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Linking water and land is essential in planning for the future of the western United
States. We propose the concept of ‘water-smart growth’ and explore its implications
through incorporating water considerations into the SLEUTH land-use model. The
urban growth trajectory in Cache County, Utah, is modeled from 2007 to 2030 under
four different scenarios: current trend; smart growth; water-smart growth with
moderate implementation; and water-smart growth with full implementation.
Comparisons of simulation results illustrate the extent and ways in which water-smart
growth would alter current established land-use growth patterns. The approach
represents an initial step to better integrate land and water in urban growth modeling
and planning. This study’s purposes are to provide improved understanding and
representation of linkages between water and land in urbanizing environments, offer
insights from a set of modeled options, and demonstrate the significance of integrating
land and water in planning practices.

Keywords: land-use planning; water management; integrated planning; urban growth
modeling

1. Introduction

As the fastest growing region in the United States, the West is facing challenging land-use

planning and water management issues (US Census Bureau 2010; Reisner 1993). Rapid

population growth and urbanization have significantly changed the region’s land-use

patterns, with large acreages of land, especially agricultural land, being converted

through urban development. Meanwhile, substantial land transformation and population

growth have caused a variety of contemporary water management issues, including:

changing water demands; shifts in water uses; over-exploitation of aquifers; alterations to

surface runoff; declining water quality; and the need for infrastructure renovation and

wastewater treatment (Hutchinson, Varady, and Drake 2010).

Linkages between land and water have been suggested as a key to facilitate the West’s

land transformation in a water-sustainable manner (Gober 2010; Gober et al. 2013;

Tarlock and Lucero 2002; Woltjer and Al 2007). For example, the Integrated Water

Resources Management (IWRM) Framework promotes the strengthening of local action

plans and improving the linkages between water and land-use planning (Mitchell 2005).

C.A. Arnold (2005) proposed the concept of ‘wet growth,’ suggesting water quality and

water availability should be taken into account in land-use planning, and growth and land
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use should be sustainable with respect to maintaining aquatic ecosystems and managing

water resources. Bates (2011) proposed water-conscious land-use planning to promote

protecting and restoring water sources in land-use practices, reducing humans’ water

footprint through appropriate development patterns, and limiting growth by recognizing

and incorporating water as a constraint to permitting new development.

Although the need to link land-use planning and water management has been

recognized, historically, there have been disconnections between land-use planning and

water management in legal frameworks, institutional management, and planning

ideologies per se (Arnold 2005; Bates 2011). As pointed out by several observers, “it is

all too common for critical linkages between land use and water planning to be ignored,

or only tacitly recognized” (Carter, Kreutzwiser, and de Lo€e 2005, 116). In particular, the
entrenched disconnected legal and administrative regimes of land-use planning and water

management make it extremely hard to make radical changes to facilitate integration

(Gober et al. 2013; Tarlock and Lucero 2002).

Carter, Kreutzwiser, and de Lo€e (2005) argue that integration of land-use planning

and water management is not merely a matter of lacking vision or strategies. Local land-

use planners and water managers need practical ways of applying the concepts of

integration and sustainability, and need simple tools to evaluate and understand the trade-

offs of various decisions. A coupled water and urban land-use planning model would be

an effective tool for such purpose. However, current modeling approaches also reflect the

conceptual and institutional gaps between water planning and land-use planning. Few

land-use models have emphasized water’s role in land-use modeling and scenario

planning (Li, Endter-Wada, and Li 2015; Tayyebi, Pijanowski, and Pekin 2015). Greater

efforts need to be made to incorporate water elements into land-use models.

2. Water-smart growth

Ideas like water-conscious land-use planning, ‘wet growth,’ and IWRM provide the

conceptual foundation and rationale for water-smart growth. Water-smart growth brings

water to smart growth in response to rapid population growth, urban sprawl, and limited

water resources in the arid West. The ‘smart’ part of water-smart growth is aligned with

traditional smart growth. It advocates compact development with high infill rates, less

land conversion from open space to urban development, and less impervious area (Downs

2007). The ‘water’ part of water-smart growth stands for preventing or reducing negative

human impacts on water and water-related resources.

Three aspects of water and water-related resources are selected as targets for

protection: surface water and groundwater resources, particularly groundwater recharge

zones; wetlands; and soils with high infiltration rates. These three aspects are chosen for

several reasons.

First, both surface water and groundwater provide important public water supplies.

The quality of groundwater recharged to the water table depends largely on the nature of

the overlying land use. Therefore, protecting water resources (surface water and

groundwater) and groundwater recharge zones from development, pollution, and

contamination is essential to ensure water quality and maintain ecosystem functions

(Winter et al. 1998; Leopold 1968). Also, protection of aquifers and of recharge zones

contributes to an area’s portfolio of useable water supply for urban growth.

Second, wetlands are important in regulating river flow, recharging groundwater

zones, filtering pollutants and fertilizers, decreasing flooding, providing habitats for

plants, fish, wildlife, and birds, and serving recreational and cultural functions (Brinson

Journal of Environmental Planning and Management 1057



1993; Mitsch and Gosselink 2015). Maintaining wetlands is beneficial to sustain

ecosystems and preserve cultural landscapes and recreational opportunities.

Third, soil with high infiltration rates is desirable because low infiltration may restrict

or block water from entering the soil and cause ponding, flooding, or surface runoff

(Trout, Sojka, and Okafor 1990). Runoff can carry soil particles and surface-applied

fertilizers and pesticides off the land and result in soil erosion, contamination, and water

quality degradation (Novotny 1999). Preserving soil with high infiltration rates is

particularly important in the urban environment, due to the fact that it can help infiltrate

storm water, decrease surface runoff, and control flooding (Williams and Wise 2006).

Water-smart growth is strategic thinking and planning for water-sustainable growth.

This study focuses on how to direct growth to maintain water quality and sustain

ecosystem integrity. In the future, water-smart growth also needs to integrate water

supply and allocation planning. Water-smart growth represents an actionable way of

integrating land-use planning and water planning that can be used by planning

professionals in growth-related decision-making with policy-makers and public citizens.

We hope that this concept will prompt greater collaboration among land and water

disciplines and professions toward a ‘water-smart’ oriented growth in the arid urbanizing

American West.

3. Methods

To examine the prospects of the water-smart growth concept, we employ the SLEUTH

model to visualize and simulate future land-use changes under different growth

alternatives. We incorporate water considerations into the SLEUTH model so as to

explore a set of options for linking land and water in the urbanizing environment. The

goal of this study is not to improve modeling techniques, but to use models and scenarios

as a means to investigate the extent and ways in which water-smart growth would alter

current established land-use growth patterns.

3.1. Study area

Cache County is located in an agricultural valley in the northeastern part of Utah that is

bordered by the Uinta-Wasatch-Cache National Forest on the east (Figure 1). The county

currently contains 19 municipalities and 6 unincorporated towns, has a total area of 1,173

square miles (3,038.1 km2), and had a 2010 population of 112,656 (US Census Bureau

2010) which is growing by approximately 2% annually. Conservatively estimated, Cache

County’s present population will almost double to reach nearly a quarter million residents

by 2040 (Cache Valley Regional Council 2010). Population growth is not only changing

land use and land cover, but is also raising water demands, increasing pressure on the

capacity and efficiency of water delivery systems, and intensifying risks of flooding due

to increased impervious surface areas and diminished infiltration rates (Utah Association

of Conservation Districts & Utah Department of Agriculture and Food & Natural

Resources Conservation Service 2011). The area is subject to droughts characteristic of

the Intermountain West region. Climate change may intensify Cache County’s water

stress due to shifts in precipitation patterns and the spatial�temporal mismatch of water

supply relative to human uses (Leung et al. 2004; Gillies, Wang, and Booth 2012). Thus,

integrating water considerations into land use and urban growth planning is an important

issue for Cache County.
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3.2. Data

The SLEUTH model is tightly linked with GIS and raster-based spatial data that are

derived from remote sensing (Solecki and Oliveri 2004; Jantz et al. 2010; Jantz, Goetz,

and Shelley 2004; Clarke, Hoppen, and Gaydos 1997). A geodatabase was assembled to

support visualization, descriptive analysis, and modeling of urban growth and land

transformations for Cache County. Six major types of data were compiled for this

project: land use, urban extent, slope, road, and hillshade, along with water-related data.

Historical raster images and data for each category were collected and processed, as

listed in Table 1. ISODATA unsupervised classification is applied to 1984 Satellite

Image (Landsat 4-5, TM 30 m) acquired from U.S. Geological Survey using ERDAS

IMAGINE 2010. Level 1 of the Anderson classification system was used. Post-

classification, based on expert-knowledge, was used to update the classification products

according to existing land-use databases using ArcGIS 10.1. The accuracy of each of the

derived classification products was assessed with a kappa coefficient 0.84. Also, the

accuracy of this classification is checked by fieldwork. Among 100 sites we inspected, no

Figure 1. Location of study area. (See online color version for full interpretation.)
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misclassification was found. 1992, 2001, and 2006 land-use data were acquired from

National Land Cover Database (NLCD). Land-use categories are grouped into urban,

agricultural, forest, grassland, wetland, water, or barren, based on NLCD land-use

classification description.

3.3. Applying SLEUTH

Numerous land-use models are being developed from different disciplinary backgrounds,

using a variety of techniques including linear extrapolation, suitability mapping, genetic

algorithms, neural networks, scenario analysis, expert opinion, public participation, and

agent-based modeling (Pontius Jr et al. 2008; Tayyebi and Pijanowski 2014; Tayyebi,

Perry, and Tayyebi 2014; Agarwal et al. 2002; Verburg et al. 2002; Briassoulis 2000;

Tayyebi et al. 2014). SLEUTH, developed by Clarke in 1997, is a probabilistic cellular

automata model that simulates urban growth and land-use changes (Clarke, Hoppen, and

Gaydos 1997). We chose the SLEUTH model because of its open access, availability of

source code, and ease of use (Chaudhuri and Clarke 2013; Clarke, Hoppen, and Gaydos

1997). Another reason is because SLEUTH allows for flexibility in building alternative

scenarios and provides the simulation environment for user-defined growth rules. The

utility of the SLEUTH model for simulating urban growth and land-use changes has been

widely successful and well documented (Solecki and Oliveri 2004; Jantz et al. 2010;

Jantz, Goetz, and Shelley 2004; Clarke, Hoppen, and Gaydos 1997; Verburg et al. 2004).

The name SLEUTH is an acronym for the input requirements of the model: slope,

land use, excluded areas, urban extent, transport routes, and hillshade (Clarke, Hoppen,

and Gaydos 1997). SLEUTH examines historical urbanization and land-use change

patterns, then projects future growth as specified by the geographic environment (slope,

Table 1. Input data used for visualization and model simulation.

Type Year/subtype Source Format

Urban extent 1984 1984 Satellite Image (Landsat 4 TM 30 m) Classified raster

1992 National Land Cover Database 1992 (NLCD) Classified raster

2001 NLCD 2001 Classified raster

2006 NLCD 2006 Classified raster

Road 1997 US Census TIGER roads dataset from 1997 Rasterized

2006 Utah AGRC Shapefile from 2006 Rasterized

Land use 1984 Classified from 1984 Satellite Image (Landsat 4
TM 30 m)

Classified raster

1992 NLCD 1992 Classified raster

2001 NLCD 2001 Classified raster

2006 NLCD 2006 Classified raster

Slope 2006 30 m National DEM Rasterized

Hillshade 2006 30 m National DEM Rasterized

Water-related
data

Rivers and
streams

Utah AGRC Shapefile from 2006 Rasterized

Groundwater recharge
zones

Utah AGRC Shapefile from 2006 Rasterized

Shallow groundwater Utah AGRC Shapefile from 2006 Rasterized

Soils with high
infiltration rates

Utah AGRC Shapefile from 2006 Classified raster

Wetlands Utah AGRC Shapefile from 2006 Raster
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land cover, land uses, roads, hillshade, and excluded zones) and growth rules based on

alternative growth scenarios and different policy options (Solecki and Oliveri 2004).

Complete documentation on SLEUTH is maintained at the project website: http://www.

ncgia.ucsb.edu/projects/gig/ (Gigalopolis 2001). The specific model diagram used in this

study is shown in Figure 2. Consistent with the traditional SLEUTH model, historical

input data (years 1984, 1992, 2001, and 2006; see Figure 3) are used to calibrate the

model and determine past transition rules and growth parameters, which are applied to

different scenarios for future growth predictions (from year 2007 to 2030).

The calibration process is the most essential and time-consuming phase, as the model

must be calibrated to the unique characteristics of the study area. The purpose of model

Figure 2. Model diagram of SLEUTH simulation in this study.

Figure 3. Images of historical urban extent of study area.
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calibration is to use historical land use and urban extent data to determine a set of values

of the growth parameters that appropriately represent the spatial pattern and extent of

historical growth (Clarke, Hoppen, and Gaydos 1997; Jantz, Goetz, and Shelley 2004;

Solecki and Oliveri 2004). Table 2 provides brief descriptions of what each growth type

and coefficient represents (Clarke and Gaydos 1998; Clarke, Hoppen, and Gaydos 1997;

Gigalopolis 2001). Five coefficients are integer values that range from 0 to 100. For

calibration, the model runs through every combination of the five coefficient values

indicated by performing Monte Carlo iterations. The earliest map (year 1984) of historical

land use and urban extent layers were used to initialize the simulation and three additional

control points (years 1992, 2001, and 2006) were used to measure how well the spatial

patterns of land-use dynamics were modeled for that year. In this case study, a thorough

calibration was performed following the established SLEUTH calibration protocol (http://

www.ncgia.ucsb.edu/projects/gig/Imp/imCalibrate.htm). We used a combination of Lee-

Sallee metric and optimal SLEUTH metric (OSM) (Dietzel and Clarke 2007; Pontius Jr

et al. 2008) to justify our measurement of model accuracy with past data. At the final

calibration, we got: a Pearson value r2 D 0.91, which represents the squares regression

score for modeled urbanization compared to actual urbanization for the control years; a

Lee-Sallee metric D 0.7871, which measures the spatial fit between the model’s growth

and the known urban extent for the control years; and an OSM D 0.7881, which is derived

from a set of other most relevant metrics offered by the code. The final values of the

control coefficients were determined: dispersion coefficient (32), breed coefficient (16),

spread coefficient (71), slope resistance (73), and road gravity (100).

3.4. Scenarios

There are three general methods that are applied in SLEUTH in order to simulate

different scenarios (Rafiee et al. 2009). The first one is to change growth parameter

values to guide alternative growth rules and shape future growth patterns (e.g. Leao,

Table 2. Summary of growth types and coefficients simulated by SLEUTH model.

Growth type
Summary description of

growth type
Controlling
coefficients

Summary description of
controlling coefficients

Spontaneous
growth

Randomly selects potential
new growth cells.

Dispersion Controls how many times to
attempt spontaneous
growth.

New spreading
center growth

Growing urban centers from
spontaneous growth.

Breed Probability of a spontaneous
growth cell to become a
spreading center.

Edge growth Old or new urban centers
spawn additional growth.

Spread Probability that any cell in a
new spreading center will
have another neighboring
cell become urbanized.

Road-influenced
growth

Newly urbanized cell spawns
growth along
transportation networks.

Road-gravity Controls the maximum search
distance to find a road near
a selected cell.

Slope resistance Effects of slope on testing
suitability for potential
new growth cells.

Slope Affects the probability that a
cell will be urbanized
based on the percentage
slope.
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Bishop, and Evans 2004). The second one is to make alterations in the excluded layers by

assigning specified areas with different levels of exclusion values (e.g. Oguz, Klein, and

Srinivasan 2007). And the third one is to adjust self-organization constraints (e.g. Yang

and Lo 2003). In this study, in order to simply test how water-smart growth will affect

urban growth, we chose not to adjust growth parameters in the future growth simulation.

Instead, we used the second approach by modifying excluded layers to explore how

protecting water and water-related areas would make a difference in future growth

patterns.

The excluded layers are where users can designate lands that are resistant to urban

development, which allows for user-defined functionality and fosters the visualization of

different growth and policy scenarios. In the exclusion layer, each pixel is usually scaled

from 0 (no exclusion from development) to 100 (completely excluded from

development). In this study, federal, state, and local parks, conservation easement areas,

and surface water bodies, were completely excluded (value D 100) from development in

all four scenarios. Four growth scenarios were investigated and visualized through urban

growth simulations: current trend; smart growth; water-smart growth with moderate

implementation; and water-smart growth with full implementation (Figure 4). The

following paragraphs describe how exclusion values were set for each scenario.

The current trend scenario represents growth and development that will occur under

current land-use regulations and management plans, without any further restrictions. For

the purposes of protecting public health and welfare, maintaining ecosystem integrity,

and preserving cultural heritage, we assigned flood plains, fault lines, wildlife

Figure 4. Illustrations of excluded layers under four scenarios.
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management areas, an airport, wilderness areas, and various designated historical sites

with values equal to 100. This action means all these areas are completely excluded from

development and essentially represents current policy and best planning practices. The

rest of the land within the study area remains open to development, with values equal to

0. In this scenario, modeled urban growth is allowed to happen at any non-excluded

locations without further restrictions, but subject to the control coefficients simulated

during the model calibration process.

The smart growth scenario assumes managed growth with high-density infill

development and low rates of open space-to-urban land conversion. Smart growth scenario

applies all the criteria for the current trend exclusion layer, but encourages urban growth

and development around existing urban centers. Six levels of buffer zones around existing

urban centers are produced in this exclusion layer. Specifically, the buffer zone within

500 m radius from existing centers is assigned a value of 0, meaning that this area is fully

open to development and growth. The buffer zone between 500 and 1,000 m from existing

centers is assigned a value of 20, indicating a 20% probability of exclusion. With the

buffer radius increasing every 500 m, the probability of exclusion increases accordingly.

The six levels of buffer zones and associated values are 0�500 m (value D 0), 500�1,000 m

(value D 20), 1,000�1,500 m (value D 30), 1,500�2,000 m (value D 50), 2,000�2,500 m

(value D 70), and 2,500�3,000 m (value D 90). Areas that are not within the 3,000 m buffer

zones are not encouraged for growth or development, with an assigned value of 100. The

widths of buffers were determined by reference to earlier work (Yang and Lo 2003) and

assessed for appropriateness given the current size and nature of communities in Cache

County. No extra environmental protection is added in this scenario.

The water-smart growth with full implementation scenario represents a managed smart

growth scenario with maximum protection on water resources. This scenario maximizes

the potential to conserve the three aspects of water resources identified earlier (surface

water and groundwater resources, and groundwater recharge zones; wetlands; and soils

with high infiltration rates) and minimizes the amount of new developed land. Based on

smart growth, the water-smart growth with full implementation scenario adds more

protected areas excluded from growth and development, including: 200 m buffer for

surface water and riparian areas; 100 m buffer for shallow groundwater, groundwater

recharge zones, and areas where soil has high infiltration rates (defined as US classification

of hydrologic groups A). Standards for buffer design are sourced to ‘Riparian Buffer

Design Guidelines’ (Johnson and Buffler 2008). These water-related areas are assigned a

value of 100, which means they are completely excluded from development. At the same

time, the six-level buffer zones applied in the smart growth to encourage growth near

existing urban centers are also applied in this scenario. The value of overlapping areas

(between the smart growth six-level buffer zones and the three water-related areas) was set

to an accumulated sum, but values over 100 were considered to be 100 (full exclusion).

Water-smart growth with moderate implementation has more relaxed assumptions

than the water-smart growth with full implementation. It lessens restrictions on new

development on/near water-related resources compared to the water-smart growth with

full implementation scenario. Identified protected water-related areas (200 m buffer for

surface water and riparian areas; 100 m buffer for shallow groundwater, groundwater

recharge zones, and areas where soil has high infiltration rates) are assigned a value of 50

(partially excluded) rather than 100 (completely excluded). This rule means these

identified protected water-related areas have a 50% chance of being developed or

excluded from development. In other words, these areas can be developed but

development is not encouraged, so these locations are not considered primary choices in

simulation runs. Meanwhile, values of the six-level buffer zones applied in smart growth
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remain the same, and overlapping areas are assigned values with an accumulated sum up

to 100 (full exclusion).

4. Results

SLEUTH generated rasterized images of simulated future urban extent and land uses at

one-year intervals for each scenario from 2007 to 2030. These rasterized images have the

same categorical land uses as input land-use data. These rasterized images are brought

into ArcGIS to analyze the acreages of each land use under each scenario (Clarke,

Hoppen, and Gaydos 1997). Table 3 shows the projected land-use statistics by land-use

categories by 2030 under the four scenarios. Under the current growth scenario, urban

land use would reach 736 km2 by 2030. Smart growth would slow down the current

sprawl trend, and reduce land development to 423 km2. Water-smart growth with full

implementation would result in a total of 290 km2 of developed areas. The total amounts

of developed land in 2030 under the smart growth scenario (423 km2) and the moderately

implemented water-smart growth scenario (399 km2) are very close.

Figure 5 shows the growth trajectories of the four scenarios and projected changes in

urban area. The current trend presents a steeper growth rate at a pace of 24.9 km2/year in

new urban development compared to the other three alternatives. Smart growth and

Table 3. Projected land use by 2030 under four scenarios (unit: km2).

Year
2006

Current
trend

Smart
growth

Water-smart
growth with moderate

implementation

Water-smart growth
with full

implementation

Urban 137.70 735.69 422.64 398.77 290.04

Agriculture 681.70 250.15 458.66 480.13 576.95

Grass 795.69 639.22 738.92 743.08 759.13

Forest 1,337.36 1,380.50 1,373.26 1,372.93 1,362.71

Water 19.49 18.24 19.41 18.65 18.65

Wetland 55.73 9.49 19.16 18.14 23.11

Barren 7.66 1.92 3.12 3.49 4.59

Total 3,035.33 3,035.21 3,035.17 3,035.19 3,035.18

Figure 5. Details of urban growth projections under four scenarios from 2007 to 2030. (See online
color version for full interpretation.)
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water-smart growth with moderate implementation represent similar growth trajectories

at 11.9 and 10.9 km2/year, respectively. Water-smart growth with full implementation

exhibits the slowest and steadiest growth with 6.3 km2/year in new urban area.

Figure 6 shows the spatial distributions of projected urban growth under the various

scenarios. The current trend scenario shows the greatest dispersion of growth throughout

the study area. The smart growth scenario shows that new growth mostly occurs near

current existing urban centers. The two water-smart growth scenarios keep most

development away from water and water-related land uses, however, with quite different

spatial patterns, due to the varying degrees of implementing protections for water-related

resources. Most importantly, all four scenarios show that future land-use patterns will

retain some of the historic imprint of the rectangular pattern of the Public Land Survey

System as well as the well-established Mormon settlement pattern under which towns

were laid out in a regular grid pattern with square blocks and wide streets (Jackson 1977;

Jackson and Layton 1976; Parera 2005).

Under the current trend scenario, about 432 km2 of agricultural land in 2006 would be

converted, mostly to urban development, by 2030 (Table 3). Smart growth would be able

to save substantial amounts of agricultural land, with 223 km2 of agricultural land

conversions from 2006 to 2030 (Table 3). However, when we overlay new urban areas

projected by the four scenarios with different designated farmland types, results (Table 4)

show that under all of the scenarios except water-smart growth with full implementation,

prime farmland would be the major land source for new urban development. Nearly half

Figure 6. Simulation results of urban growth in Cache County by 2030 under four scenarios. (See
online color version for full interpretation.)

Table 4. Percentage of projected urban growth on different designated farmland.

Current
trend

Smart
growth

Water-smart growth
with moderate
implementation

Water-smart growth
with full

implementation

Prime farmland 35.01 46.74 37.43 19.13

Farmland of statewide importance 24.16 29.65 32.37 39.20

Farmland of local importance 15.34 10.84 17.31 25.07

Other farmland 25.49 12.77 12.88 16.60
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of the new development under the smart growth scenario would happen on prime

farmland, with the highest percentages of prime farmland loss. The water-smart growth

with moderate implementation scenario will have similar amounts of total agricultural

land being developed compared with the smart growth scenario, but with less

development on prime farmland. Under the water-smart growth with full implementation

scenario, more agricultural land would be saved, and only 19% of the new development

would be on prime farmland.

Figure 7 identifies the similarities and differences of newly urbanized areas under

each scenario. Map comparison is an effective way to visualize these patterns across

scenario outcomes (Visser and de Nijs 2006). Figure 7(a) shows the common new urban

areas that are projected under all four scenarios (red areas). These common areas account

for 125 total km2 but represent about 17%, 30%, 31%, and 43% of the total newly

urbanized area under the scenarios of current trend, smart growth, water-smart growth

with moderate implementation, and water-smart growth with full implementation,

respectively. Because these common areas are identified under various growth scenarios,

they presumably reflect high probabilities to actually be urbanized in the future. Figure 7

panels (b) through (e) display the differences of newly urbanized areas (in green)

between the scenarios of current trend (b), smart growth (c), water-smart growth with

moderate implementation (d), and water-smart growth with full implementation (e). The

differences in amount and location of projected urbanization beyond the urbanized areas

that all four scenarios commonly predict are well illustrated in this series of maps.

5. Discussion

5.1. Rethinking growth management in the US West

Another way to interpret smart growth is that it is water-smart growth with no

implementation of water resources protection. Therefore, in the sequence of smart

growth, water-smart growth with moderate implementation, and water-smart growth with

full implementation, Figures 6 and 7 reveal how the degree of policy implementation

and water resources protection would affect urban land-use extent and layouts. Water-

smart growth with moderate implementation and smart growth are oriented from

different planning theories and emphases. Although the two scenarios result in very

different spatial outputs, the total amounts of developed land in both scenarios in 2030

are very close. Meanwhile, the growth curves of these two scenarios are also very similar

(Figure 5). Figure 7(c) and 7(d) shows the spatial differences of these two scenarios and

Figure 7. Comparison of the newly urbanized areas under four scenarios. (See online color version
for full interpretation.)
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how urban form can have different meanings and outcomes for water resources protection.

Specifically, with a similar amount of land for new development, the spatial layout of the

water-smart growth with moderate implementation scenario will have less impacts on

water and water-related resources than water-smart growth. To put it differently, water-

smart growth with moderate implementation demonstrates the feasibility of balancing the

need to accommodate growth while simultaneously realizing the benefits of reducing

human impacts on water-related resources.

Water-smart growth reflects the concept that “good planning doesn’t just place limits

on growth and development” (McKinney and Harmon 2002, 3). It still allows a

reasonable amount of urban development but directs the spatial distribution of urban

growth toward a more water-sustainable growth pattern. The water-smart growth with

moderate implementation scenario sheds light on how cities in the US West can wisely

allocate and direct growth to pursue multiple land and water-related benefits. The take-

home message is that with a limited amount of land resources, we still have choices to

make in deciding where to grow and can seek options for maintaining water resource

integrity, which in turn could contribute economic and quality of life benefits to local

communities. Location matters.

5.2. Agricultural land conversion

As with urbanization in many other areas of the US, most newly urbanized areas in the

West come from converting agricultural lands (Alig, Kline, and Lichtenstein 2004).

Results from this study show, as indicated in Table 3, agricultural lands are under great

pressure from urban encroachment if growth continues in its current form or even in a

more compact form. But by directing urban development away from the three types of

water-related sensitive areas, more agricultural land, especially prime farmland, would be

preserved. This is because high quality soil is a major attribute of prime farmland, and

generally it overlaps with soil with high infiltration rates, wetlands, and groundwater

recharge zones. Therefore, water-smart growth can protect not only water and water-

related areas, but also prime farmland for agricultural activities.

5.3. Implications for water resources management

Under rapid urbanization, water resources can be severely impacted by conversion of land

use and land cover. Replacing agriculture or/and natural land cover with impervious

surface increases storm water flows, which result in increased flooding of waterways and

canal systems. As indicated by many other studies, once the percentage of impervious

area in a watershed reaches 30%, stream health is degraded, and storm water

management encounters greater difficulties (Arnold and Gibbons 1996). Clearly, future

growth patterns like the current trend in this study will increase challenges to not only the

availability of land resources but also to associated flooding and storm water

management. Conserving agricultural land and natural land cover is a critical component

to prevent storm water management complications.

Also, new spatial configurations and shifts of land uses also lead changes of water

uses. With agricultural land gradually diminishing, many areas in Cache County have

experienced declining agricultural water use and increasing municipal and industrial

water use (Utah Association of Conservation Districts & Utah Department of Agriculture

and Food & Natural Resources Conservation Service 2011). Although agriculture likely

will continue to be the major water use sector, under anticipated shifts from agricultural
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water use to residential and commercial water use, the capacity and efficiency of water

infrastructure in both urban and agricultural environments will be pressured to meet

changing water needs (Utah Association of Conservation Districts & Utah Department of

Agriculture and Food & Natural Resources Conservation Service 2011).

5.4. Future improvements of the model

SLEUTH is a useful tool that integrates both spatial and temporal dimensions of urban

growth processes. Nonetheless, as descriptive and illustrative as SLEUTH can be, it does

not possess the explanatory power of revealing the causes of the spatial patterns it

generates (Sant�e et al. 2010). The relaxation and simplicity of the SLEUTH model might

overlook or underestimate some fundamental but unique characteristics of a particular

locality (Sant�e et al. 2010). With respect to simulation results illustrating future

alternatives, however, the accuracy and realism are overall acceptable for the purpose

that it serves, which is to demonstrate the significance of different choices and how they

reverberate over time in a system to produce varying results. The mechanism of land-use

change, especially urban growth, is complicated and often heavily influenced by politics

and economics, which is not something a regression or mathematical model can simply

predict. But this factor does not limit SLEUTH’s usefulness in answering ‘water-if’ types

of questions or to contribute to better understanding urban dynamics and growth theories.

The concept and illustration of water-smart growth proposed in this study are valuable

for both planning practice and modeling efforts, because they attempt to incorporate

water components into growth modeling and serve as an important visualization aid.

However, further demonstration and investigation of how water-smart growth affects

particular water and land-use planning issues are needed. Examples would be linking

SLEUTH/water-smart growth spatial outcomes to a watershed hydrological model like

the Soil and Water Assessment Tool to gauge the effects on water quantity and quality, or

coupling water withdrawal and consumption simulation models with land use and urban

growth outputs.

6. Conclusion

This study is an exploration of the water-smart growth concept. It offers a general broad

understanding of linking water and land in planning practices. To achieve more accurate

predictions of urban growth and associated hydrological impacts, a more detailed

analysis of site assessment, zoning policy, and local development plans would be needed.

From an urban planning standpoint, the water-smart growth concept connects an aspect

of water sustainability to the current land-use planning agenda by facilitating

understanding of how land-use decisions impact water resources. From a water

management standpoint, the urban water environment is a complex and interconnected

human and natural system, requiring water managers to take a holistic and systematic

approach to examine all aspects of the urban hydrologic cycle, including interactions

between land, water, and the atmosphere within both the natural and built environments.

From a public policy standpoint, since the urban water environment is a system that

encompasses hydrology, ecology, culture, land use, design, infrastructure, society, law,

and economy, effective application of water-smart growth should incorporate multiple

perspectives and varied expertise in an interdisciplinary and collaborative framework.
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