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Abstract

The objective of this work is to develop mathewatimodels for predicting the
thermal stability of commercial diagnostic assaybese assays are a product of the Point of
Care division of Abbott Laboratories, and are ufedanalyzing patient blood samples for
specific substances. The accuracy of the restdts these diagnostic tests relies on the
activity of specific biological and/or chemical cponents of the sensors. Mathematical
models that describe the stability of these actwenponents are useful for supporting
product shelf-life claims and for the design andblementation of accelerated testing
protocols. In the thesis, the stability of two ghastic assay systems of interest to Abbott
Point of Care is investigated using mathematicadlefing.

For the first assay system investigated, the bmseassociated with the assay is
identified as an important factor for product slipi A second-order dynamic model is
developed to describe the thermal stability of thizssensor. The model corresponds to a
reversible reaction followed by an irreversible atean, with rate coefficients having
Arrhenius temperature dependencies. The secored-dgghamic model provides improved
predictions relative to a first-order dynamic mqdssed on a comparison between model
fits for two experimental datasets, and a comparigbpredictive ability for a validation
dataset. The second-order dynamic model is usexktend the concept of Mean Kinetic
Temperature concept from the pharmaceutical ingustr systems with higher-order

dynamics.



For the second assay system investigated, thieratdin fluid is identified as a key
factor in assay stability. A first-order modeldsveloped to describe the stability of the
analyte within the calibration fluid. The firstelr model captures most of the trend present
in the data from calibration fluid incubation exipeents. Finally, model predictions are used
to investigate the amount of change in assay resptimat can be attributed to changes in
concentration of analyte in the calibration fluaftér storage at elevated temperatures). The
results show that the changes observed in asspgmsss are consistent with the magnitude

of changes in calibrant analyte concentrationsipted by the model.
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Chapter 1: Introduction

11 Problem Description
Abbott Point of Care (APOC) manufactures single-ble®d diagnostic assay cartridges

for use with their i-STAT handheld analyzer. A blood sample from a patiemteposited
into the sample entry well of the cartridge and thetridge is inserted into the APOC i-
STAT analyzer. The analyzer then performs an aatechsequence whereby the biosensor
chips take readings of both a calibration fluidofr a calibration pouch) and the blood
sample. A diagram of a representative cartridge issxcomponents is included as Figure

1.1.

B
G‘ Cartridge Label

__Sample Ent
- Well Gasket

Fluid Channel

Cartridge Cover

————

~ Sample Entry Well

i l Tape Gasket

Biosensor Chips

<_> Calibrant Pouch

__,;hk—/' Puncturing Barb

Cartridge Base

Air Bladder

Figure 1.1: Exploded view of an APOC i-STAT cartridge (figure used with per mission
from APOC)

The APOC i-STAT assay cartridges contain chemiadl biological components. The
stability of the chemical and biological componetfitsits the shelf-life of these assay

products, and imposes specific requirements faragw at cold to moderate temperatures.



To improve product stability and extend the currshelf-life claims, APOC actively
investigates the stability of the chemical and dgotal components of their assay cartridges.
This thesis focuses on the development of stabitibglels for components of the diagnostic
assay cartridges. Stability models allow for shiédf predictions and for extrapolation from
accelerated testing experiments. These modeldbearsed to simulate product responses,
establish hypotheses, design experiments or perfeensitivity analyses. The model
development process involves exploring relationsHiptween stress factors and product
performance over time; the understanding of thetaionships is a valuable for scientific

and product quality advances.

1.2  Electrochemical Sensors and Biosensors
Traditional electrochemical sensors for use inicdhchemistry can be classified into

two main categories; potentiometric sensors or aompetric sensors. In potentiometric
sensors, a potential difference is measured betweeimdicator electrode and a reference
electrode, both in contact with the testing solutiolrhe potential generated across the two
electrodes is proportional to the logarithm of gtetoncentration in the sample. [1.2]

For amperometric sensors, an electrical potensiahpplied across the working and
reference electrodes, to drive redox reactionfénsblution that separates them. The analyte
of interest is a participant in the redox react®ribat occur in the solution, and the flow of
electrical current that results from the applieteptial is proportional to the concentration of
analyte present [1.2].

Biosensors are electrochemical sensors (either npoteetric or amperometric)
containing a biological component that interactedesely with an analyte of interest in a

testing sample. This interaction produces effdws are translated into a readily measurable

2



form, such as an electrical signal, by a transdwetement [1.3]. A coupled enzyme-

electrode system is an example of a biosensors fohin of biosensor consists of an enzyme
immobilized in a polymer matrix at the surface of @lectrode. When the immobilized

enzyme interacts with the analyte of interest, ange in a property of the surrounding
solution is produced, which is converted into amdifiable electrical signal [1.3]. Enzymes

that catalyze transformations of specific biologicalecules can be used in this setup to
detect the presence and quantity of those biolbgicéecules in samples of interest.

The relationship between the electrical signal messfrom the transducer element and
the presence, activity or concentration of thedtrd analyte in the sample is not always a
linear one. In many cases, a mathematical modedqgaired to relate the electrical signal
observed to the property measured, for accuratatifjeation. A variety of models have
been developed for potentiometric sensors [lefzyme-based amperometric biosensor
systems [1.5], mass-sensitive chemical sensormgsfe.5,1.6] and optical biosensors [1.7-
1.9]. These models typically incorporate conceptsnf thermodynamics, mass transport
phenomena and electrochemistry to describe thevimhreof the biosensor system, but may

also include some empirical or semi-empirical maxehponents for system calibration.

1.3  Diagnostic Assay Stability
Changes to the diagnostic assay system of sitexer time may introduce a bias in the

mathematical model that calculates the analytiedles from the raw sensor response. It is
important, therefore, for assay manufacturers tavis@re of the lifetime of their products and
of the influence that both typical and atypicalrage conditions may have on assay
performance. Monitoring of assay responses totiiyechanges in assay stability is a basic

method for manufacturers to track changes in progecformance. To monitor product
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performance under specified storage conditionsgayasartridges from the same production
lot are regularly tested for their response to atrab fluid with known analyte
concentrations. For single-use diagnostic assthys, monitoring represents destructive
testing. ldeally, the responses of diagnosticassatridges from the same lot to the same
control fluid should be identical, but in practitee outcomes from several tests form a
distribution of responses. The mean of the distitm should correspond to the true
concentration of the analyte in the control fluidithin specified error allowances. For
APOC devices sold to clients in the United State8roerica, tolerances for the error in the
measured analytical values are established basetherstandards set by the Clinical
Laboratory Improvement Amendments (CLIA) prograithe CLIA program outlines a level
of medically allowable error specific to each atalgf clinical interest and is run by the
Centers for Medicare and Medicaid Services (CM®nay of the United States Department
of Health and Human Services (DHHS). [1.1]

To assess assay stability, the characteristicdief distribution of responses must be
investigated over time and after exposure to d@fferstorage conditions. There are three
main stability issues that can be detected throtngh approach: changes in the mean
response, changes in the variance of the respandechanges in the frequency of outright
product failures (where no meaningful responsebeagenerated). If changes in one or more
of these statistics are detected, efforts are nmadgentify the causes of the changes, and to
investigate their impact on assay stability. Aecafed testing experiments can be helpful in
cases where the long-term stability of a sensdesysieeds to be investigated in a short time

period.



1.4  Accelerated Testing and Stability Modeling
An extensive review of accelerated testing theorgt emmethodology was performed by

Meeker and Escobar [1.11]. The variety of accé&derdesting approaches, applications and
associated theories is vast, and spans many diffenanufacturing sectors [1.11]. The
purpose of this section, therefore, is not to ptevan in-depth review of the accelerated
testing literature, but rather to provide a briefmnsnary of accelerated testing goals and
approaches as they pertain to the developmentabilisy predictions for electrochemical
sensors with biological and chemical components.

In the context of this thesis, accelerated tgsinvolves subjecting a system to higher
stress than would be experienced during normalatiper, in order to observe changes that
would normally take much longer to occur under mildtonditions. In many systems,
mathematical models allow for extrapolation frontelerated testing regimes to normal
operating conditions, so that the duration of sitgbéxperiments can be shortened [1.11].
Results from experiments that expose the produsystem of interest to high levels of stress
can be used to estimate the parameters for thditytabodel of the system, and the model
can subsequently be used to predict system belrauvioder alternative levels of stress.
Ideally, stability models for a biological or cheral system should be fundamental models,
derived from the basic thermodynamic, mass-transgaat chemical kinetics of the system.
In practice, the cost (in terms of both time ansbregces) of experimentation to investigate
each component of a fundamental system for a compigcess may be prohibitive, and an
empirical or semi-empirical model must suffice &maproximating the stability of the system

[1.12].



Accelerated testing approaches are highly desiralflen decisions about a product
cannot feasibly wait for a full-scale, long-ternudy [1.13]. The application of accelerated
testing methodology to the food, pharmaceutical @heér industries that deal with biological
and chemical components is well established forpiegliction of product shelf-life. The
quality of products with active biological compotens typically defined in terms of
biological function, and product expiration spemfions are set based on maximum
allowable percentage losses in activity over tinmeger explicit storage conditions [1.13].
For typical pharmaceutical applications, the shi#dfis interpreted as the time at which the
lower 95% confidence bound for the regression bifigoroduct activity (at an isothermal
storage temperature) crosses below a 90% drug @otimeshold [1.14].  While it is
possible to perform real-time testing on pharmaceltproducts to establish shelf-life
estimates, it is of interest to experiment with rsfterm exposures of product samples to
elevated humidity, temperature or other importactdrs that influence product stability, and
then to extrapolate a shelf-life estimate for ndretarage conditions from the experimental
results. From the above description of accelerasiing methods and applications, there are
four points that are especially relevant to subsatjahapters of this work:

1. Accelerated testing approaches are an effectivénadefor quickly characterizing
product shelf-life and designing experiments thast tbetween product design
alternatives in a timely manner.

2. The ability to use accelerated test results foragxation relies on a stability model
for the system of interest that provides a desoripof the stability behaviour over

the ranges and durations of stresses experienced.



3. Stability models are ideally fundamental models, ibupractice empirical or semi-
empirical stability models are more frequently &lale as approximations of the
system.

4. The use of accelerated testing methods is commoimdastries where products
contain bioactive components; examples being tharrpaceutical and food

industries.

15  Objectivesand Thesis Outline
The objectives of this thesis are to develop stghihodels and to estimate parameters

for two of the APOC diagnostic assay systems. ddéwelopment of these models involves:
the analysis of available APOC data concerningsiystems of interest; the formulation of
mathematical models to describe the behaviour ef shistems; the fitting of model
parameters to the available data; and the desigxdriments to generate new data sets for
improved parameter estimation and model validatasnecessary. The remainder of this
thesis is organized into three chapters. Chaptdestribes the development of a semi-
empirical, second-order dynamic model to prediat gtability of a particular APOC
biosensor used to measure an analyte in human .bldbt chapter has been prepared as a
journal article for submission t8ensors and Actuators Bhemical.Chapter 3 presents the
development of a first-order stability model for amalyte present in the calibration package
of a second type of APOC sensor. Finally, Chagteprovides a summary of the

conclusions drawn from this work, and indicatesrbeel aspects of the research.
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Chapter 2: Modeling the Thermal Stability of Enzyme-Based Biosensors

20  Abstract
Performance oh vitro diagnostics biosensors may change over lifetiragjqularly

if environmental storage conditions such as tentperare not controlled. Biosensors are
composed of diverse multiple components such &s, galymers and biological components
which may be differentially impacted by chemicatigghysical transformations induced by
changes in temperature and exposure to humiditygenxand light. Mathematical models for
predicting the influence of temperature on biosepgoformance over time typically assume
the changes follow first-order dynamics, with tamperature dependence of the rate of
change described by an Arrhenius kinetic expressidmwever, the compositional diversity
found in many biosensors may cause the assumptifinsteorder dynamics for sensor
stability to be invalid. In this paper, a secomdey dynamic model is developed to predict
the change in biosensor performance over time fangle-use biosensor used in a point-of-
care diagnostics system. The model consists efexrsible reaction followed by an
irreversible reaction, with rate coefficients hayifsrrhenius temperature dependencies. The
second-order dynamic model provides improved ptienfis, based on a comparison for two
experimental datasets used for estimation, andvatidation dataset. The resulting model
has applications for shelf-life prediction, desigmaccelerated testing experiments,
biosensor improvement and the development of betgestorage guidelines. Finally, it is
shown that the concept of “mean kinetic temperdtused widely in the pharmaceutical
industry and based on first-order dynamics, caagmdied successfully to a biosensor system
exhibiting higher-order dynamic behaviour usingeeand-order model. This suggests that

MKT concepts may be extendeditovitro diagnostics sensor applications.



21  Introduction
Conventionalin vitro diagnostic analyses take place in medical labaestathat

employ specialized equipment for analyzing biolagisamples from patients. The test
results are forwarded to the clinician, often wathinherent processing delay. Advances in
diagnostic technologies have led to the developroéstnaller, portable diagnostic systems
that can eliminate time delays between the patiadtlaboratory by bringing the diagnostics
system to the patient’s side. This approach ofyamay samples at the site of the patient is
referred to as “Point of Care” (POC) diagnosti&ince their introduction, POC diagnostic

systems have become valuable tools for the moderhaal practitioner [2.1].

In this article, we focus on single-use, in vitiagnostic systems for analyzing blood
at the patient point of care. Clinical POC diagimosystems are currently available for
measuring a variety of blood components includiog concentrations, blood gas partial
pressures, pH levels, and concentrations of cong®aunch as urea, glucose, creatinine and
lactate.  Detection technologies may vary, but &ypically based on optical or

electrochemical principles [2.2].

A variety of mathematical models have been dewsogor simulating and
characterizing responses from enzyme-based biosen23-2.6] and from gravimetric
biosensors [2.7-2.9]. These mathematical modetergdly describe three main processes:
the diffusive characteristics of the sensor lay#rg, kinetics of substrate/active site binding,
and the electrochemical reaction kinetics at tleetedde. The models have been used to
improve sensor response time [2.7,2.8,2.4,2.9pptimize important sensor design factors

[2.3,2.7], or to identify conditions where the beloar of the sensor changes [2.5].

10



Biosensor models are also necessary for convettiegaw sensor response signal into an

analytical value that quantifies the presence afyde in the sample.

Unfortunately, biosensors are susceptible to cbanig activity during storage,
commonly due to the exposure of their componentstrisses such as humidity, elevated
temperature and oxygen [2.10,2.11]. After storageolving high levels of stress, the
relationship between the raw biosensor responséhenigvel of analyte present may deviate
from the equation(s) used in the sensor, eithéeims of the parameter values and/or the
form of the response curve. This can make compasiso the calibration standard difficult

and introduce bias into the sensor readings cordduen the raw signal.

Significant progress has been made over the pastlecades in stabilizing enzyme-
based biosensors using different enzyme-immobidimatechniques [2.11,2.12]. While these
technigues have extended the workable lifetimenaf/me-based biosensors to a state where
they are commercially viable, stability concernsd amom for improvement still exist
[2.2,2.11], and biosensor shelf life remains an drtgnt performance consideration for

manufacturers of these devices.

Similar shelf life stability challenges are fadeyl pharmaceutical companies whose
drug products may be sensitive to temperature ,npbisture, light and oxygen levels [2.13].
To address thermal exposure concerns, the phart@aléndustry employs a “mean kinetic
temperature” (MKT) method for predicting the termgiare-dependent change in activity of
products with chemically-active components [2.T4je MKT is the equivalent temperature
that produces a specified change in activity ovespeacified period of time. The rate of

change is described by the Arrhenius equation wideéd in chemical reaction kinetics:

11



k = Aoe_RETa
—Ea[l 1 ] D

=k, RIT T
The Arrhenius equation relates a reaction ratefficent k, to the absolute

temperaturel. In equation (1)E, is an activation energ\ is the universal gas constant,

andA, is a pre-exponential factor. As shown aboveAlrbenius equation can be restated

in terms ofk, (instead ofAy), wherek  is the value of the rate coefficient at a reference

ref
temperaturd¢;[2.16]. T is usually selected to be a typical temperatutbiwithe range of
experimental temperatures of interest. This repatanzation has the benefit of improving
the statistical quality of the estimates, and imprg the conditioning of the estimation
problem [2.16].

For many pharmaceutical products, it is commoassume first-order dynamics for
changes in stability. This assumption is used @ development of regulatory standards
involving pharmaceutical shelf-life predictions antbnitoring [2.17]. The actual storage
temperature is recorded by the pharmacist, alloenghe prediction of the product expiry
date through the use of the calculated MKT basetherArrhenius equation and the first-
order dynamic model. The drug product may be deesmpded if the worst-case prediction
of its activity level falls below 90% of its origwhtarget activity. This procedure for product
expiration monitoring in the pharmaceutical indydtelps to ensure the safety of patients
through vigilant removal of expired products. Agin vitro diagnostics industry in general,
and single-use point of care diagnostics in padigiencounters analogous product stability
challenges, the methods implemented by the phawutiaakindustry could be adapted for

single-use POC diagnostics applications.
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First-order dynamic models incorporating an Arilieftype temperature dependency
for the rate of change have already been usectibitisensor literature for evaluating sensor
stability [2.17,2.18]. McAteer et al. [2.18] prommsa general model for biosensor shelf-life
performance assuming a first-order dynamic prodessiescribe biosensor aging, with
temperature dependency based on the Arrhenius iequatWhile this approach may
adequately approximate a biosensor containing glesithermally-sensitive component, it
may be insufficient for more complex biosensors ifgvmultiple thermally-sensitive
components. Thermally sensitive components magisbof a range of elements, including
altered diffusive properties for the polymer mattayers in the sensor, and/or altered
activities for one or more enzymes present in fhedmsor system. The combination of these
types of changes could produce higher-order dyndrai@viour for biosensor stability, so
that first-order models might inadequately descsibeh systems.

In the current paper, thermal stability data frédbott Point of Care (APOC)
biosensors are used to develop dynamic modelshiorstability of a particular biosensor
product. Since detailed mechanistic knowledgehefthermally-induced aging pathways is
unavailable, a semi-empirical dynamic modeling apph is developed using experimental
data sets obtained using a variety of storage tondi Preliminary fits using first-order
models are shown to provide an inadequate predicod the data, motivating the
consideration of second-order dynamic models. Resobtained using a second-order
differential-equation model are compared to thoeenfa first-order model and a method is

proposed for determining MKT using higher-order aiyric models of sensor stability.
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2.2 Materials and Methods
2.2.1 Biosensor

Data from non-commercial single-use biosensorewetained from Abbott Point of
Care (Ottawa, Canada). The biosensor of interessists of an electrode onto which
polymeric layers containing bioactive componentgehideen deposited. Electrical response
profiles generated by the electrode when in contattt samples, are directly related to the
concentration of the analyte of interest in the @am The extent of change in a thermally-
aged biosensor was determined by testing samplésnain analyte concentrations using
thermally-aged biosensors. The activity of the eemgas tracked as the ratio of the response
from the thermally-aged biosensor to that of thesee at time = 0. Results for a given

dataset were obtained from a single production lot.

2.2.2 Experimental data sets

Two experimental data sets were obtained to dpvide model and estimate the
model parameters. The first data set (Data Setofjains time-series data for biosensors
stored at four different temperature conditionsnsjieg a range exceeding the thermal stress
that these sensors would typically experience durshipment, use and storage.
Perturbations to the storage temperature were dated to represent poor storage
conditions. These fluctuations do not reflect dead practice for product storage, and the
product met performance expectations under thdddhese and storage guidelines. For each
test event, multiple biosensors from each storageliion were used to analyze an aqueous
control fluid with a known analyte concentratiofthe second source of data (Data Set B)
involves biosensors stored at three different diooml, with temperatures spanning a range

similar to that in Data Set A, but with less pebpation of the storage temperature. The
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testing plan for data set B was developed to comgieg Data Set A, which was available
from APOC experiments prior to the commencemenhisfwork. As a result, several of the
test events overlap between the two data setddw &r meaningful comparison between
mean response values. In addition, test events sareduled to provide information about
the regions of the changing response trajectorly wlas not available from Data Set A. A
table showing the experimental plan for Data Setamdl B is included as Table B1 in
Appendix B. Frequent temperature readings fromdbhens used to store the biosensors
were available for each data set, providing a tetdog of the thermal stress applied to the

biosensors during storage.

A third experimental data set (Data Set C) wasectdd for model validation. Data
Set C used step tests (Figure 2.1) to investiga¢e influence of dynamic temperature
excursions to extremes of the temperature rangenspaby Data Set A. Data Set C was
used to test the predictive ability of the firsndasecond-order models, using parameter
estimates generated by fitting Data Sets A andTBe experimental plan for Data Set C is

included as Table B2 in Appendix B.
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Figure 2.1: The solid line (=) shows the incubation plan for Data Set C and the circles
(®) show the timing of the test events. The temperatures have been recoded relative to
the nominal temperature associated with Storage Condition 1. The time axis has been
recoded as a fraction of thetotal duration of the Data Set A experiment.

2.2.3 Modeling approach

Developing a detailed fundamental dynamic modeltlfie thermal stability of the
biosensor requires knowledge of the sensing sigatiway reactions and aging reactions
associated with each step in the pathway. Additignthe effects of thermal aging on the
diffusion and other properties of each polymer faye the bioactive film need to be
understood. Due to the complexity of building a hadstic model, and a lack of data on the

detailed behaviour of the biosensor system undemtal aging conditions, a simplified,
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semi-empirical approach was used to develop matkdsribing the thermal stability of the
biosensors.

Initially, a first-order dynamic model was usedd&scribe the system. Subsequently,
a more complex second-order dynamic model was dpedlusing lumped reaction-rate and
activation-energy terms to approximate the truendigprder aging processes that occur in
the system. Both models use Arrhenius expressmascount for the impact of temperature
on the rate of change of activity of the biosenshigte that the use of Arrhenius expressions
for temperature dependencies is a semi-empirigatoagh, as the parameters estimated for
the Arrhenius activation energies and pre-expoakfdctors do not necessarily represent the
kinetic rate coefficients of the system; ratheeythare lumped approximations reflecting
changes in the reaction kinetic and mass transtes rassociated with the system, together
with other thermally sensitive components in thesbnsors.

The first-order and second-order dynamic modedsgmted below are linear Ordinary
Differential Equation (ODE) models for fixed tempeire. The temperature dependence
appears in the Arrhenius expressions that mulaptywity terms in the right hand sides of the
differential equations. In cases in which the terapge changes with time, the models can
be used in a piecewise fashion. By assuming cong&amnperature between successive
measurements of the storage temperature, the madlyolution to a particular linear ODE
model can be used to relate the activity at the time point to the predicted activity at the
previous time point. The rate constants (represelnyethe Arrhenius expression(s)) over the
time interval correspond to the temperature inaven at the start of the time interval. In this

way, dynamic sensor-response trajectories can édigbed for each experimental data set
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(i.e., Data Set A with four storage temperaturgettaries and Data Set B with three storage
temperature trajectories).

2.2.4 First-order dynamic model

The preliminary model describing the change okeiwsor activity over time uses a

first-order dynamic model with Arrhenius temperatdependence for the rate constant:

dl
d_tl:_kiu]l 2

where |, is the sensor response to the analyte in a liquidral samplet is the sensor age;

and k; is a lumped rate coefficient that has an Arrhetgmsperature dependency of the form

described in equation (1). Units for the parametiessussed in this work have been omitted
to maintain confidentiality. Integration of equati{?), assuming constant temperature over a

time interval of duration, yields equation (3):
— —k, @
=1, @™ ®
where |, is the response of the biosensor to the contral fiti the start of the interval, prior

to the thermal exposure occurring over the intenEduation (3) indicates that the biosensor
activity is expected to follow an exponential det@nd. The parameters in this model were
estimated using nonlinear least squares regressidhe observations from data sets A and

B.

2.25 Second-order dynamic model

In the second-order model, the aging behaviouthef biosensor is approximated

using a two-step process between three states:

K1 fwa K2 fwd
A - B - C 4)

klrev
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In the first step, the thermally-sensitive compaseof the biosensor in their native
state A transition reversibly to an inactive stébgeled as B. In the second step, components
in state B transition irreversibly to an inactiviate C. In this scheme, it is assumed that
biosensor components in state A function suffidiewell for the biosensor to respond to the
presence of analyte as they would prior to agiBgand C represent states where the
components of the biosensor no longer generates@omse to the analyte of interest, or
where the form of the response generated by theebsor has changed so significantly that
the algorithm for calculating analyte concentratisnno longer appropriate. State B
represents a reversibly modified state, wherede &aepresents a terminal modified state.
Note that this simple dynamic scheme is a lumpgaagimation to complex thermal aging
interactions resulting from changes in componenmishsas reaction kinetics and mass-
transfer behaviour within the biosensor. The twepsaging mechanism in equation (4) is a
simple way to account for complex temperature-ddpehprocesses involving equilibration,
changes in sensor responsiveness and long-terroti@uiiin sensor activity. Similar kinetic
aging models for use in accelerated testing haen lused to describe changes in optical
fiber systems [2.20].

In practice, the extent to which sensor perforneahas changed is determined by
comparing the signal that it generates in respdosa known standard. This signal is
compared to the mean signal that was generatedrispss from the same lot, in response to
the same known standard, prior to incubation anaigang. Assuming that the rate of change
for each transition in equation (4) follows firgder kinetics, the dynamic behaviour of the

system can be summarized by two differential equati
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dl
d_tA =Ky revl 5 =Kl A ®)

dl
d_tB:kl,delA_kLrele_k2,fwd|B (6)

where: | ,is the biosensor response to the analyte in aalasample, |, is the hypothetical
response that could be generated from componefit Bere to revert back to A, and, .,
K,wa» and k., are rate coefficients. Using Arrhenius expressido describe the

temperature dependence of the transitions in emuéd) gives:

ki, — kawd_ref @[_E";"’Vd[i_ﬂl&f ]] 7
Kirev = Kirey rer @{_Egm[i}; ]] 6)
Saus .

Ky g = Ky, fwd_ref L€
WhereE, , E, _andE, arelumped activation energies,is the absolute temperature,

and K, g rer 1 Kiey s ANA K, 1 o re the rate coefficients at the reference temperaer.

Equations (5) and (6) were solved analytically for and |; using the Maple™
symbolic mathematics software. An analytical solntexists for this model, which is a linear
time-invariant system of ordinary differential etjoas under the assumption of piecewise
constant temperature. When performing this intégmaover the first time intervall , is
assumed equal to the mean time-zero biosensomgadbitained from un-aged sensors and
that | is initially zero. For subsequent time intervdlse predicted values df, and I,

from the previous interval are used as initial ealu A simplification is made to reduce the

number of parameters requiring estimation, usinge@uilibrium constant (&), which is
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defined to relate the forward and reverse rateth®freversible reaction between species A

and B, as shown in equation (10):

_Ekl,rev [1_ 1 ]J
R T T
— kLrev — I’(J,rev_ref @ f
Keg = = (10)
kl fwd ~Ex1, o [l_ 1 ]]
’ R T T
kL fwd _ref @ f

From equation(10), if B e and E. . are assumed to be equal, then the following

expressions can be derived:

K — I’(:Lrev_ref (11)
eq
1, fwd _ref
)
_ R (T T (12
k1,rev - kL fwd _ref (e f |:IKeq

This simplification is appropriate because paramestimation using the full model

in equations (6) through (9) resulted in very saniValues for the estimates @‘km and

kl, rev

The use of equation (12) instead of equation &juces the number of model
parameters from six to five. The resulting modélison equations are provided in Appendix
A.

2.2.6 Parameter estimation

The parameters in the first- and second-order miymanodels were estimated using
an ordinary least squares approach, applied toeshdts from Data Sets A and B. As noted
earlier, the time-varying temperature trajectoryswaccounted for by assuming that the

temperature was piecewise constant over each sagriplierval. The analytical solutions to
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the differential equation models, for a fixed temgtere, were then used to propagate the
predicted activity of the sensor forward one tinbeps This solution process was repeated
recursively to obtain the predicted biosensor #gtivrajectories, which were used to
generate the residuals for the least squares olgeftinction. The optimization was
performed using a generalized reduced gradientriligo [2.21]. The initial parameter
estimates were varied in a grid pattern and meltggtimizations were performed. The best
solution, in terms of SSE minimization, was thernested from the results of these
optimizations and the parameter estimates assdorth this solution were used to predict

responses from Data Set C.

2.3 Results and Discussion
231 Experimental data

Results from Data Set A (Figure 2.2), Data SeFigyre 2.3) and Data Set C (Figure
2.4) demonstrate that under thermal stress conditithe biosensor response to the liquid
control sample diminishes over time. This trendeimperature-dependent, with biosensors
stored at higher temperatures exhibiting a graatuction in response. Note that the region
of Figure 2.4 between time 0.04 and 0.08, corredipgnto Data Set C lowest temperature,
shows no appreciable shift in the mean biosensporese. These results from Data Set C
show that the stability of the biosensor can benta@ed effectively through storage at the
lowest temperature. The Data Set A storage temyperdiuctuations provide a “worst case
scenario” test for storage (Figure 2.5), with ocwaal abrupt shifts in temperature, and
considerable variability. Conversely, the oven terapures were not varied much around the
storage temperatures during the experiments in BataB (trajectory not shown). Note that
the large and sustained temperature deviationsata Bet A could be a significant source of
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error when developing models to describe sensdiiliya if isothermal operation was
assumed. Additional figures showing box plotsdach event and storage condition in Data

Sets A and B are included in Appendix E.
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Figure 2.2: Data Set A - Biosensor response (% of initial activity) versus time for
biosensors tested after storage at four different conditions (@MA @) of increasing
temperature. Storage Condition | (@) corresponds to the lowest temperatures and
Storage Condition 1V (©) corresponds to the highest temperatures tested. The time axis
has been recoded as a fraction of thetotal duration of the Data Set A experiment.
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Figure 2.3: Data Set B - Biosensor response (% of initial activity) versus time for
biosensors tested after storage at three different conditions (AM<) of increasing
temperature. Storage Condition i (A) corresponds to the lowest temperatures and
Storage Condition iii (<) corresponds to the highest temperatures tested. The time axis
has been recoded as a fraction of thetotal duration of the Data Set A experiment.
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Figure 2.4: Data Set C - Effect of the non-constant storage conditions shown in Figure
2.1 on biosensor response over time. Thetime axis has been recoded as a fraction of the
total duration of the Data Set A experiment.
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Figure 2.5: Temperature profilesrecorded during storage of Data Set A biosensors. The
data markersfor each storage condition profile are asfollows: Storage Condition | (@),
Storage Condition 11 (M), Storage Condition 111 (A), Storage Condition IV (©). The
time axis has been recoded as a fraction of the total duration of the Data Set A
experiment.
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2.3.2 Modd fitting
To visually compare the modeling approaches froapters 2.2.4 and 2.2.5, the fits

of the first- and second-order dynamic models eor#sults from Data Set A were plotted for

storage conditions Il and IV (Figures 2.6 and 2.7)
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Figure 2.6: Biosensor response versus time at Storage Condition 111 (®), with

predictions from both the first-order (—) and second-order (=) dynamic models
plotted for comparison. The time axis has been recoded as a fraction of the total
duration of the Data Set A experiment.

26



100 A

50 | \

Biosensor Response (%)

0 0.5 1

Scaled Time

Figure 2.7: Biosensor response versus time at Storage Condition IV (@), with
predictions from both the first-order (—) and second-order (=) dynamic models
plotted for comparison. The time axis has been recoded as a fraction of the total
duration of the Data Set A experiment.

The predictions from the second-order dynamic mddeik the trend in the data
much more closely than the first-order model preains, particularly for times less than
0.50. The plots in figures 2.6 and 2.7 show thatdkcay trend explained by the first-order
model corresponds to the long-time changes in iagtixather than the earlier shift. This
provides additional evidence that there are madtthermally-sensitive behaviours present in

the data, working at several time scales.

The second-order model was formulated using a o@atibn of physical insight and
by noting the inadequacies of the first-order mddetelative to the observed trajectories.
The activity trajectories appear to exhibit mukiplime scales suggesting more rapidly
changing and less rapidly changing contributionsthie biosensor stability. Alternative
second-order dynamic models were also investiggfggpbendix D). A second-order
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dynamic model without reversible kinetics failedctpture more of the observed behaviour
relative to the first-order dynamic model fit, foer motivating the consideration of a

reversible reaction element in the model. Of theoed-order dynamic models investigated,
the model form described by equation 4 providedotbs fit to Data Sets A and B. To assess
the improvement in fit resulting from the secondermodel chosen, adjusted ®lues and

mean-squared error were calculated for each aftbenodels (Table 2.1).

Table 2.1 Diagnostic statistics for each model fit to Data Sets A and B

Nominal Storage Temperaturg 1% order  dynamid 2" order dynamic model
model

MSE 2.69x10 2.13x10°

Adjusted R 0.796 0.839

The second-order dynamic model achieves a bettén the experimental data, in
terms of the statistics in Table 2.1 and by congoariof predicted trajectories versus the

observations (Figures 2.6 and 2.7). For the speaie where parametergqfand K, g, o

are both set to zero, the proposed second-ordeangignmodel reduces to the first-order
dynamic model. This means that the first-orderasiyic model is nested within the proposed
second-order dynamic model and that a mean sqatoeest can be performed to determine
whether the second-order dynamic model gives afggntly better fit to the data. For this

case, the test statistic takes the following foeu@tion 13):

(ssg—ssgj
_ P, = P
F S resE (13)
n-p,
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where SSE=0.0381 and SSE0.0302 are the sums of squared residuals foritee &nd
second-order models respectivelyzd is the number of parameters for the first-oredel,
p2=5 is the number of parameters in the second-ombelel, anch=1419 is the total number
of observations from Data Sets A and B that weredu® fit the parameters. The test
compares the mean square difference in the resetvat between the full model and the
model with the smaller number of terms, to the ms&gumare error of the larger model. Under
the null hypothesis, it is assumed that the tedissic follows an F distribution with §p- pi,

n — p) degrees of freedom. The null hypothesis corredpaim the case in which the
additional terms in the second-order dynamic maldehot explain a statistically significant
amount of variation, implying that the second-ordgnamic model does not provide a
significantly better fit than the first-order dynanmodel. From the data in Data Sets A and
B, this null hypothesis can be rejected at the Isfidence level, because the resulting
large value of the test statistic (F=123) is mudahér than the critical valuedos 3 1414)=
2.61 of the F distribution. This statistical tgsbvides additional confirmation that the
second-order dynamic model provides a significabditer fit of Data Sets A and B than the

first-order dynamic model.

2.3.3 Parameter confidenceintervals

Approximate confidence intervals for the parametstimates were obtained by
linearizing the model around the optimal paramedstimates [2.22]. The approximate

confidence intervals are described by (equation 14)
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(14)
where [3, is the estimate for th& parameters/} is the standard deviation of tHeparameter

estimate obtained from the approximate covarianegrixnprovided by the linearization.

t( a] is the value of the t-distribution with degrees of freedom at significance Ieﬂtzé) (a
"2

significance level ofa = 0.05, corresponds to 95% confidence intervalBjis approach
produces symmetrical confidence intervals, whichy ha invalid if the influence of the

parameters on the model predictions is highly maar [2.22]. s, was computed using a

pooled estimate of the pure error variance, geeériitom the 10 to 24 replicate data points
at each testing event, assuming that the noisanaeiis constant. The resulting confidence
intervals for the parameters are shown in Table Ba? all five parameter estimates, the
confidence intervals do not include zero, indiagtithat the parameter estimates are
significantly different from zero at the 95% corditte level.

Table 2.2 Parameter confidence intervalsfor the second-order dynamic model

Parameter Parameter Value 95% confidenceinterval
Ky fuat_ret 1.608x10° [8.800x10", 3.128x10]
Kz, tua_ref 2.275x10° [4.150x10°, 4.135x10]
Keq 6.849x10 [2.215x10, 1.148x10]
= 8.105x10 [5.257x10, 1.095x10]
E... 1.155x10 [6.763 x10, 1.634x10]
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2.3.4 Model Validation using Data Set C

In order to further assess the predictive abdityhe estimated models, the first- and
second-order models with parameter estimates frata Bets A and B were used to predict
the Data Set C outcomes. The experimental datdhengredictions from the first-order and

second-order dynamic models are shown in Figure 2.8
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Figure 2.8: Effect of the non-constant storage conditions shown in Figure 2.1 on
biosensor responses () over time. First-order (—) and second-order (=) model
predictions are plotted for comparison. The time axis has been recoded as a fraction of
the total duration of the Data Set A experiment.

The sensor responses predicted by the second-dydamic model agree very well
with the experimental results from Data Set C, wherthe predictions from the first-order
dynamic model are not accurate and show a sustameegliction bias. The duration of Data

Set C is roughly 20% of the duration of Data Ses@the validation test is focused on short-
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and medium-term time behaviour and confirms that fbcond-order model is suitable for

practical use.

The predictive ability of the second-order dynamiadel makes it a powerful tool for
the design and interpretation of accelerated tgsxperiments. It may also be useful for
investigating opportunities for product improvengent Finally, the model is useful for
simulating the response of the biosensors to paterdgr actual, storage and shipping

scenarios involving temperature variations.

2.35 Mean Kinetic Temperature
The MKT is defined by both the United States Faodl Drug Administration

(USFDA) [2.14] and Health Canada [2.15] as :

“A single derived temperature that, if maintainedeo a defined period of time, affords the
same thermal challenge to a drug substance or gnoguct as would be experienced over a
range of both higher and lower temperatures foremuivalent defined period. The mean
kinetic temperature is higher than the arithmetieam temperature and takes into account
the Arrhenius equation.”

The FDA recommends computing the MKT using theofelhg equation [2.14]:

E.
MKT = R
—Ea  -Ea —Ea
eRt +eR% 4. 4Rh (15)
=In
n

wheren is the number of equally-spaced temperature rgadiver the storage period and
is the absolute temperature during tfieime interval. Note that equation (15) was deative
assuming a first-order dynamic model for drug poyen We propose that the concept of

MKT could be extended to and used for analyzingtilite stability changes in systems
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exhibiting higher-order dynamics. For example, eeond-order dynamic model in this
article can be used to solve for the constant teatpes that would yield the same level of
biosensor activity loss that was encountered iral3st C. This procedure involves using the
second-order model and the temperature time tajetd predict the final activity value, and
then setting the storage duration and final biosergtivity value to solve the implicit
algebraic equation (see the appendix) for the uwkndlKT. Since the system is modeled by
a complex, highly nonlinear equation, solving foe temperature analytically is much more
difficult than computing the traditional MKT from qaation (15). Formally, if

ot,.t_,.T_,)x_, represents the solution to the differential equatinodel with constant

temperature T, and the starting activity is.xat time t1, then the final activity value is:
H(tn ’tn—l’Tn—l)H(tn—l’tn—Z ’Tn—2 ) ) 'H(tvto 1To )Xo (16)

where % is the initial activity, and n is the number ofrjgerature intervals. The resulting

expression for the MKT based on the higher-ordedehts the solution to:
e(tf Lo MKT)XO = e(tn1tn—1’Tn—1)0(tn—1’tn—21Tn—2)' ’ 'H(tvto’To)Xo (17)

The multiplicative form of the solution to the féifential equation comes from the
fact that it is a linear time-invariant differertequation for fixed temperature. Equation (15)

k(i —tiy

can be derived using a similar approach, in whafh,t T )x_, =e )>§_1, where

k= f(T,_,) is the Arrhenius expression for the rate at tewpeeT, ,.

The MKT calculation was set up as an optimizatmoblem and solved using a

generalized reduced gradient nonlinear optimize21[Pto minimize the difference between
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the left and right hand sides of equation Al witle set final activity and duration. The
resulting MKT value that would yield the measurddsbnsor activity at the end of the
storage period for Data Set C is plotted in FigRr@. Also shown in the figure is the
traditional MKT for computed using equation (15hieh assumes a first-order process for
biosensor stability. Note that the estimated patamvalueE, = 69161 obtained by fitting

the first-order model to Data Sets A and B was uis¢hlis calculation.
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Figure 2.9: Data Set C temperature profile (®) along with the calculated first-order
MKT (=), second-order MKT (=) and average temperature (==). The time axis has
been recoded as a fraction of thetotal duration of the Data Set A experiment.
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From Figure 2.9, the MKT calculated using the selcorder dynamic model is
higher than the MKT calculated from equation (E5)d both MKT estimates are higher than
the arithmetic average temperature from Data Sefh@. MKT values estimated using the
first- and second-order models emphasize the proeul effect that storage at high
temperatures has on the stability of the sensce.fatt that the MKT based on the second-
order model is higher than that computed usingfits¢-order model reflects the under-
prediction of the changes that were observed frioenestimated first-order model. These
results have implications for shelf-life monitoring enzyme-based biosensor products, as
they indicate that the calculation of the MKT basedthe traditional first-order aging model
for pharmaceutical applications may not fully déserbiosensors that demonstrate higher-
order aging behaviour. Instead, models that adcfmurhigher-order dynamics of biosensor
aging behaviour should be used to solve for MKTestablish appropriate expiration and
shelf-life guidelines. A final observation is thhe first-order model tends to under-predict
the change in activity, compared to the secondrordedel. This has implications for
designing accurate accelerated testing protocals,avoid situations in which more
pronounced aging occurs because of aggressiveesatszl testing based on less accurate

models.

24  Conclusions
A semi-empirical second-order dynamic model hanlg@oposed to predict changes

in biosensor activity under varying thermal storagaditions. The proposed second-order
dynamic model shows improved fit (in terms MSE, aijusted R statistics) to estimation
datasets, relative to a first-order dynamic mod&he first- and second-order models are

nested, and a significance test further confirnas the additional terms in the second-order
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model are accounting for significant variation. Tjp@ameters are statistically significant
from zero at the 95% confidence level based orviddal approximate confidence intervals.
Finally, the second-order model is seen to haved go@dictive ability for a validation

dataset not used for estimation, compared to teedrder model.

The second-order model provides good predictidisasensor response to dynamic
temperature excursions. These results indicateftirahe biosensor product line of interest,
a second-order dynamic model provides a betterriggisn of the thermally-driven aging
pathways involved than does a traditional firstesrdhodel.  The second-order dynamic
model has potential applications for shelf-lifegiotions, for the design and interpretation of
accelerated testing experiments and for investigabpportunities for product improvement.
Finally, the results show that the traditional foofithe MKT calculation should not be used
for the biosensor investigated. Rather, calcuetbMKT using the proposed second-order
dynamic model provides more accurate results fer development of product storage
guidelines. The definition of the MKT is extendedsecond- (and higher-) order dynamic

models, and the computation of the MKT is demomstia
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Chapter 3: Modeling the Thermal Stability of a Diagnostic Assay

3.1 Introduction
To continuously improve the stability, accuracfficeency and overall quality of the

diagnostic assay cartridges delivered to their asusts, Abbott Point of Care (APOC)
monitors product performance and attempts to ifleatieas in which improvements could
be made. Recently, historical and experimentah dat one of the APOC assays were
analyzed to investigate methods for extending tiedfdife of the product beyond the current
claims. This investigation provided an opportunidybuild on experience from our previous
modeling work (Chapter 2). Both this assay system the assay system in Chapter 2 are
used to quantify concentrations of specific analytepatient blood samples.

The APOC i-STAT diagnostics system consists of the i-STATandheld analyzer
and individual, single-use diagnostics assay chy#s. Many of the cartridges contain
multiple assays and test the concentrations ofnelpat analytes in a patient blood sample
using electrochemical sensors. A calibration pgekia also contained within the cartridge,
and fluid from this package is analyzed prior te thlood sample from the patient. The
calibration fluid contains known concentrationsaoflytes, and is used to generate reference
or baseline values for comparison to the resultegponse signals from the patient blood
sample. The relationships between the true vabfiemalyte concentrations in the blood
sample and the electrical response signals genebgtthe sensors after exposure to both the
calibration fluid and blood sample are containethinithe equations and algorithms of the i-
STAT® analyzer software. This software enables the eunation of specific analytes to be

reported by the analyzer in a timely manner.
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As described in Chapter 2, mathematical modelitayspa significant role in the
design and implementation of sensor diagnosticegyst Calibration models are required to
relate the electrical signal generated in the sénsircuits to the concentrations that are
measured [3.1-3.3]. The calculation of analyticallseful information from the sensor
response signals depends on the stability of timsosesystem. Assumptions concerning
sensor activity, reference standards, signal-tseaiatio and signal gain must remain
constant, or else changes in these factors over timst be accounted for in the modeling
process. When the sensor system is exposed ssfsirstorage conditions, such as elevated
temperature, the relationships between the elettsensor response and the physical
properties measured by the sensor may change .[d.4,Bhese changes can cause the model
equations, which are used for the calculation o#élyital results, to require minor
adjustments to their form or parameters, or casedoem to become completely invalid for
the resulting altered system.

A stability model for the assay of interest may bseful for quantifying the
underlying changes in sensor behaviour that ocaer td thermal exposure. The model
development process itself is also a valuable taggage in, as it requires the investigation
of the stability process and involves the idendifion of possible causes for the changes
observed.

The stability of the assay of interest was inggggd through modeling to describe
the behaviour of the assay over its lifetime andlentify the areas where improvements to
stability of the assay and/or its components cambde. A first-order dynamic model was
fit to the long-term assay response data, collefrtmd thermally stressed assay cartridges.

An additional experimental program was designed iamglemented for use in parameter
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estimation. Model parameters were estimated froth the long-term assay response data
and the new data set generated from the experimgmtgram. Three additional
experimental data sets were used for model vatidatirhe resulting model indicates that the
stability issue for the assay seems to be causedhlyges over time in the analyte
concentration of the calibration fluid packagedhihie assay. Because the first-order model
was able to predict the trends in the validatiotadaigher-order models were not required.
Data discussed throughout this chapter have bededdo protect the intellectual property of

APOC.

3.2  Experimental Data
Six experimental data sets were analyzed ovecdhese of this modeling work. The

results from five of the experimental programs baen collected prior to the initiation of
this modeling work, and the sixth experimental pamg was designed and implemented
during the project. Three of the initial experirtadrprograms involved the incubation of
whole cartridges at elevated temperatures. Theserienental programs will be referred to
as Experiments D, E and F for the remainder of thigpter. The temperatures used for
experiments D, E and F spanned a similar range aihdugh there was some overlap, not
all of the temperature levels tested were replccateeach experiment. The experimental
testing plan for data sets D, E and F are incladedable B3 in Appendix B.

Experiment G involved the isolation of sensors frtra rest of the cartridge components,
and the storage of these sensors at elevated tetupey, independent of other components.
Following the application of thermal stress to #@nsors, cartridges were then assembled

with new components, using the stressed sensdrts. pfocedure allowed for conclusions to
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be drawn concerning the thermal stability of thesee itself. The experimental testing plan
for data set G is included as Table B4 in Apperilix

In experiment H, calibration fluid packages weterexd at elevated temperatures, to
determine the effect of thermal stress on the eef®x analyte levels within the calibration
fluid. Concentrations of analyte present in thidocation packages after exposure to thermal
stress were determined by testing the fluid withO&Passay cartridges that had been stored
under the recommended conditions.

Finally, experiment | was designed and implememtedomplement the results from
experiment H. Experiment 1, like experiment H, otwed the incubation of calibration
packages at elevated temperatures, and their sudrsetpsting using stable APOC assay
cartridges. The temperatures used for experimeifftdred from those used in experiment
H, so that the combined results from the two expents covered a large range of
temperatures for estimating the kinetic parametgrshe system. The testing plans

associated with experimental data sets H and inaheded as Table B5 in Appendix B.

3.3  Prdiminary Analysis of Prior Data
Abbott’'s diagnostic assay cartridges are routingbed to test samples of known

analyte concentration for quality monitoring. Frbmtorical data sets, it is apparent that the
readings of these single-use cartridges beginvt@tefrom the assigned value of the control
samples once they are well past the end of themhle lifetime. It was therefore of interest
to APOC scientists to design experiments and ti@sday performance from the time of
product manufacture, to the end of the cartriddetithe, and to explore the effect of

exposing the cartridge system to potential extremesorage conditions. Results from the

first round of experiments where cartridges wengosed to a variety of storage temperatures
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were available at the onset of this work, from p#d®OC studies. Figure 3.1 shows the
behaviour of three representative sets of cartadgiered at a temperature above their
specified storage temperature limit, and testedguagueous samples of known, nominally

equivalent analyte concentrations.
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Figure 3.1: Estimate of analyte concentration from the assay of interest as a percentage

of theinitial value after storage at an elevated temperature, for Experiments D (<),

E(>) and F(V). Thetime axis has been recoded as a fraction of the longest duration
for the experiments.

The reported analyte concentration from the as$sayhe control sample increases
after exposure to elevated temperatures, as shtearlycfrom the results of experiments D
and E. The temperature effect increases in madmitvith the duration of exposure, and is
likely related to the stability of one or more clge components. The initial experiments
D, E and F that identified the stability behavialrown in Figure 3.1 were followed by
further experimentation (experiments G, H and Ifé&ermine which cartridge components
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contributed to the stability problem. The consample used for testing is a fluid of known
analyte concentration, and has been ruled out@asdhse of the deviation. An additional
figure showing box plots for test each event regméed in Figure 3.1 (Data Sets D, E and F)
is included in Appendix E.

In experiment G, the sensors were isolated anthilly stressed, separately from the
remainder of the cartridge. The results from thiperiment show that the stability issue is
independent of sensor exposure (Figure 3.2), asatedl by the consistency of reported

analytical assay values when the sensor was thg @mhponent exposed to elevated

temperatures.
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Figure 3.2: Assay response after sensor exposure to elevated temperatures. Other
cartridge components wer e stored under normal conditions.
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Next, APOC scientists investigated the stabilifytiee analyte in the calibration
package of the cartridge. This calibration packageluded within each assay cartridge,
contains chemical reference substances that mauseeptible to changes over time. The
calibration fluid from the package makes contadhwhe sensor prior to the sample fluid
which is to be analyzed. The calibration fluid ydes a baseline sensor reading and has a
known analyte composition, to which the sample aigs compared, so that it can be
transformed into a measured concentration valugeiment H, which involved subjecting
calibration packages to thermal stress indepengddrdm other sensor components was
carried out, and the results show that the levelnalyte in the calibration fluid diminishes
over time, with exposure to elevated temperatufdguf(e 3.3). This effect is more

pronounced after storage at higher temperatures.
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Figure 3.3: Resultsfrom calibration fluid packages stored at elevated temperatures and
then tested using diagnostic cartridges stored under normal conditions. Analyte
concentration is expressed as a percentage of the original analyte concentration in the
calibration fluid. Storage condition 1 (O) corresponds to the lowest temperature level
tested, whereas storage condition 3 (<) corresponds to the highest temperature level
tested. Notethat some symbolsare darker than others dueto a higher density of data.
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From experiments D through I, it was concluded tbhamprove assay performance
beyond its currently specified limits for storagenperature and shelf-life, the research focus
should be on thermal stability of the analyte ie talibration fluid package. The focus of
our modeling work, therefore, is on the stabilifytiee analyte within the calibration package

system and the associated impact on assay results.

34  Experimental Design for Parameter Estimation
To develop a stability model of the analyte leveithin the calibration package,

additional experimental data for parameter estiomatvere collected. Experiment H (Figure
3.3) has a large gap between the temperatureddage conditions 2 and 3, where more
information would be useful. Experiment | was desd and implemented to help fill this
gap in the available data and to extend the ovéeatiperature range. In experiment |,
calibration fluid packages were stored at two défe¢ temperatures (denoted conditions 2a
and 4). Condition 2a had a temperature betweesetfar conditions 2 and 3, and condition
4 used a temperature that was higher than thatdiodition 3. Experiment | also included
calibration packages spiked with increased levélstler calibration fluid species, which
had been identified as potential contributing festto the stability of the analyte in the
package. To test the calibration fluid, a sanwds drawn from each individual calibration
package and tested on normal APOC assay cartr{dgesidges that had not been exposed

to elevated temperatures).

3.5 DataAnalyssand Model Fit
The analyte concentration within the calibratiduidf decreases over time, during

exposure to elevated temperature. This behavimumidcbe caused by a variety of

mechanisms, such as chemical transformations adrnthbte, leakage of the analyte from the
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package or absorption of the analyte into layershef packaging material. As an initial
exploration of these options, a model for a firstey, single-step reaction was fit to the data.

The mechanism for the model used has the followingcture:

kl fwd
A - B (18)

where A represents the concentration of the anahytiee calibration fluid, and B represents
some altered form or state of A which is not detblet by the sensor assay. The behaviour

of this system can be described by a simple firdewndifferential equation:

dc,
dt

where G is the concentration of the analyte species incédidoration fluid and kwq is the

= —Ky g [Co (19)

reaction rate coefficient for the process. Fors thiork, kg IS assumed to have an

Arrhenius-type temperature dependency, as deschbyzed

—Ea[l_l]
_ RIT T, (20)
klfwd - k:lfwd,refe f

where T is absolute temperature in Kelvigj$¥the activation energy of the process, R is the
universal gas constant angy reris a the value of the reaction rate coefficierteatperature
Trer. Integration of equation (2) yields the analyitisalution for the analyte concentration in

the calibration fluid, given by:

Ca =Chppeg) (& ™" (21)
where G=o) is the initial concentration of analyte in the badition fluid after manufacture,
prior to storage at elevated temperaturestascime.

The model described by equations (20) and (21)fivés the data from experiments

H and I. The resulting model fit is shown in Fig®.d.
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Figure 3.4: First-order mode fit to the results of two calibration package incubation
experiments (H and ). Thestorage temperatureincreased with increasing label
number for the storage conditions 1(O), 2(L]), 2a(X),3(<>) and 4(2A.).

The first-order model fits the data well, but blig over-predicts the changes in
analyte concentration at storage condition 3. dverall fit seems to capture the key aspects
of the observed behaviour. In addition, none ef @pproximate 95% confidence intervals
contain parameter estimates of zero (Table 3.Dicating that each parameter helps to

explain significant trend in the data.
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Table3.1 Parameter estimates and confidence limitsfor thefirst-order modd fit to
calibration package incubation data

Parameter Estimate Lower 95% Upper 95% Confidence
Confidence Limit Limit
klfwdyref 0.000385 0.000303 0.000477
Ea
— 12100 11300 12900
R
Cat=0) (%) 99.8 99.7 100

As mentioned previously, one objective of expentrlevas to determine the effect of
two other calibration fluid species on the stapibf the analyte. The results for this part of

the experiment are shown in Figure 3.5.
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Figure 3.5: Effect of calibration fluid components 1 (+) and 2 (L]) on analyte
stability, relative to normal calibration fluid (e).

From Figure 3.5 it appears that increasing compbfeappears to slightly slow the
rate of change in the analyte concentration wimtedasing component 2 appears to slightly

increase the rate of change of analyte concentratid! three calibration fluid formulations
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appear to follow the same general stability behavidhe changes to the analyte stability
due to components 1 and 2 were respectively, less 1% and 3% of the difference in
overall analyte concentration observed in the nbrabbration fluid. Since this experiment
was carried out at temperatures well above thogeaHull cartridge would be exposed to
under normal storage and use, the mild effect eéehcomponents on analyte stability may

not be significant enough to warrant further expental work.

3.6  Mode Validation
Data from experiments D, E and F were used tothespredictive ability of the model

(equations (20) and (21), with parameters from @&bll). The model was used to predict
the concentration of the calibrant after exposwedifferent temperatures for different
periods of time. These predicted concentrationgwseed as inputs to the sensor algorithms
that compute the measured values of the analyteecdration in the blood sample. The
algorithm was used to predict the responses inrégy3.6-3.8. These predicted responses

incorporate both the calibrant signal and the samjgnal.
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Figure 3.6: Response of whole cartridges from experiment D stored at an elevated
temperature equivalent to that of storage condition 2 from experiment H.
Experimental datais shown as points (®), model predictions are shown as open circles
(O)
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Figure 3.7: Response of whole cartridges from experiment E stored at an elevated
temperature equivalent to that of storage condition 2 from experiment H. Experimental
datais shown as points (®), model predictions are shown as open circles (O)
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Figure 3.8: Response of whole cartridges from experiment F stored at an elevated temperature
equivalent to that of storage condition 2 from experiment H. Experimental data is shown as
points (®), model predictions are shown as open circles (O).

Figures 3.6-3.8 show that the stability model tfoe concentration of the analyte in
the calibration fluid can explain the overall updarend present in the data, across several
experiments from production lots. The abilitytbé first-order model to generate analyte
concentration predictions that explain the trendthe data gives some evidence that a
changing reference analyte concentration in thibredion package is the dominant process
affecting assay stability at the tested thermaloskpe levels and durations. Because the
first-order model was able to explain the trendshie data, more complex models were not

investigated.

3.7  Conclusions
The thermal stability of the reference analytéhia calibration package appears to be

an important factor limiting product shelf-life fine assay of interest. A first-order model of
analyte stability was developed, which provided adtequate fit of the data for two
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experiments that investigate analyte stabilityhia talibration fluid and span a wide range of
elevated temperatures. Parameters estimated fremmiodel fit were all significantly
different from zero at the 95% confidence levelhe3e parameters were used to generate
predictions of the analyte in the calibration fléiad whole-cartridge incubation experiments.
The use of these predictions indicated that thenmade and form of the changes observed
in assay stability could be attributed mainly taiges in concentration of analyte in the
calibration fluid. In addition, the effect of éwother calibration fluid components on
analyte stability were tested, and it was deterchthat both had a small and negligible effect
on the rate of change in analyte concentration twe. Component 1 slowed the change in
analyte concentration whereas component 2 acteattease the rate of change. Both effects
were minimal, corresponding to an overall differene analyte concentration of less than
1% for component 1, and less than 3% for compoBerthese effects were observed after
storage at condition 2a from experiment |, at whioh temperature was significantly higher
than the temperatures encountered during normaldge use or storage.

This work has implications for design improvemeiotshe assay of interest, as it can
be readily extended to the implementation of aceébel testing experiments to test design
alternatives in a timely manner. In addition, thedel can be used in simulations to explore
the current sensitivity of the assay to heatingzaious temperatures and over different
durations, to help improve understanding of theremir limitations of the system, and to
provide some preliminary indication of how the euwtr storage and shelf-life specifications
could be modified without any redesign effortsndfy, the research has provided evidence
supporting the hypothesis that the calibration dflus the most important stability

consideration for the system investigated.
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Chapter 4. Conclusion

4.1  Conclusions and Recommendations
The stability characteristics of two APOC diagmosissay systems was investigated

through the use of mathematical modeling. For eastem, available APOC experimental
data were analyzed and mathematical models weraufated to describe the stability
behaviour of the system. In each case, additiexpériments were designed to complement

the available experimental data.

For the first assay cartridge investigated (Chap)ethe sensor had been identified as
the most important contributor to overall produtabdity from previous work by APOC
scientists. New experiments were designed andeim@hted to complement the existing
data for parameter estimation, and to produce a dat involving temperature steps for
dynamic model validation. A semi-empirical, secamder dynamic model was proposed to
describe the stability of the system under varyohgations of exposure to elevated

temperatures. Conclusions from this study are:

1. The second-order dynamic model showed improvedofitthe data sets used for
parameter estimation, relative to the fit of a itiadal first-order dynamic model.
The improved fit is demonstrated by a lower MSEuedlor the second-order model
(2.13x10° versus 2.69x10for the first-order model) and a higher adjustédv&ue
for the second-order model (0.839 versus 0.796)addition, the results of a mean
square ratio test at the 95% confidence level (B=22 FRo.05,3,1414= 2.61) provide
compelling evidence that the additional terms ia #econd-order dynamic model

explain a significant amount of the variation ie tfata.
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2. The second-order dynamic model demonstrated goedigtive ability for the
validation data set, which was collected indepetigesf the parameter estimation
data sets. The second-order model predictionscladler to the mean of the sensor
activity measurements for each time event, relativéhe predictions from the first-

order model, which tends to over-predict the seastvity.

3. Based on conclusions 1 and 2, the thermal stabiitghe sensor can be better

described by a second-order dynamic model thaadititynal first-order model.

The extension of the mean kinetic temperature (MEdncept to second-order and
higher-order dynamic systems was explored, by coimgahe results from a traditional
MKT calculation to an analogous approach develofedugh simulations and numerical
optimization. Identifying an analogous MKT for acend-order dynamic system involved
calculating an isothermal temperature that affdies same thermal stress as the variable
temperature profile of equal duration, to which pleduct was exposed. The results of this

exploration show that:

4. The traditional form of the MKT calculation, whidssumes a first-order model, is
not ideal for the sensor investigated. Insteada@@ogous MKT calculated from
simulations and optimization using the second-otigramic model provides more
accurate results. The discrepancy between thetypes of MKT calculations was

1.13 K, for the sensor and dynamic experiment c@nsd in the Chapter 2.
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For the second diagnostic assay investigatedsttiality concern was not related to
the sensor, but rather to a component of the edidor fluid packaged with the assay
cartridges. The role of the calibration fluid issay cartridge stability was hypothesized by
APOC scientists following a combination of targetedperimental programs, which
investigated components, fluids and sensors. Aemxent was designed to complement
the existing data for calibration fluid incubaticand a first-order model of analyte stability
within the calibration fluid package was developeBarameters for the first-order model
were estimated from two experiments, which involtlee incubation of calibration fluid at
elevated temperatures. Estimated analyte contemisafor the calibration fluid, predicted
from the first-order model, enabled prediction loé tstability behaviour observed in whole-

cartridge incubation experiments. The results ftbism research show that:

5. Accurate quantitative predictions of whole-cartedgtability behaviour provide
evidence that changes observed for whole-cartrstigiglity are caused by changes in

analyte concentration in the calibration fluid.

4.2 Contributions
The novel contributions of this thesis are:

1. The development of a semi-empirical, second-orgaachic model of sensor thermal

stability for one of the APOC assays

2. The extension of the MKT concept to second- (amghdri-) order dynamic systems.
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3. The development of a first-order dynamic modeltf@ stability of an analyte in the
assay calibration fluid for an APOC assay, anduse of this model to explain the

stability behaviour of the assay for that speaialyte.

4. The knowledge gained from these contributions h&llp APOC scientists to extend
the shelf-life claims for some of their productShe models will also be helpful for

designing accelerating testing protocols for thssays.

4.3  Future Work
The model development process served as a usedll for exploring causal

relationships between stability and assay companéoivever, to gain the maximum benefit
from this work, the proposed models should be agplior shelf-life predictions and
accelerated testing extrapolations. These twoiagifuns for the models are straightforward
extensions of the current work, involving simulascand optimization. Parameter estimates
established from short-term accelerated testingoeansed with simulations involving long-
term storage at normal conditions, to predict pobdiability over time. Conversely, for
simulations at normal storage conditions, the tahghich an acceptable confidence bound
for the regression line related to the assay stabiletric of interest crosses a minimally

acceptable stability level threshold would yieldemtimate of product shelf-life.

If further time and resources were available teestigate the stability of system
components in more detail, fundamental models cbeldieveloped for both systems. This
would be helpful to precisely identify the compotsenvhich limit assay stability, and
therefore fundamental models would be importantdgsii for assay performance and
improvement efforts.
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Appendix A: Analytical Solutions

The analytical solution to the second-order modidli@sensor stability (equations 5-8, 12)
is:

G(I- (f) — % (:I.-j’e'??t — Cixt)
1

= Sak_ [(,.-"3??0_-:;t — ;ugm:) + Fgua (ﬁem — Oyt”
AN T revy

Ch(t)

where

= \/’L'-"Ifurdg +2 klfwd ‘I'-'I'.r‘et: —2 ‘I'-'If'wd k?furd + ’L'-"I're.t.'g + 2 ‘I':I-reu ki’fwd + ki’fwdg
0= alCal + kgppqg Cal + kirey CalO — kippa CaO + 2 kjrey CO
Y = —kipwa CaO + kgpyg Cal + 2 kjpey, CHO + Kype, Call — aCal

—Biprpa/R(T =Ty 1t
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Appendix B: Experimental Data Testing Plans

Table B1: Experimental testing plan for Data Setsnél B

# of replicates
Data Set A | Data Set B
Recoded Temperature (deviation from reference tese)
Recoded Event Time
(fraction of Data Set

A total duration) -25 -10 0 10 -25 -10 0

0.000 12 0 0 0 50 0 0

0.006 24 24 24 24 32 32 32

0.042 24 24 24 24 0 0 0

0.083 24 24 24 24 32 32 32

0.167 24 24 24 24 32 32 32

0.244 0 0 0 0 32 32 32

0.333 24 24 24 24 0 0 0

0.375 0 0 0 0 32 32 32

0.500 24 24 24 24 32 32 32

0.750 0 0 0 0 32 32 32

0.881 0 0 0 0 32 32 32

1.000 12 0 24 12 0 0 0

Table B2: Experimental testing plan for Data Set C
Recoded Event Time Recoded Temperature # of

(fraction of Data Set A total duration) (deviation from reference temperature)*eplicates
0 10 22
0.042 -25 22
0.083 10 22
0.125 10 22
0.167 10 22

*Note: Temperatures were held constant betweeretesits (e.g. cartridges were stored 25
degrees Kelvin below the reference temperature detvevents 0.042 and 0.083)
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Table B3: Experimental testing plan for Data Set&Rnd F

# of replicates

Data Set D

| Data Set Et

Data Set F

(degrees Kelvin deviation from reference tempeggtur

Recoded Temperature

Recoded Event Time
(fraction of Data Set A

total duration) -2 -10 0 0| -25| -5| 0| 5

0.000 50 0 0 30 7/ 0] 0] O

0.006 32| 32 32 0 8/ 8| 8| 8

0.042 0 0 0 30 8/ 8| 8| 8

0.083 32| 32 32 30 8/ 8| 8| 8

0.125 0 0 0 0 8/ 8| 8| 8

0.167 32| 32 32 30 0] 0] 0] O

0.208 0 0 0 0 8/ 8| 8] 8

0.244 32| 32 32 0 0| 0| 0| O

0.333 0 0 0 30 0| 0] 0] O

0.375 32| 32 32 30 8/ 8| 8] 8

0.405 0 0 0 30 0| 0] 0] O

0.500 32| 32 32 0 0| 0] 0] O

0.542 0 0 0 0 8/ 8| 8] 8

0.708 0 0 0 0 8/ 8| 8] 8

0.750 32| 32 32 0 0| 0] 0| O

0.881 32| 32 32 0 0] 0] 0] O

Table B4: Experimental testing plan for Data Set G

Recoded Event Time # of
(fraction of Data Set A total duration) replicates

0.006 24
0.042 24
0.083 24
0.167 24
0.333 24
0.500 24

1 12
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Table B5: Experimental testing plan for Data Setsnid |

# of replicates

Data Set H

Data Set |

Recoded Temperature

(degrees Kelvin deviation from reference tempeggtur

Recoded Event Time

(fraction of Data Set A total

duration) -25 5 20 -25 10 30
0.000 12 0 0 30 30
0.042 12 12 0 0 30 15
0.083 12 12 12 0 30 15
0.125 12 12 12 0 0 0
0.167 12 0 12 0 30 15
0.208 12 12 0 0 30 15
0.250 0 0 0 0 30 15
0.292 12 12 12 0 0 0
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Appendix C: Discussion of Experimental Variability

There are several potential sources of variabitityerent with the APOC i-STAT
cartridge system investigated over the courseisfiork. This section gives a more detailed
description of the aspects of the APOC system #aiuld be accounted for when
considering the variability of experimental results

1. APOC medical diagnostic cartridges are manufactaedingle-use devices. As a
result, all of the testing performed over the ceuo$ this research was destructive
testing. Therefore, the results from the expertademata sets have inherent
variability between individual cartridges and cetsof a separate distribution of
experimental observations at each unique testingdition.

2. An APOC diagnostic cartridge is composed of manynponents which are
manufactured separately. Efforts were made duexyerimental design to keep
cartridge and component manufacturing lots the saitien each experimental data
set. When this was not possible, statistical assests of differences between mean
response values for different lots were performethatching storage conditions, to
ensure that the lot-to-lot differences were neglegi

3. The experimental data sets analyzed over the caidirges work varied in their run
dates. Several data sets used were older, hataléta sets from several years ago,
whereas some of the other data sets (includinghévdy designed data sets) were
concluded in parallel with this work. The timin§tbe experimental data sets in an
important consideration as APOC updates coeffisidot their products frequently
(approximately every 6 months) to account for clesnon manufacturing materials
and practices (otherwise lot-to-lot differenceslddaecome significant). In order to
remove the effect of manufacturing date from theuits and allow for meaningful
comparisons between data sets, the results fromdsta set were scaled relative to
their respective day 0 means. An assumption imhevéh this approach is that the
experimental “day 0” represents a similar time-froranufacture estimate across data
sets. This is not necessarily a valid assumpasrthe post-manufacturing delay for
several of the data sets analyzed was large (dedaya or weeks). However, the
cartridges were stored at reduced temperaturestier duration of this post-
manufacturing delay in each case and the experahessults indicate insignificant
drifts in sensor responses after storage at lovpéeatures. These two factors were
considered when assuming “day 0” responses coultsbd to scale the data sets for
comparison.

4. The aqueous control fluids of known analyte conegitns used for cartridge testing
are also susceptible to some lot-to-lot variahilidygain, efforts were made to use
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control fluids from the same manufacturing lot witlexperimental data sets. Since
these fluids are produced to meet tight specifocetiin an analytical chemistry

laboratory, there was less of a concern for betweturariations from this source.

(post-production testing to ensure that these dluade within specifications is

performed for each control fluid lot and resul@nfrthese tests were available).
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Appendix D: Alternative Modeling Approaches

The model development process applied duringwioik was an iterative one. As a
result, there were several approaches attemptechvdiil not yield the best results, and were
therefore discarded. This Appendix section dessrdgome of these approaches which were
omitted in the main text for brevity.

1. Alternate forms of second-order dynamic models vadse investigated (as alternatives
to equation 4).

k1 fwd k2 fwd
A < B - C (22)
k1rev

These models took the following forms:

k1fwd k2 fwd
A - B - C (D1)
klde k2 fwd
D2
A - B - C (b2)
k2rev
k1 fwd
A < B
73: k1lrev
o (D3)
C

As described in Chapter 2.2.5, “A” is defined las $ensor’s native, active state and it
is the quantity that is being observed. States aBd "C" help describe the dynamic
behaviour of the sensor and can be loosely coresides different active states of the sensor.
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The structure of alternative models D1 and D2 ishsthat the differential equation used to
describe the change in "A" is the same in bothgase

dA
at =~k g LA (B4)

which is identical to the differential equation deking the first-order dynamic
model. Neither of these two models (D1 or D2) wiekestigated further, as the solution for
the "A" differential equation is the same as foe fheviously investigated first-order
dynamic system. There is no coupling of "B" or "G&haviour into the "A" differential
equation. In contrast, the reversible transitioonfr"A" to "B" couples the "A" and "B"
differential equations, producing a different dynanesponse in "A".

The second-order dynamic model in equation D3, imasstigated alongside the
model from equation 4. Regression experimentsguBiata Set A consistently showed that
the model in equation 4 provided a superior fitenms of total SSE relative to the model
from equation D3. As a result, the model in equat was selected as the second-order
dynamic model candidate for this work, and usedifong Data Sets A and B for parameter
estimation and to Data Set C for model validation.
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Appendix E: Boxplotsfor Data SetsA, B, D, Eand F
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Figure E1: Data Set A - Biosensor response (% of initial activity) versus time for
biosensors tested after storage at four different conditions (CILILI 1) of increasing
temperature (from left to right within each scaled time event). Storage Condition | (L)
corresponds to the lowest temperatures and Storage Condition 1V (') corresponds to
the highest temperatures tested. The time axis has been recoded as a fraction of the
total duration of the Data Set A experiment.
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Figure E2: Data Set B - Biosensor response (% of initial activity) versus time for
biosensors tested after storage at three different conditions (CILJJ) of increasing
temperature (from left to right within each scaled time event). Storage Condition i (L)
corresponds to the lowest temperatures and Storage Condition iii (L]) corresponds to
the highest temperatures tested. The time axis has been recoded as a fraction of the
total duration of the Data Set A experiment.
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Figure E3: Estimate of analyte concentration from the assay of interest as a per centage
of theinitial value after storage at an elevated temperature, for Experiments F([1,V),
E(CJ,>) and D ((1,<]). Thetime axishasbeen recoded asa fraction of the longest
duration for the experiments.
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