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ABSTRACT

The objective of this dissertation was to determine the class of domains that

are both almost Dedekind and atomic. To investigate this question we constructed

a global object called the norm, and used it to determine properties that a domain

must have to be both atomic and almost Dedekind. Additionally we use topological

notions on the spectrum of a domain to determine atomicity. We state some theorems

with regard to ACCP and class groups.

The lemmas and theorems in this dissertation answer in part the objective. We

conclude with a chapter of future study that aims to approach a complete answer to

the objective.
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CHAPTER 1. BACKGROUND

In this dissertation we will explore factorization in almost Dedekind domains.

An almost Dedekind domain is a generalization of a Dedekind domain. There are

several equivalent ways of defining a Dedekind domain, and in this paper we will

focus our attention on two of these definitions. In the first two chapters we will

provide the reader with background and definitions. We will motivate the study of

factorization in almost Dedekind domains by discussing factorization in Dedekind

domains. We will always assume R is commutative ring with identity.

1.1. Dedekind domains

Definition 1.1.1. We say an integral domain D is Dedekind if every proper nonzero

ideal of D factors (uniquely) as a product of prime ideals.

Now while this definition gives a description of how Dedekind domains behave

with respect to ideal factorization, we will be more interested in how domains behave

with respect to factorization on an elemental level.

Definition 1.1.2. Let D be an integral domain. We say u ∈ D is a unit if there

exists w ∈ D such that uw = 1.

Definition 1.1.3. Let D be an integral domain. We say α ∈ D is an an atom

(irreducible) if α = bc implies that b or c is a unit.

Definition 1.1.4. We say an integral domain D is atomic if every nonzero non-unital

element d ∈ D can be written as a product of atoms (irreducibles).

The ideal factorization in a Dedekind domain leads to an elemental factorization.

This leads to a well known fact (Theorem 1.1.6) about Dedekind domains.

Definition 1.1.5. A domain is atomic if every nonzero non-unit can be written as a

finite product of atoms.
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Theorem 1.1.6. Every Dedekind domain is an atomic domain.

This result about Dedekind domain motivates our study of atomicity of almost

Dedekind domains. To motivate the generalization of Dedekind domains to almost

Dedekind domains we present another definition of Dedekind, but we first introduce

the notion of Noetherian.

Definition 1.1.7. We say a domain D is Noetherian if every increasing chain of

ideals stabilizes. Equivalently a domain D is Noetherian if every ideal is finitely

generated.

We let Max(D) denote the set of maximal ideals of the domain D. A Noetherian

domain is a domain in which every non-empty set of ideals has a maximal element.

We denote the localization of D at a maximal ideal M by DM . We will discuss

localizations in more detail in the in the next section.

Definition 1.1.8. An integral domain D is Dedekind if it is Noetherian and DM is

a Noetherian valuation domain for all M ∈ Max(D).

We are now in a position to define the class of domains known as almost

Dedekind domains.

Definition 1.1.9. We say a domain D is almost Dedekind if DM is a Noetherian

valuation domain for all M ∈ Max(D).

We see that the only assumption that is dropped in this generalization is the

assumption that the domain is Noetherian. Thus a Dedekind domain is almost

Dedekind, and an almost Dedekind domain is Dedekind if and only if it is Noetherian.

We have already stated that Dedekind domains are atomic, we will give a new proof of

this fact in the third chapter. The question of atomicity in almost Dedekind domains

is not so straightforward. We will see that some almost Dedekind domains are indeed
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atomic, while others are not atomic. We will present theorems that will determine

atomicity in almost Dedekind domains. We will also discuss, paying attention to the

factorization structure, common classes of almost Dedekind domains that appear in

the literature. We will call a domain that is almost Dedekind, but not Dedekind, a

purely almost Dedekind domain. For the remainder of this dissertation D will denote

a purely almost Dedekind domain, unless otherwise stated.

Definition 1.1.10. For any commutative ring R the Krull dimension (or dimension)

of R is the maximum possible length of a chain P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn of distinct

prime ideals in R. The dimension is said to be infinite if R has arbitrarily long chains

of distinct prime ideals.

Now that we have the notion of dimension we give the classical characterization

of almost Dedekind domains.

Definition 1.1.11. We say an ideal I ⊆ R is primary if ab ∈ I and a /∈ I implies

bn ∈ I for some positive integer n.

Theorem 1.1.12. Let D be a domain. The following are equivalent.

1. D is an almost Dedekind domain.

2. D is one-dimensional and primary ideals are prime powers.

3. If I, J, and H are non-zero ideals of D such that IH = JH, then I = J . (This

is known as the cancellation law for ideals.)

Proof. See Theorems 36.4 and 36.5 in [7].

Since an almost Dedekind domain is one-dimensional it follows that all nonzero

prime ideals are maximal. Since maximal ideals are always prime, we will use the

terms maximal and prime interchangeably when we are considering almost Dedekind
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domains. It will be understood that when we say maximal ideal or prime ideal, we are

referring to an nonzero maximal ideal. In order to fully understand almost Dedekind

domains it is necessary to understand localizations and valuations domains. It is here

that we begin our journey.

1.2. Localizations

The idea of “localization” is a very powerful tool that plays a vital role in com-

mutative algebra. The fact that “locally” an almost Dedekind domain is a Noetherian

valuation domain will play a pivotal role in our analysis. A localization is essentially

a ring of fractions where the set of denominators come from a multiplicatively closed

set. (S is a closed multiplicative set if 0 /∈ S, 1 ∈ S and a, b ∈ S implies ab ∈ S.)

Since fractions have multiple representations it is necessary to define an equivalence

relation. See 15.4 in [6]. Let S be a closed multiplicatively closed set of a ring R.

Definition 1.2.1. We define R localized at S as

S−1R =

{
r

s
| r ∈ R and s ∈ S

}

along with the relation

r

s
∼ r′

s′
if and only if t(rs′ − r′s) = 0,

for some t ∈ S. We may also call S−1R the ring of fractions of R with respect to S.

We will deal mostly with localizing at a maximal ideal M , which means S =

R \M . Note maximal ideals are always prime, and the construction we present now

is true for more generally for a prime ideal. Let R be a ring with prime ideal P . Now

as P is prime S = R \P is a multiplicatively closed set. Thus we can consider S−1R.

The convention is to denote the localization at of R at P by RP .

Definition 1.2.2. A ring that has a unique maximal ideal is called a quasi-local ring.
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Proposition 1.2.3. For any commutative ring R with 1, let RP be the localization

of R at the prime ideal P .

(a) The ring RP is a quasi-local ring.

(b) If R is an integral domain, then RP is an integral domain.

(c) The prime ideals in RP are in bijective correspondence with the prime ideals of

R contained in P .

For a proof of the proposition see 15.4 in [6].

1.3. Valuation Domains and Valuations

For a given maximal ideal M of an almost Dedekind domain D, we have DM is

a Noetherian valuation domain. This will be used throughout our study. We let K?

denote the nonzero elements of K, where K is the field of fractions of D.

Definition 1.3.1. Let K be a field and K? denote the nonzero elements of K.

1. A discrete valuation on a field K is a function ν : K? → Z satisfying:

(i) ν is surjective,

(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ K?,

(iii) ν(x+ y) ≥ min{ν(x), ν(y)} for all x, y ∈ K? with x+ y 6= 0.

The subring {x ∈ K| ν(x) ≥ 0} ∪ {0} is called the valuation ring associated with ν.

2. An integral domain R is called a Noetherian valuation domain if D is the valuation

ring of a discrete valuation ν on a field of fractions of D.

Proposition 1.3.2. Suppose D is a Noetherian valuation domain with respect to the

valuation ν, and let t be any element of D with ν(t) = 1.

1. A nonzero element u ∈ D is a unit if and only if ν(u) = 0.
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2. Every nonzero element b ∈ D can be written in the form b = utn for some unit

u ∈ R and some n ≥ 0. Every nonzero element x in the field of fractions of D

can be written in the form x = utn for some unit u ∈ R and some n ∈ Z.

3. Every nonzero ideal of D is a principal ideal of the form (tn) for some n ≥ 0.

In particular, D is a Noetherian ring.

Proof. See [6].

We now state a fact that will be pivotal in our study.

Fact 1.3.3. Suppose νM(a) < νM(b), then νM(a + b) = νM(a). In other words the

minimum in 1(iii) is realized, if the elements have different valuations.

Proof. Let a = utk and let b = u′tl with k < l. Then a+ b = (u+ u′tl−k)tk and note

(u + u′tl−k) must be a unit, else u ∈ M which is impossible. Thus νM(a + b) = k =

νM(a).

Theorem 1.3.4. The following properties of a ring D are equivalent:

1. D is a discrete valuation domain;

2. R is a PID with a unique maximal ideal P 6= 0;

3. R is a UFD with a unique (up to associates) irreducible element t;

4. R is a Noetherian integral domain that is also a local ring whose unique maximal

ideal is nonzero and principal;

5. R is a Noetherian, integrally closed, integral domain that is also a local ring of

dimension 1.

For proofs of the proposition and theorem see 16.2 in [6]. Let D be an almost

Dedekind domain with Max(D) denoting the set of maximal ideals of D. Then for

6



all M ∈ Max(D) there exists a valuation νM : DM → Z. We will call these valuations

local valuations. Furthermore u is a unit in DM if u /∈M , that is νM(u) = 0

Theorem 1.3.5. For any commutative ring R with maximal ideals Max(R). Then

R =
⋂

M∈Max(R)

RM .

Proof. See [7].

From the theorem and definition of localizing at a prime we get the following

facts.

Theorem 1.3.6. Let D be an almost Dedekind domain with field of fractions K, and

let a ∈ K.

1. u ∈ D is a unit only if u is not in any maximal ideal. That is νM(u) = 0 for

all M ∈ Max(D).

2. a ∈ D if and only if νM(a) ≥ 0 for all M ∈ Max(D).

Proof. The first part follows directly. For 2, we observe a ∈ D if and only if for all

M we have a ∈ DM for all M ∈ Max(D). Which is if and only if νM(a) ≥ 0 for all

M ∈ Max(D).

We will be using the local valuations throughout our study.

1.4. Class Groups

A Dedekind domain is a unique factorization domain (UFD) if and only if it

is a principal ideal domain (PID) (see [6]). However, not all Dedekind domains are

UFDs. In order to describe how far away a Dedekind domain is from being a UFD,

one can look at its class group. Before defining the class group, let us recall some

definitions. Let D denote an integral domain with field of fractions K.
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Definition 1.4.1. A fractional ideal I of D is a D-submodule of K such that there

exists a nonzero d ∈ D such that dI ⊆ D.

We think of this special element d as clearing the denominators of I. We say

that a fractional ideal I is invertible if there exists another fractional ideal J such that

IJ = {a1b1 +a2b2 + · · ·+anbn|ai ∈ I, bi ∈ J} = D. In a Dedekind domain all nonzero

fractional ideals are invertible; in fact this is sometimes used as the definition of a

Dedekind domain. We define the inverse of an ideal I to be I−1 = {k ∈ K|kI ⊆ D}.

The set of invertible fractional ideals forms an abelian group, denoted by Inv(D) . In

an almost Dedekind domain every finitely generated (fractional) ideal is invertible.

Now clearly the nonzero principal ideals are invertible, for they are generated by

merely one element. That is if I 6= 0 is principal, then I = aR for some a ∈ K \ {0},

and we have I−1 = a−1R. The set of principal ideals also form an abelian group,

denoted by Prin(D).

Definition 1.4.2. For an integral domain D we define the class group of D to be the

quotient group:

C(D) = Inv(D)/Prin(D).

It is clear that a Dedekind domain is a PID (hence a UFD) if and only if

Inv(D) = Prin(D) and this occurs if and only if C(D) is trivial. Dedekind domains

with non-trivial class groups are still atomic, but factorization is no longer unique.

In our study, we will use the class groups as an important tool. We will also use

topological aspects of Max(D). The topological notions of dull and sharp maximal

ideals will be introduced in Chapter 2. The idea will be that an atomic purely almost

Dedekind domain cannot have “too many” principal ideals.

We present an example of a domain with a non-trivial class group.
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Example 1.4.3. Consider D = Z[
√
−5]. It can be shown that 2 · 3 = 6 = (1 −

√
−5)(1 +

√
−5) are distinct factorization of 6, hence we do not have unique factor-

ization. The maximal ideal M = (2, 1 +
√
−5) is not principal, however M2 = (2).

As it turns out the square of any non-principal maximal ideal is principal in D. Thus

the class group is the group of order two. That is C(D) ∼= Z/2Z.
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CHAPTER 2. EXAMPLES OF ALMOST DEDEKIND

DOMAINS

In this chapter we will give specific examples of purely almost Dedekind domains,

as well as general classes of almost Dedekind domains in the literature. The study of

almost Dedekind domains trace back to N. Nakano in 1953, (see [14]). Since that time

many authors have contributed to the understanding of almost Dedekind domains (see

[7], [13], and [11]). Various algorithms for building purely almost Dedekind domains

have been constructed. We will discuss these techniques and, in later chapters,

give characterizations about domains constructed via the algorithms with respect

to atomicity.

In 1974 A. Grams in [9] constructed a purely almost Dedekind domain that

satisfied the ascending chain condition on principal ideals. This example is our first

encounter with a purely almost Dedekind domain that is atomic. In this paper it

is also shown that some purely almost Dedekind domains fail to be atomic. It is

from here that we obtain our motivating question. Which almost Dedekind domains

are atomic? This question has proved to be quite subtle. We will present several

theorems that partially answer this question.

Before presenting the Grams’ example, we need to develop some more machin-

ery.

2.1. Max(D)

Set ∆P = Max(D) \ P . A domain D is said to have property ] if for all P

we have DP 6⊂ ∩M∈∆P
DM . In 1964, Gilmer showed in [8] that an almost Dedekind

domain has property ] if and only if it is Dedekind. In [11] this notion was adapted

to an ideal characterization, given in the next definition.

Definition 2.1.1. A maximal ideal P ∈ Max(D) is said to be a sharp prime if

DP 6⊂ ∩M∈∆P
DM . Equivalently, P is said to be sharp if it is the radical of finitely

10



generated ideal.

We will mainly use the equivalent notion that P is sharp if and only if there

exists a finitely generated ideal I such that I ⊆ P and I is not contained in any other

maximal ideal. We will denote the set of sharp maximal ideals of D by Max](D).

The maximal ideals that are not sharp are called dull maximal ideals (see [11]). The

set of dull primes of D will be denoted by Max†(D). The notions of dull and sharp

have a topological aspect to them, which we will clarify with the next definition. Dull

primes are “covered” by the other primes. This is also true for certain sharp primes.

We introduction a new notion that makes this more precise.

Definition 2.1.2. A sharp maximal ideal P is called hidden if P ⊆ ∪M∈∆P
M .

It should be noted that all dull primes satisfy the property in the definition,

but we will only call sharp primes that satisfy the property as hidden. Hidden primes

only arise if the class group is infinite.

For a given abelian group G we can find a Dedekind domain D with class group

G. The result is in [1].

Example 2.1.3. Let D be a Dedekind domain with class group Z. And let P be

a non-principal. Now all primes of a Dedekind domain are sharp, thus P is sharp.

Suppose P 6⊆
⋃
M∈∆P

M , then there is an b ∈ P with b not any any other prime.

Now since D is Dedekind we must be able to factor (b) into a finite product of prime

ideals. But as b is only in P , the product can only contain P . Thus (b) = P n for

some n ≥ 1. But this is impossible since P is a non-principal prime in domain with

class group Z. Thus P must be hidden.

Furthermore let us consider a sharp prime P that is not hidden. From the

previous example it is clear that this sharp prime must be contained in a torsion class

of the class group. That is P n = (b) for some n ≥ 1 and some b ∈ D. Now it is clear
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that
√

(b) = P , since P n is not contained in any other maximal ideal other than P .

Thus the sharp primes that are not hidden are the radical of principal ideals. We

restate in a lemma.

Lemma 2.1.4. Let D be an almost Dedekind domain. If P ⊆ D is a sharp prime

and P is not hidden, then P is the radical of a principal ideal.

Furthermore in an almost Dedekind domain a sharp prime is finitely generated.

To see this we show that a sharp prime is always invertible, and use the fact that

invertible ideals are always finitely generated. The following result is in [8].

Lemma 2.1.5. Let D be an almost Dedekind domain. If P is a sharp prime then P

is invertible.

Proof. Let P be a sharp prime. Then P =
√
I for some finitely generated ideal I.

Now I is a P -primary ideal, hence it is a prime power. That is I = P n. Now I is

invertible, hence P n is invertible. We conclude that P is invertible, hence finitely

generated.

Thus sharp primes are finitely generated and dull primes are not finitely gener-

ated. It is clear that if D is a purely almost Dedekind domain, then D must contain a

non-finitely generated ideal, since it is not Noetherian. Thus a purely almost Dedekind

domain must contain at least one dull prime.

An almost Dedekind domain that contains only sharp primes is called a sharp

domain. It is shown in [8] that an almost Dedekind domain is sharp if and only if it

is Dedekind. A domain that contains only dull primes will be called a dull domain.

Most almost Dedekind domains encountered in the literature lie somewhere between

these two extremes. That is, they contain a mixture of both dull and sharp primes.

12



2.2. Examples

In 1953 the first example of a non-Noetherian almost Dedekind domain appeared

in a paper by Nakano (see [14]). This domain was constructed by adjoining pth roots

of unity to Q. More precisely, let ζp be a primitive pth root of unity for all nonzero

primes p in Z. Now consider K = Q(ζ2, ζ3, · · · ζp · · · ). The ring of integers R of K is

almost Dedekind and not Noetherian.

While this is the first concrete example of a purely almost Dedekind domain,

identifying Max(R) (the set of maximal ideals) seems a difficult task. It is shown

that when ζp is adjoined, the only prime ideal that ramifies is (p). Controlling the

ramification will prove to be pivotal when constructing an almost Dedekind domain

via integral extensions.

Another interesting example comes from C. Hashbarger (see [10]). In this case

let

D = Z[
√

2,
√

3, · · · ,√pn · · · ],

where pn is the nth prime. It is shown that D̄ (the integral closure of D) is an almost

Dedekind domain. It should be noted that is the ring of integers of Q(
√

2,
√

3, · · · ,√pn · · · ).

We can ask whether Nakano’s and Hashbarger’s examples are atomic. At this

time the answers to these questions are not known, but the examples serve as concrete

constructions of a purely almost Dedekind domain. We will present an example of an

atomic purely almost Dedekind domain shortly, but first we need to introduce a few

more theorems. We present three theorems used in the construction for context and

later use.

Theorem 2.2.1. Let D be a Dedekind domain with quotient field K, let M be a

maximal ideal of D, let L be an n-dimensional normal extension field of K, and let

D̄ be the integral closure of D in L. If {Mi}gi=1 is the set of maximal ideals of D̄

containing M , then the prime factorization of MD̄ in D̄ has the form (Mi · · ·Mg)
e,
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for some positive integer e. Moreover, [D̄/M1 : D/M ] = f < ∞ and [D̄/MD̄ :

D/M ] = efg ≤ n. Equality holds if and only if D̄N is a finite DM -module, where

N = D −M .

Proof. See [3] and pp.493-501 in [7].

Definition 2.2.2. Let P,Q, and U be maximal ideals of an almost Dedekind domain

R. Let K denote the field of fractions of R. Let K[t] be a simple quadratic extension.

We say P decomposes (splits) in K[t] if P = P1P2 with P1 6= P2. We say Q ramifies

in K[t] if Q = Q2
1. We say U is inert in K[t] if U remains a maximal ideal.

Theorem 2.2.3. Let D be a Dedekind domain with quotient field K, and let {Pi}ri=1,

{Qi}si=1, and {Ui}ti=1, where r ≥ 1 be three collections of distinct maximal ideals of

D, each with finite residue field. Then there exists a simple quadratic extension field

K(t) of D with t integral over D and separable over K such that if D̄ is the integral

closure of D in K(t), each Pi is inertial with respect to D̄, each Qi ramifies with

respect to D̄, and each Ui decomposes with respect to D̄.

Proof. See [7] p. 585.

Theorem 2.2.4. Let G be a countable abelian group. Then there exists a Dedekind

domain D whose class group C(D) is isomorphic to G; moreover, D can be chosen

so that it has a countably many maximal ideals {Pi}∞i=1 and so that D/Pi is finite for

each i.

Proof. See [2].

Definition 2.2.5. We say a domain D satisfies the ascending chain condition on

principal ideal (ACCP) if every chain of principal ideals stabilizes. That is if I1 ⊆

I2 ⊂ · · · ⊆ Ik ⊆ · · · is a chain of principal ideals, then there exists n ∈ N such that

Ij = In for all j ≥ n.

14



We are now in a position to consider the example constructed by A. Grams in

[9]. The example, which appeared in 1974, shows that an almost Dedekind domain

satisfying ACCP need not be Dedekind. Any domain that satisfies ACCP is atomic

(see [3]).

For the construction, we let G be a countable abelian group that is not a torsion

group, and let D0 be a Dedekind domain and {Pi}∞i=1 maximal ideals such that D0/Pi

is finite for each i and C(D0) ∼= G. Since the class group is not torsion there is a prime

ideal, say P1, with the property that P n
1 is not principal for each n ∈ Z+, and hence

P1 ⊂ ∪∞i=2Pi. (In other words there is a hidden prime P1)

Example 2.2.6 (Grams’ Example). Let K be the quotient field of the domain D0.

There is a simple quadratic extension field K(t1), with t1 integral over D0 and sep-

arable over K, such that if D1 is the integral closure of D0 in K(t1) = F1, then

P1 decomposes with respect to D1, say P1D1 = M
(1)
1 M

(1)
2 . Since D1 is a Dedekind

domain with the property that D1/M is finite for each maximal ideal M , there exists

a separable quadratic extension F1(t2) = F2 such that t2 is integral over D1 and such

that if D2 is the integral closure of D1 in F2, then M
(1)
2 decomposes with respect to

D2, say M
(1)
2 D2 = M

(2)
2 M

(2)
3 , while M

(1)
1 and each prime ideal of D1 lying over P2 in

D0 is inertial with respect to D2. Inductively, we can construct a sequence {Fi}∞i=1

of extension fields of K such that if Di is the integral closure of D0 in Fi, then the

following conditions hold for each i:

1. [Fi+1 : Fi] = 2.

2. There are i + 1 primes {M (i)
j }i+1

j=1 of Di lying over P1 in D0. Further, M
(i)
j ,

for j < i + 1, is inertial with respect to Di+1, and M
(i+1)
j = M

(j)
i Di+1. M

(i)
i+1

decomposes with respect to Di+1 as M
(i)
i+1Di+1 = M

(i+1)
i+1 M

(i+2)
i+2 .

3. Each prime ideal of Di lying over any of the prime ideals P2, · · · , Pi+1 of D0 is
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inertial with respect to Di+1. Let F = ∪∞i=1Fi and D̄ = ∪∞i=1Di.

D̄ is the desired example.

The proof that D̄ satisfies ACCP (thus is atomic) is highly non-trivial and

relies on a few facts. First a union of Dedekind domains is always one-dimensional

and Prüfer. Secondly, a one-dimensional Prüfer domain is almost Dedekind if and

only if it contains no idempotent maximal ideals. We restate the second fact in its

complete form.

Theorem 2.2.7. Let D be an integral domain with identity which is not a field. The

following are equivalent:

1. D is an almost Dedekind domain.

2. The cancellation law for ideals holds in D.

3. D is a one-dimensional Prüfer domain and D contains no idempotent maximal

ideal.

4. D is Prüfer domain and ∩∞n=1A
n = (0) for each proper ideal A of D.

2.3. Classes of Almost Dedekind Domains

In this section we define several types of almost Dedekind domains that have

appeared in the literature. First we start with class of domains introduced by A.

Loper in [13] called glad domains.

Definition 2.3.1. A domain D with quotient field K (different from D) is a glad

domain provided:

1) D = ∩λ∈ΛVλ where {Vλ| λ ∈ Λ} is a family of Noetherian valuation overrings

of the domain D. Let νλ be the normed additive valuation associated with Vλ,

and let Mλ be the maximal ideal of Vλ.
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2) There is a monic polynomial f ∈ D[x] with deg(f) > 1 such that for each λ ∈ Λ

and each a ∈ Vλ, f(a) is a unit of Vλ.

3) For each nonzero a ∈ D the set {νλ(a)| λ ∈ Λ} is bounded.

4) There exists t ∈ D such that tVλ = Mλ for each λ ∈ Λ.

5) There exists a finite subset T of D which is a set representation for Vλ/Mλ for

each λ ∈ Λ.

In [16], Rush gave the following alternate characterization.

Proposition 2.3.2. Let D be an almost Dedekind domain with quotient field K

(different from D). Then D is a glad domain if and only if the following statements

hold.

a) Each principal ideal of D contains a power of its radical.

b) The Jacobson radical J is a nonzero principal ideal.

c) There exists a finite subset T of D which is a set of representatives for D/P for

each maximal ideal P of D.

Rush also established the following result concerning the intersection of finite

number of glad overrings.

Proposition 2.3.3. Let D = D1 ∩ · · · ∩Dn with each Di a glad overring of D. Then

the following hold.

a) Di = DS where S = D − ∪{Q ∩D| Q a maximal ideal of Di}

b) D is an almost Dedekind domain with finite residue fields.

c) D is a Bézout domain.
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Loper introduced the idea of a sequence domain. We take his definition from

[12].

Definition 2.3.4. Let D be an almost Dedekind domain. We call D a sequence

domain provided the following hold.

1) The maximal ideals of D are {Mi| i ∈ N} and M∞.

2) Each Mi is principal and M∞ is not finitely generated.

3) The Jacobson radical J is nonzero.

Another class of domains we will wish to consider are SP -domains.

Definition 2.3.5. A ring R in which every proper nonzero ideal is a product of radical

ideals is called and SP -domain. (SP stands for semi-prime),

The fact that SP -domains are almost Dedekind is not clear from the definition,

but it was shown in 1978 in a paper by Vaughan and Yeagy, that they are indeed

almost Dedekind. See [17].

In [15], Olberding characterized SP -domains within the class of almost Dedekind

domains. We say a maximal ideal M of an almost Dedekind domain is critical if every

finitely generated ideal contained in M is contained in the square of some maximal

ideal of D.

Theorem 2.3.6. Let D be an almost Dedekind domain. Then the following are

equivalent.

1) D is an SP -domain.

2) D has no critical maximal ideals.

3) If I is a proper finitely generated ideal of D, then
√
I is finitely generated.
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4) Every proper principal ideal is a product of radical ideals.

5) For every a ∈ D the map γa : Max(D)→ N0 is upper semi-continuous and has

finite image. Where γa(M) = νM(a).

6) For every proper ideal I of D, there exists radical ideals J1 ⊆ J2 ⊆ · · · ⊆ Jn

such that I = J1J2 · · · Jn.

7) For every proper nonzero ideal I of D can be represented uniquely as a product

I = J1J2 · · · Jn of radical ideals Ji such that J1 ⊆ J2 ⊆ · · · ⊆ Jn.
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CHAPTER 3. NORMS AND NORMSETS

We have seen that an almost Dedekind domain is a generalization of a Dedekind

domain. Our goal is to determine atomicity in an almost Dedekind domain. We will

approach this question with many tools, but underlying most of our arguments will

be the use of a map we will call the norm. Recall that locally an almost Dedekind

domain is a Noetherian valuation domain. This is a very strong condition and we will

take make use of it frequently.

3.1. The Norm

Let D be an almost Dedekind domain. Let Max(D) be the set of maximal ideals

of D. Now for every M ∈ Max(D) we have a map

νM : DM → N0.

Now we know that

D =
⋂

M∈Max(D)

DM .

Now for b ∈ D we have νM(b) = 0 if b /∈M and νM(b) > 0 if b ∈M. We are now in a

position to define our norm. For nonzero b ∈ D we define the norm of b to be the net

N(b) =
(
νM(b)

)
M∈Max(D)

⊆
∏

M∈Max(D)

N0.

If u is a unit in D, then N(u) is the zero net. We should note, that if Max(D)

is countable then the norm of an element is merely a sequence. We will only draw

distinctions in examples where it will be of benefit to the reader. We will see examples

of domains with countably many and uncountably many maximal ideals.

We can define our local valuations on K the field of fractions of D. In this case,

νM : K → Z. Under this definition we see that k ∈ K is in D if and only if for all M
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νM(k) ≥ 0.

We define the addition of nets componentwise. That is

N(a) +N(b) :=
(
νM(a) + νM(b)

)
M∈Max(D)

.

Theorem 3.1.1. Let D be an almost Dedekind domain. For all a, b ∈ D we have

N(ab) = N(a) +N(b).

Proof. N(ab) =
(
νM(ab)

)
M∈Max(D)

=
(
νM(a) + νM(b)

)
M∈Max(D)

= N(a) + N(b), by

the properties of valuations.

We wish to extend the notion of a norm to an ideal. For ideal I ⊂ D and for

a fixed maximal ideal M of Max(D) we define νM(I) to be k such that I ⊆ Mk and

I 6⊂Mk+1. Now we define the norm of an ideal as

N(I) =
(
νM(I)

)
M∈Max(D)

⊂
∏

M∈Max(D)

N0.

We should note that this is consistent with the norm of an element if we consider the

principal ideal generated by that element.

Lemma 3.1.2. Let I ⊆ D be an ideal. We have

N(I) =
(

inf
b∈I
{νM(b)}

)
M∈Max(D)

.

Proof. I ⊂ Mk if and only if for all b ∈ I we have b ∈ Mk, which is if and only if

νM(b) ≥ k. Now we defined νM(I) to be the minimal k such that I ⊂Mk. Thus there

must be a b ∈ I that satisfies this infimum. Hence N(I) =
(

infb∈I{νM(b)}
)
M∈Max(D)

.
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This will be a useful tool in calculating the norm of an ideal. It can also be

used to establish a theorem about the norm of a product of ideals.

Theorem 3.1.3. Let I, J be ideals of an almost Dedekind domain D, then N(IJ) =

N(I) +N(J).

Proof. Recall IJ =
∑
aibi where ai ∈ I and bi ∈ J . Using this it is easy to see for

d ∈ IJ that νM(d) ≥ νM(IJ). Now we can find a and b for a fixed M such that

νM(a) = νM(I) and νM(b) = νM(J) thus νM(ab) = νM(I) + νM(J). Therefore by the

previous lemma we have N(IJ) = N(I) +N(J).

Definition 3.1.4. We say N(a) ≤ N(b) if for all M ∈ Max(D) we have νM(a) ≤

νM(b). We say N(a) < N(b) if N(a) ≤ N(b) and there exists an M ∈ Max(D) with

νM(a) < νM(b).

The use of this partial ordering will yield results with respect to atomicity. It

should be noted that two elements are not necessarily comparable within this order,

that is there maybe a, b ∈ D such that N(a) 6≤ N(b) and N(b) 6≤ N(a). Now we

present a very powerful lemma; the result’s veracity is due to the local behavior of

almost Dedekind domains.

Lemma 3.1.5. Let D be an almost Dedekind domain and let a, b ∈ D. N(a) ≤ N(b)

if and only if a divides b.

Proof. Suppose N(a) ≤ N(b). We have b
a

is in the quotient field of D. Now νM( b
a
) =

νM(b) − νM(a) ≥ 0 for all M ∈ Max(D). Thus b
a
∈ DM for all M . Hence b

a
∈ D.

We conclude that a divides b. Suppose a divides b. Then b
a
∈ D. Thus b

a
∈ DM for

all M ∈ Max(D). Hence for all M we have νM( b
a
) ≥ 0. Thus νM(b) ≥ νM(a) and we

conclude that N(a) ≤ N(b).

If we wish to find a proper divisor of an element b ∈ D, all we will need to do

is find an a ∈ D such that N(a) < N(b). We will use this idea to construct new
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divisors of elements. We will also use Lemma 3.1.5 to show when elements are atoms

or are (finite) products of atoms. But first it should also be pointed out that this is

not true for the traditional norm in a Dedekind domain. To see this let us consider

an example.

Example 3.1.6. Consider D = Z[
√
−14]. The traditional norm is N ′(a+ b

√
−14) =

a2 + 14b2. Now N ′(5 + 2
√
−14) = 81 and N ′(3) = 9 but 3 does not divide 5 + 2

√
−14.

But what about our norm? Let M1 = (3, 5 + 2
√
−14) and M2 = (3, 5 − 2

√
−14)

It is easy to see that M1 and M2 are maximal in D and 3 ∈ M1,M2. That is we

have νM1(3) = 2 and νM2(3) = 2. Now 5 + 2
√
−14 ∈ M1, but 5 + 2

√
−14 /∈ M2. If

5 + 2
√
−14 ∈ M2, we would have 5 + 2

√
−14 + 5− 2

√
−14 = 10 ∈ M2 but 3 and 10

are coprime in D. Thus we would have 1 ∈ M2. Thus 5 + 2
√
−14 /∈ M2. Thus we

have νM2(5+2
√
−14) = 0. We conclude that N(3) 6< N(5+2

√
−14). Thus our norm

recognizes that 3 is not a divisor of 5 + 2
√
−14.

We now make some structural observations about the image of our norm map.

Definition 3.1.7. Let D be an almost Dedekind domain. We define the normset of

D to be

Norm(D) = {N(b)| b ∈ D}.

It should be noted that Norm(D) ⊆
∏

M∈Max(D) N0.

Theorem 3.1.8. Let D be an almost Dedekind domain. Norm(D) forms an additive

monoid.

Proof. First the zero net is in Norm(D) because D has an identity. Now if N(a) and

N(b) are in Norm(D) (that is a, b ∈ D), then N(a) + N(b) = N(ab) ∈ Norm(D)

because ab ∈ D.
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It should be clear that our norm addition is associative. We should point out

that we could define the normset of ideals by IdealNorm(D) = {N(I)| I is an ideal of D}

This too will form a monoid under addition with the identity element realized by the

entire domain D. The closure property comes from the lemma about the product of

ideals.

Since the image under our norm map is well behaved in a structural sense,

one might ask the question if we impose more conditions on D what is the effect on

Norm(D)? Before asking and answering the question with regard to atomicity, let us

first classify the elements of Norm(D).

Theorem 3.1.9. Let D be an almost Dedekind domain with Max(D) = {Mλ}λ∈Λ.

Then (
eλ
)
λ∈Λ
∈ Norm(D) ⇐⇒

⋂
λ∈Λ

M eλ
λ is a principal ideal.

Where we take M0 = D.

Proof. For the forward direction we take a ∈ D with N(a) = (eλ)λ∈Λ. Recall νMλ
(a) =

eλ is equivalent to saying a ∈ M eλ
λ and a /∈ M eλ+1

λ . Thus for all λ we have a ∈ M eλ
λ ,

hence a ∈ ∩λ∈ΛM
eλ
λ . We will show this ideal is actually (a). Suppose b ∈ ∩λ∈ΛM

eλ
λ .

Then for all λ we have νMλ
(b) ≥ eλ = νMλ

(a). In other words we have N(a) ≤ N(b),

hence a divides b. We conclude that

(
a
)

=
⋂
λ∈Λ

M eλ
λ .

For the other direction we suppose (a) = ∩λ∈ΛM
eλ
λ . Then N(a) = (eλ)λ∈Λ.

When we start to discuss atomicity in more general settings it will be necessary

to be able to easily identify principal ideals.

Theorem 3.1.10. An ideal I is principal if and only if there exists b ∈ I with
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N(b) = N(I).

Proof. Suppose I is principal, that is I = (b) for some b ∈ I. Now for all c ∈ I we

have b|c. Thus N(b) ≤ N(c) hence b achieves the infimum for all maximal ideals, and

we have N(b) = N(I).

Now suppose there exists b ∈ I with N(b) = N(I). Then since b achieves the

infimum at every maximal ideal, we have for all c ∈ I N(b) ≤ N(c), hence I = (b).

Now we will show that if D is an atomic almost Dedekind domain then Norm(D)

is an atomic monoid (additively). In [4] Coykendall describes the relation of the

tradition normset to unique factorization. In Theorem 3.12 we prove a more general

result with respect to atomicity and Norm(D). To do this we establish an atomicity

lemma. Recall α ∈ D is an atom if α = bc implies b or c is a unit in D. We say N(a)

is an atom in Norm(D). if N(a) = N(b) +N(c) implies N(b) or N(c) is the zero net.

Lemma 3.1.11. N(a) is an atom in Norm(D) if and only if a is an atom in D.

Proof. Suppose N(a) is an atom in Norm(D). Suppose further a = bc ∈ D. Then

N(a) = N(b) + N(c) thus N(b) or N(c) must be the zero net. Thus b or c must

be a unit, and a is an atom. Conversely, suppose a is atom in D. Suppose further

N(a) = N(b) + N(c). Now if both N(b) and N(c) are nonzero, then N(b) < N(a),

hence b would be a proper divisor of a. Hence a is not an atom. Thus N(a) must be

an atom in Norm(D).

It should be noted that this is not true with regard to the traditional norm. For

example in Z[
√
−14], we have N ′(5 + 2

√
−14) = 81 and N ′(3) = 9. Thus 81 is not

an atom in the normset, but 5 + 2
√
−14 is an atom in Z[

√
−14].

Theorem 3.1.12. Let D be an almost Dedekind domain. D is atomic if and only if

Norm(D) is an atomic monoid.
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Proof. Suppose D is atomic and consider N(a). We have a = α1α2 · · ·αn a product of

atoms. Now we have N(a) = N(α1)+N(α2)+· · ·+N(αn) is an atomic “factorization”

in Norm(D). Suppose Norm(D) is an atomic monoid. Consider a ∈ D. We write

N(a) = N(α1) + N(α2) + · · · + N(αn) as an atomic factorization in Norm(D). We

now see a = uα1α2 · · ·αn for some unit u is an atomic factorization in D.

Now while this is a complete (in some sense) characterization of the class of

atomic almost Dedekind domains, it does leave one wanting, in the sense that actually

computing the normset of an almost Dedekind domain is very difficult. The first step

in such an endeavor would be to compute Max(D), which in many cases is a difficult

task. We will pursue more practical ways of determining whether a given almost

Dedekind domain is atomic, this will be the subject of the later chapters.

Another powerful observation we can make with regard to the normset is the

following.

Theorem 3.1.13. Let D be an almost Dedekind domain. D is a unique factorization

domain (UFD) if and only if Norm(D) is a unique factorization monoid (UFM).

Proof. Suppose D is a UFD, and let b ∈ D. Suppose N(b) = N(α1) +N(α2) + · · ·+

N(αn) and N(b) = N(β1) + N(β2) + · · · + N(βm) are two atomic factorizations in

Norm(D). By Lemma 3.1.11, we know that the αi and βi are atoms in D. Thus we

have b = uα1α2 · · ·αn and b = u′β1β2 · · · βm are two atomic factorizations of b in D

for some units u, u′. But D is a UFD, so it must be the case that m = n and the

β’s are just a permutation of the α’s up to associates. Hence the factorization in

Norm(D) is unique.

The converse of the statement can be proved in the same manner by assuming

Norm(D) is a UFM, and assuming b ∈ D has two factorizations.

It should be noted that an almost Dedekind domain is a UFD if and only if it
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is a PID.

A half-factorial domain is an atomic domain such that if b = α1α2 · · ·αn and

b = β1β2 · · · βm are two atomic factorizations then n = m.

Theorem 3.1.14. Let D be an almost Dedekind domain. If D is a half-factorial

domain (HFD) if and only if Norm(D) is a half-factorial monoid (HFM).

Proof. Suppose D is an HFD and b ∈ D. Suppose further that N(α1)+ · · ·+N(αk) =

N(b) = N(β1) + · · ·+N(βl) are two atomic factorization of N(b) in Norm(D). Then

uα1 · · ·αk = b = u′β1 · · · βl for some units u, u′ ∈ D. But these are both atomic

factorizations in D and D is an HFD, thus k = l. We conclude that Norm(D) is an

HFM.

Conversely suppose Norm(D) is an HFM, and α1 · · ·αk = b = β1 · · · βl is an

atomic factorization of b ∈ D. Then N(α1)+· · ·+N(αk) = N(b) = N(β1)+· · ·+N(βl)

is an atomic factorization of N(b) in Norm(D). But since Norm(D) is an HFM we

conclude that k = l and D is an HFD.

There has been much discussion on atomic domains that do not have unique

factorization or the half-factorial property. One of the notions that has arisen to

quantify this is elasticity.

Definition 3.1.15. Let D be an atomic domain. We define the elasticity of a nonzero

non-unit b ∈ D by

%(b) = sup{m
n
|α1α2 · · ·αn = b = β1β2 · · · βm for atoms αi, βj ∈ D}.

We define the elasticity of D by

%(D) = sup{%(b)| b is a nonzero non-unit in D}

27



Similarly we can define the elasticity of an atomic monoid.

Definition 3.1.16. Let A be an atomic monoid. We define the elasticity of a nonzero

b ∈ A by

%(b) = sup{m
n
|α1 + α2 + · · ·+ αn = b = β1 + β2 + · · ·+ βm for atoms αi, βj ∈ A}.

We define the elasticity of A by

%(A) = sup{%(b)| b is a nonzero non-unit in A}

Again, atomic factorizations in D are in one-to-one correspondence to the

factorizations in Norm(D), thus we get the following theorem.

Theorem 3.1.17. Let D be an atomic almost Dedekind domain, then %(D) = %(Norm(D)).

Proof. We have b = α1 · · ·αk if and only if N(b) = N(α1) + · · · + N(αk). That

is the atomic factorizations in D are in one-to-one correspondence to the atomic

factorizations in Norm(D). Let b be a nonzero non-unit in D. Then

%(b) = sup{m
n
|α1 · · ·αn = b = β1 · · · βm for atoms αi, βj ∈ D}

= sup{m
n
|N(α1) + · · ·+N(αn) = N(b) = N(β1) + · · ·+N(βm)

for atoms N(αi), N(βj) ∈ Norm(D)} = %(N(b))

Thus the elasticity of a b in D is in agreement with the elasticity of N(b) in Norm(D).

Now

%(D) = sup{%(b)| b is a nonzero non-unit in D}

= sup{%(N(b))|N(b) is a nonzero non-unit in Norm(D)} = %(Norm(D)).
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It should be noted that this result is true for any almost Dedekind domain if we

restrict our definition of elasticity to be the supremum taken over atomic elements.

That is the elements that factor into a finite product of atoms.

3.2. More Examples

In this section we present two constructions of purely almost Dedekind domains.

These constructions will be useful in the remainder this study. The focus at present

will be their simplicity in the sense of calculating Max(D) and Norm(D).

Before constructing our examples, we recall that a union of Dedekind domain

is a one-dimensional Prüfer domain. Further, a one-dimensional Prüfer domain is

almost Dedekind if and only if M 6= M2 for all maximal ideals M . We now present

a theorem that we will use to show our examples are indeed almost Dedekind.

Theorem 3.2.1. A one-dimensional Prüfer domain D is almost Dedekind if and only

if it admits a non-trivial map

N : D →
∏

M∈Max(D)

N0

with N(ab) = N(a) +N(b) for all a, b ∈ D.

Proof. The forward direction has already been shown to be true by the construction

of our norm map.

Assume D admits such a map. Then for any maximal ideal M , we consider the

set S = {νM(b)|b ∈ M}. S is a subset of N and contains a least element. Suppose b

realizes this minimal value, then b cannot be in M2. For if it were there would be an

element of smaller value. Thus for all M we have M 6= M2. We conclude that D is

almost Dedekind.
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Example 3.2.2 (The Dq domain). Let D = Z(q) for some prime q. Let K denote the

quotient field of D. We can split (q) by adjoining t1,1 a root of x2− p for some prime

p that is not a square modulo q. Let K1 = K[t1,1]. We have (q) = (q1,1)(q1,2) where

(q1,1) and (q1,2) are distinct. We set D1 to be the integral closure of D in K1. For the

remainder of the construction Di will be the integral closure of Di−1 in Ki and the

ti,j are elements of the algebraic closure of K. Now by Theorem 2.7, we can find t2,1

such that (q1,1) = (q2,1)(q2,2) while (q1,2) remains inert. Similarly we can find t2,2 such

that (q1,2) = (q2,3)(q2,4) while (q2,1) and (q2,2) all remain inert. Set K2 = K1[t2,1, t2,2]

and D2 to be the integral closure of D in K2. We can keep finitely many primes inert

as we build our extensions. We continue inductively finding ti,1 such that qi−1,1 splits

and the other finitely many primes remain inert, then we find ti,2 such that qi−1,2 is

the only prime that splits. We continue until we get ti,2i with qi,2i is the only prime

that splits. Now we have Ki = Ki−1[ti,1, ti,2, · · · ti,2i ] and Di the integral closure of D

in Ki. Now we set Dq = ∪∞i=1Di. Now Dq is an almost Dedekind domain. It should

be noted that every Di is a PID.

We present a picture of how the ideal lattice is splitting.

. . . . .
.. . . . .

.. . . . .
.. . . . .

.. . . . .
.. . . . .

.. . . . .
.. . . . .

.

(q3,8)(q3,7)(q3,6)(q3,5)(q3,4)(q3,3)(q3,2)(q3,1)

(q2,4)(q2,3)(q2,2)(q2,1)

(q1,2)(q1,1)

(q)

Figure 1: Ideal splitting lattice for Dq

We answer the following questions, before showingDq is almost Dedekind. What
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are the maximal ideals of D? What is Norm(D)?

Referring to the lattice, we see that M = (q, q1,1, q2,1, · · · qi,1, · · · ) is a maximal

ideal. M is not finitely generated. It should be noted that we do not need the first

finite generators in the generating set, but they are included to better explain the

structure of Max(D) and later Norm(D). Max(D) is an uncountable set, this is clear

since our lattice is isomorphic to the binary tree. None of the ideals in Max(D) are

finitely generated. If one starts at the root, q, and following any path to the top, we

will get an infinite set that generates a maximal ideal. Thus Dq contains only dull

primes, hence it is a dull domain.

Now that we have established the structure of Max(D), we turn our attention to

Norm(D) We start by examining the value when we localize at the maximal ideal M

constructed in the previous paragraph. In Dq
M we see that q and q1,1 are associates,

because q1,2 is a unit in the localization. Similarly all of the generators of M are

associates. Thus for all i we have νM(qi,1) = 1 and if b /∈M we have νM(b) = 0. More

generally if t is a generator of a maximal ideal M ′, we have νM(t) = 1.

Thus since q can be expressed as a generator of every maximal ideal we have

N(q) = (1)M∈Max(D). That is the norm of q is the net of all ones. More generally

N(qi,j) =


1 qi,j ∈M

0 qi,j /∈M

The elements N(qi,j) generate the monoid Norm(Dq).

Additionally we observe for all Mλ we have N(Mλ) is zero except for the λth

“coordinate”, which has value one.

Theorem 3.2.3. Dq is an almost Dedekind domain.

Proof. To see the result we note that q is an element of least value in every maximal
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ideal. Consider b ∈ Dq. Then b ∈ (qi,j) for some i, j. But we know from above that q

is an associate to qi,j, hence b cannot have value less then q. Thus for every maximal

ideal the value group associated to it is N0. Therefore applying Theorem 3.2.1 we see

that D is almost Dedekind.

Example 3.2.4 (The D∞ domain). Let D = Z(q) for some prime q. Let K denote

the quotient field of D. We can split (q) by adjoining t1,1 a root of x2 − p for some

prime p that is not a square modulo q. Let K1 = K[t1,1]. We have (q) = (q1)(q1,2)

where (q1) and (q1,2) are distinct. We set D1 to be the integral closure of D in K1.

For the remainder of the construction Di will be the integral closure of Di−1 in Ki and

the ti,j are elements of the algebraic closure of K. Now by Theorem 2.7 we can find

t2,1 such that (q1,2) = (q2,1)(q2,2) in D1[t2,1] while (q1) remains inert. Now we find t2,2

such that (q2)2 = (q2,1) and the other two primes remain inert in K2 = K1[t2,1, t2,2].

Now we set D2 to be the integral closure of D in K2 Now we split (q2,2) = (q3,1)(q3,2)

via another simple quadratic extension (add t3,1) while keeping the three other primes

inert. We then ramify (q3,1) twice by using two simple quadratic extensions adding

t3,2, t3,3. Thus yielding (q3)4 = (q3,1). Now we set K3 = K2[t3,1, t3,2, t3,3]. We set D3

to be the integral closure of D in K3. We continue by induction. In Di we have i+ 1

namely (q1), (q2), · · · (qi) and qi,2 Now we add ti,1 that splits (qi,2) = (qi+1,1)(qi+1,2) Now

we adjoin elements ti,2, ti,3 · · · ti,i which all keep ramifying the prime qi+1,1 such that

(qi+1)2i−1
= (qi+1,1) while all other primes remain inert. Note we can do this because

there are only finitely many primes at each step. Now we set Ki+1 = Ki[ti,1, ti,2 · · · ti,i]

and Di+1 to be the integral closure of D in Ki+1. Now we set D∞ = ∪∞i=1Di. Now

D∞ is an almost Dedekind domain, moreover it is a sequence domain.

Now that we have completely classified Max(D), let’s start in on calculation

Norm(D). First since Max(D) is countable, the normset is a set of sequences. N(q1) =

(1, 0, 0 · · · , 0, · · · ; 0) and N(qi) is zero in every entry except the ith entry which is 1.
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. . . . .
.

(q4)8 = (q4,1)(q4)

(q4,2)(q4,1)

(q3) (q3)4 = (q3,1)

(q3,2)(q3,1)

(q2) (q2)2 = (q2,1)

(q2,2)(q2,1)

(q1,2)(q1)

(q)

Figure 2: Ideal splitting lattice for D∞

The entry after the semicolon denotes the value in M∞.

Now N(q) = (1, 2, 4, 8, · · · 2i−1, · · · ; 1), and N(q1,2) = (0, 2, 4, 8, · · · 2i−1 · · · ; 1).

The norm of qi,2 is the sequence with the first i entries zero and the rest powers of 2.

Now while this is a good start at describing the normset, we should point out that

(1, 1, 4, 8, · · · , 2i−1, · · · ; 1) is also in the normset for it is q
q2

. We can easily grasp the

elements of Norm(D∞); however writing the normset in a nice way is not practical.

Theorem 3.2.5. D∞ is an almost Dedekind domain.

Proof. We will again use Theorem 3.2.1. The principal maximal ideals clearly have

value group N0 as their generators are elements of least positive value. For M∞,

we showed above that q is an element of least positive value. Thus D∞ is almost

Dedekind.

We finish this section by noting that both Dq and D∞ are Bézout domain and
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make a characterization about the Jacobson radical, J = ∩M∈Max(D)M . First both

domains are Bézout because they are direct limits of PIDs.

Theorem 3.2.6. Let D be an almost Dedekind domain with J 6= 0. If D contains

an element b, such that N(b) = (1)M∈Max(D), then J = (b).

Proof. Suppose such b exists. For all c ∈ J , we have N(b) ≤ N(c). Hence J =

(b).

Now we can make a stronger statement about the Jacobson radical with respect

to being principal if we restrict ourselves to sequence domains.

Theorem 3.2.7. Let D be a sequence domain. Then J is principal if and only if

there exists b ∈ J such that N(b) = (1)M∈Max(D)\M∞.

Proof. Suppose there exists b ∈ J such that N(b) = (1)M∈Max(D)\M∞ . Now consider

S = {νM∞(b)|b ∈ J and N(b) = (1)M∈Max(D)\M∞} ⊆ N.

Now there exist b′ ∈ J such that b′ achieves the minimal value of S. Now we have

J = (b′). Now suppose J = (b). With the exception of M∞, all the maximal ideals

are of the form Mi = (mi) and νMj
(mi) = 1 if i = j and is zero if i 6= j. If

νMi
(b) > 1 for some i, then b

mi
∈ J and N( b

mi
) < N(b), which is impossible. Thus

(b) = (1)M∈Max(D)\M∞ .

Contained within this proof is the proof of a nice corollary.

Corollary 3.2.8. In a sequence domain we always have N(J ) = (1)M∈Max(D)\M∞

Corollary 3.2.9. In a sequence domain, either J is principal or J is not finitely

generated.

34



Proof. If J is not principal, then for every b ∈ J we can find an mi which generates

one of the principal maximal ideals such that b
mi
∈ J . Thus we can never find

an element in J that is minimal with respect to N . Thus J must not be finitely

generated.

3.3. Multiplicatively Closed Sets

In this section we will classify elements with regard to properties of their norms.

We will let D be an almost Dedekind domain and Max(D) be the set of maximal ideals

of D.

Definition 3.3.1. We say that b ∈ D is of finite norm if N(b) has only finitely many

entries that are nonzero. This is equivalent to saying that b is in only finitely many

maximal ideals of Max(D). We will denote this by N(b) <∞.

Definition 3.3.2. We say that b ∈ D is of infinite norm, if N(b) has infinitely many

entries that are nonzero. That is b is in infinitely many maximal ideals. We will

denote this by N(b) =∞.

Since a Dedekind domain is Noetherian, every element in a Dedekind domain

is of finite norm. In a purely almost Dedekind domain (a domain that is almost

Dedekind and not Dedekind) there must exist an element of infinite norm, else the

domain would be Noetherian (a proof of this fact can be found in [7]).

Theorem 3.3.3. If b ∈ D and N(b) < ∞, then b can be written as a product of

atoms.

Proof. By Lemma 3.1.5 we know if a is a proper divisor of b, then N(a) < N(b). Now

there are only finitely many possible divisors. Thus we may express b as a product of

atoms.

Theorem 3.3.4. If b ∈ D with N(b) =∞ and b can be written as a product of atoms,

b = α1α2 · · ·αn, then N(αi) =∞ for some atom αi.
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Proof. N(b) = N(α1α2 · · ·αn) = N(α1) + N(α2) + · · · + N(αn) If N(αi) <∞ for all

i, then we would have N(b) <∞. Thus for some i we have N(αi) =∞.

Now we state a corollary that we will use repeatedly when working with an

atomic purely almost Dedekind domain.

Corollary 3.3.5. If D is a atomic purely almost Dedekind domain, then there is an

atom, α, in D such that N(α) =∞.

Definition 3.3.6. We say b ∈ D is bounded if N(b) is a bounded net. That is if there

exists a ρ such that νM(b) < ρ for all M ∈ Max(D). We will call b unbounded if it is

not bounded.

Theorem 3.3.7. If b ∈ D is unbounded and b = α1α2 · · ·αn is a product of atoms,

then αi is unbounded for some i.

Proof. N(b) = N(α1α2 · · ·αn) = N(α1) + N(α2) + · · · + N(αn). Now if all the αi

were bounded, then b would be bounded. Thus there exists an i such that αi is

unbounded.

Now we switch our attention grouping these different types of elements into

multiplicative sets.

Proposition 3.3.8. The set F = {a|N(a) < ∞} of elements of finite norm is a

multiplicatively closed, saturated set.

Proof. Take a, b ∈ F . Then ab is in only finitely many maximal ideals, hence ab is in

F . Now suppose b ∈ F . If a| b, then N(a) < N(b) hence we must have a ∈ F .

Now we know that any multiplicatively closed, saturated set is the set comple-

ment of a union of prime ideals. In an almost Dedekind domain (or any domain of
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dimension one) nonzero prime ideals are maximal. That is there exists {Mλ}λ∈Λ ⊆

Max(D) such that

F =

( ⋃
λ∈Λ

Mλ

)C
.

Thus the maximal ideals in the union consist of only elements of infinite norm. It

follows directly that these maximal ideals must be dull or hidden, for non-hidden

sharp primes always have elements of finite norm.

Proposition 3.3.9. The set L = {a|N(a)is bounded} of bounded elements forms a

multiplicatively closed, saturated set.

Proof. Let a, b be in L. Now since N(a) and N(b) are bounded, we must have

N(ab) = N(a) + N(b) being bounded. Thus ab ∈ L. If b is in L and a divides

b, then N(a) < N(b). Thus N(a) is bounded, and a ∈ L.

Now as before there are is a set {Mλ}λ∈Λ ⊆ Max(D) such that

L =

( ⋃
λ∈Λ

Mλ

)C
.

Now an element is either bounded or it is unbounded. Thus the set of unbounded

elements is

LC =
⋃
λ∈Λ

Mλ .

Now as before we see a maximal ideal contained in the union must have every element

being unbounded. Further an element a is unbounded only if N(a) = ∞. We have

the following containments.

F ⊆ L and LC ⊆ FC .

What we are describing in a way, is how “badly” some maximal ideals behave
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with respect to the norm map. That is non-hidden sharp primes are “nice” for they

are merely the radical of a principal ideal. Sharp primes that are hidden contain only

elements of infinite norm, they are in this sense less well behaved. The same statement

is true for dull primes. Then there is an even “worse” set of maximal ideals which we

will call the unbounded primes. The unbounded primes consist of only unbounded

elements. It is not clear whether a hidden prime can be an unbounded prime. It is

however seen in the example of D∞ that the dull prime M∞ is unbounded.
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CHAPTER 4. PROPERTIES OF ATOMIC ALMOST

DEDEKIND DOMAINS

We start this section with the aim of determining whether a purely almost

Dedekind domain is atomic. To begin with we make a definition.

4.1. Properties of Atomic Almost Dedekind Domains

Definition 4.1.1. We say an almost domain D is bounded, or a bounded domain, if

for all b ∈ D we have b is of bounded norm.

One should ask if this definition makes sense. In Chapter 2, we learned about

glad and SP -domains. Both of these classes of domains are bounded. The construc-

tion Dq in Chapter 3 is another example of a bounded domain. However we know

that the class of bounded domains is not the entire class of almost Dedekind domains

(e.g., consider D∞). We will call domains that are not bounded, unbounded domains.

We start by showing that if D is an atomic bounded domain, then J = 0.

One of the central techniques is to use the addition property of valuations. That is

ν(a + b) ≥ min{ν(a), ν(b)} where we have equality if ν(a) 6= ν(b). However using

this idea is only fruitful if we can control the sum in all of the maximal ideals. We

introduce a new notation for b ∈ D we denote the set of maximal ideals that contain

b by max(b). That is max(b) = {M | b ∈M}.

Theorem 4.1.2. If D is an atomic purely almost Dedekind domain that is bounded,

then the Jacobson radical J =
⋂
M∈Max(D) M = 0.

Proof. Consider S = {n|b ∈ J and b = α1α2 · · ·αn is an atomic factorization}. Now

set k to be the minimal element of S.

Suppose k = 1. Then there exists an atom α ∈ J . Now we note that ρ >

νM(α) > 0 for all M and some fixed integer ρ, since D is bounded. Now there exists
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b ∈ D with b /∈ J . We set ξ = bρ + α and note

νM(ξ) =

 νM(α) M ∈ max(b)

0 M /∈ max(b)

Thus we see N(ξ) < N(α), hence ξ divides α and ξ is not a unit. Hence α is not an

atom.

Since there are no atoms in J and we are assuming that D is atomic, we can

find d ∈ J such that d = β1β2 · · · βk where the βi are atoms and k is chosen to be

the minimal element of S. Since one the βi’s is in more than one maximal ideal, we

will assume that β1 is in more than one maximal ideal without loss of generality. Let

β1 ∈ P,M ′. Set b = β2β3 · · · βk, and note b 6∈ J . Further we can choose P such that

b /∈ P since b 6∈ J .

We need to ensure that we create an element that overlaps with β1 at some

maximal ideal. Now we find c ∈ M ′ with c /∈ P . Now we note that ρ > νM(β1) > 0

for all M ∈ max(β1) and some fixed integer ρ. Set ξ = (bc)ρ + β1. Thus we have

νM(ξ) =


νM(β1) M ∈ max(bc) ∩max(β1)

0 M ∈ max(bc) \max(β1)

0 M ∈ max(β1) \max(bc)

Thus we see N(ξ) < N(β1), hence ξ divides β1. Thus β1 is not an atom. We conclude

that the intersection must be trivial.

Now we state some important corollaries.

Corollary 4.1.3. A glad domain is atomic if and only if it is a semi-local PID.

Proof. A glad domain is bounded and has a nonzero Jacobson radical. Hence if it is

atomic it can not be purely almost Dedekind, hence it must be Dedekind. A Dedekind
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domain with finitely many primes is a semi-local PID.

Corollary 4.1.4. If D is an atomic SP -domain, then J = 0.

We could also use this theorem to state that a bounded sequence domain is

never atomic, but in fact we are in position to show, in general, that a sequence

domain is never atomic. Recall that sequence domains are almost Dedekind and are

never Dedekind. All sharp primes of a sequence domain are principal. If Mi = (mi),

we will call mi a sharp atom, or the sharp atom associated with Mi.

Theorem 4.1.5. Let D be a sequence domain, then D is not atomic. Further the

only atoms in D are the generators of the principal maximal ideals.

Proof. If D is atomic, then there exists an atom α that is contained in infinitely

many maximal ideals. But that is α ∈ Mi = (mi). But this is impossible for mi

would divide α. Thus D cannot be atomic.

We see from the above theorem that J plays an important role in determining

atomicity. This motivates the study of almost Dedekind domains with nonzero

Jacobson radical. It should be noted again that the Jacobson radical in the Grams

example is zero.

4.2. Almost Dedekind Domains with nonzero Jacobson Radicals

Recall it was shown that if D is an atomic almost Dedekind domain then

Norm(D) is an atomic monoid. We will use this to show that if D is an atomic

almost Dedekind domain with a nonzero Jacobson radical then the sharp primes in

Max(D) can be removed with atomicity preserved. But first we state a known result.

Theorem 4.2.1. If D is an almost Dedekind domain with J 6= 0 and M is a sharp

prime in Max(D), then M is principal.
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Proof. See [11].

We can show that in an atomic almost Dedekind domain with J 6= 0 that every

sharp prime is principal, hence is generated by a sharp atom. The proof involves a

technique that we call “blasting”. The idea is to build an element b such that we

can find a divisor a of b. We then create a new element ξ = b
a

that has the desired

property. Recall that a divides b if and only if N(a) < N(b). Using this we can often

take a high enough power of b to ensure that a divides b. We now present a less

general statement of the above theorem and prove it using this technique. The hope

is that this serves as a sort of “warm up” for future proofs.

Lemma 4.2.2. If D is an atomic almost Dedekind domain with J 6= 0, then all

sharp primes are principal.

Proof. We know from [7], that if M is a sharp prime, there exists m ∈ M such that√
(m) = M . We take m to be the sharp atom associated with M . All we must show

is that νM(m) = 1, since νN(m) = 0 for all N 6= M . Suppose νM(m) = r > 1. Now

we take 0 6= d ∈ J , and we find c ∈ D that is a generator of M , thus νM(c) = 1 < r.

We construct the element ξ = cdr ∈ J and we note that νM(ξ) = rνM(d) + 1. Now

we have mνM (d) dividing ξ. Furthermore the quotient

t =
ξ

mνM (d)
is in J

and νM(t) = 1 < r. Thus t + m is only in M and has value 1 on M . Thus we must

have νM(m) = 1, else m would not be an atom. Hence for any b ∈ M , we have m

dividing b and M is principal as claimed.

Corollary 4.2.3. If D is an atomic almost Dedekind domain with J 6= 0, then D

contains no hidden primes.
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Proof. Recall hidden primes are sharp primes that are covered by the union of all

other primes. As hidden primes are sharp they would need to be principal, thus they

cannot be covered by the union. Hence there are no hidden primes.

Now we see that if D is an atomic almost Dedekind domain with J 6= 0, then

D must not have too many sharp primes. For with every sharp prime in the case we

have an associated sharp atom. If we have too many sharp atoms, it will be hard to

keep an atomic factorization finite. This is stated more precisely in the next lemma.

Lemma 4.2.4. If D is an atomic almost Dedekind domain with J 6= 0, then D can

only have finitely many sharp primes.

Proof. Suppose D has infinitely many sharp primes. Let 0 6= d ∈ J . Since D is

atomic we factor d into atoms as d = α1α2 · · ·αn. Now αi must be in infinitely

many sharp primes for some i. But if αi ∈ Mi for some sharp prime Mi then it

must be divisible by mi where mi is the sharp atom associated with Mi. Thus this

factorization is not an atomic factorization. We conclude that D has only finitely

many sharp primes.

Now that we know that an atomic almost Dedekind domain with J 6= 0 has

only finitely many sharp primes, one might ask what role do these sharp primes play?

Is there a way of removing them and preserving atomicity? The answer is yes if there

are only finitely many sharp primes, and is stated in the next lemma.

Lemma 4.2.5. If D is an atomic almost Dedekind domain with a sharp prime M =

(α), then D[α−1] is atomic.

Proof. Let D′ = D[α−1].

We note that α is not in any other maximal ideal of D, else M would not be

maximal. Thus adjoining α−1 only annihilates M . That is Max(D) \M = Max(D′).
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Now for b ∈ D we can write b = αrβ1β2 · · · βn where νM(b) = r and none of the

βi are in M . Thus in D′ = D[α−1], b = β1β2 · · · βn as α becomes a unit. Now we only

need to verify that atoms in D remain atoms in D′ with the only exception being

α. If β ∈ D is an atom other than α then β /∈ M . Now N(β) is irreducible in the

monoid Norm(D). Furthermore any factorization of N(β) in Norm(D′) would yield

a factorization in Norm(D). Thus β remains an atom.

We are now in a position to state a very powerful observation, with some

interesting corollaries. The above lemma showed that sharp primes are so well

behaved, that they can be removed without affecting atomicity. In fact, if an element

is a product of atoms with some of its atoms contained in a sharp prime we are able

to write down its new factorization (in a suitable overring) when we annihilate the

sharp prime. The new element has the exact same norm with the exception that the

entry for M no longer exists for M is no longer a maximal ideal.

Recall a dull domain is a domain with only dull primes.

Theorem 4.2.6. If D is an atomic purely almost Dedekind domain with J 6= 0.

Then there exists a dull domain D′ derived from D that remains atomic.

Proof. If D has no sharp primes there is nothing to prove. If D has sharp primes they

are all principal. Moreover there can only be only finitely many principal primes. Let

(α1), (α2), · · · (αn) be the list of sharp primes. Now we apply the previous lemma a

finite number of times to arrive at D′ = D[α−1
1 , α−1

2 , · · ·α−1
n ]. Now we know D′ is an

atomic domain. Furthermore D′ has no sharp primes, for we annihilated the sharp

primes.

It suffices to show if Q ⊆ D is a dull prime then QD[α−1] ⊆ D[α−1] is dull. If

QD[α−1] is not dull, then it must be sharp. But since J (D[α−1]) 6= 0, we must have

QD[α−1] being principal, say QD[α−1] = (x). We may choose x ∈ D, but then x

is contained only in QD[α−1]. So in D, x can only be contained in (α) and Q. But

44



if x ∈ (α), then there is some positive integer n such that αn completely divides x.

Therefore x
αn

only in Q, which contradicts Q being dull.

We saw the power of boundedness at the start of this chapter. What can we

say about a bounded almost Dedekind domain with a nonzero Jacobson radical? We

present the following result. Recall an antimatter domain is a domain that contains

no atoms. That is, if D is antimatter and b ∈ D is a nonzero non-unit, then we can

always find a divisor of b. For more on antimatter domains see [5]. We establish a

lemma and some notation before presenting the result.

For b in D and Mα ∈ Max(D), we let bα = νMα(b). That is bα is the integer

equal to the value of b on Mα.

Lemma 4.2.7. Let D be a bounded dull domain with J 6= 0 and let b ∈ D be a

nonzero non-unit. There exists c ∈ J such that b divides c with the property that for

some positive integer n and some maximal ideal M ∈ max(b) we have νM( c
bn

) 6= 0.

We will say such a c is not a power of b on max(b).

Proof. Let b ∈ D. We find c ∈ J such that b divides c. To construct such an element

we observe that if νM(b) < ρ for all M ∈ Max(D) and c ∈ J , then b divides cρ.

Now suppose νM( c
bn

) = 0 for all M ∈ max(b) and some positive integer n. Then

we find two maximal ideals M and M ′ of max(b) and an element d ∈ M such that

d 6∈ M ′. Now cd ∈ J and cd has the desired property. That is ν ′M( cd
bn

) = 0, but

νM( cd
bn

) 6= 0 It should be noted that max(b) is an infinite set since D is dull.

Theorem 4.2.8. Let D be a bounded dull domain with J 6= 0, then D is an

antimatter domain.

Proof. Take b ∈ D with {Mγ}γ∈Γ = max(b). We find c ∈ J such that b divides c and

νM( c
b
) ≥ 1 for some M ∈ max(b). Now as D is bounded there exists positive integers
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ρ and π such that for all M we have ρ > νM(b) and π > νM(c). Now we consider the

set {
νM(b)

νM(c)

∣∣∣∣M ∈ Max(D)

}
⊂ Q ∩ [0, 1] .

This set is finite for there are only finitely many choices for the numerator and

finitely many choices for the denominator, thus it must contain its supremum, say d.

We find α ∈ Γ such that

νMα(b)

νMα(c)
= d.

That is bα
cα

= d. Now we consider bcα and cbα . We have for all maximal ideals M ,

νM(bcα) = cανM(b) and νM(cbα) = bανM(c). We claim bcα divides cbα . We verify by

observing for all M we have

bανM(c)− cανM(b) = νM(c)

(
bα − cα

(
νM(b)

νM(c)

))
≥ νM(c)

(
bα − cα

(
bα
cα

))
= 0 .

Thus bcα divides cbα . Let Λ be the set of maximal ideals that do not contain the

quotient. That is cbα

bcα
∈ Max(D) \ Λ 6= ∅ where Λ ( Γ. Note the quotient is zero in

the αth slot, and is not zero on the entire set of Γ because of our insistence c is not a

power of b on Γ. Now we have

N

(
b+

(
cbα

bcα

)ρ)
=


0 M ∈ Λ

νM(b) M ∈ Λc ∩ Γ

0 M ∈ Γc

.

And we note

N

(
b+

(
cbα

bcα

)ρ)
< N(b) .

Thus we have found a divisor of b. We conclude that D is an antimatter domain.

46



We use this result along with other work we have already to done to see the

following corollary.

Corollary 4.2.9. For any fixed n ∈ N, there exists an almost Dedekind domain with

exactly n atoms.

Proof. We start with a Dedekind domain D with n + 1 maximal ideals. It must be

the case that all of these maximal ideals are principal and J 6= 0. We now split

one of the maximal ideals as we did in the construction of Dq leaving the remaining

n maximal ideals inert. The result is a bounded almost Dedekind domain with a

nonzero Jacobson radical with exactly n sharp primes and an uncountable number

of dull primes. The previous result shows there are no atoms contained in any of the

dull primes.

Now we have seen that if D is an atomic almost Dedekind domain with a

nonzero Jacobson radical, then its “dull part” plays the major role. In particular

we now know that an atomic purely almost Dedekind domain with only dull primes

cannot be bounded. In fact much more is true.

4.3. Completely Unbounded Domains

Definition 4.3.1. We call a domain D completely unbounded, if for all nonzero non-

units b ∈ D we have b unbounded. We will call these completely unbounded domains.

It should be noted that this definition may be vacuous. At this time we know of

no examples of completely unbounded domain. The definition is a necessary condition

for a dull almost Dedekind domain with J 6= 0 to be an atomic domain.

Theorem 4.3.2. If D is an atomic dull domain with J 6= 0, then D is completely

unbounded.

Proof. Suppose there exists a bounded element b ∈ D. Since we are assuming D is

atomic, this implies there must exist a bounded atom. Thus we will take b to be a
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bounded atom. Now we find c ∈ J such that b|c and c is not a multiple of b on

Γ = max(b). Now if c were a bounded element we could find our divisor as we did

in the previous theorem. Thus we need to circumnavigate the fact that c might be

unbounded, but as we will see this just involves some observations.

Now we are assuming b is bounded so we find ρ with ρ > νM(b) for all M ∈

Max(D). Our previous proof relied upon finding the supremum of

{
νM(b)

νM(c)

∣∣∣∣M ∈ Max(D)

}
⊂ Q .

We knew such a supremum existed in the set, because the set was finite. But now

that we do not have an upper bound on the value of c, the set might be infinite.

However, we will see that the set contains its supremum. Let

Σ1 =

{
1

νM(c)

∣∣∣∣M ∈ Max(D) and νM(b) = 1

}
.

Now the set σ1 = {νM(c)|M ∈ Max(D) and νM(b) = 1} is a subset of N0. We should

note that νM(c) 6= 0 for any M , because c ∈ J . Thus Σ1 contains a least element,

say τ1. Now 1
τ1

is the supremum of Σ1. Now for 1 ≤ i < ρ we define

Σi =

{
i

νM(c)

∣∣∣∣M ∈ Max(D) and νM(b) = i

}
.

Again we set σi = {νM(c)|νM(b) = i}. We find the least element τi of σi and note

that τi ≥ i since b|c. Now i
τi

is the supremum of Σi. Now since b is bounded in value

by ρ we see

sup

{
νM(b)

νM(c)

∣∣∣∣M ∈ Max(D)

}
= sup(Σ1,Σ2, · · ·Σρ−1) = sup

(
1

τ1

,
2

τ2

, · · · ρ− 1

τρ−1

)
.

Thus the supremum exists and is in the set. Now we finish the proof just like in the
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previous theorem. We find an element that realizes the supremum and we use the

“blasting” technique. Thus there must not exist any bounded elements in D. We

conclude that D is a completely unbounded domain.

It is not clear at the present whether one can construct a completely unbounded

almost Dedekind domain. If no such completely unbounded domains exist, then we

would be able to conclude that an atomic almost Dedekind domain with a nonzero

Jacobson radical must, in fact, be Dedekind. Even if one can construct a completely

unbounded domain, it is the belief of the author that it would most likely be impos-

sible to construct and atomic completely unbounded domain. The rationale for this

hypothesis is that unbounded elements have many possible divisors, and in order for

a completely unbounded domain to be atomic it would need to contain unbounded

atoms. This seems highly unlikely, but the question remains unanswered.

Without a solid construction proving the existence of completely unbounded

domains, one should be cautious in stating results about said domains. In the attempt

to disprove or discover their existence, a number of properties were discovered.

Theorem 4.3.3. A completely unbounded domain D with J 6= 0 must be a dull

domain.

Proof. Suppose D has a sharp prime M , then M = (m) for some m ∈ D Furthermore

m is contained only in M hence N(m) is bounded.

It is possible that the sum of two unbounded elements might be bounded, this

was part of the rationale in the next result. In hopes of disproving the existence of

completely unbounded domains the following lemmas were established, although as

of yet they have not led to any conclusions one way or the other about the existence

of completely unbounded domains.
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Let a, b be elements of a completely unbounded domain D We define the sym-

metrically related sets:

L = {M ∈ Max(D)| νM(a) < νM(b)} ,

E = {M ∈ Max(D)| νM(a) = νM(b)} ,

G = {M ∈ Max(D)| νM(a) > νM(b)} .

Lemma 4.3.4. If D is a completely unbounded domain with J 6= 0. Then for a, b ∈ D

with a+b a non-unit we must have either L′ = {νM(a)|M ∈ L} or G′ = {νM(b)|M ∈

G} unbounded or E being infinite.

Proof. Suppose L′ and G′ are both bounded and E is finite. Then

N(a+ b) =


νM(a) M ∈ L

νM(b) M ∈ G

νM(a+ b) M ∈ E

It is not clear what νM(a+b) is on E, since the values are equal on the maximal ideals

of E. Now we must have a+ b being a bounded element which is impossible.

With regard to the atoms we have the following.

Lemma 4.3.5. Suppose α, β are atoms in a completely unbounded domain D such

that α + β is a non-unit, then E 6= ∅.

Proof. Suppose E = ∅ Then

N(α + β) =


νM(α) M ∈ L

νM(β) M ∈ G
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But now N(α + β) < N(α) and (α + β)|α. But α was an atom, thus we must have

E 6= ∅.

We now present an approximation theorem for an almost Dedekind domain. We

will then interpret the result in the case of completely unbounded domains.

Theorem 4.3.6. Let D be an almost Dedekind domain. If S ⊂ Max(D) is such that

∩M∈SM 6= J then there exists a non-unit b ∈ D such that νM(b) = 0 for all M ∈ S.

Proof. We find b ∈ (∩M∈SM) \ J . Now since b /∈ J , there exist r ∈ D such that

1 − rb is not a unit. Now rb ∈ M for all M ∈ S. Hence 1 − rb /∈ M for all M ∈ S,

hence νM(1− rb) = 0 for all M ∈ S.

In terms of completely unbounded domains we have the following.

Corollary 4.3.7. Let D be an almost Dedekind domain and let 0 6= a ∈ J . For

n ∈ N set Sn = {M | νM(a) ≥ n}. If D is completely unbounded, then ∩M∈SnM = J .

Proof. Suppose we have ∩M∈SnM 6= J . Then there exists non-unit b ∈ D such that

νM(b) = 0 for all M ∈ Sn. Now we have

N(bn + a) =


0 M ∈ Sn

< n M /∈ Sn.

But then bn + a is a bounded element, hence D is not completely unbounded.

All of these conditions seem quite restrictive, it is the belief of the author that

they will be useful in establishing the existence of a completely unbounded domain

with a nonzero Jacobson radical or in the proof that no such almost Dedekind domain

exists.
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CHAPTER 5. CLASS GROUPS AND ALMOST

DEDEKIND DOMAINS

We present the first theorem discovered in this study. The idea was that there

cannot be “too many” principal ideals running around, else we will fail to have finite

atomic factorizations. If the class group of a domain is finite, then sharp maximal

ideals are always non-hidden. That is, they are radicals of principal ideals. This is

clear since if M is sharp, then M is invertible. Further if the class group is finite we

have a finite power of M being principal.

5.1. Class Groups and Atomicity

Theorem 5.1.1. Let D be an atomic purely almost Dedekind domain with finite class

group. Then D must have infinitely many dull primes.

Proof. Suppose D has only finitely many dull primes. Suppose the order of the class

group of D is r. Let C1, C2, · · ·Cr be the classes of ideals. Now since D is atomic,

it must contain an atom α of infinite norm, and since D has only finitely many dull

primes, α must be contained in infinitely many sharp primes. Recall sharp primes are

invertible and finitely generated. Thus there exists some class Ci (not the principal

class) such that α is contained in r + 1 distinct maximal ideals of class Ci; call these

ideals M1,M2, · · ·Mr,Mr+1. Now

α ∈M1 ∩M2 ∩ · · · ∩Mr = M1M2 · · ·Mr = (β)

since the product must be principal (any product of r ideals from Ci is principal).

Thus we must have (α) = (β) since β cannot be a proper divisor of α. But then we

also have

α ∈M1 ∩M2 ∩ · · · ∩Mr−1 ∩Mr+1 = M1M2 · · ·Mr−1Mr+1 = (γ)
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and, as before, (α) = (γ). But this leads us to conclude that

M1M2 · · ·Mr−1Mr = M1M2 · · ·Mr−1Mr+1

But since D is almost Dedekind we have the cancellation law for ideals. Thus Mr =

Mr+1. This is a contradiction. Thus α cannot be contained in r + 1 ideals from the

same class. Hence α can only be contained in only finitely many sharp primes. Thus

α must be contained in infinitely many dull primes. We conclude that D must have

infinitely many dull primes.

We can also use conditions on the class group to determine necessary properties

for an almost Dedekind domain to be ACCP.

Theorem 5.1.2. Suppose D is an purely almost Dedekind domain with only finitely

many dull primes. If the class group, C(D), has finite order then D does not satisfy

ACCP.

Proof. Set the order of C(D) = r. Now there exists an α ∈ D such that α is in

infinitely many maximal ideals and contained in at least one of the dull primes. Since

D has only finitely many dull primes α must be in infinitely many sharp maximal

ideals, say S = {Mλ}λ∈Λ We set

N(α) =
(
νM(α)

)
M∈Max(D)

.

We fix a countable subset of S, say M1,M2,M3, · · · . Associated with these sharp

primes are sharp atoms, mi. Now M r
i is a principal ideal, hence there is an element

with value r in Mi and value zero in every other maximal ideal. Thus it must be the

case that νMi
(mi) divides r. (Recall Theorem 3.1.9.) Now we are ready to proceed.

We consider αr. We set ξ1 = αr

m1
, ξ2 = ξ1

m2
, and continue inductively and set ξn = ξn−1

mn
.
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Now we have the following chain of principal ideals.

(αr) ( (ξ1) ( (ξ2) ( · · · ( (ξn) ( · · ·

Now this chain cannot end, else we would have an element of finite norm in a dull

prime which is impossible. We conclude that D is not ACCP.

So we see that if D has a class group of finite order and satisfies ACCP, then D

must have infinitely many dull primes. What can we say about atomicity with respect

to a purely almost Dedekind domains with a zero Jacobson radical? This question is

clearly more difficult, for we know from the Grams’ example that a domain of this

type can be atomic (or ACCP). Thus this class is strictly larger than the class of

Dedekind domains. But we do have the following theorem that suggests that such a

domain would need a large number of dull primes.

Theorem 5.1.3. Suppose D is a purely almost Dedekind domain with a class group

of order less than or equal to 2. If D has only finitely many dull primes, then D is

not atomic.

Proof. Suppose D is an atomic purely almost Dedekind domain. First note that if the

class group is trivial, then every sharp prime is principal. Since D is purely almost

Dedekind we can find an atom α contained in infinitely many maximal ideals. Now

as D has only finitely many dull primes, α must be in infinitely many sharp maximal

ideals. But now α is divisible by the sharp atoms associated to the sharp primes that

contain it. Thus no such atom exists.

Suppose the class group has order 2. We fix a sharp prime M ′ with associated

sharp atom m′. Again, we find an atom α that is contained in infinitely many sharp

primes. We note that α is not contained in any principal primes, else it would not be

an atom. For all non-principal sharp primes νM(α) = 1, else α would be divisible by
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the sharp atom associate with the sharp prime. The sharp atom has value at most 2

in its associated sharp prime. That is νM(α) = 1 for all sharp primes in max(α).

Now we consider α2 and note νM(α2) = 2 for all sharp primes in max(α). We

know the sharp atom m′ of M ′ has value 2 on M ′, and has value 0 everywhere else.

Now we consider ξ = α2

m′
and we note that max(α) \M ′ = max(ξ). Thus we have

νM(ξ) = 2 for all sharp primes in max(ξ) and νM ′(ξ) = 0. We know that ξ is not an

atom for it is divisible by all of the sharp atoms of the sharp primes in max(ξ). So we

factor ξ as a product of atoms, say ξ = β1β2 · · · βk. Now one of the βi is contained in

more than one sharp prime, without loss of generality, say β1. But now νM(β1) = 1

on all the sharp primes contained in max(β1). Note if this were not the case β1 would

be divisible by some sharp atom. However max(β1) ( max(α), thus N(β1) < N(α).

Hence β1 divides α and α is not an atom, and we conclude that D is not atomic.

Now one might be able to make a combinatorial argument for class groups of

higher (but finite) order to get a similar result. It seems that an atomic purely almost

Dedekind domain with any finitely ordered class group must contain infinitely many

dull primes. At the present time this is an unresolved question.
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CHAPTER 6. FUTURE STUDY

During this study, we have shown that an atomic purely almost Dedekind

domain with J 6= 0 must have infinitely many dull maximal ideals. We gave some

rationale as to why this might be true if J = 0 and D has a class group of finite

order. This suggests a the following might be true.

If D is an atomic purely almost Dedekind domain, then D has infinitely many

dull primes.

This is true in the Grams’ example.

In the case that J 6= 0, we have shown that if D is atomic, then there must exist

an atomic completely unbounded domain with J 6= 0. It would be nice to resolve

whether such a completely unbounded domain exists. If such a domain does not exist

we would have the following theorem.

If D is an atomic purely almost Dedekind, then J = 0.

This would be a powerful theorem. The evidence seems to suggest it is true,

but caution should be used.

These are two questions whose resolution would lead to a better understanding

of atomic purely almost Dedekind domains. One more question, which this study

lacks the muster to suggest in a strong way to be true, is the following.

If D is an atomic purely almost Dedekind domain, then D has a class group of

infinite order.

If this is indeed true it might suggest that the class of atomic purely almost

Dedekind domains are all very similar to the Grams’ example. While this study did

not answer the question of which purely almost Dedekind domains are atomic, it did

narrow the choices dramatically. It would be nice to see a complete resolution of the

question in the future.
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