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Abstract 
 

 The objective of this work is to develop mathematical models for predicting the 

thermal stability of commercial diagnostic assays.  These assays are a product of the Point of 

Care division of Abbott Laboratories, and are used for analyzing patient blood samples for 

specific substances.  The accuracy of the results from these diagnostic tests relies on the 

activity of specific biological and/or chemical components of the sensors. Mathematical 

models that describe the stability of these active components are useful for supporting 

product shelf-life claims and for the design and implementation of accelerated testing 

protocols.  In the thesis, the stability of two diagnostic assay systems of interest to Abbott 

Point of Care is investigated using mathematical modeling.  

 For the first assay system investigated, the biosensor associated with the assay is 

identified as an important factor for product stability.   A second-order dynamic model is 

developed to describe the thermal stability of this biosensor.  The model corresponds to a 

reversible reaction followed by an irreversible reaction, with rate coefficients having 

Arrhenius temperature dependencies.  The second-order dynamic model provides improved 

predictions relative to a first-order dynamic model, based on a comparison between model 

fits for two experimental datasets, and a comparison of predictive ability for a validation 

dataset.  The second-order dynamic model is used to extend the concept of Mean Kinetic 

Temperature concept from the pharmaceutical industry to systems with higher-order 

dynamics. 
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 For the second assay system investigated, the calibration fluid is identified as a key 

factor in assay stability.  A first-order model is developed to describe the stability of the 

analyte within the calibration fluid.  The first-order model captures most of the trend present 

in the data from calibration fluid incubation experiments. Finally, model predictions are used 

to investigate the amount of change in assay response that can be attributed to changes in 

concentration of analyte in the calibration fluid (after storage at elevated temperatures).  The 

results show that the changes observed in assay responses are consistent with the magnitude 

of changes in calibrant analyte concentrations predicted by the model. 
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Chapter 1: Introduction 

1.1 Problem Description 

Abbott Point of Care (APOC) manufactures single-use blood diagnostic assay cartridges 

for use with their i-STAT® handheld analyzer.  A blood sample from a patient is deposited 

into the sample entry well of the cartridge and the cartridge is inserted into the APOC i-

STAT analyzer.  The analyzer then performs an automated sequence whereby the biosensor 

chips take readings of both a calibration fluid (from a calibration pouch) and the blood 

sample.  A diagram of a representative cartridge and its components is included as Figure 

1.1. 

 

Figure 1.1: Exploded view of an APOC i-STAT cartridge (figure used with permission 
from APOC) 

The APOC i-STAT assay cartridges contain chemical and biological components.   The 

stability of the chemical and biological components limits the shelf-life of these assay 

products, and imposes specific requirements for storage at cold to moderate temperatures.  



2 

 

To improve product stability and extend the current shelf-life claims, APOC actively 

investigates the stability of the chemical and biological components of their assay cartridges.  

This thesis focuses on the development of stability models for components of the diagnostic 

assay cartridges.  Stability models allow for shelf-life predictions and for extrapolation from 

accelerated testing experiments.  These models can be used to simulate product responses, 

establish hypotheses, design experiments or perform sensitivity analyses.  The model 

development process involves exploring relationships between stress factors and product 

performance over time; the understanding of these relationships is a valuable for scientific 

and product quality advances. 

1.2 Electrochemical Sensors and Biosensors 

Traditional electrochemical sensors for use in clinical chemistry can be classified into 

two main categories; potentiometric sensors or amperometric sensors.  In potentiometric 

sensors, a potential difference is measured between an indicator electrode and a reference 

electrode, both in contact with the testing solution.  The potential generated across the two 

electrodes is proportional to the logarithm of analyte concentration in the sample. [1.2] 

For amperometric sensors, an electrical potential is applied across the working and 

reference electrodes, to drive redox reactions in the solution that separates them. The analyte 

of interest is a participant in the redox reaction(s) that occur in the solution, and the flow of 

electrical current that results from the applied potential is proportional to the concentration of 

analyte present [1.2].  

Biosensors are electrochemical sensors (either potentiometric or amperometric) 

containing a biological component that interacts selectively with an analyte of interest in a 

testing sample.  This interaction produces effects that are translated into a readily measurable 
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form, such as an electrical signal, by a transducer element [1.3].  A coupled enzyme-

electrode system is an example of a biosensor.  This form of biosensor consists of an enzyme 

immobilized in a polymer matrix at the surface of an electrode.  When the immobilized 

enzyme interacts with the analyte of interest, a change in a property of the surrounding 

solution is produced, which is converted into a quantifiable electrical signal [1.3].  Enzymes 

that catalyze transformations of specific biological molecules can be used in this setup to 

detect the presence and quantity of those biological molecules in samples of interest. 

The relationship between the electrical signal measured from the transducer element and 

the presence, activity or concentration of the targeted analyte in the sample is not always a 

linear one.  In many cases, a mathematical model is required to relate the electrical signal 

observed to the property measured, for accurate quantification.  A variety of models have 

been developed for potentiometric sensors [1.4], enzyme-based amperometric biosensor 

systems [1.5], mass-sensitive chemical sensor systems [1.5,1.6] and optical biosensors [1.7-

1.9]. These models typically incorporate concepts from thermodynamics, mass transport 

phenomena and electrochemistry to describe the behaviour of the biosensor system, but may 

also include some empirical or semi-empirical model components for system calibration. 

1.3 Diagnostic Assay Stability 

   Changes to the diagnostic assay system of interest over time may introduce a bias in the 

mathematical model that calculates the analytical value from the raw sensor response.  It is 

important, therefore, for assay manufacturers to be aware of the lifetime of their products and 

of the influence that both typical and atypical storage conditions may have on assay 

performance.  Monitoring of assay responses to identify changes in assay stability is a basic 

method for manufacturers to track changes in product performance.  To monitor product 
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performance under specified storage conditions, assay cartridges from the same production 

lot are regularly tested for their response to a control fluid with known analyte 

concentrations.  For single-use diagnostic assays, this monitoring represents destructive 

testing.  Ideally, the responses of diagnostic assay cartridges from the same lot to the same 

control fluid should be identical, but in practice the outcomes from several tests form a 

distribution of responses.  The mean of the distribution should correspond to the true 

concentration of the analyte in the control fluid, within specified error allowances.  For 

APOC devices sold to clients in the United States of America, tolerances for the error in the 

measured analytical values are established based on the standards set by the Clinical 

Laboratory Improvement Amendments (CLIA) program.  The CLIA program outlines a level 

of medically allowable error specific to each analyte of clinical interest and is run by the 

Centers for Medicare and Medicaid Services (CMS) agency of the United States Department 

of Health and Human Services (DHHS).  [1.1] 

To assess assay stability, the characteristics of this distribution of responses must be 

investigated over time and after exposure to different storage conditions.  There are three 

main stability issues that can be detected through this approach: changes in the mean 

response, changes in the variance of the response, and changes in the frequency of outright 

product failures (where no meaningful response can be generated).  If changes in one or more 

of these statistics are detected, efforts are made to identify the causes of the changes, and to 

investigate their impact on assay stability.  Accelerated testing experiments can be helpful in 

cases where the long-term stability of a sensor system needs to be investigated in a short time 

period. 
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1.4 Accelerated Testing and Stability Modeling 

An extensive review of accelerated testing theory and methodology was performed by 

Meeker and Escobar [1.11].  The variety of accelerated testing approaches, applications and 

associated theories is vast, and spans many different manufacturing sectors [1.11].  The 

purpose of this section, therefore, is not to provide an in-depth review of the accelerated 

testing literature, but rather to provide a brief summary of accelerated testing goals and 

approaches as they pertain to the development of stability predictions for electrochemical 

sensors with biological and chemical components. 

  In the context of this thesis, accelerated testing involves subjecting a system to higher 

stress than would be experienced during normal operation, in order to observe changes that 

would normally take much longer to occur under milder conditions.  In many systems, 

mathematical models allow for extrapolation from accelerated testing regimes to normal 

operating conditions, so that the duration of stability experiments can be shortened [1.11].  

Results from experiments that expose the product or system of interest to high levels of stress 

can be used to estimate the parameters for the stability model of the system, and the model 

can subsequently be used to predict system behaviour under alternative levels of stress. 

Ideally, stability models for a biological or chemical system should be fundamental models, 

derived from the basic thermodynamic, mass-transport and chemical kinetics of the system.  

In practice, the cost (in terms of both time and resources) of experimentation to investigate 

each component of a fundamental system for a complex process may be prohibitive, and an 

empirical or semi-empirical model must suffice for approximating the stability of the system 

[1.12].  
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Accelerated testing approaches are highly desirable when decisions about a product 

cannot feasibly wait for a full-scale, long-term study [1.13].  The application of accelerated 

testing methodology to the food, pharmaceutical and other industries that deal with biological 

and chemical components is well established for the prediction of product shelf-life.  The 

quality of products with active biological components is typically defined in terms of 

biological function, and product expiration specifications are set based on maximum 

allowable percentage losses in activity over time, under explicit storage conditions [1.13].  

For typical pharmaceutical applications, the shelf-life is interpreted as the time at which the 

lower 95% confidence bound for the regression line of product activity (at an isothermal 

storage temperature) crosses below a 90% drug potency threshold [1.14].   While it is 

possible to perform real-time testing on pharmaceutical products to establish shelf-life 

estimates, it is of interest to experiment with short-term exposures of product samples to 

elevated humidity, temperature or other important factors that influence product stability, and 

then to extrapolate a shelf-life estimate for normal storage conditions from the experimental 

results.  From the above description of accelerated testing methods and applications, there are 

four points that are especially relevant to subsequent chapters of this work: 

1. Accelerated testing approaches are an effective method for quickly characterizing 

product shelf-life and designing experiments that test between product design 

alternatives in a timely manner. 

2. The ability to use accelerated test results for extrapolation relies on a stability model 

for the system of interest that provides a description of the stability behaviour over 

the ranges and durations of stresses experienced. 
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3. Stability models are ideally fundamental models, but in practice empirical or semi-

empirical stability models are more frequently available as approximations of the 

system. 

4. The use of accelerated testing methods is common in industries where products 

contain bioactive components; examples being the pharmaceutical and food 

industries. 

1.5 Objectives and Thesis Outline 

The objectives of this thesis are to develop stability models and to estimate parameters 

for two of the APOC diagnostic assay systems.  The development of these models involves: 

the analysis of available APOC data concerning the systems of interest; the formulation of 

mathematical models to describe the behaviour of the systems; the fitting of model 

parameters to the available data; and the design of experiments to generate new data sets for 

improved parameter estimation and model validation, as necessary.  The remainder of this 

thesis is organized into three chapters.  Chapter 2 describes the development of a semi-

empirical, second-order dynamic model to predict the stability of a particular APOC 

biosensor used to measure an analyte in human blood.  This chapter has been prepared as a 

journal article for submission to Sensors and Actuators B: Chemical. Chapter 3 presents the 

development of a first-order stability model for an analyte present in the calibration package 

of a second type of APOC sensor.    Finally, Chapter 4 provides a summary of the 

conclusions drawn from this work, and indicates the novel aspects of the research. 
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 Chapter 2: Modeling the Thermal Stability of Enzyme-Based Biosensors 

2.0 Abstract 

 Performance of in vitro diagnostics biosensors may change over lifetime, particularly 

if environmental storage conditions such as temperature are not controlled. Biosensors are 

composed of diverse multiple components such as salts, polymers and biological components 

which may be differentially impacted by chemical and physical transformations induced by 

changes in temperature and exposure to humidity, oxygen and light. Mathematical models for 

predicting the influence of temperature on biosensor performance over time typically assume 

the changes follow first-order dynamics, with the temperature dependence of the rate of 

change described by an Arrhenius kinetic expression.  However, the compositional diversity 

found in many biosensors may cause the assumption of first-order dynamics for sensor 

stability to be invalid.  In this paper, a second-order dynamic model is developed to predict 

the change in biosensor performance over time for a single-use biosensor used in a point-of-

care diagnostics system.  The model consists of a reversible reaction followed by an 

irreversible reaction, with rate coefficients having Arrhenius temperature dependencies.  The 

second-order dynamic model provides improved predictions, based on a comparison for two 

experimental datasets used for estimation, and on a validation dataset. The resulting model 

has applications for shelf-life prediction, designing accelerated testing experiments, 

biosensor improvement and the development of biosensor storage guidelines. Finally, it is 

shown that the concept of “mean kinetic temperature”, used widely in the pharmaceutical 

industry and based on first-order dynamics, can be applied successfully to a biosensor system 

exhibiting higher-order dynamic behaviour using a second-order model. This suggests that 

MKT concepts may be extended to in vitro diagnostics sensor applications.  
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2.1 Introduction 

 Conventional in vitro diagnostic analyses take place in medical laboratories that 

employ specialized equipment for analyzing biological samples from patients.  The test 

results are forwarded to the clinician, often with an inherent processing delay.  Advances in 

diagnostic technologies have led to the development of smaller, portable diagnostic systems 

that can eliminate time delays between the patient and laboratory by bringing the diagnostics 

system to the patient’s side.  This approach of analyzing samples at the site of the patient is 

referred to as “Point of Care” (POC) diagnostics.  Since their introduction, POC diagnostic 

systems have become valuable tools for the modern medical practitioner [2.1]. 

 In this article, we focus on single-use, in vitro diagnostic systems for analyzing blood 

at the patient point of care.  Clinical POC diagnostic systems are currently available for 

measuring a variety of blood components including ion concentrations, blood gas partial 

pressures, pH levels, and concentrations of compounds such as urea, glucose, creatinine and 

lactate.  Detection technologies may vary, but are typically based on optical or 

electrochemical principles [2.2].  

 A variety of mathematical models have been developed for simulating and 

characterizing responses from enzyme-based biosensors [2.3-2.6] and from gravimetric 

biosensors [2.7-2.9].  These mathematical models generally describe three main processes: 

the diffusive characteristics of the sensor layers, the kinetics of substrate/active site binding, 

and the electrochemical reaction kinetics at the electrode.  The models have been used to 

improve sensor response time [2.7,2.8,2.4,2.9], to optimize important sensor design factors 

[2.3,2.7], or to identify conditions where the behaviour of the sensor changes [2.5].  
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Biosensor models are also necessary for converting the raw sensor response signal into an 

analytical value that quantifies the presence of analyte in the sample. 

 Unfortunately, biosensors are susceptible to changes in activity during storage, 

commonly due to the exposure of their components to stresses such as humidity, elevated 

temperature and oxygen [2.10,2.11]. After storage involving high levels of stress, the 

relationship between the raw biosensor response and the level of analyte present may deviate 

from the equation(s) used in the sensor, either in terms of the parameter values and/or the 

form of the response curve. This can make comparisons to the calibration standard difficult 

and introduce bias into the sensor readings computed from the raw signal. 

 Significant progress has been made over the past few decades in stabilizing enzyme-

based biosensors using different enzyme-immobilization techniques [2.11,2.12].  While these 

techniques have extended the workable lifetime of enzyme-based biosensors to a state where 

they are commercially viable, stability concerns and room for improvement still exist 

[2.2,2.11], and biosensor shelf life remains an important performance consideration for 

manufacturers of these devices. 

 Similar shelf life stability challenges are faced by pharmaceutical companies whose 

drug products may be sensitive to temperature, pH, moisture, light and oxygen levels [2.13].  

To address thermal exposure concerns, the pharmaceutical industry employs a “mean kinetic 

temperature” (MKT) method for predicting the temperature-dependent change in activity of 

products with chemically-active components [2.14]. The MKT is the equivalent temperature 

that produces a specified change in activity over a specified period of time. The rate of 

change is described by the Arrhenius equation widely used in chemical reaction kinetics:   
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 The Arrhenius equation relates a reaction rate coefficient k, to the absolute 

temperature T.  In equation (1), Ea is an activation energy, R is the universal gas constant, 

and A0 is a pre-exponential factor.  As shown above, the Arrhenius equation can be restated 

in terms of refk  (instead of A0), where refk is the value of the rate coefficient at a reference 

temperature Tref [2.16].  Tref is usually selected to be a typical temperature within the range of 

experimental temperatures of interest. This reparameterization has the benefit of improving 

the statistical quality of the estimates, and improving the conditioning of the estimation 

problem [2.16].  

 For many pharmaceutical products, it is common to assume first-order dynamics for 

changes in stability. This assumption is used for the development of regulatory standards 

involving pharmaceutical shelf-life predictions and monitoring [2.17]. The actual storage 

temperature is recorded by the pharmacist, allowing for the prediction of the product expiry 

date through the use of the calculated MKT based on the Arrhenius equation and the first-

order dynamic model. The drug product may be deemed expired if the worst-case prediction 

of its activity level falls below 90% of its original target activity. This procedure for product 

expiration monitoring in the pharmaceutical industry helps to ensure the safety of patients 

through vigilant removal of expired products.  As the in vitro diagnostics industry in general, 

and single-use point of care diagnostics in particular, encounters analogous product stability 

challenges, the methods implemented by the pharmaceutical industry could be adapted for 

single-use POC diagnostics applications. 
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 First-order dynamic models incorporating an Arrhenius-type temperature dependency 

for the rate of change have already been used in the biosensor literature for evaluating sensor 

stability [2.17,2.18]. McAteer et al. [2.18] proposed a general model for biosensor shelf-life 

performance assuming a first-order dynamic process to describe biosensor aging, with 

temperature dependency based on the Arrhenius equation.  While this approach may 

adequately approximate a biosensor containing a single thermally-sensitive component, it 

may be insufficient for more complex biosensors having multiple thermally-sensitive 

components.  Thermally sensitive components may consist of a range of elements, including 

altered diffusive properties for the polymer matrix layers in the sensor, and/or altered 

activities for one or more enzymes present in the biosensor system. The combination of these 

types of changes could produce higher-order dynamic behaviour for biosensor stability, so 

that first-order models might inadequately describe such systems. 

 In the current paper, thermal stability data from Abbott Point of Care (APOC) 

biosensors are used to develop dynamic models for the stability of a particular biosensor 

product.  Since detailed mechanistic knowledge of the thermally-induced aging pathways is 

unavailable, a semi-empirical dynamic modeling approach is developed using experimental 

data sets obtained using a variety of storage conditions.  Preliminary fits using first-order 

models are shown to provide an inadequate prediction of the data, motivating the 

consideration of second-order dynamic models. Results obtained using a second-order 

differential-equation model are compared to those from a first-order model and a method is 

proposed for determining MKT using higher-order dynamic models of sensor stability. 
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2.2 Materials and Methods 

  2.2.1 Biosensor 

 Data from non-commercial single-use biosensors were obtained from Abbott Point of 

Care (Ottawa, Canada). The biosensor of interest consists of an electrode onto which 

polymeric layers containing bioactive components have been deposited.   Electrical response 

profiles generated by the electrode when in contact with samples, are directly related to the 

concentration of the analyte of interest in the sample.  The extent of change in a thermally-

aged biosensor was determined by testing samples of known analyte concentrations using 

thermally-aged biosensors. The activity of the sensor was tracked as the ratio of the response 

from the thermally-aged biosensor to that of the sensor at time = 0. Results for a given 

dataset were obtained from a single production lot.  

2.2.2  Experimental data sets 

 Two experimental data sets were obtained to develop the model and estimate the 

model parameters.  The first data set (Data Set A) contains time-series data for biosensors 

stored at four different temperature conditions spanning a range exceeding the thermal stress 

that these sensors would typically experience during shipment, use and storage.  

Perturbations to the storage temperature were introduced to represent poor storage 

conditions.  These fluctuations do not reflect standard practice for product storage, and the 

product met performance expectations under the labeled use and storage guidelines. For each 

test event, multiple biosensors from each storage condition were used to analyze an aqueous 

control fluid with a known analyte concentration.  The second source of data (Data Set B) 

involves biosensors stored at three different conditions, with temperatures spanning a range 

similar to that in Data Set A, but with less perturbation of the storage temperature.  The 
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testing plan for data set B was developed to complement Data Set A, which was available 

from APOC experiments prior to the commencement of this work.  As a result, several of the 

test events overlap between the two data sets to allow for meaningful comparison between 

mean response values.  In addition, test events were scheduled to provide information about 

the regions of the changing response trajectory that was not available from Data Set A.  A 

table showing the experimental plan for Data Sets A and B is included as Table B1 in 

Appendix B.  Frequent temperature readings from the ovens used to store the biosensors 

were available for each data set, providing a detailed log of the thermal stress applied to the 

biosensors during storage. 

 A third experimental data set (Data Set C) was collected for model validation. Data 

Set C used step tests (Figure 2.1) to investigate the influence of dynamic temperature 

excursions to extremes of the temperature range spanned by Data Set A.  Data Set C was 

used to test the predictive ability of the first- and second-order models, using parameter 

estimates generated by fitting Data Sets A and B.  The experimental plan for Data Set C is 

included as Table B2 in Appendix B. 
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Figure 2.1: The solid line (▬) shows the incubation plan for Data Set C and the circles 
(����) show the timing of the test events.  The temperatures have been recoded relative to 
the nominal temperature associated with Storage Condition II.  The time axis has been 
recoded as a fraction of the total duration of the Data Set A experiment. 

 2.2.3 Modeling approach 

 Developing a detailed fundamental dynamic model for the thermal stability of the 

biosensor requires knowledge of the sensing signal-pathway reactions and aging reactions 

associated with each step in the pathway. Additionally, the effects of thermal aging on the 

diffusion and other properties of each polymer layer in the bioactive film need to be 

understood. Due to the complexity of building a mechanistic model, and a lack of data on the 

detailed behaviour of the biosensor system under thermal aging conditions, a simplified, 
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semi-empirical approach was used to develop models describing the thermal stability of the 

biosensors.   

 Initially, a first-order dynamic model was used to describe the system. Subsequently, 

a more complex second-order dynamic model was developed using lumped reaction-rate and 

activation-energy terms to approximate the true higher-order aging processes that occur in 

the system.  Both models use Arrhenius expressions to account for the impact of temperature 

on the rate of change of activity of the biosensors. Note that the use of Arrhenius expressions 

for temperature dependencies is a semi-empirical approach, as the parameters estimated for 

the Arrhenius activation energies and pre-exponential factors do not necessarily represent the 

kinetic rate coefficients of the system; rather, they are lumped approximations reflecting 

changes in the reaction kinetic and mass transfer rates associated with the system, together 

with other thermally sensitive components in the biosensors.  

 The first-order and second-order dynamic models presented below are linear Ordinary 

Differential Equation (ODE) models for fixed temperature. The temperature dependence 

appears in the Arrhenius expressions that multiply activity terms in the right hand sides of the 

differential equations. In cases in which the temperature changes with time, the models can 

be used in a piecewise fashion. By assuming constant temperature between successive 

measurements of the storage temperature, the analytical solution to a particular linear ODE 

model can be used to relate the activity at the next time point to the predicted activity at the 

previous time point. The rate constants (represented by the Arrhenius expression(s)) over the 

time interval correspond to the temperature in the oven at the start of the time interval. In this 

way, dynamic sensor-response trajectories can be predicted for each experimental data set 
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(i.e., Data Set A with four storage temperature trajectories and Data Set B with three storage 

temperature trajectories).  

2.2.4 First-order dynamic model 

 The preliminary model describing the change of biosensor activity over time uses a 

first-order dynamic model with Arrhenius temperature dependence for the rate constant: 

11
1 Ik

dt

dI ⋅−=  (2) 

where 1I  is the sensor response to the analyte in a liquid control sample; t is the sensor age; 

and 1k is a lumped rate coefficient that has an Arrhenius temperature dependency of the form 

described in equation (1). Units for the parameters discussed in this work have been omitted 

to maintain confidentiality. Integration of equation (2), assuming constant temperature over a 

time interval of duration t, yields equation (3): 

tkeII ⋅−⋅= 1

011  (3) 

where 
01I is the response of the biosensor to the control fluid at the start of the interval, prior 

to the thermal exposure occurring over the interval.  Equation (3) indicates that the biosensor 

activity is expected to follow an exponential decay trend.  The parameters in this model were 

estimated using nonlinear least squares regression on the observations from data sets A and 

B.  

2.2.5 Second-order dynamic model 

 In the second-order model, the aging behaviour of the biosensor is approximated 

using a two-step process between three states:   

CBA
fwdfwd

rev

kk

k

21

1

→⇔  (4) 
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 In the first step, the thermally-sensitive components of the biosensor in their native 

state A transition reversibly to an inactive state, labeled as B.  In the second step, components 

in state B transition irreversibly to an inactive state C. In this scheme, it is assumed that 

biosensor components in state A function sufficiently well for the biosensor to respond to the 

presence of analyte as they would prior to aging. B and C represent states where the 

components of the biosensor no longer generate a response to the analyte of interest, or 

where the form of the response generated by the biosensor has changed so significantly that 

the algorithm for calculating analyte concentration is no longer appropriate.  State B 

represents a reversibly modified state, whereas state C represents a terminal modified state. 

Note that this simple dynamic scheme is a lumped approximation to complex thermal aging 

interactions resulting from changes in components such as reaction kinetics and mass-

transfer behaviour within the biosensor.  The two-step aging mechanism in equation (4) is a 

simple way to account for complex temperature-dependent processes involving equilibration, 

changes in sensor responsiveness and long-term reductions in sensor activity.  Similar kinetic 

aging models for use in accelerated testing have been used to describe changes in optical 

fiber systems [2.20]. 

 In practice, the extent to which sensor performance has changed is determined by 

comparing the signal that it generates in response to a known standard.  This signal is 

compared to the mean signal that was generated by sensors from the same lot, in response to 

the same known standard, prior to incubation and/or aging. Assuming that the rate of change 

for each transition in equation (4) follows first-order kinetics, the dynamic behaviour of the 

system can be summarized by two differential equations: 
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AfwdBrev
A IkIk

dt

dI
,1,1 −=  (5) 

BfwdBrevAfwd
B IkIkIk

dt

dI
,2,1,1 −−=  (6) 

where: AI is the biosensor response to the analyte in a control sample,   BI  is the hypothetical 

response that could be generated from component B if it were to revert back to A, and  fwdk ,1 , 

fwdk ,2 , and revk ,1  are rate coefficients.  Using Arrhenius expressions to describe the 

temperature dependence of the transitions in equation (4) gives: 
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Where 
fwdkE

,1
, 

revkE
,1

and 
fwdkE

,2
 are lumped activation energies,  T is the absolute temperature, 

and reffwdk _,1 , refrevk _,1 and reffwdk _,2 are the rate coefficients at the reference temperature Tref.   

 Equations (5) and (6) were solved analytically for AI  and BI  using the Maple™ 

symbolic mathematics software. An analytical solution exists for this model, which is a linear 

time-invariant system of ordinary differential equations under the assumption of piecewise 

constant temperature. When performing this integration over the first time interval, AI  is 

assumed equal to the mean time-zero biosensor reading obtained from un-aged sensors and 

that  BI  is initially zero.  For subsequent time intervals, the predicted values of AI  and BI  

from the previous interval are used as initial values.  A simplification is made to reduce the 

number of parameters requiring estimation, using an equilibrium constant (Keq), which is 



21 

 

defined to relate the forward and reverse rates of the reversible reaction between species A 

and B, as shown in equation (10): 
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 From equation (10), if 
fwdkE

,1
and 

revkE
,1

are assumed to be equal, then the following 

expressions can be derived:  
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 This simplification is appropriate because parameter estimation using the full model 

in equations (6) through (9) resulted in very similar values for the estimates of 
fwdkE

,1
and 

revkE
,1

. 

 The use of equation (12) instead of equation (8) reduces the number of model 

parameters from six to five. The resulting model solution equations are provided in Appendix 

A. 

2.2.6 Parameter estimation 

 The parameters in the first- and second-order dynamic models were estimated using 

an ordinary least squares approach, applied to the results from Data Sets A and B. As noted 

earlier, the time-varying temperature trajectory was accounted for by assuming that the 

temperature was piecewise constant over each sampling interval. The analytical solutions to 
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the differential equation models, for a fixed temperature, were then used to propagate the 

predicted activity of the sensor forward one time step. This solution process was repeated 

recursively to obtain the predicted biosensor activity trajectories, which were used to 

generate the residuals for the least squares objective function. The optimization was 

performed using a generalized reduced gradient algorithm [2.21].  The initial parameter 

estimates were varied in a grid pattern and multiple optimizations were performed.  The best 

solution, in terms of SSE minimization, was then selected from the results of these 

optimizations and the parameter estimates associated with this solution were used to predict 

responses from Data Set C. 

2.3 Results and Discussion 

2.3.1 Experimental data 

 Results from Data Set A (Figure 2.2), Data Set B (Figure 2.3) and Data Set C (Figure 

2.4) demonstrate that under thermal stress conditions, the biosensor response to the liquid 

control sample diminishes over time.  This trend is temperature-dependent, with biosensors 

stored at higher temperatures exhibiting a greater reduction in response.  Note that the region 

of Figure 2.4 between time 0.04 and 0.08, corresponding to Data Set C lowest temperature, 

shows no appreciable shift in the mean biosensor response. These results from Data Set C 

show that the stability of the biosensor can be maintained effectively through storage at the 

lowest temperature. The Data Set A storage temperature fluctuations provide a “worst case 

scenario” test for storage (Figure 2.5), with occasional abrupt shifts in temperature, and 

considerable variability. Conversely, the oven temperatures were not varied much around the 

storage temperatures during the experiments in Data Set B (trajectory not shown). Note that 

the large and sustained temperature deviations in Data Set A could be a significant source of 
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error when developing models to describe sensor stability, if isothermal operation was 

assumed.  Additional figures showing box plots for each event and storage condition in Data 

Sets A and B are included in Appendix E. 

 

Figure 2.2: Data Set A - Biosensor response (% of initial activity) versus time for 
biosensors tested after storage at four different conditions (����������������) of increasing 
temperature.  Storage Condition I (����) corresponds to the lowest temperatures and 
Storage Condition IV (����) corresponds to the highest temperatures tested. The time axis 
has been recoded as a fraction of the total duration of the Data Set A experiment. 
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Figure 2.3: Data Set B - Biosensor response (% of initial activity) versus time for 
biosensors tested after storage at three different conditions (������������) of increasing 
temperature. Storage Condition i (����) corresponds to the lowest temperatures and 
Storage Condition iii (����) corresponds to the highest temperatures tested. The time axis 
has been recoded as a fraction of the total duration of the Data Set A experiment. 
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Figure 2.4: Data Set C - Effect of the non-constant storage conditions shown in Figure 
2.1 on biosensor response over time.  The time axis has been recoded as a fraction of the 
total duration of the Data Set A experiment. 

 

Figure 2.5: Temperature profiles recorded during storage of Data Set A biosensors. The 
data markers for each storage condition profile are as follows: Storage Condition I (����), 
Storage Condition II (����), Storage Condition III (����), Storage Condition IV (����).  The 
time axis has been recoded as a fraction of the total duration of the Data Set A 
experiment. 
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2.3.2 Model fitting 

 To visually compare the modeling approaches from chapters 2.2.4 and 2.2.5, the fits 

of the first- and second-order dynamic models to the results from Data Set A were plotted for 

storage conditions III and IV (Figures 2.6 and 2.7). 

 

Figure 2.6: Biosensor response versus time at Storage Condition III (����), with 
predictions from both the first-order (▬) and second-order (▬) dynamic models 
plotted for comparison. The time axis has been recoded as a fraction of the total 
duration of the Data Set A experiment. 
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Figure 2.7: Biosensor response versus time at Storage Condition IV (����), with 
predictions from both the first-order (▬) and second-order (▬) dynamic models 
plotted for comparison. The time axis has been recoded as a fraction of the total 
duration of the Data Set A experiment. 

 The predictions from the second-order dynamic model track the trend in the data 

much more closely than the first-order model predictions, particularly for times less than 

0.50. The plots in figures 2.6 and 2.7 show that the decay trend explained by the first-order 

model corresponds to the long-time changes in activity, rather than the earlier shift.  This 

provides additional evidence that there are multiple thermally-sensitive behaviours present in 

the data, working at several time scales.  

 The second-order model was formulated using a combination of physical insight and 

by noting the inadequacies of the first-order model fit relative to the observed trajectories. 

The activity trajectories appear to exhibit multiple time scales suggesting more rapidly 

changing and less rapidly changing contributions to the biosensor stability. Alternative 

second-order dynamic models were also investigated (Appendix D).  A second-order 
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dynamic model without reversible kinetics failed to capture more of the observed behaviour 

relative to the first-order dynamic model fit, further motivating the consideration of a 

reversible reaction element in the model. Of the second-order dynamic models investigated, 

the model form described by equation 4 provided the best fit to Data Sets A and B.  To assess 

the improvement in fit resulting from the second-order model chosen, adjusted R2 values and 

mean-squared error were calculated for each of the two models (Table 2.1).   

 

Table 2.1 Diagnostic statistics for each model fit to Data Sets A and B 

Nominal Storage Temperature 1st order dynamic 
model 

2nd order dynamic model 

MSE 2.69x10-5 2.13x10-5 
Adjusted R2 0.796 0.839 

  

 The second-order dynamic model achieves a better fit to the experimental data, in 

terms of the statistics in Table 2.1 and by comparison of predicted trajectories versus the 

observations (Figures 2.6 and 2.7).  For the special case where parameters Keq and reffwdk _,2  

are both set to zero, the proposed second-order dynamic model reduces to the first-order 

dynamic model.  This means that the first-order dynamic model is nested within the proposed 

second-order dynamic model and that a mean square ratio test can be performed to determine 

whether the second-order dynamic model gives a significantly better fit to the data.  For this 

case, the test statistic takes the following form (equation 13): 
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where SSE1=0.0381 and SSE2=0.0302 are the sums of squared residuals for the first- and 

second-order models respectively, p1=2 is the number of parameters for the first-order model, 

p2=5 is the number of parameters in the second-order model, and n=1419 is the total number 

of observations from Data Sets A and B that were used to fit the parameters.  The test 

compares the mean square difference in the residual error between the full model and the 

model with the smaller number of terms, to the mean square error of the larger model. Under 

the null hypothesis, it is assumed that the test statistic follows an F distribution with (p2 – p1, 

n – p2) degrees of freedom. The null hypothesis corresponds to the case in which the 

additional terms in the second-order dynamic model do not explain a statistically significant 

amount of variation, implying that the second-order dynamic model does not provide a 

significantly better fit than the first-order dynamic model.  From the data in Data Sets A and 

B, this null hypothesis can be rejected at the 95% confidence level, because the resulting 

large value of the test statistic (F=123) is much higher than the critical value F(0.05,3,1414) = 

2.61 of the F distribution.  This statistical test provides additional confirmation that the 

second-order dynamic model provides a significantly better fit of Data Sets A and B than the 

first-order dynamic model. 

2.3.3 Parameter confidence intervals 

 Approximate confidence intervals for the parameter estimates were obtained by 

linearizing the model around the optimal parameter estimates [2.22].  The approximate 

confidence intervals are described by (equation 14): 
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where iβ̂  is the estimate for the ith parameter, 
i

sβ̂ is the standard deviation of the ith parameter 

estimate obtained from the approximate covariance matrix provided by the linearization. 
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significance level of α  = 0.05, corresponds to 95% confidence intervals).  This approach 

produces symmetrical confidence intervals, which may be invalid if the influence of the 

parameters on the model predictions is highly nonlinear [2.22].  
 i
sβ̂ was computed using a 

pooled estimate of the pure error variance, generated from the 10 to 24 replicate data points 

at each testing event, assuming that the noise variance is constant. The resulting confidence 

intervals for the parameters are shown in Table 2.2. For all five parameter estimates, the 

confidence intervals do not include zero, indicating that the parameter estimates are 

significantly different from zero at the 95% confidence level.   

Table 2.2 Parameter confidence intervals for the second-order dynamic model 
Parameter Parameter Value 95% confidence interval 

 

reffwdk _,1  1.608x10-2 [8.800x10-4, 3.128x10-2] 

reffwdk _,2  2.275x10-2 [4.150x10-3, 4.135x10-2] 

eqK  6.849x100 [2.215x100, 1.148x101] 

fwdkE
,1

 8.105x104 [5.257x104, 1.095x105] 

fwdkE
,2

 1.155x105 [6.763 x104, 1.634x105] 
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2.3.4 Model Validation using Data Set C  

 In order to further assess the predictive ability of the estimated models, the first- and 

second-order models with parameter estimates from Data Sets A and B were used to predict 

the Data Set C outcomes.  The experimental data and the predictions from the first-order and 

second-order dynamic models are shown in Figure 2.8.  

 

Figure 2.8: Effect of the non-constant storage conditions shown in Figure 2.1 on 
biosensor responses (����) over time.  First-order (▬) and second-order (▬) model 
predictions are plotted for comparison. The time axis has been recoded as a fraction of 
the total duration of the Data Set A experiment. 

 The sensor responses predicted by the second-order dynamic model agree very well 

with the experimental results from Data Set C, whereas the predictions from the first-order 

dynamic model are not accurate and show a sustained prediction bias.   The duration of Data 

Set C is roughly 20% of the duration of Data Set A, so the validation test is focused on short- 
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and medium-term time behaviour and confirms that the second-order model is suitable for 

practical use. 

 The predictive ability of the second-order dynamic model makes it a powerful tool for 

the design and interpretation of accelerated testing experiments.  It may also be useful for 

investigating opportunities for product improvements.  Finally, the model is useful for 

simulating the response of the biosensors to potential, or actual, storage and shipping 

scenarios involving temperature variations.   

2.3.5 Mean Kinetic Temperature 

 The MKT is defined by both the United States Food and Drug Administration 

(USFDA) [2.14] and Health Canada [2.15] as : 

“A single derived temperature that, if maintained over a defined period of time, affords the 
same thermal challenge to a drug substance or drug product as would be experienced over a 
range of both higher and lower temperatures for an equivalent defined period. The mean 
kinetic temperature is higher than the arithmetic mean temperature and takes into account 
the Arrhenius equation.”  
 
The FDA recommends computing the MKT using the following equation [2.14]: 
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where n is the number of equally-spaced temperature readings over the storage period and Ti 

is the absolute temperature during the ith time interval.  Note that equation (15) was derived 

assuming a first-order dynamic model for drug potency.  We propose that the concept of 

MKT could be extended to and used for analyzing lifetime stability changes in systems 
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exhibiting higher-order dynamics.  For example, the second-order dynamic model in this 

article can be used to solve for the constant temperature that would yield the same level of 

biosensor activity loss that was encountered in Data Set C.  This procedure involves using the 

second-order model and the temperature time trajectory to predict the final activity value, and 

then setting the storage duration and final biosensor activity value to solve the implicit 

algebraic equation (see the appendix) for the unknown MKT. Since the system is modeled by 

a complex, highly nonlinear equation, solving for the temperature analytically is much more 

difficult than computing the traditional MKT from equation (15).  Formally, if 

( ) 111,, −−− iiii xTttθ  represents the solution to the differential equation model with constant 

temperature Ti-1, and the starting activity is xi-1 at time ti-1, then the final activity value is: 

( ) ( ) ( ) 000122111 ,,,,,, xTttTttTtt nnnnnn θθθ L−−−−−  (16) 

where x0 is the initial activity, and n is the number of temperature intervals. The resulting 

expression for the MKT based on the higher-order model is the solution to: 

( ) ( ) ( ) ( ) 00012211100 ,,,,,,,, xTttTttTttxMKTtt nnnnnnf θθθθ L−−−−−=  (17) 

 The multiplicative form of the solution to the differential equation comes from the 

fact that it is a linear time-invariant differential equation for fixed temperature. Equation (15) 

can be derived using a similar approach, in which ( ) ( )
1111

1,, −
−−

−−−
−= i

ttk
iiii xexTtt iiθ , where 

( )1−= iTfk  is the Arrhenius expression for the rate at temperature 1−iT .  

 The MKT calculation was set up as an optimization problem and solved using a 

generalized reduced gradient nonlinear optimizer [2.21] to minimize the difference between 
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the left and right hand sides of equation A1 with the set final activity and duration. The 

resulting MKT value that would yield the measured biosensor activity at the end of the 

storage period for Data Set C is plotted in Figure 2.9.  Also shown in the figure is the 

traditional MKT for computed using equation (15), which assumes a first-order process for 

biosensor stability.  Note that the estimated parameter value Ea = 69161 obtained by fitting 

the first-order model to Data Sets A and B was used in this calculation.  

 

Figure 2.9: Data Set C temperature profile (����) along with the calculated first-order 
MKT (▬), second-order MKT (▬) and average temperature (▬). The time axis has 
been recoded as a fraction of the total duration of the Data Set A experiment. 
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 From Figure 2.9, the MKT calculated using the second-order dynamic model is 

higher than the MKT calculated from equation (15), and both MKT estimates are higher than 

the arithmetic average temperature from Data Set C. The MKT values estimated using the 

first- and second-order models emphasize the pronounced effect that storage at high 

temperatures has on the stability of the sensor. The fact that the MKT based on the second-

order model is higher than that computed using the first-order model reflects the under-

prediction of the changes that were observed from the estimated first-order model.  These 

results have implications for shelf-life monitoring of enzyme-based biosensor products, as 

they indicate that the calculation of the MKT based on the traditional first-order aging model 

for pharmaceutical applications may not fully describe biosensors that demonstrate higher-

order aging behaviour.  Instead, models that account for higher-order dynamics of biosensor 

aging behaviour should be used to solve for MKT, to establish appropriate expiration and 

shelf-life guidelines. A final observation is that the first-order model tends to under-predict 

the change in activity, compared to the second-order model.  This has implications for 

designing accurate accelerated testing protocols, to avoid situations in which more 

pronounced aging occurs because of aggressive accelerated testing based on less accurate 

models.   

2.4 Conclusions 

 A semi-empirical second-order dynamic model has been proposed to predict changes 

in biosensor activity under varying thermal storage conditions. The proposed second-order 

dynamic model shows improved fit (in terms MSE, and adjusted R2 statistics) to estimation 

datasets, relative to a first-order dynamic model.  The first- and second-order models are 

nested, and a significance test further confirms that the additional terms in the second-order 
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model are accounting for significant variation. The parameters are statistically significant 

from zero at the 95% confidence level based on individual approximate confidence intervals.  

Finally, the second-order model is seen to have good predictive ability for a validation 

dataset not used for estimation, compared to the first-order model.  

 The second-order model provides good predictions of biosensor response to dynamic 

temperature excursions.  These results indicate that, for the biosensor product line of interest, 

a second-order dynamic model provides a better description of the thermally-driven aging 

pathways involved than does a traditional first-order model.    The second-order dynamic 

model has potential applications for shelf-life predictions, for the design and interpretation of 

accelerated testing experiments and for investigating opportunities for product improvement.  

Finally, the results show that the traditional form of the MKT calculation should not be used 

for the biosensor investigated.  Rather, calculation of MKT using the proposed second-order 

dynamic model provides more accurate results for the development of product storage 

guidelines. The definition of the MKT is extended to second- (and  higher-) order dynamic 

models, and the computation of the MKT is demonstrated.  

2.5 Role of the funding source 

 This work was conducted with financial support from Abbott Point of Care (APOC), 

the Mathematics of Information Technology and Complex Systems (MITACS) National 

Centre of Excellence, and the Natural Sciences and Engineering Research Council of 

Canada. Technical input and review was provided by engineers and scientists at APOC for 

all phases of the work - scoping, planning of experiments, review of results, and 

review/revision of this paper.  
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Chapter 3: Modeling the Thermal Stability of a Diagnostic Assay 

3.1 Introduction 

 To continuously improve the stability, accuracy, efficiency and overall quality of the 

diagnostic assay cartridges delivered to their customers, Abbott Point of Care (APOC) 

monitors product performance and attempts to identify areas in which improvements could 

be made.  Recently, historical and experimental data for one of the APOC assays were 

analyzed to investigate methods for extending the shelf-life of the product beyond the current 

claims.  This investigation provided an opportunity to build on experience from our previous 

modeling work (Chapter 2).  Both this assay system and the assay system in Chapter 2 are 

used to quantify concentrations of specific analytes in patient blood samples. 

 The APOC i-STAT® diagnostics system consists of the i-STAT® handheld analyzer 

and individual, single-use diagnostics assay cartridges.  Many of the cartridges contain 

multiple assays and test the concentrations of a panel of analytes in a patient blood sample 

using electrochemical sensors.  A calibration package is also contained within the cartridge, 

and fluid from this package is analyzed prior to the blood sample from the patient.  The 

calibration fluid contains known concentrations of analytes, and is used to generate reference 

or baseline values for comparison to the resulting response signals from the patient blood 

sample.  The relationships between the true values of analyte concentrations in the blood 

sample and the electrical response signals generated by the sensors after exposure to both the 

calibration fluid and blood sample are contained within the equations and algorithms of the i-

STAT® analyzer software.  This software enables the concentration of specific analytes to be 

reported by the analyzer in a timely manner.  



40 

 

 As described in Chapter 2, mathematical modeling plays a significant role in the 

design and implementation of sensor diagnostic systems.  Calibration models are required to 

relate the electrical signal generated in the sensor’s circuits to the concentrations that are 

measured [3.1-3.3].  The calculation of analytically useful information from the sensor 

response signals depends on the stability of the sensor system. Assumptions concerning 

sensor activity, reference standards, signal-to-noise ratio and signal gain must remain 

constant, or else changes in these factors over time must be accounted for in the modeling 

process.  When the sensor system is exposed to stressful storage conditions, such as elevated 

temperature, the relationships between the electrical sensor response and the physical 

properties measured by the sensor may change [3.4,3.5].  These changes can cause the model 

equations, which are used for the calculation of analytical results, to require minor 

adjustments to their form or parameters, or can cause them to become completely invalid for 

the resulting altered system.   

 A stability model for the assay of interest may be useful for quantifying the 

underlying changes in sensor behaviour that occur due to thermal exposure.  The model 

development process itself is also a valuable task to engage in, as it requires the investigation 

of the stability process and involves the identification of possible causes for the changes 

observed. 

 The stability of the assay of interest was investigated through modeling to describe 

the behaviour of the assay over its lifetime and to identify the areas where improvements to 

stability of the assay and/or its components can be made.  A first-order dynamic model was 

fit to the long-term assay response data, collected from thermally stressed assay cartridges.  

An additional experimental program was designed and implemented for use in parameter 
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estimation.  Model parameters were estimated from both the long-term assay response data 

and the new data set generated from the experimental program. Three additional 

experimental data sets were used for model validation.  The resulting model indicates that the 

stability issue for the assay seems to be caused by changes over time in the analyte 

concentration of the calibration fluid packaged with the assay.  Because the first-order model 

was able to predict the trends in the validation data, higher-order models were not required.  

Data discussed throughout this chapter have been coded to protect the intellectual property of 

APOC.   

3.2 Experimental Data 

 Six experimental data sets were analyzed over the course of this modeling work.  The 

results from five of the experimental programs had been collected prior to the initiation of 

this modeling work, and the sixth experimental program was designed and implemented 

during the project.  Three of the initial experimental programs involved the incubation of 

whole cartridges at elevated temperatures.  These experimental programs will be referred to 

as Experiments D, E and F for the remainder of this chapter.  The temperatures used for 

experiments D, E and F spanned a similar range, and although there was some overlap, not 

all of the temperature levels tested were replicated in each experiment.  The experimental 

testing plan for data sets D, E and F are included as Table B3 in Appendix B. 

Experiment G involved the isolation of sensors from the rest of the cartridge components, 

and the storage of these sensors at elevated temperatures, independent of other components.  

Following the application of thermal stress to the sensors, cartridges were then assembled 

with new components, using the stressed sensors.  This procedure allowed for conclusions to 
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be drawn concerning the thermal stability of the sensor itself.  The experimental testing plan 

for data set G is included as Table B4 in Appendix B. 

 In experiment H, calibration fluid packages were stored at elevated temperatures, to 

determine the effect of thermal stress on the reference analyte levels within the calibration 

fluid.  Concentrations of analyte present in the calibration packages after exposure to thermal 

stress were determined by testing the fluid with APOC assay cartridges that had been stored 

under the recommended conditions. 

 Finally, experiment I was designed and implemented to complement the results from 

experiment H.  Experiment I, like experiment H, involved the incubation of calibration 

packages at elevated temperatures, and their subsequent testing using stable APOC assay 

cartridges.  The temperatures used for experiment I differed from those used in experiment 

H, so that the combined results from the two experiments covered a large range of 

temperatures for estimating the kinetic parameters of the system.  The testing plans 

associated with experimental data sets H and I are included as Table B5 in Appendix B. 

3.3 Preliminary Analysis of Prior Data 

 Abbott’s diagnostic assay cartridges are routinely used to test samples of known 

analyte concentration for quality monitoring.  From historical data sets, it is apparent that the 

readings of these single-use cartridges begin to deviate from the assigned value of the control 

samples once they are well past the end of their useable lifetime.  It was therefore of interest 

to APOC scientists to design experiments and track assay performance from the time of 

product manufacture, to the end of the cartridge lifetime, and to explore the effect of 

exposing the cartridge system to potential extremes in storage conditions.  Results from the 

first round of experiments where cartridges were exposed to a variety of storage temperatures 
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were available at the onset of this work, from prior APOC studies.  Figure 3.1 shows the 

behaviour of three representative sets of cartridges stored at a temperature above their 

specified storage temperature limit, and tested using aqueous samples of known, nominally 

equivalent analyte concentrations.  

 

Figure 3.1: Estimate of analyte concentration from the assay of interest as a percentage 
of the initial value after storage at an elevated temperature, for Experiments D (����), 
E(����) and F(����).  The time axis has been recoded as a fraction of the longest duration 
for the experiments.   

 The reported analyte concentration from the assay for the control sample increases 

after exposure to elevated temperatures, as shown clearly from the results of experiments D 

and E.   The temperature effect increases in magnitude with the duration of exposure, and is 

likely related to the stability of one or more cartridge components.  The initial experiments 

D, E and F that identified the stability behaviour shown in Figure 3.1 were followed by 

further experimentation (experiments G, H and I) to determine which cartridge components 
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contributed to the stability problem.  The control sample used for testing is a fluid of known 

analyte concentration, and has been ruled out as the cause of the deviation. An additional 

figure showing box plots for test each event represented in Figure 3.1 (Data Sets D, E and F) 

is included in Appendix E. 

 In experiment G, the sensors were isolated and thermally stressed, separately from the 

remainder of the cartridge.   The results from this experiment show that the stability issue is 

independent of sensor exposure (Figure 3.2), as indicated by the consistency of reported 

analytical assay values when the sensor was the only component exposed to elevated 

temperatures.     
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Figure 3.2: Assay response after sensor exposure to elevated temperatures.  Other 
cartridge components were stored under normal conditions.  
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 Next, APOC scientists investigated the stability of the analyte in the calibration 

package of the cartridge. This calibration package, included within each assay cartridge, 

contains chemical reference substances that may be susceptible to changes over time. The 

calibration fluid from the package makes contact with the sensor prior to the sample fluid 

which is to be analyzed.  The calibration fluid provides a baseline sensor reading and has a 

known analyte composition, to which the sample signal is compared, so that it can be 

transformed into a measured concentration value.  Experiment H, which involved subjecting 

calibration packages to thermal stress independently from other sensor components was 

carried out, and the results show that the level of analyte in the calibration fluid diminishes 

over time, with exposure to elevated temperatures (Figure 3.3).  This effect is more 

pronounced after storage at higher temperatures. 
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Figure 3.3: Results from calibration fluid packages stored at elevated temperatures and 
then tested using diagnostic cartridges stored under normal conditions.  Analyte 
concentration is expressed as a percentage of the original analyte concentration in the 
calibration fluid.  Storage condition 1 (����) corresponds to the lowest temperature level 
tested, whereas storage condition 3 (����) corresponds to the highest temperature level 
tested.  Note that some symbols are darker than others due to a higher density of data. 
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 From experiments D through I, it was concluded that to improve assay performance 

beyond its currently specified limits for storage temperature and shelf-life, the research focus 

should be on thermal stability of the analyte in the calibration fluid package.  The focus of 

our modeling work, therefore, is on the stability of the analyte within the calibration package 

system and the associated impact on assay results.   

3.4 Experimental Design for Parameter Estimation 

 To develop a stability model of the analyte levels within the calibration package, 

additional experimental data for parameter estimation were collected.  Experiment H (Figure 

3.3) has a large gap between the temperatures for storage conditions 2 and 3, where more 

information would be useful.  Experiment I was designed and implemented to help fill this 

gap in the available data and to extend the overall temperature range.  In experiment I, 

calibration fluid packages were stored at two different temperatures (denoted conditions 2a 

and 4).  Condition 2a had a temperature between those for conditions 2 and 3, and condition 

4 used a temperature that was higher than that for condition 3.  Experiment I also included 

calibration packages spiked with increased levels of other calibration fluid species, which 

had been identified as potential contributing factors to the stability of the analyte in the 

package.   To test the calibration fluid, a sample was drawn from each individual calibration 

package and tested on normal APOC assay cartridges (cartridges that had not been exposed 

to elevated temperatures). 

3.5 Data Analysis and Model Fit 

 The analyte concentration within the calibration fluid decreases over time, during 

exposure to elevated temperature.  This behaviour could be caused by a variety of 

mechanisms, such as chemical transformations of the analyte, leakage of the analyte from the 
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package or absorption of the analyte into layers of the packaging material.  As an initial 

exploration of these options, a model for a first-order, single-step reaction was fit to the data.  

The mechanism for the model used has the following structure: 

BA
fwdk 1

→  
(18) 

where A represents the concentration of the analyte in the calibration fluid, and B represents 

some altered form or state of A which is not detectable by the sensor assay.  The behaviour 

of this system can be described by a simple first-order differential equation: 

Afwd
A Ck

dt

dC ⋅−= 1  (19) 

where CA is the concentration of the analyte species in the calibration fluid and k1fwd is the 

reaction rate coefficient for the process.  For this work, k1fwd is assumed to have an 

Arrhenius-type temperature dependency, as described by: 
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 where T is absolute temperature in Kelvin, Ea is the activation energy of the process, R is the 

universal gas constant and k1fwd,ref is a the value of the reaction rate coefficient at temperature 

Tref.  Integration of equation (2) yields the analytical solution for the analyte concentration in 

the calibration fluid, given by: 

tk
tAA

fwdeCC ⋅−
= ⋅= 1

)0(  (21) 

where CA(t=0) is the initial concentration of analyte in the calibration fluid after manufacture, 

prior to storage at elevated temperatures and t is time. 

 The model described by equations (20) and (21) was fit to the data from experiments 

H and I. The resulting model fit is shown in Figure 3.4. 
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Figure 3.4: First-order model fit to the results of two calibration package incubation 
experiments (H and I).  The storage temperature increased with increasing label 
number for the storage conditions 1(����), 2(����), 2a(����),3(����) and 4(����).   

 The first-order model fits the data well, but slightly over-predicts the changes in 

analyte concentration at storage condition 3.  The overall fit seems to capture the key aspects 

of the observed behaviour.  In addition, none of the approximate 95% confidence intervals 

contain parameter estimates of zero (Table 3.1), indicating that each parameter helps to 

explain significant trend in the data. 
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Table 3.1  Parameter estimates and confidence limits for the first-order model fit to 
calibration package incubation data 

Parameter Estimate Lower 95% 
Confidence Limit 

Upper 95% Confidence 
Limit 

reffwdk ,1  0.000385 0.000303 0.000477 

R

Ea
 12100 11300 12900 

)0( =tAC  (%) 99.8 99.7 100 

    
 As mentioned previously, one objective of experiment I was to determine the effect of 

two other calibration fluid species on the stability of the analyte.  The results for this part of 

the experiment are shown in Figure 3.5.  
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Figure 3.5: Effect of calibration fluid components 1 (����) and 2 (����) on analyte 
stability, relative to normal calibration fluid (����). 

 From Figure 3.5 it appears that increasing component 1 appears to slightly slow the 

rate of change in the analyte concentration while increasing component 2 appears to slightly 

increase the rate of change of analyte concentration.  All three calibration fluid formulations 
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appear to follow the same general stability behaviour. The changes to the analyte stability 

due to components 1 and 2 were respectively, less than 1% and 3% of the difference in 

overall analyte concentration observed in the normal calibration fluid.  Since this experiment 

was carried out at temperatures well above those that a full cartridge would be exposed to 

under normal storage and use, the mild effect of these components on analyte stability may 

not be significant enough to warrant further experimental work. 

3.6 Model Validation 

Data from experiments D, E and F were used to test the predictive ability of the model 

(equations (20) and (21), with parameters from Table 3.1).  The model was used to predict 

the concentration of the calibrant after exposure to different temperatures for different 

periods of time.  These predicted concentrations were used as inputs to the sensor algorithms 

that compute the measured values of the analyte concentration in the blood sample.  The 

algorithm was used to predict the responses in Figures 3.6-3.8.  These predicted responses 

incorporate both the calibrant signal and the sample signal.  
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Figure 3.6: Response of whole cartridges from experiment D stored at an elevated 
temperature equivalent to that of storage condition 2 from experiment H.  
Experimental data is shown as points (����), model predictions are shown as open circles 
(����) 

 

Figure 3.7: Response of whole cartridges from experiment E stored at an elevated 
temperature equivalent to that of storage condition 2 from experiment H. Experimental 
data is shown as points (����), model predictions are shown as open circles (����) 
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Figure 3.8: Response of whole cartridges from experiment F stored at an elevated temperature 

equivalent to that of storage condition 2 from experiment H.  Experimental data is shown as 

points (����), model predictions are shown as open circles (����). 

 Figures 3.6-3.8 show that the stability model for the concentration of the analyte in 

the calibration fluid can explain the overall upward trend present in the data, across several 

experiments from production lots.   The ability of the first-order model to generate analyte 

concentration predictions that explain the trend in the data gives some evidence that a 

changing reference analyte concentration in the calibration package is the dominant process 

affecting assay stability at the tested thermal exposure levels and durations.  Because the 

first-order model was able to explain the trends in the data, more complex models were not 

investigated. 

3.7 Conclusions 

 The thermal stability of the reference analyte in the calibration package appears to be 

an important factor limiting product shelf-life for the assay of interest.  A first-order model of 

analyte stability was developed, which provided an adequate fit of the data for two 
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experiments that investigate analyte stability in the calibration fluid and span a wide range of 

elevated temperatures.  Parameters estimated from the model fit were all significantly 

different from zero at the 95% confidence level.  These parameters were used to generate 

predictions of the analyte in the calibration fluid for whole-cartridge incubation experiments.  

The use of these predictions indicated that the magnitude and form of the changes observed 

in assay stability could be attributed mainly to changes in concentration of analyte in the 

calibration fluid.    In addition, the effect of two other calibration fluid components on 

analyte stability were tested, and it was determined that both had a small and negligible effect 

on the rate of change in analyte concentration over time.  Component 1 slowed the change in 

analyte concentration whereas component 2 acted to increase the rate of change.  Both effects 

were minimal, corresponding to an overall difference in analyte concentration of less than 

1% for component 1, and less than 3% for component 2.  These effects were observed after 

storage at condition 2a from experiment I, at which the temperature was significantly higher 

than the temperatures encountered during normal cartridge use or storage.   

 This work has implications for design improvements to the assay of interest, as it can 

be readily extended to the implementation of accelerated testing experiments to test design 

alternatives in a timely manner.  In addition, the model can be used in simulations to explore 

the current sensitivity of the assay to heating at various temperatures and over different 

durations, to help improve understanding of the current limitations of the system, and to 

provide some preliminary indication of how the current storage and shelf-life specifications 

could be modified without any redesign efforts.  Finally, the research has provided evidence 

supporting the hypothesis that the calibration fluid is the most important stability 

consideration for the system investigated. 
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Chapter 4: Conclusion 

4.1 Conclusions and Recommendations 

 The stability characteristics of two APOC diagnostic assay systems was investigated 

through the use of mathematical modeling.  For each system, available APOC experimental 

data were analyzed and mathematical models were formulated to describe the stability 

behaviour of the system.  In each case, additional experiments were designed to complement 

the available experimental data.   

 For the first assay cartridge investigated (Chapter 2), the sensor had been identified as 

the most important contributor to overall product stability from previous work by APOC 

scientists.  New experiments were designed and implemented to complement the existing 

data for parameter estimation, and to produce a data set involving temperature steps for 

dynamic model validation.  A semi-empirical, second-order dynamic model was proposed to 

describe the stability of the system under varying durations of exposure to elevated 

temperatures.  Conclusions from this study are: 

1.  The second-order dynamic model showed improved fit for the data sets used for 

parameter estimation, relative to the fit of a traditional first-order dynamic model.  

The improved fit is demonstrated by a lower MSE value for the second-order model 

(2.13x10-5 versus 2.69x10-5 for the first-order model) and a higher adjusted R2 value 

for the second-order model (0.839 versus 0.796).  In addition, the results of a mean 

square ratio test at the 95% confidence level (F=123 >> F(0.05,3,1414) = 2.61) provide 

compelling evidence that the additional terms in the second-order dynamic model 

explain a significant amount of the variation in the data. 
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2. The second-order dynamic model demonstrated good predictive ability for the 

validation data set, which was collected independently of the parameter estimation 

data sets.  The second-order model predictions fall closer to the mean of the sensor 

activity measurements for each time event, relative to the predictions from the first-

order model, which tends to over-predict the sensor activity. 

3. Based on conclusions 1 and 2, the thermal stability of the sensor can be better 

described by a second-order dynamic model than a traditional first-order model. 

 The extension of the mean kinetic temperature (MKT) concept to second-order and 

higher-order dynamic systems was explored, by comparing the results from a traditional 

MKT calculation to an analogous approach developed through simulations and numerical 

optimization.  Identifying an analogous MKT for a second-order dynamic system involved 

calculating an isothermal temperature that affords the same thermal stress as the variable 

temperature profile of equal duration, to which the product was exposed.  The results of this 

exploration show that: 

4. The traditional form of the MKT calculation, which assumes a first-order model, is 

not ideal for the sensor investigated.  Instead, an analogous MKT calculated from 

simulations and optimization using the second-order dynamic model provides more 

accurate results.  The discrepancy between the two types of MKT calculations was 

1.13 K, for the sensor and dynamic experiment considered in the Chapter 2. 
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 For the second diagnostic assay investigated, the stability concern was not related to 

the sensor, but rather to a component of the calibration fluid packaged with the assay 

cartridges.  The role of the calibration fluid in assay cartridge stability was hypothesized by 

APOC scientists following a combination of targeted experimental programs, which 

investigated components, fluids and sensors.  An experiment was designed to complement 

the existing data for calibration fluid incubation, and a first-order model of analyte stability 

within the calibration fluid package was developed.  Parameters for the first-order model 

were estimated from two experiments, which involved the incubation of calibration fluid at 

elevated temperatures.  Estimated analyte concentrations for the calibration fluid, predicted 

from the first-order model, enabled prediction of the stability behaviour observed in whole-

cartridge incubation experiments.  The results from this research show that: 

5. Accurate quantitative predictions of whole-cartridge stability behaviour provide 

evidence that changes observed for whole-cartridge stability are caused by changes in 

analyte concentration in the calibration fluid.   

4.2 Contributions 

The novel contributions of this thesis are: 

1. The development of a semi-empirical, second-order dynamic model of sensor thermal 

stability for one of the APOC assays 

2. The extension of the MKT concept to second- (and higher-) order dynamic systems. 
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3. The development of a first-order dynamic model for the stability of an analyte in the 

assay calibration fluid for an APOC assay, and the use of this model to explain the 

stability behaviour of the assay for that specific analyte. 

4. The knowledge gained from these contributions will help APOC scientists to extend 

the shelf-life claims for some of their products.  The models will also be helpful for 

designing accelerating testing protocols for their assays. 

4.3 Future Work 

 The model development process served as a useful tool for exploring causal 

relationships between stability and assay components; however, to gain the maximum benefit 

from this work, the proposed models should be applied for shelf-life predictions and 

accelerated testing extrapolations.  These two applications for the models are straightforward 

extensions of the current work, involving simulations and optimization.  Parameter estimates 

established from short-term accelerated testing can be used with simulations involving long-

term storage at normal conditions, to predict product stability over time.  Conversely, for 

simulations at normal storage conditions, the time at which an acceptable confidence bound 

for the regression line related to the assay stability metric of interest crosses a minimally 

acceptable stability level threshold would yield an estimate of product shelf-life.   

 If further time and resources were available to investigate the stability of system 

components in more detail, fundamental models could be developed for both systems.  This 

would be helpful to precisely identify the components which limit assay stability, and 

therefore fundamental models would be important guides for assay performance and 

improvement efforts.  
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Appendix A: Analytical Solutions 

 

The analytical solution to the second-order model of biosensor stability (equations 5-8, 12) 
is: 
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Appendix B: Experimental Data Testing Plans 

 

Table B1: Experimental testing plan for Data Sets A and B 

# of replicates 
Data Set A Data Set B 

Recoded Temperature (deviation from reference temperature) 
Recoded Event Time 
(fraction of Data Set 

A total duration) -25 -10 0 10 -25 -10 0 
0.000 12 0 0 0 50 0 0 
0.006 24 24 24 24 32 32 32 
0.042 24 24 24 24 0 0 0 
0.083 24 24 24 24 32 32 32 
0.167 24 24 24 24 32 32 32 
0.244 0 0 0 0 32 32 32 
0.333 24 24 24 24 0 0 0 
0.375 0 0 0 0 32 32 32 
0.500 24 24 24 24 32 32 32 
0.750 0 0 0 0 32 32 32 
0.881 0 0 0 0 32 32 32 
1.000 12 0 24 12 0 0 0 

 

Table B2: Experimental testing plan for Data Set C 

Recoded Event Time 
(fraction of Data Set A total duration) 

Recoded Temperature 
(deviation from reference temperature)* 

# of 
replicates 

0 10 22 
0.042 -25 22 
0.083 10 22 
0.125 10 22 
0.167 10 22 

*Note: Temperatures were held constant between test events (e.g. cartridges were stored 25 
degrees Kelvin below the reference temperature between events 0.042 and 0.083) 
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Table B3: Experimental testing plan for Data Sets D, E and F 

# of replicates 
Data Set D Data Set E Data Set F 

Recoded Temperature  
(degrees Kelvin deviation from reference temperature) 

Recoded Event Time 
(fraction of Data Set A 

total duration) -25 -10 0 0 -25 -5 0 5 
0.000 50 0 0 30 7 0 0 0 
0.006 32 32 32 0 8 8 8 8 
0.042 0 0 0 30 8 8 8 8 
0.083 32 32 32 30 8 8 8 8 
0.125 0 0 0 0 8 8 8 8 
0.167 32 32 32 30 0 0 0 0 
0.208 0 0 0 0 8 8 8 8 
0.244 32 32 32 0 0 0 0 0 
0.333 0 0 0 30 0 0 0 0 
0.375 32 32 32 30 8 8 8 8 
0.405 0 0 0 30 0 0 0 0 
0.500 32 32 32 0 0 0 0 0 
0.542 0 0 0 0 8 8 8 8 
0.708 0 0 0 0 8 8 8 8 
0.750 32 32 32 0 0 0 0 0 
0.881 32 32 32 0 0 0 0 0 

 

Table B4: Experimental testing plan for Data Set G 

Recoded Event Time 
(fraction of Data Set A total duration) 

# of 
replicates 

0.006 24 
0.042 24 
0.083 24 
0.167 24 
0.333 24 
0.500 24 

1 12 
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Table B5: Experimental testing plan for Data Sets H and I 

# of replicates 
Data Set H Data Set I 

Recoded Temperature  
(degrees Kelvin deviation from reference temperature) 

Recoded Event Time 
(fraction of Data Set A total 
duration) -25 5 20 -25 10 30 

0.000 12 0 0   30 30 
0.042 12 12 0 0 30 15 
0.083 12 12 12 0 30 15 
0.125 12 12 12 0 0 0 
0.167 12 0 12 0 30 15 
0.208 12 12 0 0 30 15 
0.250 0 0 0 0 30 15 
0.292 12 12 12 0 0 0 
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Appendix C: Discussion of Experimental Variability 

 There are several potential sources of variability inherent with the APOC i-STAT 
cartridge system investigated over the course of this work.  This section gives a more detailed 
description of the aspects of the APOC system that should be accounted for when 
considering the variability of experimental results.  

1. APOC medical diagnostic cartridges are manufactured as single-use devices.  As a 
result, all of the testing performed over the course of this research was destructive 
testing.  Therefore, the results from the experimental data sets have inherent 
variability between individual cartridges and consist of a separate distribution of 
experimental observations at each unique testing condition.   

2. An APOC diagnostic cartridge is composed of many components which are 
manufactured separately.  Efforts were made during experimental design to keep 
cartridge and component manufacturing lots the same within each experimental data 
set.  When this was not possible, statistical assessments of differences between mean 
response values for different lots were performed at matching storage conditions, to 
ensure that the lot-to-lot differences were negligible. 

3. The experimental data sets analyzed over the course of this work varied in their run 
dates.  Several data sets used were older, historical data sets from several years ago, 
whereas some of the other data sets (including the newly designed data sets) were 
concluded in parallel with this work.  The timing of the experimental data sets in an 
important consideration as APOC updates coefficients for their products frequently 
(approximately every 6 months) to account for changes in manufacturing materials 
and practices (otherwise lot-to-lot differences could become significant).  In order to 
remove the effect of manufacturing date from the results and allow for meaningful 
comparisons between data sets, the results from each data set were scaled relative to 
their respective day 0 means.  An assumption inherent with this approach is that the 
experimental “day 0” represents a similar time-from-manufacture estimate across data 
sets.  This is not necessarily a valid assumption, as the post-manufacturing delay for 
several of the data sets analyzed was large (several days or weeks).  However, the 
cartridges were stored at reduced temperatures for the duration of this post-
manufacturing delay in each case and the experimental results indicate insignificant 
drifts in sensor responses after storage at low temperatures.  These two factors were 
considered when assuming “day 0” responses could be used to scale the data sets for 
comparison. 

4. The aqueous control fluids of known analyte concentrations used for cartridge testing 
are also susceptible to some lot-to-lot variability. Again, efforts were made to use 
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control fluids from the same manufacturing lot within experimental data sets.  Since 
these fluids are produced to meet tight specifications in an analytical chemistry 
laboratory, there was less of a concern for between-lot variations from this source.  
(post-production testing to ensure that these fluids are within specifications is 
performed for each control fluid lot and results from these tests were available). 
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Appendix D: Alternative Modeling Approaches 

 The model development process applied during this work was an iterative one.  As a 
result, there were several approaches attempted which did not yield the best results, and were 
therefore discarded.  This Appendix section describes some of these approaches which were 
omitted in the main text for brevity. 

1. Alternate forms of second-order dynamic models were also investigated (as alternatives 
to equation 4).   

CBA
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kk

k

21

1

→⇔
 

(22) 

 

These models took the following forms: 
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 As described in Chapter 2.2.5, “A” is defined as the sensor’s native, active state and it 
is the quantity that is being observed. States "B" and "C" help describe the dynamic 
behaviour of the sensor and can be loosely considered as different active states of the sensor. 
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The structure of alternative models D1 and D2 is such that the differential equation used to 
describe the change in "A" is the same in both cases:  

 

Ak
dt

dA
fwd ⋅−= 1  

(D4) 

which is identical to the differential equation describing the first-order dynamic 
model. Neither of these two models (D1 or D2) were investigated further, as the solution for 
the "A" differential equation is the same as for the previously investigated first-order 
dynamic system. There is no coupling of "B" or "C" behaviour into the "A" differential 
equation. In contrast, the reversible transition from "A"  to "B" couples the "A" and "B" 
differential equations, producing a different dynamic response in "A".  

 The second-order dynamic model in equation D3, was investigated alongside the 
model from equation 4.  Regression experiments using Data Set A consistently showed that 
the model in equation 4 provided a superior fit in terms of total SSE relative to the model 
from equation D3.  As a result, the model in equation 4 was selected as the second-order 
dynamic model candidate for this work, and used for fitting Data Sets A and B for parameter 
estimation and to Data Set C for model validation. 
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Appendix E: Boxplots for Data Sets A, B, D, E and F  

 

Figure E1: Data Set A - Biosensor response (% of initial activity) versus time for 
biosensors tested after storage at four different conditions (����������������) of increasing 
temperature (from left to right within each scaled time event).  Storage Condition I (����) 
corresponds to the lowest temperatures and Storage Condition IV (����) corresponds to 
the highest temperatures tested. The time axis has been recoded as a fraction of the 
total duration of the Data Set A experiment. 
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Figure E2: Data Set B - Biosensor response (% of initial activity) versus time for 
biosensors tested after storage at three different conditions (������������) of increasing 
temperature (from left to right within each scaled time event). Storage Condition i (����) 
corresponds to the lowest temperatures and Storage Condition iii (����) corresponds to 
the highest temperatures tested. The time axis has been recoded as a fraction of the 
total duration of the Data Set A experiment. 
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Figure E3: Estimate of analyte concentration from the assay of interest as a percentage 
of the initial value after storage at an elevated temperature, for Experiments F(����,����), 
E(����,����)  and D (����,����).  The time axis has been recoded as a fraction of the longest 
duration for the experiments.   

 


