we obtain

the distinguished triangle

RHomR(R/m,Γm(J))→ RHomR(R/m, J)→ RHomR(R/m, J/Γm(J))→ .

The condition m /∈ suppR(J/Γm(J)) implies that RHomR(R/m, J/Γm(J)) ' 0, so the

distinguished triangle implies that we have

RHomR(R/m, J) ' RHomR(R/m,Γm(J)) 6' 0

as m ∈ suppR(Γm(J)). It follows that m ∈ suppR(J) = suppR(M), as desired.

Lemma 2.64. Let M be a homologically bounded R-complex with minimal injective reso-

lution M '−→ J . Then suppR(M) = ∪i∈Z{p ∈ Spec(R) | ER(R/p) is a summand of Ji}.

Proof. Let p ∈ Spec(R), and note that Lemma 2.59 implies that Mp
'−→ Jp is a minimal

injective resolution.

To prove the containment

suppR(M) ⊇ ∪i∈Z{p ∈ Spec(R) | ER(R/p) is a summand of Ji}

assume that ER(R/p) is a summand of Ji for some i. Then the module ER(R/p)p ∼=

ERp(Rp/pRp) is a summand of (Ji)p for some i. From Lemma 2.63, we conclude that

pRp ∈ suppRp
(Mp). It follows that

∅ 6= µipRp
(Mp) = µip(M).

So p ∈ suppR(M) by Fact 2.61.
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For the reverse containment, run the previous argument in reverse, using the fact that

(Ji)p is a summand of Ji.

Proposition 2.65. Let M be a homologically bounded R-complex. Then SuppR(M) ⊆

V(a) if and only if suppR(M) ⊆ V(a).

Proof. (⇒): This containment is always true since suppR(M) ⊆ SuppR(M).

(⇐): Assume suppR(M) ⊆ V(a). Suppose p 6∈ V(a). Then p 6∈ suppR(M). It follows

from Lemma 2.64 that ER(R/p) does not occur as a summand in a minimal injective

resolution J of M .

Now, for all q ⊆ p, the ideal q 6∈ V(a). So ER(R/q) does not occur in minimal

injective resolution J . So in each degree of J we have

Ji = ⊕q6⊆pER(R/q)(µiq).

If q 6⊆ p, then there exists x ∈ q \ p. So x is a unit in Rp and ER(R/q) is x-torsion.

Then ER(R/q)p = 0. Therefore, (Ji)p = 0. It follows that Mp ' Jp = 0. That is,

p 6∈ SuppR(M).

Corollary 2.66. IfX is a homologically boundedR-complex, then SuppR(X) is contained

in the Zariski closure of suppR(X) in Spec(R).

We use of the notion of minimal flat resolutions in the sequel. The following provides

the relevant background on the construction.

Definition 2.67. An R-module M is said to be cotorsion if for all flat modules F we have

Ext1
R(F,M) = 0.

Remark 2.68. An R-module is M cotorsion if and only if ExtiR(F,M) = 0 for all flat

modules F and i > 1. This can be shown via a dimension-shifting argument in a projective

resolution of F .
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Definition 2.69. A submodule L of an R-module N is said to be a pure submodule if

0 → A ⊗R L → A ⊗R N is exact for all modules A. An R-module M is said to be pure

injective if for every pure submodule L ⊆ N of R-modules, the following sequence is

exact.

HomR(N,M)→ HomR(L,M)→ 0

Definition 2.70. Let M be an R-module. A homomorphsm φ : F → M where F is a flat

R-module is said to be a flat cover of M if

1. any diagram with F ′ a flat R-module

F ′

  ��
F

φ //M

can be completed to a commutative diagram, and

2. any diagram

F

  ��
F

φ //M

can only be completed to a commutative diagram using an automorphism of F .

Definition 2.71. A minimal flat resolution of an R-module M is an exact sequence

· · · // Fi
∂i // Fi−1

// · · · // F0
//M // 0

such that each Fi is a flat cover of Im(∂i).

Fact 2.72. [6, Theorem 3] Every R-module has a flat cover. Therefore, every R-module

has a minimal flat resolution.
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2.6. Differential Graded Algebras

To prove our version of Melkersson’s result, we need to work in the following more

general setting. A useful reference for this subject is [4].

Definition 2.73. A commutative differential graded R-algebra A (“DG R-algebra” for

short) is an R-complex A with a multiplication A × A → A written (a, b) 7→ ab that

satisfies the following conditions:

1. associative: for a, b, c ∈ R, one has (ab)c = a(bc);

2. distributive: for a, b, c ∈ R such that |a| = |b|, one has (a+ b) = ac+ bc;

3. unital: there is an element 1A ∈ A0 such that for all a ∈ A, we have 1Aa = a;

4. graded: for all a, b ∈ A, one has ab ∈ A|a|+|b|;

5. graded commutative: for all a, b ∈ A, one has ba = (−1)|a||b|ab, and a2 = 0

whenever |a| is odd;

6. positively graded: Ai = 0 for all i < 0; and

7. Leibniz rule: for a, b ∈ A, one has ∂A|a||b|(ab) = ∂A|a|(a)b+ (−1)|a|a∂A|b|(b).

Given a DG R-algebra A, the underlying algebra is the graded commutative R-algebra

A\ =
⊕∞

i=0Ai.

Example 2.74. 1. The ring R/a considered as an R-complex concentrated in degree 0

is a DG R-algebra.

2. The Koszul complex K on a given a sequence of elements x1, . . . , xn ∈ R with the

wedge product is a DG R-algebra. See Construction 2.22

Definition 2.75. A morphism A → B of DG R-algebras is a chain map f : A → B such

that f(aa′) = f(a)f(a′) for all a, a′ ∈ A and f(1A) = 1B.
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Definition 2.76. Let A be a DG R-algebra. A DG A-module is an R-complex M with an

operation called scalar multiplication A ×M → M written as (a,m) 7→ am that satisfies

the following conditions:

1. distributive: for all a, b ∈ A and m,n ∈ M , we have (a + b)m = am + bm and

a(m+ n) = am+ an;

2. graded: for all a ∈ A and m ∈M , we have am ∈M|a|+|m|;

3. Leibniz rule: for all a ∈ A and for all m ∈ M , we have ∂M|a|+|m|(am) = ∂A|a|(a)m +

(−1)|a|a∂M|m|(m);

4. unital: we have 1Am = m for all m ∈M ; and

5. associative: for all a, b ∈ A and m ∈M , we have a(bm) = (ab)m.

The underlying A\-module associated to M is the A\-module M \ =
⊕∞

j=−∞Mj .

Definition 2.77. Let A be a DG R-algebra. A morphism of DG A-modules is a chain

map f : M → N between DG A-modules that respects scalar multiplication: f(am) =

af(m). Isomorphisms in the category of DG A-modules are identified by the symbol ∼=.

A quasiisomorphism of DG A-modules is a morphism M → N such that each induced

map Hi(M) → Hi(N) is an isomorphism, i.e., a morphism of DG A-modules that is a

quasiisomorphism of R-complexes; these are identified by the symbol '.

Definition 2.78. Let A be a DG R-algebra, and let M and N be DG A-modules. Given an

integer n, a DG A-module homomorphism of degree n is an element f ∈ HomR(M,N)n

such that fi+j(am) = (−1)niafj(m) for all a ∈ Ai and m ∈ Mj . The graded submodule

of HomR(M,N) consisting of all DG A-module homomorphisms M → N is denoted

HomA(M,N).
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Definition 2.79. Let A be a DG R-algebra, and let M be a DG A-module. A subset E of

M is called a semibasis if it is a basis of the underlying A\-module M \. If M is bounded

below and it has a semibasis, then M is called semi-free. A degree-wise finite semi-free

resolution of a DG A-module M is a quasiisomorphism F
'−→ M of DG A-modules such

that F is semi-free with semibasis E such that the set E ∩ Fi is finite for all i.

Fact 2.80. [4, Theorem 2.11.3.3] LetA be a DGR-algebra such thatAi is finitely generated

over R for all i. Let M be a DG A-module with inf(M) > −∞ such that Hi(M) is finitely

generated over R for all i. Then M has a degree-wise finite semi-free resolution F '−→ M

such that Fi = 0 for all i < inf(M).

Definition 2.81. Let A be a DG R-algebra, and let M , N be DG A-modules. The tensor

product M⊗AN is the quotient (M⊗RN)/U where U is generated overR by the elements

of the form (am) ⊗ n − (−1)|a||m|m ⊗ (an). Given an element m ⊗ n ∈ M ⊗R N , we

denote the image in M ⊗A N as m⊗ n.

Keller [25] has shown that the category of DG modules over a DG R-algebra is rich

enough to afford a derived category D(A). We shall not need the full strength of this

construction, but we do use the following constructions which are independent of choice of

resolution of M and respect isomorphisms N ' N ′ in D(A).

Definition 2.82. LetA be a DGR-algebra such thatAi is finitely generated overR for all i.

Let M and N be DG A-modules with inf(M) > −∞ such that Hi(M) is finitely generated

over R for all i. Let F '−→ M be a degree-wise finite semi-free resolution. Then the right

derived homomorphism module and left derived tensor product are defined respectively as

RHomA(M,N) := HomR(F,N) M ⊗L
A N := F ⊗R N.
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3. CODUALIZING MODULES AND COMPLEXES

3.1. Codualizing Modules

As stated in the introduction, we seek to unify the notions of semidualizing and

quasidualizing modules under one “umbrella” notion. We begin with a notion of “cofinite-

ness” that is due in spirit to Hartshorne.

Definition 3.1. An R-module M is a-cofinite if suppR(M) ⊆ V(a) and the module

ExtiR(R/a,M) is finitely generated for all i.

Proposition 3.2. Let M be an R-module.

(a) If a = 0, then M is 0-cofinite if and only if M is finitely generated.

(b) Let (R,m, k) be local. If a = m, then M is m-cofinite if and only if it is artinian.

Proof. (a) (⇐): Assume M is a finitely generated R-module. Note that ExtiR(R/0,M) ∼=

ExtiR(R,M). Also, we have ExtiR(R,M) = 0 for all i > 1 and Ext0
R(R,M) ∼= M . Since

M is finitely generated, it follows that ExtiR(R/0,M) is finitely generated for all i. To see

that M satisfies the support condition, consider the following

suppR(M) ⊆ Spec(R) = V(0)

which hold by definition.

(⇒): Assume that M is 0-cofinite. As noted above we have Ext0
R(R/0,M) ∼=

Ext0
R(R,M) ∼= M . By assumption, Ext0

R(R,M) is finitely generated. Therefore, M is

finitely generated.

(b) (⇐) Assume M is artinian. Since M is artinian over a local ring, a minimal

injective resolution of M is of the form

+J = 0→M → Eµ0 → Eµ1 → · · ·
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where E is the injective hull of the residue field and µi < ∞ for all i. This follows from

Fact 2.36 and the fact that artinian modules satsify the 2-of-3 condition. It follows that

ExtiR(R/m,M) is a finite dimensional k-vector space for each i because the complex used

compute ExtiR(R/m,M) in each degree is HomR(k, J)i ∼= k(µi). Then ExtiR(R/m,M) is

finitely generated over R for all i. To see that M satisfies the support condition, consider

the following

suppR(M) ⊆ SuppR(M) ⊆ {m} = V(m).

The first containment is true for all modules, and the second follows from the fact that

artinian modules are m-torsion [27, Fact 1.2(a)].

(⇒) Assume that M is m-cofinite. So we have suppR(M) ⊆ {m}. By Lemma 2.64,

a minimal injective resolution J ofM satisfies the condition Ji ∼= E(µi) for all iwhere µi =

dimk ExtiR(R/m,M). Since M is m-cofinite, we have, µ0 <∞. So, M is a submodule of

the artinian module Eµ0 . Thus, M is artinian.

Remark 3.3. Assume thatM is a-cofinite. Then the map χR̂a

M : R̂a → HomR(M,M) given

by χR̂a

T (r)(m) = rm is well-defined. Indeed, the fact that M satisfies the small support

condition implies that M is a-torsion (this uses Fact 2.33 and Lemma 2.64). This endows

M with an R̂a-module structure that is compatible with the R-module structure on M by

Fact 2.35. Hence, χR̂a

M is well-defined.

We are now in a position to define the notion that recovers semidualizing and quasid-

ualizing modules as examples.

Definition 3.4. An R-module M is a-codualizing if it is a-cofinite, the natural homothety

map χR̂a

M : R̂a → HomR(M,M) is an isomorphism and ExtiR(M,M) = 0 for all i > 1.

The following propositions show that the notion of an a-codualizing module is indeed

the “umbrella” notion we set out to find because semidualizing modules and quasidualizing

modules are recovered when a = 0 and a = m respectively.
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Proposition 3.5. An R-module C is semidualizing if and only if C is 0-codualizing.

Proof. The Ext-vanishing and isomorphism conditions in Definitions 1.1 and 3.1 are equiv-

alent since R̂0 ∼= R. The rest of the proof follows from Proposition 3.2(a).

Proposition 3.6. When (R,m) is local, an R-module T is quasidualizing if and only if T

is m-codualizing.

Proof. The Ext-vanishing and isomorphism conditions in Definitions 1.2 and 3.1 are equiv-

alent. The remainder of the proof follows from Proposition 3.2(b).

Since there is existing research on the behavior of semidualizing and quasidualiz-

ing modules, we can look at how the preexisting research transfers to the setting of a-

codualizing modules. We will begin with so-called Auslander and Bass classes.

Definition 3.7. Let M,A and B be R-modules.

1. Then A is in the Auslander classA0
M(R) if for all i > 1 we have TorRi (M,A) = 0 =

ExtiR(M,M ⊗R A) and the natural map γMA : A→ HomR(M,M ⊗R A) defined by

γMA (a)(m) = m⊗ a is an isomorphism.

2. The module B is in the Bass class B0
M(R) if for all i > 1 we have ExtiR(M,B) =

0 = TorRi (M,HomR(M,B)) and the natural map ξMB : M ⊗R HomR(M,B) → B

defined by ξMB (m⊗R ψ) = ψ(m) is an isomorphism.

Remark 3.8. Our notation here deviates from the existing literature. We use A0
M(R) and

B0
M(R) to distinguish them from AM(R) and BM(R), which we discuss below.

The following examples are well-known when R is noetherian, although, they are

true in a more general setting, cf. [23].

Example 3.9. Let C be a semidualizing module (that is, 0-codualizing).

1. The free module R is in the Auslander class AC(R).
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2. If M has finite flat dimension, then M is in AC(R).

3. The module C is in the Bass class BC(R).

4. If M has finite injective dimension, then M is in BC(R).

These examples raise natural questions about the behavior of the Foxby classes when

the semidualizing module C is replaced with an arbitrary a-codualizing module. For

example, one proves items 2 and 4 in the example by first showing the Auslander class

contains all flat modules and the Bass class contains all injective module. Then one shows

the Auslander and Bass classes satisfy the 2-of-3 condition, that is, given an exact sequence

0→M1 →M2 →M3 → 0

if two of the modules are in the Auslander or Bass class, then the third is in the Auslander

or Bass class, as well.

The next proposition shows that one cannot expect R ∈ A0
M(R) when M is an

arbitrary a-codualizing module.

Proposition 3.10. Let M be an a-codualizing module. Then R is in A0
M(R) if and only if

R is a-adically complete.

Proof. (⇒): Assume that R is in A0
M(R). Then we have isomorphisms

R ∼= HomR(M,M ⊗R R) ∼= HomR(M,M) ∼= R̂a.

Therefore, R is a-adically complete.

(⇐): Assume that R is a-adically complete. Since R is free over itself, we have

TorRi (M,R) = 0 for all i > 1. Also, ExtiR(M,M ⊗R R) ∼= ExtiR(M,M) = 0 for all

i > 1 because M is a-codualizing, where the isomorphism is tensor cancellation. Since
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R is a-adically complete, we have R = R̂a and χR̂a

M = χRM . Let F : M ⊗R R → M be

the tensor cancelation map. To show R ∈ AM(R) it suffices to show that the following

diagram commutes:

R
γMR //

χR
M

∼=

''

HomR(M,M ⊗R R)

HomR(M,F )∼=
��

HomR(M,M)

This is done in the next computation:

(HomR(M,F ) ◦ γMR (r))(m) = F (γMR (r)(m)) = F (m⊗ r) = rm = χRM(r)(m).

It follows that R is in A0
M(R).

The behavior of the Auslander and Bass classes for codualizing modules further

deviates from the behavior in the semidualizing case by the next example. In this example,

we see that modules of finite projective and flat dimension are not necessarily in the

Auslander class and the Auslander class need not satisfy the 2-of-3 condition.

Example 3.11. Let k be a field, and let R = k[[X]] be a power series ring in one variable.

Note that this is a complete, local ring. Let E be the injective hull of the residue field.

By the previous proposition, R is in AE(R). Now consider M = R/(X)R. Since X is

a regular element of R (that is a non-zero divisor), a free resolution of M is given by the

Koszul complex on X .

Based on work in the semidualizing case, one may expect M to be in AE(R), as it is

a module with finite flat dimension. However, this module fails the to meet the definition

of A0
E(R) in two ways.

First, in the abstract, HomR(E,E ⊗R M) ∼= HomR(E, 0) = 0. So it is not possible

for γEM : M → HomR(E,E ⊗RM) to be an isomorphism.

Second, TorR1 (E,M) ∼= k and TorRi (E,M) = 0 for all i 6= 1. To see this, observe
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that a free resolution of M is given by the Koszul complex on X , that is, the following

R-complex

K(X) = 0 // R
X // R // 0.

Then to compute TorRi (E,M) we look at the induced complex

E ⊗R K(X) = 0 // E X // E // 0.

From here one can compute TorR1 (E,M) ∼= k and TorRi (E,M) = 0 for all i 6= 1. As in

the semidualizing case, there is Tor-vanishing in every degree except for one, but it is in the

wrong degree: to be in A0
E(R), we need TorRi (E,M) = 0 for all i 6= 0.

This example is even more troubling because this shows that the Auslander class does

not satisfy the 2-of-3 condition. The following is an exact sequence

0 // R
X // R //M // 0

and the first two modules are in the Auslander class of E, but the third is not.

3.2. Changing Contexts

The deficiencies in Example 3.11 inspire a change of context. Although, as stated

in the introduction, this change of contexts is natural and not solely due to the previous

example. We change our focus from modules to complexes. We begin with a reformulation

of the a-cofinite condition.

The main result of this section is Theorem 3.15 which is an analogue of Fact 1.4

for this context. DG algebra methods will play a prominent role; consult Section 2.6 for

relevant background information.

Proposition 3.12. Let M be a homologically bounded R-complex and a an ideal of R.

Then the following conditions are equivalent.
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(i) The R-complex R/a⊗L
RM is homologically degree-wise finite.

(ii) The R-complex R/b⊗L
RM is homologically degree-wise finite for all ideals b ⊇ a.

(iii) The R-complex N ⊗L
RM is homologically degree-wise finite for all finitely generated

R-modules N such that SuppR(N) ⊆ V(a).

(iv) The R-complex X ⊗L
R M is homologically degree-wise finite for all homologically

finite R-complexes X such that SuppR(X) ⊆ V(a).

(v) The R-complex K(x)⊗L
RM is homologically finite for some (equivalently, for every)

generating sequence x of a.

Proof. (i)⇒ (ii) : One has the following commutative diagram

R //

!!

R/a

��
R/b.

By assumption, the complex R/a ⊗L
R M is homologically degree-wise finite and bounded

below over R, hence over R/a. From Fact 2.80, there exists a degree-wise finite free

resolution F of R/a ⊗L
R M over R/a. It follows from the associativity of tensor product

that R/b ⊗L
R M ' R/b ⊗L

R/a (R/a ⊗L
R M) ' R/b ⊗R/a F . This is degree-wise finite

over R/b, hence over R. Therefore, we have that the complex R/b⊗L
RM is homologically

degree-wise finite over R.

(ii)⇒ (iii) : Assume thatN is finitely generated such that SuppR(N) ⊆ V(a). Then

there exists a prime filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nt = N such that Ni/Ni−1
∼= R/pi

and pi ∈ SuppN . We proceed by induction on t.

Base case: Assume t = 1. Then N ∼= N1/N0
∼= R/p, where a ⊆ p. Then

by assumption R/p ⊗L
R M is homologically degree-wise finite. Therefore, N ⊗L

R M is

homologically degree-wise finite.
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Assume thatN⊗L
RM is homologically degree-wise finite for all finitely generatedR-

modules N with SuppR(N) ⊆ V(a) and having a prime filtration of length t < m. Let N

have a prime filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nm = N . Consider the short exact sequence

0 → Nm−1 → N → N/Nm−1 → 0. Applying − ⊗L
R M , we obtain the distinguished

triangle Nm−1 ⊗L
R M → N ⊗L

R M → N/Nm−1 ⊗L
R M → . By the induction hypothesis,

Nm−1 ⊗L
R M is homologically degree-wise finite. By the base case, N/Nm−1 ⊗L

R M is

homologically degree-wise finite. Therefore, N ⊗L
RM is homologically degree-wise finite

by Fact 2.41.

(iii) ⇒ (iv) : Assume that X is homologically finite such that SuppR(X) ⊆ V(a).

Then we have SuppR(Hi(X)) ⊆ V(a). By assumption Hi(X) ⊗L
R M is homologically

degree-wise finite for all i. We proceed by induction on amp(X).

Base case: amp(X) = 0. Then X has one non-zero homology module. Therefore,

we have X ' Σi Hi(X). So X ⊗L
R M is homologically degree-wise finite by the previous

paragraph.

Assume that the result holds for all homologically finite complexes X ′ such that

amp(X ′) < amp(X) and SuppR(X ′) ⊆ V(a). Let s = sup(X). Take a soft truncation of

X at s, that is, set

X ′ = 0→ Xs/ Im(∂Xs )→ Xs−1 → · · · → Xj → 0 ' X.

The short exact sequence

0 // Σs Hs(X) // X // X ′′ // 0

gives rise to the following distinguished triangles. Then Hi(X
′′) ∼= Hi(X) for all i < s

and Hi(X
′′) = 0 otherwise. Then the induction hypothesis applies to X ′′ and the base case

applies for Σs Hs(X). So, Fact 2.41 yields the desired result for X .
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(iv)⇒ (v) : (v) is the special case X = K(x) of (iv).

(v) ⇒ (i) : Set K = K(x) and consider the following commutative diagram of DG

R-algebra homomorphisms

R //

!!

K(x)

��
R/a.

Since K ⊗L
RM is homologically finite over R, it has a degree-wise finite semi-free resolu-

tion X '−→ K⊗L
RM over K by Fact 2.80. It follows that the next complex is homologically

degree-wise finite over R/a.

R/a⊗K X = R/a⊗L
K (K ⊗L

RM) ' R/a⊗L
RM

Therefore, R/a⊗L
RM is homologically degree-wise finite over R as well.

Lemma 3.13. Let A be a DG R-algebra such that each Ai is finitely generated over R.

Let B and N be DG A-modules that are homologically degree-wise finite over R such

that B is homologically bounded below and N is homologically bounded above. Then

RHomA(B,N) is homologically degree-wise finite and bounded above.

Proof. Let F '−→ B be a degree-wise finite semi-free resolution over A such that Fi = 0

for all i < n = inf(B); see Fact 2.80. We proceed by cases.

Case 1: N is homologically bounded. In this case, letG '−→ N be a degree-wise finite

semi-free resolution over A. In particular, each Gi is finitely generated over R. Since N is

homologically bounded above, say with s = sup(N) <∞, the truncation

N ′ = 0→ Gs/ Im(∂Gs )
∂Gs−→ Gs−1

∂Gs−1−−→ · · ·

is a DG A-module that is isomorphic to N in D(A) by [4, 2.11.4.1]. Furthermore, each

module N ′i is finitely generated over R and N ′i = 0 for |i| � 0. The isomorphism N ' N ′
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in D(a) provides the isomorphisms

RHomA(B,N) ' HomA(F,N) ' HomA(F,N ′).

So it suffices to show that HomA(F,N ′) is homologically degree-wise finite. By definition,

this is a sub-complex of HomR(F,N ′) which is degree-wise finitely generated since N ′ is

bounded and all the Fi and N ′j are finitely generated over R. It follows that each module

HomA(F,N ′)n is finitely generated over R, hence so is each homology module, as desired.

Case 2: the general case. Let i ∈ Z be given, and consider the truncation

N ′′ = · · ·
∂Nn+i+2−−−−→ Nn+i+1

∂Nn+i+1−−−−→ Ker(∂Nn+i)→ 0.

The natural morphism α : N ′′ → N induces isomorphisms Hj(α) : Hj(N
′′)
∼=−→ Hj(N) for

all j > n + i, and we have Hj(N
′′) = 0 for all j < n + i. In particular, the DG A-module

N ′′ is homologically finite, so Case 1 implies that Hi(RHomA(B,N ′′)) is finitely gener-

ated. Thus, it suffices to show that we have Hi(RHomA(B,N ′′)) ∼= Hi(RHomA(B,N)).

Consider the natural distinguished triangle

N ′′
α−→ N → N ′′′ → (1)

where N ′′′ = Coker(α).

Claim: Hj(RHomA(B,N ′′′)) = 0 for all j > i. Since we have Hj(α) : Hj(N
′′)
∼=−→

Hj(N) for all j > n + i and Hn+i−1(N ′′) = 0, it follows from the long exact sequence in

homology associated to the triangle (1) that Hj(N
′′′) = 0 for all j > n+ i. In other words,

we have sup(N ′′′) < n+ i, and it follows that the truncation

N ′′′′ = 0→ N ′′′n+i−1/ Im(∂N
′′′

n+i)
∂N
′′′

n+i−1−−−−→ N ′′′n+i−2

∂N
′′′

n+i−2−−−−→ · · ·
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is isomorphic to N ′′′ in D(A). Since Fm = 0 for all m < n, we conclude that

0 = HomR(F,N ′′′′)j ⊇ HomA(F,N ′′′′)j

for all j > i. This implies that HomA(F,N ′′′′)j = 0, and so 0 = Hj(HomA(F,N ′′′′)) ∼=

Hj(RHomA(B,N ′′′)) for all j > i, as claimed.

Now consider the distinguished triangle

RHomA(B,N ′′)
RHomA(B,α)−−−−−−−−→ RHomA(B,N)→ RHomA(B,N ′′′)→

induced from (1). Because of the claim, part of the long exact sequence in homology

associated to this triangle has the following form

0→ Hi(HomA(F,N ′′))→ Hi(HomA(F,N))→ 0.

We conclude that Hi(RHomA(B,N ′′)) ∼= Hi(RHomA(B,N)), as desired.

Proposition 3.14. Let M be a homologically bounded R-complex and a an ideal of R.

Then the following conditions are equivalent.

(i) The R-complex RHomR(R/a,M) is homologically degree-wise finite.

(ii) The complex RHomR(R/b,M) is homologically degree-wise finite for all b ⊇ a.

(iii) The R-complex RHomR(N,M) is homologically degree-wise finite for all finitely

generated R-modules N such that SuppR(N) ⊆ V(a).

(iv) The R-complex RHomR(X,M) is homologically degree-wise finite for all homolog-

ically finite R-complexes X such that SuppR(X) ⊆ V(a).

(v) The R-complex K(x)⊗L
RM is homologically finite for some (equivalently, for every)

generating sequence x of a.
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Proof. (i)⇒ (ii) : One has the following commutative diagram

R //

!!

R/a

��
R/b.

By assumption, RHomR(R/a,M) is homologically degree-wise finite over R, hence over

R/a. By adjointness, we have

RHomR(R/b,M) ' RHomR/a(R/b,RHomR(R/a,M)).

We apply Lemma 3.13 with A = R/a, B = R/b, and N = RHomR(R/a,M). We

conclude that RHomR/a(R/b,RHomR(R/a,M)) is homologically degree-wise finite.

(ii)⇒ (iii) : Assume thatN is finitely generated such that SuppR(N) ⊆ V(a). Then

there exists a prime filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nt = N such that Ni/Ni−1
∼= R/pi

and pi ∈ SuppN . We proceed by induction on t.

Base case: Assume t = 1. Then N ∼= N1/N0
∼= R/p, where a ⊆ p. Then by

assumption RHomR(R/p,M) is homologically degree-wise finite. Thus, RHomR(N,M)

is homologically degree-wise finite.

Assume that RHomR(N,M) is homologically degree-wise finite for all finitely gen-

eratedR-modulesN with SuppR(N) ⊆ V(a) and having a prime filtration of length t < m.

Let N have a prime filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nm = N . Consider the short exact

sequence 0 → Nm−1 → N → N/Nm−1 → 0. Applying RHomR(−,M), we obtain the

distinguished triangle

RHomR(N/Nm−1,M)→ RHomR(N,M)→ RHomR(Nm−1,M)→ .

By the induction hypothesis, RHomR(Nm−1,M) is homologically degree-wise finite. By
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the base case, RHomR(N/Nm−1,M) is homologically degree-wise finite. Therefore, we

have that RHomR(N,M) is homologically degree-wise finite by Fact 2.41.

(iii) ⇒ (iv) : Assume that X is homologically finite such that SuppR(X) ⊆ V(a).

Then we have SuppR(Hi(X)) ⊆ V(a). So by assumption RHomR(Hi(X),M) is homo-

logically degree-wise finite for all i. We proceed by induction on amp(X).

Base case: amp(X) = 0. Then X has one non-zero homology module. Thus,

we have X ' Σi Hi(X). So RHomR(X,M) is homologically degree-wise finite by the

previous paragraph.

Assume that the result holds for all homologically finite complexes X ′ such that

amp(X ′) < amp(X) and SuppR(X ′) ⊆ V(a). Let s = sup(X). Take a soft truncation of

X at s, that is, set

X ′ = 0→ Xs/ Im(∂Xs )→ Xs−1 → · · · → Xj → 0 ' X.

The short exact sequence

0 // Σs Hs(X) // X // X ′′ // 0

gives rise to the following distinguished triangles.

Σs Hs(X) // X // X ′′ //

RHomR(X ′′,M) //RHomR(X,M) //RHomR(Σs Hs(X),M) //

Then Hi(X
′′) ∼= Hi(X) for all i < s and Hi(X

′′) = 0 otherwise. Then the induction

hypothesis applies to X ′′ and the base case applies for Σs Hs(X). So, Fact 2.41 yields the

desired result for X .

(iv)⇒ (v) : (v) is the special case X = K(x) of (iv).

45



(v) ⇒ (i) : Set K = K(x) and consider the following commutative diagram of DG

R-algebra homomorphisms

R //

!!

K(x)

��
R/a.

Assume K ⊗L
R M is homologically finite. The shift isomorphism K ∼ HomR(K,R)

implies that K ⊗L
R M is shift isomorphic over R to RHomR(K,M). By adjointenss,

we have RHomR(R/a,M) ' RHomK(R/a,RHomR(K,M)). We apply Lemma 3.13

with A = K,B = R/a, and N = RHomR(K,M). Therefore, RHomR(R/a,M) is

homologically degree-wise finite over R.

The following result is Theorem 1.6 from the introduction.

Theorem 3.15. Let M be a homologically bounded R-complex. Then the following condi-

tions are equivalent.

(i) The R-complex K(x)⊗L
RM is homologically finite for some (equivalently for every)

generating sequence x of a.

(ii) The R-complex M ⊗L
R R/a is homologically degree-wise finite.

(iii) The R-complex RHomR(R/a,M) is homologically degree-wise finite.

Proof. This is a immediate from Propositions 3.12 and 3.14.

Definition 3.16. A homologically bounded R-complex M is a-cofinite if M satisfies the

equivalent conditions of Theorem 3.15 and suppR(M) ⊆ V(a).

When M is an a-cofinite R-module, the map χR̂
a

M is well-defined because of the

condition on the small support; see Remark 3.3. For complexes, the support condition is

also used to show that χR̂a

M is well-defined. However, one uses the injective resolution of

M to endow M with an R̂a-complex structure. We show this in Proposition 3.18(b).
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Lemma 3.17. Let M be a homologically bounded R-complex with suppR(M) ⊆ V (a).

(a) The minimal injective resolution of M consists of a-torsion modules.

(b) The complex M has an injective resolution consisting of a-torsion modules.

(c) The natural morphism RΓa(M)→M is an isomorphism in D(R).

(d) Every injective resolution of M consisting of a-torsion modules is an R̂a-complex.

Proof. Let M '−→ J be a minimal injective resolution.

(a) By Lemma 2.64, for each i we have Ji ∼= ⊕p∈suppR(M)ER(R/p)(µip) for some sets

µip. Since each p ∈ suppR(M) is in V (a), it follows that each summand ER(R/p)(µip) is

a-torsion, so each Ji is a-torsion as well.

(b) Since M has a minimal injective resolution, this follows from part (a).

(c) Since each Ji is a-torsion, we have Γa(J) = J . As the natural morphism RΓa(M)→

M is represented by the inclusion Γa(J)
=−→ J , it follows that the natural morphism is an

isomorphism in D(R).

(d) Each module Ji is a-torsion, so it is an R̂a-module by Fact 2.35. and each

differential ∂Ji is R̂a-linear by [28, Lemma 2.2(a)].

Proposition 3.18. LetM be a homologically boundedR-complex with suppR(M) ⊆ V (a).

Let M '−→
α
J be an injective resolution of M consisting of R̂a-modules.

(a) The chain map χR̂
a

J : R̂a → HomR(J, J) given by χR̂
a

J (r)(j) = rj is well-defined.

(b) The chain map χR̂
a

J : R̂a → HomR(J, J) gives rise to a well-defined morphism χR̂
a

M : R̂a →

RHomR(M,M) in D(R).

Proof. (a) For each r ∈ R̂a, multiplication by r determines a well-defined chain map

J
r−→ J . It is straightforward to show that this implies that χR̂a

J : R̂a → HomR(J, J) is a

well-defined chain map.

(b) Since RHomR(M,M) ' HomR(J, J), this follows from Fact 2.38.
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Definition 3.19. Let M be a R-complex. M is a-codualizing if M is a-cofinite and the

homothety map χR̂a

M : R̂a → RHomR(M,M) is an isomorphism in D(R).

3.3. Building Examples

We now aim to provide an example of an a-codualizing complex. One should note

that even in the case of semidualizing complexes (0-codualizing) it is challenging to find

non-trivial examples.

Lemma 3.20. Let N be a homologically bounded complex. Then suppR(RΓa(N)) ⊆

suppR(N) ∩ V(a).

Proof. Note that suppR(RΓa(R)) ⊆ V(a). Indeed, if J is an injective resolution of

R, and p 6∈ V(a), then Γa(J)p = 0. Hence, p 6∈ SuppR(Γa(J)). Next, consider the

isomorphisms RΓa(N) ∼= Č(a)⊗L
R N = RΓa(R)⊗L

R N in D(R). Then Fact 2.51 implies

suppR(RΓa(N)) = suppR(RΓa(R)) ∩ suppR(N) ⊆ V(a) ∩ suppR(N).

The following is inspired by [11, Corollary 1].

Lemma 3.21. Let M be a homologically bounded complex and let a ⊆ b be ideals of R.

Let K(a) denote the Koszul complex on a generating sequence for a, and let K(b) denote

the Koszul complex on a generating sequence for b. If K(a)⊗L
RM is homologically finite,

then K(b)⊗L
RM is homologically finite.

Proof. This follows from Proposition 3.12.

Theorem 3.22. Let M be an a-cofinite R-complex. If b is an ideal of R such that a ⊆ b,

then RΓb(M) is b-cofinite.

Proof. Note that we have supp(RΓb(M)) ⊆ V(b) by Lemma 3.20.

Let K(b) be a the Koszul complex on a generating sequence for the ideal b. We

show the necessary finiteness condition by showing K(b) ⊗L
R RΓb(M) is homologically
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finite. Let M → J be a minimal injective resolution. By Lemma 2.64, we know Ji =

⊕p∈suppR(M)ER(R/p)(µip).

Claim: if I is a complex of injective R-modules with Ij ∼= ⊕p6∈V(b)ER(R/p)(µip),

then suppR(I) ∩ V(b) = ∅. Indeed, by Fact 2.34, if p ∈ V(b), then Ip = 0. Therefore,

SuppR(I) ∩ V(b) = ∅. It follows that suppR(I) ∩ V(b) ⊆ SuppR(I) ∩ V(b) = ∅. This

proves the claim.

Now, consider the exact sequence

0 // Γb(J) // J // J/Γb(J) // 0. (2)

This is degree-wise split because Γb(J) is a complex of injective modules. Also, the

complexes Γb(J) and J/Γb(J) are homologically bounded, as in the proof of Lemma 2.63.

From Fact 2.33 it follows that we have

(J/Γb(J))i ∼= ⊕
p∈supp(M)\V(b)ER(R/p)(µip).

Note that this provides an injective resolution of (J/Γb(J)) that may not be minimal. Using

Fact 2.51 and the claim with I = J/Γb(J) we have

suppR(K(b)⊗R J/Γb(J)) = suppR(K(b)) ∩ suppR(J/Γb(J))

⊆ V(b) ∩ suppR(J/Γb(J))

= ∅.

Hence, we have K(b)⊗R J/Γb(J) ' 0.

Apply K(b)⊗R − to the short exact sequence (2).

0 // K(b)⊗R Γb(J) // K(b)⊗R J // K(b)⊗R J/Γb(J) // 0
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Since K(b)⊗R J/Γb(J) ' 0, we have a quasiisomorphism

K(b)⊗R Γb(J) ' // K(b)⊗R J.

It follows that we have an isomorphism K(b)⊗L
R RΓb(M) ' K(b)⊗L

RM in D(R).

By assumption, K(a) ⊗L
R M is homologically degree-wise finite. Since a ⊆ b,

Lemma 3.21 implies K(b) ⊗L
R M homologically degree-wise finite. Thus, the complex

K(b)⊗L
R RΓb(M) is homologically degree-wise finite.

Lemma 3.23. IfM is an a-codualizingR-complex and a ⊆ b, then there is an isomorphism

R̂b ' RHomR(RΓb(M),RΓb(M)) in D(R).

Proof. Let Č(b) denote the Čech complex on a generating sequence for b, and let M '−→ J

be a minimal injective resolution. Lemma 3.17(a) implies that J consists of a-torsion

modules. By assumption, the morphism χR̂
a

M : R̂a → RHomR(M,M) is an isomorphism

in D(R). Also, Fact 2.46 provides isomorphisms R̂b ∼= ̂̂
Ra

b

' LΛb(R̂a).

Our result follows from the next sequence of isomorphisms. We begin by applying

the functor LΛb(−) to the isomorphism R̂a ' RHomR(M,M).

R̂b ' LΛb(R̂a)

' LΛb(RHomR(M,M))

' RHomR(Č(b),RHomR(M,M))

' RHomR(M ⊗L
R Č(b),M)

' RHomR(RΓb(M),M)

' HomR(Γb(J), J)

' HomR(Γb(J),Γb(J))

' RHomR(RΓb(M),RΓb(M))
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The third and fifth isomorphisms are by Fact 2.46, and the fourth one is Hom-tensor

adjointness. The seventh isomorphism is from [28, Lemma 2.2(b)], and the others are

by definition.

The following result is Theorem 1.7 from the introduction.

Theorem 3.24. The R-complex RΓa(R) is a-codualizing.

Proof. Since R is semidualizing (0-codualizing), the a-cofinite condition on RΓa(R) is a

consequence of Theorem 3.22. Lemma 3.23 shows that there is an abstract isomorphism

R̂a ' RHomR(RΓa(R),RΓa(R)). It remains to show that the morphism

χ
RΓa(R)
R : R̂a → RHomR(RΓa(R),RΓa(R))

is an isomorphism.

Let α : R → I be an injective resolution, and let β : T → Γa(I) be a flat resolution

over R̂a, and hence over R. By Fact 2.46 we have

R̂a ' LΛa(R) ' RHomR(RΓa(R), R) ' HomR(T, I).

Also HomR(T, I) an injective resolution over R and consists of R̂a-modules. (This uses

Hom-tensor adjointness.) Thus, there exists a quasiisomorphism R̂a ψ

'
// HomR(T, I).

We have the following diagram:

Γa(I)
f̃ // I

g̃
((

R
αoo g0 //

ψ◦g0

$$

R̂a

ψ

��
HomR(T, I)

The maps f̃ and g0 are the natural ones, and the maps α and ψ are the quasiisomorphisms

from the injective resolutions ofR and R̂a respectively. Since I is a bounded above complex
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of injective R-modules, it is a semi-injective DG R-module. Then g̃ can be constructed

such that the preceding diagram commutes up to homotopy by [4, Theorem 2.9.6.1]. The

chain maps f̃ and g̃ represent the morphisms f and g in the following diagram

RΓa(R)
f // R

g // LΛa(R).

Consider the following diagram.

R̂a

χ
RΓa(R)
R

��

χ
LΛa(R)
R //RHomR(LΛa(R),LΛa(R))

g?

��
RHomR(RΓa(R),RΓa(R))

f? '
��

RHomR(R,LΛa(R))

f?'
��

RHomR(RΓa(R), R) g?

' //RHomR(RΓa(R),LΛa(R))

To be clear, (−)? = RHomR(RΓa(R),−) and (−)? = RHomR(−,LΛa(R)) are

functors on the derived category. The morphisms f ? and g? are isomorphisms in D(R) by

[1, Theorem 0.3]. The map f? is an isomorphism by [1, Lemma 0.4.2]. We aim to show

that g? and χLΛa(R)
R are isomorphisms and that the diagram commutes. We then conclude

that χRΓa(R)
R is an isomorphism.

The previous diagram is represented by the following diagram with (−)∗ = HomR(Γa(I),−)

and (−)∗ = HomR(−,HomR(T, I)).

R̂a

χ
Γa(I)
R

��

χ
HomR(T,I)

R // HomR(HomR(T, I),HomR(T, I))

g̃∗

��
HomR(Γa(I),Γa(I))

f̃∗
��

HomR(I,HomR(T, I))

f̃∗

��
HomR(Γa(I), I)

g̃∗
// HomR(Γa(I),HomR(T, I))
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So we show that this diagram commutes. Let z ∈ R̂a and w ∈ Γa(I). The third equality in

the following sequence is from Lemma 2.2(a) of [28]

[g̃∗ ◦ f̃∗ ◦ χΓa(I)
R ](z)(w) =[g̃ ◦ f̃ ◦ [χ

Γa(I)
R (z)]](w)

=(g̃ ◦ f̃)(zw)

=z[(g̃ ◦ f̃)(w)]

=[(χ
HomR(T,I)
R (z)) ◦ (g̃ ◦ f̃)](w)

=[f̃ ∗ ◦ g̃∗ ◦ χHomR(T,I)
R ](z)(w).

The other equalities are by definition. Thus, the diagram commutes.

Next, we show that g̃∗ is an quasiisomorphism. To this end, note that the following

diagram commutes, where the horizontal chain maps are Hom-tensor adjointness.

HomR(R̂a,HomR(T, I)) ∼=
θ
R̂aTI //

g∗0
��

HomR(T ⊗R R̂a, I)

' (T⊗Rg0)∗

��
HomR(R,HomR(T, I))

θRTI

∼=
// HomR(T ⊗R R, I)

The morphism (T ⊗ g0)∗ is a quasiisomorphism as follows. Let T
β−→ Γa(I) be the

quasiisomorphism from the flat resolution of Γa(I). Consider the following diagram.

T ⊗R R
T⊗g0 //

β⊗R'
��

T ⊗R R̂a

β⊗R̂a'
��

Γa(I)⊗R R
Γa(I)⊗g0

∼=
// Γa(I)⊗R R̂a

The vertical chain maps are quasiisomorphism because R and R̂a are flat modules. The

map Γa(I) ⊗ g0 is an isomorphism by Fact 2.35. This establishes the fact that g∗0 is an

quasiisomorphism.
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Since α and ψ are quasiisomorphisms and HomR(T, I) is an injective resolution,

the chain maps α∗ and ψ∗ are quasiisomorphisms. Furthermore, the following diagram

commutes up to homotopy, which establishes the fact that g̃∗ is an quasiisomorphism.

HomR(HomR(T, I),HomR(T, I))
ψ∗

'
//

g̃∗

��

HomR(R̂a,HomR(T, I))

g∗0'
��

HomR(I,HomR(T, I)) α∗

'
// HomR(R,HomR(T, I))

Next, consider the following string of isomorphisms. The first isomorphism is by

Lemma 3.23 and the second is by [1, (0.3)].

R̂a ' RHomR(RΓa(R),RΓa(R))

' RHomR(LΛa(R),LΛa(R))

' RHomR(R̂a, R̂a)

This implies that ExtiR(R̂a, R̂a) = 0 for all i > 1. It follows that showing the morphism

χ
LΛa(R)
R : R̂a → RHomR(LΛa(R),LΛa(R)) is an isomorphism reduces to showing that

the map χR̂a

R : R̂a → HomR(R̂a, R̂a) is an isomorphism. It is straightforward to show that

χR̂
a

R is a monomorphism. We wish to show it is onto. Let φ ∈ HomR(R̂a, R̂a) and set

ξ = φ(1) ∈ R̂a. We would like to see that φ is given by multiplication by ξ.

It suffices to show φ(x) − xξ = 0 for all x ∈ R. This along with the containments

aR̂a ⊆ J(R̂a) ⊆ R̂a tell us it suffices to show φ(x) − xξ ∈ (aR̂a)n = anR̂a for all

n > 1. (This uses the Krull Intersection Theorem, cf. [24, Theorem 4.4].) The natural map

γ : R/an → R̂a/anR̂a is an isomorphism. So if x ∈ R̂a/anR̂a, then there exists y ∈ R/an

such that γ(y) = x. So there exists y inR such that y−x is in anR̂a. It follows that (y−x)ξ

54



and φ(x− y) are in anR̂a. From the next computation

φ(x)− xξ = φ(x)− φ(y) + φ(y)− xξ

= φ(x)− φ(y) + yφ(1)− xξ

= φ(x− y) + (y − x)ξ

we conclude that φ(x) − xξ ∈ anR̂a for all n. Therefore, χLΛa(R)
R is an isomorphism, and

the proof is complete.

We now turn our attention to a uniqueness result for local Gorenstein rings. Recall

that ring is Gorenstein if it has finite injective dimension over itself.

Proposition 3.25. Let (R,m, k) be Gorenstein and local. IfM is a-codualizing, then PR
M(t)

and IMR (t) are monomials.

Proof. Since R is Gorenstein and local, R̂a is local, Gorenstein, and dim(R) = dim(R̂a).

We consider the following isomorphisms in D(R).

RHomR(k, R̂a) ' RHomR(k,RHomR̂a(R̂
a, R̂a))

' RHomR̂a(k ⊗L
R R̂

a, R̂a)

' RHomR̂a(k, R̂
a)

The first isomorphism is Hom cancellation, the second is adjointness, and the third follows

from the fact that the residue field of R̂a is isomorphic to k.

By assumption, the modules ExtiR(R/a,M) and TorRi (R/a,M) are finitely gener-

ated. Lemma 3.21 implies that ExtiR(k,M) and TorRi (k,M) are finite dimensional k-vector

spaces. It follows that we have IR̂a

R̂a
(t) = IR̂

a

R (t). Since R̂a is Gorenstein, we conclude

IR̂
a

R (t) = IR̂
a

R̂a
(t) = td.
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The following is the same argument as Lemma 1.5.3(b) of [3]. The first and third

isomorphisms are adjointness and the second and fourth are tensor cancellation. The fifth

isomorphism is tensor evaluation, which applies since k ⊗L
R M and RHomR(k,M) are

appropriately bounded homologically degree-wise finite complexes over k.

RHomR(k,RHomR(M,M)) ' RHomR(k ⊗L
RM,M)

' RHomR((k ⊗L
RM)⊗k k,M)

' Homk(k ⊗L
RM,RHomR(k,M))

' Homk(k ⊗L
RM,k ⊗k RHomR(k,M))

' Homk(k ⊗L
RM,k)⊗k RHomR(k,M)

It follows that

ExtiR(k,RHomR(M,M)) = H−i(RHomR(k,RHomR(M,M)))

∼= H−i(Homk(k ⊗L
RM,k)⊗k RHomR(k,M))

∼= ⊕p+q=i H−p(Homk(k ⊗L
RM,k)⊗k H−q(RHomR(k,M))

∼= ⊕p+q=i Homk(TorRp (M,k), k)⊗k ExtqR(k,M).

Subsequently, we have PR
M(t)IMR (t) = I

RHomR(M,M)
R (t) = IR̂

a

R (t) = td, and the desired

result follows.

Corollary 3.26. Let (R,m, k) be a local, Gorenstein ring. If M is quasidualizing (that is,

M is m-codualizing), then M is shift isomorphic to ER(R/m).

Proof. Proposition 3.25 implies that we have IMR (t) = t−f for some integer f . This implies

that RHomR(k,M) ' Σfk. Since suppR(M) ⊆ V (m) = {m}, Fact 2.58 and Lemma 2.64
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imply that a minimal injective resolution M '−→ J is of the form

J = 0→ E(µ−s) ∂Js−→ E(µ−s+1)
∂Js−1−−→ · · ·

where s = sup(M) and E = ER(k). (Note that the isomorphism RHomR(M,M) ' R̂m

implies M 6' 0, so sup(M) is finite.) In particular, the homology module Hs(M) 6= 0

is isomorphic to a submodule of the m-torsion module E(µs), so Hs(M) is m-torsion. It

follows that HomR(k,Hs(M)) 6= 0, so [18, Lemma 2.1(1)] implies that

f = sup(RHomR(k,M)) = sup(M) = s.

On the other hand, since suppR(M) ⊆ {m}, the fact that µim(M) = 0 for all i > −f

implies that the injective dimension of M is idR(M) 6 −f , by [16, (13.5)]. That is, we

have Ji = 0 for all i < f 6 − idR(M) 6 s = f , i.e., for all i < s. Thus, J has the form

J = 0→ E(µ−s) → 0.

In other words, we have M ' J = ΣsE(µ−s). It remains to show that |µ−s| = 1. The

condition 0 6' M ' ΣsE(µ−s) implies that |µ−s| > 1. Suppose that |µ−s| > 1. It follows

that E2 is a summand of E(µ−s). Given the isomorphisms

R̂m ' RHomR(M,M) ' HomR(E(µ−s), E(µ−s))

It follows that HomR(E2, E2) ∼= (R̂m)4 is a summand of R̂m. From this, we conclude that

k4 ∼= (R̂m)4/m(R̂m)4 is a summand of R̂m/mR̂m ∼= k, which is impossible. We conclude

that |µ−s| = 1, which completes the proof.
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3.4. Foxby Classes

We have the prerequisites to revisit the notions of the Auslander and Bass classes

in the context of a-codualizing complexes. In this setting we recover aspects of these

classes in the semidualizing context that were lost in the case of a-codualizing modules;

see Example 3.11. We also, recover key aspects of Foxby equivalence in the a-codualizing

setting; see Theorem 1.9.

Definition 3.27. Let M an R-complex, and let X and Y be homologically bounded R-

complexes.

1. The complex X is in the Auslander class AM(R) if M ⊗L
R X is homologically

bounded and γMX : X → RHomR(M,M ⊗L
R X) is an isomorphism in D(R).

2. The complex Y is in the Bass class BM(R) if RHomR(M,Y ) is homologically

bounded and δMY : M ⊗L
R RHomR(M,Y )→ Y is an isomorphism in D(R).

Proposition 3.28. Let M be an a-codualizing R-complex.

1. One has R̂a ∈ AM(R).

2. One has M ∈ BM(R).

Proof. Let M → J be a minimal injective resolution of M . Each module Ji is a-torsion

by Lemma 3.17(b). So the natural map α : J → J ⊗R R̂a is an isomorphism by Fact 2.35.

(1) From the previous paragraph we see that J ⊗R R̂a is an injective resolution

of M ⊗L
R R̂

a over R. Since M is homologically bounded and R̂a is flat, M ⊗L
R R̂

a is

homologically bounded. It remains to check that the following diagram commutes

R̂a
χR̂a

M

'
//

γM
R̂a **

RHomR(M,M)

RHomR(M,α)'
��

RHomR(M,M ⊗L
R R̂

a)
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We check that the next diagram commutes.

R̂a
χR̂a

J

'
//

γJ
R̂a **

HomR(J, J)

HomR(J,α)'
��

HomR(J, J ⊗R R̂a)

Let r ∈ R̂a and j ∈ J . Degree-wise, the complex J has an R̂a-module structure

compatible with the R-module structure given as follows. The element j is annihilated by

al for some l > 1. Let r0 ∈ r such that r − r0 ∈ anR̂a. Then we have rj := r0j. The next

computation shows that the previous diagram commutes.

(HomR(J, α) ◦ χR̂a

J )(r)(j) = HomR(J, α)(χR̂
a

J (r))(j)

=α(χR̂
a

J (r)(j))

=α(rj)

=rj ⊗ 1

=r0j ⊗ 1

=j ⊗ r0

=j ⊗ r

=γM
R̂a(j)(r).

We justify the seventh equality as follows. By construction, we have r − r0 ∈ alR̂a.

Then r − r0 =
∑m

i=1 xiti where xi ∈ al and ti ∈ R̂a. So, we have

j ⊗ r − j ⊗ r0 = j ⊗ (r − r0) = j ⊗

(
m∑
i=1

xiti

)
=

m∑
i=1

((xij)⊗ ti) = 0.

It follows that j ⊗ r = j ⊗ r0. So, the diagram commutes and γM
R̂a

is an isomorphism.
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(2) By assumption, we have RHomR(M,M) ' R̂a. This is homologically bounded.

It remains to check that the following diagram commutes.

M ⊗L
R R̂

a
M⊗L

Rχ
R̂a

M

'
//

'
++

M ⊗L
R RHomR(M,M)

δMM
��
M

We check the commutativity of the following by showing δJJ ◦ (J ⊗R χR̂
a

J ) ◦ α = idJ .

J ⊗R R̂a
J⊗Rχ

R̂a

J

'
//

α−1

'

**

J ⊗R HomR(J, J)

δJJ
��
J

Let j ∈ J . We compute

(δJJ ◦ (J ⊗R χR̂
a

J ))(α(j)) =(δJJ ◦ (J ⊗R χR̂
a

J ))(j ⊗ 1R̂a)

=δJJ (j ⊗ χR̂a

J (1R̂a))

=χR̂
a

J (1R̂a)(j)

=j.

Therefore, the diagram commutes and δMM is an isomorphism.

Lemma 3.29. Let M be an a-codualizing R-complex, and let 0 6' A ∈ D(R).

(a) If V (a) ∩ suppR(A) 6= ∅, then M ⊗L
R A 6' 0.

(b) If A is homologically bounded and V (a) ∩ suppR(A) 6= ∅, then RHomR(M,A) 6' 0.

(c) IfA is homologically bounded above and V (a)∩AssR(Hs(A)) 6= ∅ where s = sup(A),

then we have RHomR(M,A) 6' 0.
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Proof. Let K = K(a) be the Koszul complex on a generating sequence for a. Then K ⊗R

M is homologically finite over R.

Claim 1: To show that RHomR(M,A) 6' 0, it suffices to show that there is a prime

p ∈ Spec(R) such that

(K ⊗L
RM)p ⊗L

Rp
κ(p) 6' 0 6' RHomRp(κ(p), Ap). (3)

Indeed, to show that RHomR(M,A) 6' 0, it suffices to show that there is a prime p ∈

Spec(R) such that (K ⊗L
R RHomR(M,A))p 6' 0. Given any p ∈ Spec(R), we have the

following isomorphisms since K ⊗L
RM is homologically finite over R:

(K ⊗L
R RHomR(M,A))p ∼ RHomR(K ⊗L

RM,A)p

' RHomRp((K ⊗L
RM)p, Ap).

Thus, it suffices to show there exists a prime p such that RHomRp((K ⊗L
R M)p, Ap) 6' 0.

Given the isomorphisms

RHomRp(κ(p)⊗L
κ(p) κ(p),RHomRp((K ⊗L

RM)p, Ap))

' RHomRp((K ⊗L
RM)p ⊗L

Rp
(κ(p)⊗L

κ(p) κ(p)), Ap)

' RHomRp([(K ⊗L
RM)p ⊗L

Rp
κ(p)]⊗L

κ(p) κ(p), Ap)

' RHomκ(p)((K ⊗L
RM)p ⊗L

Rp
κ(p),RHomRp(κ(p), Ap))

it suffices to show that there is a prime p such that

RHomκ(p)((K ⊗L
RM)p ⊗L

Rp
κ(p),RHomRp(κ(p), Ap)) 6' 0.

In view of the Künneth formula, it suffices to find a prime p satisfying (3).
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Claim 2: To show that M ⊗L
R A 6' 0, it suffices to show that there is a prime p ∈

Spec(R) such that

κ(p)⊗L
Rp

(K ⊗L
RM)p 6' 0 6' κ(p)⊗L

Rp
Ap. (4)

Indeed, to show that M ⊗L
R A 6' 0, it suffices to find a prime p ∈ Spec(R) such that

(K ⊗L
R (M ⊗L

R A))p 6' 0. Given any p ∈ Spec(R), we have the next isomorphisms:

(K ⊗L
R (M ⊗L

R A))p ' (K ⊗L
RM)p ⊗L

Rp
Ap

Thus, it suffices to show there exists a prime p such that (K⊗L
RM)p⊗L

Rp
Ap 6' 0. Consider

κ(p)⊗L
Rp

[(K ⊗L
RM)p ⊗L

Rp
Ap] ' [κ(p)⊗L

Rp
(K ⊗L

RM)p]⊗L
κ(p) [κ(p)⊗L

Rp
Ap].

Given these isomorphisms and the Künneth formula, it suffices to show that there is a prime

p satisfying (4). This completes the proof of Claim 2.

Claim 3: For all p ∈ V (a), we have κ(p)⊗L
Rp

(K⊗L
RM)p 6' 0. Indeed, sinceK⊗L

RM

is homologically finite over R, it follows that (K ⊗L
RM)p is homologically finite over Rp.

So, it suffices to show that (K ⊗L
R M)p 6' 0 by the statement following [10, (1.3.4)]. For

this, it suffices to show RHomRp((K ⊗L
RM)p,Mp) 6' 0: we use the next sequence

RHomRp((K ⊗L
RM)p,Mp) ' RHomR(K ⊗L

RM,M)p

∼ (K ⊗L
R RHomR(M,M))p

' (K ⊗L
R R̂

a)p

' Kp

6' 0.

The last step is from the condition p ∈ V (a). This completes the proof of Claim 3.
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(a) Let p ∈ V (a) ∩ suppR(A). Claim 3 implies that κ(p)⊗L
Rp

(K ⊗L
R M)p 6' 0, and

the condition p ∈ suppR(A) implies that κ(p) ⊗L
Rp
Ap 6' 0. Thus, Claim 2 implies that

M ⊗L
R A 6' 0.

(b) Assume that A is homologically bounded, and let p ∈ V (a) ∩ suppR(A). Claim

3 implies that κ(p) ⊗L
Rp

(K ⊗L
R M)p 6' 0. Since A is homologically bounded, the con-

dition p ∈ suppR(A) implies that RHomRp(κ(p), Ap) 6' 0. Thus, Claim 1 implies that

RHomR(M,A) 6' 0.

(c) Assume that A is homologically bounded above, and p ∈ V (a) ∩ AssR(Hs(A)).

In the next display, the first step follows from the fact that A 6' 0 is homologically bounded

above:

±∞ 6= sup(A) = − depthRp
(Ap) = sup(RHomRp(κ(p), Ap)).

The second step is from [10, (1.6.6)], and the third one is by definition. It follows that

RHomRp(κ(p), Ap) 6' 0. As in the part (b), Claim 1 implies that RHomR(M,A) 6' 0.

Lemma 3.30. Let X be a homologically bounded below R-complex. Let K(a) denote

the Koszul complex on generating sequence of a. If supp(X) ⊆ V(a) and X 6' 0, then

K(a)⊗L
R X 6' 0.

Proof. Set K = K(a). Fact 2.51 tells us suppR(X ⊗L
R K) = suppR(X) ∩ suppR(K) =

suppR(X) ∩ V(a). By assumption, supp(X) ⊆ V(a). Therefore, suppR(X ⊗L
R K) =

suppR(X). It follows that X ' 0 if and only if K ⊗L
R X ' 0.

Lemma 3.31. Let M be an a-codualizing R-complex. Let X and Y be homologically

bounded R-complexes such that suppR(X), suppR(Y ) ⊆ V(a). Let α : X → Y be a

chain map.

(a) One has suppR(Cone(α)) ⊆ V(a).

(b) The following conditions are equivalent.
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(i) α is an isomorphism in D(R),

(ii) M ⊗L
R α is an isomorphism in D(R),

(iii) RHomR(M,α) is an isomorphism in D(R), and

(iv) K(a)⊗L
R α is an isomorphism in D(R).

Proof. (a) Consider the following exact sequence

0 // Y // Cone(α) // ΣX // 0

Therefore, the following diagram is a distinguished triangle.

Y // Cone(α) // ΣX //

Then for all p ∈ Spec(R), the following is a distinguished triangle

Y ⊗L
R κ(p) // Cone(α)⊗L

R κ(p) // ΣX ⊗L
R κ(p) //

Let p 6∈ V(a). Then p 6∈ suppR(X) and p 6∈ suppR(Y ). Therefore, Y ⊗L
R κ(p) ' 0 '

ΣX ⊗L
R κ(p). The distinguished triangle above implies Cone(α) ⊗L

R κ(p) ' 0. It follows

that p 6∈ suppR(Cone(α)).

(b) The implications (i) =⇒ (ii) and (i) =⇒ (iii) and (i) =⇒ (iv) are standard.

Consider the next distinguished triangle in each of the other implications.

X // Y // Cone(α) // (5)

(ii) =⇒ (i): Suppose M ⊗L
R α is an isomorphism. Then the distinguished triangle
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(5) yields a second distinguished triangle

M ⊗L
R X

M⊗L
Rα

'
//M ⊗L

R Y
//M ⊗L

R Cone(α) // .

It follows that M ⊗L
R Cone(α) ' 0. By part (a), we have suppR(Cone(α)) ⊆ V(a). By

contradiction assume Cone(α) 6' 0. Then there exists p ∈ suppR(Cone(α))
⋂

V(a). By

Lemma 3.29(a), we conclude M ⊗L
RCone(α) 6' 0. This is a contradiction. Hence, we have

Cone(α) ' 0, so α is an isomorphism in D(R).

(iii) =⇒ (i): Suppose RHomR(M,α) is an isomorphism. Then the distinguished

triangle (5) yields a second distinguished triangle

RHomR(M,X)
RHomR(M,α)

'
//RHomR(M,Y ) //RHomR(M,Cone(α)) // .

It follows that RHomR(M,Cone(α)) ' 0. By part (a), we have suppR(Cone(α)) ⊆ V(a).

By contradiction assume Cone(α) 6' 0. Then there exists p ∈ suppR(Cone(α)) ⊆ V(a).

Therefore, there exists p ∈ suppR(Cone(α))
⋂

V(a). By Lemma 3.29(b), we conclude

RHomR(M,Cone(α)) 6' 0. This is a contradiction. Hence, we have Cone(α) ' 0, so α is

an isomorphism in D(R).

(iv) =⇒ (i): Suppose K(a) ⊗L
R α is an isomorphism. Then the distinguished

triangle (5) yields a second distinguished triangle

K(a)⊗L
R X

K(a)⊗L
Rα

'
// K(a)⊗L

R Y
// K(a)⊗L

R Cone(α) // .

It follows that K(a) ⊗L
R Cone(α) ' 0. By part (a), we have suppR(Cone(α)) ⊆ V(a).

By contradiction assume Cone(α) 6' 0. Then there exists p ∈ suppR(Cone(α)) ⊆ V(a).

Therefore, there exists p ∈ suppR(Cone(α))
⋂

V(a). By Lemma 3.30, we have K(a) ⊗L
R

Cone(α) 6' 0. This is a contradiction. Thus, we have Cone(α) ' 0.
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For our version of Foxby equivalence, we need a variant of Lemma 3.29; see Propo-

sition 3.37. For it, we require the ring to have finite Krull dimension.

Fact 3.32. [32, Corollary 3.2.7] If F is a flat R-module, then pdR(F ) 6 dim(R).

Remark 3.33. If X is a homologically bounded R-complex and p ∈ Spec(R), then we

have the following:

1. For all Z ∈ D(R) we have κ(p)⊗L
Rp
Z ' κ(p)⊗L

R Rp ⊗L
Rp
Z ' κ(p)⊗L

R Z.

2. If we further assume that dim(R) <∞, then pdR(Rp) <∞ by Fact 3.32. Therefore,

RHomR(Rp, X) is a homologically bounded R-complex.

3. HomR(U,
∐

λ Vλ) injects into HomR(U,
∏

λ Vλ)
∼=
∏

λ HomR(U, Vλ). So, if we have

HomR(U, Vλ) = 0 for all λ, then HomR(U,
∐

λ Vλ) = 0.

Lemma 3.34. Let R be ring such that dim(R) < ∞. If X is a homologically bounded

R-complex, then p ∈ co-suppR(X) if and only if RHomR(κ(p), X) 6' 0.

Proof. By definition, p ∈ co-suppR(X) if and only if κ(p) ⊗L
Rp

RHomR(Rp, X) 6' 0. By

Remark 3.33.2 the R-complex RHomR(Rp, X) is homologically bounded. Then by [16,

Proposition 11.4], one has κ(p)⊗L
Rp

RHomR(Rp, X) 6' 0 if and only if

RHomRp(κ(p),RHomR(Rp, X)) 6' 0.

By adjointeness we have an isomorphism

RHomRp(κ(p),RHomR(Rp, X)) ' RHomR(κ(p), X).

So, we have p ∈ co-suppR(X) if and only if RHomR(κ(p), X) 6' 0.
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Lemma 3.35. Let R be ring such that dim(R) < ∞. If F is a non-zero flat module, then

co-suppR(F ) 6= ∅ and there exists a prime ideal p ∈ Spec(R) such that sup(κ(p) ⊗L
Rp

RHomR(Rp, X)) = 0.

Proof. Let 0 → F → T 0 → T 1 → · · · → T d → 0 be a minimal pure injective resolution

of F . That is, each T i is flat and cotorsion, the sequence is exact, each kernel is flat, and

d 6 dim(R); cf. [15, Section 2]. For all i and p ∈ Spec(R) there exists X i
p such that

T i ∼=
∏

p R̂
(Xi

p)
p

by [14, Section 2]. The X i
p are uniquely determined by F, i, and p. The

X i
p are the invariants πi(p, F ) of [15].

By [14, Theorem 2.2], we have co-suppR(T i) = {p ∈ Spec(R) : X i
p 6= 0} for all i.

In particular, T i 6= 0 if and only if co-suppR(T i) 6= 0. Since F 6= 0, we have T 0 6= 0.

Now, let p be maximal in co-suppR(T 0) with respect to containment. In particular,

κ(p) ⊗L
Rp

RHomR(Rp, T
0) 6= 0. From [15, Theorem 2.1] we have p 6∈ co-suppR(T i) for

all i > 1. Moreover, for all q ⊇ p, we have q 6∈ co-suppR(T i) for all i > 0.

As each T i is cotorsion and Rp is flat, we have RHomR(Rp, F ) ' HomR(Rp, T ).

Moreover, from the proof of [14, Theorem 2.7] each module HomR(Rp, T
i) is flat and

cotorsion over Rp.

To be clear, theR-module HomR(Rp, T
i) is cotorsion because, for all flatRp-modules

and all j > 1, we have

ExtjRp
(L,HomR(Rp, T

i)) ∼= ExtjR(Rp ⊗Rp L, T
i)

∼= ExtjR(L, T i)

=0.

The first isomorphism is adjointness, the second is tensor cancellation, and the third is be-

cause T i is cotorsion over R. Also, the Rp-module HomR(Rp, T
i) is flat because if M and

N are flatR-modules, then HomR(M,N) is flat overR. This implies that HomR(Rp, T
i) is
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flat over Rp. This follows from the fact that HomR(Rp, T
i)⊗Rp − ∼= HomR(Rp, T

i)⊗R −

as functors of Rp-modules.

Therefore, HomR(Rp, T ) is a bounded flat resolution of RHomR(Rp, F ) over Rp.

Thus, it is also a resolution over R. This allows us to conclude that

κ(p)⊗L
Rp

RHomR(Rp, F ) ' κ(p)⊗Rp HomR(Rp, T ).

Now, since p 6∈ co-suppR(T i) for all i > 1, we have

κ(p)⊗Rp HomR(Rp, T ) = 0→ κ(p)⊗Rp HomR(Rp, T
0)→ 0→ · · · .

Since p ∈ co-suppR(T 0), we have κ(p)⊗Rp HomR(Rp, T
0) 6' 0. Hence,

κ(p)⊗L
Rp

RHomR(Rp, F ) ' κ(p)⊗Rp HomR(Rp, T ) ' κ(p)⊗Rp HomR(Rp, T
0) 6' 0.

This implies that the supremum of κ(p)⊗L
Rp

RHomR(Rp, X) is 0.

Lemma 3.36. Let R be ring such that dim(R) <∞. If 0 6' X is a homologically bounded

R-complex, then co-suppR(X) 6= ∅.

Proof. We proceed in cases.

Case 1: fd(X) =∞. Let F ' X be a flat resolution ofX , and shiftX if necessary to

assume sup(X) = 0. We consider the following soft truncation of F . Define F ′ as follows

F ′ = 0 // F0/ Im(∂F1 ) ε // F−1

∂F−1 // · · · // Fj // 0.

Note that X ' F ' F ′. Let τ : G0 → F0/ Im(∂F1 ) be a flat cover. Then Ker(τ) = C is

cotorsion by [13, Lemma 2.2]. Let C ι−→ G0 be the inclusion map. Let

G̃+ = · · · // G2

∂G̃1 // G1
π // C // 0
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be a minimal flat resolution. By [13, Lemma 2.2] each Gi is cotorsion. We define the

complex L as

L = · · · // G2

∂G̃1 // G1
ι◦π // G0

ε◦τ // F−1

∂F−1 // F−2
// · · · .

Note that L ' X .

For each i, we have Gi
∼=
∏

p Tp,i where Tp,i is a completion of a free Rp-module.

Furthermore, all p that occur have the property that κ(p) ⊗L
R HomR(Rp, ∂

G̃
i ) = 0 for all

i > 1 by [14, Theorem 2.2]. Since C is cotorsion, the exact sequence

· · · // HomR(Rp, G2) // HomR(Rp, G1) // HomR(Rp, C) // 0

is an augmented flat resolution of HomR(Rp, C). Then for all i > 1 we have

Tor
Rp

i (κ(p),HomR(Rp, C)) = Hi(κ(p)⊗L
Rp

HomR(Rp, G̃)) = κ(p)⊗Rp HomR(Rp, Gi+1).

In particular, if Tp,i+1 6= 0, then Tor
Rp

i (κ(p),HomR(Rp, C)) 6= 0 by [14, Theorem 2.2].

Since fd(X) = ∞, we also know fd(C) = ∞, otherwise, G̃ would be bounded and

L ' X would be a bounded flat resolution. With the equalities above, this implies the set

{i : there exists p such that TorRi (κ(p),RHomR(Rp, C)) 6= 0} is unbounded.

Consider the short exact sequence of complexes

0 // ΣG̃ // L // L60
// 0

This a yields a distinguished triangle ΣC → X → L60 → in D(R). From Fact 3.32

pdR(Rp) 6 dim(R) <∞. So, there exists a projective resolution P ' Rp such that Pi = 0

for all i > dim(R). Then RHomR(Rp, L60) ' HomR(P,L60), where HomR(P,L60)

is bounded complex of flat modules. Moreover, HomR(P,L60)i = 0 for all i > 0.
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Therefore, κ(p) ⊗R HomR(P,L60)i = 0 for all i > 0. This implies that Hi(κ(p) ⊗L
R

RHomR(Rp, L60)) ∼= Hi(κ(p)⊗RHomR(P,L60)) = 0 for all i > 0. Hence, the supremum

of κ(p)⊗L
R RHomR(Rp, L60) is less than or equal to 0 for all p.

There exists p and i > 1 such that Hi(κ(p) ⊗L
R RHomR(Rp,ΣC)) 6= 0. Then there

exists a distinguished triangle

κ(p)⊗L
R RHomR(Rp,ΣC)

��
κ(p)⊗L

R RHomR(Rp, X)

��
κ(p)⊗L

R RHomR(Rp, L60)

��

We know sup(κ(p)⊗L
R RHomR(Rp,ΣC)) > 1 and sup(κ(p)⊗L

R RHomR(Rp, L60)) 6 0.

The long exact sequence implies that sup(κ(p)⊗L
RRHomR(Rp, X)) > 1. In particular, we

have that κ(p)⊗L
R RHomR(Rp, X) 6' 0 and hence, p ∈ co-suppR(X).

Case 2: s = fdR(X) < ∞. Let F ' X such that F is a bounded complex of flat

modules such that Fi = 0 for all i > s and for all i < j = inf(X).

Claim: for all p ∈ Spec(R), we have sup(κ(p) ⊗L
R RHomR(Rp, X)) 6 s. In-

deed, pdR(Rp) 6 dim(R) from Fact 3.32. Therefore, there exists a projective resolution

P ' Rp of Rp such that Pi = 0 for all i > dim(R) and i < 0. Then by definition,

RHomR(Rp, X) ' HomR(P, F ). By construction, HomR(P, F ) = 0 for all i > s and

i < dim(R) + j, and HomR(P, F )i is flat for all i. Hence, HomR(P, F ) is a flat resolution

of RHomR(Rp, X). It follows that

κ(p)⊗L
R RHomR(Rp, X) ' κ(p)⊗R HomR(P, F ).
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The module κ(p) is concentrated in degree 0, and HomR(P, F ) is concentrated in

degrees j − dim(R) 6 i 6 s. Therefore, the R-complex κ(p) ⊗R HomR(P, F ) is

concentrated in degrees j − dim(R) 6 i 6 s. Then

j − dim(R) 6 inf(κ(p)⊗L
R RHomR(Rp, X)) 6 sup(κ(p)⊗L

R RHomR(Rp, X)) 6 s.

This proves the claim.

We proceed by induction on s− j. The base case follows from Lemma 3.35.

For the induction step, consider the following short exact sequence of complexes

0 // ΣsFs // F // F6s−1
// 0.

Since s = fdR(X), we have Fs 6= 0. Lemma 3.35 implies there exists p such that

sup(κ(p)⊗L
R RHomR(Rp,Σ

sFs)) = s. The claim above implies that we have

sup(κ(p)⊗L
R RHomR(Rp, F6s−1)) 6 s− 1.

Again there is a distinguished triangle

κ(p)⊗L
R RHomR(Rp,Σ

sFs)

��
κ(p)⊗L

R RHomR(Rp, F )

��
κ(p)⊗L

R RHomR(Rp, F6s−1)

��

The long exact sequence in homology implies sup(κ(p)⊗L
R RHomR(Rp, F )) = s. There-

fore, we have κ(p)⊗L
R RHomR(Rp, F ) 6' 0, so p ∈ co-suppR(X).
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Next we record our analogue of Lemma 3.29(a).

Proposition 3.37. Let M be an a-codualizing R-complex, and let 0 6' X be a homologi-

cally bounded R-complex. If co-suppR(X) ⊆ V(a), then M ⊗L
R X 6' 0.

Proof. By Lemma 3.29 it suffices to find an ideal q ∈ suppR(X) ∩ V(a). Lemma 3.36

implies is a prime ideal p ∈ co-suppR(X). Then Lemma 3.34 implies that we have

RHomR(κ(p), X) 6' 0.

Let J be a minimal injective resolution of X . Therefore,

0 6' RHomR(κ(p), X) ' HomR(κ(p), J).

In particular, HomR(κ(p), Ji) = HomR(κ(p), J)i 6= 0 for some i. By Lemma 2.64,

we know that suppR(X) = ∪i∈Z{q ∈ Spec(R) : ER(R/q) is a summand of Ji}. Re-

mark 3.33.3 provides a prime q ∈ suppR(X) such that HomR(κ(p), ER(R/q)) 6= 0. As

κ(p) is p-torsion we have HomR(κ(p),Γp(ER(R/q))) = HomR(κ(p), ER(R/q)) 6= 0.

Therefore, Γp(ER(R/q) 6= 0 and so p ⊆ q. The condition p ∈ co-suppR(X) ⊆ V(a)

implies that a ⊆ p ⊆ q. Hence, we have q ∈ suppR(X) ∩ V(a).

Lemma 3.38. Let M be an a-codualizing complex, and X and Y are homologically

bounded R-complexes such that co-suppR(X), co-suppR(Y ) ⊆ V(a). Let α : X → Y

be a chain map.

(a) One has co-suppR(Cone(α)) ⊆ V(a).

(b) The following conditions are equivalent:

(i) the morphism α is an isomorphism in D(R), and

(ii) the morphism M ⊗L
R α is an isomorphism in D(R).
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Proof. (a) Consider the following distinguished triangle

X
α // Y // Cone(α) // .

Let p ∈ Spec(R). Then applying the functors RHomR(Rp,−) and κ(p) ⊗L
Rp
− in

succession yields the following distinguished triangle.

κ(p)⊗L
Rp

RHomR(Rp, X)

��
κ(p)⊗L

Rp
RHomR(Rp, Y )

��
κ(p)⊗L

Rp
RHomR(Rp,Cone(α))

��

Let p 6∈ V(a). Then p 6∈ co-suppR(X) and p 6∈ co-suppR(Y ). So we have

κ(p)⊗L
Rp

RHomR(Rp, Y ) ' 0 ' κ(p)⊗L
Rp

RHomR(Rp,ΣX).

The distinguished triangle above implies κ(p)⊗L
Rp

RHomR(Rp,Cone(α)) ' 0. It follows

that p 6∈ co-suppR(Cone(α)).

(b) The implication (i) =⇒ (ii) is standard.

(ii) =⇒ (i): Suppose M ⊗L
R α is an isomorphism. As above, we have the

distinguished triangle

X α // Y // Cone(α) // .

This distinguished triangle yields a second distinguished triangle

M ⊗L
R X

M⊗L
Rα

'
//M ⊗L

R Y
//M ⊗L

R Cone(α) // .
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By part (a), we have co-suppR(Cone(α)) ⊆ V(a). Assume that Cone(α) 6' 0. By

Proposition 3.37, we conclude that M ⊗L
R Cone(α) 6' 0. This is a contradiction. Hence,

we have Cone(α) ' 0

The following is a corollary to Proposition 2.65.

Corollary 3.39. Let M be an a-codualizing complex, and let X be an R-complex. If X is

in AM(R), then co-suppR(X) ⊆ V(a).

Proof. If X ∈ AM(R), then X ' RHomR(M,M ⊗L
R X), so

co-suppR(X) = co-suppR(RHomR(M,M ⊗L
R X)) ⊆ V(a)

by Proposition 2.54.

Now we are ready to state and prove our version Foxby equivalence, which is Theo-

rem 1.9 in the introduction.

Theorem 3.40. If M is a-codualizing complex, then M ⊗L
R − : AM(R) → BM(R) and

RHomR(M,−) : BM(R)→ AM(R) are quasi-inverse equivalences. Further, we have the

following.

(a) Y ∈ BM(R) if and only if RHomR(M,Y ) ∈ AM(R) and suppR(Y ) ⊆ V(a).

(b) If X ∈ AM(R), then M ⊗L
R X ∈ BM(R) and co-suppR(X) ⊆ V(a).

(c) If dim(R) <∞, then the converse of part (b) holds.

Proof. We begin by showing the forward implication of parts (a) and (b). The fact that the

functors are quasi-inverse equivalences follows immediately from these two implications

and the definitions of AM(R) and BM(R).
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Let X and Y be homologically bounded R-complexes. Set F = M ⊗L
R X , and

consider the morphisms δMF : M⊗L
RRHomR(M,F )→ F and γMX : X → RHomR(M,F ).

Then the morphism

F = M ⊗L
R X

M⊗L
Rγ

M
X //M ⊗L

R RHomR(M,F )

satisfies δMF (M ⊗L
R γ

M
X ) = idF . It follows that M ⊗L

R γ
M
X is an isomorphism if and only if

δMF is one.

If we further assume thatX ∈ AM(R), thenX,F , and RHomR(M,F ) are homolog-

ically bounded R-complexes, and γMX is an isomorphism. Corollary 3.39 yields the desired

co-support condition. The morphism M ⊗L
R γ

M
X is also an isomorphism since γMX is one.

From the above, we know δMF is also an isomorphism, and therefore, we have F ∈ BM(R).

So M ⊗L
R − is a functor from AM(R)→ BM(R).

Set G = RHomR(M,Y ). Now, consider the morphisms δMY : M ⊗L
R G → Y and

γMG : G→ RHomR(M,M ⊗L
R G). Then the morphism

RHomR(M,M ⊗L
R G)

RHomR(M,δMY )
//RHomR(M,Y ) = G

satisfies RHomR(M, δMY )γMG = idG. If follows that RHomR(M, δMY ) is an isomorphism if

and only if γMG is an isomorphism.

Assume that Y ∈ BM(R). It follows from the Bass class isomorphism and Fact 2.51

that we have suppR(Y ) ⊆ V(a). Also, Y,G, and M ⊗L
R G are homologically bounded

R-complexes, and δRY is an isomorphism. Then RHomR(M, δMY ) is also an isomorphism.

Thus, γMG is an isomorphism. It follows that G ∈ AM(R), so RHomR(M,−) is functor

from BM(R)→ AM(R).

We now prove the converse of part (a). Assume G = RHomR(M,Y ) ∈ AM(R) and

suppR(Y ) ⊆ V(a). Then G and M ⊗L
R G are homologically bounded R-complexes, and
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γMG is an isomorphism. From above, we know that RHomR(M, δRY ) is an isomorphism.

We would like to invoke Lemma 3.31 to conclude δRY is an isomorphism. It would follow

that Y ∈ BM(R).

We need to show that the complexes M ⊗L
RRHomR(M,Y ) and Y satisfy the proper

support condition. Corollary 2.52 implies suppR(M ⊗L
RRHomR(M,Y )) ⊆ suppR(M) ⊆

V(a). Therefore, Lemma 3.31 applies and δRY is an isomorphism. This establishes part (a).

We now show part (c). Assume dim(R) < ∞ and F = M ⊗L
R X ∈ BM(R)

and co-suppR(X) ⊆ V(a). Then F and RHomR(M,F ) are homologically bounded R-

complexes, and δMF is an isomorphism. From above, the morphism

M ⊗L
R γ

R
X : M ⊗L

R X →M ⊗L
R RHomR(M,F )

is an isomorphism. Proposition 2.54 implies suppR(RHomR(M,F )) ⊆ V(a). Then

Lemma 3.38 implies that the morphism γRX is an isomorphism. Thus, X ∈ AM(R).

If M is semidualizing over R, then part of Foxby equivalence [10, Theorem 4.6]

states that, given a homologically bounded R-complex, one has Y ∈ BM(R) if and only if

RHomR(M,Y ) ∈ AM(R). Note that no mention is made of suppR(Y ). This is due to the

fact that M is 0-codualizing in this case, so the condition suppR(Y ) ⊆ V(0) = Spec(R)

is automatic. The following example shows that if M is a-codualizing and Y is an R-

complex such that suppR(Y ) 6⊆ V(a) and RHomR(M,Y ) ∈ AM(R), then Y need not be

in BM(R).

Example 3.41. Let k be a field and R = k[X](X). Note that this is a local ring, and R is

not complete with respect to its maximal ideal. Let E be the injective hull of the residue

field. We first show RHomR(E,R) ∈ AE(R). The minimal injective resolution J of R is

+J = 0 // R // k(X) // E // 0.
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An application of HomR(E,−) to J yields the complex

RHomR(E,R) ' HomR(E, J) = 0 // HomR(E, k(X)) // HomR(E,E) // 0.

It is well-known that HomR(E, k(X)) = 0 and HomR(E,E) ∼= R̂m. It follows that

RHomR(E,R) ' Σ−1R̂m. Proposition 3.28 implies Σ−1R̂m ∈ AE(R).

Consider the isomorphisms

Σ−1E ' E ⊗L
R Σ−1R̂m ' E ⊗L

R RHomR(E,R).

It follows that the morphism δER : E ⊗L
R RHomR(E,R) → R is not isomorphism. Hence,

we have R 6∈ BE(R). Notice we are not in the scope of Foxby equivalence because the

support condition is not satisfied. Specifically, we have suppR(R) 6⊆ V(m) = {m}.
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4. FUTURE WORK

There are still several questions related to the a-codualizing condition to answer.

Question 4.1. If M is a-codualizing complex, is RΓb(M) an b-codualizing complex?

We have proved part of this; see Theorem 3.22. It remains to show that the homothety

morphism χR̂
b

RΓb(M) is an isomorphism. It does not appear that the proof of Theorem 3.24 is

easily adaptable to this question. If this were true, this would imply that there is injection

from the set of shift-isomorphism classes of semidualizing complexes into the set of shift-

isomorphism classes of a-codualizing complexes. This makes the next question natural.

Question 4.2. Do all a-codualizing complexes “come from” semidualizing ones?

Over a local Gorenstein ring, there are unique semidualizing and quasidualizing

complexes up to shift-isomorphism. This makes the next question natural.

Question 4.3. If (R,m, k) is local Gorenstein ring, is there a unique a-codualizing complex

up to shift-isomorphism?

The next questions arise naturally from our study of Auslander and Bass classes.

Question 4.4. Can we remove the assumption dim(R) <∞ in Theorem 3.40?

Question 4.5. Let M be an a-codualizing complex. Is there an embedding (given an

appropriate support condition) of complexes of finite flat dimension and finite injective

dimension into AM(R) and BM(R), respectively?
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