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An expedient and rapid green chemical synthesis of N-chloroacetanilides and
amides using acid chlorides under metal-free neutral conditions
B. S. Balaji and Neha Dalal

School of Biotechnology, Jawaharlal Nehru University, New Delhi, India

ABSTRACT
We are reporting for the first time, rapid N-chloroacetylation of anilines and amines in phosphate
buffer within 20 min. Primary and secondary amino derivatives (amines, anilines) were efficiently
condensed with various acid chlorides (containing aliphatic, aromatic, cyclic and heteroaromatic
units). We have also shown that the modification of the electrophilic nature of the substituents
on the acid chloride did not affect the product formation and the required amides are formed in
high yields. The major advantage of this process is highlighted by the ease of product isolation
(simple filtration/precipitation). This process represents the first example of a metal-free, green
chemical synthesis under neutral conditions to provide an eco-friendly, easily scalable and robust
process for the preparation of amides that expands the scope, utility and applicability of acid
chlorides.
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1. Introduction

Amide bonds (1–5) are one of the most common linkages
that are abundantly present both in natural (proteins)
and in synthetic compounds (polymers). The difficulty
in the controlled synthesis of amides (6–8) and their
applications in different fields like polymers (9), engineer-
ing materials, detergents and lubricants led to the devel-
opment of many synthetic methods (10–13), and
hydration of nitriles to amides in aqueous medium (14).
The physical and chemical properties of amides, such
as high polarity, stability, conformational diversity and
conversion of them to many other functional groups
have been extensively exploited by researchers in
various fields. Moreover, the amide bond formation reac-
tion is identified as one of the top reactions presently
used in the pharmaceutical industry (7, 15–17). In
addition to this role, the formation of amides plays an
important part in mass spectrometry (18, 19) or in cell
biology (20, 21).

Acid chlorides and anhydrides are the most com-
monly used reagents for the acetylation of amines.

Many simple acid chlorides are inexpensive; hence they
are used in many industrial processes. However, these
acylating reagents are highly reactive, leading to poor
selectivity when other equally reactive functional
groups are present. Moreover, acid chlorides and anhy-
drides have the tendency to react rapidly with water
and alcohols, leading to the formation of the correspond-
ing acids and esters, respectively. Thus, the yield and
purity of the resulting amides are reduced. In addition,
cumbersome removal of impurities from the required
products makes these methods less attractive. N-acety-
lation reactions of amines using other acylating reagents
are sensitive to water (22). We have developed bioconju-
gation reactions, (23) and also utilized amide bond for-
mation reactions (24, 25) in our synthetic strategy.

Chloroacetyl chloride (CAC) (26) is an important two
carbon bifunctional unit widely used in synthetic chem-
istry (27). It is used as a protecting group (28) for alcohols
and amines. The acid chloride part is used in many acyla-
tion reactions with alcohols, amines, (29–32) alkynes (33)
and also in Friedel–Crafts reactions (34, 35). Similarly the
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α-chlorine can be replaced by many nucleophiles (OH─,
NH2

─, SH─ etc.) through SN2 displacement (36–39). Many
chloroacetamides are used as herbicides such as alachlor
[15972-60-8], metolachlor [51218-45-2].

Acetyl chloride and chloroacetyl chloride can be
efficiently used for acylation reactions. The major advan-
tage of chloroacetyl derivatives lies in their ability to be
used for further functional modifications. However, the
reactivity profiles of chloroacetyl chloride are less
explored compared to acetyl chloride. Thus, improving
the N-acylation of amino derivatives, without compro-
mising the high reactivity of the acid chlorides to give
amides, is a challenging task worth exploring.

Organic synthesis in aqueous media is rapidly gaining
importance in view of the fact that the use of many toxic
and volatile organic solvents, particularly chlorinated
hydrocarbons, contributes to pollution. The Innovative
Medicines Initiative (IMI)-CHEM21 solvent guide had
identified water as the most preferred green solvent,
with a safety, health and environmental score of 1 (40).
Furthermore, reactions conducted in aqueous media
minimize protection-deprotection sequences (41) that
are commonly used in synthetic chemistry. In order to
develop a green chemical route to chloroacetamides,
we were attracted by two principles (42) of the green
chemistry approaches, namely (i) amide formation avoid-
ing poor atom economy reagents, and (ii) replacements
for dipolar aprotic solvents.

In our current research involving bioconjugation reac-
tions, we were interested in using CAC as a bifunctional
linker, in order to conjugate many water-soluble amino
compounds under neutral or near neutral conditions.
Almost all of the Schotten-Baumann conditions
employed for chloroacetylation of amines uses strong
bases. In general, aliphatic acid chlorides hydrolyze
much more rapidly than aromatic types; thus, using the
Schotten-Baumann technique with aliphatic acid chlor-
ides affords substituted amides contaminated with
acids. We were surprised to see that there are only very
few reports utilizing near neutral conditions with water
as the solvent for chloroacetylation (43, 44) even
though CAC is used for functionalization of amines (45).
One of the methods utilizes a large excess of CAC (4
eq.), and the reaction requires longer times (12–16 h)
to complete (43). An aqueous method developed
recently for ranolazine (44) synthesis uses a stoichio-
metric amount of water (5 eq.) for chloroacetylation
using chloroacetic anhydride. The main problem associ-
ated with acetylation reactions in water is the intrinsic
nature of the acid chlorides to undergo hydrolysis. It is
reported that CAC undergoes very slow hydrolysis in
water to the corresponding acid (46–48). We presumed,
if the chloroacetylation can be carried out faster than

the hydrolysis, then it will be possible to carry out the
reaction in water.

Few recent reports use acid chlorides for the for-
mation of amides (49, 50). One of them uses expensive
silver salts and the other one use highly reactive
DIBAL-H. The later cannot be used when sensitive func-
tional groups are present. There is no report available
for carrying out acylation under neutral conditions
using chloroacetyl chloride. So, we wanted to expand
the scope and utility of chloroacetyl chloride. The
major challenge posed was to develop a method
having high selectivity without reducing the high reactiv-
ity of acid chlorides.

2. Results and discussion

We have recently developed a chemoselective N-chlor-
oacetylation of aminoalcohols using chloroacetyl
chloride in phosphate buffer (communicated) in the
presence of neutral HCl scavenger (propylene oxide).
The marked difference in the reactivity of amines and
alcohols can be attributed to the difference in the basi-
city/nucleophilicity between amines and alcohols. Since
chemoselectivity in synthetic chemistry is always a
challenge, we were interested in developing methods
for preferential modification of aniline moiety in the
presence of amines in our current project. It will be
highly beneficial, if anilines (weaker bases) can be
selectively functionalized in the presence of aliphatic
amines (relatively stronger bases). Unlike amines and
alcohols, anilines and amines do not differ vastly in
their pKa values. The major challenge we faced was
to tweak the reactivity of acid chlorides under certain
reaction conditions to give anilides in preference to
amides.

2.1. Study of N-chloroacetylation of amines and
anilines

Initially, we attempted N-chloroacetylation of various
amino compounds in phosphate buffer. The results
obtained are summarized in Table 1. All compounds
consistently underwent clean reactions to give high
to excellent yield of the product within 20 min. Nega-
tive ninhydrin test was used for confirmation of
product formation in all the cases. In the case of ali-
phatic amines (Table 1, entries 1–3) and benzylamine
(Table 1, entry 4), the isolated yields were around
70–78%. For anilines, the yields were slightly higher
(Table 1, entries 5–7).

In order to understand the selectivity and the reactiv-
ity of this protocol further, we subjected p-aminophenol
(Table 1, entry 9) to N-chloroacetylation. As usual, the
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reaction was over within 15 min, and we did not observe
any decreases in the rate of product formation. NMR
analysis proved the selective acetylation of amine
group in the presence of phenolic OH. Selective and
rapid N-chloroacetylation of p-aminophenol is used in
the derivative preparation of antipyretic drug

paracetamol. However, both N- and O-chloroacylation
took place when p-aminophenol was allowed to react
with CAC and pyridine/TEA in CH2Cl2.

To investigate the effect of the electron-withdrawing
carboxylic acids on the reaction, we subjected amino-
benzoic acid (Table 1, entries 10) to chloroacetylation.
We obtained N-chloroacetylation products in very good
yields and confirmed that electron-withdrawing
carboxylic acids have not played any deleterious role in
the reaction. Further, to understand the role of other
electron-withdrawing groups on the reaction, we
subjected p-cyanoaniline and p-nitroaniline (Table 1,
entries 11 and 12), to N-chloroacetylation. In the case
of p-nitroaniline, the reaction did not go to completion.
The isolated yield was 75% (89% based on recovery of
the starting material).This suggests that strong elec-
tron-withdrawing groups may decrease the reactivity,
but not the yield, in this protocol. Even heteroaromatic,
phenolicamine and aromatic secondary amines
(Table 1, entry 13–15) gave the corresponding product
in 72–83% (Figure 1).

2.2. Study of chemoselectivity in
N-chloroacetylation of anilines vs. aliphatic amines

Since benzylamine gave a little lower yield compared to
aniline, we were wondering can we exploit this to our
benefit. We then wanted to study the chemoselectivity

Figure 1. Products from the reaction of amines and anilines with CAC.

Table 1. Reaction of anilines and amines.

No. Amine/aniline Yield % (isolated)

1 Butylamine 70
2 Cyclohexylamine 73
3 Dicyclohexylamine 78
4 Benzylamine 77
5 Aniline 88
6 p-Toludine 90
7 p-Anisidine 95
8 p-Chloroaniline 81
9 p-Aminophenol 72
10 p-Aminobenzoic acida 80
11 p-Cyanoaniline 88
12 p-Nitroanilinea 75 (89)b

13 2-Aminopyridine 79
14 N-Methylaniline 72
15 m-Aminophenol 83

Note: Substrate – 0.75 mmol, CAC – (0.8 mmol), propyleneoxide – (1.6 mmol),
solvent – Phosphate buffer, 10μL/1 mg of substrate.

aAcetonitrile was added to solublize.
bYield based on recovered starting material.
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of aromatic vs. aliphatic amines using the current
method. To our surprise, it was found that aniline
reacted in preference to benzylamine (Table 2, entry 1).
Use of water also gave the same result (Table 2, entry
2), whereas CH2Cl2 gave a higher yield of the amide
(Table 2, entry 3). Finally, use of FeCl3 (20 mol %) comple-
tely suppressed the reactivity of benzylamine. This sup-
pression effect was independent of solvent (Table 2,
entry 5). To further confirm our findings, aniline was
reacted in the presence of other aliphatic amines
(Table 2, entries 6–9). The competitive reaction
between aniline and an alkyl amine or cyclohexylamine
preferentially gave the anilide. From Table 2, it became
clear that phosphate ions play an important role in selec-
tive reactivity (Table 2, entries 6–8). A detailed compu-
tational study to ascertain the role of phosphate ions is
currently underway. 4-Aminobenzylamine, having both
an aniline moiety and a primary amine moiety on the
same substrate (Table 2, entry 9), underwent N-chloroa-
cetylation at both the amino groups. However, use of
FeCl3 (Table 2, entry 10) completely suppressed the reac-
tivity at the benzylamine moiety and only the aniline
moiety reacted. This protocol can thus be used to chlor-
oacylate anilines selectively in the presence of aliphatic
amines. It is important to bear in mind that aliphatic
amines also undergo acylation efficiently, but when
anilines are present, anilides are formed in preference
to amides.

2.3. Study of the reaction of various amines and
anilines with structurally and electronically
diverse acid chlorides

Finally, to expand the scope of this process we pre-
pared various amides/anilides by condensation of
amines/anilines with different acid chlorides. The
results were reported in Table 3. Many structurally
diverse amides were formed with ease using this pro-
tocol. Individually aliphatic or aromatic amines can be

reacted with aliphatic or aromatic acid chlorides to
yield the corresponding amide/anilide derivatives in
high yields. We used aliphatic (Table 3, entries 2, 4–
6, 12, 15, 17, 21), aromatic (Table 3, entries 1, 7, 9–
11, 13, 14), α, β-unsaturated (Table 3, entries 8, 22),
cyclic (Table 3, entry 18), and heterocyclic (Table 3,
entries 23, 24) acid chlorides. We also varied the elec-
trophilic nature (Table 3, entries 3, 16, 19, 20) of the
substituent on the acid chloride. For the amine part

Table 2. Competitive reaction of amines and aniline.
No. ArNH2 RNH2 Solvent Additive Producta (Anilide: amide)

1 Aniline Benzylamine Buffer – 87:13
2 Aniline Benzylamine Water – 88:12
3 Aniline Benzylamine CH2Cl2 – 64:36
4 Aniline Benzylamine Buffer FeCl3 100:0
5 Aniline Benzylamine CH2Cl2 or MeCN FeCl3 100:0
6 Aniline Cyclohexylamine Buffer – 98:2
7 Aniline Dicyclohexylamine Buffer – 100:0
8 Aniline Butylamine Buffer – 100:0
9 NH2C6H4CH2NH2 Buffer – Disubstituted
10 NH2C6H4CH2NH2 Buffer FeCl3 100:0

Note: Substrate – 0.5 mmol each, CAC – 0.5 mmol, metal salt – 20 wt % of substrate, buffer – Phosphate buffer 20 mmol, 10μL/1 mg of substrate. Bold values
signifies that very high selectivity that was found for anilines.

aProduct distribution based on NMR integration.

Table 3. Reaction of amines or anilines with various acid
chlorides.

Entry Amine/aniline Acid chloride Yield (%)

1 Aniline Benzoyl chloride 89
2 Aniline Pivaloyl chloride 86
3 Aniline Dichloroacetyl chloride 83
4 Aniline Phenyl acetyl chloride 81
5 Aniline 3-Chloropropionyl chloride 77
6 p-Toludine 3-Chloropropionyl chloride 73
7 Cyclohexylamine p-Toluoyl chloride 80
8 Cyclohexylamine Cinnamoyl chloride 68
9 Aniline p-Nitrobenzoyl chloride 82
10 p-Toludine p-Nitrobenzoyl chloride 79
11 p-Nitroaniline p-Nitrobenzoyl chloride 80
12 Butylamine Diphenyl acetyl chloride 74
13 Aniline Isophthaloyl chloride# 85
14 p-Toludine Isophthaloyl chloride# 81
15 Aniline Isobutyryl chloride 77
16 Aniline Methyl malonoyl chloride 74
17 Aniline 6-Bromohexanoyl chloride 75
18 Aniline Cyclopropanecarbonyl chloride 70
19 Cyclohexylamine Methoxyacetyl chloride 69
20 p-Toludine Methoxyacetyl chloride 75
21 Cyclohexylamine Acetyl chloride 72
22 Butylamine Cinnamoyl chloride 70
23 Aniline 2-Furoyl chloride 75
24 Butylamine 2-Furoyl chloride 68

Note: Substrate – 0.75 mmol, Acid chloride – (0.83 mmol) # Acid chloride –
(0.4 mmol), propyleneoxide (1.6 mmol), solvent – Phosphate buffer, 10μL/
1 mg of substrate.
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we have used anilines (Table 3 entries 1–6, 9–11, 13–
18, 20, 23) and amines (Table 3, entries 7, 8, 12, 19,
21, 22, 24). In all cases, we observed the required
amide formation. The isolated yields of the obtained
anilides were excellent in most cases. Even the dicar-
boxyl chloride (Table 3, entries 13, 14) underwent the
reaction smoothly. Electron-withdrawing groups on
the aniline (Table 3, entry 11) or on the acid chloride
(Table 3, entries 3, 9–11, 16) did not affect the
product formation. The current protocol of using
buffers as a solvent is highly beneficial, because (i)
we can avoid the use of toxic organic solvents, (ii)
we can isolate the product with ease. Due to the
poor solubility of the product in the reaction
medium, they can be easily isolated by simple precipi-
tation/filtration. This completely avoids the laborious
column chromatography procedure for purification of
the products (Figure 2).

3. Conclusions

In conclusion, we have shown for the first time that chlor-
oacetyl chloride can be effectively and efficiently used
for chloroacetylation of anilines and amines under

neutral, metal-free and green chemical conditions. The
generality of the reaction has been studied. It was
found that the reaction occurs within 20 min, and the
isolated yields are high in the presence of an HCl scaven-
ger. Finally, many acid chlorides were also successfully
converted to amides very efficiently. The involvement
of phosphate in facilitating the selectivity is currently
under investigation by computational methods and the
results will be reported elsewhere.

Supporting information summary

Complete experimental details with spectroscopic data,
1H NMR and 13C NMR for select compounds are given
in the supporting information.
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