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TEG®6s system measures the contributions of both platelet count and
platelet function to clot formation at the site-of-care

Joao D. Dias1*, Carlos G Lopez-Espina2*, Kevin Bliden3, Paul Gurbel3, Jan Hartmann4, & Hardean E Achneck4

1Clinical Development and Medical Affairs, Haemonetics Corporation, Signy, Switzerland, 2Clinical Development and Medical Affairs, Haemonetics
Corporation, Rosemont, IL, USA, 3Sinai Center for Thrombosis Research Sinai Hospital, 2401 W. Belvedere Ave, Baltimore MD 21215, and 4Clinical
Development and Medical Affairs, Haemonetics Corporation, Braintree, MA, USA

Abstract

Knowledge of platelet count and function is key to ensuring appropriate hemostatic management.
We hypothesized that the novel, portable TEG®6s coagulation assessment system could evaluate the
contribution of both platelet count and function to clot formation. Whole-blood samples with
variable platelet counts were prepared from healthy volunteers. Platelet function was adjusted
using seven concentrations of abciximab and evaluated by light transmission aggregometry (LTA)
with TRAP agonist. Maximum amplitude (MA), reaction time (R) and activated clotting time (ACT)
were assessed in citrated kaolin (CK), CKwith heparinase (CKH), citrated RapidTEG® (CRT), and citrated
functional fibrinogen (CFF) assays. Positive correlations were observed between platelet count and
CK.MA, CKH.MA, and CRT.MA (p < .0001), and CK.R, CKH.R, and CRT.ACT (p < .05). Platelet count could
be accurately quantified in the range 28–91 k/μL, 28–86 k/μL and 28–74 k/μL for CK.MA, CKH.MA, and
CRT.MA, respectively. CK.MA, CKH.MA, and CRT.MA showed significant negative relationships with
abciximab concentration (p < .001). Platelet function inhibition was detected by all three assays at
>68% measured by LTA and quantified in the range 68.4–82% (CK), 69.4–88% (CKH), and 69.7–76%
(CRT). This demonstrates the TEG®6s analyzer can accurately evaluate platelet count and function at
the site-of-care.
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Introduction

Platelets play an essential role in maintaining hemostasis by
facilitating the activation of the coagulation cascade. In an unin-
jured vessel, platelets do not adhere to the vessel wall or aggre-
gate; however, disruption to a vessel wall allows a procoagulant
stimulus to come into contact with plasma, facilitating platelet
activation, aggregation, and accumulation. This results in large-
scale thrombin generation and leads to clot formation [1].

Low platelet counts are associated with increased bleeding and
mortality, while platelet dysfunction can occur evenwhen the count is
within the normal range [2,3]. This is supported by a study investigat-
ing platelet function which found that on admission, 45% of trauma
patients had normal platelet counts, but impaired platelet function that
was associated with an almost 10-fold increase in mortality [3].
Platelet dysfunction appears integral to trauma-induced coagulopathy
(TIC), although threshold criteria for triggering therapy are yet to be
established [4]. Surgery involving cardiopulmonary bypass (CPB) is
another clinical scenario in which platelet dysfunction is associated

with coagulopathic bleeding [5]. During CPB, reversible downregula-
tion of platelet surface glycoproteins andmembrane receptors for vWF
and fibrinogen occurs [5,6]. Therefore, across different clinical set-
tings, it is important to assess platelet function as well as platelet count
in patients with an established or potential need for coagulation
therapy.

TEG® (Haemonetics Corporation, Braintree, MA, USA) has been
used in clinical practice for decades to quantify fibrinolysis, coagul-
ability, and the effects of antithrombotic and anticoagulant therapy
[7,8]. TEG® hemostasis analyzers measure the viscoelastic properties
of a clot from the enzymatic phase through to the fibrinolytic phase
[9]. Maximum amplitude (MA) represents the strength of the clot, as
a result of platelet-fibrin interactions via the αIIbβ3 receptor, and the
contribution of platelets to clot strength has been the focus of several
studies [10–12]. Current conventional tests such as complete blood
count (CBC) onlymeasure platelet count; however, platelet function is
also a critical component for the management and treatment of bleed-
ing. Light transmission aggregometry (LTA) is a traditional platelet
function test, but it is poorly standardized and unlikely to be used
widely in clinical practice [13]. Therefore, there is an unmet need for
a device that can rapidly evaluate the contribution of both platelet
count and function to clot formation at the site-of-care.

The TEG®6s system (Haemonetics, Braintree, MA) is a fully
automated, novel, portable instrument, employing a four-channel car-
tridge system to assess patients’ coagulation status using the estab-
lished TEG® assays. Compared with its predecessor, the TEG® 5000
analyzer (Haemonetics, Braintree, MA), TEG®6s enables
a significant reduction in the volume of blood required for coagulation
assessment and simplified assay procedures that reduce the time taken
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to obtain test results [7,9,14]. The citratedmultichannel (CM) cartridge
results in platelet activation via thrombin generation pathways, and
facilitates the simultaneous performance of the citrated kaolin (CK),
citrated kaolin with heparinase (CKH), citrated rapidTEG® (CRT),
and citrated functional fibrinogen (CFF) assays. The primary para-
meters affected by platelet function are the MA for CK, CKH, and
CRT. The TEG® PlateletMapping® (PLM®) cartridge was later
developed to detect the effect of antiplatelet therapy by allowing
selective activation of the P2Y12 receptor by ADP or acetylsalicylic
acid.

The primary aim of this study was to explore the independent
contribution of platelet count and platelet function to the MA and
R (reaction time) parameters in the traditional TEG assays con-
tained in the TEG®6s CM cartridge.

Methods

Study Design

This study was conducted in accordance with Good Clinical
Practice (GCP) guidelines and the ethical principles of the
Declaration of Helsinki [15]. Ethical approval, informed consent,
and approval by the relevant authorities were obtained prior to the
initiation of the study.

Sample Collection

The study was conducted using blood samples from healthy
donors (n = 65 samples each for platelet count analysis and
platelet function analysis). For each donor, a draw of 3 mL of
blood to a discard syringe followed by a draw of 60 mL blood
drawn by venipuncture was performed, using three 20 mL syr-
inges. The blood from the syringes was transferred into 4.5 mL
vacutainer tubes coated with 3.2% Sodium citrate (Becton
Dickinson, Franklin Lakes, New Jersey) within 1 min of blood
draw. Thirteen samples were prepared from each donor: whole
blood (n = 1), platelet-rich plasma (PRP) (n = 1), and whole
blood with variable platelet levels (0–600 k/μL) (n = 11).

Platelet Count Variation

Platelet count was altered by harvesting platelet-poor plasma
(PPP), platelet pellets, and packed red blood cells (RBCs) by
centrifugation and mixing these constituents in appropriate ratios.
A platelet-free sample comprised donor plasma (free from plate-
lets) mixed with donor RBCs to match the original RBC count.

Constant coagulation factor levels and hematocrit ratios were
maintained for each donor during sample preparation and for each
platelet count. This was confirmed by measuring samples’ fibri-
nogen activity using the Clauss method. Platelet activation was
controlled by using multiple centrifugation steps and apyrase for
platelet harvesting. LTA with TRAP agonist was performed using
PRP samples to confirm normal platelet function.

Platelet Function Variation

Abciximab is a humanized, hybrid, monoclonal antibody that binds
to the αIIbβ3 receptor, thereby blocking fibrinogen binding and
subsequent platelet aggregation. Whole-blood samples were inves-
tigated with seven concentrations of abciximab (range 1.9–20.0 μg/
mL), in addition to a baseline sample and a negative control with
saline. These concentrations only required the addition of small
volumes of abciximab, enabling coagulation factor levels and plate-
let counts to be preserved. The inhibitory effects of abciximab were
confirmed by LTA with TRAP agonist. Previous studies have used
threshold values of 70–81% [16,17], and so we used a threshold
value of 75% for determining the presence or absence of platelet

inhibition (i.e., platelet inhibition deemed to be present if the LTA
TRAP value was ≤75%).

Platelet counts of all samples analyzed by TEG®6s were assessed
and confirmed by CBC (Complete Blood Count) (Medonic M-series
Hematology analyzer) testing. Based on a recommendation from the
Scientific and Standardization Committee of the International Society
on Thrombosis and Hemostasis (SSC/ISTH), there were no adjust-
ments of the platelet counts of PRP samples [18].

Statistical Analysis

The relationships between TEG®6s parameters and platelet count or
abciximab concentrationwere studied using generalized linear or non-
linear models. Various transformations for both dependent (TEG®6s
parameters) and independent variables (platelet count and function)
were considered in order to derive the optimal framework. The selec-
tion of final models was based on model quality metrics, including
residual analysis and the Akaike information criterion (AIC).

A linear mixed-effects model was used to assess the significance of
platelet count in explaining TEG®6s parameters. The platelet count
was set as the fixed effect, and the donor was set as the random effect
to account for the occurrence of inter-donor variation. Autoregressive
process was used as the correlation model. Platelet count was log-
transformed (log10) and fitted against the TEG®6s parameters forMA
parameters. Platelet counts at the lower and upper bounds of the
reference ranges for CK.MA, CKH.MA, and CRT.MA were also
calculated. No variable transformations were used for R parameters.
A binomial model-based approach was used to explore the ability of
CK.MA, CKH.MA, and CRT.MA to detect low platelet counts (<150
k/µL), where the predicted probability of low platelets was calculated
for a given CK.MA, CKH.MA, and CRT.MA value, and a predicted
probability of >70% used to predict a low platelet count.

A mixed-effect, four-parameter logistic model was used to
assess the significance of abciximab concentration with respect
to the TEG®6s CK.MA, CKH.MA, and CRT.MA parameters.
A linear mixed-effects model was used to assess the significance
of abciximab concentration in explaining the TEG®6s CFF.MA.
The abciximab concentration was set as the fixed effect, and the
donor was set as the random effect to account for inter-donor
variation. The values for LTA.TRAP in 3D plots were estimated
using the modeling of LTA.TRAP versus Abciximab. The esti-
mate represents the model-based average using all available data
on donors. No variable transformations were employed.

Average differences in values for TEG® parameters over relevant
intervals of platelet count and abciximab concentration were calcu-
lated with 95% bootstrap confidence intervals. Regression modeling
was used to estimate the platelet count and abciximab concentration at
the limits of the reference ranges for CK.MA, CKH.MA, and
CRT.MA.

Results

Maximum Amplitude

Platelet Count Effects

TEG®6s parameters CK.MA, CKH.MA, and CRT.MA increased
with increasing platelet count (Figure 1). There was a significant
relationship demonstrated between platelet count and CK.MA
(β = 24.957, p < .0001), CKH.MA (β = 24.710, p < .0001), and
CRT.MA (β = 25.478, p < .0001). No significant relationship was
demonstrated between platelet count and CFF.MA.

All MAs showed significant change over the ranges considered
(p < .05). For the low platelet count range (0–150 k/μL), a mean
change (mm) was 0.28, 0.28, and 0.29 for CK.MA, CKH.MA, and
CRT.MA. For the higher platelet count range (150–450 k/μL), a mean
change (mm) was 0.03, 0.04, and 0.04 for CK.MA, CKH.MA, and
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CRT.MA. Estimated platelet counts for the lower and upper bounds of
the reference ranges for CK.MA, CKH.MA, and CRT.MA were 91
and 437 k/μL, 86 and 420 k/μL, and 74 and 375 platelet/μL,
respectively.

Platelet count significantly differed from the reference range at 91
k/μL for CK.MA, 86 k/μL for CKH.MA and 74 k/μL for CRT.MA
(shown by the lower gray line in Figure 1) corresponding to MA
values of 52 for all three parameters. Platelet count can be accurately
quantified in the range of 28–91 k/μL for CK.MA, 28–86 k/μL for
CKH.MA and 28–74 k/μL for CRT.MA (range between the brown
line to the lower gray line in Figure 1). For detecting low platelet count
(<150 k/uL), the binomial model gave a sensitivity of 92% and
specificity of 94% with CK.MA and CKH.MA variables, and sensi-
tivity of 95%, specificity 94% with CRT.MA.

Platelet Function Effects

CK.MA, CKH.MA, and CRT.MA showed statistically significant
relationships with the concentration of abciximab (p < .001;

Figure 2). Increased concentrations of abciximab were associated
with lower values for CK.MA, CKH.MA, and CRT.MA values,
with negative Spearman correlations of ρ = −0.901, ρ = −0.900,
and ρ = −0.877, respectively. The lowest abciximab concentra-
tions to produce a statistically significant difference from the
TEG® reference range in the value of CK.MA, CKH.MA, and
CRT.MA was 3.2 μg/mL, 3.3 μg/mL, and 3.3 μg/mL, respectively
(dashed black line on Figure 2), which corresponds to an MA
value of 52 for all three parameters. No statistically significant
relationship was observed between abciximab concentration and
CFF.MA (β = −0.012, p = .24).

Platelet inhibition, as measured by LTA TRAP, increased with
increasing abciximab concentration (Figure 2). Figure 2 shows the
model-based average using all available donor data. Inhibition of
platelet function significantly differed from the reference range at
68.4%, 69.4%, and 69.7% inhibition (dashed black line on Figure
2), corresponding to MA values of 45.4, 45.7, and 44.2 for CK,
CKH, and CRT assays, respectively. TEG®6s can therefore accu-
rately quantify platelet function within a range of 68.4–82% for

Figure 1. Relationship of platelet count with (a) CK.MA, (b) CKH.MA, and
(c) CRT.MA. Reference ranges for the TEG® parameters are shown in green.
Gray lines represent the point of statistical difference from the lower and upper
bounds of the reference range; Brown line represents the point of saturation.
Abbreviations: CK, citrated kaolin; CKH, citrated kaolin with heparin; CRT,
citrated RapidTEG®; MA, maximum amplitude.

Figure 2. Relationship of abciximab concentration with (a) CK.MA, (b)
CKH.MA, and (c) CRT.MA as correlated with LTA. The individual
donor model is provided in colored dashed lines, with the overall model
in black. Brown line represents the point of difference from baseline.
Vertical dashed black line indicates the point of significant difference
from the TEG® reference range. Gray line represents the point of satura-
tion. Reference ranges for the TEG® parameters are shown in light green.
Abbreviations: CK, citrated kaolin; CKH, citrated kaolin with heparin;
CRT, citrated RapidTEG®; MA, maximum amplitude.
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CK. 69.4–88% for CKH and 69.7–76% for CRT (range shown by
the black-dashed line to gray line; Figure 2).

Reaction Time and Activated Clotting Time (ACT)

Platelet Count Effects

As shown in Figure 3, statistically significant relationships were
observed between platelet count and R-time in the CK and CKH
assays (β = −0.002, p < .001; β = −0.002, p < .005), and ACT in
the CRT assay (β = −0.019, p < .05). The lowest platelet count
for which CK.R, CKH.R, and CRT.ACT showed significantly
different values compared with a platelet count of zero was 7 k/
μL. Despite the statistical associations, all three parameters
showed only small differences in their values between low and
higher platelet counts, suggesting that the relationships are not
clinically meaningful.

Platelet Function Effects

Contrary to platelet count, abciximab had no statistically signifi-
cant effect on CK.R (β = −0.02, p = .14), CKH.R (β = −0.005,

p = .64), or CRT.ACT (β = −0.13, p = .58) (Figure 4). The
lowest abciximab concentration to show a statistically significant
effect on CRT.ACT versus a platelet count of zero was 5 μg/mL.
For CK.R and CKH.R, no abciximab concentration produced
a statistically significantly different value versus zero.

Discussion

Thromboelastography is an established method that has been used for
decades as a diagnostic tool in several therapeutic areas. The portable,
new-generation TEG analyzer has been recently introduced which
provides a holistic overview of the coagulation status of a patient
allowing health-care providers to identify a problem and provide
targeted, goal-directed therapy at the site-of-care [7,9,19]. This was
the first study to investigate the impact of both platelet count and
platelet function on coagulation parameters measured using the new
TEG®6s device. The study shows that TEG is able to detect platelet
count below the reference range at 91 k/μL for CK.MA, 86 k/μL for
CKH.MA and 74 k/μL for CRT.MA, and quantify platelet levels
within a range. Furthermore, using LTA TRAP as a confirmatory
assay, we have demonstrated that the TEG®6s analyzer can accurately

Figure 3. Linear mixed-effects model of (a) CK.R, (b) CKH.R, and (c)
CRT.ACT in relation to the platelet count (k/μL), with the donor as
a random effect. Individual donor model is provided in colored dashed
lines, with the overall model in black. Reference range limits are shown in
green. Abbreviations: ACT, activated clotting time; CK, citrated kaolin;
CKH, citrated kaolin with heparinase; CRT, citrated RapidTEG®; R,
reaction time.

Figure 4. Linear mixed-effects model of (a) CK.R, (b) CKH.R, and (c)
CRT.ACT in relation to the abciximab concentration with the donor as
the random effect. The individual donor model is provided in colored
dashed lines, with the overall model in black. Parameter reference range
limits are shown in green. Abbreviations: CK, citrated kaolin; CKH,
citrated kaolin with heparinase; CRT, citrated RapidTEG®; MA, max-
imum amplitude.
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detect platelet function inhibition, which may allow earlier and more
directed therapy.

Platelets are integral to coagulation, and an understanding of
the patient’s platelet count and function is important in ensuring
that hemostatic therapy is optimized. Conventional coagulation
tests such as prothrombin time (PT), and activated partial throm-
boplastin time (aPTT) are plasma based and, therefore, insensitive
to changes in platelet count or function [1]. Other coagulation
tests, such as CBC, provide a platelet count without assessing the
contribution that platelets make to the clotting process (i.e., plate-
let function). TEG®6s assays are performed using whole blood
and analyzing the interaction of all blood components provides
comprehensive insight into the patient’s coagulation status.
Comparisons to other whole-blood platelet function tests
Multiplate® and VerifyNow® show TEG®6s is able to distin-
guish between healthy blood spiked with different concentrations
of platelet inhibitor, with TEG®6s showing the best score for
internal distribution of disagreement (5.0% for TEG®6s, 8.3% for
VerifyNow® and 13.3% for Multiplate®) and lowest variability
(5.1% for TEG®6s, 17.7% for VerifyNow® and 14.1% for
Multiplate®) [20]. The TEG®6s is also smaller, more portable,
and less sensitive to vibrations than previous models [9,21].

Relationships between platelet count or function and TEG® para-
meters have been studied using previous thromboelastography
devices. In one such study, performed using PRP or PPP with CaCl2
as the coagulation activator, both MA and the coagulation time
(K-time) increased linearly with log-transformed platelet count, with
platelet counts below 66 k/μL associated with dysfunctional clotting
[22]. A subsequent study was performed using whole blood and, as in
the earlier study, linear relationships were observed between log-
transformed platelet count and either MA or K-time [23]. No signifi-
cant relationship was found between R-time and platelet count in
either of these studies. The limitations of these studies were addressed
in the current study, to provide further evidence of the ability of
TEG® to analyze the hemostatic function of platelets.

TEG®-guided algorithms are used for platelet management in
a variety of clinical settings. Compared with conventional coagu-
lation assay protocols, a TEG®-guided approach can improve
morbidity and mortality rates and decrease blood product use in
both trauma [24–26] and cardiac surgery [27–29]. Accurate and
rapid analysis of platelet count and function can help ensure
appropriate management of hemostasis, decreasing the risks of
bleeding and thromboembolic events. The relationships described
in this study between platelet count or platelet function and MA
parameters show that the TEG®6s analyzer can provide the
required level of guidance. Not only can the TEG®6s CM car-
tridge tests detect low platelet levels, they are also able to quantify
both count and function within the reported ranges, giving
a holistic overview of a patient’s coagulation status and poten-
tially allowing for earlier or more direct therapy.

We observed strong positive relationships between platelet count
and CK.MA, CKH.MA, and CRT.MA, showing that stronger clots
were formed at higher platelet counts. The high sensitivity of the
TEG®6s assays was reflected by the association of platelet counts
below 74–92 k/μL with sub-normal range values that significantly
differed from the reference range for CK.MA (91 k/μL), CKH.MA
(86 k/μL) and CRT.MA (74 k/μL). In addition to being able to
identify platelet counts below the reference range, platelet count
could be accurately quantified with high sensitivity in the range of
28–91 k/μL for CK.MA, 28–86 k/μL for CKH.MA and 28–74 k/μL
for CRT.MA. Below these ranges, the TEG®6s can detect a low
platelet count but cannot accurately quantify it.

A significant inverse relationship was seen between platelet func-
tion, as determined by abciximab-modulated aggregation, and CK.
MA, CKH.MA, and CRT.MA. Small changes in these parameters
were observed at low levels of abciximab, with marked decreases

when a threshold abciximab concentration was reached and small
changes at higher abciximab concentrations reflecting response
saturation. Furthermore, using LTA TRAP as a confirmatory assay,
we have demonstrated that the TEG®6s analyzer can accurately detect
platelet function inhibition at levels >68%, below the established
cutoff value, and quantify platelet function within a range of
68.4–82% for CK. 69.4–88% for CKH and 69.7–76% for CRT.
Below this range, TEG®6s can detect that platelet function is inhib-
ited, as correlated with LTA, but cannot accurately quantify it. This
suggests that TEG® is more sensitive than LTA, with TEG® para-
meters showing more gradual changes with increasing levels of
abciximab.

The small but statistically significant reductions in reaction
time parameters (CK.R, CKH.R, and CRT.ACT) with increasing
platelet counts are consistent with the cell-based model of hemos-
tasis [1]. Accelerated clot formation at higher platelet concentra-
tions may be due to the increased number of phospholipid
membranes providing a substrate for tenase and prothrombinase
complexes [1]. During the propagation phase of the hemostatic
process, tenase and prothrombinase complexes are assembled on
the platelet surface, and large-scale thrombin generation takes
place. A lower platelet count decreases the speed of this process.
Unlike platelet count, changes in platelet function did not affect
reaction time parameters in our study. This may be explained by
the fact that provision of surfaces for the hemostatic process by
platelets is independent of their function. Alternatively, it is
possible that abciximab, through steric hindrance and conforma-
tional changes, prevents binding to the αIIbβ3 receptor, blocking
secondary platelet activation, but not the initial platelet activation.
This would mean that platelets continue to be activated and
generate thrombin, leading to a feedback loop increasing the
number of available platelets. When the effects of both MA and
reaction time parameters are combined, the TEG®6s analyzer can
be used to accurately monitor functional platelets at any count.

The main limitation of this study was that it focused on clotting via
thrombin generation, and only examined one platelet function activa-
tor. The study focused on inhibition of αIIbβ3 and was not set up to
explore other important aspects of clotting which may have affected
the platelet function (such as the role of GP1B, release of granule
contents and externalized phospholipids). The effects of platelet num-
ber and functionwere studied separately, and the effect of both platelet
number and function varying simultaneously was not examined by the
study. In this study, the experiment was not set up to manipulate both
platelet count and platelet function. Specific, independent measure-
ments of platelet count and platelet function were not performed,
meaning that the relative contributions of these two elements to the
TEG® parameters could not be determined. Furthermore, the role of
flow and sheer could not be investigated in this in vitro study. While
clotting via thrombin generation pathways can be valuable for inter-
ventional cardiology [30] and stroke [31], it does not fully address
platelet activation via ADP or clinical scenarios with the use of dual
antiplatelet therapy [32,33].

In these clinical settings, TEG® PLM® should be used to
quantify platelet function, including the contribution of ADP
and thromboxane A2 receptors to clot formation. Results obtained
using the PLM® cartridge have been shown to have negative
predictive value for bleeding and thrombotic risks in patients
undergoing cardiac surgery [34,35], non-cardiac surgery [36],
and percutaneous coronary intervention [10,30]. Additionally, in
surgical patients, compared with no preoperative platelet function
testing, the use of the PLM® cartridge was shown to significantly
reduce blood product utilization [34,37], and benefits have been
shown in guiding treatment for patients with trauma [38]. This
was an in vitro experiment, and so the manipulations needed to
create the artificial conditions may have contributed to platelet
activation or had other unintended effects; however, platelet
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blocker was utilized to minimize these effects. The participants in
our current study were healthy volunteers, and studies are needed
in patients with coagulopathy; however, our study serves as
a proof-of-concept for the measurement of both platelet count
and function using the TEG®6s. Due to these limitations, no
conclusions can be drawn from this study on the impact of the
results on clinical hemostasis. Future studies may be designed
using this analyzer with multiple cofounders varied individually
within the same population, and larger trials may explore use in
surgical situations to evaluate the clinical benefit of TEG®6s
guided platelet transfusions versus those guided by platelet
count alone. It would also be interesting to explore how the
TEG parameters react to bleeding management strategies such
as pooled platelets or transfusions, and whether TEG is able to
detect recovery of platelet function following these strategies.

TEG®6s CM cartridge assay parameters are sensitive to the con-
tributions of platelet count and platelet function to clot formation and
strength. This is the first study to show that TEG®6s can detect
platelet function inhibition correlated with LTA, as determined by
the points at which TEG values differ from the reference range.
Furthermore, not only can the TEG®6s detect either low platelet
count or low platelet function, it can also quantify platelet count and
platelet function inhibition within the reported ranges which may
allow earlier, more direct targeted medical intervention. Thus, we
can accept the hypothesis that, contrary to conventional coagulation
tests, the TEG®6s analyzer can be used to evaluate the net effect of
both platelet count and function. By ensuring appropriate hemostatic
therapy, accurate monitoring of platelet count and function could
potentially lead to decreased morbidity and mortality, as well as
lower, more effective use of allogeneic blood products. This study
provides further evidence to support the use of the portable TEG®6s
analyzer to diagnose and monitor the hemostatic status of patients
across a range of clinical settings at the site-of-care.
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