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ABSTRACT

Graph C∗-algebras are constructed using projections corresponding to the vertices of the

graph, and partial isometries corresponding to the edges of the graph. Here, we use the gauge-

invariant uniqueness theorem to first establish that the C∗-algebra of a graph composed of a directed

cycle with finitely many edges emitting away from that cycle is Mn+k(C(T)), where n is the length

of the cycle and k is the number of edges emitting away. We use this result to establish the main

results of the thesis, which pertain to maximally edge-colored directed graphs. We show that the

C∗-algebra of any finite maximally edge-colored directed graph is ∗Mn(C){Mn(C(T))}k, where n is

the number of vertices of the graph and k depends on the structure of the graph. Finally, we show

that this algebra is in fact isomorphic to Mn(∗C{C(T)}k).
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1. INTRODUCTION AND BACKGROUND

1.1. Introduction

This research is in the area of graph algebras, which are C∗-algebras related to row-finite

directed graphs. Operator algebraists have been studying these for several decades now, since

finding graph algebras to be a rich source of examples of C∗-algebras. Also, several algebras which

were already being studied can now be regarded as graph algebras, opening doors to other methods

of study, such as matrix algebras and the Cuntz algebras [12]. Furthermore, there are algebraic

structures in these algebras that coincide with properties of the directed graphs they were generated

from. For example, if the graph has a finite number of vertices, the graph algebra will be unital.

There are also structural indications that indicate whether or not the graph algebra will be simple

[12]. Finally, in considering amalgamated free products, it is hoped that a better understanding of

these algebras can occur by relating them to graphs.

1.2. C∗-algebras

Definition 1.2.1. A C∗-algebra is a Banach algebra A together with an involution (see below)

such that ||a∗a|| = ||a||2 for all a ∈ A . An involution is a map from A into A mapping a 7→ a∗

such that (a∗)∗ = a, (ab)∗ = b∗a∗, and (λa+ b)∗ = λa∗ + b∗ for all a, b ∈ A and λ ∈ C.

The following are some examples of C∗-algebras:

1. C is a commutative, unital C∗-algebra, with z∗ := z and ||z|| := |z|.

2. C(X), the collection of complex-valued functions on X, where X is a compact, Hausdorff

space, is a commutative, unital C∗-algebra, with f∗(x) := f(x) and ||f(x)|| := ||f(x)||∞.

3. C0(R), the collections of functions f : R → C such that lim
x→±∞

f(x) = 0, is a commutative,

nonunital C∗-algebra with ||f || and f∗ as above.

4. The set of bounded operators on a Hilbert space H ,

B(H ) = {T : H →H |T is bounded, linear},
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is a unital, noncommutative C∗-algebra, with ||T || = inf{M : ||Tx|| ≤M ||x|| for all x ∈H }

and T ∗ is the operator adjoint (for every T ∈ B(H ), there is a unique T ∗ ∈ B(H ) such

that for every h, g ∈H , 〈Th, g〉 = 〈h, T ∗g〉. T ∗ is called the operator adjoint of T ).

5. Mn(C), the algebra of n × n matrices whose entries are complex numbers, and Mn(C(T)),

the algebra of n× n matrices whose entries are continuous functions on the unit circle of the

complex plane, are C∗-algebras when considered as operators over the Hilbert spaces

H =





a1

a2
...

an


: ai ∈ C


and H =





f1

f2
...

fn


: fi ∈ L2(T)


, respectively.

Here, the operator adjoint is M∗ := (M)T , and ||M || is the usual operator norm.

For a more in-depth study of their features, or for more examples of C∗-algebras, see [4, 8].

Our focus on C∗-algebras will mainly have to do with Example (5) above. Note that we

think of these matrix algebras as operators; there are specifically two types of operators that we

need to be familiar with in order to continue. First, an operator P is a projection if it satisfies

the equality P 2 = P = P ∗. We can see quickly that, for example, P =

1 0

0 0

 is a projection in

M2(C). The second type of operator needed is a partial isometry ; S is a partial isometry if SS∗

and S∗S are both projections. We may recall that U is an isometry if U∗U = I, where I is the

identity operator in the C∗-algebra. Thus, a partial isometry S is an isometry of its initial space

onto its range space in H . A simple example of a partial isometry is S =

0 1

0 0

. Observe that

S∗ =

0 0

1 0

, so that SS∗ =

1 0

0 0

 and S∗S =

0 0

0 1

 are both projections.

Lastly, a bit of C∗-algebra terminology we will see throughout these results. We call ρ : A →

B, where A ,B are C∗-algebras, a ∗-homomorphism if it is a linear, multiplicative map for which

ρ(A∗) = ρ(A)∗ for all A ∈ A . If ρ is bijective, then it is a ∗-isomorphism. A ∗-representation π of a

C∗-algebra A on a Hilbert space H is a ∗-homomorphism of A into B(H ). The Gelfand-Naimark
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theorem (see, for instance, [8]) established that every C∗-algebra is isometrically ∗-isomorphic to a

closed ∗-subalgebra of B(H ) for some choice of H . Hence, we can think of a ∗-representation as

being simply a ∗-homomorphism for the purposes of this paper.

1.3. Directed graphs and their graph algebras

The following description is a summary of material provided in [12]; details of many of the

facts stated below can be found in that reference. A directed graph E is a collection of vertices and

edges such that each edge has a source (vertex) and a range (vertex). In general, the notation for

the collection of vertices is E0, the collection of edges is E1, the collection of paths of length n is

En, and the collection of all finite-length paths in E is E∗. Taking into account that each edge has

a source and a range, we define maps s, r : E1 → E0 where s(e) is the source vertex of edge e and

r(e) is the range vertex of edge e. For example, consider the following directed graph:

E : ve
%%

w
foo

Here, s(e) = r(e) = r(f) = v, and s(f) = w. The vertex w ∈ E0 is an example of a source, which

is a vertex which receives no edges.

Next, we describe our framework for assigning C∗-algebra operators to the edges and vertices

of our graphs. Let E be a row-finite directed graph and H a Hilbert space (a row-finite directed

graph is one in which no vertex receives infinitely many edges; the name is derived from the graph’s

corresponding adjacency matrix).

Definition 1.3.1. A Cuntz-Krieger E-family {S, P} on H is a collection {Se : e ∈ E1} of partial

isometries and {Pv : v ∈ E0} of mutually orthogonal projections such that

(CK1) S∗eSe = Ps(e) for all e ∈ E1, and

(CK2) Pv =
∑
r(e)=v

SeS
∗
e for all v ∈ E0 where v is not a source.

Here, what is being required in CK1 is that the initial space of Se is all of PvH if s(e) = v.

In CK2 we require that the range space of Pv is the direct sum of all of the range spaces SeH , where

r(e) = v. The outcome of the requirements of CK1 and CK2, known as the Cuntz-Krieger relations,

is that moving along paths in the graph will be consistent with finding nonzero products of elements
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in {S, P}. We will demonstrate this shortly. Now, however, having only these requirements and

properties of projections and partial isometries, the following facts are true [12]:

Fact 1.3.2. For any edge e ∈ E1, Se = Pr(e)Se = SePs(e).

This follows from the fact that Se is an isometry of Ps(e)H onto a closed subspace of

Pr(e)H . Observe that what this says is that the projections will act like identity operators when

being multiplied by the appropriate partial isometry on the appropriate side. It turns out that if a

projection is multiplied by any other operator in {S, P} the result will be the zero operator.

Fact 1.3.3. Every non-zero finite product of the partial isometries Se and S∗f has the form SµS
∗
ν

for some µ, ν ∈ E∗ with s(µ) = s(ν).

This fact is not obvious, and follows from a number of propositions and corollaries. However,

this result is consistent with our claim that the Cuntz-Krieger relations CK1 and CK2 essentially

require that E-families behave in a way that corresponds to moving along paths in a graph.

Example 1.3.4. As an illustration of what we mean by E-families behaving in a way that corre-

sponds to moving along paths in a graph, we consider the following graph G:

r
e1

""

r
r e2 //

e4
||

r e3
<<

r re5
bb

Notice that we have left out any labels for the vertices, as the facts above eliminate the need to

label them in this case. Now, if one looks to the Cuntz-Krieger relations and the facts above, one

would find that the product Se3Se2S
∗
e4 must be nonzero, since we can follow e4 backwards to the

source of e2, and then move along the path e3e2 in graph G (two observations here: the operator

adjoint corresponds to moving backwards along an edge, and, when looking at a product of partial

isometries or a path in a graph, we read the edges in reverse order; this is due to the convention of

operator use). Similarly, Se3Se2S
∗
e5 = 0 must be the case, since it does not make sense to follow e5

backwards and then go forward along path e3e2.

Finally, we are concerned with building a C∗-algebra from a Cuntz-Krieger E-family; in

general, C∗(S, P ) is the C∗-algebra generated by the Cuntz-Krieger E-family {S, P}. Because of
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the ∗-algebraic consequences of the Cuntz-Krieger relations, a series of corollaries to those and to

the facts above lead to the main corollary below [12, Corollary 1.16]:

Corollary 1.3.5. If {S, P} is a Cuntz-Krieger E-family for a row-finite graph E, then C∗(S, P ) =

span{SµS∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}.

Example 1.3.6. One example of such a C∗-algebra is for the graph E seen previously:

E : ve
%%

w
foo

We can define a Cuntz-Krieger E-family on H = `2 for ~x = (x0, x1, x2, . . . ) as follows:

Pv(~x) = (0, x1, x2, x3, . . . ), Pw(~x) = (x0, 0, 0, 0, . . . ),

Se(~x) = (0, 0, x1, x2, . . . ), and Sf (~x) = (0, x0, 0, 0, 0, . . . ).

With Se and Sf defined this way, one can check that S∗e (~x) = (0, x2, x3, x4, . . . ) and S∗f (~x) =

(x1, 0, 0, 0, . . . ). The Cuntz-Krieger relations require that S∗eSe = Pv, S
∗
fSf = Pw, and Pv =

SeS
∗
e + SfS

∗
f . These are straight-forward to check; for example,

S∗eSe(~x) = S∗e (0, 0, x1, x2, . . . )

= (0, x1, x2, x3, . . . )

= Pv(~x).

Thus, the set {S, P} is a Cuntz-Krieger E-family. It can be shown that in fact Se + Sf is enough

to generate all of C∗(S, P ), since all four of the operators above can be recovered from this single

operator (for example, check that that (Se +Sf )(Se +Sf )∗ = Pv). Hence, C∗(S, P ) = C∗(Se +Sf ).

There are natural questions that arise at this point: (1) Can there be (several) different

Cuntz-Krieger E-families for a directed graph E, and, if yes, (2) will these E-families generate

isomorphic C∗-algebras? We can answer both questions affirmatively, although the answer to

question (2) is not yes in all cases. To begin to answer this question, we need to introduce a C∗-

algebra C∗(E) that is universal for C∗-algebras generated by Cuntz-Krieger E-families, and which

is always generated by an E-family labeled {S, P}. The following proposition is not obvious, and

the proof can be found in [12].
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Proposition 1.3.7. For any row-finite directed graph E, there is a C∗-algebra C∗(E) generated

by a Cuntz-Krieger E-family {S, P} such that for every Cuntz-Krieger E-family {T,Q} in a C∗-

algebra B, there is a homomorphism πT,Q of C∗(E) into B satisfying πT,Q(Se) = Te for every

e ∈ E1 and πT,Q(Pv) = Qv for every v ∈ E0.

The C∗-algebra C∗(E) is called the C∗-algebra of the graph E, and generically is called

the graph algebra. The following corollary justifies our use of the word the to describe the graph

algebra, demonstrating that it is unique up to isomorphism. Once again, the proof can be found

in [12].

Corollary 1.3.8. Suppose E is a row-finite directed graph, and C is a C∗-algebra generated by a

Cuntz-Krieger E-family {W,R} such that for every Cuntz-Krieger E-family {T,Q} in a C∗-algebra

B, there is a homomorphism ρT,Q of C into B satisfying ρT,Q(We) = Te for every e ∈ E1 and

ρT,Q(Rv) = Qv for every v ∈ E0. Then, there is an isomorphism φ of C∗(E) onto C such that

φ(Se) = We for every e ∈ E1 and φ(Pv) = Rv for every v ∈ E0.

1.4. Uniqueness theorems

Now, because of Corollary 1.3.8, we know that the C∗-algebra of a graph E has a universal

property. Hence, we can prove that a C∗-algebra B is isomorphic to C∗(E) by finding a Cuntz-

Krieger E-family {T,Q} which generates B and has the universal property. Fortunately, the

following results tell us that it is often not necessary to check that {T,Q} has the universal property.

The first is limited to only certain types of graphs, and is essentially due to Cuntz and Krieger, as

the name implies [12, Theorem 2.4][7].

Theorem 1.4.1 (The Cuntz-Krieger uniqueness theorem). Suppose E is a row-finite directed graph

in which every cycle has an entry, and {T,Q} is a Cuntz-Krieger E-family in a C∗-algebra B such

that Qv 6= 0 for every v ∈ E0. Then the homomorphism πT,Q : C∗(E) → B is an isomorphism of

C∗(E) onto C∗(T,Q).

The first thing to note here is that we require that “every cycle [in E] has an entry.” A

cycle in a directed graph is any path which starts at and returns to the same vertex, and where

no edges in the cycle share the same source vertex; an edge e is an entry to a cycle if e is not

part of the cycle, and it has the same range vertex as an edge in the cycle. This is actually quite
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restrictive, but if a graph satisfies this requirement, then any Cuntz-Krieger E-family will satisfy

the universal property. Thus, we need only to find one Cuntz-Krieger E-family; its corresponding

C∗-algebra will be C∗(E). For example, again, back to our familiar graph E:

E : ve
%%

w
foo

Recall that we found a Cuntz-Krieger E-family, {S, P}, and C∗(S, P ) = C∗(Se + Sf ). Since the

only cycle in E is e, and f is an entry into that cycle, by the Cuntz-Krieger uniqueness theorem

we know that C∗(E) = C∗(Se + Sf ).

Suppose, however, that a graph has a cycle which has no entry; then the Cuntz-Krieger

uniqueness theorem is not useful to us. Fortunately, there is a fix for that as well. We begin by

describing what is known as a gauge action. In general, an action of a locally compact group G on

a C∗-algebra A is a homomorphism s 7→ αs of G into the group Aut A of automorphisms of A

such that s 7→ αs(a) is continuous for each fixed a ∈ A . The gauge action is a particular action of

T on C∗(E), and is described in the following proposition, then used in the main theorem below

[12, Theorem 2.2]:

Proposition 1.4.2. Let E be a row-finite directed graph with C∗(E) generated by {S, P}. Then

there is an action γ of T on C∗(E) such that for all w ∈ T, γw(Se) = wSe for every e ∈ E1 and

γw(Pv) = Pv for every v ∈ E0.

Theorem 1.4.3 (The gauge-invariant uniqueness theorem). Let E be a row-finite directed graph,

and suppose that {T,Q} is a Cuntz-Krieger E-family in a C∗-algebra B with each Qv 6= 0. If there

is a continuous action β : T→ Aut B such that for all w ∈ T, βw(Te) = wTe for every e ∈ E1 and

βw(Qv) = Qv for every v ∈ E0, then πT,Q is an isomorphism of C∗(E) onto C∗(T,Q).

To summarize what we just saw, the proposition guarantees that there is a gauge action

on the graph algebra for any row-finite directed graph E. The gauge-invariant uniqueness theorem

tells us that if we can find such an action on a Cuntz-Krieger E-family for our graph, this E-family

must generate a C∗-algebra isomorphic to the graph algebra. That is, the C∗-algebra C∗(S, P ),

where {S, P} is the aforementioned E-family, is the graph algebra C∗(E), up to isomorphism. This

theorem was originally stated in [1] and is restated and proved in full in [12].
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The following are a few well-known results that we will need throughout the course of the

thesis. The proof of the first is a good example of the use of Theorem 1.4.1, and the next uses

Theorem 1.4.3 in a way that is similar to the method we will use to prove Proposition 2.1.1:

Proposition 1.4.4. Let G be a rooted tree (that is, there is a vertex acting as a root, and all edges

are directed away from the root) with n vertices. Then C∗(G) = Mn(C).

Proof. Begin by labeling the vertices of G as v1, v2, . . . , vn, and edges e1, e2, . . . , en−1 in any fashion

(order is not important). Define the projections and partial isometries as follows: for each vertex

vi, let Pvi = eii; define Sei = ejk where s(ei) = vk and r(ei) = vj . We claim that {S, P} is a

Cuntz-Krieger G-family.

That Pvi = eii is a projection for every i has been established, and these are mutually

orthogonal (check that PviPvj = 0 for all i, j with i 6= j). Next, Sei = ejk means S∗ei = ekj so

that S∗eiSei = ekk = Pvk and SeiS
∗
ei = ejj = Pvj are projections as well. Thus, we have a family

of projections and partial isometries. We now check the Cuntz-Krieger relations on {S, P}. First,

S∗eiSei = ekk = Pvk = Ps(ei) for all i, so CK1 is satisfied. For CK2, consider all vertices which

are not a source (notice that the root of the tree will be a source). For each of these vertices,

SeiS
∗
ei = ejj = Pvj = Pr(ei), so CK2 is satisfied as well. Thus, {S, P} is a Cuntz-Krieger G-family.

Now, G does not have any cycles since G is a tree, so G satisfies the requirements of

the Cuntz-Krieger uniqueness theorem. Therefore, since {S, P} is a Cuntz-Krieger G-family with

Pv 6= 0 for all v ∈ G0, we have that C∗(G) = C∗(S, P ). It is easy to check that {S, P} will generate

all of Mn(C). Hence, C∗(G) = Mn(C).

Proposition 1.4.5. Let G be a directed cycle of length n. Then C∗(G) = Mn(C(T)).

Proof. Let the vertices {v1, v2, . . . , vn} and edges {e1, e2, . . . , en} be labeled in such a way that

s(ei) = vi, and r(ei) = vi+1, with r(en) = v1. Consider the C∗-algebra Mn(C(T)); we set Pvi = 1eii,

Sei = 1e(i+1)i for i < n, and Sen = ze1n, where z is the unitary generator of C(T), and z∗ := z.

Then we claim that πS,P : C∗(G)→Mn(C(T)) is an isomorphism.

First, we check that {S, P} is a Cuntz-Krieger G-family. Certainly Pvi = 1eii is a projection

for every i, and these are mutually orthogonal (check that PviPvj = 0 for all i, j with i 6= j); with

Sei = 1e(i+1)i for i < n, we have S∗ei = 1ei(i+1) so that S∗eiSei = Pvi and SeiS
∗
ei = Pvi+1 are
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projections for all i < n. Also, since zz = 1, we have S∗enSen = Pvn and SenS
∗
en = Pv1 are

projections as well. Thus, we have a family of projections and partial isometries. We now check

the Cuntz-Krieger relations on {S, P}. Since, by construction, s(ei) = vi for all i ≤ n, we have

already seen above that S∗eSe = Ps(e) for all e ∈ G1, so CK1 is satisfied. For CK2, notice that vi is

not a source for any i, but also that vi = r(e) for exactly one edge e for each i. By construction,

r(ei) = vi+1 for all i < n, and we see above that SeiS
∗
ei = Pvi+1 for i < n. Finally, SenS

∗
en = Pv1

was also established above, and r(en) = v1. Hence, {S, P} is a Cuntz-Krieger G-family.

Next, we claim that the range of πS,P contains all of Mn(C(T)). Since eij can be factored

as a product involving arbitrarily many copies of e1nen(n−1) · · · e21, we have that every matrix of

the form zmeij is in C∗(S, P ) for all m ∈ Z (taking adjoints for m < 0). Thus, the range of πS,P

contains all matrices of trigonometric polynomials. We use the sup norm topology on C(T). The

unit circle is compact, and the trigonometric polynomials separate points of C(T) in this topology.

Hence, by Stone-Weierstrauss, the trigonometric polynomials are dense in C(T). Thus, the range

of πS,P contains all of Mn(C(T)).

We now wish to find a gauge action on Mn(C(T)). For fixed w ∈ T, let Uw ∈ Mn(C) be

defined as Uw :=
∑n

j=1w
jejj , and define βw by

βw(fij(z)) = Uw(fij(w
nz))U∗w

(that βw ∈ Aut(Mn(C(T))) is immediate, where β−1w (fij(z)) = Uw(fij(w
−nz))U∗w). Then, since eii

commutes with Uw for all i,

βw(Pvi) = βw(1eii) = Uw(1eii)U
∗
w = UwU

∗
w(1eii) = 1eii = Pvi .
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Next, for i < n, we have,

βw(Sei) = βw(1e(i+1)i) =
n∑
j=1

wjejj(1e(i+1)i)U
∗
w

= wi+1(1e(i+1)i)

n∑
k=1

w−kekk

= wi+1(1e(i+1)i)w
−i

= w(1e(i+1)i)

= wSei .

Finally, the wn in the evaluation of the fij comes into play when we check βw(Sen):

βw(Sen) = βw(ze1n) =

n∑
j=1

wjejj(w
nze1n)U∗w

= wn+1ze1n

n∑
k=1

w−kekk

= wze1n

= wSen .

Thus, we have shown that β : T→ Aut(Mn(C(T)) is a continuous action such that βw(Se) =

wSe for all e ∈ G1 and βw(Pv) = Pv for all v ∈ G0. Therefore, by the gauge-invariant uniqueness

theorem, πS,P is an isomorphism of C∗(G) onto C∗(S, P ) = Mn(C(T)). Hence, the C∗-algebra for

a directed n-cycle is Mn(C(T)).

And finally, some terminology which will need to be used as well: Let E be a directed graph.

We will say that we are adding an outward pointing edge to E when we mean that a new edge e

has been added, with s(e) = v for a vertex v ∈ E0, and r(e) = w for a new vertex w which was not

in E0. Furthermore, we will say that we have iterated the process of adding an outward pointing

edge to E k times when we mean that we have added an outward pointing edge to E, and then

added an additional outward pointing edge to the resulting graph (iterated two times thus far),

and added an additional outward pointing edge to the result (three times), etc., until k new edges

have been added. An illustration follows below:
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G : v1

}}

G1 : v1

}}
v2 // v3

``

v2 // v3

``

// w1

G2 : v1

}}

w2 G3 : v1

}}

w2

v2 // v3

`` >>

// w1 v2 // v3

`` >>

// w1
// w3

In this illustration, we begin with the 3-cycle G. The graph G1 has been built by adding

an outward pointing edge to G. Next, an outward pointing edge is added to G1, so the process

of adding an outward pointing edge to G has been iterated twice. Finally, we can build G3 by

iterating the process of adding an outward pointing edge to G three times. To be clear, at each

step, the outward pointing edge could have been added at any of the vertices which were already

present.

1.5. Edge-colored graph algebras

Much of the following background material was introduced by Duncan [10], and when it

comes from elsewhere it will be clearly referenced. Here we give precise definitions pertaining to

edge-colored graph algebras, and state a few theorems which will be needed as foundation for the

results of Chapter 3.

We begin by building on the definition of a Cuntz-Krieger E-family.

Definition 1.5.1. Let S be a collection of partial isometries, P be a collection of pairwise orthog-

onal projections, and f : S → N a function correlating to an edge-coloring f on E (we interchange

f to mean an edge-coloring and a coloring of partial isometries). We say that {S, P, f} is an edge-

colored Cuntz-Krieger E-family on H if {f−1(n), P} is a Cuntz-Krieger family on H for each

n ∈ N.

We observe that any Cuntz-Krieger family will be an edge-colored Cuntz-Krieger family

if we just color all of the edges the same color (that is, for example, f(Se) = 1 for all e ∈ E1).

However, it is not the case that every edge-colored Cuntz-Krieger family is a Cuntz-Krieger family.
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Consider the following graph:

E : ve
%%

fee

Define Se and Sf to be partial isometries such that S∗eSe = S∗fSf = SeS
∗
e = SfS

∗
f = Pv, with

f(Se) = 1 and f(Sf ) = 2. Then {S, P, f} is an edge-colored Cuntz-Krieger E-family but is not a

Cuntz-Krieger E-family (since CK2 is not satisfied when the colors are taken away).

Next, we define a universal property for an algebra. Notice that given an edge-colored

Cuntz-Krieger family {S, P, f} associated to an edge-colored directed graph {G, f}, it will generate

a C∗-algebra, which we will call C∗(S, P, f).

Definition 1.5.2. We say that a C∗-algebra A is universal for an edge-colored directed graph

{G, f} if

• A is generated by an edge-colored Cuntz-Krieger family {S, P, f} associated to {G, f}, and

• given any edge-colored Cuntz-Krieger family {T,Q, g} associated to {G, f}, there is a ∗ -

representation π : A → C∗(T,Q, g).

If such a universal algebra exists, we will call it C∗(G, f).

Before establishing the existence of such an algebra, the following definitions are necessary.

These are a restatement of the definitions cited in [2], which they have credited to Voiculescu [13];

for further reading beyond these texts, see also [3].

Definition 1.5.3. The reduced amalgamated (free) product (A ,Φ) of a nonempty family (Ai,Φi)i∈I

of unital C∗-algebras containing a unital subalgebra A0 with conditional expectations Φi : Ai → A0

is uniquely determined by the following conditions:

1. A is a unital C∗-algebra, and there are unital ∗-homomorphisms σi : Ai → A such that

σi|A0 = σj |A0 for all i, j ∈ I. Moreover, the map σi|A0 is injective and we identify A0 with its

image in A through this map.

2. A is generated by
⋃
i∈I σi(Ai).

3. Φ : A → A0 is a conditional expectation such that Φ ◦ σi = Φi for all i ∈ I.
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4. For (i1, . . . , in) ∈ Λ(I) and aj ∈ ker Φij , we have Φ(σi1(a1) · · ·σin(an)) = 0. Here, Λ(I)

denotes the set of all finite tuples (i1, . . . , in) with ij ∈ I for all j such that ij 6= ij+1 for

j = 1, . . . , n− 1 (hence, for example, (2, 3, 1, 3, 1, 2) ∈ Λ(I) for I = {1, 2, 3}).

5. If c ∈ A such that Φ(a∗c∗ca) = 0 for all a ∈ A , then c = 0.

Definition 1.5.4. The full amalgamated (free) product ∗A0Ai satisfies (1) and (2) above.

The general notation of the free product of unital C∗-algebras Ai for i ∈ I amalgamated over

A0, where A0 is a subalgebra of Ai for all i, is ∗A0Ai. By (1), there is a unique ∗-homomorphism

ξ : ∗A0Ai → A such that σi = ξ ◦γi, where γi : Ai → ∗A0Ai are the canonical maps, and by (2) this

map is surjective [2]. Observe that if B is any other algebra satisfying (1-5) (or (1-2)), then the

free product maps onto B. In other words, A is the largest C∗-algebra satisfying (1-5) (or (1-2)).

We remind the reader here that a conditional expectation from A onto B (where B ⊂ A

are C∗-algebras) is a contractive completely positive projection ρ such that ρ(bxb′) = bρ(x)b′ for

every x ∈ A and b, b′ ∈ B. In practice, the following theorem, due to Tomiyama, is often applied

to verify a linear map is a conditional expectation [5, Theorem 1.5.10]:

Theorem 1.5.5. Let B ⊂ A be C∗-algebras and ρ be a projection from A onto B. Then, the

following are equivalent:

a. ρ is a conditional expectation;

b. ρ is a contractive completely positive map;

c. ρ is contractive.

The following theorem now establishes that such a universal algebra does exist [10, Theorem

1].

Theorem 1.5.6. Given an edge-colored directed graph {G, f}, the algebra C∗(G, f) exists. In

particular, given an edge-colored directed graph {G, f} there is an edge-colored Cuntz-Krieger family

associated to {G, f}.

Sketch of proof. Let Gi denote the directed graph {G0, f−1(i), r, s} where r, s are restrictions of

the range and source maps of G; then G = ∪Gi. If Pi denotes the collection of projections in Gi
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associated to its vertices, then we see a natural ∗ -isomorphism between the Pi’s, and will call this

subalgebra P . We claim that C∗(G, f) = ∗PC∗(Gi), and denote the usual Cuntz-Krieger family for

C∗(Gi) by {Si, P}. Define an edge-colored Cuntz-Krieger family {∪Si, P, f} where f(Se) = i for

Se ∈ Si. Then the graph associated to {∪Si, P, f} will be {G, f} and the result follows by applying

universal properties for the free product to verify the universal property listed above.

Finally, one more proposition we will need to reference in Chapter 3; this result is due to

Duncan [11, Proposition 3]:

Proposition 1.5.7. Let {G, f} be an edge-colored directed graph with e ∈ G1. Construct a new

graph by reversing the edge e, with e the resulting edge; call that graph Ge. Define a new coloring

fe by fe(g) := f(g) for all g ∈ G1 \ {e}, and fe(e) := k + 1, where k = max {f(g) : r(g) = r(e)}.

If f(e) 6= f(g) for any edge g with r(g) = r(e), then C∗(G, f) is isomorphic to C∗(Ge, fe).

Example 1.5.8. To illustrate Proposition 1.5.7, consider the following graphs G and Ge:

G : u Ge : u

e

��
w

e

??

// v

__

w // v

__

LetD =




a 0 0

0 b 0

0 0 c

 : a, b, c ∈ C

. ThenD is the C∗-algebra generated by the projections

eii ∈M3(C), which are the projections corresponding to vertices u, v, w ∈ G0. Consider graphs G1

and G2 (notice Gi is as described in the proof of Theorem 1.5.6 above for each i):

G1 : u G2 : u

w

e

??

v w // v

__

The graph algebra for G1 is

M2(C) 0

0 C

, where this denotes all matrices of the form


a b 0

c d 0

0 0 e


where a, b, c, d, e ∈ C (see, for example, [10, Page 5]). The graph algebra for G2 is M3(C), as seen
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above in Proposition 1.4.4. Hence, as seen in the proof of Theorem 1.5.6 above, we have

C∗(G, f) =

M2(C) 0

0 C

 ∗D M3(C).

We know from Proposition 1.4.5 that C∗(Ge, fe) = M3(C(T)). Thus, by Proposition 1.5.7, we have

that C∗(G, f) ∼= C∗(Ge, fe), or more specifically,

M2(C) 0

0 C

 ∗D M3(C) ∼= M3(C(T)).

Observe that we see here a concrete example of how edge-colored graph algebras might give us a

better understanding of amalgamated free products.
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2. DIRECTED GRAPH ALGEBRAS CONTAINING A

SINGLE CYCLE

The results in this chapter do not involve any edge-colorings. Here, we generalize the graph

algebra for a graph consisting of a single directed cycle with outward pointing edges added finitely

many times. This result will be used to prove one of the main results of Chapter 3.

2.1. Graph algebra of a single cycle plus one edge

Lemma 2.1.1. Let Cn be the directed cycle of length n, and let G be the graph composed of Cn

with the addition of an outward pointing edge. Then C∗(G) ∼= Mn+1(C(T)).

Proof. Let the vertices {v1, v2, . . . , vn, vn+1} and edges {e1, e2, . . . , en, en+1} be labeled in such a

way that s(ei) = vi for i = 1, . . . , n, s(en+1) = vn, r(ei) = vi+1 for i = 1, . . . , n− 1, r(en) = v1, and

r(en+1) = vn+1.

v4
e4 // v5

  
G : v3

e3

>>

vn
en+1 //

en

~~

vn+1

v2

e2

``

v1
e1oo

We will now consider the C∗-algebra Mn+1(C(T)); we set Pvi = 1eii for all i, Sei = 1e(i+1)i for all

i < n, Sen = ze1n (where z is the unitary generator of C(T) with z∗ = z), and Sen+1 = 1e(n+1)n.

We claim that πS,P : C∗(G)→Mn+1(C(T)) is an isomorphism.

First, we check that {S, P} is a Cuntz-Krieger G-family. Certainly Pvi = 1eii is a projection

for every i, and these are mutually orthogonal (check that PviPvj = 0 for all i, j with i 6= j). With

Sei = 1e(i+1)i for i < n, we have S∗ei = 1ei(i+1) so that S∗eiSei = Pvi and SeiS
∗
ei = Pvi+1 are

projections for all i < n. We can see similarly that S∗en+1
Sen+1 = Pvn and Sen+1S

∗
en+1

= Pvn+1 are

projections. Also, since zz = 1, we have S∗enSen = Pvn and SenS
∗
en = Pv1 are projections as well.

Thus, we have a family of projections and partial isometries. We now check the Cuntz-Krieger

relations on {S, P}. Since, by construction, s(ei) = vi for all i ≤ n and s(en+1) = vn, we have

already seen above that S∗eSe = Ps(e) for all e ∈ G1, so CK1 is satisfied. For CK2, notice that vi is

not a source for any i, but also that vi = r(e) for exactly one edge e for each i. By construction,
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r(ei) = vi+1 for all i < n, and we see above that SeiS
∗
ei = Pvi+1 for i < n. Also, Sen+1S

∗
en+1

= Pvn+1 ,

and we have r(en+1) = vn+1. Finally, SenS
∗
en = Pv1 was also established, and r(en) = v1. Hence,

{S, P} is a Cuntz-Krieger G-family.

Next, we claim that the range of πS,P contains all of Mn+1(C(T)). Since eij can be factored

as a product involving arbitrarily many copies of e1(n+1)e(n+1)n · · · e21, we have that every matrix

of the form zmeij is in C∗(S, P ) for all m ∈ Z (taking adjoints for m < 0). Thus, the range of πS,P

contains all matrices of trigonometric polynomials. We use the sup norm topology on C(T). The

unit circle is compact, and the trigonometric polynomials separate points of C(T) in this topology.

Hence, by Stone-Weierstrauss, the trigonometric polynomials are dense in C(T). Thus, the range

of πS,P contains all of Mn+1(C(T)).

We now wish to find a gauge action on Mn+1(C(T)). For fixed w ∈ T, let Uw ∈Mn+1(C(T))

be defined as Uw :=
∑n+1

j=1 w
jejj , and define βw by

βw(fij(z)) = Uw(fij(w
nz))U∗w

(that βw ∈ Aut(Mn+1(C(T))) is immediate, where β−1w (fij(z)) = Uw(fij(w
−nz))U∗w).

Then, since eii commutes with Uw for all i,

βw(Pvi) = βw(1eii) = Uw(1eii)U
∗
w = UwU

∗
w(1eii) = 1eii = Pvi .

Next, for i < n, we have,

βw(Sei) = βw(1e(i+1)i) =
n+1∑
j=1

wjejj(1e(i+1)i)U
∗
w

= wi+1(1e(i+1)i)

n+1∑
k=1

w−kekk

= wi+1(1e(i+1)i)w
−i

= w(1e(i+1)i)

= wSei .

Similarly, the result above follows for Sen+1 . Finally, the wn in the evaluation of the fij comes into

17



play when we check βw(Sen):

βw(Sen) = βw(ze1n) =
n∑
j=1

wjejj(w
nze1n)U∗w

= wn+1ze1n

n∑
k=1

w−kekk

= wze1n

= wSen .

Thus, we have shown that β : T→ Aut(Mn+1(C(T))) is a continuous action (in the strong operator

topology) such that βw(Se) = wSe for all e ∈ G1 and βw(Pv) = Pv for all v ∈ G0. Therefore,

by the gauge-invariant uniqueness theorem, πS,P is an isomorphism of C∗(G) onto C∗(S, P ) =

Mn+1(C(T)). Hence, the C∗-algebra for graph G as described above is Mn+1(C(T)).

2.2. Representing one graph algebra in terms of another

The following two results involve representing one graph algebra in terms of another graph

algebra, where one graph is a specially chosen subgraph of the other graph. The latter will be used

to prove the main result of the chapter.

Proposition 2.2.1. Let H be a row-finite directed graph with vertices {vi} and edges {ej}. Let G

be composed of the graph H with the addition of an outward pointing edge f to vertex w. Suppose

C∗(G) is generated by Cuntz-Krieger G-family {T,Q}. Then C∗(H) ∼= (
∑
Qvi)C

∗(G)(
∑
Qvi).

Proof. We have labeled the outward pointing edge f with range vertex w, and without loss of

generality we assume the vertices of H are labeled in such a way that s(f) = v1. Below is an

illustration of this to be referred to if needed; note that H has no restrictions, and the direction

and placement of the dashed arrows is irrelevant:

�� !!
G :

��

H v1
f // w==
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Consider first C∗(G); by Proposition 1.4.2, we know that there is a Cuntz-Krieger G-family

{T,Q} and an action γ such that for z ∈ T, γz(Te) = zTe for all e ∈ G1, and γz(Qv) = Qv for all

v ∈ G0. Now, suppose Tf is the partial isometry associated to the outward pointing edge f , and

Qw is the projection associated with its range vertex w. Then by construction {T \{Tf}, Q\{Qw}}

will be a Cuntz-Krieger H-family, and γ|{T\{Tf},Q\{Qw}} will be a gauge action on the family.

Therefore, by the gauge-invariant uniqueness theorem, C∗(H) ∼= C∗(T \ {Tf}, Q \ {Qw}). Since

{T \ {Tf}, Q \ {Qw}} ⊂ {T,Q}, we have C∗(H) ∼= C∗(T \ {Tf}, Q \ {Qw}) ⊂ C∗(T,Q) = C∗(G).

We claim that C∗(T \ {Tf}, Q \ {Qw}) = (
∑
Qvi)C

∗(G)(
∑
Qvi).

(⊆): Let X ∈ C∗(T \ {Tf}, Q \ {Qw}) = C∗({Tej}, {Qvi}). Recall that if E is any row-finite

directed graph, then C∗(E) is generated by the set

{SµS∗ν : µ, ν ∈ E∗, s(µ) = s(ν)},

where E∗ is the set of all finite paths in E (see Corollary 1.3.5). Thus, we can assume X = TµT
∗
ν

for some µ, ν ∈ H∗ with s(µ) = s(ν) (since {vi} are the vertices of H and {ej} are the edges of

H). As H is a subgraph of G, µ and ν are also in G∗. Hence, TµT
∗
ν ∈ C∗(G). Recall that

∑
Qvi

is the multiplicative identity in C∗({Tej}, {Qvi}) (see, for example, Remark 1.7 in [12]). Hence,

TµT
∗
ν ∈ C∗(G) implies that TµT

∗
ν ∈ (

∑
Qvi)C

∗(G)(
∑
Qvi). Therefore, C∗(T \ {Tf}, Q \ {Qw}) ⊆

(
∑
Qvi)C

∗(G)(
∑
Qvi).

(⊇): Let Y ∈ (
∑
Qvi)C

∗(G)(
∑
Qvi). Again, by the same argument as above, we can assume

Y = (
∑
Qvi)(Tµ′T

∗
ν′)(
∑
Qvi) for µ′, ν ′ ∈ G∗. If Tµ′T

∗
ν′ ∈ C∗(T \{Tf}, Q\{Qw}) = C∗({Tej}, {Qvi}),

we are done (since certainly
∑
Qvi ∈ C∗({Tej}, {Qvi})). Thus, we suppose that Tµ′T

∗
ν′ ∈ C∗(G) \

C∗({Tej}, {Qvi}). Since C∗(G) = C∗(T,Q), we know C∗(G) \ C∗({Tej}, {Qvi}) = C∗(Tf , Qw).

Thus, µ′ = f = ν ′; then Tµ′T
∗
ν′ = TfT

∗
f = Qw. If this is the case, then Y = (

∑
Qvi)Qw(

∑
Qvi) = 0

since the projections are mutually orthogonal. Therefore, Y ∈ C∗(T \ {Tf}, Q \ {Qw}).

Now, since C∗(T \ {Tf}, Q \ {Qw}) = (
∑
Qvi)C

∗(G)(
∑
Qvi), we know from above that

C∗(H) ∼= (
∑
Qvi)C

∗(G)(
∑
Qvi).

Example 2.2.2. To illustrate Proposition 2.2.1, consider the following graphs:
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H : v2

  

G : v2

  
v1

==

v3oo v1

==

v3oo // w

By Proposition 1.4.5 we know that C∗(H) = M3(C(T)), and by Lemma 2.1.1 we have

C∗(G) = M4(C(T)). Then
∑
Pvi =


1 0 0

0 1 0

0 0 1

 ∈ C∗(H), but when we move to C∗(G), we think of

this sum as a block matrix in a 4 × 4 matrix. That is,
∑
Pvi
∼=
∑
Qvi =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


∈ C∗(G).

Hence, here C∗(H) sits inside of C∗(G) in the sense that

C∗(H) ∼=

M3(C(T)) 0

0 0

 =
(∑

Qvi

)
M4(C(T))

(∑
Qvi

)
⊂M4(C(T)) = C∗(G)

(see Example 1.5.8 for another example of the matrix notation seen here).

Proposition 2.2.3. Let H be a row-finite directed graph with Cuntz-Krieger H-family {S, P}, and

let G be composed of the graph H with the addition of an outward pointing edge f . Let Tf be the

partial isometry in the Cuntz-Krieger G-family corresponding to edge f . Then,

C∗(G) ∼=

 C∗(H) C∗(H)T ∗f

TfC
∗(H) TfC

∗(H)T ∗f

 .
Proof. Let α : T → Aut(C∗(H)) be the gauge action on the C∗-algebra for graph H, which is

guaranteed to exist by Proposition 1.4.2. We’ll let µi, νi, γi, and δi be paths in H, with Sµi , Sνi , Sγi ,

and Sδi their corresponding partial isometries. Denote by A the space

 C∗(H) C∗(H)T ∗f

TfC
∗(H) TfC

∗(H)T ∗f


(for a discussion of a matrix representation such as this, see [6, Chapter 3]). We define an action
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β : T→ Aut(A ) by

βw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


 :=

 αw(Sµ1S
∗
ν1) wαw(Sµ2S

∗
ν2)T ∗f

wTfαw(Sµ3S
∗
ν3) Tfαw(Sµ4S

∗
ν4)T ∗f

 .
We first need to show that βw is an automorphism. Notice that βw is well-defined, since αw is an

automorphism.

The action is multiplicative:

βw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


βw


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
T ∗f

TfSγ3S
∗
δ3

TfSγ4S
∗
δ4
T ∗f




=

 αw(Sµ1S
∗
ν1) wαw(Sµ2S

∗
ν2)T ∗f

wTfαw(Sµ3S
∗
ν3) Tfαw(Sµ4S

∗
ν4)T ∗f


 αw(Sγ1S

∗
δ1

) wαw(Sγ2S
∗
δ2

)T ∗f

wTfαw(Sγ3S
∗
δ3

) Tfαw(Sγ4S
∗
δ4

)T ∗f



=

 αw(Sµ1S
∗
ν1)αw(Sγ1S

∗
δ1

) + wαw(Sµ2S
∗
ν2)T ∗fwTfαw(Sγ3S

∗
δ3

)

wTfαw(Sµ3S
∗
ν3)αw(Sγ1S

∗
δ1

) + Tfαw(Sµ4S
∗
ν4)T ∗fwTfαw(Sγ3S

∗
δ3

)

αw(Sµ1S
∗
ν1)wαw(Sγ2S

∗
δ2

)T ∗f + wαw(Sµ2S
∗
ν2)T ∗f Tfαw(Sγ4S

∗
δ4

)T ∗f

wTfαw(Sµ3S
∗
ν3)wαw(Sγ2S

∗
δ2

)T ∗f + Tfαw(Sµ4S
∗
ν4)T ∗f Tfαw(Sγ4S

∗
δ4

)T ∗f


Next, we use the following important observations:

• αw is a homomorphism, so it is linear and multiplicative;

• TfT ∗f = Qx where r(f) = x and Qx is the corresponding projection in C∗(G), and T ∗f Tf = Pv,

where v = s(f) ∈ H0 and Pv is its corresponding projection in C∗(H). These act like identities

if the products in question are nonzero; and,

• ww = 1 since w is a complex scalar.
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We will use these facts again when showing βw is linear. Continuing,

=

 αw(Sµ1S
∗
ν1Sγ1S

∗
δ1

) + αw(Sµ2S
∗
ν2Sγ3S

∗
δ3

)

wTfαw(Sµ3S
∗
ν3Sγ1S

∗
δ1

) + wTfαw(Sµ4S
∗
ν4Sγ3S

∗
δ3

)

wαw(Sµ1S
∗
ν1Sγ2S

∗
δ2

)T ∗f + wαw(Sµ2S
∗
ν2Sγ4S

∗
δ4

)T ∗f

Tfαw(Sµ3S
∗
ν3Sγ2S

∗
δ2

)T ∗f + Tfαw(Sµ4S
∗
ν4Sγ4S

∗
δ4

)T ∗f



=

 αw(Sµ1S
∗
ν1Sγ1S

∗
δ1

+ Sµ2S
∗
ν2Sγ3S

∗
δ3

) wαw(Sµ1S
∗
ν1Sγ2S

∗
δ2

+ Sµ2S
∗
ν2Sγ4S

∗
δ4

)T ∗f

wTfαw(Sµ3S
∗
ν3Sγ1S

∗
δ1

+ Sµ4S
∗
ν4Sγ3S

∗
δ3

) Tfαw(Sµ3S
∗
ν3Sγ2S

∗
δ2

+ Sµ4S
∗
ν4Sγ4S

∗
δ4

)T ∗f



= βw


 Sµ1S

∗
ν1Sγ1S

∗
δ1

+ Sµ2S
∗
ν2Sγ3S

∗
δ3

(Sµ1S
∗
ν1Sγ2S

∗
δ2

+ Sµ2S
∗
ν2Sγ4S

∗
δ4

)T ∗f

Tf (Sµ3S
∗
ν3Sγ1S

∗
δ1

+ Sµ4S
∗
ν4Sγ3S

∗
δ3

) Tf (Sµ3S
∗
ν3Sγ2S

∗
δ2

+ Sµ4S
∗
ν4Sγ4S

∗
δ4

)T ∗f




= βw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
T ∗f

TfSγ3S
∗
δ3

TfSγ4S
∗
δ4
T ∗f


 .

The action is linear: Let c and d be scalars. Then,

cβw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


+ dβw


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
T ∗f

TfSγ3S
∗
δ3

TfSγ4S
∗
δ4
T ∗f




= c

 αw(Sµ1S
∗
ν1) wαw(Sµ2S

∗
ν2)T ∗f

wTfαw(Sµ3S
∗
ν3) Tfαw(Sµ4S

∗
ν4)T ∗f

+ d

 αw(Sγ1S
∗
δ1

) wαw(Sγ2S
∗
δ2

)T ∗f

wTfαw(Sγ3S
∗
δ3

) Tfαw(Sγ4S
∗
δ4

)T ∗f



=

 cαw(Sµ1S
∗
ν1) + dαw(Sγ1S

∗
δ1

) cwαw(Sµ2S
∗
ν2)T ∗f + dwαw(Sγ2S

∗
δ2

)T ∗f

cwTfαw(Sµ3S
∗
ν3) + dwTfαw(Sγ3S

∗
δ3

) cTfαw(Sµ4S
∗
ν4)T ∗f + dTfαw(Sγ4S

∗
δ4

)T ∗f



=

 αw(cSµ1S
∗
ν1 + dSγ1S

∗
δ1

) wαw(cSµ2S
∗
ν2 + dSγ2S

∗
δ2

)T ∗f

wTfαw(cSµ3S
∗
ν3 + dSγ3S

∗
δ3

) Tfαw(cSµ4S
∗
ν4 + dSγ4S

∗
δ4

)T ∗f



= βw


 cSµ1S

∗
ν1 + dSγ1S

∗
δ1

(cSµ2S
∗
ν2 + dSγ2S

∗
δ2

)T ∗f

Tf (cSµ3S
∗
ν3 + dSγ3S

∗
δ3

) Tf (cSµ4S
∗
ν4 + dSγ4S

∗
δ4

)T ∗f




= βw

c
 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f

+ d

 Sγ1S
∗
δ1

Sγ2S
∗
δ2
T ∗f

TfSγ3S
∗
δ3

TfSγ4S
∗
δ4
T ∗f


 .
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We now need to show that βw is one-to-one and onto. We will do this by defining a function

ξw on A and showing that it is the inverse of βw. Note that αw is an automorphism, so it is

one-to-one and onto, and hence has an inverse. We define

ξw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


 :=

 α−1w (Sµ1S
∗
ν1) wα−1w (Sµ2S

∗
ν2)T ∗f

wTfα
−1
w (Sµ3S

∗
ν3) Tfα

−1
w (Sµ4S

∗
ν4)T ∗f


and we will show that (ξw ◦ βw)(X) = X and (βw ◦ ξw)(X) = X for X ∈ A . Observe,

ξw

βw

 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f





= ξw


 αw(Sµ1S

∗
ν1) wαw(Sµ2S

∗
ν2)T ∗f

wTfαw(Sµ3S
∗
ν3) Tfαw(Sµ4S

∗
ν4)T ∗f




=

 α−1w (αw(Sµ1S
∗
ν1)) wwα−1w (αw(Sµ2S

∗
ν2))T ∗f

wwTfα
−1
w (αw(Sµ3S

∗
ν3)) Tfα

−1
w (αw(Sµ4S

∗
ν4))T ∗f



=

 Sµ1S
∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f

 , and,

βw

ξw

 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f





23



= βw


 α−1w (Sµ1S

∗
ν1) wα−1w (Sµ2S

∗
ν2)T ∗f

wTfα
−1
w (Sµ3S

∗
ν3) Tfα

−1
w (Sµ4S

∗
ν4)T ∗f




=

 αw(α−1w (Sµ1S
∗
ν1)) wwαw(α−1w (Sµ2S

∗
ν2))T ∗f

wwTfαw(α−1w (Sµ3S
∗
ν3)) Tfαw(α−1w (Sµ4S

∗
ν4))T ∗f



=

 Sµ1S
∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f

 .
Therefore, (ξw ◦ βw)(X) = X and (βw ◦ ξw)(X) = X for X ∈ A , so βw is one-to-one and onto,

and is thus an automorphism. As it is a ∗-homomorphism on C∗-algebras which is one-to-one, it is

norm-continuous [9].

Now, since αw is a ∗-homomorphism, we have the following:

βw


 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f


∗ = βw


 (Sµ1S

∗
ν1)∗ (TfSµ3S

∗
ν3)∗

(Sµ2S
∗
ν2T
∗
f )∗ (TfSµ4S

∗
ν4T
∗
f )∗




= βw


 Sν1S

∗
µ1 Sν3S

∗
µ3T

∗
f

TfSν2S
∗
µ2 TfSν4S

∗
µ4T

∗
f




=

 αw(Sν1S
∗
µ1) wαw(Sν3S

∗
µ3)T ∗f

wTfαw(Sν2S
∗
µ2) Tfαw(Sν4S

∗
µ4)T ∗f



=

 αw(Sµ1S
∗
ν1)∗ wαw(Sµ3S

∗
ν3)∗T ∗f

wTfαw(Sµ2S
∗
ν2)∗ Tfαw(Sµ4S

∗
ν4)∗T ∗f



=

 (αw(Sµ1S
∗
ν1))∗ (wTfαw(Sµ3S

∗
ν3))∗

(wαw(Sµ2S
∗
ν2)T ∗f )∗ (Tfαw(Sµ4S

∗
ν4)T ∗f )∗



=

 αw(Sµ1S
∗
ν1) wαw(Sµ2S

∗
ν2)T ∗f

wTfαw(Sµ3S
∗
ν3) Tfαw(Sµ4S

∗
ν4)T ∗f


∗

=

βw

 Sµ1S

∗
ν1 Sµ2S

∗
ν2T
∗
f

TfSµ3S
∗
ν3 TfSµ4S

∗
ν4T
∗
f




∗

.

24



Thus, βw is a ∗-automorphism.

Lastly, we need to check that βw acts appropriately on each of the partial isometries and

on each of the projections. For each edge e in H1, since αw is the gauge action for C∗(H), we have

βw(Se) = βw


Se 0

0 0


 =

αw(Se) 0

0 0

 =

wSe 0

0 0

 = w

Se 0

0 0

 = wSe.

Similarly, we will show that βw(Tf ) = wTf , βw(Pv) = Pv for all v ∈ H0, and βw(Qx) = Qx.

βw(Tf ) = βw


 0 0

Tf 0


 =

 0 0

wTfαw(I) 0

 =

 0 0

wTf 0

 = w

 0 0

Tf 0

 = wTf ,

βw(Pv) = βw


Pv 0

0 0


 =

αw(Pv) 0

0 0

 =

Pv 0

0 0

 = Pv, and

βw(Qx) = βw


0 0

0 Qx


 =

0 0

0 Tfαw(I)T ∗f

 =

0 0

0 Qx

 = Qx.

Thus, we have shown that β : T→ Aut(A ) is a gauge action such that

π({S,Tf},{P,Qx}) ◦ σw = βw ◦ π({S,Tf},{P,Qx})

for the gauge action σ : T → Aut(C∗(G)). Therefore, by the gauge-invariant uniqueness theorem,

π({S,Tf},{P,Qx}) is an isomorphism. Hence, the C∗-algebra for the graph G with subgraph H is

A .

2.3. Graph algebra of a single cycle plus two edges

Lemma 2.3.1. Let H be a directed cycle of length n and G be constructed by iterating the process

of adding an outward pointing edge to H two times. Then C∗(G) ∼= Mn+2(C(T)).

Proof. Without loss of generality, label the vertices and edges of G as follows: the vertices and

edges of the cycle are, respectively, v1, . . . , vn and e1, . . . , en where s(ei) = vi, with the two outward

pointing edges en+1 and en+2; let s(en+1) = vn, r(en+1) = vn+1, s(en+2) = vk for some 1 ≤ k ≤ n+1,
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and r(en+2) = vn+2 (see illustration below). Now we define a series of other graphs. Let H1 be the

subgraph of G composed of the directed n-cycle with only the first outward pointing edge en+1,

and with all vertices and edges labeled as in G. Next, let H2 be the directed (n + 1)-cycle Cn+1,

whose vertices will be labeled wi and edges fi (1 ≤ i ≤ n+ 1) such that s(fi) = wi. Finally, we will

define G2 to be the graph H2 with added outward pointing edge fn+2 whose source is wn+1 and

range is a new vertex wn+2 (see illustration below).

vk+1

ek+1 // vk+2

""
e.g. G : vn+2 vk

ek

==

en+2oo vn
en+1 //

en

||

vn+1

v2

bb

v1
e1oo

w4
// wn

fn

""
G2 : w3

f3

==

wn+1

fn+2 //
fn+1

||

wn+2

w2

f2

aa

w1
f1oo

In the diagrams above, the diagram for H1 would be that of G with edge en+2 and vertex vn+2

removed, and for H2 would be that of G2 with edge fn+2 and vertex wn+2 removed. We will let the

Cuntz-Krieger G-family be denoted by {S, P}, and let the H1-family be the subset {S \{Sen+2}, P \

{Pvn+2}}. The Cuntz-Krieger G2-family will be referred to by {T,Q}, and the H2-family will be

the subset {T \ {Tfn+2}, Q \ {Qwn+2}}.

Observe that, by Lemma 2.1.1, since H1 is a directed n-cycle with one additional outward

pointing edge, C∗(H1) ∼= Mn+1(C(T)), and C∗(H2) ∼= Mn+1(C(T)) as well since H2 is a directed

cycle of length n+ 1; thus C∗(H1) ∼= C∗(H2). We’ll let σ : C∗(H1)→ C∗(H2) be the corresponding

∗-isomorphism.

Let µi, νi, γi, and δi be paths in H1 with corresponding partial isometries Sµi , Sνi , Sγi and

Sδi , and let the partial isometry in C∗(G) corresponding to edge en+2 be denoted by Sen+2 . Let the

partial isometry in C∗(G2) corresponding to edge fn+2 be denoted by Tfn+2 . Then we know from
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Proposition 2.2.3 that

C∗(G) ∼=

 C∗(H1) C∗(H1)S
∗
en+2

Sen+2C
∗(H1) Sen+2C

∗(H1)S
∗
en+2

 ,

C∗(G2) ∼=

 C∗(H2) C∗(H2)T
∗
fn+2

Tfn+2C
∗(H2) Tfn+2C

∗(H2)T
∗
fn+2

 ,

and we also know from Lemma 2.1.1 that C∗(G2) ∼= Mn+2(C(T)).

Finally, define π : C∗(G)→ C∗(G2) such that

π


 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2


 =

 σ(Sµ1S
∗
ν1) σ(Sµ2S

∗
ν2)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3) Tfn+2σ(Sµ4S

∗
ν4)T ∗fn+2

 .
We claim that π is a ∗-isomorphism.

The map is multiplicative:

π


 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2


π


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
S∗en+2

Sen+2Sγ3S
∗
δ3

Sen+2Sγ4S
∗
δ4
S∗en+2




=

 σ(Sµ1S
∗
ν1) σ(Sµ2S

∗
ν2)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3) Tfn+2σ(Sµ4S

∗
ν4)T ∗fn+2


 σ(Sγ1S

∗
δ1

) σ(Sγ2S
∗
δ2

)T ∗fn+2

Tfn+2σ(Sγ3S
∗
δ3

) Tfn+2σ(Sγ4S
∗
δ4

)T ∗fn+2



=

 σ(Sµ1S
∗
ν1)σ(Sγ1S

∗
δ1

) + σ(Sµ2S
∗
ν2)T ∗fn+2

Tfn+2σ(Sγ3S
∗
δ3

)

Tfn+2σ(Sµ3S
∗
ν3)σ(Sγ1S

∗
δ1

) + Tfn+2σ(Sµ4S
∗
ν4)T ∗fn+2

Tfn+2σ(Sγ3S
∗
δ3

)

σ(Sµ1S
∗
ν1)σ(Sγ2S

∗
δ2

)T ∗fn+2
+ σ(Sµ2S

∗
ν2)T ∗fn+2

Tfn+2σ(Sγ4S
∗
δ4

)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3)σ(Sγ2S

∗
δ2

)T ∗fn+2
+ Tfn+2σ(Sµ4S

∗
ν4)T ∗fn+2

Tfn+2σ(Sγ4S
∗
δ4

)T ∗fn+2


Next, we use the following important observations:

• σ is a homomorphism, so it is linear and multiplicative;
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• Tfn+2T
∗
fn+2

:= Qn+2 and T ∗fn+2
Tfn+2 := Qn+1; these act like identities if the products in

question are nonzero.

We will use these facts again when showing that π is linear. Continuing,

=

 σ(Sµ1S
∗
ν1Sγ1S

∗
δ1

+ Sµ2S
∗
ν2Sγ3S

∗
δ3

) σ(Sµ1S
∗
ν1Sγ2S

∗
δ2

+ Sµ2S
∗
ν2Sγ4S

∗
δ4

)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3Sγ1S

∗
δ1

+ Sµ4S
∗
ν4Sγ3S

∗
δ3

) Tfn+2σ(Sµ3S
∗
ν3Sγ2S

∗
δ2

+ Sµ4S
∗
ν4Sγ4S

∗
δ4

)T ∗fn+2



= π


 Sµ1S

∗
ν1Sγ1S

∗
δ1

+ Sµ2S
∗
ν2Sγ3S

∗
δ3

(Sµ1S
∗
ν1Sγ2S

∗
δ2

+ Sµ2S
∗
ν2Sγ4S

∗
δ4

)S∗en+2

Sen+2(Sµ3S
∗
ν3Sγ1S

∗
δ1

+ Sµ4S
∗
ν4Sγ3S

∗
δ3

) Sen+2(Sµ3S
∗
ν3Sγ2S

∗
δ2

+ Sµ4S
∗
ν4Sγ4S

∗
δ4

)S∗en+2




= π


 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
S∗en+2

Sen+2Sγ3S
∗
δ3

Sen+2Sγ4S
∗
δ4
S∗en+2




The map is linear: Let c and d be scalars. Then,

c π


 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2


+ d π


 Sγ1S

∗
δ1

Sγ2S
∗
δ2
S∗en+2

Sen+2Sγ3S
∗
δ3

Sen+2Sγ4S
∗
δ4
S∗en+2




=

 cσ(Sµ1S
∗
ν1) + dσ(Sγ1S

∗
δ1

) cσ(Sµ2S
∗
ν2)T ∗fn+2

+ dσ(Sγ2S
∗
δ2

)T ∗fn+2

cTfn+2σ(Sµ3S
∗
ν3) + dTfn+2σ(Sγ3S

∗
δ3

) cTfn+2σ(Sµ4S
∗
ν4)T ∗fn+2

+ dTfn+2σ(Sγ4S
∗
δ4

)T ∗fn+2



=

 σ(cSµ1S
∗
ν1 + dSγ1S

∗
δ1

) σ(cSµ2S
∗
ν2 + dSγ2S

∗
δ2

)T ∗fn+2

Tfn+2σ(cSµ3S
∗
ν3 + dSγ3S

∗
δ3

) Tfn+2σ(cSµ4S
∗
ν4 + dSγ4S

∗
δ4

)T ∗fn+2



= π


 cSµ1S

∗
ν1 + dSγ1S

∗
δ1

(cSµ2S
∗
ν2 + dSγ2S

∗
δ2

)S∗en+2

Sen+2(cSµ3S
∗
ν3 + dSγ3S

∗
δ3

) Sen+2(cSµ4S
∗
ν4 + dSγ4S

∗
δ4

)S∗en+2




= π

c
 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2

+ d

 Sγ1S
∗
δ1

Sγ2S
∗
δ2
S∗en+2

Sen+2Sγ3S
∗
δ3

Sen+2Sγ4S
∗
δ4
S∗en+2


 .

Therefore, π is a homomorphism.

We next show that π is one-to-one and onto by showing that π has an inverse. Note that

since σ is an isomorphism, σ has an inverse σ−1. For the following, we will now assume that
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γi and δi are paths in H2, rather than H1 as above (with partial isometries Tγi , Tδi). Define

ξ : C∗(G2)→ C∗(G) by

ξ


 Tγ1T

∗
δ1

Tγ2T
∗
δ2
T ∗fn+2

Tfn+2Tγ3T
∗
δ3

Tfn+2Tγ4T
∗
δ4
T ∗fn+2


 =

 σ−1(Tγ1T
∗
δ1

) σ−1(Tγ2T
∗
δ2

)S∗en+2

Sen+2σ
−1(Tγ3T

∗
δ3

) Sen+2σ
−1(Tγ4T

∗
δ4

)S∗en+2

 .
Then,

π

ξ

 Tγ1T

∗
δ1

Tγ2T
∗
δ2
T ∗fn+2

Tfn+2Tγ3T
∗
δ3

Tfn+2Tγ4T
∗
δ4
T ∗fn+2





= π


 σ−1(Tγ1T

∗
δ1

) σ−1(Tγ2T
∗
δ2

)S∗en+2

Sen+2σ
−1(Tγ3T

∗
δ3

) Sen+2σ
−1(Tγ4T

∗
δ4

)S∗en+2




=

 σ(σ−1(Tγ1T
∗
δ1

)) σ(σ−1(Tγ2T
∗
δ2

))T ∗fn+2

Tfn+2σ(σ−1(Tγ3T
∗
δ3

)) Tfn+2σ(σ−1(Tγ4T
∗
δ4

))T ∗fn+2



=

 Tγ1T
∗
δ1

Tγ2T
∗
δ2
T ∗fn+2

Tfn+2Tγ3T
∗
δ3

Tfn+2Tγ4T
∗
δ4
T ∗fn+2

 , and,

ξ

π

 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2





= ξ


 σ(Sµ1S

∗
ν1) σ(Sµ2S

∗
ν2)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3) Tfn+2σ(Sµ4S

∗
ν4)T ∗fn+2




=

 σ−1(σ(Sµ1S
∗
ν1)) σ−1(σ(Sµ2S

∗
ν2))S∗en+2

Sen+2σ
−1(σ(Sµ3S

∗
ν3)) Sen+2σ

−1(σ(Sµ4S
∗
ν4))S∗en+2



=

 Sµ1S
∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2

 .
Therefore, π is an isomorphism. The piece that remains to be shown is that π is a ∗-isomorphism.
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As σ is a ∗-isomorphism, we observe,

π


 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2


∗ = π


 Sν1S

∗
µ1 Sν3S

∗
µ3S

∗
en+2

Sen+2Sν2S
∗
µ2 Sen+2Sν4S

∗
µ4S

∗
en+2




=

 σ(Sν1S
∗
µ1) σ(Sν3S

∗
µ3)T ∗fn+2

Tfn+2σ(Sν2S
∗
µ2) Tfn+2σ(Sν4S

∗
µ4)T ∗fn+2



=

 σ(Sµ1S
∗
ν1)∗ σ(Sµ3S

∗
ν3)∗T ∗fn+2

Tfn+2σ(Sµ2S
∗
ν2)∗ Tfn+2σ(Sµ4S

∗
ν4)∗T ∗fn+2



=

 σ(Sµ1S
∗
ν1) σ(Sµ2S

∗
ν2)T ∗fn+2

Tfn+2σ(Sµ3S
∗
ν3) Tfn+2σ(Sµ4S

∗
ν4)T ∗fn+2


∗

=

π

 Sµ1S

∗
ν1 Sµ2S

∗
ν2S
∗
en+2

Sen+2Sµ3S
∗
ν3 Sen+2Sµ4S

∗
ν4S
∗
en+2




∗

.

Hence, we have shown that π is a ∗-isomorphism, so it has been shown that C∗(G) ∼= C∗(G2), and

therefore, C∗(G) ∼= Mn+2(C(T)).

2.4. Main result for a graph containing a single cycle

Theorem 2.4.1. Let H be a cycle of length n. Let G be a graph constructed by iterating the process

of adding an outward pointing edge to H k times. Then C∗(G) ∼= Mn+k(C(T)).

Proof. We know the claim holds for k = 1, 2 by Lemmas 2.1.1 and 2.3.1. Suppose the claim holds

for all j such that 1 ≤ j < k.

Define H1 to be a directed n-cycle with the process of adding an outward pointing edge

iterated k − 1 times; then by assumption we have that C∗(H1) ∼= Mn+k−1(C(T)). Let G be the

graph H1 with one additional outward pointing edge; thus, we want to show C∗(G) ∼= Mn+k(C(T)).

Define also H2 to be an (n+ k− 1)-cycle, and G2 to be H2 with one added outward pointing edge.

Then C∗(H1) ∼= C∗(H2), and C∗(G2) ∼= Mn+k(C(T)) by Lemma 2.1.1. Now, following exactly the

construction of the proof of Lemma 2.3.1, we have that C∗(G) ∼= Mn+k(C(T)).

As an illustration of this result, consider the following graph G:
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r r // r
##

r // r
r

cc

{{

roo

;;

r
;;

{{ ##r roo r
cc

roo r
Observe that G has exactly one cycle, a 6-cycle, which has had added to it seven outward-

pointing edges; thus, C∗(G) ∼= M13(C(T)). One might observe that, withG described as in Theorem

2.4.1, the number n+ k will always equal the number of vertices of G.
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3. MAXIMALLY EDGE-COLORED DIRECTED GRAPH

ALGEBRAS

The following results on edge-colored directed graphs assume that f is always a one-to-one

edge coloring; this allows us to avoid conflicts with CK2. Complications in finding graph algebras

arise when two edges have the same range vertex because of CK2. By ensuring that any two edges

with the same range vertex have a different color, we can avoid the complication.

In fact, one might notice that, because of the one-to-one nature of the coloring, these results

can be extended to undirected graphs. One needs only to take such an undirected graph and assign

a source and range vertex to each edge (choose a direction), and then assign a coloring in such a way

that no two edges receive the same color. In this sense, the study of undirected graph C∗-algebras

is equivalent to the study of certain edge-colored directed graph C∗-algebras.

Finally, as we are only trying to avoid the conflict with CK2, one could choose instead a

“minimal” coloring. In this case, the number of colors required would be the maximum number of

edges whose range is the same vertex. As long as no two edges have the same range vertex and

the same color, the coloring is arbitrary. Hence, there are many ways to color a graph to get the

results that follow.

Before continuing, we also explain the notation used here for amalgamated free products

(to refer to the formal definition of the free product, see Definition 1.5.3). Recall from the refer-

enced definition that the general notation of the free product of unital C∗-algebras Ai for i ∈ I

amalgamated over A0, where A0 is a subalgebra of Ai for all i, is ∗A0Ai. A general element of this

algebra is a linear combination of elements of the form ai1 ∗ ai2 ∗ · · · ∗ ain , where ij ∈ I for all j

and ij 6= ik if k = j + 1 (the stars can be omitted here if preferred). The amalgamation essentially

allows us to move elements of A0 across the product. For example, suppose that in the product

ai1 ∗ ai2 ∗ · · · ∗ ain we have ai1 ∈ A0. Then ai1 ∗ ai2 ∗ · · · ∗ ain = 1 ∗ ai1ai2 ∗ · · · ∗ ain , for instance. In

that sense, no product containing elements of the common subalgebra has a unique representation.

Lastly, we will be considering generators of these algebras. Again, because of the amalga-

mation, the generators will not always have unique representations, but we will use the following
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representations, in general:

• A generator will have the form a1 ∗ a2 ∗ · · · ∗ an, where ai ∈ Ai for all i ∈ I;

• Suppose A0 is generated by elements {xk}. Then xk ∗ 1 ∗ · · · ∗ 1 is in the generating set for

∗A0Ai for all k;

• Suppose Ai is generated by elements {yj}. Then 1 ∗ 1 ∗ · · · ∗ 1 ∗ yj ∗ 1 ∗ · · · ∗ 1, with yj in the

ith position, is in the generating set for ∗A0Ai, for all j such that yj /∈ {xk}.

3.1. Representing C∗(G, f) as a free product over the algebra of a spanning tree

In the following theorem, we define {T, f} to be a spanning tree in our graph {G, f};

because the edge-coloring is one-to-one, we can take the spanning tree to disregard the direction of

the edges. That is, there is no need for there to be a root vertex.

Theorem 3.1.1. Let {G, f} be a finite edge-colored directed graph with vertex set G0 and edge set

G1, where f : G1 → N is a one-to-one edge-coloring. Define {T, f} to be a spanning tree in {G, f},

and the set {ei} = G1 \T . Let {Gi, f} be the edge-colored directed graph with vertices G0 and edges

G1
i = T 1∪ ei, with f, s, and r as restrictions of the edge-coloring, source and range maps of {G, f},

respectively. Then C∗(G, f) = ∗C∗(T ){C∗(Gi, f)}.

Proof. Let C∗(G, f) be generated by an edge-colored Cuntz-Krieger family {S, P, f}. Notice that

{Gi, f} := {G0, G1
i , f} has associated edge-colored Cuntz-Krieger family {Si, P, f} with Si the

partial isometries corresponding to the edges in G1
i , and that C∗(Gi, f) = C∗(Si, P, f). Observe

that S = ∪Si, so it is clear that {∪Si, P, f} has associated graph {G, f}. Next, C∗(T ) is a subalgebra

of C∗(Gi, f) for all i, and is generated by {ST , P, f}, where ST is the appropriate subset of S.

Define σi : C∗(Gi, f) → C∗(G, f) as an inclusion mapping on the generators {Si, P, f}; we

show here that σi satisfies the requirements for the full amalgamated product, as seen in Section

1.5. First, let a ∈ C∗(T ) be a generator, so that a ∈ {ST , P, f}. Observe that ST ⊆ Si for all

i. As σi is an inclusion map on the generators {Si, P, f}, and {ST , P, f} ⊂ {Si, P, f}, σi is also

an inclusion map on {ST , P, f}. In particular, σi(a) = a = σj(a) for all i, j. Since this is true on

the generators, it is true on all of C∗(T ), so we have σi|C∗(T ) = σj |C∗(T ). Observe that inclusion

mappings are injective by construction, as well as linear and multiplicative, and will preserve

the ∗-operation. Hence, σi|C∗(T ) is an injective ∗-homomorphism for all i. Since the generators
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for C∗(G, f) are {∪Si, P, f}, and σi is an inclusion mapping, we see that C∗(G, f) is generated

by ∪σi(C∗(Gi, f)). Thus, by the universal properties of the full amalgamated product, we have

a surjective ∗-homomorphism ξ : ∗C∗(T ){C∗(Gi, f)} → C∗(G, f). We note here that ξ satisfies

σi = ξ ◦ γi for all i ∈ I, where γi : C∗(Gi, f)→ ∗C∗(T ){C∗(Gi, f)} are the canonical maps [2].

Next, define a ∗-homomorphism π : C∗(G, f) → ∗C∗(T ){C∗(Gi, f)} by sending all Se ∈ ST

to Se ∗ 1 ∗ · · · ∗ 1, all Pv ∈ P to Pv ∗ 1 ∗ · · · ∗ 1 (observe, these are the generators of C∗(T )), and

all Sei to 1 ∗ 1 ∗ · · · ∗ Sei ∗ 1 ∗ · · · ∗ 1 (recall, ei ∈ G1
i \ T ). Then π is onto a generating set, so π is

surjective.

Finally, we need to show that ξ and π are inverses of each other. We’ll show that they are

on the generating sets, and therefore in their entirety. First, let X be a generator of C∗(G, f); then

X = Pv for some v ∈ G0, X = Se ∈ ST , or X = Sei for some i ∈ I. If X = Pv or X = Se, then

ξ(π(X)) = ξ(X ∗ 1 ∗ · · · ∗ 1), and the identity σi = ξ ◦ γi forces the result that ξ(X ∗ 1 ∗ · · · ∗ 1) = X.

Similarly, if X = Sei , then ξ(π(X)) = ξ(1 ∗ 1 ∗ · · · ∗ X ∗ · · · ∗ 1), and again, σi = ξ ◦ γi forces

ξ(1 ∗ 1 ∗ · · · ∗ X ∗ · · · ∗ 1) = X. Thus, ξ(π(X)) = X for all X ∈ {S, P, f}, and so too for all

X ∈ C∗(G, f). Next, let Y be a generator of ∗C∗(T ){C∗(Gi, f)}; then Y = Pv ∗ 1 ∗ · · · ∗ 1 for some

v ∈ G0, or Y = Se ∗ 1 ∗ · · · ∗ 1 for some e ∈ T 1, or Y = 1 ∗ 1 ∗ · · · ∗ Sei ∗ · · · ∗ 1 for some i ∈ I. We

continue to make use of the identity σi = ξ ◦ γi; If Y = Pv ∗ 1 ∗ · · · ∗ 1 or Y = Se ∗ 1 ∗ · · · ∗ 1, then

the identity forces ξ(Y ) = Pv or ξ(Y ) = Se, respectively. Thus, π(ξ(Y )) = Y by the construction

of π. Similarly, if Y = 1 ∗ 1 ∗ · · · ∗ Sei ∗ · · · ∗ 1 for some i ∈ I, then ξ(Y ) = Sei , and again,

π(ξ(Y )) = Y by construction. Thus, π(ξ(Y )) = Y for all Y generating ∗C∗(T ){C∗(Gi, f)}, and so

too for all Y ∈ ∗C∗(T ){C∗(Gi, f)}. Hence, ξ and π are inverses of each other, so it follows that

C∗(G, f) ∼= ∗C∗(T ){C∗(G, f)}.

3.2. Graph algebras of maximally colored trees and graphs containing single cycles

Proposition 3.2.1. Let {T, f} be a finite graph containing no cycles (directed or otherwise), with

f : T 1 → N a one-to-one edge-coloring. Then C∗(T, f) ∼= Mn(C), where n is the number of vertices

of T .

Proof. Observe that {T, f} is an edge-colored tree that disregards direction. By Proposition 1.5.7,

we can reverse the direction of an edge and color it any color without changing the graph algebra,

so long as that new edge doesn’t have the same color as another edge with the same range vertex
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(this is true because the one-to-one edge-coloring ensures that the coloring of two edges with the

same range vertex couldn’t have been the same to begin with). Assign a root vertex r for T and

let k ∈ N, where k = 1 + max{f(e) | e ∈ T 1}. Choose any edge e adjacent to the root vertex;

if s(e) = r, define g(e) = k (observe that no other edge could have color k and have the same

range vertex as e), and if r(e) = r, apply Proposition 1.5.7 to flip the direction and recolor, so that

s(e) = r and g(e) = k. Continue this process by completing all edges adjacent to the root first,

then moving outward toward the leaves of the tree. The result will be a single-colored graph T1

(we can omit the coloring g since T1 is effectively uncolored) with r(e) 6= r(h) for all e, h ∈ T 1
1 . It

is known that C∗(T1) = Mn(C) as stated above in Proposition 1.4.4. Thus, by Proposition 1.5.7,

C∗(T, f) ∼= Mn(C).

Proposition 3.2.2. Let {C, f} be a finite graph composed of exactly a single cycle with any number

of branches stretching out of the cycle (disregarding direction in all cases), with f : C1 → N a one-

to-one edge-coloring. Then C∗(C, f) ∼= Mn(C(T)), where n is the number of vertices of C.

Proof. Again, we will make use of Proposition 1.5.7. Assign a starting vertex v for C and let k ∈ N,

where k = 1+max{f(e) | e ∈ C1}. Choose either edge e adjacent to the starting vertex; if s(e) = v,

define g(e) = k (observe that no other edge could have color k and have the same range vertex

as e), and if r(e) = v, apply Proposition 1.5.7 to flip the direction and recolor, so that s(e) = v

and g(e) = k. Continue this process by moving next to the edge e2 with s(e2) = r(e) (note that

r(e) 6= v since the edge has been flipped already), and assigning g(e2) = k. Keep moving around

the cycle similarly. Next, if there are any remaining edges, they must be connected to the cycle

by vertices on the cycle. Treat each of these vertices as a root for the trees that must branch off

of the cycle, and for each of these complete the process as described in the proof of Proposition

3.2.1. The result will be a single-colored graph C1 (we can omit the coloring g since C1 is effectively

uncolored) with r(e) 6= r(h) for all e, h ∈ C1
1 . It is known that C∗(C1) = Mn(C(T)) as stated and

shown above in Theorem 2.4.1. Thus, by Proposition 1.5.7, C∗(C, f) ∼= Mn(C(T)).

3.3. Main results for full amalgamated free products

Corollary 3.3.1. Let {G, f} be a finite edge-colored directed graph with f : G1 → N a one-to-one

edge-coloring. Then C∗(G, f) ∼= ∗Mn(C){Mn(C(T))}, where n is the number of vertices of G.
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Proof. Observe that {G, f} is the same as the graph described in Theorem 3.1.1. Then, with

{G, f} described in the same way, we have already seen that C∗(G, f) = ∗C∗(T ){C∗(Gi, f)}.

From Proposition 3.2.1 we know that C∗(T ) ∼= Mn(C). Also, by Proposition 3.2.2 we have that

C∗(Gi, f) ∼= Mn(C(T)), since adding an edge to a spanning tree will create exactly one cycle in the

graph. Thus, by substitution, C∗(G, f) ∼= ∗Mn(C){Mn(C(T))}.

Theorem 3.3.2. ∗Mn(C){Mn(C(T))}k ∼= Mn(∗C{C(T)}k)

Proof. Denote the hth copy of Mn(C(T)) in the free product on the left above by Mn(C(T))(h).

For each copy Mn(C(T))(h) for h = 1, . . . , k, let the generator of C(T)(h) be denoted by zh. Then

Mn(C(T))(h) is generated by the set {eii (i = 1, . . . , n), e(i+1)i (i < n), zhe1n} (see the proof of

Lemma 2.1.1 for discussion). Define

σh : Mn(C(T))(h) →Mn(∗C{C(T)}k)

as an inclusion map on the generators of Mn(C(T))(h); specifically, σh(eij) = (1 ∗ 1 ∗ · · · ∗ 1)fij and

σh(zheij) = (1 ∗ · · · 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij , where zh is in the hth slot. Then by construction we have

σg|Mn(C) = σh|Mn(C) for all g, h, and σh|Mn(C) is an injective ∗-homomorphism. And, since σh is an

inclusion map for all h, we observe that Mn(∗C{C(T)}k) is generated by ∪σh(Mn(C(T))(h)). Thus,

by the universal properties of the free product, we have a surjective ∗-homomorphism

ξ : ∗Mn(C){Mn(C(T))}k →Mn(∗C{C(T)}k).

From [2] we know that ξ satisfies the identity σh = ξ ◦ γh for all h, where γh : Mn(C(T))(h) →

∗Mn(C){Mn(C(T))}k are the canonical maps.

Now, define a map αh : C(T)(h) → Mn(C(T))(h) by sending the generator zh ∈ C(T)(h) to

zhe11, and thus scalars c ∈ C to ce11. We claim that αh is a ∗-homomorphism. The map is linear:

Let β, δ ∈ C. Then,

αh(βf(zh) + δg(zh)) = [βf(zh) + δg(zh)]e11 = β[f(zh)e11] + δ[g(zh)e11]

= β αh(f(zh)) + δ αh(g(zh)).
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The map is multiplicative:

αh(f(zh) g(zh)) = [f(zh) g(zh)]e11 = [f(zh)e11][g(zh)e11] = αh(f(zh))αh(g(zh)).

Finally, the map respects the ∗-operation:

αh(f(zh)∗) = αh(f(zh)) = f(zh))e11 = f(zh)e11 = [αh(f(zh))]∗.

Thus, αh is a ∗-homomorphism for all h.

Next, we define another map π : ∗C{C(T)}k → ∗Mn(C){Mn(C(T))}k by

π(x) = π(x1 ∗ x2 ∗ · · · ∗ xr) := αh1(x1) ∗ αh2(x2) ∗ · · · ∗ αhr(xr)

where xi ∈ C(T)hi . Since αhj is a ∗-homomorphism for all j, we know that, by construction, π will

be a ∗-homomorphism as well.

Finally, define φ : Mn(∗C{C(T)}k)→ ∗Mn(C){Mn(C(T))}k by

φ([xij ]) =

n∑
i=1

n∑
j=1

ei1π(xij)e1j .

Then φ is linear since π is linear and summations respect linearity. Next we consider multiplication:

φ([xij ][ypq]) = φ

[ n∑
l=1

xil ylq

]
iq


=

n∑
i=1

n∑
q=1

ei1 π

(
n∑
l=1

xil ylq

)
e1q

=

n∑
i=1

n∑
q=1

n∑
l=1

ei1 π(xil ylq)e1q

=
n∑
i=1

n∑
j=1

n∑
p=1

n∑
q=1

ei1 π(xij)e1j ep1 π(ypq)e1q

=

 n∑
i=1

n∑
j=1

ei1 π(xij)e1j

 n∑
p=1

n∑
q=1

ep1 π(ypq)e1q


= φ([xij ])φ([ypq]).
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Thus, φ is a homomorphism. The map φ also respects the ∗-operation:

φ ([xij ]
∗) = φ

(
[xij ]

T
)

= φ ([xji])

=

n∑
i=1

n∑
j=1

ej1π(xji)e1i

=
n∑
i=1

n∑
j=1

ej1π(x∗ji)e1i

=
n∑
i=1

n∑
j=1

ej1(π(xji))
∗e1i

=

 n∑
i=1

n∑
j=1

ei1π(xij)e1j

∗
= [φ([xij ])]

∗ .

Hence, φ is a ∗-homomorphism. It is also surjective, since by construction φ is onto a generating

set.

Lastly, we need to show that φ and ξ are inverses of each other. Begin by letting X

be a generator for ∗Mn(C){Mn(C(T))}k. Then X = eij ∗ I ∗ · · · ∗ I for some i, j ≤ n, or X =

I∗· · ·∗I∗zheij∗I∗· · ·∗I for some h ≤ k and i, j ≤ n, with zheij in the the hth slot; notice that because

of the amalgamation over Mn(C) these representations of the generators are not unique. We need to

show that φ(ξ(X)) = X. Observe, the identity σh = ξ ◦γh forces ξ(eij ∗I ∗· · ·∗I) = (1∗1∗· · ·∗1)fij

and ξ(I ∗ · · · ∗ I ∗ zheij ∗ I · · · ∗ I) = (1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij . Then, using the definition of φ,

φ(ξ(eij ∗ I ∗ · · · ∗ I)) = φ((1 ∗ 1 ∗ · · · ∗ 1)fij)

= φ




0 · · · 0

... 1 ∗ 1 ∗ · · · ∗ 1
...

0 · · · 0




= ei1π(1 ∗ 1 ∗ · · · ∗ 1)e1j

= ei1 ∗ e11 ∗ e11 ∗ · · · ∗ e11 ∗ e1j

= eij ∗ I ∗ · · · ∗ I, (3.1)
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where the equality in line (3.1) is due to the amalgamation over Mn(C). Similarly,

φ(ξ(I ∗ · · · ∗ I ∗ zheij ∗ I ∗ · · · ∗ I)) = φ((1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij)

= φ




0 · · · 0

... 1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1
...

0 · · · 0




= ei1π(1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)e1j

= ei1 ∗ e11 ∗ · · · ∗ e11 ∗ zhe11 ∗ e11 ∗ · · · ∗ e11 ∗ e1j

= I ∗ · · · ∗ I ∗ zheij ∗ I ∗ · · · ∗ I, (3.2)

where, again, the equality in line (3.2) is due to the amalgamation over Mn(C). Hence, we have

shown that φ(ξ(X)) = X for all generators X of ∗Mn(C){Mn(C(T))}k.

Finally, we need to show that if Y is a generator for Mn(∗C{C(T)}k), then ξ(φ(Y )) = Y . If

Y is a generator, then Y = (1 ∗ 1 ∗ · · · ∗ 1)fij for some i, j ≤ n, or Y = (1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij

for some h ≤ k and i, j ≤ n, with zh in the hth slot. Then,

ξ(φ((1 ∗ 1 ∗ · · · ∗ 1)fij)) = ξ

φ



0 · · · 0

... 1 ∗ 1 ∗ · · · ∗ 1
...

0 · · · 0





= ξ(ei1π(1 ∗ 1 ∗ · · · ∗ 1)e1j)

= ξ(ei1 ∗ e11 ∗ e11 ∗ · · · ∗ e11 ∗ e1j

= ξ(eij ∗ I ∗ · · · ∗ I)) (3.3)

= (1 ∗ 1 ∗ · · · ∗ 1)fij ,
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where the equality in line (3.3) is due to the amalgamation over Mn(C). Similarly,

ξ(φ((1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij)) = ξ

φ



0 · · · 0

... 1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1
...

0 · · · 0





= ξ(ei1π(1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)e1j)

= ξ(ei1 ∗ e11 ∗ · · · ∗ e11 ∗ zhe11 ∗ e11 ∗ · · · ∗ e11 ∗ e1j)

= ξ(I ∗ · · · ∗ I ∗ zheij ∗ I ∗ · · · ∗ I) (3.4)

= (1 ∗ · · · ∗ 1 ∗ zh ∗ 1 ∗ · · · ∗ 1)fij ,

where, again, the equality in line (3.4) is due to the amalgamation over Mn(C). Hence, we have

that ξ(φ(Y )) = Y for all generators Y of Mn(∗C{C(T)}k). Since these two maps are inverses of

each other on the generators of their corresponding domains, we have that they are inverses on

their domains. Therefore, we have ∗Mn(C){Mn(C(T))}k ∼= Mn(∗C{C(T)}k).

3.4. Afterword

Future work could be done in the area of reduced free products; for example, we would like

to show that a variant of Theorem 3.3.2 holds for the reduced free product as well. We plan to

show this in forthcoming work.
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