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ABSTRACT

A fintitely generated R-module C is semidualizing if R ∼= HomR(C,C) and Ext>1
R (C,C) = 0.

In this dissertation we build off of Takahashi and White’s PC-projective dimension and IC-injective

dimension to define these dimensions for when C is a semidualizing complex. In particular, for an

R-complex X and a semidualizing R-complex C, the PC-projecitve dimensions is PC- pdR(X) =

sup(C)+pdR(RHomR(C,X). The FC-projective dimension is defined similarly and the IC-injective

dimension is defined dually. We develop the framework for these homological dimensions by es-

tablishing base change results and local-global behavior. Furthermore, we investigate how these

dimensions interact with other invariants. In addition we answer a question from Takahashi and

White [27] that generalizes a Theorem of Foxby [9]. His result states that if there exists a module

with finite depth, finite flat dimension, and finite injective dimension over a local ring R, then

R is Gorenstein. We use our generalized definitions of FC-projective dimension and IC−injective

dimension involving a semidualizing R-complex to improve on Foxby’s result by answering Taka-

hashi and White’s question. In particular, we prove for a semidualizing module C, if there exists a

module with finite depth, finite FC-projective dimension, and finite IC-injective dimension over a

local ring R, then R is Gorenstein.
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1. INTRODUCTION

1.1. Motivation

Algebra and geometry are two central areas of mathematics. We use geometry to help

model the world around us. Some geometric objects are nicer than others. For example, lines and

planes are flat and smooth. A more interesting example of a smooth shape is a circle of radius one

S : x2 + y2 = 1. However, many shapes have singularities (e.g., sharp corners), so are not smooth.

For example, the following curve C : x2 = y3 has a singularity at x = 0.

x

y

C

How can we understand these curves and other shapes, especially in high dimensions where

we cannot visualize them? Algebra holds the key via functions. Polynomials of the form

a0 + a1X + · · ·+ anX
n

give us functions from the real numbers to the real numbers (R → R). In a similar way we have

notions of polynomials in two variables (R2 → R) and polynomials C → R and S → R. Ring theory

uses these sets of functions to distinguish between different geometric objects such as R, R2, C,

and S.

Consider the set of all polynomial functions. You may notice that any two polynomials

added together produce another polynomial. Also any two polynomials multiplied together produce

another polynomial. Sets that have the properties of being closed under multiplication and addition

are called rings. These are the major objects of study in my research. Note that different geometric

objects have different polynomial rings, so one can use these algebraic constructions to differentiate

between geometric objects.

A useful algebraic structure for studying rings is a module. In many circumstances we can

characterize types of rings by describing the associated modules. In my research, I study modules
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over a ring R via homological constructions (this too has its roots in geometry). For instance, a

powerful technique for studying R-modules A and B is to combine them as ExtiR(A,B), TorRi (A,B),

HomR(A,B), and A⊗R B.

One important type of module is a projective module. If P is a projective module, then

P has the property ExtiR(P,M) = 0 for all i > 1 and for all R-modules M . Not all modules are

projective. Therefore we may want to know how close a module M is to being projective. The

projective dimension of M (denoted pdR(M)) is the invariant we use to do this. If pdR(M) is a

large number, then M is far from being projective. See Section 1.2 for a more precise definition of

the projective dimension.

From the geometric point of view the regular local rings are quite important. Oscar Zariski

proved that regular local rings correspond to smooth points on algebraic varieties, e.g., on curves.

Auslander, Buchsbaum, and Serre combined these algebraic, geometric, and homological notions

in the following celebrated result.

Theorem 1.1.1 ([3, 26]). Let R be a local ring with maximal ideal m and residue field k. If R is a

regular local ring, then pdR(M) < ∞ for all R-modules M ; conversely, if pdR(k) < ∞, then R is

a regular local ring.

1.2. Homological Dimensions

Let R be a commutative noetherian ring with identity and M be an R-module. The pro-

jective, flat, and injective dimensions of an R-module M are now classical invariants that are

important for studying M and R. The projective dimension is defined to be the length of the

shortest projective resolution of M . A projective resolution of M is a sequence of R-modules and

R-module homomorphisms

· · ·
∂P3−−→ P2

∂P2−−→ P1
∂P1−−→ P0

π−→M → 0

that is exact and each Pi is projective. The flat dimension of M (denoted fdR(M)) is defined

in the same way as projective dimension, only we use flat R-modules in place of projective R-

modules. The injective dimension of M (denoted idR(M)) is defined to be the length of the

shortest injective resolution of M . An injective resolution of M is a sequence of R-modules and
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R-module homomorphisms

0→M
ε−→ I0 ∂1I−→ I1 ∂2I−→ I2 ∂3I−→ · · ·

that is exact and each Ii is an injective module. These dimensions were later generalized for R-

complexes by Foxby [9] and many useful results about dimensions for modules also hold true for

complexes.

A finitely generated R-module C is semidualizing if R ∼= HomR(C,C) and Ext>1
R (C,C) = 0.

For example, R is a semidualizing R-module. Semidualizing modules were first introduced by

Foxby [8]. They were later studied by Vasconcelos [29], and Golod [14]. Semidualizing modules

are useful, e.g., for proving results about Bass numbers [5, 22] and compositions of local ring

homomorphisms [5, 21].

Takahashi and White [27] defined, for a semidualizing R-module C, the PC-projective and

IC-injective dimensions. The PC-projective dimension of an R-module M (denoted PC- pdR(M))

is the length of the shortest resolution of M by modules of the form C⊗RP where P is a projective

module. They define IC-injective dimension (denoted IC- idR(M)) dually, and one defines the FC-

projective dimension (denoted FC- pdR(M)) similarly. In Chapter 3 we extend these constructions

to the realm of R-complexes. We work in the derived category D(R). See Chapter 2 for background

information.

To understand the PC-projective, FC-projective, and IC-injective dimensions in the context

when C is a semidualizing R-complex, we use the following result; see Theorem 3.1.9 below.

Theorem 1.2.1. Let X ∈ Db(R), and let C be a semidualizing R-complex.

(a) We have pdR(RHomR(C,X)) <∞ if and only if there exists Y ∈ Db(R) such that pdR(Y ) <∞

and X ' C ⊗L
R Y in D(R). When these conditions are satisfied, one has Y ' RHomR(C,X)

and X ∈ BC(R).

(b) We have fdR(RHomR(C,X)) <∞ if and only if there exists Y ∈ Db(R) such that fdR(Y ) <∞

and X ' C ⊗L
R Y in D(R). When these conditions are satisfied, one has Y ' RHomR(C,X)

and X ∈ BC(R).

(c) We have idR(C ⊗L
R X) < ∞ if and only if there exists Y ∈ Db(R) such that idR(Y ) < ∞ and

X ' RHomR(C, Y ) in D(R). When these conditions are satisfied, one has Y ' C ⊗L
R X and

3



X ∈ AC(R).

With this in mind, we define e.g., PC- pdR(X) := sup(C) + pdR(RHomR(C,X)); thus

PC- pdR(X) < ∞ if and only if X satisfies the equivalent conditions of Theorem 1.2.1(a). We

define FC- pdR(X) and IC- idR(X) similarly.

In Section 3.1 we develop the foundations of these homological dimensions. For instance, we

establish finite flat dimension base change (3.1.11) and local-global principles (3.1.16-3.1.18). Also

in Theorem 3.1.10 we show how these notions naturally augment Foxby Equivalence. In Section 3.2

we establish some stability results and the following; see Theorem 3.2.9.

Theorem 1.2.2. Assume R has a dualizing complex D and let X ∈ Db(R). Then FC- pdR(X) <∞

if and only if IC†- idR(X) <∞ where C† = RHomR(C,D).

This result is key for the work in Section 3.3 where we generalize a result of Foxby that

states, if there exists an R-complex X that has finite flat dimension and finite injective dimension,

then Rp is a Gorenstein ring for all p ∈ suppR(X); see Chapter 2 for definitions of small support

and Gorenstein rings.

In Takahashi and White’s investigation in [27] they posed the following question: When R

is a local Cohen-Macaulay ring admitting a dualizing module and C is a semidualizing R-module,

if there exists an R-module M such that PC- pdR(M) < ∞ and IC- idR(M) < ∞, must R be

Gorenstein? If M has infinite depth, then the answer is false. However, if we additionally assume

that M has finite depth, then an affirmative answer to this question would yield a generalization

of Foxby’s theorem.

Partial answers to Takahashi and White’s question are given by Araya and Takahashi [1]

and Sather-Wagstaff and Yassemi [24]. We give a complete answer to this question in the following

result; see Chapter 2 for background on complexes and the derived category, and Theorem 3.3.2

for the proof.

Theorem 1.2.3. Let C be a semidualizing R-complex. If there exists an R-complex X ∈ Db(R)

such that FC- pdR(X) <∞ and IC- idR(X) <∞, then Rp is Gorenstein for all p ∈ suppR(X).

The new results of this dissertation can be found in two peer-reviewed research papers. The

results of Sections 3.1 and 3.2 can be found in [28], which has been accepted for publication, and

the results from Section 3.3 can be found in [25], which has appeared.

4



2. BACKGROUND

2.1. Homological Constructions and the Category of R-Complexes

Throughout this chapter let R be a commutative noetherian ring with identity, and let all

R-modules be unital.

In this section we define the objects and look at some of the basic properties from which

we build the derived category. Most of these constructions and results can be found in [6, 20].

Definition 2.1.1. Let M,N,L be R-modules. A commutative diagram is a diagram of R-module

homomorphisms

M N

L

α

β
γ

such that γ ◦ α = β.

Definition 2.1.2. A sequence of R-module homomorphisms

X = · · ·
∂Xi+1−−−→ Xi

∂Xi−−→ Xi−1

∂Xi−1−−−→ · · ·

is a chain complex or an R-complex if ∂Xi−1 ◦ ∂Xi = 0 for all i. The module in the ith degree of the

R-complex X is Xi and we set |x| = i when x ∈ Xi. The ith homology module of X is

Hi(X) := Ker(∂Xi )/ Im(∂Xi+1).

We say that the complex X is exact if Hi(X) = 0 for all i. The nth suspension or shift of X

is the R-complex ΣnX defined by (ΣnX)i := Xi−n and ∂ΣnX
i := (−1)n∂Xi−n. Furthermore, set

ΣX := Σ1X.

Remark 2.1.3. An R-module M is an R-complex concentrated in degree 0. It is the complex

· · · → 0→ 0→M → 0→ 0→ · · · .
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Definition 2.1.4. Let X and Y be R-complexes. A chain map F : X → Y is a sequence of

R-module homomorphisms {Fi : Xi → Yi}i∈Z making the following diagram commute

X · · · Xi Xi−1 · · ·

Y · · · Yi Yi−1 · · ·

F

∂Xi+1 ∂Xi ∂Xi−1

∂Yi+1 ∂Yi ∂Yi−1

Fi Fi−1

An isomorphism from X to Y , denoted X ∼= Y , is a chain map F : X → Y such that each

map Fi : Xi → Yi is an isomorphism. If F : X → Y is a chain map, then the induced map

Hi(F ) : Hi(X) → Hi(Y ) given by Hi(F )(x) := Fi(x) is a well-defined R-module homomorphism.

A quasiisomorphism from X to Y , denoted X
'−→ Y , is a chain map F : X → Y such that the

induced map Hi(F ) : Hi(X)→ Hi(Y ) is an isomorphism for all i.

Example 2.1.5. Let X be an R-complex and let r ∈ R. The homothety map µXr : X → X given

by µXr (x) := rx is a chain map.

Fact 2.1.6. Let X,Y be R-complexes. If F : X → Y is an isomorphism, then the induced map on

homology Hi(F ) is an isomorphism for all i. Hence F is a quasiisomorphism.

Remark 2.1.7. The converse to Fact 2.1.6 fails in general. This is the motivation for the derived

category in which we “force” all quasiisomorphisms to be isomorphisms.

The following boundedness conditions are important for many results and constructions.

Definition 2.1.8. An R-complex X is bounded above, bounded below, or bounded if Xi = 0 for

all i � 0, i � 0, or |i| � 0, respectively. An R-complex X is homologically bounded above,

homologically bounded below, or homologically bounded if Hi(X) = 0 for all i� 0, i� 0, or |i| � 0,

respectively. An R-complex X is homologically finite if X is homologically bounded and Hi(X) is

finitely generated for all i.

Definition 2.1.9. The supremum, infimum, and amplitude of an R-complex X are

sup(X) := sup{i ∈ Z | Hi(X) 6= 0}

inf(X) := inf{i ∈ Z | Hi(X) 6= 0}

amp(X) := sup(X)− inf(X).

6



Fact 2.1.10. The category of R-complexes C(R) is the category where the objects are the R-

complexes and the morphisms are the chain maps.

The next constructions are central to our main result.

Definition 2.1.11. Let X and Y be R-complexes.

(1) The homomorphism complex HomR(X,Y ) ∈ C(R) in degree n is defined as

HomR(X,Y )n :=
∏
p∈Z

HomR(Xp, Yp+n)

with ∂
HomR(X,Y )
n ({fp}) := {∂Yp+nfp − (−1)nfp−1∂

X
p }.

(2) The tensor product complex X ⊗R Y ∈ C(R) in degree n is defined as

(X ⊗R Y )n :=
∐
p∈Z

Xp ⊗R Yn−p

where ∂X⊗RY
n is given on a generator xp ⊗ yn−p ∈ (X ⊗R Y )n by

∂X⊗RY
n (xp ⊗ yn−p) := ∂Xp (xp)⊗ yn−p + (−1)pxp ⊗ ∂Yn−p(yn−p).

Example 2.1.12. Let X be an R-complex. The homothety morphism χRX : R → HomR(X,X),

given in degree i by χRX(r)i(x) = rx, is a morphism in C(R).

Fact 2.1.13. Let X,Y , and Z be R-complexes, and let F : X → Y be a chain map. Then there

are well-defined induced chain maps

(a) HomR(Z,F ) : HomR(Z,X)→ HomR(Z, Y ) defined by {fp} 7→ {Fp+|f |fp},

(b) HomR(F,X) : HomR(Y,Z)→ HomR(X,Z) defined by {fp} 7→ {fpFp},

(c) Z ⊗R F : Z ⊗R X → Z ⊗R Y defined by zp ⊗ xq 7→ zp ⊗ Fq(xq), and

(d) F ⊗R Z : X ⊗R Z → Y ⊗R Z defined by xp ⊗ zq 7→ Fp(xp)⊗ zq.

The following isomorphisms are very useful for our work.

7



Fact 2.1.14. Let X,Y and Z be R-complexes. There are natural isomorphisms

(a) Hom cancellation: HomR(R,X) ∼= X,

(b) Tensor cancellation: R⊗R X ∼= X,

(c) Commutativity of tensor product : X ⊗R Y ∼= Y ⊗R X,

(d) Associativity : X ⊗R (Y ⊗R Z) ∼= (X ⊗R Y )⊗R Z, and

(e) Adjointness: HomR(X ⊗R Y,Z) ∼= HomR(X,HomR(Y, Z)).

Resolutions and associated homological dimensions are central to this dissertation.

Definition 2.1.15. Let X be an R-complex.

(1) A projective resolution of X is a quasiisomorphism P
'−→ X, such that P is a bounded below

R-complex of projective R-modules.

(2) A flat resolution of X is a quasiisomorphism F
'−→ X such that F is a bounded below R-complex

of flat R-modules.

(3) A injective resolution of X is a quasiisomorphism X
'−→ I such that I is a bounded above

R-complex of injective R-modules.

Remark 2.1.16. Let M be an R-module with projective resolution

P+ =

(
· · ·

∂P3−−→ P2
∂P2−−→ P1

∂P1−−→ P0
π−→M → 0

)
.

Set P to be the truncated projective resolution

P =

(
· · ·

∂P3−−→ P2
∂P2−−→ P1

∂P1−−→ P0 → 0

)
.

It is straightforward to show that the following diagram

P · · · P2 P1 P0 0

M · · · 0 0 M 0

'

∂P3 ∂P2 ∂P1

π

8



is a projective resolution of M , as in Definition 2.1.15.

This shows that projective resolutions of an R-module, as defined in the introduction, give

projective resolutions as in Definition 2.1.15. Similarly, it can be shown that flat and injective

resolutions, as defined in the introduction, give flat and injective resolutions as in Definition 2.1.15.

Fact 2.1.17. Let X and Y be R-complexes.

(a) The complex X is homologically bounded below if and only if X has a projective resolution

(equivalently, a flat resolution).

(b) The complex Y is homologically bounded above if and only if Y has an injective resolution.

Definition 2.1.18. Let X be a homologically bounded below complex and let Y be a homologically

bounded above complex.

(1) The projective dimension of X is defined as

pdR(X) := inf{sup{i ∈ Z | Pi 6= 0} | P '−→ X is a projective resolution}.

(2) The flat dimension of X is defined as

fdR(X) := inf{sup{i ∈ Z | Fi 6= 0} | F '−→ X is a flat resolution}.

(3) The injective dimension of Y is defined as

idR(X) := inf{sup{i ∈ Z | I−i 6= 0} | X '−→ I is an injective resolution}.

The following definition is important to understand “triangles” in the derived category. It

is also used to define the Koszul complex which is an important object in Section 3.3.

Definition 2.1.19. Let X,Y be R-complexes and let f : X → Y be a chain map. The mapping

9



cone of f is the sequence Cone(f) defined as

Cone(f) := · · · →

Yi

⊕

Xi−1

∂Yi fi−1

0 −∂Xi−1


−−−−−−−−−−→

Yi−1

⊕

Xi−2

∂Yi−1 fi−2

0 −∂Xi−2


−−−−−−−−−−−→

Yi−2

⊕

Xi−3

→ · · ·

Fact 2.1.20. Let X,Y be R-complexes and let f : X → Y be a chain map.

(a) The sequence Cone(f) is an R-complex.

(b) There exists an exact sequence

0→ Y
ι−→ Cone(f)

π−→ ΣX → 0

where ι and π are the natural injection and surjection morphisms.

(c) The chain map f is a quasiisomorphism if and only if Cone(f) is exact.

Definition 2.1.21. Let M be an R-module and let x = x1, . . . , xn ∈ R. The Koszul complex

K(x;M) is built inductively on n.

Base case: n = 1.

K(x1;M) :=

(
0→M

µMx1−−→M → 0

)
∼= Cone(µMx1)

where µMx1(m) = x1m is the homothety map.

Inductive step: Assume n > 2 and that Kn−1 := K(x1, . . . , xn−1) has been constructed.

Let µK
n−1

xn : Kn−1 → Kn−1 be the homothety map and set

K(x;M) := K(x1, . . . , xn−1, xn) := Cone(µK
n−1

xn ).

Also, set K(x) := K(x;R).

Fact 2.1.22. Let x = x1, . . . , xn ∈ R. The Koszul complex K(x;M) is an R-complex for any

R-module M .

Fact 2.1.23. Let x = x1, . . . , xn ∈ R. Then pdR(K(x)) <∞.

10



The Koszul complex is an important tool that we use in the proof of Theorem 1.2.3 from

the introduction.

2.2. The Homotopy Category

The homotopy category is built from the category of R-complexes, and is a tool to build

the derived category.

Definition 2.2.1. Let X,Y be R-complexes and let f : X → Y be a chain map.

(1) f is null homotopic or homotopic to 0 (denoted f ∼ 0) if for all i there exists si : Xi → Yi+1

such that fi = ∂Yi+1si + si−1∂
X
i . A homotopy between f and 0 is s = {si}.

X · · · Xi+1 Xi Xi−1 · · ·

Y · · · Yi+1 Yi Yi−1 · · ·

f

∂Xi+2 ∂Xi+1 ∂Xi ∂Xi−1

∂Yi+2 ∂Yi+1 ∂Yi ∂Yi−1

fifi+1 fi−1si−1si

(2) Let g : X → Y be a chain map. We say that f and g are homotopic (denoted f ∼ g) if

f − g ∼ 0.

(3) We say that f is a homotopy equivalence if there exists a chain map h : Y → X such that

fh ∼ idY and hf ∼ idX .

Fact 2.2.2. Let X,Y be R-complexes and let f, g : X → Y be chain maps such that f ∼ g.

(a) For all i ∈ Z, one has Hi(f) = Hi(g).

(b) f is a quasiisomorphism if and only if g is a quasiisomorphism.

(c) If f is a homotopy equivalence, then Hi(f) is an isomorphism for all i, i.e., f is a quasiisomor-

phism.

(d) “Homotopy equivalent” is an equivalence relation on the class of all R-complexes.

Notation 2.2.3. Let X be a category. Let MX (X,Y ) denote the set of all morphisms X → Y in

the category X .

11



Definition 2.2.4. The homotopy category K(R) is the category with objects the R-complexes and

morphism sets MK(R)(X,Y ) :=MC(R)(X,Y )/ I(X,Y ) = H0(HomR(X,Y )) where

I(X,Y ) := {chain maps f : X → Y | f ∼ 0}.

Remark 2.2.5. The homologically bounded above homotopy category K(@)(R) and homologically

bounded below homotopy category K(A)(R) are defined similarly with homologically bounded above

and homologically bounded below R-complexes, respectively, as the objects.

Fact 2.2.6. Let f, g ∈MC(R)(X,Y ) with image f ∈MK(R)(X,Y ).

(a) f is an isomorphism in K(R) if and only if f is a homotopy equivalence in C(R).

(b) f = 0 if and only if f ∼ 0 in C(R).

(c) f = g in K(R) if and only if f ∼ g in C(R).

Unlike the category of R-complexes, the homotopy category is not abelian. However, it

does have an important structure, which we describe next.

Definition 2.2.7. A category X is additive ifMX (X,Y ) is an additive abelian group for all objects

X,Y such that composition respects addition.

Definition 2.2.8. Let X be an additive category, and assume that X has an equivalence Σ : X → X

with a quasi-inverse Σ−1. A triangle in X is a sequence of morphisms

X
α−→ Y

β−→ Z
γ−→ ΣX

in X . A morphism of triangles in X is a commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

α β γ

α′ β′ γ′

fg h Σf

where X,Y, Z,X ′, Y ′ and Z ′ are all objects in X .
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Definition 2.2.9. An additive category X is triangulated if there exists a distinguished class of

triangles (distinguished triangles or exact triangles) satisfying the following axioms:

TR 1. If two triangles are isomorphic triangles in X such that one of the triangles is distinguished,

then the other triangle is distinguished as well. For any object X in X , the following triangle

is distinguished

0→ X
idX−−→ X → 0.

For any morphisms α : X → Y in X , there exists a distinguished triangle

X
α−→ Y → Z → ΣX.

TR 2. The triangle X
α−→ Y

β−→ Z
γ−→ ΣX is distinguished if and only if the shifted triangle

Y
β−→ Z

γ−→ ΣX
Σα−−→ ΣY

is distinguished.

TR 3. Given two distinguished triangles in X such that the leftmost square in the following diagram

commutes in X

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

α β γ

α′ β′ γ′

fg Σf

there is a morphism h : Z → Z ′ making all squares in the following diagram commute in X

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

α β γ

α′ β′ γ′

fg Σf∃h
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TR 4. Octahedral Axiom. If the following triangles are distinguished in X

X
α−→ Y

β−→ Z
γ−→ ΣX

X
a−→ U

b−→ V
c−→ ΣZ

Y
f−→ U

g−→W
h−→ ΣY

there exists a distinguished triangle Z
r−→ V

s−→W
t−→ ΣZ making the following “octahedron”

diagram commutes in X .

X Y Z ΣX

X U V ΣX

W W ΣY

ΣY ΣZ

α β γ

a b c

f= =

= h

Σb

g

h

Σα

r

s

t

Remark 2.2.10. The commutative diagram in the octahedral axiom is called an octahedron be-

cause the four distinguished triangles can be arranged in such a way to create an octahedron.

Fact 2.2.11. The category K(R) is triangulated where the distinguished triangles are triangles in

K(R) that are isomorphic to triangles of the form

X
α−→ Y

ι−→ Cone(α)
π−→ ΣX

where α is a morphism in the category of R-complexes, i.e., a chain map, and ι and π are the chain

maps from Definition 2.1.19.

Definition 2.2.12. Let X,Y ∈ K(@)(R). An inj-diagram from X to Y is a sequence X
α−→ U

β←− Y

where β is a quasiisomorphism.

Remark 2.2.13. The term inj-diagram is not a standard term in the literature. We use it here

for convenience of notation.
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Definition 2.2.14. Let X,Y ∈ K(@)(R). Two inj-diagrams X → U
'←− Y and X → U ′

'←− Y are

equivalent if there exists an R-complex U ′′ such that the following diagram commutes in K(R)

U

X U ′′ Y

U ′.

' '

'

''

Fact 2.2.15. The equivalence defined in Definition 2.2.14 is an equivalence relation on the class of

all inj-diagrams from X to Y .

2.3. The Derived Category

We are now in a position to define the derived category. The derived category was first

constructed by Verdier and Grothendieck [30]. Loosely, the derived category is defined by formally

localizing the homotopy category by formally inverting all the quasiisomorphisms.

Definition 2.3.1. The derived category of R is the category D(R) in which the objects are the R-

complexes and the morphisms X → Y are defined to be equivalence classes of inj-diagrams from X

to Y . Let X → Y be a morphism in D(R) represented by the inj-diagram X
α−→ U

β←−
'
Y . We denote

this morphism X → Y as α/β. The bounded above derived category of R is the full subcategory

D−(R) of D(R) whose objects are homologically bounded above R-complexes. The bounded derived

category of R is the full subcategory Db(R) of D(R) whose objects are the homologically bounded

R-complexes.

Let X
α/β−−→ Y

γ/δ−−→ Z be morphisms in D(R), represented by inj-diagrams X
α−→ V

β←−
'
Y

and Y
γ−→ U

δ←−
'
Z. If there is a commutative diagram

X V Y U Z

W

α

'
β γ

'
δ

ω

'
σ

in K(R), then the composition X
(γ/δ)◦(α/β)−−−−−−−→ Z is defined to be (ωα)/(σδ), the morphism repre-

sented by the inj-diagram X
ωα−−→W

σδ←−
'
Z.
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The existence of compositions of morphisms in D(R) is a subtle point. This is explained in

Fact 2.3.3, which uses the following “Lifting Lemma”. It is standard knowledge in the area, but

we do not of know a good reference, so we include a proof here.

Fact 2.3.2. Let I be a bounded above complex of injective R-modules. For every quasiisomorphism

α : X → Y and for every chain map β : X → Y , there exists a chain map γ : Y → I such that

γα ∼ β. Moreover, γ is unique up to homotopy.

Proof: Since I is a bounded above complex of injective R-modules and α is a quasiisomorphism,

the induced chain map HomR(α, I) : HomR(Y, I) → HomR(X, I) is also a quasiisomorphism. In

particular, the induced map

H0(HomR(α, I)) : H0(HomR(Y, I))→ H0(HomR(X, I))

is an isomorphism. Given the description of H0(HomR(Y, I)) and H0(HomR(X, I)) from Defini-

tion 2.2.4, the surjectivity of this map explains the existence of γ, and the injectivity of the map

explains the uniqueness.

Fact 2.3.3. LetX
α/β−−→ Y

γ/δ−−→ Z be morphisms inD(R), represented by inj-diagramsX
α−→ V

β←−
'
Y

and Y
γ−→ U

δ←−
'
Z. Assume that U has an injective resolution U

σ−→
'
J . Fact 2.3.2 implies that there

is a chain map ω : V → J making the following diagram commute in K(R).

X V Y U Z

J

α

'
β γ

'
δ

ω

'
σ

It follows that the composition X
(γ/δ)◦(α/β)−−−−−−−→ Z is defined in this situation. The composition also

exists in general, though this requires a more general notion of injective resolutions.

The minus sign in D−(R) is meant to suggest that the complexes in this category live mostly

in negative degrees.

Remark 2.3.4. The bounded below derived category of R, denoted D+(R), can be constructed in

a similar way using bounded below R-complexes as the objects. However, the morphisms from

X → Y are defined to be equivalence classes of diagrams of chain maps of the form X
'←− U → Y .
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Notation 2.3.5. The full subcategory of D(R) of homologically degreewise finite R-complexes is

denoted Df(R), i.e., X ∈ Df(R) if and only if Hi(X) is finitely generated for all i. Let ∗ ∈ {−,+,b}.

Then we write Df
∗(R) = Df(R) ∩ D∗(R).

Notation 2.3.6. Let P(R), F(R), and I(R) denote the full subcategories of Db(R) consisting of

complexes of finite projective, flat, and injective dimensions, respectively.

Fact 2.3.7. There is a natural functor F : K(R) → D(R) given on objects by F(X) = X and

morphisms by F(g) = g/1.

Definition 2.3.8. Let X ∈ D+(R), Y ∈ D(R), and let P
'−→ X be a projective resolution of X.

(1) The right derived functor RHomR(X,Y ) is defined as RHomR(X,Y ) := HomR(P, Y ).

(2) The left derived functor X ⊗L
R Y is defined as X ⊗L

R Y := P ⊗R Y .

Remark 2.3.9. Let M and N be R-modules. Then H−i(RHomR(M,N)) ∼= ExtiR(M,N) and

Hi(M ⊗L
R N) ∼= TorRi (M,N).

Remark 2.3.10. The functors RHomR(−,−) and − ⊗L
R − can be defined using complexes from

D(R). However, projective resolutions of homologically unbounded complexes are more technical

to define and construct.

Fact 2.3.11 (Balance). Let X ∈ D+(R), Y ∈ D(R). Let P
'−→ X a projective resolution.

(a) If Y has an injective resolution Y
'−→ J , then

RHomR(X,Y ) = HomR(P, Y ) ' HomR(P, J) ' HomR(X, J).

(b) If Y has a flat resolution F
'−→ Y , then

X ⊗L
R Y = P ⊗R Y ' P ⊗R F ' X ⊗R F.

The next few facts describe how these functors restrict to important subcategories.

Fact 2.3.12 (Boundedness). (a) We have that the bi-functor − ⊗L
R − restricts to a bi-functor

D+(R)×D+(R)→ D+(R).
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(b) We have that the bi-functor RHomR(−,−) restricts to a bi-functor D+(R)×D−(R)→ D−(R).

Fact 2.3.13 (Finiteness). (a) We have that the bi-functor RHomR(−,−) restricts to a bi-functor

Df
+ ×Df

−(R)→ Df
−(R).

(b) We have that the bi-functor −⊗L
R − restricts to a bi-functor Df

+(R)×Df
+(R)→ Df

+(R).

Fact 2.3.14. Let X ∈ Db(R) such that pdR(X) <∞.

(a) The functor X ⊗L
R − restricts to a functor Db(R)→ Db(R).

(b) The functor X ⊗L
R − restricts to a functor D−(R)→ D−(R).

(c) The functor RHomR(X,−) restricts to a functor Db(R)→ Db(R).

(d) The functor RHomR(X,−) restricts to a functor D+(R)→ D+(R).

We use the next isomorphsims frequently in this work.

Fact 2.3.15. Let X,Y, Z ∈ D(R). There are natural isomorphisms in D(R):

(a) Hom-cancellation: RHomR(R,X) ' X,

(b) Tensor-cancellation: R⊗L
R X ' X,

(c) Commutativity of tensor product : X ⊗L
R Y ' Y ⊗L

R X,

(d) Associativity of tensor product : X ⊗L
R (Y ⊗L

R Z) ' (X ⊗L
R Y )⊗L

R Z, and

(e) Adjointness: RHomR(X ⊗L
R Y,Z) ' RHomR(X,RHomR(Y, Z)).

Fact 2.3.16 ([4, Lemma 4.4]). Let L,M,N ∈ D(R). Assume that L ∈ Df
+(R).

The natural tensor-evaluation morphism

ωLMN : RHomR(L,M)⊗L
R N → RHomR(L,M ⊗L

R N)

is an isomorphism when M ∈ D−(R) and either L ∈ P(R) or N ∈ F(R).

The natural Hom-evaluation morphism

θLMN : L⊗L
R RHomR(M,N)→ RHomR(RHomR(L,M), N)
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is an isomorphism when M ∈ Db(R) and either L ∈ P(R) or N ∈ I(R).

The next few results are tools for detecting (finiteness of) homological dimensions.

Fact 2.3.17 ([4, Theorem 2.4]). Let X ∈ Db(R).

(a) If n = pdR(X) < ∞ and P
'−→ X is any projective resolution of X, then n > sup(X), and for

all j > n, the module Coker(∂Pj+1) is projective.

(b) If n = fdR(X) < ∞ and F
'−→ X is any flat resolution of X, then n > sup(X), and for all

j > n, the module Coker(∂Fj+1) is flat.

(c) If m = idR(X) < ∞ and X
'−→ I is any injective resolution of X, then m > − inf(X), and for

all j > −n, the module Ker(∂Ij ) is injective.

Fact 2.3.18 ([4, Proposition 4.5]). Let X,Y ∈ D(R).

(a) If idR(Y ) <∞, then fdR(RHomR(X,Y )) 6 idR(X) + sup(Y ).

(b) If fdR(Y ) <∞, then idR(X ⊗L
R Y ) 6 idR(X)− inf(Y ).

The following result is for use in Section 3.2.

Lemma 2.3.19. Let X ∈ Db(R).

(a) If E is a faithfully injective R-module, then idR(RHomR(X,E)) = fdR(X).

(b) If F is a faithfully flat R-module, then fdR(X ⊗L
R F ) = fdR(X).

(c) If E is a faithfully injective R-module, then idR(X) = fdR(RHomR(X,E)).

(d) If F is a faithfully flat R-module, then idR(X) = idR(X ⊗L
R E).

Proof: (a) The inequality (6) follows from [4, Theorem 4.1(I)]. For the other inequality as-

sume that idR(RHomR(X,E)) = n < ∞ and let F
'−→ X be a flat resolution. Note that

n = idR(RHomR(X,E) > − inf(RHomR(X,E)) = sup(X). Since E is injective and Fi is flat,

we must have that HomR(Fi, E) is injective for all i. Therefore HomR(F,E) is a complex of injec-

tive modules such that RHomR(X,E) ' HomR(F,E).

HomR(F,E) = F ∗ =

(
0→ F ∗j

∂F
∗

j−−→ · · ·
∂F
∗
−(n−2)−−−−−→ F ∗−(n−1)

∂F
∗
−(n−1)−−−−−→ F ∗−n

∂F
∗
−n−−→ F ∗−(n+1) → · · ·

)
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where ∂F
∗
−i = HomR(∂Fi+1, E) and F ∗i = HomR(Fi, E). It now follows from Fact 2.3.17(c) that

Ker(∂F
∗
−n) is injective. Observe that there is an isomorphism

Ker(∂F
∗
−n) = Ker(HomR(∂Fn+1, E)) ∼= HomR(Coker(∂Fn+1), E).

Therefore HomR(Coker(∂Fn+1), E) is injective.

Claim: Coker(∂Fn+1) is flat. Indeed, let S be an exact sequence of R-modules and let

M := Coker(∂Fn+1). Since HomR(M,E) is injective, we have that HomR(S,HomR(M,E)) is exact.

By Hom-tensor adjointness we have

HomR(S,HomR(M,E)) ∼= HomR(S ⊗RM,E).

Since E is faithfully injective, it follows that S ⊗RM is exact. Therefore M is flat, as claimed.

We conclude that the truncated complex

F ′ = (0→M → Fn−1 → · · · → Fj → 0

is a flat resolution of X since n > sup(X). Thus we have fdR(X) 6 n = idR(RHomR(X,E)), as

desired.

The proofs of (b), (c), and (d) are similar.

Definition 2.3.20. Let (R,m, k) be a local ring, the depth and width of an R-complex X ∈ D(R)

are defined by Foxby [9] and Yassemi [31] as

depthR(X) := − sup(RHomR(k,X))

widthR(X) := inf(k ⊗L
R X).

Remark 2.3.21. Let (R,m, k) be local and let M be an R-module. Then we have depthR(M) :=

min{i | ExtiR(k,M) 6= 0}. Recall that for all i we have

ExtiR(k,M) ∼= H−i(RHomR(k,M)).
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It follows readily that depthR(M) = min{i | ExtiR(k,M) 6= 0} = − sup(RHomR(k,X)).

In a similar way one can show that

widthR(M) := min{i | TorRi (k,M) 6= 0} = inf(k ⊗L
RM).

Definition 2.3.22. The small support of an R-complex X ∈ D(R) is defined as follows:

suppR(X) := {p ∈ Spec(R) | κ(p)⊗L
R X 6' 0}.

An important property of the small support is given in the following.

Fact 2.3.23 ([9, Proposition 2.7]). If X,Y ∈ D(R), then

suppR(X ⊗L
R Y ) = suppR(X) ∩ suppR(Y ).

The following facts are used in the proof of Theorem 1.2.3.

Fact 2.3.24 (Künneth Formula [20, Corollary 10.84]). Let (R,m, k) be a local ring and X,Y ∈

D(R). Then

Hn(X ⊗L
k Y ) ∼=

⊕
p+q=n

Hp(X)⊗k Hq(Y ).

Fact 2.3.25 ([23, Fact 3.4]). Let (R,m, k) be a local ring and let x = x1, . . . , xn be a generating

sequence for m. Then suppR(K(x)) = {m}.

2.4. Semidualizing Complexes and Gorenstein Rings

Semidualizing complexes originate in work of Grothendieck and Hartshorne [15, 16], Foxby [8],

Avramov and Foxby [5], and Christensen [7]. For the non-commutative case, see, e.g., Araya, Taka-

hashi, and Yoshino [2] and Holm and White [17].

Definition 2.4.1. Let Y ∈ Db(R). The homothety morphism χRY : R→ RHomR(Y, Y ) in D(R) is

the morphism χRJ /id represented by the following inj-diagram

R
χR
J−−→ HomR(J, J)

id←− HomR(J, J)

where Y
'−→ J is an injective resolution of Y , and χRJ is from Example 2.1.12.
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Definition 2.4.2. Let C ∈ Df
b(R). Then C is a semidualizing complex if χRC : R→ RHomR(C,C)

is an isomorphism in D(R). A complex D ∈ D(R) is a dualizing complex if D is semidualizing and

has finite injective dimension.

Dualizing complexes were introduced by Grothendieck and Hartshorne [15].

Example 2.4.3. The ring R is a semidualizing R-complex. Because R is finitely generated over

itself and it is a complex concentrated in degree 0, we have R ∈ Df
b(R). Therefore the only thing

to show is that χRR : R→ RHomR(R,R) is an isomorphism in D(R). It is straightforward to show

that χRR is the Hom-cancellation isomorphism R
'−→ RHomR(R,R) from Fact 2.3.15. We conclude

that χRR is an isomorphism in D(R).

The following definitions are important for use in Chapter 3. They originate in work of

Foxby [8], Avramov and Foxby [5] and Christensen [7].

Definition 2.4.4 (Foxby Classes).

(1) The Auslander Class with respect to C is the full subcategory AC(R) ⊆ Db(R) such that a

complex X is in AC(R) if and only if C ⊗L
R X ∈ Db(R) and the natural morphism

γCX : X → RHomR(C,C ⊗L
R X)

is an isomorphism in D(R).

(2) The Bass Class with respect to C is the full subcategory BC(R) ⊆ Db(R) such that a complex

Y is in BC(R) if and only if RHomR(C, Y ) ∈ Db(R) and the natural morphism

ξCY : C ⊗L
R RHomR(C, Y )→ Y

is an isomorphism in D(R).

For a generalized diagramatic version of the next result, see Theorem 3.1.10. It was first

proved for modules by Foxby [8].

Fact 2.4.5 (Foxby Equivalence [7, Theorem 4.6]). Let X,Y ∈ Db(R).
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(a) One has X ∈ AC(R) if and only if C ⊗L
R X ∈ BC(R).

(b) One has Y ∈ BC(R) if and only if RHomR(C, Y ) ∈ AC(R).

Note that Theorem 3.1.9 is a generalization of the following result.

Fact 2.4.6 ([7, Proposition 4.4]). Let X ∈ Db(R).

(a) If fdR(X) <∞ (e.g., pdR(X) <∞), then X ∈ AC(R).

(b) If idR(X) <∞, then X ∈ BC(R).

Definition 2.4.7. A local ring R is Gorenstein if idR(R) <∞. A (not necessarily local) ring R is

Gorenstein if Rp is a Gorenstein local ring for all p ∈ Spec(R).

Example 2.4.8. Let k be a field. The ring k[[X]] is a Gorenstein local ring.

Fact 2.4.9 ([7, Corollary 8.6]). A local ring is Gorenstein if and only if it has a dualizing complex

and the only semidualizing module is the ring itself.
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3. HOMOLOGICAL DIMENSIONS AND SEMIDUALIZING

COMPLEXES

Throughout this chapter R and S are commutative noetherian rings with identity and C is

a semidualizing R-complex.

3.1. C-Homological Dimensions for Complexes

In this section we define the PC-projective, FC-projective, and IC-injective dimensions and

build their foundations.

Definition 3.1.1. Let X ∈ Db(R).

(1) The PC-projective dimension of X is defined as

PC- pdR(X) = sup(C) + pdR(RHomR(C,X)).

(2) The FC-projective dimension of X is defined as

FC- pdR(X) = sup(C) + fdR(RHomR(C,X)).

(3) The IC-injective dimension of X is defined as

IC- idR(X) = sup(C) + idR(C ⊗L
R X).

Let PC(R), FC(R), and IC(R) denote the full subcategories of Db(R) of all complexes of finite

C-projective, C-flat, and C-injective dimension, respectively.

Remark 3.1.2. Let X ∈ Db(R). Observe that sup(C) <∞. Hence PC- pdR(X) <∞ if and only

if pdR(RHomR(C,X)) <∞. If PC- pdR(X) <∞, then Fact 2.4.6(a) implies that RHomR(C,X) ∈

AC(R) and Foxby Equivalence (2.4.5) implies that X ∈ BC(R). Similarly, FC- pdR(X) < ∞ if

and only if fdR(RHomR(C,X)) < ∞. If FC- pdR(X) < ∞, then X ∈ BC(R). Also we have

IC- idR(X) <∞ if and only if idR(C ⊗L
R X) <∞. Hence, if IC- idR(X) <∞, then X ∈ AC(R).
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Remark 3.1.3. Let X ∈ Db(R). Note that when C = R we have that PC- pdR(X) = sup(R) +

pdR(RHomR(R,X)) = pdR(X). Similarly in this case FC- pdR(X) = fdR(X) and IC- idR(X) =

idR(X).

Remark 3.1.4. Let M be an R-module. When C is a semidualizing R-module, Takahashi and

White [27, Theorem 2.11], using the definition described in Section 1.2, showed that PC- pdR(X) =

pdR(RHomR(C,X)). Since sup(C) = 0 in this case, Definition 3.1.1(1) shows that our definition is

consistent with the one from [27]. In a similar way, it can be shown that IC- id recovers Takahashi

and White’s definition in this case.

The next result compares FC- pd with PC- pd.

Proposition 3.1.5. Let X ∈ Db(R). Then

FC- pdR(X) 6 PC- pdR(X) 6 FC- pdR(X) + dim(R).

In particular if dim(R) <∞, then we have PC- pdR(X) <∞ if and only if FC- pdR(X) <∞.

Proof: Assume that PC- pdR(X) = n <∞. Then

fdR(RHomR(C,X)) 6 pdR(RHomR(C,X)) = n− sup(C) <∞.

It now follows that FC- pdR(X) 6 n.

Next assume that dim(R) <∞ and FC- pdR(X) = n <∞. By [19] we have

pdR(RHomR(C,X)) 6 fdR(RHomR(C,X)) + dim(R) = n− sup(C) + dim(R).

Therefore PC- pdR(X) 6 dim(R) + n.

The following three results are versions of [27, Theorem 2.11] involving a semidualizing

complex.

Proposition 3.1.6. Let X ∈ Db(R). Then we have

PC- pdR(C ⊗L
R X) = sup(C) + pdR(X).
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In particular, PC- pdR(C ⊗L
R X) <∞ if and only if pdR(X) <∞.

Proof: Let n ∈ Z. We prove that PC- pdR(C ⊗L
R X) 6 n if and only if sup(C) + pdR(X) 6 n.

For the forward implication assume that PC- pdR(C⊗L
RX) 6 n. Then by Definition 3.1.1(1)

we have

sup(C) + pdR(RHomR(C,C ⊗L
R X)) = PC- pdR(C ⊗L

R X) 6 n.

Thus pdR(RHomR(C,C ⊗L
R X)) < ∞. Fact 2.4.6(a) implies RHomR(C,C ⊗L

R X) ∈ AC(R). By

Foxby Equivalence (2.4.5) we have C ⊗L
R X ∈ BC(R) and X ∈ AC(R). Therefore we have X '

RHomR(C,C ⊗L
R X) and pdR(RHomR(C,C ⊗L

R X)) = pdR(X). Thus sup(C) + pdR(X) 6 n.

For the reverse implication assume that sup(C) + pdR(X) 6 n. In particular, we have that

pdR(X) < ∞. Therefore X ∈ AC(R) and X ' RHomR(C,C ⊗L
R X). It follows that pdR(X) =

pdR(RHomR(C,C ⊗L
R X). By Definition 3.1.1(1) we have

PC- pdR(C ⊗L
R X) = sup(C) + pdR(RHomR(C,C ⊗L

R X)) = sup(C) + pdR(X) 6 n.

The next result is proven like Proposition 3.1.6.

Proposition 3.1.7. Let X ∈ Db(R). Then we have

FC- pdR(C ⊗L
R X) = sup(C) + fdR(X).

In particular, FC- pdR(C ⊗L
R X) <∞ if and only if fdR(X) <∞.

The following result is proven dually to Proposition 3.1.6. We include this proof to show

that the proofs of the IC- id results are dual arguments to the PC- pd results. Throughout the rest

of this chapter we will prove the PC- pd results and leave the FC- pd and IC- id results left to the

interested reader.

Proposition 3.1.8. Let X ∈ Db(R). Then we have

IC- idR(RHomR(C,X)) = sup(C) + idR(X).
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In particular, IC- idR(RHomR(C,X)) <∞ if and only if idR(X) <∞.

Proof: Let n ∈ Z. We prove that IC- idR(C ⊗L
R X) 6 n if and only if sup(C) + idR(X) 6 n.

For the forward implication assume that IC- idR(RHomR(C,X)) 6 n. Then by Definition

3.1.1(3) we have

sup(C) + idR(C ⊗L
R RHomR(C,X)) = IC- idR(RHomR(C,X)) 6 n.

Thus idR(C ⊗L
R RHomR(C,X)) < ∞. Fact 2.4.6(b) implies C ⊗L

R RHomR(C,X) ∈ BC(R). By

Foxby Equivalence (2.4.5) we have RHomR(C,X) ∈ AC(R) and X ∈ BC(R). Therefore we have

X ' C ⊗L
R RHomR(C,X) and idR(C ⊗L

R RHomR(C,X)) = idR(X). Thus sup(C) + idR(X) 6 n.

For the reverse implication assume that sup(C) + idR(X) 6 n. In particular, we have that

idR(X) < ∞. Therefore X ∈ BC(R) and X ' C ⊗L
R RHomR(C,X). It follows that idR(X) =

idR(C ⊗L
R RHomR(C,X)). By Definition 3.1.1(3) we have

IC- idR(RHomR(C,X)) = sup(C) + idR(C ⊗L
R RHomR(C,X)) = sup(C) + idR(X) 6 n.

Next, we have Theorem 1.2.1 from the introduction.

Theorem 3.1.9. Let X ∈ Db(R).

(a) We have PC- pdR(X) < ∞ if and only if there exists Y ∈ Db(R) such that pdR(Y ) < ∞ and

X ' C⊗L
RY . When these conditions are satisfied, one has Y ' RHomR(C,X) and X ∈ BC(R).

(b) We have FC- pdR(X) < ∞ if and only if there exists Y ∈ Db(R) such that fdR(Y ) < ∞ and

X ' C⊗L
RY . When these conditions are satisfied, one has Y ' RHomR(C,X) and X ∈ BC(R).

(c) We have IC- idR(X) < ∞ if and only if there exists Y ∈ Db(R) such that idR(Y ) < ∞ and

X ' RHomR(C, Y ). When these conditions are satisfied, one has Y ' C⊗L
RX and X ∈ AC(R).

Proof: (a) For the forward implication assume that PC- pdR(X) < ∞. Then by Definition

3.1.1(1) we have pdR(RHomR(C,X)) = PC- pdR(X) − sup(C) < ∞. Fact 2.4.6(a) implies that
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RHomR(C,X) ∈ AC(R) and Foxby Equivalence implies that X ∈ BC(R). Thus X ' C ⊗L
R

RHomR(C,X) ' C ⊗L
R Y with Y = RHomR(C,X).

For the reverse implication assume that there exists a Y ∈ Db(R) such that pdR(Y ) < ∞

and X ' C ⊗L
R Y . Then Fact 2.4.6(a) implies that Y ∈ AC(R) and hence we have

Y ' RHomR(C,C ⊗L
R Y ) ' RHomR(C,X).

It now follows by Definition 3.1.1(1) that PC- pdR(X) <∞.

Parts (b) and (c) are proven similarly.

The previous results give rise to a generalized Foxby Equivalence.

Theorem 3.1.10 (Foxby Equivalence). There is a commutative diagram

IC(R) I(R)

AC(R) BC(R)

F(R) FC(R)

P(R) PC(R)

C ⊗L
R −

RHomR(C,−)

where the vertical arrows are full embeddings, and the unlabeled horizontal arrows are quasi-inverse

equivalences of categories.

The next result shows how PC- pd and FC- pd transfer along a ring homomorphism of finite

flat dimension. Note that if ϕ : R → S is a ring homomorphism of finite flat dimension, then

C ⊗L
R S is a semidualizing S-complex by [7, Theorem 5.6] and [11, Theorem II(a)].

Proposition 3.1.11. Let ϕ : R → S be a ring homomorphism of finite flat dimension and X ∈

Db(R). Then one has

(a) PC⊗L
RS

- pdS(X ⊗L
R S)− sup(C ⊗L

R S) 6 PC- pdR(X)− sup(C),

(b) FC⊗L
RS

- pdS(X ⊗L
R S)− sup(C ⊗L

R S) 6 FC- pdR(X)− sup(C),

(c) PC⊗L
RS

- pdS(X ⊗L
R S) 6 PC- pdR(X), and
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(d) FC⊗L
RS

- pdS(X ⊗L
R S) 6 FC- pdR(X).

Equality holds when ϕ is faithfully flat.

Proof: (a) and (c): Assume that PC- pdR(X)−sup(C) = n <∞. Then pdR(RHomR(C,X)) = n

and hence by base change we have

pdS(RHomR(C,X)⊗L
R S) 6 pdR(RHomR(C,X)) = n.

Observe by tensor-evaluation (2.3.16) and Hom-tensor adjointness, there are isomorphisms

RHomR(C,X)⊗L
R S ' RHomR(C,X ⊗L

R S)

' RHomR(C,RHomS(S,X ⊗L
R S))

' RHomS(C ⊗L
R S,X ⊗L

R S).

Therefore pdS(RHomS(C ⊗L
R S,X ⊗L

R S)) 6 n. Thus we have

PC⊗L
RS

- pdS(X ⊗L
R S)− sup(C ⊗L

R S) 6 n = PC- pdR(X)− sup(C)

that is, the inequality in (a) holds.

Observe that since fdR(S) <∞, we have S ∈ AC(R) and hence sup(C ⊗L
R S) 6 sup(C) by

[7, Proposition 4.8(a)]. Hence the inequality in (c) follows from part (a).

Now assume that ϕ is faithfully flat. Therefore one has that sup(C⊗L
R S) = sup(C). Hence

it suffices to show that PC⊗L
RS

- pdR(X⊗L
R S) > PC- pdR(X). Assume that PC⊗L

RS
- pdR(X⊗L

R S) =

n <∞. Then

pdS(RHomR(C,X)⊗L
R S) = pdS(RHomS(C ⊗L

R S,X ⊗L
R S)) = n− sup(C ⊗L

R S).

Therefore we have pdS(RHomR(C,X)⊗L
R S) 6 n− sup(C). Observe that if P is an R-module such

that P ⊗R S is projective over S, then P is projective over R by [18, Theorem 9.6] and [19]. A
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standard truncation argument thus shows that

pdR(RHomR(C,X)) 6 pdS(RHomR(C,X)⊗L
R S) = n− sup(C)

as desired.

Parts (d) and (b) are proven similarly.

Corollary 3.1.12. Let X ∈ Db(R), and let U ⊂ R be a multiplicatively closed subset. Then there

are inequalities

(a) PU−1C- pdU−1R(U−1X) 6 PC- pdR(X),

(b) FU−1C- pdU−1R(U−1X) 6 FC- pdR(X),

(c) IU−1C- idU−1R(U−1X) 6 IC- idR(X),

(d) PU−1C- pdU−1R(U−1X)− sup(U−1C) 6 PC- pdR(X)− sup(C),

(e) FU−1C- pdU−1R(U−1X)− sup(U−1C) 6 FC- pdR(X)− sup(C), and

(f) IU−1C- idU−1R(U−1X)− sup(U−1C) 6 IC- idR(X)− sup(C).

Proof: The map ϕ : R→ U−1R is flat. Hence (a), (b), (d), and (e) follow from Proposition 3.1.11.

Parts (c) and (f) are proven similarly to Proposition 3.1.11.

Remark 3.1.13. Observe that to obtain the inequality in Corollary 3.1.12 we need the inequality

sup(U−1C) 6 sup(C) to hold. If we had defined PC- pdR(X) as inf(C) + pdR(RHomR(C,X)),

then Corollarly 3.1.12 would not hold because inf(U−1C) 66 inf(C). This is why we choose sup(C)

instead of inf(C) in the definition of PC- pd.

The next result is a local-global principal for Bass classes.

Lemma 3.1.14. Let X ∈ Db(R). The following conditions are equivalent:

(i) X ∈ BC(R);

(ii) U−1X ∈ BU−1C(U−1R) for all multiplicatively closed subsets U ⊂ R;
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(iii) Xp ∈ BCp(Rp) for all p ∈ Spec(R);

(iv) Xp ∈ BCp(Rp) for all p ∈ Supp(R);

(v) Xm ∈ BCm(Rm) for all m ∈ Max(R); and

(vi) Xm ∈ BCm(Rm) for all m ∈ Supp(R) ∩Max(R).

Proof: The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (vi) and (iii) ⇒ (v) ⇒ (vi) follow from

definitions. We prove (v) ⇒ (i) and (vi) ⇒ (v).

For the implication (v) ⇒ (i), assume Xm ∈ BCm(Rm) for all m ∈ Max(R). We use the

following commutative diagram in D(R):

Cm ⊗L
Rm

RHomR(C,X)m
[
C ⊗L

R RHomR(C,X)
]
m

Cm ⊗L
Rm

RHomRm(Cm, Xm) Xm.

'

' (ξCX)m

ξCm
Xm

As Xm ∈ BCm(Rm) for all m ∈ Max(R), the morphism ξCm
Xm

is an isomorphism for all m ∈ Max(R).

Commutativity of the above diagram now forces (ξCX)m to be an isomrophism for all m ∈ Max(R).

Therefore ξCX is an isomorphism.

It remains to show that RHomR(C,X) ∈ Db(R). As RHomR(C,X) ∈ D−(R), it suffices to

show that RHomR(C,X) ∈ D+(R). By assumption Xm ∈ BCm(Rm). Then for all m ∈ Max(R) we

have

inf(RHomR(C,X)m) = inf(RHomRm(Cm, Xm))

> inf(Xm)− sup(Cm)

> inf(X)− sup(C)

where the equality is by the isomorphism RHomR(C,X)m ' RHomRm(Cm, Xm), the first inequality

is by [7, Proposition 4.8(c)], and the second inequality is by properties of localization. Thus

inf(RHomR(C,X)) > inf(X)− sup(C) > −∞.

For the implication (vi) ⇒ (v), assume Xm ∈ BCm(Rm) for all m ∈ SuppR(X) ∩Max(R).

Then for all m ∈ Max(R) \ SuppR(X) we have Xm ' 0 ∈ BCm(Rm), as desired.

31



The following is proven similarly to Lemma 3.1.14

Lemma 3.1.15. Let X ∈ Db(R). The following conditions are equivalent:

(i) X ∈ AC(R);

(ii) U−1X ∈ AU−1C(U−1R) for all multiplicatively closed subsets U ⊂ R;

(iii) Xp ∈ ACp(Rp) for all p ∈ Spec(R);

(iv) Xp ∈ ACp(Rp) for all p ∈ Supp(R);

(v) Xm ∈ ACm(Rm) for all m ∈ Max(R); and

(vi) Xm ∈ ACm(Rm) for all m ∈ Supp(R) ∩Max(R).

Proposition 3.1.16. Let X ∈ Db(R) and let n ∈ Z. Consider the following conditions:

(i) PC- pdR(X)− sup(C) 6 n;

(ii) PU−1C- pdU−1R(U−1X)− sup(U−1C) 6 n for each multiplicatively closed subset U ⊂ R;

(iii) PCp- pdRp
(Xp)− sup(Cp) 6 n for each p ∈ Spec(R); and

(iv) PCm- pdRm
(Xm)− sup(Cm) 6 n for each m ∈ Max(R).

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Furthermore, if X ∈ Df
b(R), then (iv) ⇒ (i) and

PC- pdR(X)− c = sup

 PU−1C- pdU−1R(U−1X)

− sup(U−1C)

∣∣∣∣ U ⊂ R is multiplicatively closed


= sup{PCp- pdRp

(Xp)− sup(Cp) | p ∈ Spec(R)}

= sup{PCm- pdRm
(Xm)− sup(Cm) | m ∈ Max(R)}

where c = sup(C).

Proof: Observe that (i) ⇒ (ii) follows from Proposition 3.1.11. The implications (ii) ⇒ (iii) ⇒

(iv) follow from properties of localization. For the rest of the proof assume that X ∈ Df
b(R).
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For the implication (iv) ⇒ (i) assume that PCm- pdRm
(Xm) − sup(Cm) 6 n < ∞ for all

m ∈ Max(R). Then by Remark 3.1.2 we have Xm ∈ BCm(Rm) for all m ∈ Max(R). Therefore

Lemma 3.1.14 implies that X ∈ BC(R) and hence RHomR(C,X) ∈ Db(R). Now

PC- pdR(X)− sup(C) = pdR(RHomR(C,X))

= sup
m∈Max(R)

(pdRm
(RHomRm(Cm, Xm)))

6 n

where the second equality is by [4, Proposition 5.3P].

For the equalities, assume first that PC- pdR(X)− sup(C) = n <∞. Then each displayed

supremum in the statement is at most n. If any of the supremums are strictly less than n, then the

above equivalence will force PC- pdR(X) − sup(C) < n, contradicting our assumption. A similar

argument establishes the desired equalities if we assume any of the supremums equal n.

Finally if any of the displayed values in the statement are infinite, then the above equiva-

lences forces the other values to be infinite as well.

To prove the implication (iv) ⇒ (i) in Proposition 3.1.16, the condition X ∈ Df
b(R) is

required; see [4, Proposition 5.3P]. However the flat and injective versions only require X ∈ Db(R);

see [4, Propositions 5.3F, and 5.3I]. Thus the next two results are proven similarly to Proposition

3.1.16.

Proposition 3.1.17. Let X ∈ Db(R) and let n ∈ Z. The following conditions are equivalent:

(i) FC- pdR(X)− sup(C) 6 n;

(ii) FU−1C- pdU−1R(U−1X)− sup(U−1C) 6 n for each multiplicatively closed subset U ⊂ R;

(iii) FCp- pdRp
(Xp)− sup(Cp) 6 n for each prime ideal p ⊂ R; and

(iv) FCm- pdRm
(Xm)− sup(Cm) 6 n for each maximal ideal m ⊂ R.
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Furthermore

FC- pdR(X)− c = sup

 FU−1C- pdU−1R(U−1X)

− sup(U−1C)

∣∣∣∣ U ⊂ R is multiplicatively closed


= sup{FCp- pdRp

(Xp)− sup(Cp) | p ∈ Spec(R)}

= sup{FCm- pdRm
(Xm)− sup(Cm) | m ∈ Max(R)}

where c = sup(C).

Proposition 3.1.18. Let X ∈ Db(R) and let n ∈ Z. The following conditions are equqivalent:

(i) IC- idR(X)− sup(C) 6 n;

(ii) IU−1C- idU−1R(U−1X)− sup(U−1C) 6 n for each multiplicatively closed subset U ⊂ R;

(iii) ICp- idRp(Xp)− sup(Cp) 6 n for each prime ideal p ⊂ R; and

(iv) ICm- idRm(Xm)− sup(Cm) 6 n for each maximal ideal m ⊂ R.

Furthermore

IC- idR(X)− c = sup

 idU−1R(U−1C ⊗L
U−1R U

−1X)

− sup(U−1C)

∣∣∣∣ U ⊂ R is multiplicatively closed


= sup{idRp - idRp(Cp ⊗L

Rp
Xp)− sup(Cm) | p ∈ Spec(R)}

= sup{idRm - idRm(Cm ⊗L
Rm

Xm)− sup(Cm) | m ∈ Max(R)}

where c = sup(C).

Remark 3.1.19. When C is a semidualizing R-module, e.g., C = R, we recover the known local-

global conditions for PC- pd, FC- pd, IC- id, pd, fd, and id.

3.2. Stability Results

In this section we investigate the behaviour of PC- pd, FC- pd, and IC- id after applying

the functors ⊗L and RHom.

Proposition 3.2.1. Let X,Y ∈ Db(R). The following inequalities hold:
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(a) PC- pdR(X ⊗L
R Y ) 6 PC- pdR(X) + pdR(Y );

(b) IC- idR(RHomR(X,Y )) 6 FC- pdR(X) + idR(Y ); and

(c) FC- pdR(X ⊗L
R Y ) 6 FC- pdR(X) + fdR(Y ).

Proof: (a) Without loss of generality we assume that PC- pdR(X) < ∞ and pdR(Y ) < ∞. It

now follows that PC- pdR(X) = sup(C) + pdR(RHomR(C,X)). By [4, Theorem 4.1 (P)] we have

that

pdR(RHomR(C,X)⊗L
R Y ) 6 pdR(RHomR(C,X)) + pdR(Y ).

Since pdR(Y ) < ∞ (hence fdR(Y ) < ∞) we get tensor-evaluation (2.3.16) is an isomorphism in

D(R). That is, RHomR(C,X ⊗L
R Y ) ' RHomR(C,X)⊗L

R Y . Hence we have

pdR(RHomR(C,X ⊗L
R Y )) 6 pdR(RHomR(C,X)) + pdR(Y ).

By adding a sup(C) to each side we see that PC- pdR(X ⊗L
R Y ) 6 PC- pdR(X) + pdR(Y ).

(b) and (c) are proven similarly to (a).

Corollary 3.2.2. Let X ∈ Db(R). The following inequalities hold:

(a) PC- pdR(X ⊗L
R RHomR(C, Y )) 6 PC- pdR(X) + PC- pdR(Y )− sup(C);

(b) IC- idR(RHomR(X,C ⊗L
R Y )) 6 FC- pdR(X) + IC- idR(Y )− sup(C); and

(c) FC- pdR(X ⊗L
R RHomR(C, Y )) 6 FC- pd(RX) + FC- pdR(Y )− sup(C).

Proof: (a) By Proposition 3.2.1(a) we have that PC- pdR(X⊗L
RRHomR(C, Y )) 6 PC- pdR(X) +

pdR(RHomR(C, Y )). Add and subtract sup(C) to the right hand side to obtain the result.

(b) and (c) are proven similarly.

The next result is a version of Fact 2.3.18 involving a semidualizing complex.

Proposition 3.2.3. Let X,Y ∈ Db(R).

(a) If idR(Y ) <∞, then FC- pdR(RHomR(X,Y )) 6 IC- idR(X) + sup(Y ).

(b) If fdR(Y ) <∞, then IC- idR(X ⊗L
R Y ) 6 IC- idR(X)− inf(Y ).
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Proof: (a) Assume that idR(Y ) <∞. By Defintion 3.1.1 we get that FC- pdR(RHomR(X,Y )) =

sup(C)+fdR(RHomR(C,RHomR(X,Y ))). Hom-Tensor adjointness implies there is an isomorphism

RHomR(C,RHomR(X,Y )) ' RHomR(C ⊗L
R X,Y ).

Therefore fdR(RHomR(C,RHomR(X,Y )) = fdR(RHomR(C ⊗L
R X,Y )). Hence by Fact 2.3.18(a)

we have that

fdR(RHomR(C ⊗L
R X,Y ) 6 idR(C ⊗L

R X) + sup(Y ).

By adding sup(C) to each side of the above inequality we obtain the desired result.

(b) is proven similarly.

Proposition 3.2.4. Let X ∈ Db(R). The following conditions are equivalent:

(i) FC- pdR(X) <∞;

(ii) IC- idR(RHomR(X,Y )) <∞ for all Y ∈ Db(R) such that idR(Y ) <∞; and

(iii) IC- idR(RHomR(X,E)) <∞ for some faithfully injective R-module E.

Proof: (i)⇒(ii) This follows from Proposition 3.2.1(b).

(ii)⇒(iii) Since E is a faithfully injective module it has idR(E) = 0 < ∞. Therefore (ii)

implies that IC- idR(RHomR(X,E)) <∞.

(iii)⇒(i) Assume there is a faithfully injective module E so that IC- idR(RHomR(X,E)) <

∞. Then by Definition 3.1.1(3) IC- idR(RHomR(X,E)) = sup(C) + idR(C⊗L
RRHomR(X,E)). By

Hom-evaluation (2.3.16) there is an isomorphism

RHomR(RHomR(C,X), E) ' C ⊗L
R RHomR(X,E).

It follows that idR(C ⊗L
R RHomR(X,E)) = idR(RHomR(RHomR(C,X), E)) < ∞. Therefore by

Lemma 2.3.19(a) fdR(RHomR(C,X)) <∞. It now follows that FC- pdR(X) <∞.

The following three propositions are proven similarly to Proposition 3.2.4.

Proposition 3.2.5. Let X ∈ Db(R). The following conditions are equivalent:
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(i) FC- pdR(X) <∞;

(ii) FC- pdR(X ⊗L
R Y ) <∞ for all Y ∈ Db(R) such that fdR(Y ) <∞;

(iii) FC- pdR(X ⊗L
R F ) <∞ for some faithfully flat R-module F .

Proposition 3.2.6. Let X ∈ Db(R). The following conditions are equivalent:

(i) IC- idR(X) <∞;

(ii) FC- pdR(RHomR(X,Y )) <∞ for all Y ∈ Db(R) such that idR(Y ) <∞;

(iii) FC- pdR(RHomR(X,E)) <∞ for some faithfully injective R-module E.

Proposition 3.2.7. Let X ∈ Db(R). The following conditions are equivalent:

(i) IC- idR(X) <∞;

(ii) IC- idR(X ⊗L
R Y ) <∞ for all Y ∈ Db(R) such that fdR(Y ) <∞;

(iii) IC- idR(X ⊗L
R F ) <∞ for some faithfully flat R-module F .

Corollary 3.2.8. Let X ∈ Db(R). If there exists a dualizing complex D and FC- pdR(X) < ∞,

then IC- idR(X†) <∞ where X† = RHomR(X,D).

Proof: Since D is a dualizing complex, it has finite injective dimension. Therefore the result

follows from Proposition 3.2.4.

The last result of this section establishes Theorem 1.2.2 from the introduction.

Theorem 3.2.9. Assume R has a dualizing complex D and let X ∈ Db(R). Then IC- idR(X) <∞

if and only if FC†- pdR(X) <∞ where C† = RHomR(C,D).

Proof: For the forward implication assume that IC- idR(X) < ∞. Then set J = C ⊗L
R X.

Since IC- idR(X) < ∞ we have that J has finite injective dimension. By Remark 3.1.2 we have

X ∈ AC(R). This explains the first isomorphism in the following display:

X ' RHomR(C, J) ' RHomR(RHomR(C†, D), J) ' C† ⊗L
R RHomR(D,J).
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The second isomorphism is from the isomorphism C ' C††, and the third is by Hom-evaluation

(2.3.16). Observe that since idR(D) <∞ and idR(J) <∞ we have that fdR(RHomR(D,J)) <∞

by Fact 2.3.18(a). Thus, it follows that FC†- pdR(X) <∞ by the displayed isomorphisms.

For the reverse implication assume that FC†- pdR(X) <∞. Then we can write X ' C†⊗L
RF

where F = RHomR(C†, X) and fdR(F ) <∞. We then have the following isomorphisms:

X ' C† ⊗L
R F = RHomR(C,D)⊗L

R F ' RHomR(C,D ⊗L
R F )

where the second isomorphism is by tensor-evaluation (2.3.16). Since idR(D) < ∞ and fdR(F ) <

∞ we have that idR(D ⊗L
R F ) < ∞ by Fact 2.3.18(b). By Theorem 3.1.9(c) we conclude that

IC- idR(X) <∞ as desired.

3.3. Using Semidualizing Complexes to Detect Gorenstein Rings

The next result fully answers the question of Takahashi and White discussed in the intro-

duction.

Theorem 3.3.1. Let (R,m, k) be a local ring. If there is an R-complex X ∈ Db(R) with finite

depth, FC- pdR(X) <∞ and IC- idR(X) <∞, then R is Gorenstein.

Proof: Case 1: depthR(X) <∞ and R has a dualizing complex D.

We first observe that by [10, Theorem 4.6] we have that the following holds:

depthR(RHomR(C,X)) = widthR(C) + depthR(X) <∞. (?)

Note that depthR(X) is finite by assumption, and widthR(C) is finite by Nakayama’s Lemma, as

C is homologically finite: see [9, Lemma 2.1].

Set C† := RHomR(C,D). The assumption IC- idR(X) < ∞ with Theorem 3.2.9 implies

FC†- pdR(X) <∞. Hence by Theorem 3.1.9(b) there exist R-complexes F,G of finite flat dimension

such that C ⊗L
R F ' X ' C† ⊗L

R G. Since G has finite flat dimension, [7, Proposotion 4.4] implies

G ∈ AC†(R), which explains the first isomorphism in the following display:

G ' RHomR(C†, C† ⊗L
R G) ' RHomR(C†, C ⊗L

R F ) ' RHomR(C†, C)⊗L
R F.
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The last isomorphism is by tensor evaluation [4, Lemma 4.4(F)].

Theorem 3.1.9(b) implies F ' RHomR(C,X). By (?) we have depthR(F ) <∞. It follows

from [9, Proposition 2.8] that k⊗L
RF 6' 0. Set U := RHomR(C†, C). Since C and C† are in Df

b(R),

we have U ∈ Df
−(R).

Claim A: We have U ∈ Df
b(R).

To prove this claim it suffices to show that U ∈ D+(R). Assume by way of contradiction

that inf(U) = −∞. Then by [10, 4.5] we know that inf(k ⊗L
R U) = −∞. By tensor cancellation

and the Künneth formula we have isomorphisms

Hn

(
k ⊗L

R (F ⊗L
R U)

) ∼= Hn

(
(k ⊗L

R F )⊗L
k (k ⊗L

R U)
)

∼=
⊕
p+q=n

Hp(k ⊗L
R F )⊗k Hq(k ⊗L

R U).

Since k ⊗L
R F 6' 0 and inf(k ⊗L

R U) = −∞ it follows that inf(k ⊗L
R (F ⊗L

R U)) = −∞. On

the other hand, since F ⊗L
R U ' G ∈ Db(R) we have k ⊗L

R (F ⊗L
R U) ' k ⊗L

R G ∈ D+(R), so

inf(k ⊗L
R (F ⊗L

R U)) > −∞, a contradiction. This establishes Claim A.

Claim B: The complex U has finite projective dimension.

To show this claim assume by way of contradiction that pdR(U) = ∞. Then because

U ∈ Df
b(R) we have sup(k ⊗L

R U) = ∞ by [4, Proposition 5.5]. As in the proof of Claim A, we

conclude that sup(k ⊗L
R (F ⊗L

R U)) = ∞. On the other hand, we have k ⊗L
R (F ⊗L

R U) ' k ⊗L
R G.

Since G has finite flat dimension, this implies that sup(k⊗L
R (F ⊗L

R U)) <∞, a contradiction. This

concludes the proof of Claim B.

Now [13, Theorem 1.4] implies that ΣnC ' C† = RHomR(C,D) for some n ∈ Z. Hence by

[12, Corollary 3.4] we deduce that R is Gorenstein. This concludes the proof of Case 1.

Case 2: suppR(X) = {m}.

For the proof of Case 2, first observe that R is Gorenstein if and only if R̂ is Gorenstein

where R̂ is the m-adic completion of R. Since R̂ has a dualizing complex, by Case 1 it suffices to

show that

(1) R̂⊗L
R X ∈ Db(R̂),

(2) R̂⊗L
R C is a semidualizing R̂-complex,
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(3) F
R̂⊗L

RC
- pd

R̂
(R̂⊗L

R X) <∞,

(4) I
R̂⊗L

RC
- id

R̂
(R̂⊗L

R X) <∞, and

(5) depth
R̂

(R̂⊗L
R X) <∞.

Observe that (1) follows from the fact that R̂ is flat over R. Items (2) and (3) follow from

[7, Lemma 2.6] and Proposition 3.1.11(d), respectively.

To prove (4) note that the first equality in the next sequence is by definition:

I
R̂⊗L

RC
- id

R̂
(R̂⊗L

R X) = id
R̂

(
(R̂⊗L

R C)⊗L
R̂

(R̂⊗L
R X)

)
+ sup(R̂⊗L

R C)

= id
R̂

(
R̂⊗L

R (C ⊗L
R X)

)
+ sup(R̂⊗L

R C).

The second equality is by tensor cancellation. From the condition IC- idR(X) < ∞, we have

idR(C ⊗L
R X) < ∞ by definition. Note that m ∈ Spec(R) = suppR(C) by [23, Proposition 6.6].

Therefore Fact 2.3.23 implies

suppR(C ⊗L
R X) = suppR(C) ∩ suppR(X) = {m}.

Hence by [21, Lemma 3.4] the complex R̂ ⊗L
R (C ⊗L

R X) has finite injective dimension over R̂, so

(4) holds.

For the proof of (5) consider the following sequence:

depth
R̂

(R̂⊗L
R X) = − sup

(
RHom

R̂
(k, R̂⊗L

R X)
)

= − sup
(
RHom

R̂
(R̂⊗L

R k, R̂⊗L
R X)

)
= − sup

(
R̂⊗L

R RHomR(k,X)
)

= − sup (RHomR(k,X))

= depthR(X)

<∞.

The second equality is because k ∼= R̂ ⊗L
R k, and the fourth equality is because R̂ is faithfully flat

over R. This establishes (5) and concludes the proof of Case 2.

40



Case 3: general case.

Let x be a generating sequence for m, and let K = KR(x) be the Koszul complex. Then

suppR(K) = {m}. Since depthR(X) < ∞, we have that m ∈ suppR(X) by [9, Proposition 2.8].

Hence, we conclude from Fact 2.3.23 that

suppR(K ⊗L
R X) = suppR(K) ∩ suppR(X) = {m}.

By Case 2 it suffices to show that

(a) depthR(K ⊗L
R X) <∞,

(b) K ⊗L
R X ∈ Db(R),

(c) FC- pdR(K ⊗L
R X) <∞, and

(d) IC- idR(K ⊗L
R X) <∞.

Item (a) follows from [9, Proposition 2.8]. For (b), use the conditions pdR(K) < ∞ and

X ∈ Db(R). Items (c) and (d) follow from Proposition 3.2.5 and Proposition 3.2.7. This concludes

the proof of Case 3.

The following result is Theorem 1.2.3 from the introduction.

Theorem 3.3.2. If there exists an R-complex X ∈ Db(R) such that FC- pdR(X) < ∞ and

IC- idR(X) <∞, then Rp is Gorenstein for all p ∈ suppR(X).

Proof: By Theorem 3.3.1 it suffices to show the following:

(i) Xp ∈ Db(Rp),

(ii) Cp is a semidualizing Rp-complex,

(iii) FCp- pdRp
(Xp) <∞,

(iv) ICp- idRp(Xp) <∞, and

(v) depthRp
(Xp) <∞.
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Item (i) follows from the fact that Rp is a flat over R. Item (ii) follows from [7, Lemma

2.5]. Items (iii) and (iv) are by Corollary 3.1.12.

(5) As p ∈ suppR(X), we have pRp ∈ suppRp
(Xp) by [23, Proposition 3.6]. Since pRp is the

maximal ideal of the local ring Rp, we deduce from [9, Proposition 2.8] that depthRp
(Xp) < ∞.
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