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ABSTRACT

A finitely generated R-module C' is semidualizing if the R-module homomorphism
x& : R — Hompg(C,C) given by xE(r)(c) = rcis an isomorphism and Ext%(C,C) = 0
for all ¢ > 1. When (R, m) is local, an artinian R-module 7" is quasidualizing if the map
Xﬁm : R™ — Homp(T,T) is an isomorphism and Ext’%(T,T) = 0 for all i > 1. In this
dissertation we unify these two definitions under one “umbrella” definition. For an ideal a,
an R-module M is a-codualizing if the R-module Ext%(R/a, M) is finitely generated for
all 4, the small support of M is contained in V(a), one has Ext’, (M, M) = 0 forall i > 1,
and the map Y2 : R* — Hompg(M, M) given by X" (r)(c) = rc is an isomorphism. We
study the a-codualizing condition of modules and R-complexes. We show that RI',(R) is
always an example of an a-codualizing complex. We also study the Auslander and Bass
classes in the context of a-codualizing complexes. In particular, we prove a version of

Foxby equivalence in this context.
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1. INTRODUCTION

In this dissertation the term “ring” is short for “commutative, noetherian ring with
identity.” The term “module” is short for “unital module.”

Throughout this dissertation let R be a ring, let a C R be a proper ideal of R, and let
R® be the a-adic completion of R.

The study of dualities is fundamental to many branches of mathematics. A funda-
mental operation on a given field k£ and a vector space V' is the duality V' +— Homy(V, k).
The study of rings and modules in this manner can be traced back at least to work of
Grothendieck and Hartshorne [22], Auslander and Bridger [2], and Foxby [17], using the

following notion which is central to this dissertation.

Definition 1.1. A finitely generated R-module C'is semidualizing if it satisfies the follow-

ing conditions:
(i) the map xZ& : R — Homg(C, C) given by x&(r)(c) = rc is an isomorphism, and
(ii) Ext%(C,C) =0foralli > 1.

For any ring R, the ring itself as an R-module is an example of a semidualizing
module. Also, D is a dualizing module if and only if D is semidualizing and has finite
injective dimension. Loosely speaking, among finitely generated modules, semidualizing
modules are good for studying dualities. For instance, the example of R gives the duality
M +— Hompg(M, R) from [2], and when D is dualizing, this recovers Groethendieck’s
local duality M +— Hompg (M, D) from [22].

However, in the study of dualities, semidualizing modules miss some important
examples, such as Matlis duality: when (R, m, k) is a local noetherian ring, this is the
duality M — Hompg(M, E) where F is the injective hull of the residue field (that is, F is
the “smallest” injective module in which k& can be embedded). Kubik [26] introduced the

next definition to cover this deficiency.



Definition 1.2. Let (R, m) be local, and let 7" be an artinian R-module. The fact that 7" is
artinian implies that it is m-torsion so it has the structure of an R™-module. In particular,
the map ng?“ . R™ — Hompg(T, T) given by Xﬁm (r)(c) = rcis a well-defined R-module

homorphism. The R-module 7" is quasidualizing if it satisfies the following conditions:
(i) the map x2" : B™ — Hompg(T, T) is an isomorphism, and
(ii) Ext%(T,T) =0foralli > 1.

One always has an example of quasidualizing module since the injective hull of
the residue field is a quasidualizing R-module [26, Example 1.17]. The point of this

dissertation is to unify these two notions under the following “umbrella” notion.
Definition 1.3. An R-module M is a-codualizing if it satisfies the following conditions:

(i) the R-module Ext’(R/a, M) is finitely generated for all i, and V(a) contains the

“small support” of M, that is, the set

suppp(M) := {p € Spec(R) : Torf(R/p, M), # 0 for some i},

(ii) Ext%(M, M) = 0foralli > 1, and

(iii) the map X]\ﬁf . R* — Hompg(M, M) given by X?“ (r)(c) = rcis an isomorphism.
This map is a well-defined R-module homomorphism as in Definition 1.2. See also

Remark 3.3.

Note that one recovers the definitions of semidualizing and quasidualizing with a = 0
and a = m respectively; see Propositions 3.5 and 3.6. There is some flexibility condition
in (i) due to the following theorem of Melkersson [31], which does not assume that M is
finitely generated; if M is finitely generated, then the equivalent conditions are automati-

cally satisfied because R is assumed to be noetherian.
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Fact 1.4. [31, Theorem 2.1] Let a = (21, ...,x,) and let M be an R-module. Then the

following conditions are equivalent:
(i) the R-module Ext%(R/a, M) is finitely generated over R for all 4,
(ii) the R-module Tor(R/a, M) is finitely generated over R for all i, and
(iii) the Koszul homology modules H;(z; M) are finitely generated over R fori = 0, ..., n.

While modules are a well-defined setting to study the a-codualizing condition, it is
more natural to consider this property in the derived category. This follows the tradition
of studying dualizing properties in the derived category as in work of Grothedieck and
Hartshorne [22], Avramov and Foxby [3], and Christensen [10]. See Chapter 2 for back-

ground information.

Definition 1.5. A homologically bounded R-complex X is a-codualizing if it satisfies the

following conditions:
(i) Exth(R/a, X) is finitely generated for all i,
(ii) one has suppy(X) € V(a), and

(iii) the natural homothety map Xga : RS — RHompg(X, X) is an isomorphism in the

derived category D(R).

We prove the following analogue of Melkersson’s result for R-complexes in Theo-
rem 3.15. It provides flexibility in studying the a-codualizing condition. It is the main

result of Section 3.2.

Theorem 1.6. Let M be a homologically bounded R-complex. Then the following condi-

tions are equivalent:

(i) the R-complex K (x) @% M is homologically finite for some (equivalently, for every)

generating sequence x of a,



(ii) the R-complex M ®% R/a is homologically degree-wise finite, and
(iii) the R-complex RHompg(R/a, M) is homologically degree-wise finite.

The next result shows that, as in the semidualizing and quasidualizing cases, one
always has an example of an a-codualizing complex. It is Theorem 3.24, which is the main

result of Section 3.3.
Theorem 1.7. The R-complex RI'y(R) is a-codualizing.

In the semidualizing case, two well-studied classes of complexes are the Auslander
and Bass classes. We study these classes and show that the behavior in the a-codualizing

case deviates from the semidualizing case in some surprising ways.

Definition 1.8. Let M be an a-codualizing R-complex. Let X and Y be homologically

bounded R-complexes.

(a) The complex X is in the Auslander class Ay/(R) if the R-complex M ®@% X is
homologically bounded and the natural morphism 74 : X — RHompz(M, M ®@% X)

is an isomorphism in D(R).

(b) The complex Y is in the Bass class By (R) if the R-complex RHompg(M,Y') is ho-
mologically bounded and the natural morphism &Y : M ®% RHompz(M,Y) — Y is

an isomorphism in D(R).

One of the main theorems about the Auslander and Bass Classes in the semidualizing
case is so-called “Foxby equivalence.” This notion connects the two classes via functors
involving semidualizing complexes. To understand these classes in the a-codualizing case,
we need to understand various support conditions. The following result is our version of
Foxby equivalence in this setting. It is proved in Theorem 3.40. It is the main result of

Section 3.4.



Theorem 1.9 (Foxby equivalence). Let M is a-codualizing complex. Then we have that
the functors RHompg (M, —) : Byr(R) — Ay (R) and M @Y% — © Ay (R) — Buy(R) are

quasi-inverse equivalences. Further, we have the following.

(a) An R-complexY is in By;(R) if and only if the R-complex RHompg(M,Y) € Ay (R)

and suppg(Y) C V(a).
(b) If X € Ay (R), then M ®@% X € By(R) and co-suppy(X) C V(a).

(c) Ifdim(R) < oo and M ®% X € By(R) and co-suppy(X) C V(a), then X € Ay(R).



2. BACKGROUND

2.1. Homological Constructions

The origins of homological algebra can be traced back at least to the work of Cartan
and Eilenberg [8]. We begin with some basic definitions and facts about homological
algebra that are necessary for the subsequent chapters. For details on the constructions

and proofs the interested reader may wish to consult Rotman [33].
Definition 2.1. A sequence of R-module homomorphisms

X 89X
X = HX,—s X
— e et — Z—‘rlﬁ. zﬁ- i—lﬁ...'

is a chain complex (or simply an R-complex) if 9% 0 0;%, = 0 for each i. The module X; is

said to be in the i"* degree of X. The i'* homology module of X is

Hi(X) = Ker(9¥)/Im(d3,).

We write |x| to denote the degree of an element of X. By this we mean if |x| = n, then
x € X,. Letn € Z. The nth suspension (or shift) of X is the complex X" X such that

(Z"X); :== X;_, and OF" X = (=1)"9 . Weset TX := Y1X.

Definition 2.2. Let X be an R-complex. If X; = 0 fori > 0,7 < 0, or |i| > 0, then
X is bounded above, bounded below, or bounded, respectively. If H;(X;) = 0 for ¢ > 0,
i < 0, or |i| > 0, then X is homologically bounded above, homologically bounded below,
or homologically bounded respectively. If H;(X;) = 0 for |¢| > 0 and each module H;(X;)

is finitely generated, then X is homologically finite.



Definition 2.3. Let X be an R-complex. The infimum, supremum, and amplitude of X are

inf(X) =inf{i € Z : H;(X) # 0}
sup(X) =sup{i € Z : H;(X) # 0}

amp(X) = sup(X) — inf(X).

Definition 2.4. Let X and Y be R-complexes. A sequence {«; : X; — Y;} of R-module

homomorphisms such that the following diagram commutes

X

X=X, -0 X,
Lai lail
oY
Y = Y, —Yi

is a chain map. We denote this as « : X — Y. The chain map « is a quasiisomorphism
if any induced map on homology is an isomorphism, that is, for all ¢, we have that the
map H;(«) : H;(X) — H;(Y) is an isomorphism. Quasiisomorphisms are identified by
the symbol ~. The category of R-complexes is the category C(R) with objects equal to the

R-complexes and morphisms equal to the chain maps.
We often use the mapping cone to study complexes and chain maps.
Definition 2.5. Let f : X — Y be a chain map. The mapping cone of f is the R-complex

0 —0X,

Y; (@Y fi—1 > Yiy
Cone(f): P @ @ —_— = ...

Xifl X@'72

Fact 2.6. Let f : X — Y be a chain map. Then f is a quasiisomorphism if and only if

Cone( f) is exact.



Definition 2.7. A chain map a : X — Y is null-homotopic if there is a sequence of

homomorphisms f3; : X; — Y;41 such that a; = 3,19 + 9}, 5; for all i € Z.

X X
/ -
1+1
X =i —s i+1_>Xi_l>Xifl_>"'
Qi1 Qi1
4z Bi 4 P
Y= Yo Vi Vi

The chain map « is a homotopy equivalence if there exists a chain map v : ¥ — X such

that idx —ya and idy —ay are null-homotopic.

Fact 2.8. Let o : X — Y be a chain map.

(a) If o 1s an isomorphism, then « is a homotopy equivalence.

(b) If « is a homotopy equivalence, then «v is a quasiisomorphism.

Definition 2.9. Let M be an R-module. An augmented projective resolution P* of M is

an exact sequence of modules

Pt=...— P, P, Py—I1>M 0

such that each P, is projective over 2. The complex

P=... P P, P, 0

is a projective resolution of M.

Definition 2.10. Let M be an R-module. An augmented flat resolution F* of M is an

exact sequence of modules

Ft=...—=F, F Fy ‘oM 0




such that each F; is flat over R. The complex

F=... Fi P Fy 0

is a flat resolution of M.

Definition 2.11. Let M be an R-module. An augmented injective resolution *.J of M is

an exact sequence of modules

+:]:O M < JO Jl o e J’L

such that each J; is injective over R. The complex

J=0 Jo J1 Jz

is an injective resolution of M.

Remark 2.12. If M is an R-module with projective resolution P and injective resolution
J, then P and J are not usually exact. In fact, we have H;(P) = 0 = H;(J) for all i # 0
and Ho(P) = M = Hy(J).

We next define two fundamental tools of homologically algebra. Note that these are
defined using the projective and injective resolutions previously defined, and that these

definitions are independent of choice of projective and injective resolution.

Definition 2.13. Let M and N be R-modules and P a projective resolution of M. Then
Ext’ (M, N) := H_;(Homg(P, N)).

Fact 2.14. Let M and N be R-modules, P a projective resolution of M, and J an injective

resolution of N. Then Ext’ (M, N) = H_;(Homg(P, N)) = H_;(Homg(M, J)).



Definition 2.15. Let M and N be R-modules and P a projective resolution of M. Then
Torf (M, N) := H;(P ®g N).

Fact 2.16. Let M and N be R-modules, P a flat resolution of M, and () a flat resolution
of N. Then Tor®(M, N) = Hi(P @z N) =2 H{(M @z Q).

As much of our attention in the sequel is given to studying the a-codualizing con-
dition in regards to complexes, we introduce some fundamental notions related to -

complexes, many of which are analogous to definitions related to R-modules.
Definition 2.17. Let X and Y be R-complexes.

1. The Hom complex Hompg(X,Y') is defined as follows. In degree n, we have that
Homp(X,Y), := 1o, Homp(X,, Yyy,) with differentials 9 """ ({£,}) =
{a;;nfp - (—1)"fp718£(},

2. The tensor product complex X ®pr Y is defined as follows. In degree n, we have

(X ®rY )y := @BpezX, @r Y,—p. One defines the differentials on the generators as

follows

OXERY (10, 2) ® Yp_p,0,...) =

(...,0, 8;((:1:10) @ Ynp, (—1)P2, @ Y (Yn_p),0,...).

n—p

Definition 2.18. Let a: X — Y be a chain map, and let V' be an R-complex. Then there

are well-defined induced chain maps

Hompg(V,a): Homp(V, X) — Homg(V,Y) f=Afo} = apysfp}

Hompg(a, V): Hompg(Y, V) — Hompg(X, V) {fp} = {frop}
Verpa: VerpX -V rY Up @ Ty Uy @ ()
aRrV: XV 2>Y gV Ty ® vy = () @ vy
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The preceding definition describes the functorial properties of the constructions of
Definition 2.17. These properties are analogous to the functorial properties in the context

of R-modules.

Fact 2.19. It is straightforward to show that the constructions from Definition 2.18 are

functorial, that is, that they respect compositions and identities.

Along with these constructions come a number of natural isomorphisms that are

analogous to well-known results for modules. We record them here.

Fact 2.20. Let X, Y and Z be R-complexes.

Hom cancellation: Homg(R, X ) = X.

Tensor cancellation: R ®z X = X.

Associativity: X @r (Y @r Z) = (X QrY) ®r Z.
Adjointness: Homg(X ®z Y, Z) = Hompg(X, Homg(Y, Z)).

Definition 2.21. Let x = x4, ..., 2, € R. The Koszul complex on x; is defined as

Z;

K(z;) = 0 R R 0

The Koszul complex on z is defined inductively as

K(z) = K(z1,...,2,) = K(11) Qg - - Qg K(x,).

11



The Koszul complex may be defined as above or in terms of mapping cones or in
terms of an exterior algebra. Each of these has its utility. For our purposes, the exterior

algebra structure is particularly useful, so we describe it next.

Construction 2.22. Letn € Nandletey,...,e, € R"beabasis. Letx = z,...,x, € R.
The ith exterior power of R", denoted \' R", is the free R-module of rank (") with basis
vectors given by the formal symbols of the forme;, A---Aej, withl < 7 <--- < j; < n.

In /\2 R™, define

—e;, ANej, wheneverl < j; < ja <n
j, N\ €5y 1=
0 whenever 1 < j; = jo < n.

Extending this bilinearly, we define v A 8 forall ar, f € A" R" = R™: write o = > p Qp€yp

and 8 = Zq B,€q. and define

p,q p<q
For example, we have

(e1+ex) N(ex+e3) =er Aes—ep Aeg+es Aes.

This extends to a multiplication \' R* x A*R* — A'*" R", which in turn extends (by
induction on s) to a multiplication \° R" x A" R* — A*"" R" using the following formula

whenl <11 <...<is<nand1 < j; <--- < j < n
(s NoeAei) Alejy Aee- Nej) i= ey A(es Ao Aei ) Aejy Ae-- Aeg,)].
This multiplication is denoted as (c, ) — aAB. When s = 0, since \” R* = R, the usual

12



scalar multiplication R x A" R" — A" R" describes the multiplication A" R" x A\’ R" —

A’ R", and similarly when ¢ = 0. This further extends to a well-defined multiplication on

AR" =@, N\ R":

0 if j, = j, for some p # ¢
ejp N Nej, i=

e, N(ej, AN---Nej,) if j, # j, forall p # q.

This endows the Koszul complex K (z) with the structure of a graded commutative R-

algebra. Using this notation, the differential on K (x) is given by the following:

t
a.KR(X)(ejl A /\ejt) _ Z(_1)5+lxj5€j1 Ao /\e/]\S R /\ejt‘

(2
s=1
Here, the hat signifies that a particular basis element has been removed. For instance, we

haveel/\é}/\egzel/\eg.

Definition 2.23. Let 2 = z1,...,z, € R. The Cech complex on x is the complex defined

first for a single element

R, 0

where f : R — R,, is defined by f(r) = %. Then one has

Definition 2.24. Let X be an R-complex.

(a) A projective resolution of X is a quasiisomorphism P — X, where P is a bounded

below complex of projective modules.

13



(b) A flat resolution of X is a quasiisomorphism F = X, where F is a bounded below

complex of flat modules.

(c) An injective resolution of X is a quasiisomorphism X — .J, where .J is a bounded

above complex of injective modules.

Example 2.25. In the case that X is an R-module concentrated in degree 0O, these def-
initions coincide with the definitions for modules. The augmented projective, flat, and

injective resolutions

Pt=... Py P, P "X 0
Ftr=... Fiq F F, ¢ X 0
TJ=0 M ——=J, Ji J;

give rise to the following quasiisomorphisms.

P = Pi+1 P1 P(] O
o Pl
X = 0 0 X 0
F= Fia : Fy Fy 0
lg lo jo lc
X = 0 . 0 X 0
X= 0 X 0 0
O 3
J= 0 Jo Ji J;

Note that these examples show quasiisomorphisms are not true isomorphisms, as

there is no inverse chain map. This motivates our study of the derived category below.

14



Fact 2.26. Let X and Y be R-complexes.
(a) If X is bounded above, then X has an injective resolution.

(b) If Y is bounded below, then Y has a projective resolution. Therefore, there exists a flat

resolution of Y.

Definition 2.27. Let X be a homologically bounded R-complex. The injective dimension

of X is defined as

idr(X) = inf{sup{i € Z : J_; # 0} : Jis an injective resolution of X }.

The flat dimension of X is defined as

fdgr(X) = inf{sup{i € Z : F; # 0} : Fis a flat resolution of X }.

2.2. Artinian And Torsion Modules
In this section we discuss artinian and torsion modules. This is essential for under-
standing the construction of “minimal injective resolutions” in Section 2.4 and understand-

ing how the a-codualizing condition captures quasidualizing modules as an example.

Definition 2.28. Let M be an R-module. Set

[o(M)={x e M:a"x=0forn>0}.

The module M is a-torsion if I'y(M) = M.
Fact 2.29. Given an R-module homomorphism f : M — N we have f(I'y(M)) C I'y(N).

Definition 2.30. Given an R-module homomorphism f : M — N the induced map I'y(f) :

[o(M) — I'y(N) is defined by restricting the domain and codomain of f.

15



Fact 2.31. It is straightforward to show that I'; is a functor.
Fact 2.32. [30, Theorem 18.4] Let p € Spec(R).
(a) If x € R\ p, then multiplication by z is an automorphism on Er(R/p).

(b) For any x € Er(R/p) there exists a positive integer n such that p"z = 0. This is to

say, Er(R/p) is p-torsion. Moreover, if p € V(a), then ER(R/p) is a-torsion.
The preceding fact can be stated succinctly as follows.

Fact 2.33. Let a be an ideal of R and p € Spec(R). Then we have

Ex(R/p) ifpeV
Ro(Ea(Ryp)) — 4 ) TRV

0 ifp & V(a).
In a similar vein, we describe the behavior of injective hulls under localization.

Fact 2.34. [12, Theorems 3.3.3 and 3.3.8(vi)] Let U be a multiplicatively closed set in R

and p € Spec(R). Then we have

Er(R/p) = Ey1g(U™R/pU™'R) ifpnU =0
U (Er(R/p)) =
0 ifpNU #0.

Fact 2.35. 28, Fact 2.1(a)] If M is an a-torsion R-module, then the natural map M —

R* ®pr M is an isomorphism.

Fact 2.36. [12, Theorem 3.4.3] Let (R, m, k) be local, and let £ be the injective hull of the

residue field k. Then an R-module M is artinian if and only if M C E" for some n > 1.

16



2.3. The Derived Category

One of the difficulties in working with complexes is that quasiisomorphisms are not
invertible. To remedy this deficiency, Verdier [34] introduced the “derived category” of
R-complexes. In this setting, quasiisomorphisms are formally inverted, turning them into

isomorphisms.

Definition 2.37. The derived category of R is the category D(R) with objects equal to the
R-complexes and morphisms X — Y equal to certain equivalence classes of diagrams of

chain maps of the form X — J < Y.

The definition of the equivalence relation used for the morphisms in D(R) is technical
and is not used in the sequel, so we do not describe it here. On the other hand, the next fact

documents some useful properties.

Fact 2.38. There is a natural functor 7: C(R) — D(R) given on objects by the formula
F(X) = X. For achain map o: X — Y, the morphism F(a): X — Y is the equivalence
class of the diagram X = Y < Y. The morphism F () is an isomorphism in D(R) if
and only if «v is a quasiisomorphism.

Each morphism #: X — Y in D(R) induces a well defined R-module homomor-
phism H;(5): H;(X) — H;(8) for each i. In the case that § = F(«a), then we have
H;(F(a)) = Hi(a).

To save space (and following tradition), we write « in place of F(«). When we write

« and there is a danger of confusion, we specify whether we are working in C(R) or D(R).

Remark 2.39. The category D(R) is “triangulated”, which is a technical condition on a
category similar to (but different from) being “abelian”. In short, it means that D(R) comes

equipped with a class of “distinguished triangles” which are diagrams

X—=Y—>7-23YX

17



of morphisms in D(R) subject to certain technical axioms. To save space (and following

tradition) we abbreviate the above distinguished triangle as
X=>Y—=>Z—

since the codomain of the third morphism is always the shift of the domain of the first

morphism.
We give some important properties of the distinguished triangles in D(R) next.

Fact 2.40. We use the notation from Fact 2.38.
Every distinguished triangle X 5y 2% 7 %in D(R) induces a long exact sequence

in homology:

~ Hiyi(0) ) H;(8)

Also, distinguished triangles can be “rotated” in the sense that the following diagrams are

also distinguished triangles in D(R):

solz 2l x By o

Yy 5z %yx 2
Given any short exact sequence of chain maps
05USVSW =0

there is distinguished triangle

USV LW
such that the induced long exact sequences from these two diagrams are the same. For

18



instance, given a chain map a.: X — Y/, the standard mapping cone exact sequence

0—Y < Cone(a) 5 XX — 0

induces a distinguished triangle

Y < Cone(a) & X o

which we can rotate into the form

X 5 Y 5 Cone(a) & .

Fact 2.41. Given a distinguished triangle X — Y — Z — and the associated long exact
sequence in homology, if two of the complexes are homologically degree-wise finite, then

so is the third one.

The derived category is the natural habitat for derived functors, which we describe
next. Note that our definitions are not the most general, but they avoid certain technical

constructions and suffice for our work.

Definition 2.42. Let X be a homologically bounded below R-complex and Y be any R-
complex. Let P = X be a projective resolution. Then the right derived homomorphism

complex and left derived tensor product are defined respectively as

RHomp(X,Y) := Homg(P,Y) X@LFY :=P®rY.

For each 7, we set

Ext’%(X,Y) := H_;(RHomg(X,Y)) Torf(X,Y) := H (X @ Y).
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We next discuss well-definedness and “balance” for derived functors.

Fact 2.43. Let X be a homologically bounded below R-complex with projective resolu-
tions P — X < @ and flat resolution F' = X, and let Y be an R-complex. Then we have
isomorphisms Hompg(P,Y) ~ Homg(Q,Y) and P®r Y ~ F @ Y in D(R). It follows,
in particular, that RHomp(X,Y) and X ®% Y are independent of choice of resolution
(hence, well-defined) as are Ext%,(X,Y) and Tor®(X,Y") for all i.

One can also define Y ®% X with no boundedness condition on Y (still assuming
that X is homologically bounded below) as Y @% X = Y ®p P. This is independent of
P, as in the previous paragraph. Also, if Y is homologically bounded below, then it can be
computed as G @z X ~ G ®p F for any flat resolution G = Y.

Similarly, given a homologically bounded above R-complex Z, one can also define
RHomp(Y, Z) as RHompg(Y, Z) = Homg(Y,.J) for any injective resolution Z — J.
This is independent of J and agrees with the previous definition when Y is homologically

bounded below.
Derived functors are actually functors, as follows.

Fact 2.44. Given a morphism : X — Y in D(R) and an R-complex V/, there are well-
defined induced morphisms in D(R).

RHompg(V, @): RHomg(V, X) — RHomg(V,Y)
RHompg(a, V): RHompg(Y,V) — RHompg(X, V)
Veka: VR X - VeRY

a@bV: X kv v ehkv

These are essentially induced from Definition 2.18 and are appropriately functorial.! They

! According to our definitions, one needs to make reasonable boundedness assumptions to ensure that the
domain and codomain of a given morphism are defined. To avoid dealing with a large number of cases, we
leave the analysis of these assumptions to the interested reader.
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also respect distinguished triangles, as follows. Given a distinguished triangle

xsy 2z

in D(R), the induced diagrams

RHompg(V, X) Rffom(V:a), RHompg(V)Y) RHom(V:5), RHomz(V, Z) RHom(Vy),
R&WMZWE&EZHHMMWV>MWQVRﬂmﬂxvﬁﬂﬁﬁﬁ
V®I§XV veky Y,y gl g Yo,

X @V —" Y®RV%>Z®RV7®RV

are also distinguished triangles in D(R).

Definition 2.45. Let P — X be a projective resolution and Y = J be an injective
resolution. The left-derived local homology and right-derived local cohomology complexes

with respect to a are defined respectively as follows:

~

LA%(X) := A%(P) =P  RIL(Y)=T,(J).

Fact 2.46. The operations RI';(—) and LA%(—) are functorial (covariant) and respect
distinguished triangles, as in Fact 2.44; see, e.g., Fact 2.29. Also, by [1, Section 1],
we know that LA%(X) can be computed as A*(F) for any flat resolution F = X. If
X is homologically both degree-wise finite and bounded below, then there is a natural
isomorphism LA (X) ~ R® ®% X by [21, Proposition 2.7].

Let Y = J be an injective resolution, and let P — X be a projective resolution.
The natural chain maps I',(J) — J and P — P* induce morphisms RIL(Y) — Y and
X — LA%(X), which are natural in Y and X; see [1, Theorem (0.3)*].

Let x be a generating sequence for a. Then one has RI',(R) ~ C(x). Moreover, if
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X is homologically bounded, then there are natural isomorphisms

RI,(X) ~ RT4(R) ®p X ~ C(x) ®F X
LA%(X) ~ RHomg(RI4(R), X) ~ RHompg(C(x), X).
See [1, Theorem (0.3)*] and [29, Proposition 3.1.2].

2.4. Support And Co-Support
Since Definition 1.3 uses the notion of the “small support” we record some definitions

and facts here for the sequel.
Definition 2.47. Let M be an R-module.

1. The “small,” or “homological,” support of M is

suppp(M) = {p € Spec(R) : Tor]*(R/p, M), # 0 for some i}.

2. The “large” support of M is Suppy(M) = {p € Spec(R) : M, # 0}.

There is always a containment of the small support in the large support. When M is

a finitely generated R-module they are equal.
Definition 2.48. Let X be an R-complex.

(a) The “small,” or “homological,” support of X is

suppr(X) = {p € Spec(R) : k(p) @} X # 0}.

(b) The “large” support of X is Suppy(X) = {p € Spec(R) : X, % 0}.

Fact 2.49. Let X be an R-complex. Then Suppy (L (X)) C V(a).
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Fact 2.50. [16, Proposition 14.11] If X is a bounded below R-complex, then X ~ 0 if and

only if suppg(X) = 0.

Fact 2.51. [20, Theorem 7.1(c)] Let X and Y be R-complexes. If X and Y are homologi-

cally bounded below, then supp (X ®% V) = supp,(X) N suppx(Y).

Corollary 2.52. Let X and Y be homologically bounded below R-complexes. Then we

have suppz(X ®%Y) C suppp(X).

Definition 2.53. Let X be an R-complex. The co-support of X is defined as
co-suppg(X) = {p € Spec(R) : k(p) ®%p RHompg(Ry, X) # 0}.

Proposition 2.54. If X, Y are R-complexes where X is homologically bounded below or

Y is homologically bounded above, then co-suppp(RHompg(X,Y")) C Suppg(X).

Proof. If p & Suppp(X), then one has

k(p) @5, RHomp(R,, RHomg(X,Y)) ~k(p) @5 RHomp(R, @} X,Y)
~k(p) @, RHomp(X,,Y)
~k(p) ®I§p RHompg(0,Y)

~().

Thus, p & co-suppz(RHompg(M,Y)), so co-suppr(RHomg(M,Y)) C Suppr(M). O

2.5. Minimal Resolutions
In this section, we discuss two types of minimal resolutions: minimal injective res-
olutions of homologically bounded above R-complexes and minimal flat resolutions of

R-modules. We begin with two bookkeeping tools.

Definition 2.55. Let (R, m, k) be a local ring. Let X be an R-complex.
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(a) The i'" Bass number of X with respect to p is y1;, = rankﬁ(p)(Ext%p (k(p), X;). When

the 4}, are finite, the Bass series of X is the formal series Iy (t) = ., pi (X)t".

(b) The i** Betti number of X is B = rank,(Tor’(X, k)). When the 37 are finite, the

Poincaré series of X is the formal series PF(t) = ., B(X)t".

Definition 2.56. Let N C M be R-modules. Then N is an essential submodule of M if
for each submodule L of M, the condition N N L = 0 implies N = 0.

Definition 2.57. [9] Let X be an R-complex. An injective resolution J of X is minimal if

for all ¢ the kernel of the differential 8;7 . J; — Ji11 1s an essential submodule of J;.

Fact 2.58. Every homologically bounded above R-complex M has a minimal injective
resolution M = J such that J; = 0 for all i > sup(M). Furthermore, if M = I is
another injective resolution, then there is an exact bounded above complex I’ of injective
R-modules and an isomorphism [ =2 J @ [I’; if [ is minimal, then I’ = 0. See [4, 2.11.3.5

Theorem and 2.12.2.1 Theorem].

Lemma 2.59. Let M be a homologically bounded above R-complex, and let S be a mul-
tiplicatively closed subset of R. Given a (minimal) injective resolution M = J, the

localization S~ M = S~'.J is a (minimal) injective resolution over S™'R.

Proof. Localization is exact, so it respects quasiisomorphisms, and we have a quasiiso-
morphism S~'M = S—1.J over S~'R. Since R is noetherian, we know that each S~'.J; is
injective over S~!R, so the quasiisomorphism S~'M = S~'J is an injective resolution.
Furthermore, it is well-known that the “essential” property for submodules localizes (see,
e.g., the proof of [7, Lemma 3.2.5]). Since localization is exact, if the original resolution is

minimal over R, then the localized resolution is minimal over S~'R. OJ

Lemma 2.60. Assume that (R, m, k) is local, and let J be a minimal bounded above
complex of injective R-modules, i.e., a minimal injective resolution of itself. Then the

complex Ty, (J) is also a minimal bounded above complex of injective R-modules.
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Proof. T'y,(J) is a bounded above complex of injective R-modules by Fact 2.32(b). Thus,

it remains to show that I'y,(.J) is minimal. Since Iy, is left-exact, for each i we have
Ker(9] ™) = Ker(n(8/)) = Tw(Ker(9/)) € Tu(Jis1).

Since the inclusion Ker(@ij ) € J;— is essential, it is straightforward to show that the

inclusion 'y, (Ker(9/)) C I'n(J;_1) is also essential, so ', (J) is minimal. O

Fact 2.61. Let M be a homologically bounded R-complex. By [16, (14.20)], we have

suppp(M) = |_J{p € Spec(R) | ui(M) # 0}

1€EL

= {p € Spec(R) | RHompg(R/p, M), # 0}.

Remark 2.62. Lemma 2.64 is used frequently in our proofs. Before we state and prove it,
we give some background information about it.

In [5, Remark 9.2], the authors claim that Lemma 2.64 is proved in [19], but do not
cite a specific result from [19]. As best we can ascertain, they are extrapolating from [19,
2.9 Remark], which only specifically deals with the case where R is a module. However,
the proof given in [19, 2.9 Remark] is somewhat unconvincing, and we do not see how the
claim of [5, Remark 9.2] follows. Furthermore, from [9, Remark 2.3], we learn that there is
some confusion as to what is actually true in [5, Remark 9.2]. Thus, given the importance
of this result for our work, we include a proof here, which may be along the lines of the

intentions of [19, 2.9 Remark] and [5, Remark 9.2].

Lemma 2.63. Assume that (R, m, k) is local, and let M be a homologically bounded R-
complex with minimal injective resolution M = J. Then m € supp r(M) if and only if

Er(R/m) is a summand of J; for some i.
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Proof. Assume first that m € supp,(M ). Fact 2.61 implies that
0 2 RHomg(R/m, M), ~ RHompg(R/m, M) ~ Hompg(R/m, J).
In particular, we have 0 # Hompg(R/m, J), so for some i we have
0 # Homp(R/m, J); = (0:, m) C I'n(J;).
Write J; = @yespec(r) Er(R/ p)(“?ﬂ) for some sets ,u;. It follows from Fact 2.32(b) that
0 # (i) 2 Bpespectn T (Br(/9)) ") = Ep(R/m)0%).

We conclude that z, # 0, so Er(R/m) is a summand of J;, as desired.

For the converse, assume that Fr(R/m) is a summand of J; for some i € Z. It
follows that I'y, (/) # 0. Lemma 2.60 implies that I',(.J) is a minimal injective resolution
of itself, so it follows that I'y,(J) % 0. Since I'y,(J), = 0 for all p € Spec(R) ~\ {m}, we
have () # suppg(Tw(J)) C Suppg(Tn(J)) C {m}. We conclude that m € supp (T (J)).

Consider the exact sequence
0= Tu(J) = J = J/Tu(J) = 0.

Since J/I'y,(J) is a bounded above complex of injective R-modules, it is a direct summand
of a minimal injective resolution J' ~ J/I",(J). Fact 2.32(b) implies that for all i the
module Er(R/m) is not a summand of J;/T"y(J;) = (J/T'w(J));, so it is not a summand
of J'. Thus, the first paragraph of this proof implies that m ¢ suppp(J/I'n(J)). We need
to show that J/T',(J) is homologically bounded. For this, it suffices to show that I';,(.J)
is homologically bounded. This follows from the isomorphisms I'y,(.JJ) ~ C(m) @% J ~

C(m) ®% J’, where .J' is a truncation of .J that is bounded and such that .J’ ~ .J. Since
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C(m) and J" are bounded, we have C(m) ®% .J' (homologically) bounded. Applying the
functor RHompg(R/m, —) ~ RHompg(R/m, —), to the above exact sequence, we obtain

the distinguished triangle
RHompg(R/m,T'(J)) = RHomg(R/m, J) - RHomg(R/m, J/T'w(J)) — .

The condition m ¢ suppg(J/I'w(J)) implies that RHompg(R/m, J/T'y(J)) ~ 0, so the

distinguished triangle implies that we have
RHomg(R/m, J) ~ RHomg(R/m,T'y(J)) £ 0

as m € suppg(F'w(J)). It follows that m € suppg(J) = suppy(M), as desired. O

Lemma 2.64. Let M be a homologically bounded R-complex with minimal injective reso-

lution M = J. Then suppp(M) = Uicz{p € Spec(R) | Er(R/p) is a summand of J;}.

Proof. Let p € Spec(R), and note that Lemma 2.59 implies that M, = J, is a minimal
injective resolution.

To prove the containment
suppr(M) 2 Usez{p € Spec(R) | Er(R/p) is a summand of .J; }

assume that Er(R/p) is a summand of J; for some 7. Then the module Er(R/p), =
Er,(Ry/pR,) is a summand of (.J;), for some 7. From Lemma 2.63, we conclude that

pR, € suppg, (M,). It follows that
0 # ﬂ;Rp(MP) = H;(M)

So p € suppp(M) by Fact 2.61.
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For the reverse containment, run the previous argument in reverse, using the fact that

(Ji)p is a summand of J;. O

Proposition 2.65. Let M be a homologically bounded R-complex. Then Suppg(M) C
V(a) if and only if suppr (M) C V(a).

Proof. (=-): This containment is always true since suppy(M) C Suppy(M).
(«<): Assume suppz(M) C V(a). Suppose p ¢ V(a). Then p & suppp(M). It follows
from Lemma 2.64 that EFr(R/p) does not occur as a summand in a minimal injective
resolution J of M.

Now, for all ¢ C p, the ideal ¢ ¢ V(a). So Egr(R/q) does not occur in minimal

injective resolution J. So in each degree of J we have
Ji = @azp Er(R/q) ).

If ¢  p, then there exists z € q \ p. So x is a unit in R, and Er(R/q) is z-torsion.

Then Er(R/q), = 0. Therefore, (J;), = 0. It follows that M, ~ J, = 0. That is,

p & Suppr(M). u

Corollary 2.66. If X is a homologically bounded R-complex, then Supp i (X) is contained

in the Zariski closure of suppr(X) in Spec(R).

We use of the notion of minimal flat resolutions in the sequel. The following provides

the relevant background on the construction.

Definition 2.67. An R-module M is said to be cotorsion if for all flat modules F' we have

Exty(F, M) = 0.

Remark 2.68. An R-module is M cotorsion if and only if Ext%(F, M) = 0 for all flat
modules /" and ¢ > 1. This can be shown via a dimension-shifting argument in a projective

resolution of F'.
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Definition 2.69. A submodule L of an R-module N is said to be a pure submodule if
0 > A®r L — A®g N is exact for all modules A. An R-module M is said to be pure
injective 1f for every pure submodule L C N of R-modules, the following sequence is

exact.

Hompg(N, M) — Hompg(L, M) — 0

Definition 2.70. Let M be an R-module. A homomorphsm ¢ : ' — M where F'is a flat

R-module is said to be a flat cover of M if

1. any diagram with F” a flat R-module

can be completed to a commutative diagram, and

2. any diagram

F

N

\
F—2o M

can only be completed to a commutative diagram using an automorphism of F'.

Definition 2.71. A minimal flat resolution of an R-module M is an exact sequence

= F - F Fy M 0

such that each F; is a flat cover of Im(9;).

Fact 2.72. [6, Theorem 3] Every R-module has a flat cover. Therefore, every R-module

has a minimal flat resolution.
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2.6. Differential Graded Algebras
To prove our version of Melkersson’s result, we need to work in the following more

general setting. A useful reference for this subject is [4].

Definition 2.73. A commutative differential graded R-algebra A (“DG R-algebra” for
short) is an R-complex A with a multiplication A x A — A written (a,b) — ab that

satisfies the following conditions:
1. associative: for a, b, c € R, one has (ab)c = a(bc);

2. distributive: for a, b, c € R such that |a| = [b

,one has (a + b) = ac + bc;
3. unital: there is an element 14 € Ag such that for all « € A, we have 1 a = a;
4. graded: forall a,b € A, one has ab € Ajq4p;

5. graded commutative: for all a,b € A, one has ba = (—1)%lab, and a®> = 0

whenever |a| is odd;
6. positively graded: A; = 0 for all ; < 0; and

7. Leibniz rule: for a,b € A, one has 9, (ab) = 0y,

lal

(a)b+ (—1)‘“'@5’@(6).

Given a DG R-algebra A, the underlying algebra is the graded commutative R-algebra
AF = @zo Ai.

Example 2.74. 1. The ring R/a considered as an R-complex concentrated in degree 0

is a DG R-algebra.

2. The Koszul complex K on a given a sequence of elements x4, ...,x, € R with the

wedge product is a DG R-algebra. See Construction 2.22

Definition 2.75. A morphism A — B of DG R-algebras is a chain map f : A — B such
that f(aa’) = f(a)f(a) forall a,a’ € Aand f(14) = 1p.
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Definition 2.76. Let A be a DG R-algebra. A DG A-module is an R-complex M with an
operation called scalar multiplication A x M — M written as (a, m) — am that satisfies

the following conditions:

1. distributive: for all a,b € A and m,n € M, we have (a + b)m = am + bm and

a(m +n) = am + an;
2. graded: for all € A and m € M, we have am € Ma1im)s

3. Leibniz rule: for all « € A and for all m € M, we have 0¥ (am) = 8(2‘ (a)m +

|a[+|m]|
(=D)"adyy, (m):
4. unital: we have 1 ,m = m for all m € M; and
5. associative: for all a,b € A and m € M, we have a(bm) = (ab)m.

The underlying A-module associated to M is the A*-module M* = @52 ___ M.

j=—o00

Definition 2.77. Let A be a DG R-algebra. A morphism of DG A-modules is a chain
map f: M — N between DG A-modules that respects scalar multiplication: f(am) =
af(m). Isomorphisms in the category of DG A-modules are identified by the symbol 2.
A quasiisomorphism of DG A-modules is a morphism M — N such that each induced
map H;(M) — H;(N) is an isomorphism, i.e., a morphism of DG A-modules that is a

quasiisomorphism of R-complexes; these are identified by the symbol ~~.

Definition 2.78. Let A be a DG R-algebra, and let M and N be DG A-modules. Given an
integer n, a DG A-module homomorphism of degree n is an element f € Hompg(M, N),
such that f;,;(am) = (—1)"af;(m) for all a € A; and m € M;. The graded submodule
of Hompg(M, N) consisting of all DG A-module homomorphisms M — N is denoted
Hom4 (M, N).
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Definition 2.79. Let A be a DG R-algebra, and let M be a DG A-module. A subset F of
M is called a semibasis if it is a basis of the underlying A%-module M. If M is bounded
below and it has a semibasis, then M is called semi-free. A degree-wise finite semi-free
resolution of a DG A-module M is a quasiisomorphism F' = M of DG A-modules such

that ' is semi-free with semibasis £ such that the set £ N F; is finite for all z.

Fact 2.80. [4, Theorem 2.11.3.3] Let A be a DG R-algebra such that A; is finitely generated
over R for all i. Let M be a DG A-module with inf(M) > —oo such that H; (M) is finitely
generated over R for all i. Then M has a degree-wise finite semi-free resolution ' — M

such that F; = 0 for all ¢ < inf(M).

Definition 2.81. Let A be a DG R-algebra, and let M, N be DG A-modules. The tensor
product M @ 4 N is the quotient (M ® g N) /U where U is generated over R by the elements
of the form (am) ® n — (—1)19™m ® (an). Given an element m @ n € M @ N, we

denote the image in M ®4 N as m & n.

Keller [25] has shown that the category of DG modules over a DG R-algebra is rich
enough to afford a derived category D(A). We shall not need the full strength of this
construction, but we do use the following constructions which are independent of choice of

resolution of M and respect isomorphisms N ~ N’ in D(A).

Definition 2.82. Let A be a DG R-algebra such that A; is finitely generated over R for all i.
Let M and N be DG A-modules with inf()/) > —oo such that H; (M) is finitely generated
over R for all i. Let F — M be a degree-wise finite semi-free resolution. Then the right

derived homomorphism module and left derived tensor product are defined respectively as

RHom (M, N) := Homp(F, N) M@LY N:=F®iN.
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3. CODUALIZING MODULES AND COMPLEXES

3.1. Codualizing Modules
As stated in the introduction, we seek to unify the notions of semidualizing and
quasidualizing modules under one “umbrella” notion. We begin with a notion of “cofinite-

ness” that is due in spirit to Hartshorne.

Definition 3.1. An R-module M is a-cofinite if suppz(M) C V(a) and the module

Ext’(R/a, M) is finitely generated for all 4.

Proposition 3.2. Let M be an R-module.

(a) If a =0, then M is O-cofinite if and only if M is finitely generated.

(b) Let (R,m, k) be local. If a = m, then M is m-cofinite if and only if it is artinian.

Proof. (a) (<): Assume M is a finitely generated R-module. Note that Ext’,(R/0, M) =2
Ext% (R, M). Also, we have Ext’ (R, M) = 0 for all i > 1 and Ext%(R, M) = M. Since
M is finitely generated, it follows that Ext’,(R/0, M) is finitely generated for all 3. To see

that M satisfies the support condition, consider the following

suppr(M) C Spec(R) = V(0)

which hold by definition.

(=): Assume that M is O-cofinite. As noted above we have Ext%(R/0, M) =
Ext% (R, M) = M. By assumption, Ext%(R, M) is finitely generated. Therefore, M is
finitely generated.

(b) («=) Assume M is artinian. Since M is artinian over a local ring, a minimal

injective resolution of M is of the form

tJ=0—- M — E" — EM — ...
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where F is the injective hull of the residue field and p; < oo for all . This follows from
Fact 2.36 and the fact that artinian modules satsify the 2-of-3 condition. It follows that
Ext’%(R/m, M) is a finite dimensional k-vector space for each i because the complex used
compute Ext’(R/m, M) in each degree is Hompg(k, J); = k(). Then Ext’(R/m, M) is
finitely generated over R for all 7. To see that M satisfies the support condition, consider
the following

supp(M) € Suppp(M) C {m} = V(m).

The first containment is true for all modules, and the second follows from the fact that
artinian modules are m-torsion [27, Fact 1.2(a)].

(=) Assume that M is m-cofinite. So we have suppy (M) C {m}. By Lemma 2.64,
a minimal injective resolution J of M satisfies the condition J; = E®i) for all i where Wi =
dimy, Ext%,(R/m, M). Since M is m-cofinite, we have, piy < co. So, M is a submodule of

the artinian module E#°. Thus, M is artinian. O]

Remark 3.3. Assume that )M is a-cofinite. Then the map ij : R* - Hom r(M, M) given
by Xﬁa(r)(m) = rm is well-defined. Indeed, the fact that M satisfies the small support
condition implies that M is a-torsion (this uses Fact 2.33 and Lemma 2.64). This endows
M with an R°-module structure that is compatible with the R-module structure on M by

Fact 2.35. Hence, Xﬂéj is well-defined.

We are now in a position to define the notion that recovers semidualizing and quasid-

ualizing modules as examples.

Definition 3.4. An R-module M is a-codualizing if it is a-cofinite, the natural homothety

map ij R — Homp(M, M) is an isomorphism and Ext, (M, M) = 0 for all i > 1.

The following propositions show that the notion of an a-codualizing module is indeed
the “umbrella” notion we set out to find because semidualizing modules and quasidualizing

modules are recovered when a = 0 and a = m respectively.
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Proposition 3.5. An R-module C'is semidualizing if and only if C' is 0-codualizing.

Proof. The Ext-vanishing and isomorphism conditions in Definitions 1.1 and 3.1 are equiv-

alent since R° 2 R. The rest of the proof follows from Proposition 3.2(a). [

Proposition 3.6. When (R, m) is local, an R-module T is quasidualizing if and only if T

is m-codualizing.

Proof. The Ext-vanishing and isomorphism conditions in Definitions 1.2 and 3.1 are equiv-

alent. The remainder of the proof follows from Proposition 3.2(b). [

Since there is existing research on the behavior of semidualizing and quasidualiz-
ing modules, we can look at how the preexisting research transfers to the setting of a-

codualizing modules. We will begin with so-called Auslander and Bass classes.
Definition 3.7. Let M, A and B be R-modules.

1. Then A is in the Auslander class A3, (R) if for all i > 1 we have Tor (M, A) = 0 =
Ext’ (M, M ®@p A) and the natural map 74’ : A — Homp(M, M ®p A) defined by

vM(a)(m) = m ® a is an isomorphism.

2. The module B is in the Bass class B (R) if for all i > 1 we have Ext’y (M, B) =
0 = Torf(M,Hompz(M, B)) and the natural map £ : M ®z Homg(M, B) — B

defined by £ (m ®g 1) = ¢(m) is an isomorphism.

Remark 3.8. Our notation here deviates from the existing literature. We use A%, (R) and

BY,(R) to distinguish them from A,,(R) and B,,(R), which we discuss below.

The following examples are well-known when R is noetherian, although, they are

true in a more general setting, cf. [23].
Example 3.9. Let C be a semidualizing module (that is, 0-codualizing).

1. The free module R is in the Auslander class Aq(R).

35



2. If M has finite flat dimension, then M is in Ac(R).
3. The module C is in the Bass class B¢ (R).
4. If M has finite injective dimension, then M is in B¢ (R).

These examples raise natural questions about the behavior of the Foxby classes when
the semidualizing module C' is replaced with an arbitrary a-codualizing module. For
example, one proves items 2 and 4 in the example by first showing the Auslander class
contains all flat modules and the Bass class contains all injective module. Then one shows

the Auslander and Bass classes satisfy the 2-of-3 condition, that is, given an exact sequence

0— M, — My — M;—0

if two of the modules are in the Auslander or Bass class, then the third is in the Auslander
or Bass class, as well.
The next proposition shows that one cannot expect R € A%,(R) when M is an

arbitrary a-codualizing module.

Proposition 3.10. Let M be an a-codualizing module. Then R is in A, (R) if and only if

R is a-adically complete.

Proof. (=): Assume that R is in A3, (R). Then we have isomorphisms

R = Homg(M, M ®r R) = Homg(M, M) = R
Therefore, R is a-adically complete.
(«<): Assume that R is a-adically complete. Since R? is free over itself, we have
Torf (M, R) = 0 for all i > 1. Also, Exth(M, M ®r R) = Ext(M, M) = 0 for all

1 > 1 because M is a-codualizing, where the isomorphism is tensor cancellation. Since
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R is a-adically complete, we have R = R® and X]}Ff =M. Let F: M ®r R — M be
the tensor cancelation map. To show R € A,/(R) it suffices to show that the following

diagram commutes:

M

R Homp(M, M @ R)
N ~ ’ilHomR(M,F)
Hompg(M, M)

This is done in the next computation:

(Homp(M, F) o yg (r))(m) = F(yg (r)(m)) = F(m @) = rm = xy; (r)(m).

It follows that R is in A%, (R). O

The behavior of the Auslander and Bass classes for codualizing modules further
deviates from the behavior in the semidualizing case by the next example. In this example,
we see that modules of finite projective and flat dimension are not necessarily in the

Auslander class and the Auslander class need not satisfy the 2-of-3 condition.

Example 3.11. Let £ be a field, and let R = k[[X]] be a power series ring in one variable.
Note that this is a complete, local ring. Let E be the injective hull of the residue field.
By the previous proposition, R is in Ag(R). Now consider M/ = R/(X)R. Since X is
a regular element of R (that is a non-zero divisor), a free resolution of M is given by the
Koszul complex on X.

Based on work in the semidualizing case, one may expect M to be in Ag(R), as it is
a module with finite flat dimension. However, this module fails the to meet the definition
of A%(R) in two ways.

First, in the abstract, Hompg(E, F ®r M) = Hompg(FE,0) = 0. So it is not possible
for v¥,: M — Hompg(E, E @ M) to be an isomorphism.

Second, Tor(E, M) = k and Tor*(E, M) = 0 for all i # 1. To see this, observe
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that a free resolution of M is given by the Koszul complex on X, that is, the following
R-complex

K(X) = 0 R—X-R 0.

Then to compute Tor*(E, M) we look at the induced complex

E®r K(X) = 0 E-—X~E 0.

From here one can compute Tor’(E, M) = k and Tor(E, M) = 0 for all i # 1. Asin
the semidualizing case, there is Tor-vanishing in every degree except for one, but it is in the
wrong degree: to be in A% (R), we need Tor/*(E, M) = 0 for all i # 0.

This example is even more troubling because this shows that the Auslander class does

not satisfy the 2-of-3 condition. The following is an exact sequence

0 R->X-R M 0

and the first two modules are in the Auslander class of £, but the third is not.

3.2. Changing Contexts

The deficiencies in Example 3.11 inspire a change of context. Although, as stated
in the introduction, this change of contexts is natural and not solely due to the previous
example. We change our focus from modules to complexes. We begin with a reformulation
of the a-cofinite condition.

The main result of this section is Theorem 3.15 which is an analogue of Fact 1.4
for this context. DG algebra methods will play a prominent role; consult Section 2.6 for

relevant background information.

Proposition 3.12. Let M be a homologically bounded R-complex and a an ideal of R.

Then the following conditions are equivalent.
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(i) The R-complex R/a &% M is homologically degree-wise finite.
(ii) The R-complex R/b ®% M is homologically degree-wise finite for all ideals b D a.

(iii) The R-complex N @% M is homologically degree-wise finite for all finitely generated
R-modules N such that Suppg(N) C V(a).

(iv) The R-complex X ®@% M is homologically degree-wise finite for all homologically

finite R-complexes X such that Supp,(X) C V(a).

(v) The R-complex K (x) @% M is homologically finite for some (equivalently, for every)

generating sequence x of a.

Proof. (i) = (ii) : One has the following commutative diagram

R——=R/a

N

R/b.

By assumption, the complex R/a ®@% M is homologically degree-wise finite and bounded
below over R, hence over R/a. From Fact 2.80, there exists a degree-wise finite free
resolution ' of R/a ®% M over R/a. It follows from the associativity of tensor product
that R/b ®% M ~ R/b ®}, (R/a ®f M) ~ R/b ®gje F. This is degree-wise finite
over R/b, hence over R. Therefore, we have that the complex /b ®% M is homologically
degree-wise finite over R.

(1) = (uii) : Assume that N is finitely generated such that Suppz(/N) € V(a). Then
there exists a prime filtration 0 = Ny C N; C --- C N; = N such that N;/N;_; = R/p;
and p; € Supp N. We proceed by induction on ¢.

Base case: Assume ¢ = 1. Then N = N;/N, = R/p, where a C p. Then
by assumption R/p ®% M is homologically degree-wise finite. Therefore, N @% M is

homologically degree-wise finite.
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Assume that N ®% M is homologically degree-wise finite for all finitely generated R-
modules N with Suppz(/N) C V(a) and having a prime filtration of length t < m. Let N
have a prime filtration 0 = Ny C N; C --- C N,,, = N. Consider the short exact sequence
0 — Nyn1 — N — N/N,,_; — 0. Applying — ®% M, we obtain the distinguished
triangle N,, ; ®% M — N @% M — N/N,, 1 ®% M — . By the induction hypothesis,
N,,—1 ®% M is homologically degree-wise finite. By the base case, N/N,, 1 ®F M is
homologically degree-wise finite. Therefore, N ®% M is homologically degree-wise finite
by Fact 2.41.

(13i) = (iv) : Assume that X is homologically finite such that Supp,(X) C V(a).
Then we have Suppy(H;(X)) € V(a). By assumption H;(X) ®% M is homologically
degree-wise finite for all .. We proceed by induction on amp(.X).

Base case: amp(X) = 0. Then X has one non-zero homology module. Therefore,
we have X ~ Y/ H,(X). So X ®% M is homologically degree-wise finite by the previous
paragraph.

Assume that the result holds for all homologically finite complexes X’ such that
amp(X') < amp(X) and Supp,(X’) € V(a). Let s = sup(X). Take a soft truncation of

X at s, that is, set

X'=0-X/Im0) - X1 ==X, -0 ~X.

The short exact sequence

0 — ¥° Hy(X) X—=X"—0

gives rise to the following distinguished triangles. Then H;(X") = H;(X) forall i < s
and H;(X"”) = 0 otherwise. Then the induction hypothesis applies to X" and the base case

applies for 3° Hy(X). So, Fact 2.41 yields the desired result for X.
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(1v) = (v) : (v) is the special case X = K () of (iv).
(v) = (i) : Set K = K(z) and consider the following commutative diagram of DG

R-algebra homomorphisms

R— K(z)

N

R/a.
Since K ®% M is homologically finite over R, it has a degree-wise finite semi-free resolu-

tion X = K ®@% M over K by Fact 2.80. It follows that the next complex is homologically

degree-wise finite over R/a.
Rla®x X = Rjla@k (K@% M) ~ R/a®ys M

Therefore, R/a ®@% M is homologically degree-wise finite over R as well. [

Lemma 3.13. Let A be a DG R-algebra such that each A; is finitely generated over R.
Let B and N be DG A-modules that are homologically degree-wise finite over R such
that B is homologically bounded below and N is homologically bounded above. Then

RHomy (B, N) is homologically degree-wise finite and bounded above.

Proof. Let F = B be a degree-wise finite semi-free resolution over A such that F; = 0
for all ¢ < n = inf(B); see Fact 2.80. We proceed by cases.

Case 1: N is homologically bounded. In this case, let G = N be a degree-wise finite
semi-free resolution over A. In particular, each G; is finitely generated over R. Since N is

homologically bounded above, say with s = sup(/N) < oo, the truncation
/ a\ 9C o7,
N = 0-G;/Im(07) = Gs_1 — -~

is a DG A-module that is isomorphic to N in D(A) by [4, 2.11.4.1]. Furthermore, each

module N is finitely generated over R and N = 0 for |i| > 0. The isomorphism N ~ N’
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in D(a) provides the isomorphisms
RHom (B, N) ~ Homu(F, N) ~ Hom4(F, N').

So it suffices to show that Hom 4 (F, N”) is homologically degree-wise finite. By definition,
this is a sub-complex of Hompg(F, N') which is degree-wise finitely generated since N’ is
bounded and all the F; and N are finitely generated over R. It follows that each module
Hom, (F, N'),, is finitely generated over R, hence so is each homology module, as desired.

Case 2: the general case. Let ¢+ € Z be given, and consider the truncation
1 87]LV+'L+2 87]LV+'L+1 N
N'= ... ——= Npiip1 — Ker(0,,,;) — 0.

The natural morphism a: N” — N induces isomorphisms H;(v): H;(N") = H;(N) for
all j > n + 4, and we have H;(N”) = 0 for all j < n + 4. In particular, the DG A-module
N is homologically finite, so Case 1 implies that H;(RHom (B, N")) is finitely gener-
ated. Thus, it suffices to show that we have H;(RHom4 (B, N”)) = H;(RHomy (B, N)).

Consider the natural distinguished triangle
N'"% N — N" — (1)

where N = Coker(a).

Claim: H;(RHomy (B, N")) = 0 for all j > i. Since we have H;(«): H;(N") =
H,;(N) forall j > n+idand H,4;_1(N") = 0, it follows from the long exact sequence in
homology associated to the triangle (1) that H;(N"") = 0 for all j > n + 4. In other words,

we have sup(N"") < n + i, and it follows that the truncation

" N///

oN .
1 n N n+i—1 " n+i—2
N"= 0= N\ /Im(0,;) —— N"pig —— -
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is isomorphic to N in D(A). Since F,,, = 0 for all m < n, we conclude that

0 = Homp(F, N""); D Homu(F, N"");

for all j > ¢. This implies that Hom4(#, N"”); = 0, and so 0 = H;(Hom4(F, N"")) =
H;(RHomy (B, N")) for all j > i, as claimed.

Now consider the distinguished triangle

RHomy (B,a)
_—

RHomy (B, N") RHomy (B, N) — RHomy (B, N") —

induced from (1). Because of the claim, part of the long exact sequence in homology

associated to this triangle has the following form

0 — H;(Hom(F, N")) — H;(Hom(F, N)) — 0.

We conclude that H;(RHom4 (B, N”)) = H;(RHomy4 (B, N)), as desired. O

Proposition 3.14. Let M be a homologically bounded R-complex and a an ideal of R.

Then the following conditions are equivalent.
(i) The R-complex RHompg(R/a, M) is homologically degree-wise finite.
(ii) The complex RHompg(R/b, M) is homologically degree-wise finite for all b D a.

(iii) The R-complex RHompg(N, M) is homologically degree-wise finite for all finitely
generated R-modules N such that Suppg(N) C V(a).

(iv) The R-complex RHompg (X, M) is homologically degree-wise finite for all homolog-

ically finite R-complexes X such that Suppg(X) C V(a).

(v) The R-complex K (x) @% M is homologically finite for some (equivalently, for every)

generating sequence x of a.

43



Proof. (i) = (i) : One has the following commutative diagram

R——=R/a

N

R/b.

By assumption, RHomg(R/a, M) is homologically degree-wise finite over R, hence over

R/a. By adjointness, we have
RHompg(R/b, M) ~ RHompg/(R/b, RHomg(R/a, M)).

We apply Lemma 3.13 with A = R/a,B = R/b, and N = RHomg(R/a, M). We
conclude that RHompq(R/b, RHomp(R/a, M)) is homologically degree-wise finite.

(1) = (uii) : Assume that N is finitely generated such that Supp(/N) € V(a). Then
there exists a prime filtration 0 = Ny € N; C --- C N; = N such that N;/N;_; = R/p;
and p; € Supp N. We proceed by induction on ¢.

Base case: Assume ¢ = 1. Then N = N;/Ny = R/p, where a C p. Then by
assumption RHompg(R/p, M) is homologically degree-wise finite. Thus, RHompz(N, M)
is homologically degree-wise finite.

Assume that RHompg(N, M) is homologically degree-wise finite for all finitely gen-
erated R-modules N with Supp(N) C V(a) and having a prime filtration of length ¢ < m.
Let N have a prime filtration 0 = Ny C N; C --- C N,, = N. Consider the short exact
sequence 0 — N,,_; - N — N/N,,_; — 0. Applying RHompg(—, M), we obtain the

distinguished triangle
RHomg(N/N,,—1, M) — RHomg(N, M) — RHomg(N,,_1, M) — .

By the induction hypothesis, RHomg(N,,_1, M) is homologically degree-wise finite. By
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the base case, RHomg(N/N,,_1, M) is homologically degree-wise finite. Therefore, we
have that RHomg (N, M) is homologically degree-wise finite by Fact 2.41.

(i7) = (iv) : Assume that X is homologically finite such that Supp,(X) C V(a).
Then we have Supp,(H;(X)) € V(a). So by assumption RHompg(H;(X), M) is homo-
logically degree-wise finite for all i. We proceed by induction on amp(X).

Base case: amp(X) = 0. Then X has one non-zero homology module. Thus,
we have X ~ ¥ H;(X). So RHompg (X, M) is homologically degree-wise finite by the
previous paragraph.

Assume that the result holds for all homologically finite complexes X’ such that
amp(X') < amp(X) and Suppz(X’) € V(a). Let s = sup(X). Take a soft truncation of

X at s, that is, set

X'=0-X,/Im0) =X, 1 ==X, -0 ~X.

The short exact sequence

0——= S H,(X) X X 0

gives rise to the following distinguished triangles.

¥ H,(X) X X"

RHompg (X", M) — RHompg(X, M) — RHompz(X* Hy(X), M) —

Then H;(X"”) = H;(X) for all i < s and H;(X"”) = 0 otherwise. Then the induction
hypothesis applies to X” and the base case applies for X* Hy(X). So, Fact 2.41 yields the
desired result for X.

(1v) = (v) : (v) is the special case X = K (x) of (iv).
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(v) = (i) : Set K = K (z) and consider the following commutative diagram of DG

R-algebra homomorphisms

Assume K ®@% M is homologically finite. The shift isomorphism K ~ Homg(K, R)
implies that K ®% M is shift isomorphic over R to RHompg(K, M). By adjointenss,
we have RHompg(R/a, M) ~ RHomg(R/a, RHompg(K, M)). We apply Lemma 3.13
with A = K. B = R/a, and N = RHompg(K, M). Therefore, RHompg(R/a, M) is

homologically degree-wise finite over K. [
The following result is Theorem 1.6 from the introduction.

Theorem 3.15. Let M be a homologically bounded R-complex. Then the following condi-

tions are equivalent.

(i) The R-complex K (z) ®% M is homologically finite for some (equivalently for every)

generating sequence x of a.
(ii) The R-complex M ®% R/a is homologically degree-wise finite.
(iii) The R-complex RHompg(R/a, M) is homologically degree-wise finite.
Proof. This is a immediate from Propositions 3.12 and 3.14. [

Definition 3.16. A homologically bounded R-complex M is a-cofinite if M satisfies the

equivalent conditions of Theorem 3.15 and suppy (M) C V(a).

When M is an a-cofinite R-module, the map XJ\R; 1s well-defined because of the
condition on the small support; see Remark 3.3. For complexes, the support condition is
also used to show that Xﬁ; is well-defined. However, one uses the injective resolution of

M to endow M with an E“—Complex structure. We show this in Proposition 3.18(b).
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Lemma 3.17. Let M be a homologically bounded R-complex with supp (M) C V (a).

(a) The minimal injective resolution of M consists of a-torsion modules.
(b) The complex M has an injective resolution consisting of a-torsion modules.
(¢) The natural morphism RI' (M) — M is an isomorphism in D(R).

d) Every injective resolution of M consisting of a-torsion modules is an R*-complex.
ry inj 8 p

Proof. Let M = J be a minimal injective resolution.

(a) By Lemma 2.64, for each i we have J; = GBpesuppR(M)ER(R/p)(“@) for some sets
piy- Since each p € suppg(M) is in V'(a), it follows that each summand Er(R/p)#) is
a-torsion, so each J; is a-torsion as well.

(b) Since M has a minimal injective resolution, this follows from part (a).

(c) Since each J; is a-torsion, we have I'y(J) = J. As the natural morphism RI',(M) —
M is represented by the inclusion I'y(J) — J, it follows that the natural morphism is an
isomorphism in D(R).

(d) Each module J; is a-torsion, so it is an ﬁ“—module by Fact 2.35. and each

differential 0;7 is R*linear by [28, Lemma 2.2(a)]. ]

Proposition 3.18. Let M be a homologically bounded R-complex with supp (M) C V(a).

Let M =5 J be an injective resolution of M consisting of R*-modules.

(a) The chain map X?“ L R* — Hompg(J, J) given by Xf?a (r)(j) = rj is well-defined.

(b) The chain map X};%a L R — Hompg(J, J) gives rise to a well-defined morphism X]\ﬁ; R
RHompg (M, M) in D(R).

Proof. (a) For each r € R®, multiplication by r determines a well-defined chain map
J 5 J. Tt is straightforward to show that this implies that Xf}a: R — Hompg(J, J) is a
well-defined chain map.

(b) Since RHompg(M, M) ~ Homg(J, J), this follows from Fact 2.38. O
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Definition 3.19. Let M be a R-complex. M is a-codualizing if M is a-cofinite and the

homothety map XIE . R® — RHompg (M, M) is an isomorphism in D(R).

3.3. Building Examples
We now aim to provide an example of an a-codualizing complex. One should note
that even in the case of semidualizing complexes (0-codualizing) it is challenging to find

non-trivial examples.

Lemma 3.20. Let N be a homologically bounded complex. Then suppr(RI'4(N)) C
suppz(N) N V(a).

Proof. Note that suppg(RI'G(R)) € V(a). Indeed, if J is an injective resolution of
R, and p & V(a), then I';(J), = 0. Hence, p & Suppyp(I's(J)). Next, consider the
isomorphisms RTo(N) 2 C(a) ®% N = RI4(R) ®% N in D(R). Then Fact 2.51 implies
suppg(RIa(NV)) = suppg(RI(R)) Nsuppgr(N) € V(a) N suppg(N). O

The following is inspired by [11, Corollary 1].

Lemma 3.21. Let M be a homologically bounded complex and let a C b be ideals of R.
Let K (a) denote the Koszul complex on a generating sequence for a, and let K (b) denote
the Koszul complex on a generating sequence for b. If K (a) @% M is homologically finite,

then K (b) ®@% M is homologically finite.
Proof. This follows from Proposition 3.12. [l

Theorem 3.22. Let M be an a-cofinite R-complex. If b is an ideal of R such that a C b,
then Ry (M) is b-cofinite.

Proof. Note that we have supp(RI'y(M)) C V(b) by Lemma 3.20.
Let K(b) be a the Koszul complex on a generating sequence for the ideal b. We

show the necessary finiteness condition by showing K (b) @% RI',(M) is homologically
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finite. Let M — J be a minimal injective resolution. By Lemma 2.64, we know J; =
Bpesupp (i) Er(R/p) W),

Claim: if I is a complex of injective R-modules with [; = @pgv(b)ER(R/p)(“fn),
then suppy(Z) N V(b) = 0. Indeed, by Fact 2.34, if p € V(b), then I, = 0. Therefore,
Suppg(I) N V(b) = (. It follows that suppy(1) N V(b) € Suppy(I) N'V(b) = 0. This
proves the claim.

Now, consider the exact sequence
0—Ty(J) —=J ——=J/Ty(J) —=0. (2)

This is degree-wise split because I'y(.J) is a complex of injective modules. Also, the
complexes ['y(.J) and J/T'y(J) are homologically bounded, as in the proof of Lemma 2.63.

From Fact 2.33 it follows that we have

(J/Tu(J)); = pEsupp(E?\/[)\V(b)ER<R/p)(ué)‘

Note that this provides an injective resolution of (.J/I',(./)) that may not be minimal. Using

Fact 2.51 and the claim with [ = J/T"y,(.J) we have

suppg(K(b) ®g J/Te(J)) = suppp (K (b)) Nsuppg(J/Ts(J))
C V(b) Nsuppg(J/Ts(J]))

= 0.

Hence, we have K (b) ®p J/I'y(J) =~ 0.

Apply K (b) ®r — to the short exact sequence (2).

00— K(b) ®g Ty(J) —= K(b) ®p J — K(b) @5 J/Te(J) —=0
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Since K (b) ®g J/Ty(J) ~ 0, we have a quasiisomorphism
K(b) @rTy(J) —= K(b) ®p J.

It follows that we have an isomorphism K (b) % RI'y(M) ~ K(b) ®% M in D(R).
By assumption, K(a) @% M is homologically degree-wise finite. Since a C b,
Lemma 3.21 implies K (b) ®% M homologically degree-wise finite. Thus, the complex

K(b) ®% RT',(M) is homologically degree-wise finite. O

Lemma 3.23. If M is an a-codualizing R-complex and a C b, then there is an isomorphism

R® ~ RHomp(RT,(M), RTy(M)) in D(R).

Proof. Let C (b) denote the Cech complex on a generating sequence for b, and let M = .J
be a minimal injective resolution. Lemma 3.17(a) implies that J consists of a-torsion
modules. By assumption, the morphism X]\Ej R = RHompg(M, M) is an isomorphism
in D(R). Also, Fact 2.46 provides isomorphisms R E\“b ~ LA"(R®).

Our result follows from the next sequence of isomorphisms. We begin by applying

the functor LA®(—) to the isomorphism &* ~ RHompg(M, M).

R® ~ LA*(R%)
~ LA°*(RHompg(M, M))
~ RHompg(C(b), RHomg(M, M))
~ RHompz(M &% C(b), M)
~ RHompg (R, (M), M)
~ Homp(Ty(J), J)
~ Hompg(Fs(J), To(J))

~ RHOIHR(RP[,(M), RFb(M))
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The third and fifth isomorphisms are by Fact 2.46, and the fourth one is Hom-tensor
adjointness. The seventh isomorphism is from [28, Lemma 2.2(b)], and the others are

by definition. 0
The following result is Theorem 1.7 from the introduction.
Theorem 3.24. The R-complex RI'(R) is a-codualizing.

Proof. Since R is semidualizing (0-codualizing), the a-cofinite condition on RI'y(R) is a
consequence of Theorem 3.22. Lemma 3.23 shows that there is an abstract isomorphism

R* ~ RHom r(RTG(R),RI'4(R)). It remains to show that the morphism
e ke s RHomp(RT,(R), RT4(R))

is an isomorphism.
Let a : R — I be an injective resolution, and let 5 : 7' — I';(I) be a flat resolution

over ﬁ“, and hence over . By Fact 2.46 we have
R® ~ LA%(R) ~ RHompg(RI4(R), R) ~ Hompg(T, I).

Also Hompg(7, I) an injective resolution over R and consists of Re-modules. (This uses
Hom-tensor adjointness.) Thus, there exists a quasiisomorphism Re —Z> Hompg(T,1).

We have the following diagram:

The maps f and g( are the natural ones, and the maps « and v are the quasiisomorphisms

from the injective resolutions of 2 and Re respectively. Since [ is a bounded above complex
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of injective R-modules, it is a semi-injective DG R-module. Then g can be constructed
such that the preceding diagram commutes up to homotopy by [4, Theorem 2.9.6.1]. The

chain maps f and g represent the morphisms f and g in the following diagram
RI,(R) —= R—%~LA%(R).

Consider the following diagram.

LA%(R)

R® 5 RHomp(LA*(R), LA%(R))
X%FQ(R) l lg*
RHomp(RIL(R), RT.(R)) RHomp(R, LA%(R))

f*l"’ Ntf*

RHomp(RT4(R), R) —=— RHompg(RI'4(R), LA%(R))

g%

To be clear, (—), = RHomg(RI'G(R),—) and (—)* = RHompg(—,LA%(R)) are
functors on the derived category. The morphisms f* and g, are isomorphisms in D(R) by
[1, Theorem 0.3]. The map f, is an isomorphism by [1, Lemma 0.4.2]. We aim to show

") are isomorphisms and that the diagram commutes. We then conclude

LA®
that g* and x
that XI;”F“(R) is an isomorphism.

The previous diagram is represented by the following diagram with (—), = Hompg (I, (1), —)

and (—)* = Hompg(—, Homg(T, I)).

Homp (T,I)

o — Homg(Hompg (T, 1), Homg (T, 1))

B

Homp(T'a(1), Ta(1)) Homp(I, Homp(T, I))

’

Hompg(T'y(I), Homg (T, I))
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So we show that this diagram commutes. Let z € R* and w € ['y(I). The third equality in

the following sequence is from Lemma 2.2(a) of [28]

. 0 foo X () (w) =[G o f o " (2)]](w)
=(g o f)(zw)
—2[(§ o f)(w)]

=[(xp" " (2) 0 (g0 F))(w)

=[f* 03" o xx"" " V)(2) (w).

The other equalities are by definition. Thus, the diagram commutes.
Next, we show that ¢g* is an quasiisomorphism. To this end, note that the following

diagram commutes, where the horizontal chain maps are Hom-tensor adjointness.

~ 054 ~

Homp(R*, Homp (T, 1)) = Homp(T ®p R°, 1)
jgé 2l(T®Rgo)*

Hom (R, Hom (T, 1)) 22> Homp(T g R, 1)

The morphism (7" ® go)* is a quasiisomorphism as follows. Let T LN [y(I) be the

quasiisomorphism from the flat resolution of I';(/). Consider the following diagram.

T®go

T®xr R T ®p R

~|BRR NLﬂ@E“

To(1) @5 R—2%% (1) @5 B?

The vertical chain maps are quasiisomorphism because R and R® are flat modules. The
map [',(/) ® go is an isomorphism by Fact 2.35. This establishes the fact that g is an

quasiisomorphism.

53



Since « and v are quasiisomorphisms and Homg(T, I) is an injective resolution,
the chain maps o* and ¢* are quasiisomorphisms. Furthermore, the following diagram

commutes up to homotopy, which establishes the fact that g* is an quasiisomorphism.

Hom (Hompg(T, I), Homg(T, I)) —=~ Hompg(R*, Homg(T, I))

lé* :Lgé

Homp(I, Homg(T, I)) —%— Homp(R, Homg (T, I))

~

Next, consider the following string of isomorphisms. The first isomorphism is by

Lemma 3.23 and the second is by [1, (0.3)].

~

R* ~ RHompg(RI'L(R),RI,(R))
~ RHompg(LA%(R), LA*(R))

~ RHomR(E“, }A%“)

This implies that Ext%(f%“, }A%”) = 0O for all + > 1. It follows that showing the morphism
X;Aa(R) : R* — RHomp(LA%(R), LA%(R)) is an isomorphism reduces to showing that
the map X? : R* — Hom R(E“, ]3&‘) is an isomorphism. It is straightforward to show that
Xﬁ?a is a monomorphism. We wish to show it is onto. Let ¢ € HomR(}A%“, }A%“) and set
E=0¢(1) € R®. We would like to see that ¢ is given by multiplication by &.

It suffices to show ¢(z) — x& = 0 for all x € R. This along with the containments
aR® C J(R*) C R® tell us it suffices to show ¢(z) — =€ € (aR*)" = a"R® for all
n = 1. (This uses the Krull Intersection Theorem, cf. [24, Theorem 4.4].) The natural map
v:R/a" — ﬁa/anﬁa is an isomorphism. So if T € ﬁa/anﬁa, then there exists § € R/a"

such that v(7) = . So there exists y in R such that y — x is in a" R, It follows that (y—x)¢
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and ¢(z — y) are in a” R®. From the next computation

o(r) — 2§ = ¢(x) — d(y) + d(y) — €
= ¢(x) — o(y) +yo(1) — €
= oz —y) + (y — )¢

we conclude that ¢(z) — x€ € a”fi“ for all n. Therefore, xléAa(R) is an isomorphism, and

the proof is complete. ]

We now turn our attention to a uniqueness result for local Gorenstein rings. Recall

that ring is Gorenstein if it has finite injective dimension over itself.

Proposition 3.25. Let (R, m, k) be Gorenstein and local. If M is a-codualizing, then PL(t)

and I} (t) are monomials.

Proof. Since R is Gorenstein and local, R® is local, Gorenstein, and dim(R) = dim(}A%“).

We consider the following isomorphisms in D(R).

RHomp(k, R*) ~ RHomp(k, RHomﬁu(E“, R%)
~ RHomz, (k ®% R, R

~ RHom g, (, R

The first isomorphism is Hom cancellation, the second is adjointness, and the third follows
from the fact that the residue field of R® is isomorphic to k.

By assumption, the modules Ext’(R/a, M) and Tor(R/a, M) are finitely gener-
ated. Lemma 3.21 implies that Ext’, (k, M) and Tor”(k, M) are finite dimensional k-vector
spaces. It follows that we have [ g: (t) =1 §“ (t). Since R* is Gorenstein, we conclude

1B () = 1R () = ¢,
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The following is the same argument as Lemma 1.5.3(b) of [3]. The first and third
isomorphisms are adjointness and the second and fourth are tensor cancellation. The fifth
isomorphism is tensor evaluation, which applies since k¥ ®@% M and RHompg(k, M) are

appropriately bounded homologically degree-wise finite complexes over k.

RHompg(k, RHomg(M, M)) ~ RHomg(k ®@% M, M)
~ RHompg((k ®@% M) @ k, M)
~ Homy,(k @5 M, RHompg(k, M))
~ Homy(k @5 M, k @, RHompg(k, M))

~ Homy(k @5 M, k) @, RHomg(k, M)
It follows that

Ext%(k, RHomg(M, M)) = H_;(RHompg(k, RHomp(M, M)))
>~ H_;(Homy(k ®5 M, k) ®, RHomg(k, M))
>~ @, 4= H_,(Homy(k ®% M, k) @, H_,(RHompg(k, M))

> Bptgai Homk(Torf(M, k), k) @k Exth(k, M).
Subsequently, we have PE(t)IM (1) = [0 MM ¢y — [R*(4) = 17, and the desired
result follows. [

Corollary 3.26. Let (R, m, k) be a local, Gorenstein ring. If M is quasidualizing (that is,

M is m-codualizing), then M is shift isomorphic to Er(R/m).

Proof. Proposition 3.25 implies that we have I3/ (t) = ¢/ for some integer f. This implies

that RHompg (k, M) ~ ¥/k. Since suppy(M) C V(m) = {m}, Fact 2.58 and Lemma 2.64
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imply that a minimal injective resolution M = .J is of the form

J= 0 B2 gt 2oy

where s = sup(M) and E = Ep(k). (Note that the isomorphism RHomp(M, M) ~ R™
implies M % 0, so sup(M) is finite.) In particular, the homology module H (M) # 0
is isomorphic to a submodule of the m-torsion module E*), so H (M) is m-torsion. It

follows that Homp(k, H(M)) # 0, so [18, Lemma 2.1(1)] implies that
f =sup(RHompg(k, M)) = sup(M) = s.

On the other hand, since suppy(M) C {m}, the fact that p’ (M) = 0 for all i > —f
implies that the injective dimension of M is idg(M) < —f, by [16, (13.5)]. That is, we

have J; =0 foralli < f < —idg(M) < s = f,i.e., forall i < s. Thus, J has the form
J= 0—E®"" 0.

In other words, we have M ~ J = Y*E® ") It remains to show that [z~*| = 1. The
condition 0 % M ~ Y*E®°) implies that |z~%| > 1. Suppose that |~%| > 1. It follows

that E? is a summand of E* "), Given the isomorphisms
R™ ~ RHompg(M, M) ~ Homg(E® "), E¢)

It follows that Homp(E2, E2?) 2 (R™)* is a summand of R™. From this, we conclude that
k* = (R™)*/m(R™)* is a summand of R™/mR™ = k, which is impossible. We conclude

that || = 1, which completes the proof. O
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3.4. Foxby Classes

We have the prerequisites to revisit the notions of the Auslander and Bass classes
in the context of a-codualizing complexes. In this setting we recover aspects of these
classes in the semidualizing context that were lost in the case of a-codualizing modules;
see Example 3.11. We also, recover key aspects of Foxby equivalence in the a-codualizing

setting; see Theorem 1.9.

Definition 3.27. Let M an R-complex, and let X and Y be homologically bounded R-

complexes.

1. The complex X is in the Auslander class Ay (R) if M ®% X is homologically
bounded and 7Y : X — RHompz(M, M ®@% X) is an isomorphism in D(R).

2. The complex Y is in the Bass class By (R) if RHompg(M,Y') is homologically
bounded and 0¥ : M @% RHompz(M,Y) — Y is an isomorphism in D(R).

Proposition 3.28. Let M be an a-codualizing R-complex.
1. One has R* € Ay (R).
2. One has M € By(R).

Proof. Let M — J be a minimal injective resolution of M. Each module J; is a-torsion
by Lemma 3.17(b). So the natural map o : J — J ®p R*isan isomorphism by Fact 2.35.

(1) From the previous paragraph we see that J ®p R® is an injective resolution
of M @% R® over R. Since M is homologically bounded and R is flat, M ®b R® is

homologically bounded. It remains to check that the following diagram commutes

RO

R® o RHomp(M, M)

\ EjRHOmR(M,Oc)
Vga

RHompz(M, M @% R%)
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We check that the next diagram commutes.

RO
~ XJ

R Homp(J, J)

\ ’:jHOmR(gLOC)
V5a

R ~
Hompg(J, J ®r R?)

Let 7 € R* and j € J. Degree-wise, the complex J has an R*-module structure
compatible with the R-module structure given as follows. The element j is annihilated by
a’ for some [ > 1. Letry € r such thatr — ry € a"R®. Then we have rj := roj. The next

computation shows that the previous diagram commutes.

(Homp (., a) o x5") (1) (j) =Homp(J, ) (x5 (r)) ()
=a(x5" (1))
=a(r})
=rj®1
=rogj ® 1
=J ®To
=]

=Y (1) (1)

We justify the seventh equality as follows. By construction, we have r — ry € a Re.

Thenr —ry = Z:’;l x;t; where z; € a' and t; € Re. So, we have
JOr—j®rg=j®(r—r)=j® (Zm) = ((wj) @1;) =0.
i=1 i=1

It follows that j ® r = j ® rg. So, the diagram commutes and 7}%{ is an isomorphism.
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(2) By assumption, we have RHompg (M, M) ~ R°. This is homologically bounded.

It remains to check that the following diagram commutes.

L. R®
M®gxw;

M ®% Re r M &% RHomp(M, M)

M

We check the commutativity of the following by showing §7 o (J ®r XJRG) oa =idy.

pa
J®RX§

JC@R.E% = Q]QQRI{ODQR(J,J)
= |o

J
Let 5 € J. We compute

(67 0 (J @r X7 N(a(f) =07 0 (J @r XTI @ 15)
=577 @ X5 (1g))
=x7 (1) ()
:j'
Therefore, the diagram commutes and ¢ % 1s an isomorphism. O]
Lemma 3.29. Let M be an a-codualizing R-complex, and let 0 2 A € D(R).
(@) IfV(a) Nsuppg(A) # 0, then M ®@% A # 0.
(b) If A is homologically bounded and V (a) N suppg(A) # (), then RHompg(M, A) # 0.

(¢) If A is homologically bounded above and V (a) N Assg(H(A)) # () where s = sup(A),
then we have RHompg(M, A) # 0.
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Proof. Let K = K (a) be the Koszul complex on a generating sequence for a. Then K ®p
M is homologically finite over R.
Claim 1: To show that RHompg(M, A) % 0, it suffices to show that there is a prime

p € Spec(R) such that
(K ®@p M), @5 #(p) # 0 % RHompg, (k(p), Ap). 3)

Indeed, to show that RHompg(M, A) # 0, it suffices to show that there is a prime p €
Spec(R) such that (K ®% RHompg(M, A)), % 0. Given any p € Spec(R), we have the

following isomorphisms since K ®% M is homologically finite over R:

(K ®@% RHomp(M, A)), ~ RHomp(K &% M, A),

~ RHomp, (K @5 M)y, A,).

Thus, it suffices to show there exists a prime p such that RHomp, (K ®F M),, A,) # 0.

Given the isomorphisms

RHomg, (5(p) ©5, 5(p), RHomg, (K &k M), 4,))
>~ RHOIIIRP((K ®% M)p ®%p ('Kd(p) ®£(p) K(F’))v AP)
~ RHomp, ([(K ®F M), ®Iép K(p)] ®I,§(p) K(p), Ap)

~ RHom, ) (K ®% M), @5 #(p), RHomp, (k(p), 4,))
it suffices to show that there is a prime p such that
RHom,) (K @} M), @, #(p), RHomg, (#(p), A;)) % 0.

In view of the Kiinneth formula, it suffices to find a prime p satisfying (3).
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Claim 2: To show that M ®% A # 0, it suffices to show that there is a prime p €
Spec(R) such that

K(p) @, (K ®@F M), 20 2 w(p) ©F, Ap. )

Indeed, to show that M ®% A 2 0, it suffices to find a prime p € Spec(R) such that

(K @% (M ®% A)), # 0. Given any p € Spec(R), we have the next isomorphisms:
(K @ (M @A)y = (K @ M)y @5, Ay
Thus, it suffices to show there exists a prime p such that (K ®% M), ®%p Ay # 0. Consider
w(p) @, (K @ M)y @, Ayl = [n(p) @, (K @ M)y] @5 [5(p) @5, Ay

Given these isomorphisms and the Kiinneth formula, it suffices to show that there is a prime
p satisfying (4). This completes the proof of Claim 2.

Claim 3: Forall p € V(a), we have /f(p)@]ép (K®%M), 2 0. Indeed, since K @% M
is homologically finite over R, it follows that (K ®% M), is homologically finite over R,,.
So, it suffices to show that (K ®@% M), 2 0 by the statement following [10, (1.3.4)]. For

this, it suffices to show RHompg, (K ®} M),, M) # 0: we use the next sequence

RHomp, (K ®% M),, M,) ~ RHomp(K &% M, M),
~ (K ®% RHomp(M, M)),
~ (K @3 Ea)p
~ K,

% 0.

The last step is from the condition p € V' (a). This completes the proof of Claim 3.
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(a) Letp € V(a) Nsuppg(A). Claim 3 implies that x(p) @3 (K ®p M), % 0, and
the condition p € suppy(A) implies that x(p) ®%p A, # 0. Thus, Claim 2 implies that
M ®% A #£0.

(b) Assume that A is homologically bounded, and let p € V' (a) N suppy(A). Claim
3 implies that x(p) @ (K ®p M), % 0. Since A is homologically bounded, the con-
dition p € suppy(A) implies that RHompg, (x(p), Ay) % 0. Thus, Claim 1 implies that
RHompg(M, A) # 0.

(c) Assume that A is homologically bounded above, and p € V(a) N Assgp(Hy(A)).
In the next display, the first step follows from the fact that A ¢ 0 is homologically bounded
above:

+00 # sup(A) = —depthy (A,) = sup(RHomg, (r(p), Ap))-

The second step is from [10, (1.6.6)], and the third one is by definition. It follows that

RHompg, (k(p), Ay) % 0. As in the part (b), Claim 1 implies that RHompg (M, A) £ 0. O

Lemma 3.30. Let X be a homologically bounded below R-complex. Let K(a) denote

the Koszul complex on generating sequence of a. If supp(X) C V(a) and X # 0, then
K(a) ®% X #£0.

Proof. Set K = K(a). Fact 2.51 tells us supp(X ®@% K) = suppp(X) Nsuppg(K) =
suppg(X) N V(a). By assumption, supp(X) C V(a). Therefore, suppp(X % K) =
suppg(X). It follows that X =~ 0 if and only if K @% X ~ 0. O

Lemma 3.31. Let M be an a-codualizing R-complex. Let X and Y be homologically
bounded R-complexes such that suppg(X),suppg(Y) C V(a). Leta : X — Y be a

chain map.
(a) One has suppy(Cone(a)) C V(a).
(b) The following conditions are equivalent.
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(i) « is an isomorphism in D(R),
(ii) M ®% v is an isomorphism in D(R),
(iii) RHompg (M, «) is an isomorphism in D(R), and

(iv) K(a) ®% a is an isomorphism in D(R).

Proof. (a) Consider the following exact sequence

0 ——Y —— Cone(a) XX 0

Therefore, the following diagram is a distinguished triangle.

Y —— Cone(a) XX

Then for all p € Spec(R), the following is a distinguished triangle

Y ®% k(p) — Cone(a) ®% Kk(p) —=XX ®% K(p) —

Letp ¢ V(a). Then p & suppy(X) and p & suppy(Y). Therefore, Y @% k(p) ~ 0 ~

Y X ®F k(p). The distinguished triangle above implies Cone(a) ®@% x(p) >~ 0. It follows

that p & suppy(Cone(«)).
(b) The implications (i) = (ii) and (i) = (i4i) and (i) = (iv) are standard.
Consider the next distinguished triangle in each of the other implications.

X —Y —— Cone(a) — )

(i1) = (i): Suppose M ®% « is an isomorphism. Then the distinguished triangle
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(5) yields a second distinguished triangle
L M®%a L L
M@ X —M @Y — M ®f Cone(a) — .

It follows that M ®% Cone(a) =~ 0. By part (a), we have supp(Cone(a)) C V(a). By
contradiction assume Cone(a) % 0. Then there exists p € suppy(Cone(a))(\V(a). By
Lemma 3.29(a), we conclude M ®{§ Cone(a) # 0. This is a contradiction. Hence, we have
Cone(a) ~ 0, so « is an isomorphism in D(R).

(1) = (i): Suppose RHompg(M, «) is an isomorphism. Then the distinguished

triangle (5) yields a second distinguished triangle

RHompg(M,a)

~

RHompg (M, X) RHompg(M,Y) —— RHompg(M, Cone(a)) —.

It follows that RHom (M, Cone(a)) ~ 0. By part (a), we have supp(Cone(a)) C V(a).
By contradiction assume Cone(a) % 0. Then there exists p € suppy(Cone(a)) C V(a).
Therefore, there exists p € suppy(Cone(a)) (] V(a). By Lemma 3.29(b), we conclude
RHompg (M, Cone(ar)) # 0. This is a contradiction. Hence, we have Cone(a) ~ 0, so « is
an isomorphism in D(R).

(iv) = (i): Suppose K(a) ®% o is an isomorphism. Then the distinguished

triangle (5) yields a second distinguished triangle

K(a)@ka

K(a) @% X K(a)@%Y — K(a) @% Cone(a) — .

It follows that K (a) ®% Cone(a) ~ 0. By part (a), we have suppy(Cone(a)) C V(a).
By contradiction assume Cone(a) 2 0. Then there exists p € suppy(Cone(a)) C V(a).
Therefore, there exists p € suppy(Cone(a)) (| V(a). By Lemma 3.30, we have K (a) ®%

Cone(a) % 0. This is a contradiction. Thus, we have Cone(a) ~ 0. O
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For our version of Foxby equivalence, we need a variant of Lemma 3.29; see Propo-

sition 3.37. For it, we require the ring to have finite Krull dimension.
Fact 3.32. [32, Corollary 3.2.7] If F'is a flat R-module, then pd(F') < dim(R).

Remark 3.33. If X is a homologically bounded R-complex and p € Spec(R), then we

have the following:
1. Forall Z € D(R) we have s(p) @ Z =~ k(p) @ R, @k Z =~ r(p) @ Z.

2. If we further assume that dim(R) < oo, then pdy(R,) < oo by Fact 3.32. Therefore,

RHompg(R,, X) is a homologically bounded R-complex.

3. Hompg(U, I, Vi) injects into Homg (U, [ [, V) = [ [, Homg(U, V3). So, if we have
Hompg (U, V)) = 0 for all A, then Homz(U, [, Vi) = 0.

Lemma 3.34. Let R be ring such that dim(R) < oo. If X is a homologically bounded
R-complex, then p € co-suppr(X) if and only if RHompg(k(p), X) £ 0.

Proof. By definition, p € co-suppy(X) if and only if x(p) ®Iép RHompg(R,, X) # 0. By
Remark 3.33.2 the R-complex RHompg(R,, X) is homologically bounded. Then by [16,
Proposition 11.4], one has x(p) @k RHompg(R,, X) % 0 if and only if

RHompg, (k(p), RHompg(R,, X)) % 0.
By adjointeness we have an isomorphism
RHompg, (k(p), RHomg(R,, X)) ~ RHompg(k(p), X).

So, we have p € co-suppy(X) if and only if RHompg(k(p), X) 2 0. H
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Lemma 3.35. Let R be ring such that dim(R) < oo. If F' is a non-zero flat module, then
co-suppg(F) # 0 and there exists a prime ideal p € Spec(R) such that sup(k(p) ®%p
RHomp(R,, X)) = 0.

Proof. Let0 — F — T° — T* — ... — T9 — ( be a minimal pure injective resolution
of F'. That is, each T" is flat and cotorsion, the sequence is exact, each kernel is flat, and
d < dim(R); cf. [15, Section 2]. For all i and p € Spec(R) there exists X; such that
T =1], @p by [14, Section 2]. The X are uniquely determined by F'4, and p. The
X, are the invariants 7;(p, F') of [15].

By [14, Theorem 2.2], we have co-suppg(T*) = {p € Spec(R) : X} # 0} for all i.
In particular, 7% # 0 if and only if co-suppy(T"*) # 0. Since F' # 0, we have T° # 0.

Now, let p be maximal in co-suppg(7°) with respect to containment. In particular,
r(p) @k, RHompg(R,, T°) # 0. From [15, Theorem 2.1] we have p ¢ co-suppg(T") for
all i > 1. Moreover, for all q D p, we have q & co-suppy(T") for all i > 0.

As each T" is cotorsion and R, is flat, we have RHompg(R,, F) ~ Hompg(R,,T).
Moreover, from the proof of [14, Theorem 2.7] each module HomR(Rp, T ") is flat and
cotorsion over ;.

To be clear, the R-module Hompg(R,, T") is cotorsion because, for all flat R,-modules

and all j > 1, we have

Ext}, (L, Homg(R,,T")) = Ext},(Ry ®g, L, T")
>~ Ext’y (L, T)

=0.

The first isomorphism is adjointness, the second is tensor cancellation, and the third is be-
cause 7" is cotorsion over R. Also, the R,-module Hom R(Rp, Ti) is flat because if M and

N are flat R-modules, then Hompz (M, N) is flat over R. This implies that Hom g (R,, T") is
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flat over R,. This follows from the fact that Hompg(R,, T%) ®g, — = Hompg(Ry,, T") Qg —
as functors of I,-modules.
Therefore, Homp(R,,T) is a bounded flat resolution of RHompg(R,, F') over R,.

Thus, it is also a resolution over R. This allows us to conclude that
k(p) @5, RHompg(Ry, F) ~ k(p) ® g, Homg(Ry, T).
Now, since p & co-suppy(T*) for all i > 1, we have
K(p) @, Homp(R,, T) = 0 — k(p) ®r, Homp(R,, T°) =0 — -+ - .
Since p € co-suppy(1°), we have k(p) ®g, Hompg(Ry, T°) 2 0. Hence,
k(p) ®Ep RHomp(R,, F) ~ rk(p) ®r, Homg(Ry, T) ~ K(p) O, HomR(Rp,TO) # 0.

This implies that the supremum of (p) @k RHompg(R,, X) is 0. O
Lemma 3.36. Let R be ring such that dim(R) < oc. If0 % X is a homologically bounded

R-complex, then co-suppp(X) # 0.

Proof. We proceed in cases.
Case 1: fd(X) = oo. Let F' ~ X be a flat resolution of X, and shift X if necessary to

assume sup(X) = 0. We consider the following soft truncation of F'. Define F’ as follows

or,

F' = 0—>F0/Im(5)f) < F_1 .FJ 0.

Note that X ~ F ~ F’. Let 7 : Gy — Fy/Im(9{) be a flat cover. Then Ker(7) = C is

cotorsion by [13, Lemma 2.2]. Let C' = G be the inclusion map. Let

- 31@

Gt= ... Go G, —==C 0
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be a minimal flat resolution. By [13, Lemma 2.2] each G; is cotorsion. We define the

complex L as

or,

Gl Lo GO €OT F_ 1

Note that L ~ X.
For each i, we have GG; = Hp T,; where T}, ; is a completion of a free R,-module.
Furthermore, all p that occur have the property that x(p) ®% Homg(R,, 8? ) = 0 for all

1 > 1 by [14, Theorem 2.2]. Since C' is cotorsion, the exact sequence
-« —— Hompg(Ry, G3) — Hompg(R,, G;) — Hompg(R,,C) —0
is an augmented flat resolution of Homp(R,, C'). Then for all i > 1 we have

TorR"(/s(p), Hompg(R,,C)) = H;(k(p) ®I§p Homg(R,, G)) = k(p) ®p, Homp(Ry, Gig1).

)

In particular, if 7}, ;11 # 0, then Torf" (k(p), Homp(R,, C)) # 0 by [14, Theorem 2.2].

Since fd(X) = oo, we also know fd(C) = oo, otherwise, G would be bounded and
L ~ X would be a bounded flat resolution. With the equalities above, this implies the set
{4 : there exists p such that Tor(x(p), RHomg(R,, C)) # 0} is unbounded.

Consider the short exact sequence of complexes

0 el L L<o 0

This a yields a distinguished triangle ¥*C' — X — Ly — in D(R). From Fact 3.32
pdg(R,) < dim(R) < oo. So, there exists a projective resolution P ~ R, such that P, = 0
for all i > dim(R). Then RHompg(R,, L<y) ~ Hompg(P, L<y), where Hompg(P, L)

is bounded complex of flat modules. Moreover, Hompg (P, L<y); = 0 for all i > 0.
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Therefore, x(p) ®zr Hompg(P, L<g); = 0 for all @ > 0. This implies that H;(x(p) ®%
RHompg(R,, L)) = H;(k(p)®rHomp (P, L)) = 0foralli > 0. Hence, the supremum
of r(p) @% RHomp(R,, L) is less than or equal to 0 for all p.

There exists p and ¢ > 1 such that H;(k(p) @ RHompg(R,, £C)) # 0. Then there

exists a distinguished triangle

k(p) ®% RHompg(R,, £C)

k(p) ®% RHomg(Ry, X)

/‘ﬁ(p) ®% RHomR(Rm LSO)

We know sup(k(p) @% RHompg(R,, £C)) > 1 and sup(x(p) ®% RHomp(R,, L<o)) < 0.
The long exact sequence implies that sup(x(p) @% RHomg(R,, X)) > 1. In particular, we
have that x(p) ®% RHomg(Ry, X) % 0 and hence, p € co-suppy(X).

Case 2: s = fdr(X) < oo. Let F' ~ X such that F' is a bounded complex of flat
modules such that F; = 0 for all i > s and for all i < j = inf(X).

Claim: for all p € Spec(R), we have sup(x(p) ®% RHompg(R,, X)) < s. In-
deed, pdz(R,) < dim(R) from Fact 3.32. Therefore, there exists a projective resolution
P ~ R, of R, such that P, = 0 for all ¢ > dim(R) and ¢ < 0. Then by definition,
RHompg(R,, X) ~ Hompg(P, F'). By construction, Hompg(P, F') = 0 for all ¢ > s and
i < dim(R) + j, and Hompg(P, F'); is flat for all 7. Hence, Hompg(P, F) is a flat resolution
of RHompg(R,, X). It follows that

k(p) @ RHompg(R,, X) =~ k(p) @z Hompg(P, F).
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The module (p) is concentrated in degree 0, and Hompg(P, F') is concentrated in
degrees j — dim(R) < i < s. Therefore, the R-complex x(p) ®g Hompg(P, F) is

concentrated in degrees j — dim(R) < ¢ < s. Then

j — dim(R) < inf(k(p) ®F RHomp(R,, X)) < sup(x(p) ®@F RHompg(R,, X)) < s.

This proves the claim.
We proceed by induction on s — j. The base case follows from Lemma 3.35.

For the induction step, consider the following short exact sequence of complexes

0 SoF, F Feyq —0.

Since s = fdg(X), we have Fy # 0. Lemma 3.35 implies there exists p such that

sup(k(p) ®% RHomp(R,, X°F)) = s. The claim above implies that we have

sup(k(p) ®@% RHomp(R,, Fes 1)) < s — 1.

Again there is a distinguished triangle

k(p) ®% RHompg (R, X°F})

k(p) ®% RHomg(R,, F)

#(p) &% RHomp(Ry, Fey 1)

The long exact sequence in homology implies sup(x(p) ®% RHomg(R,, F')) = s. There-
fore, we have k(p) ®% RHomg(R,, F) 2 0, s0 p € co-suppg(X). O
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Next we record our analogue of Lemma 3.29(a).

Proposition 3.37. Let M be an a-codualizing R-complex, and let 0 % X be a homologi-
cally bounded R-complex. If co-suppg(X) C V(a), then M ®% X £ 0.

Proof. By Lemma 3.29 it suffices to find an ideal q € suppy(X) N V(a). Lemma 3.36
implies is a prime ideal p € co-suppg(X). Then Lemma 3.34 implies that we have
RHompg(k(p), X) # 0.

Let J be a minimal injective resolution of X. Therefore,

0 % RHompg(k(p), X) ~ Homg(k(p), J).

In particular, Homg(x(p), J;) = Homg(k(p),J); # 0 for some i. By Lemma 2.64,
we know that suppr(X) = Uez{q € Spec(R) : Er(R/q)is a summand of J;}. Re-
mark 3.33.3 provides a prime q € suppp(X) such that Homg(k(p), Er(R/q)) # 0. As
k(p) is p-torsion we have Hompg(k(p),[y(Er(R/q))) = Hompg(k(p), Er(R/q)) # 0.
Therefore, I',(Er(R/q) # 0 and so p C q. The condition p € co-suppp(X) C V(a)

implies that a C p C q. Hence, we have q € suppz(X) N V(a). O

Lemma 3.38. Let M be an a-codualizing complex, and X and Y are homologically
bounded R-complexes such that co-suppg(X),co-suppg(Y) € V(a). Leta : X — Y

be a chain map.
(a) One has co-suppp(Cone(a)) C V(a).
(b) The following conditions are equivalent:

(i) the morphism o is an isomorphism in D(R), and

(ii) the morphism M ®% « is an isomorphism in D(R).
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Proof. (a) Consider the following distinguished triangle
X Y —— Cone(a) — .

Let p € Spec(R). Then applying the functors RHomp(R,, —) and s(p) @ — in

succession yields the following distinguished triangle.
k(p) @F RHomp(Ry, X)
k(p) @k RHomp(R,,Y)

K(p) ®%p RHompg(R,, Cone(w))

Letp ¢ V(a). Then p & co-suppr(X) and p & co-suppg(Y). So we have
k(p) ®%p RHompg(R,,Y) ~ 0 ~ x(p) ®I§p RHompg(R,, £X).

The distinguished triangle above implies x () ®%p RHomp(R,, Cone(a)) =~ 0. It follows
that p & co-suppy(Cone(a)).

(b) The implication (i) = (i) is standard.

(ii) == (i): Suppose M ®% « is an isomorphism. As above, we have the
distinguished triangle

X —=+Y —— Cone(a) —.
This distinguished triangle yields a second distinguished triangle

) L L
M@ X —=M @Y — M ®f Cone(a) —.
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By part (a), we have co-suppy(Cone(a)) € V(a). Assume that Cone(a) % 0. By
Proposition 3.37, we conclude that M ®% Cone(a) 2 0. This is a contradiction. Hence,

we have Cone(a) ~ 0 O
The following is a corollary to Proposition 2.65.

Corollary 3.39. Let M be an a-codualizing complex, and let X be an R-complex. If X is
in Ayr(R), then co-suppg(X) C V(a).

Proof. If X € Ay/(R), then X ~ RHomp(M, M ®% X), so

co-suppg(X) = co-suppg(RHomz(M, M @5 X)) C V(a)

by Proposition 2.54. [

Now we are ready to state and prove our version Foxby equivalence, which is Theo-

rem 1.9 in the introduction.

Theorem 3.40. If M is a-codualizing complex, then M ®@% — : Ay (R) — Buy(R) and
RHompg (M, —) : By (R) — A (R) are quasi-inverse equivalences. Further, we have the
following.

(a) Y € By (R) if and only if RHompg(M,Y) € Ay (R) and suppg(Y) C V(a).

(b) If X € Ay (R), then M ®@% X € By(R) and co-suppr(X) C V(a).

(c) If dim(R) < oo, then the converse of part (b) holds.

Proof. We begin by showing the forward implication of parts (a) and (b). The fact that the
functors are quasi-inverse equivalences follows immediately from these two implications

and the definitions of A, (R) and By (R).
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Let X and Y be homologically bounded R-complexes. Set FF = M ®% X, and
consider the morphisms 0¥ : M@%ERHomp(M, F) — Fand ¥ : X — RHomz(M, F).

Then the morphism

Megry

F=M®hX M ®% RHompg(M, F)
satisfies 03 (M @% v4) = id. It follows that M ®@% v is an isomorphism if and only if
oM is one.

If we further assume that X € A,/(R), then X, I, and RHompg(M, F) are homolog-
ically bounded R-complexes, and v is an isomorphism. Corollary 3.39 yields the desired
co-support condition. The morphism M ®% ~¥ is also an isomorphism since 74 is one.
From the above, we know ¢3¢ is also an isomorphism, and therefore, we have I € By (R).
So M @% — is a functor from Ay (R) — B (R).

Set G = RHomp(M,Y). Now, consider the morphisms 6%/ : M ®% G — Y and
7Y : G — RHomp(M, M ®% G). Then the morphism

RHompg(M,6¥)

RHompz(M, M % G) RHomg(M,Y) =G

satisfies RHomp (M, 03 )y = idg. If follows that RHomp (M, %) is an isomorphism if
and only if v/ is an isomorphism.

Assume that Y € By, (R). It follows from the Bass class isomorphism and Fact 2.51
that we have suppz(Y) C V(a). Also, Y,G, and M ®@% G are homologically bounded
R-complexes, and 0% is an isomorphism. Then RHompg (M, 634) is also an isomorphism.
Thus, v/ is an isomorphism. It follows that G € Ay;(R), so RHomp(M, —) is functor
from By (R) — Ay (R).

We now prove the converse of part (a). Assume G = RHomg(M,Y) € Ap(R) and
suppg(Y) € V(a). Then G and M ®% G are homologically bounded R-complexes, and

75



& is an isomorphism. From above, we know that RHompg (M, 6f) is an isomorphism.
We would like to invoke Lemma 3.31 to conclude 6 is an isomorphism. It would follow
that Y € By (R).

We need to show that the complexes M ®% RHompg(M,Y) and Y satisfy the proper
support condition. Corollary 2.52 implies supp (M ®% RHomz(M,Y)) C suppg(M) C
V(a). Therefore, Lemma 3.31 applies and 6& is an isomorphism. This establishes part (a).

We now show part (c). Assume dim(R) < oo and F = M ®@% X € By(R)
and co-supp,(X) C V(a). Then F' and RHompg(M, F') are homologically bounded R-

complexes, and 6% is an isomorphism. From above, the morphism

M @5y M % X — M % RHomg(M, F)

is an isomorphism. Proposition 2.54 implies suppz(RHompg(M, F)) € V(a). Then

Lemma 3.38 implies that the morphism ~% is an isomorphism. Thus, X € Ay(R). O

If M is semidualizing over R, then part of Foxby equivalence [10, Theorem 4.6]
states that, given a homologically bounded R-complex, one has Y € B),(R) if and only if
RHompg(M,Y) € Ap(R). Note that no mention is made of suppy(Y'). This is due to the
fact that M is O-codualizing in this case, so the condition suppy(Y) C V(0) = Spec(R)
is automatic. The following example shows that if M is a-codualizing and Y is an R-
complex such that supp,(Y) € V(a) and RHomg(M,Y) € Ay (R), then Y need not be
in By (R).

Example 3.41. Let & be a field and R = k[X](x). Note that this is a local ring, and R is
not complete with respect to its maximal ideal. Let £ be the injective hull of the residue

field. We first show RHompg(E, R) € Ag(R). The minimal injective resolution .J of R is

*J= 0—>R—=k(X)—=E——>0.
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An application of Hompg(F, —) to J yields the complex
RHomp (B, R) ~ Homg(E,J) = 0—— Homp(E, k(X)) — Homp(E, E) — 0.

It is well-known that Homp(E, k(X)) = 0 and Homp(E, E) = R™. It follows that
RHomp(E, R) ~ ¥~ R™. Proposition 3.28 implies X' R™ € Ag(R).

Consider the isomorphisms
Y'E~E@% Y 'R" ~ E@% RHompg(E, R).

It follows that the morphism 6% : £ ®@% RHompg(E, R) — R is not isomorphism. Hence,
we have R ¢ Bg(R). Notice we are not in the scope of Foxby equivalence because the

support condition is not satisfied. Specifically, we have suppz(R) € V(m) = {m}.
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4. FUTURE WORK

There are still several questions related to the a-codualizing condition to answer.
Question 4.1. If M is a-codualizing complex, is RI'y(M) an b-codualizing complex?

We have proved part of this; see Theorem 3.22. It remains to show that the homothety
morphism XEK’F[, (M) is an isomorphism. It does not appear that the proof of Theorem 3.24 is
easily adaptable to this question. If this were true, this would imply that there is injection
from the set of shift-isomorphism classes of semidualizing complexes into the set of shift-

isomorphism classes of a-codualizing complexes. This makes the next question natural.
Question 4.2. Do all a-codualizing complexes “come from” semidualizing ones?

Over a local Gorenstein ring, there are unique semidualizing and quasidualizing

complexes up to shift-isomorphism. This makes the next question natural.

Question 4.3. If (R, m, k) is local Gorenstein ring, is there a unique a-codualizing complex

up to shift-isomorphism?
The next questions arise naturally from our study of Auslander and Bass classes.
Question 4.4. Can we remove the assumption dim(R) < oo in Theorem 3.40?

Question 4.5. Let M be an a-codualizing complex. Is there an embedding (given an
appropriate support condition) of complexes of finite flat dimension and finite injective

dimension into A,/ (R) and By, (R), respectively?
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