
University of Iowa
Iowa Research Online

Theses and Dissertations

2007

Application of solid-state kinetics to desolvation
reactions
Ammar Khawam
University of Iowa

Copyright 2007 Ammar Khawam

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/170

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
Khawam, Ammar. "Application of solid-state kinetics to desolvation reactions." PhD (Doctor of Philosophy) thesis, University of Iowa,
2007.
http://ir.uiowa.edu/etd/170.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=ir.uiowa.edu%2Fetd%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages


APPLICATION OF SOLID-STATE KINETICS TO DESOLVATION REACTIONS 

by 

Ammar Khawam 

An Abstract 

Of a thesis submitted in partial fulfillment 
of the requirements for the Doctor of 

Philosophy degree in Pharmacy 
in the Graduate College of 

The University of Iowa 

May 2007 

Thesis Supervisor:  Professor Douglas R. Flanagan 
 

 



 

 

1 

ABSTRACT 

 

Mathematical methods have been developed to evaluate solid-state kinetics. They 

generally fall into two categories: model-fitting or model-free (isoconversional). Model-

fitting methods determine the kinetic triplet (model, frequency factor and activation 

energy) whereas isoconversional (model-free) methods generate the activation energy as 

a function of reaction progress without modelistic assumptions. 

This work investigated the relationship between calculation methods and 

artifactual variation in activation energy. Variable activation energy, often reported by 

isoconversional methods, could be an artifact due to experimental errors. This can lead to 

erroneous mechanistic conclusions about a reaction being complex.  

In this work, a new approach is proposed for obtaining the kinetic triplet that 

combines the advantages of isoconversional and model-fitting methods. An 

isoconversional method was used to select the reaction model by comparing calculated 

activation energies to that predicted by modelistic approaches. The selected model was 

the one that had an activation energy closest to the isoconversional value and the 

frequency factor was then obtained from the selected model. This complementary 

approach was used to evaluate simulated and real experimental data.  

The desolvation kinetics of several structurally related solvates of sulfameter (5–

methoxysulfadiazine) were evaluated both isothermally and nonisothermally. Calculated 

desolvation kinetic parameters were compared and related to the crystal structure of the 

solvates. A relationship was observed between calculated activation energy and solvent 

size. The larger the solvent molecule, the higher its solvate’s desolvation activation 

energy. The solid-state reaction models selected were rationalized on the basis of crystal 

structures of the solvates where the solvent molecules were in cavities in the crystal. 
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Finally, it was found that kinetic parameters obtained isothermally and 

nonisothermally were not in agreement. It was concluded that kinetic results from 

isothermal experiments may not be extended to nonisothermal or vice versa without 

confirmation of their equivalence. 
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ABSTRACT 

 

Most solid-state kinetic principles were derived from those for homogenous 

phases in the past century. Rate laws describing solid-state degradation are more complex 

than those in homogenous phases. Solid-state kinetic reactions can be mechanistically 

classified as nucleation, geometrical contraction, diffusion and reaction order models. 

Experimentally, solid-state kinetics are studied either isothermally or nonisothermally. 

Many mathematical methods have been developed to interpret experimental data for both 

heating protocols. These methods generally fall into one of two categories: model-fitting 

and model-free.  

Historically, model-fitting methods were widely used because of their ability to 

directly determine the kinetic triplet (i.e., frequency factor [A], activation energy [Ea] and 

model). However, these methods suffer from several problems among which is their 

inability to uniquely determine the reaction model. This has led to the decline of these 

methods in favor of isoconversional (model-free) methods that evaluate kinetics without 

modelistic assumptions. However, isoconversional methods do not compute a frequency 

factor nor determine a reaction model which are needed for a complete and accurate 

kinetic analysis. A new approach was proposed that combines the power of 

isoconversional methods with model-fitting methods. It is based on using isoconversional 

methods instead of traditional statistical model-fitting methods to select the reaction 

model. Once a reaction model has been selected, the activation energy and frequency 

factor can be determined for that model. This approach was investigated for simulated 

and real experimental data for desolvation reactions of sulfameter solvates.  

Controversies have arisen with regard to interpreting solid-state kinetic results 

which include variable activation energy, calculation methods and kinetic compensation 

effects. The concept of variable activation energy in solid-state reaction kinetics has 
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caused considerable debate because this behavior has been viewed by some as a violation 

of basic chemical kinetic principles. Activation energy variation has been detected by 

isoconversional or “model-free” calculation methods which generate activation energy as 

a function of reaction progress. The relationship between calculation methods and 

artifactual variation in activation energy was investigated by employing model-fitting and 

isoconversional methods to analyze both simulated and experimental data. The 

experimental data was for the sulfameter-dioxolane solvate desolvation by TGA. It was 

shown that variable activation energy in simple reactions could be an artifact resulting 

from the use of isoconversional methods; this artifactual behavior can be seen in both 

isothermal and nonisothermal kinetic experiments. Therefore, care should be taken when 

interpreting kinetic results from isoconversional methods. If the variation in activation 

energy is artifactual, this variation can lead to a false mechanistic conclusion about a 

reaction being complex while, in fact, it is not. Artifactual variation can be reduced by 

careful experimental design and control of experimental variables in addition to 

experimental replication, so that averaged kinetic parameters and their confidence 

intervals can be estimated. 

The solid-state stability of several structurally related solvates of sulfameter (5–

methoxysulfadiazine) was investigated by studying the kinetics of their desolvation 

reaction both isothermally and nonisothermally. Calculated kinetic parameters were 

compared and related to the crystal structure of these solvates. A relationship was 

established between desolvation kinetic parameters (e.g., activation energy) and the 

solvent size; the larger the solvent molecule, the higher its activation energy. The solid-

state reaction models selected also corresponded to the single crystal structure of the 

sulfameter-solvate system in which the solvent molecules were in cavities. Finally, it was 

found that kinetic parameters obtained isothermally and nonisothermally were not in 

agreement. Therefore, kinetic results from one may not be extended to the other.
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CHAPTER 1  

BASICS AND APPLICATIONS OF SOLID–STATE KINETICS 

 

Many transformations may occur when a solid sample is heated – melting, 

sublimation, polymorphic transformation, desolvation or degradation [1]. These solid-

state reactions are common, especially polymorphic transformations and degradation. 

Solid-state chemistry has recently gained much interest in pharmaceutical sciences, 

which renders the topic of solid-state kinetics important. Solid-state reactions have many 

forms, however, those that involve weight or enthalpic change are more studied as their 

kinetics can be followed by thermal analytical methods. For pharmaceutical solids, many 

solid-state kinetic studies are either desolvation reactions or polymorphic 

transformations. Interest in these reactions is increasing as many formulated drugs, 

including compendial drugs, are solvates, mainly hydrates. The stability of solvates is a 

concern to pharmaceutical scientists since they may convert to an amorphous form upon 

desolvation while others may become chemically labile. For example, cephradine 

dihydrate dehydrates and produces an amorphous form that is more easily oxidized. 

Other hydrates may change their hydration state producing forms with different solubility 

characteristics [2]. Due to the impact of solvates on the development process and drug 

performance, it is important to know the stability of these solvates. In addition, with 

many possible crystal forms of a drug, stability of the marketed crystal form should be 

well understood to ensure drug product quality. 

One recent example of polymorphic instability is ritonavir, which is Abbott’s 

protease inhibitor for human immunodeficiency virus (HIV). It was temporarily 

withdrawn from the market because the marketed crystal form (Form I) transformed to a 

more thermodynamically stable and less soluble form (Form II) [3, 4]. Another classic 

example is chloramphenicol palmitate which was reported to exist in more than one 
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crystalline form and one form was found to be as much as seven times therapeutically 

more potent than other forms [5]. Therefore, the solid-state stability of polymorphic and 

solvated drug solids and the kinetics of such transformations needs to be evaluated in the 

development of such drugs and their dosage forms. 

Solid-state kinetics bear similarities to those in homogenous phases like solutions 

or gases. The basic mathematical principles are shared among all three phases. However, 

solid-state reaction mechanisms differ substantially from those in homogenous phases. 

These differences include experimental procedures employed for their study and 

computation methods for analyzing data.  

A review of solid-state kinetics has not appeared in the pharmaceutical literature 

while many such studies have appeared. As several theories and models for solid-state 

kinetics have been proposed and applied in the last century, a review of them can assist in 

their proper application. Additionally, kinetic software is available from thermal analysis 

equipment manufacturers or other sources to analyze solid-state kinetic data. There needs 

to be an understanding of the underlying assumptions and limitations of such software 

before one can accurately interpret the results generated. This chapter reviews solid-state 

reaction kinetic concepts and applications for solids. 

Solid-state kinetics: from homogenous to heterogeneous 

processes 

Chemical kinetic concepts were originally based on generalizations from 

empirical studies of homogenous reactions first in the gas phase. These concepts were 

later applied to solution phase processes and eventually to solid-state reactions. Solid-

state kinetic concepts did not develop separately. However, applying these concepts was 

justified in the solid-state because of similarities to some homogenous reactions. For 

example, the Arrhenius equation was historically developed empirically, after which 

theoretical justification for its use was later introduced in gases through the collision 
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theory and in solutions through the transition-state theory. A similar justification was 

claimed for the use of this equation in solid-state kinetics [6]. Therefore, many solid-state 

kinetics principles evolved from homogenous kinetic principles. However, application of 

these kinetic principles are different because of the differences between solids, solutions 

and gases. For example, particle size, interface advance and geometric shape are 

variables unique to heterogeneous solid reactions and have no equivalent in homogenous 

reactions. Differences between homogenous and heterogeneous kinetics will be 

highlighted throughout this chapter. 

Rate laws 

There are many types of solid-state reactions but this focus will be on reactions 

that involve a single solid reactant. A simple reaction is one which follows the reaction 

scheme below:  

A (s) →  B (s) + C (g) 

Solid-state desolvation is a reaction that obeys the above scheme because it 

involves the removal of solvent as vapor from a crystalline solvate below its melting 

point (with dehydration being the loss of water) [7, 8]. 

 In desolvation, A is the solvate or hydrate, B is the parent drug and C is the 

solvent or water vapor. The rate [9] of the above reaction is often proportional to the 

concentration (amount or fraction) of the reactant or products raised to an integer or 

fractional power according to: 
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Where, A0 is the initial concentration of A, and n, is the reaction order. The rate of 

a reaction is usually studied by following the decrease in reactant concentration or 

increase in product concentration. Therefore, the reaction rate law becomes: 
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Where, k is the reaction rate constant. If the evolved gas (C) is efficiently flushed 

such that [C]≈0, the above equation reduces to: 
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If the reaction is an elementary unimolecular (n=1) reaction, the rate law would be 

(following only the reactant concentration): 
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Which upon integration becomes: 
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The above expressions use concentration ([A]) which is usually measured in 

solution kinetics. However, in solid-state kinetics, concentration has little meaning 

because the sample is not homogenous, hence reactivity is not the same throughout the 

sample (non-isotropic) and “concentration” does not reflect reactivity. Figure 1 depicts 

the difference between homogenously (dark spots, Figure 1a) and heterogeneously (dark 

spots, Figure 1b) distributed reaction sites. In solids, reactions often occur or are initiated 

at defects in the crystal lattice or at crystal surfaces, edges or corners [5].    

Ideally, a perfect crystal contains no imperfections (defects) thus having minimal 

reactivity. However, in reality, perfect crystals are rare and most crystal lattices contain 

imperfections. Lattice imperfections can be point defects and/or dislocations. Point 

defects are defects where units are missing from the lattice leaving “vacancies” in the 

lattice. These missing units may be atoms, molecules or ions. Point defects are also 
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generated when foreign atoms or ions (e.g., impurities) occupy normal lattice positions. 

Dislocations in the lattice structure result during crystal growth due to surface or internal 

stresses. A dislocation is a discontinuity in the regularity of the lattice that exists in the 

bulk of a crystal [10]. For example, a group of parallel planes in the lattice could be 

shifted by a certain lattice spacing which could be due to rapid crystal growth in which 

molecules (or ions or atoms) do not have time to reach their lowest energy states. 

Imperfection sites are energized sites (i.e., have a higher free energy) in which the 

activation energy for reaction is reduced, thus explaining why these sites are highly 

reactive.  

Solid-state kinetics can be studied with thermal analytical methods [1, 11] by 

measuring a sample property as it is heated or held at a constant temperature. If a reaction 

involves weight loss, then weight is followed and the kinetics are usually studied by 

thermogravimetry (TGA). Heat (evolved or consumed) is another measurable property 

that is used for kinetic evaluation using differential scanning calorimetry (DSC) or 

differential thermal analysis (DTA). Weight loss or heat flow data are converted to a 

normalized form called conversion fraction (α). The conversion fraction ranges from 0 

and 1 and is a measure of reaction progress as a function of time or temperature. For 

isothermal thermogravimetric analysis, the conversion fraction (α) at any time is: 
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Where, m0 is the initial sample weight, mt is the sample weight at time, t, and m∞ 

is the final sample weight. Nonisothermally, the conversion fraction (α) at any 

temperature is: 
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Where, mT is the sample weight at temperature, T. 

For an isothermal DSC/DTA analysis, the conversion fraction [12] at any time is: 
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Where, AUC0
t is the sample peak area from zero to t and AUC0

∞ is the total 

sample peak area. Nonisothermally, the conversion fraction at any temperature can be 

calculated from: 
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Where, AUC0
T is the sample peak area from zero to T. 

Reaction kinetics in the solid-state can also be studied by other analytical methods 

such as,  powder X-ray diffraction (PXRD) [13] and nuclear magnetic resonance (NMR) 

[14, 15]. For any analytical method, the measured parameter is transformed into a 

conversion fraction (α) that can be used in the kinetic equations. Examples of 

transformations with TGA and DSC data are shown in Figure 2. 

Using conversion fraction, rate expressions defined in Eqs. (4) and (5) can be 

written as: 
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Unlike rate laws in homogenous kinetics which usually depend on reaction order 

(i.e. first, second, etc.), a rate law for an elementary solid-state reaction could depend on 
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factors such as rate of nuclei formation, interface advance, diffusion, and/or geometrical 

shape of solid particles. These factors lead to several decomposition models [16-18] that 

do not exist in homogenous kinetics and are summarized in Table 1. Equations (10) and 

(11) can be generally expressed as: 
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Where, f(α) is the differential reaction model and g(α) is the integral reaction 

model. In some references, f(α) and g(α) definitions may be reversed. 

The temperature dependence of the rate constant (k) is usually given by the 

Arrhenius equation [19]: 
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Where, A is the pre-exponential (frequency) factor, Ea is activation energy, T is 

absolute temperature and R is the gas constant. Substitution of Eq. (14) into Eqs. (12) and 

(13) gives: 
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Models and mechanisms in solid-state kinetics 

A model is a theoretical, mathematical description of what occurs experimentally. 

In solid-state reactions, a model can describe a particular reaction type and translate that 

mathematically into a rate equation. Many models have been proposed in solid-state 

kinetics and these models have been developed based on certain mechanistic 

assumptions. Other models are more empirically based and their mathematics facilitates 

data analysis with less mechanistic meaning. Therefore, different rate expressions are 

produced from these models. 

In homogenous kinetics (e.g., gas or solution phases), kinetic studies are usually 

directed toward obtaining rate constants that can be used to describe the progress of a 

reaction. Additionally, the reaction mechanism is typically investigated and rate constant 

changes with temperature, pressure or reactant/product concentrations are often helpful in 

uncovering mechanisms. These mechanisms involve to varying degrees the detailed 

chemical steps by which reactant(s) is (are) converted to product(s). However, in solid-

state kinetics, mechanistic interpretations usually involve identifying a reasonable 

reaction model [20] because information about individual reaction steps is often difficult 

to obtain. However, the choice of a reaction model should ideally be supported by other 

complementary techniques such as microscopy, spectroscopy, X-ray diffraction, etc.[21]  

Table 1 lists the most common models [16-18]. Classifications and mathematical 

derivation of reaction models are detailed later (Chapter 2).  

Methods for studying solid-state kinetics 

There are many methods used to study solid-state kinetics. These methods can be 

generally grouped into two categories – experimental and computational; the methods are 

summarized in Figure 3. 
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Experimental methods 

There are two approaches utilized to obtain solid-state kinetic data – isothermal 

and nonisothermal methods. For isothermal methods, reactions are followed at several 

constant temperatures while nonisothermal (dynamic) methods involve heating samples 

at one or more constant heating rates (usually linear) and following the course of the 

reaction. Isothermal methods are similar to those used in homogenous kinetics to produce 

α-time data (Figure 4a) compared to concentration-time data in homogenous kinetics. On 

the other hand, nonisothermal analysis produces α-temperature data (Figure 4b). 

Isothermal method 

This method is based on maintaining samples at several constant temperatures 

(i.e., isothermal) and as a result, a set of α-time points is produced at each temperature. 

These methods are based on the isothermal rate equations (Eqs. (13) and (16)). 

Nonisothermal method 

This method employs a heating rate (β), usually linear, to raise the temperature. A 

linear heating program follows: 

 

 
tTT β+= 0  (17)

 

Where, T0 is the starting temperature, β is the linear heating rate (K/min.), and T 

is the temperature at time, “t”. Nonisothermal experiments are usually common in solid-

state kinetics, however, they have been applied to the study of homogenous kinetics [22, 

23]. 

The following relationship can be defined for nonisothermal experiments, 
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Where, dα/dT is the nonisothermal reaction rate; dα/dt is the isothermal reaction 

rate and dT/dt is the heating rate (β). Substituting Eq. (15) into Eq. (18) gives, 
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Equation (19) represents the differential form of the nonisothermal rate law. 

Temperature integral 

Integrating the differential nonisothermal rate law (Eq. (19)) produces the integral 

form of the nonisothermal rate law: 
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This integral is called the “temperature integral” and has no analytic solution [11, 

24]. It has been reported that using nonlinear heating programs such as hyperbolic or 

parabolic [25] or non-Arrhenius temperature functions of the rate constant [26] leads to 

exact analytical solutions of the temperature integral. However, this approach has not 

been widely implemented. To transform the above integral to a more general form found 

in mathematical handbooks, the integration variable can be redefined as, 
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Where, p(x) is the exponential integral which can be found in mathematical tables 

[27]. The main approaches used for evaluating the temperature/exponential integral are 

[11]: 

 

1. Calculating values of p(x) numerically. 

2. Converting p(x) to an approximate form that can be integrated. 

3. Approximating p(x) by a series expansion. 

The two series most used for approximating the temperature integral are [1]: 

I. An asymptotic series expansion: 
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II. The Schlömilch series expansion: 
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Many approximations have been reported for the temperature integral [1, 26], two 

of which will be covered – the Doyle [28-30] and Senum-Yang [31] approximations. 

They are among the most frequently used temperature/exponential integral 

approximations as each is the basis of a particular kinetic calculation method. 
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The Doyle approximation 

The Doyle [28-30] approximation is based on the observation that log p(x) is 

linear with respect to x over a short range of x values according to: 

 

 
BxAxp −−≈)(log

 (23)
 

Where, A and B are fitted linear constants. Doyle [28-30] approximated values of 

p(x) using the first three terms of the Schlömilch series expansion and utilized the 

relationship in Eq. (23) for x values between 28–50. By interpolation [30], Doyle 

calculated parameters in Eq. (23) as, 2.315 and 0.4567 for A and B, respectively. 

Therefore, Eq. (23) becomes, 
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Senum-Yang approximation 

Senum and Yang [31] developed an accurate nonlinear approximation of the 

temperature integral. If variables in Eq. (21) are transformed so that x = zy, the integral 

becomes, 
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Which can be written as, 
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E2(z) or generally, Ev(z) (where v is an integer) is a well known integral [27, 32] 

for z > 0 given by the following continued fraction [33]: 

 



 

 

13 

 
































 +
+

+
+

+

+
+

+

+
+

+

+
+

=
−

...z
4

1

3v
z

3
1

2v
z

2
1

1v
z

1
1

0v
z

1
 

zz

)(z z
v eE

 

(27)
 

Truncating the number of terms in the above continued fraction gives the first 

(one term), second (two terms), third (three terms) and fourth (four terms) degree rational 

approximation known as the Senum-Yang approximation as given in Table 2 [26, 31, 34, 

35]. Detailed derivation of these terms is given in the appendix section. 

Calculation methods 

There are two groups of methods used to analyze either isothermal or 

nonisothermal solid-state kinetic data – modelistic and model-free methods (Figure 3). 

Model-fitting methods 

For these methods, different models are fit to the data and the model giving the 

best statistical fit is chosen as the model of choice from which the activation energy (Ea) 

and frequency factor (A) are calculated. 

Isothermal model-fitting methods (Conventional method) 

This method is identical to that in homogenous phase kinetics. It involves two fits: 

the first, determines the rate constant (k) of the model that best fits the data according to 

Eq. (13), while the second determines specific kinetic parameters such as the activation 

energy (Ea) and frequency factor (A) using the Arrhenius equation (Eq. (14)). Figure 5 

illustrates the application of the conventional method for isothermal model-fitting. 

Kinetic data were simulated (see Chapter 3) with Ea= 100 kJ/mole and A =1013 min-1 and 
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assuming an R3 model with a 0.25% random error in time (Figure 5a). The upper table in 

Figure 5b tabulates data from Figure 5a while the lower table calculates g(α) for each 

reaction model in Table 1. Figure 5c shows the first fit which determines the model that 

best fits the data according to Eq. (13). The slope from this fit gives the reaction rate 

constant and this fitting is repeated for each model at each temperature (only two 

temperatures are shown in Figure 5c). For each model, rate constants from all 

temperatures (five in our simulation) are used for the second fit according to the 

Arrhenius equation (Eq. (14)) as shown in Figure 5d. The frequency factor and activation 

energy are obtained from the intercept and slope, respectively, of this plot. It is 

interesting to note that Ea values calculated isothermally by the conventional model-

fitting method appear to be equal regardless of the model (i.e., model independent). This 

behavior doesn’t occur in homogenous kinetic studies where, for example, activation 

energies obtained from a zero-order fit are substantially different from those obtained by 

a first, second or third-order fit. This unusual behavior has been previously addressed 

[21] [36-38] but without a complete explanation. 

Nonisothermal model-fitting methods 

There are many model fitting methods that extract the three kinetic parameters 

known as the kinetic triplet (A, Ea and model) from nonisothermal data. These methods 

were used extensively earlier in solid-state kinetic analysis and they continue to appear. 

These methods have been critically evaluated [39-43] and it’s been shown that the sole 

use of these methods is not recommended because: 

1. They assume a constant kinetic triplet (A, Ea and model). 

2. They involve fitting three parameters (A, Ea and model) which are determined 

from a single run (i.e., one hating rate). 

3. They involve a single heating rate which is not always sufficient to determine 

reaction kinetics. 
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There are a many of nonisothermal model fitting methods. However, only a few 

have been extensively used, which will be discussed. 

Direct differential method 

This method [44, 45] uses the differential form of the nonisothermal rate law (Eq. 

(19)) by numerically calculating the differential 







≈
∆T

∆α
 

d T

d α  . Taking the logarithm of 

the nonisothermal rate law, Eq. (19) gives: 
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Plotting the left-hand side (including the model f(α)) versus 1/T gives the 

activation energy (Ea) and frequency factor (A) from the slope and intercept, respectively. 

The model that gives the best linear fit is usually chosen as the model. 

Freeman–Carroll (difference-differential) method 

The Freeman and Carroll method [46, 47] is a differential method that was 

originally developed assuming a reaction-order model (f(α) = (1-α)n).  Taking the natural 

logarithm of the differential form of the nonisothermal rate law (Eq. (19)) gives, 
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If incremental differences in the variables of Eq. (29) are taken, we obtain: 
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Equation (30) can be rearranged to, 

 



 

 

16 

      
1

 )( 
1 

 

R

E

T

ln f
 

/T

d T

d α
ln

a−
∆

∆
=

∆

∆
α

 
(31)

 

or 

 )( 
1   

   
)(  

 

αα ln f

T

R

E
 

fln

d T

d α
ln

a

∆

∆
−=

∆

∆

 
(32)

 

 

The activation energy can be obtained by plotting the left-hand side of Eqs. (31) 

and (32) versus  
T

fln
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)(  

1   
 

αfln

T

∆

∆
 and evaluating the slope for Eq. (32). 

Coats-Redfern method. 

This method [48, 49] uses the integral form of the nonisothermal rate law (Eq. 

(22)). Coats and Redfern utilized the asymptotic series expansion for approximating the 

temperature integral (p(x)), producing: 
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Where, Texp is the mean experimental temperature. 

Plotting the left-hand side (including the model, g(α)) of Eq. (33) versus 1/T gives 

the activation energy (Ea) and frequency factor (A) from the slope and intercept, 

respectively. The model that gives us the best linear fit is chosen as the model. The 

Coats-Redfern equation was originally derived assuming a first-order model (g(α) = -

ln(1-α)) but has been generalized to other reaction models. 
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Kissinger method. 

Kissinger [50, 51] proposed a kinetic analysis method for reaction-order models 

(f(α)=(1-α)n) based on taking the derivative of Eq. (19) generating d2α/dT2. According to 

Kissinger, the maximum reaction rate occurs when the second derivative is zero from 

which the following equation can be obtained: 
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Where, (Tm) is the temperature of the maximum rate and αm is the conversion 

value at that maximum rate. The maximum reaction rate represents the peak (i.e., 

inflection point) of a DSC or DTG curve. Taking the natural logarithm of Eq. (34) and 

rearranging gives, 
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The activation energy (Ea) is obtained by plotting the left-hand side of Eq. (35) 

versus 1/Tm for a series of runs at different heating rates. Equation (35) has been 

generalized to any reaction model (f(α)) [52].  

It is worth noting that the Kissinger method is a model-free method as it does not 

require any modelistic assumptions to calculate Ea. However, it is not an isoconversional 

method (discussed below) because it does not calculate Ea values at progressive α values 

but rather assumes a constant Ea, like other methods. Thus this method can not detect 

reaction complexities over the course of the reaction [53]. 

Model-free/isoconversional methods 

Model-free methods calculate the reaction activation energy (Ea) without 

modelistic assumptions which is usually done by grouping terms such as the frequency 
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factor (A) and model into the intercept of a linear equation and using the slope of that 

equation to calculate the activation energy (Ea). The frequency factor (A) can be 

calculated from the intercept of the linear equation but requires modelistic assumptions 

for such a determination. Therefore, model-free methods usually report only activation 

energies.  

Isoconversional methods are model-free methods that evaluate kinetic parameters, 

namely the activation energy (Ea) at progressive conversion values (α) [54]. These 

methods require several kinetic curves to perform the analysis and have therefore been 

called, “multi-curve” methods [55, 56] as shown in Figure 6. Calculations from several 

curves at different heating rates are performed on the same value of conversion (α), thus, 

the name isoconversional. As a result, these methods calculate the activation energy for 

each conversion point (Ea, α), resulting in an isoconversional plot (Ea vs. α) as seen in 

Figure 6.  

The terms, “model-free” and “isoconversional” are sometimes used 

interchangeably, however, not all model-free methods are isoconversional. For example, 

the Kissinger method (discussed above) is a model-free method but is not isoconversional 

[37]. Isoconversional approaches can be used to analyze both isothermal and 

nonisothermal data, as described below. 

Isothermal isoconversional methods 

These methods utilize the isothermal rate law (Eq. (16)) and include the standard 

and Friedman’s isoconversional methods. 

Standard isoconversional method 

This method [41, 57] can be derived by taking the logarithm of the isothermal rate 

law (Eq. (16)) to give: 
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Which can be rearranged to give, 
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A plot of -ln t versus 1/T for each α gives Ea from the slope for that α regardless 

of the model according to: 
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Friedman’s isoconversional method 

This method [58] is a differential method and was one of the first isoconversional 

methods. The logarithm of the isothermal rate law (Eq. (15)) gives, 
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A plot of ln (dα/dt) (or ln ∆α/∆t) versus 1/T at each α gives Ea from the slope for 

that α regardless of the model according to: 
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Nonisothermal isoconversional methods 

Unlike isothermal data, nonisothermal data involve the use of the temperature 

integral (Eq. (22)). Therefore, two common approximations of the temperature integral 

have been widely used: 
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1. A linear approximation (less accurate) utilizing the Doyle approximation has been 

used in the Ozawa and Flynn-Wall methods. 

2. A non-linear approximation (more accurate) utilizing the Senum-Yang 

approximation has been used in the Vyazovkin method. 

Ozawa, Flynn and Wall (OFW) method 

Ozawa [59] and Flynn-Wall [60] independently developed an isoconversional 

calculation method for nonisothermal data which is commonly referred to as the OFW 

method. Taking the common logarithm of the nonisothermal rate law (Eq. (22)) gives the 

following, 
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Substituting Doyle’s approximation (Eq. (24)) in Eq. (41) gives, 
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Substituting Ea /RT for x and rearranging gives, 
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A plot of ln β versus 1/T at each α yields Ea from the slope for that α regardless 

of the model according to: 
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Modified Coats-Redfern method 

Burnham and Braun [61] have transformed the model-fitting Coats-Redfern 

method to an isoconversional method by rearranging Eq. (33) to give, 

 

 RT

E

E

RT

gE

AR

T

a

aa

−





























−=

exp

2

2
1

)(
lnln

α

β
 (45)

 

A plot of ln β/T2 versus 1/T at each α yields Ea from the slope for each α regardless of 

the model according to: 
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An Isoconversional example 

Figure 6 depicts the application of two isoconversional methods to simulated 

kinetic data – isothermal (Figure 6a–standard method) and nonisothermal (Figure 6b–

Ozawa-Flynn-Wall). The kinetic data were simulated with Ea = 100 kJ/mole and A =1015 

min-1 and assuming an R3 model in Figure 6a and an F1 model in Figure 6b. Figure 6a 

shows α-time (α-t) plots while Figure 6b shows α-temperature (α-T) plots.  Calculations 

for each plot (α-t or α-T) were performed for a single conversion value (i.e., 

isoconversional). This is shown as an isoconversional line for α=0.8 in Figure 6a and 

α=0.4 for Figure 6b. Values of time (Figure 6a) or temperature (Figure 6b) from each 

isoconversional line are tabulated below each α-t or α-T plot. Plotting the last two rows 

(-ln t vs 103/T or log β vs 103/T) of these tables according to Eqs. (38) or (44), 

respectively, as shown in Figure 6  gives Arrhenius–like plots for both isoconversional 

methods. The activation energy (Ea) is obtained from the slopes of these plots according 

to Eqs. (38) or (44). The calculated Ea represents a single point (α=0.8 or 0.4) in an 
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isoconversional (Ea -α) plot (circled Ea values in Figure 6). Repeating this analysis for 

different α values gives completed isoconversional plots in Figure 6. 

The Vyazovkin (VYZ) method 

The temperature integral (p(x)) in the nonisothermal rate law (Eq. (22)) is a 

function of Ea and temperature. Therefore Eq. (22) can be written as, 
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Where, I(Ea, T) = p(x). The general assumption used in Vyazovkin’s [62] method 

(or any other isoconversional method) is that the reaction model is independent of the 

heating rate (i.e., g(α) will be the same for any heating rate). Therefore, for a conversion 

value (α), the relationship below could be defined if two heating rates are applied: 
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Where, β1 is the first heating rate, β2 is the second heating rate, Tα1 is the 

temperature for a particular α using the first heating rate, Tα2 is the temperature at the 

same α using the second heating rate, Eaα is the activation energy at that α and Aα is the 

frequency factor at that α. For an experiment having “n” heating rates, the relationship 

would be, 
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which reduces to: 
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where, σ is a constant. 

For a two heating rate study, using two terms in Eq. (50) gives, 
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If both sides are divided by either the right-hand term or left-hand term, we get 

either: 
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or 
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Adding Eq. (52) and Eq. (53) gives, 

 

 

( )
( )

( )
( )

2
T,E

T,E
  

T,E

T,E
  

1a

2a

2

1

2a

1a

1

2 =+
αα

αα

αα

αα

β

β

β

β

I

I

I

I

 (54)
 

For three heating rates a similar equation can be obtained which is, 

 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

6
T,E

T,E
  

T,E

T,E
  

T,E

T,E
  

T,E

T,E
  

T,E

T,E
   

T,E

T,E
  

2a

3a

3

2

1a

3a

3

1

3a

2a

2

3

1a

2a

2

1

3a

1a

1

3

2a

1a

1

2 =+++++
αα

αα

αα

αα

αα

αα

αα

αα

αα

αα

αα

αα

β

β

β

β

β

β

β

β

β

β

β

β

I

I

I

I

I

I

I

I

I

I

I

I
 (55)

 

For “n” heating rates, Eqs. (54) and (55)  can be generalized as, 
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or 
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For experimental data, Eq. (57) might not converge to 0, but an Eaα which 

minimizes the left-hand side can be found if the following form is used: 
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Where Ω is a non-zero constant. Minimizing Eq. (58) is equivalent to minimizing 

the following function, 

 

 

( )
( )∑∑

= ≠

=Ω
n

i

n

ij i

j

I

I

1 ja

ia  
T,E

T,E
 

αα

αα

β

β

 
(59)

 

Minimization of Eq. (59) is equivalent to minimizing Eq. (58) because the 

summations contain pairs of inverse ratios. These inverse ratios can be easily seen in Eqs. 

(54) and (55) which forces each ratio to a value of “1” during minimization. Vyazovkin 

used the 3rd or 4th degree Senum-Yang approximation of the temperature integral. 

According to this method, the activation energy (Eaα) at each α is the value that 

minimizes Ω (i.e., gets closest to 0). 

Vyazovkin’s modified isoconversional method 

Vyazovkin [25] modified his isoconversional method to account for random 

temperature variation. This modified method is not limited to linear heating programs and 

can be used to analyze kinetics from a nonlinear heating program and also isothermal 

experiments. A modification was introduced to the nonisothermal rate law (Eq. (20)) 

where the heating rate (β) has been included in the integral to represent a heating function 

rather than a single temperature (T(t) versus T). Since the heating function is a time 
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dependent function, the integral was changed from a temperature integral (Eq. (20)) to a 

time integral as shown below: 
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where, T(t) is the heating program used. For each α, Eq. (60) becomes, 
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which can be generally expressed as, 
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This method allows for use of linear (Eq. (17)) and nonlinear heating programs 

and also can be used for isothermal analysis (β=0, T(t)=Ti according to Eq. (17)). For any 

heating program, the integral can be numerically evaluated using the trapezoidal method.  

Using the same procedures that were employed for obtaining Eq. (59), it can be 

shown that all values of g(α) from Eq. (62) are equal, therefore, all J(Eaα, T(tα)) values 

are equal. Thus, equating J(Eaα, T(tα)) values and using the same logic as for Eqs. (48)- 

(59), we obtain: 
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The activation energy at each α (Eaα) is the value that minimizes Ω. 
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Vyazovkin’s advanced isoconversional (AIC) method 

Vyazovkin [63] introduced a further modification to his isoconversional method. 

This modification involved integration over smaller time intervals. Therefore, Eq. (61) 

was altered to give: 
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where, ∆α = (1/m) and m is the number of segments (typically 10 – 50) into 

which the integration is divided. Eq. (64) can be generally expressed as, 
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As with the methods for obtaining Eqs. (59) and (63), we can obtain: 
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As in the previous methods, the activation energy (Eaα) at each α is the value that 

minimizes Ω in the above equation. The advanced isoconversional method (AIC) is 

claimed to be superior to other isoconversional methods [63-65] because integration over 

smaller time segments can better account for systematic Ea variations. 

Complementary model-free/modelistic approach 

Khawam and Flanagan [21] have proposed a complementary approach (see 

Chapter 5) that uses both model-free and model-fitting methods for kinetic data analysis. 

This approach utilizes an isoconversional method (Vyazovkin’s) to obtain Ea values 

which are compared to values obtained by a modelistic method (Coats-Redfern). The 

most accurate model is assumed to be the one which produces an activation energy 
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closest to that from the isoconversional analysis. This approach allows one to select 

models that might otherwise be indistinguishable based on quality of regression fit alone. 

Therefore, the strengths of both methods are used in the evaluation of solid-state kinetics 

to obtain A and Ea values as well as the best model. 

Controversies in solid-state kinetics 

Discussions over solid-state kinetic studies have caused numerous debates and 

controversies [66]. Disagreements include questioning whether such kinetic analysis have 

a good theoretical framework, [67, 68] as well as critiques of approximations or 

assumptions used [69-71]. Some of the controversies will be discussed below. 

Varying activation energy in solid-state kinetics 

Solid-state kinetics was developed from reaction kinetics in homogenous systems 

(i.e. gases and liquids). The Arrhenius equation (Eq. (14)) relates the rate constant of a 

simple one-step reaction to the temperature through the activation energy (Ea) and pre-

exponential factor (A). It has been generally assumed that activation energy (Ea) and 

frequency factor (A) remain constant, however, it’s been shown [72-74] in solid-state 

reactions these kinetic parameters may vary with the reaction progress (α). This variation 

can be detected by isoconversional methods. While this variation appears to be in conflict 

with basic chemical kinetic principles, in reality, it may not be. 

Khawam and Flanagan [57, 75] have shown (Chapter 4) that activation energy 

variation is of two types – a true variation that results from the complex nature of the 

solid-state reaction or an artifactual one resulting from the use of some isoconversional 

methods. 

True variation in activation energy  

Many explanations have been suggested for the occurrence of a true variation in 

activation energy, both in homogenous [73] and heterogeneous phases [76]. In the solid-
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state, a variation in activation energy could be observed for an elementary reaction due to 

the heterogeneous nature of the solid sample or due to a complex reaction mechanism. 

Elementary reactions 

If an elementary reaction shows variable activation energy during its progress, it 

may be attributed to a systematic change in the reaction kinetics. This is not usual for 

homogeneous reactions which occur between freely moving, identical reactant molecules 

with random collisional encounters that are usually unaffected by product formation. 

However, reacting entities in a solid sample are not isolated but interact strongly with 

neighboring molecules or particles. Therefore, during such a reaction, reactivity may 

change due to product formation (or disappearance), crystal defect formation, intra-

crystalline strain or other similar effects [76]. 

Solid-state reactivity could also be affected by experimental variables that would 

change the reaction kinetics by affecting heat or mass transfer at a reaction interface. For 

example, temperature changes could affect the kinetics not only through the rate constant 

but also by mechanistic changes. Elementary reaction kinetics at one temperature could 

be different from that at another or complex reactions kinetics (described below) could 

vary with temperature due to changes in the contribution of each elementary step [76] or 

change in the rate-determining step. Purge gas flow rate, is another experimental variable 

that could affect reactivity when reactions produce or consume gaseous components. A 

low purge flow rate may not preclude the reversibility of a reaction compared to a higher 

flow rate which could reduce the reversibility and cause variability in the apparent 

activation energy and/or introduce errors in calculated reaction rates.  

Complex reactions 

If two or more elementary steps, each having a unique activation energy, affect 

the rate of product formation, the reaction is usually considered complex [9]. In such a 

reaction, a change in the activation energy as the reaction progresses would be observed. 
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This change will depend on the contribution of each elementary step, which gives an 

“effective” activation energy that varies with reaction progress. The effective activation 

energy can be mathematically derived from the nonisothermal reaction rate law (Eq. 

(15)), by taking the natural logarithm followed by differentiation to give: 
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From this expression, the activation energy at each conversion (Eaα) can be 

obtained. A reaction can be composed of two parallel steps according to the following 

scheme, 
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Taking the natural logarithm of both sides of Eq. (68) and differentiating gives: 
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Since the left-hand side of Eq. (69) is equal to –( Ea)apparent/R (which is also 

 –(Ea)α /R from Eq. (67)), Eq. (69) becomes: 
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which can be generalized as: 
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Eq. (71) shows that the effective activation energy (Eaα) is a function of each Ea 

and α. 

Kinetic complexities are not limited to multiple chemical steps. They may also 

include physical processes that have different activation energies such as:  

A. Nucleation and growth – the energy barrier for nucleation could be relatively 

large compared to growth. Once a nucleus is established, the rate of interface 

advance can be much lower than that for nucleation. There is no sharp 

demarcation where nucleation stops and growth starts, since the two are 

interdependent. The contribution of nucleation may diminish as the reaction 

progresses, leading to an effective activation energy that varies with the reaction 

progress. 

B. Imperfection distribution – different samples of the same material may have 

different imperfection distributions. Therefore, no two solid samples are identical, 

although they may be similar [77]. This could change the degradation kinetic 

profiles of each sample. 

C. Sublimation occurring simultaneously with other reaction processes. 

D. Surface adsorption-desoprtion processes on the reactants/products. 

E. Diffusion of a gaseous product through the sample. 

F. Rate of growth may vary along each crystallographic axis of a nucleus [74]. 
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G. Particle size – if a solid-state reaction occurs at surfaces or defect points, larger 

particles, which have a lower specific surface area, will be less reactive than 

smaller particles. Various particle sizes could have different kinetic behavior, 

therefore a variable particle-sized sample could show complex reaction behavior.  

H. Particle or solid morphology – degradation kinetics of a spherical particle or 

compact could differ from that of a cylindrical one. A non-homogenous sample 

that contains several solid shapes may show complex reaction behavior. 

I. Localized melting – melt degradation rates usually differ from that of the solid 

producing variable reactivity throughout the sample [76].  

Artifactual variation in activation energy 

Isoconversional methods, use several TGA or DSC data sets for kinetic analysis. 

Some of these methods are sensitive to experimental variables such that changes in these 

variables (Figure 7) produces errors in calculated kinetic parameters like activation 

energy. When performing isothermal experiments, care should be taken to ensure that 

every run is performed under the same experimental conditions (i.e., sample weight, 

purge rate, sample size distribution, particle morphology, etc.; Figure 7) so that 

temperature is the only variable for each run. Similarly, when performing nonisothermal 

experiments, care must be taken to ensure that each run is conducted under the same 

experimental conditions so that only the heating rate is the only variable. Experimental 

variation can be minimized, but not totally eliminated. For example, sample mass (Figure 

7c) may vary from one run to the next and affect a reaction because [78],  

1. Larger masses cause larger endothermic or exothermic (self-heating or self-

cooling) effects, producing larger deviations from the programmed linear heating 

rate.  

2. Diffusion rates through the sample will change; gas diffusion is faster through a 

lower mass compared to a higher mass. 
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3. Thermal gradients through the sample might vary, especially when a powder has a 

low thermal conductivity; larger samples could contain regions where the 

temperature differs significantly from other regions. 

Similarly, sample packing (Figure 7d) could affect solid reaction kinetics where 

loosely packed powders contain air pockets that can reduce thermal conductivity or trap 

evolved gasses compared to a more densely packed powder which would minimize these 

effects. If any of the above effects occur, a thermogram can be altered such that it falls 

above or below the expected thermogram for isothermal studies. This would introduce 

errors in the calculated kinetic parameters obtained from some isoconversional methods. 

Temperature dependence of the rate constant 

The temperature dependence of the rate constant is almost universally expressed 

by the Arrhenius equation. However, historically, there has been controversy surrounding 

the temperature dependence of rate constants with many workers proposing several forms 

for rate constant temperature dependency, as summarized in Table 3.  

These equations were empirically derived based on quality of fit. Selecting an 

equation because it gives a reasonable fit to the data is not a sufficient reason for its 

acceptance, as most of the cited equations will reasonably represent the same 

experimental data. This occurs because kinetic studies are most often conducted in a 

narrow temperature range, which makes 1/T, T and ln T (i.e., independent variables in 

these equations) linearly related to one another. As kinetics developed, most of these 

equations, except for that of Arrhenius, disappeared because they were theoretically 

unsound [19]. As a result, the controversy over temperature dependency was finally put 

to rest, but the controversy and confusion surrounding reaction rate temperature 

dependence still affect researchers in heterogeneous kinetics [70, 79-84]. 

Galwey and Brown [6] have shown that use of the Arrhenius equation in 

heterogeneous kinetics is conceptually sound and theoretically well founded. However, 
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use of the Arrhenius equation in nonisothermal experiments is problematic because the 

temperature integral has no analytical solution. Use of the temperature integral can be 

avoided by performing kinetic studies isothermally, or using the differential form of the 

rate law [26]. However, with our current computational tools, approximating the 

temperature integral is no longer a serious problem because the approximations can be as 

exact as the kinetic data demands. 

Kinetic Compensation Effect 

A kinetic compensation effect (KCE) [85-87], is a relationship between the 

activation energy (Ea) and frequency factor (A) according to: 
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Where, b and c are constants. This relationship is called a “compensation” 

because a change in the activation energy (Ea) is partially or completely compensated by 

a change in the frequency factor (A). KCEs have been classified into three types [87, 88]:  

1. Type–1 – due to a difference in the physicochemical properties of the sample 

which includes groups of different but related reactions. For example, groups of 

reactants that have different function substitutions on the same parent molecule, 

or different crystalline reactants of the same compound containing different 

defects and impurities [88].   

2. Type–2 – due to a difference in the experimental conditions applied to a particular 

reactant’s kinetic studies which includes different atmospheres, sample masses, 

heating rate, etc. 

3. Type–3 – due to using different computational methods for kinetic analysis of the 

same data set. The significance of this type of compensation has been questioned 

and is considered a mathematical artifact [87, 88]. Garn [79-83] considered that 

this effect results from using the Arrhenius equation. 
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Graphically, if a KCE exists, then each Arrhenius plot (ln k vs. 1/T) gives a pair 

of A and Ea values. Several Arrhenius plots for a series of reaction studies will give an 

equal number of A, Ea pairs that can be used to construct a KCE plot (Figure 8a). If a 

KCE exists, then overlaying the Arrhenius curves reveals an isokinetic relationship (IKR) 

[87] as seen in Figure 8b. The IKR is characterized by a point called the “isokinetic 

point” where all Arrhenius curves intersect. The rate constant at this point (kiso) is equal 

for all Arrhenius plots and the temperature at this point is called the “isokinetic 

temperature” (Tiso). 

From the Arrhenius equation (Eq. (14)) and compensation effect (Eq. (72)), the 

isokinetic point can be determined as, 

 

 Rb
TISO

1
=

 
(73)

 

 

 
ck ISO =ln

 (74)
 

Vyazovkin and Lesniovich [89] have used an IKR to calculate the frequency 

factor (A) which can not be obtained directly from isoconversional methods.  

The compensation effect has been widely reported, both in homogenous and 

heterogeneous reactions [85]. However, it remains an empirical observation and has little 

theoretical justification. Galwey and Brown [86] have summarized the two extreme 

positions about the compensation effect – either it is an artifact or it has a real chemical 

significance. If it has real chemical significance, the Arrhenius relationship’s meaning is 

weakened and some basic principles of chemical kinetics may need to be reformulated. 

ICTAC kinetic project 

Solid-state kinetics has been associated with controversies and these issues 

needed to be addressed scientifically. One such approach was through the establishment 
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of a “kinetic project” by several researchers. A kinetics workshop was held during the 

11th International Congress on Thermal Analysis and Calorimetry (ICTAC) in 

Philadelphia, in August, 1996. One of the suggestions of that workshop was to evaluate 

the various calculation methods in a consistent and scientific fashion by establishing a 

global kinetic project. The project distributed kinetic data sets to volunteer participants to 

perform their data analysis [90, 91]. Eight sets of kinetic data consisting of real and 

simulated isothermal and nonisothermal experiments were distributed. Experimental data 

were distributed in six sets for the decomposition of calcium carbonate and ammonium 

perchlorate under nitrogen and vacuum both isothermally and nonisothermally. Two data 

sets were simulated isothermally and nonisothermally using two equally-weighted, 

parallel, first-order reactions (A1=1010 min-1, Ea1= 80 kJ/mole; A2=1015 min-1, Ea2= 120 

kJ/mole) 

The purpose of the project was to evaluate the same data with different 

calculation methods and make judgments based on the kinetic analysis results. 

Participants were not limited to any particular calculation method. Many such methods 

were used to analyze the kinetic data sets including: Ozawa-Flynn-Wall, Kissinger, 

Friedman, Coats-Redfern, direct differential, and many others. Some of these methods 

were incorporated in software packages such as: TA-KIN®, NETZSCH® thermokinetics, 

KINETICS® and AKTS-TA® [39].  

Results for kinetic calculations showed that similar computational methods were 

in agreement among different laboratories. Analysis of simulated data showed that 

isoconversional methods produced results that were in general agreement with Ea values 

ranging from 80–120 kJ/mole; model-fitting results of simulated data gave single Ea 

values intermediate between the two Ea values used thus did not reveal the kinetic 

complexity of two parallel pathways [41]. Also, the kinetic results for the same reaction 

under various experimental conditions were different (i.e., comparing nitrogen and 

vacuum atmospheres for calcium carbonate and ammonium perchlorate). 
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The main conclusions from this project were that the kinetic description of a 

process strongly depends on the experimental conditions [92]. In addition, multi-heating 

rate methods should be employed to obtain reliable kinetic descriptions and any kinetic 

process must be described by the complete kinetic triplet [40, 92].  

The project succeeded in bridging differences of data analysis in solid-state 

kinetics. The project was a first step in “standardizing” solid-state kinetic analysis 

methods. This project should be further expanded to cover other controversial areas in 

solid-state kinetics. 

Summary 

This chapter has demonstrated that solid-state reaction kinetics is both a unique 

and complex area of research.  

It is unique because of its significant deviation from homogenous phase kinetic 

processes. Solid-state kinetics are affected by particle size, crystal defects, crystal strain 

and other solid properties not relevant to liquid or gas phase processes. One must 

carefully interpret solid-state kinetic results and incorporate interpretive caveats that 

reflect these perturbations. Generalizations are both easy and difficult. They are easy 

because the investigator can use straight forward extrapolation of activation energy, 

frequency factor and model to other temperatures or conditions. They are difficult 

because kinetic results can depend upon a myriad of solid-state characteristics making it 

risky to make such extrapolations without knowing how these factors interact to affect 

the reaction(s) of interest. 

This area is complex because of the mathematical tools and models used to 

interpret solid-state kinetic data. There is a rich array of kinetic models that arise from the 

non-isotropic nature of the solid-state. Also, many kinetic studies are carried out under 

non-isothermal conditions which further complicates an already complex kinetic picture. 
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We have attempted to summarize the range of experimental methods (i.e., isothermal and 

non-isothermal) and the attendant mathematical approaches used to analyze such data. 

This review has not been exhaustive but rather representative of the common tools and 

models used. Even though the focus has been on reactions involving weight loss (i.e., 

TGA), many of the tools are applicable to other thermal methods such as DSC. The only 

requirement is the ability to convert collected data to degree of reaction (α) versus time 

or temperature.  

For the pharmaceutical scientist, this summary serves as an introduction into the 

realm of solid-state reaction kinetics. The use of such results to make extrapolations or 

conclusions about solid drug stability under ambient conditions awaits further 

development. The question, “what can I do with these results?” is presently difficult to 

answer in a general sense. For specific cases, answers may be generated for narrow 

applications. Generality in solid-state kinetics of drug solids awaits further investigation 

of the factors affecting such processes and the successful extrapolation to predicting API 

or formulation stability characteristics. 
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a. 

 

b. 

 

Figure 1.   Schematic representation of reactivity: a. homogenous system; b. 
heterogeneous system. Black dots represent reaction sites. 
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Figure 2. Transformations of TGA and DSC curves to conversion fraction curves:  
Desolvation thermogram of a solid solvate by TGA (a) and DSC (b); c. α–T 
plot for the desolvation process for both DSC and TGA results.
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Table 1.  Solid-state rate expressions for different reaction models, classifications and 
mathematical derivations are given in Chapter 2. 

Model Differential form 
f(α)=1/k dα/dt 

 

Integral forma 
g(α)=kt 

Nucleation models 

Power law (P2) 2 α(1/2) α(1/2) 

Power law (P3) 3 α(2/3) α(1/3) 

Power law (P4) 4 α(3/4) α(1/4) 

Avarami-Erofeyev   (A2) 2(1-α)[-ln(1-α)]1/2 [-ln(1-α) ]1/2 

Avarami-Erofeyev   (A3) 3(1-α)[-ln(1-α)]2/3 [-ln(1-α) ]1/3 

Avarami-Erofeyev   (A4) 4(1-α)[-ln(1-α)]3/4 [-ln(1-α) ]1/4 

Prout-Tompkins   (B1) α (1-α) ln[α/(1-α)]+cb 

Geometrical contraction models 

Contracting area  (R2) 2(1-α)1/2 [1-(1-α)1/2] 

Contracting volume (R3) 3(1-α)2/3 [1-(1-α)1/3] 

Diffusion models 

1-D Diffusion (D1) 1/(2α) α2 

2-D Diffusion (D2) [-ln(1-α)]-1 [(1-α)ln(1-α)]+ α 

3-D Diffusion-Jander (D3) [3(1-α)2/3] / [2(1- (1-α)1/3)] [1-(1-α)1/3]2 

Ginstling-Brounshtein (D4) 3/[2((1-α)-1/3 – 1)] 1-(2α/3)–(1-α)2/3 

Reaction-order models 

Zero-order (F0/R1) 1 α 

First-order (F1) (1-α) -ln(1-α) 

Second-order (F2) (1-α)2 (1-α)–1 – 1 

Third-order (F3) (1-α)3 0.5 [(1-α)–2 – 1] 
a In some references f(α) and g(α) have opposite designations. 
 

b constant of integration. 
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Figure 3.  Methods for studying solid-state kinetics. 
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Figure 4.  TGA data for a simulated dehydration reaction: a, isothermal; b, 
nonisothermal. 
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Table 2.  Senum-Yang approximations of the temperature integrala 
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a Detailed derivation shown in the appendix section. 
 

b In Ref. [31], the 4th degree approximation is incorrectly calculated, It is 86x not 88x. 
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Figure 5.  Isothermal model fitting method (conventional method): a, simulated α–time 
curves with 0.25% random error in time at: ▲, 340 K; �, 345 K; �, 350 K; 
�, 355 K and �, 360 K. Inset shows simulation parameters: b, tabulated 
values obtained from the curve in addition to g(α) values for each model; c, 
first data fit (g(α) vs. t) for each model and temperature (only two temperature 
values are shown) and d, second data fit (Arrhenius plot) from which A and Ea 
can be calculated for each model. 
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Figure 6.  Isoconversional methods for evaluating solid-state kinetics: a, Standard 
method for a set of isothermal curves at: �, 340 K; �, 345 K;�, 350 K; �, 
355 K and �, 360 K; b, Ozawa-Flynn-Wall (OFW) method for a set of 
nonisothermal curves at: �, 1 K/min; �, 2 K/min; �, 4 K/min; �, 8 K/min 
and �, 16 K/min. 
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Figure 7.  Examples of experimental variables that could affect thermograms obtained 
by TGA/DSC: a, particle shape; b, purge gas flow rate; c, sample mass and d. 
sample packing. 
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Table 3.  Summary of temperature dependencies of rate constants [19] 

Equation a Year Reference b 

( )TGFAk T '1' +=  1850 Wilhelmy  

DT
Aek =  1862 Berthelot  

2'' Tbak +=  1881 Warder  

( )
T

DTB

Aek

2−
−

=  
1883 Schwab  

T

B

Aek
−

=  
1889 Arrhenius 

T

B

C
eATk

−

=  
1893 Kooij 

C
ATk =  1895 Harcourt and Esson  

( )
T

DTB

C
eATk

2−
−

=  
1898 Van’t Hoff 

a A, A’, B, C, D, F, G’, a’ and b’ are temperature independent constants. 
 
b Ref. [19] cites the original articles for these expressions. 
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Figure 8.  a, Kinetic compensation effect (KCE); b, isokinetic relationship (IKR). Each point in 
“a” results from an Arrhenius plot shown in “b”. 
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CHAPTER 2  

MODELS IN SOLID-STATE KINETICS: BASICS AND 

MATHEMATICAL FUNDAMENTALS 

 

Introduction 

Fifty years have passed since the publication of “Chemistry of the Solid State” 

edited by W.E. Garner [93] which covered theories of the solid-state, including solid-

state reaction kinetics. Jacobs and Tompkins [16] covered theories and derivations of 

some solid-state reaction models in Garner’s text; specifically, nucleation and nuclei 

growth models. The derivation of these and other models has also appeared in Volume 22 

of the Chemical Kinetics Series entitled, “Reactions in the Solid State” by Brown et. al. 

[94] Later, Galwey and Brown [95] presented many of these same models. These and 

other older references are becoming less accessible because they have been out of print 

for many years. Researchers who seek the basis for these models and their mathematical 

foundations must find such old texts or access even older journal articles. Unfortunately, 

no single reference comprehensively presents the basics and mathematical development 

of these models. The lack of such a source causes authors to redundantly present reaction 

models in tabular forms [96-100] as shown in Table 1. It is rare to find a solid-state 

kinetic report that does not list such reaction models because of the lack of a general 

source to which reference can be made. 

This chapter is intended to provide a summary and mathematical basis for 

commonly used reaction models in solid-state kinetics.  

Model classification 

Models are generally classified based on the graphical shape of their isothermal 

curves (α vs. t or dα/dt vs. α) or on their mechanistic assumptions. Based on their shape, 



 

 

50 

kinetic models can be grouped into: acceleratory, deceleratory, linear or sigmoidal 

models (Figure 9). Acceleratory models are those in which the reaction rate (dα/dt) is 

increasing (e.g., accelerating) as the reaction proceeds (Figure 9a), similarly, deceleratory 

reaction rates decrease with reaction progress (Figure 9b–d) while the rate remains 

constant for linear models (Figure 9e) and sigmoidal models show a bell-shaped 

relationship between rate and α (Figure 9f). Nonisothermally, α-temperature plots are not 

as distinctive in their shapes as they are isothermally. Figure 10 shows the nonisothermal 

α-temperature and dα/dT vs. α plots generated using Eqs. (19) and (20). 

 Based on mechanistic assumptions, models are divided into: nucleation, 

geometrical contraction, diffusion or reaction-order (Table 1). 

Model derivation 

Model derivation is based on several proposed reaction mechanisms which 

include nucleation, geometric shape, diffusion, and reaction-order. Sestak and Berggren 

[101] have suggested a mathematical form that represents all models in a single general 

expression: 

 

 
( ) ( )( ) pnm

g αααα −−−= 1ln1)(
 

(75)
 

Where, m, n and p are constants. By assigning values for these three variables, 

any model can be expressed. Derivations and theoretical implications of specific models 

are discussed below. 

Nucleation and nuclei growth models 

The kinetics of many solid-state reactions have been described by nucleation 

models; specifically, the Avrami models, these reactions include: crystallization [102-

104], crystallographic transition [105], decomposition [106, 107], adsorption [108, 109], 

hydration [110], and desolvation [21]. Skrdla and Robertson [111] have recently 
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suggested a model that describes sigmoidal α-time curves based on the Maxwell-

Boltzman energy distribution and incorporates two rate constants – one for the 

acceleratory and one for the deceleratory region of the α-time curve. 

Nucleation 

Crystals have fluctuating local energies from imperfections due to impurities, 

surfaces, edges, dislocations, cracks and point defects [112]. Such imperfections are sites 

for reaction nucleation since the reaction activation energy is minimized at these points. 

Thus, they are called, nucleation sites [16, 105]. 

A common reaction in solid-state kinetics follows the scheme: 

A (s)  →  B (s) + C (g) 

Where, a solid “A” decomposes thermally to produce a solid “B” and gas “C”.  

Nucleation is the formation of a new product phase (B) at reactive points 

(nucleation sites) in the lattice of the reactant (A). Nucleation rates have been derived 

based on one of two assumptions [16]: nucleation is single or multi-stepped (Table 4).  

Single-step nucleation assumes that nucleation and nuclei growth occur in a single 

step. For N0 potential nucleation sites (having equal nucleation probability), once the 

nuclei (N) are formed, they grow and the rate of nucleation is a simple first-order process 

according to: 

 

 
( )NNk

dt

dN
N −= 0  (76)

 

Where, N is the number of growth nuclei present at time, t, kN is the nucleation 

rate constant. Separating variables and integrating Eq. (76) gives: 

 

 
( )tkNeNN

−−= 10  (77)
 

Differentiation of Eq. (77) gives the exponential rate of nucleation: 
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tk

N
NeNk

dt

dN −= 0  (78)
 

When kN is small, the exponential term in Eq. (78) is ~1 and the rate of nucleation 

is approximately constant producing a linear rate of nucleation, 

 

 
0Nk

dt

dN
N=  (79)

 

However, when kN is very large, the rate of nucleation is very high indicating that 

all nucleation sites are rapidly or instantly nucleated producing an instantaneous rate of 

nucleation: 

 

 
∞=

dt

dN

 (80)
 

On the other hand, multi-step nucleation assumes that several distinct steps are 

required to generate a growth nucleus [113]. Accordingly, formation of product B will 

induce strain within the lattice of A rendering small aggregates of B unstable causing 

them to revert back to reactant A. Strain can be overcome if a critical number (mc) of B 

nuclei are formed. Therefore, two types of nuclei can be defined – germ and growth 

nuclei. A germ nucleus is submicroscopic with B particles below the critical number 

(m<mc) which will either revert back to reactant A or grow to a growth nucleus which is 

a nucleus with B particles exceeding the critical number (m>mc) of particles allowing 

further reaction (i.e. nuclei growth). Therefore, a germ nucleus must accumulate a 

number of product molecules, “p”, before it is converted to a growth nucleus. The rate 

constant (ki) for addition of individual molecules in a nucleus up to “p” molecules (e.g., 

n< p) is assumed to be constant or k0=k1=k2=k3=…=kp-1=ki. (i.e., rate constant for 

addition of each molecule). After “p” molecules have been accumulated (e.g. n ≥ p), the 

rate constant (kg) for further nucleus growth by addition of further molecules (>p) 
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becomes, kp=kp+1=k p+2=k p+4=…=kg . It is assumed that the rate of nucleus growth is more 

than that of nucleus formation (i.e., kg > ki). Therefore, according to Bagdassarian [113], 

if β successive events are necessary to form the growth nucleus, and each event has a 

probability equal to ki, then the number of nuclei formed at time, “t”, is: 

 

 

( ) β
β

β
Dt

tkN
N i ==

!
0

 (81)
 

where, ( )
!

0

β

β
tkN

D i= . After differentiation, Eq. (81) becomes, 

 

 

1−= ββtD
dt

dN

 (82)
 

Equation (82) represents the power law of nucleation [16, 113] (Table 4). 

Equation (82) was also derived by Allnatt and Jacobs [114] but they assumed unequal 

rate constants for addition of successive molecules to the growth nuclei before reaching 

the critical size (n=p). 

Nuclei growth 

The nuclei growth rate (G(x)) can be represented by the nuclei radius formed 

from growth. Nuclei growth rates usually vary with size [16, 95]. For example, growth 

rates of small nuclei (often, submicroscopic) would be different from that of large nuclei. 

Low growth rates are due to the instability of very small nuclei (germ nuclei) which 

revert to reactants. The radius of a stable nucleus (growth nucleus) at time, t, (r(t,t0)), is: 

 

 
( ) dxxGttr

t

t

. )(,
0

0 ∫=  (83)
 

Where, G(x) is the rate of nuclei growth and t0 is the formation time of a growth 

nucleus.  
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In addition to nucleus radius, two important considerations in nuclei growth are 

also considered – nucleus shape (σ) and growth dimension (λ). When these are 

considered, they describe nuclei growth rate through the volume occupied by individual 

nuclei (v(t)). Therefore, a stable nucleus formed at time (t0) occupies a volume v(t) at 

time, t, according to: 

 

 
( ) ( )[ ]λ

σ 0, ttrtv =
 

(84)
 

Where, λ is the number of growth dimensions (i.e., λ=1, 2 or 3), σ is the shape 

factor (i.e., 4π/3 for a sphere) and r is the radius of a nucleus at time, t. Equation (84) 

gives the volume occupied by a single nucleus, the total volume occupied by all nuclei 

(V(t)) can be calculated by combining nucleation rate (dN/dt) and growth rate (v(t,t0)) 

equations while accounting for different initial times of nucleus growth (t0): 

 

 
( ) 0

0 0

)( dt
dt

dN
tvtV

tt

t

=









= ∫  (85)

 

Where, V(t) is the volume of all growth nuclei and dN/dt is the nucleation rate. 

Substituting Eq. (83) into (84) and Eq. (84) into (85) gives: 

 

 
0

0 00

. )()( dt
dt

dN
dxxGtV

tt

t t

t =






















= ∫ ∫

λ

σ  (86)
 

The above equation may be integrated for any combination of nucleation and/or 

growth rate laws to give a rate expression of the form (g(α) = kt) as listed in Table 1. 

However, this is not always possible since there is no functional relationship [95] 

between the nucleation and growth terms. Therefore, assumptions about nucleation 

(dN/dt) and growth (v(t)) rate equations must be made, as described below. 
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Power law (P) models 

For a simple case where nucleation rate follows the power law (Eq. (82)), and 

nuclei growth is assumed constant (G(x)=kG), Eq. (86) becomes, 

 

 
( )( ) ( ) 0

1
0

0

0)( dttDttktV

t

G

−

∫ −= βλ
βσ  (87)

 

Evaluating the integral in Eq. (87) gives [16]: 
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If ( )









+
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+

+
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2!2
1

1
1'

β

βλλ

β

λβ
βDD and n=β+λ, Eq. (88) becomes, 

 

n

G tDktV ')( λσ=
 (89)

 

Since, V(t) is directly proportional to the reaction progress (α), α can be 

represented as: 

 

 
CtV ×= )(α

 (90)
 

Where, C is a constant equal to 1/V0 (V0-initial volume). From Eqs. (89) and (90) 

we obtain: 

 

 

n

G tDCk 'λσα =
 (91)

 

which can be rewritten as: 

 

 
( ) n

n

n
G tDCk 








=

1

'λσα  (92)
 

If  ( )n
G DCkk

1

'λσ= , Eq. (92) can be written as: 
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( )n
kt=α

 
(93)

 

Equation (93) can be rearranged to: 

 

 ( ) kt
n

=

1

α
 

(94)
 

Equation (94) represents the various power law (P) models (Table 1). 

The Avrami-Erofeyev (A) models 

In any solid-state decomposition, there are certain restrictions on nuclei growth. 

Two such restrictions have been identified [95] (Figure 11): 
a. Ingestion – elimination of a potential nucleation site by growth of an existing 

nucleus; ingested sites never produce a growth nucleus due to their inclusion in a 
growth nucleus. Ingested nuclei are called “phantom” nuclei. 

b. Coalescence – loss of reactant/product interface when reaction zones of two or 
more growing nuclei merge. 
 

An expression relating the number of nuclei sites is [115]: 

 

 
)()()( 201 tNtNNtN −−=
 (95)

 

Where, N0 is the total number of possible nuclei-forming sites, N1(t) is the actual 

number of nuclei at time, t, N2(t) is the number of nuclei ingested and N(t) is the number 

of nuclei activated (i.e., developed into growth nuclei). From Eq. (95), a nucleation rate 

(dN/dt) known as the modified exponential law can be developed [16]. However, if this 

nucleation rate is substituted into Eq. (85), the resulting expression does not have an 

analytical solution [16]. To deal with this issue, an extended conversion fraction (α′) was 

proposed [116] which is the conversion fraction previously defined in Eq. (93)  (α=[kt]n) 

that neglects ingestion (i.e., accounts for active and phantom nuclei) and nuclei 

coalescence. Therefore, α′ ≥ α. Values of α can be evaluated by determining their 

relation to values of α′. 
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The extended conversion fraction (α′) was related to the actual conversion 

fraction (α) by Avrami [117] who obtained: 

 

 ( )α

α
α

−
=′

1
d

d  (96)
 

Which upon integration gives: 

 

 
( )αα −−=′ 1ln

 (97)
 

Substituting the value of (α′) from Eq. (93) into Eq. (97) gives: 

 

 
( ) ( )α−−= 1lnn
kt

 
(98)

 

which can be rearranged to: 

 

 
( )[ ] kt

n=−− /11ln α
 (99)

 

Erofeyev (Erofe’ev or Erofeev) [118] followed a different approach to derive a 

special case of Eq. (99) for n=3. Therefore, Eq. (99) was attributed to both Avrami and 

Erofeyev and represents different Avrami-Erofeyev (A) models (Table 1) for different 

values of “n”. These “A” models are also called the JMAEK models which stands for: 

Johnson, Mehl, Avrami, Erofeyev and Kholmogorov, in recognition of the researchers 

that have contributed to their development [95]. 

Autocatalytic models 

In homogenous kinetics, autocatalysis occurs when the products catalyze the 

reaction, this occurs when the reactants are regenerated during a reaction in what is called 

“branching”. The reactants will eventually be consumed and the reaction will enter a 

“termination” stage where it will cease. A similar observation can be seen in solid-state 

kinetics. Autocatalysis occurs in solid-state kinetics if nuclei growth promotes continued 
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reaction due to the formation of imperfections such as dislocations, or cracks at the 

reaction interface (i.e., branching). Termination occurs when the reaction begins to 

spread into material that has decomposed [119]. Prout and Tompkins [120] derived an 

autocatalysis model (B1) for the thermal decomposition of potassium permanganate 

which produced considerable crystal cracking during decomposition.  

In autocatalytic reactions, the nucleation rate can be defined by, 

 

 
( )NkkNk

dt

dN
TBN −+= 0  (100)

 

Where, kB is the branching rate constant and kT is the termination rate constant. If 

kNN0 is neglected, Eq. (100) becomes, 

 

 
( )Nkk

dt

dN
TB −=  (101)

 

This could occur in one of two cases: 
1. kN is very large – so that initial nucleation sites are depleted rapidly and 

calculations of dN/dt are valid for time intervals after N0 sites are depleted.  
2. kN is very small so that kNN0 can be ignored.  

 

The reaction rate is related to number of nuclei by, 

 

 
Nk

dt

d
′=

α
 (102)

 

Where, k′ is the reaction rate constant. Prout and Tompkins found that the shape 

of α vs. time plots for the degradation of potassium permanganate was sigmoidal. 

Therefore, an inflection point exists (αi,ti) at which dN/dt will change signs. From the 

boundary conditions that need to be satisfied at that inflection point (i.e., kB=kT), the 

following can be defined: 
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







=

i

BT kk
α

α
 (103)

 

Substituting Eq. (103) into Eq. (101) gives, 

 

 
Nk

dt

dN

i

B 







−=

α

α
1  (104)

 

Since 
αα d

dt

dt

dN

d

dN
.= , Eq. (105) can be obtained: 
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




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i

k
d

dN

α

α

α
1  (105)

 

Where k′′=kB/k′. Assuming kB is independent of α, separating variables in Eq. 

(105) and integrating gives, 

 

 








−′′=

i

kN
α

α
α

2

2

 (106)
 

Substituting Eq. (106) into (102) gives, 

 

 








−=

i

Bk
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d

α

α
α

α

2

2

 (107)
 

Since Prout and Tompkins assumed that αi = 0.5, Eq. (107) reduces to: 

 

 
( )αα

α
−= 1Bk

dt

d

 (108)
 

Separating variables and integrating Eq. (108) gives: 

 

 
ctkB +=

−α

α

1
ln  (109)

 

where, c is the integration constant 
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Equation (109) is the Prout-Tompkins (B1) model (Table 1) which well fits the 

thermal degradation of solid potassium permanganate. It should be noted that unlike other 

models, the integration of Eq. (108) was performed without limits, simply because with a 

lower limit (α = 0), the value is negative infinity. As a result, the integration constant 

appears in the Prout-Tompkins equation (Eq. (109)). One of the limitations in some 

literature on this equation is that it is reported without the constant term as: 

 

 
tkB=

−α

α

1
ln  (110)

 

This causes confusion since Eq. (110) will give negative time values for α <0.5 

(Figure 12). To overcome this problem, an integration constant (c) in Eq. (109) is needed 

which shifts the curve towards positive time values. There is no general criterion for what 

the integration constant should be, however, Prout and Tompkins used tmax which is the 

time needed for the maximum rate (i.e., the inflection point) which is approximately the 

same as t1/2 used by Carstensen [121]. We have used a time equivalent to α=0.01 (30.21 

min) for our simulation (Figure 12) but other values would be equally valid. 

The Prout-Tompkins model has been criticized because of the assumptions 

required for its derivation, other forms of it have been proposed [119, 122-124]. Skrdla 

[125] considered nucleation and branching as two separate processes (independent but 

coupled) having two different rate constants, and proposed an autocatalytic rate 

expression. The proposed expression gives the Prout-Tompkins model if the nucleation 

and branching rate constants are equal [125]. Guinesi et. al. [126] have shown that 

titanium(IV)–EDTA decarboxylates in two steps, the first being the B1 model while the 

second is the R3 model. 

Geometrical contraction (R) models 

These models assume that nucleation occurs rapidly on the surface of the crystal. 

The rate of degradation is controlled by the resulting reaction interface progress towards 
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the center of the crystal. Depending on crystal shape, different mathematical models may 

be derived. For any crystal particle the following relation is applicable: 

 

 
tkrr −= 0  (111)

 

Where, r is the radius at time, t, r0 is the radius at time t0 and k is the reaction rate 

constant. If a solid particle is assumed to have cylindrical or spherical/cubical shapes 

(Figure 13), the contracting cylinder (contracting area) or contracting sphere/cube 

(contracting volume) models [127], respectively, can be derived. Dehydration of calcium 

oxalate monohydrate was shown to follow geometrical contraction models [128-130]. 

The contracting cylinder (contracting area) model – R2 

For a cylindrical solid particle, the volume is: hπr2, where, h is the cylinder height 

and r is the cylinder radius. For “n” particles, the volume is nhπr2. Since, weight = 

volume x density (ρ), the weight of “n” cylindrical particles is nρhπr2. From the earlier 

definition of conversion fraction (α ,Eq. (6)) and assuming m∞≈0, we obtain: 

 

 m
mm

0

t0
−

=α  (112)
 

Therefore, for “n” reacting particles: 

 

 
2
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22
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πρπρ
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=  (113)

 

Equation (113) reduces to: 

 
 1     

2

2
0
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r

r
α  (114)

 

Substituting the value of r from Eq. (111) gives: 
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2
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 −
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r
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α  (115)

 

which can be rearranged to, 

 

 
 1 1

2

0






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−=− t

r

k
α  (116)

 

If ko=k/r0, Eq. (116) becomes the contracting cylinder model: 

 

 
tko=−− 2/1)1(1 α
 (117)

 

The contracting sphere/cube (contracting volume) model–

R3 

If a solid particle has a spherical or cubical shape, a contracting sphere/cube 

model can be derrived. A sphere has a volume of 4πr3/3. For “n” particles, the volume is: 

4nπr3/3. Since weight = volume x density (ρ), the weight of “n” spherical particles is: 

 

 
 

3

4 3
rnWeight ρπ=  (118)

 

Equation (112), for a reaction involving “n” particles becomes: 
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which reduces to: 
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1  
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r
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Substituting for r from Eq. (111) gives: 
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 1 

3

0

0
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

 −
−=

r

ktr
α  (121)

 

which can be rearranged to: 

 

 
 1 1
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



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
−=− t

r

k
α  (122)

 

If ko=k/r0, Eq. (122) becomes the contracting sphere model as: 

 

 
tko=−− 3/1)1(1 α
 (123)

 

A similar approach for cubic crystals leads to the same general expression. 

Diffusion (D) models 

One of the major differences between homogenous and heterogeneous kinetics is 

the mobility of constituents in the system. While reactant molecules are usually readily 

available to one another in homogenous systems, solid-state reactions often occur 

between crystal lattices or with molecules that must permeate into lattices where motion 

is restricted and may depend on lattice defects [131]. A product layer may increase where 

the reaction rate is controlled by the movement of the reactants to or products from the 

reaction interface. Solid-state reactions are not usually controlled by mass transfer except 

for a few reversible reactions or when large evolution or consumption of heat occurs. 

Diffusion usually plays a role in the rates of reaction between two reacting solids, when 

reactants are in separate crystal lattices [94]. Wyandt and Flanagan [132] have shown that 

desolvation of sulfonamide-ammonia adducts follows diffusion models. A correlation 

was found between calculated desolvation activation energies of the ammonia adducts 

and the sulfonamide’s intrinsic acidity. This finding was attributed to an acid-base-type 

interaction between the sulfonamide (acid) and ammonia (base) in the solid-state. The 
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pKa of the drug was found to inversely relate to the strength of the ammonia-drug 

interaction which in turn affected desolvation activation energy. 

In diffusion-controlled reactions, the rate of product formation decreases 

proportionally with the thickness of the product barrier layer. For metallic oxidation, this 

involves a moving boundary and is considered a “tarnishing reaction” [131, 133] which is 

depicted in  Figure 14.  According to Figure 14, the mass of B moving across P (unit 

area) in time, dt, to form product, AB, is: 

 

 dx

dC

M

M
D

dt

dl

B

AB

ρ
−=  (124)

 

Where, MAB and MB are the molecular weights of AB and B, respectively, D is 

the diffusion coefficient, ρ is the density of the product (AB), l is the thickness of the 

product layer (AB), C is the concentration of B in AB and x is the distance from interface 

Q into AB. Assuming a linear concentration gradient of B in AB, 
l

CC

dx

dC
lx

12 −
−== , 

where, C2 and C1 are the concentrations of B at interfaces P and Q, respectively, Eq. 

(124) becomes: 

 

 

( )
l
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M

M
D

dt

dl

B

AB 12 −
=

ρ  (125)
 

Separating variables and integrating Eq. (125) gives: 

 

 

( )
t

M

CCM
Dl

B

AB

ρ
122 2

−
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If 
( )

ρB

AB

M

CCM
Dk 122

−
= , Eq. (126) becomes: 

 
ktl =2

 
(127)
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Equation (127) is known as the parabolic law [133]. The simplest rate equation is 

for an infinite flat plane that does not involve a shape factor (e.g., one-dimensional), 

where the conversion fraction (α) is directly proportional to product layer thickness, “l”. 

Therefore, Eq. (127) becomes: 

 

 
tk '2 =α

 
(128)

 

Where k′ is a constant. Equation (128) represents the one-dimensional diffusion 

(D1) model.  

The three-dimensional diffusional (D3) model is based on the assumption of 

spherical solid particles (Figure 15). The conversion fraction for a reaction involving “n” 

spherical particles using Eqs. (112) and (118) is: 
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ρπρπ
α

−−
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Where, x, is the thickness of the reaction zone. Upon simplification, Eq. (129) 

becomes: 

 

 

3

 1 






 −
−=

R

xR
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Equation (130) can be rearranged to: 

 

 
( )( ) 11 3/1

α−−= Rx
 

(131)
 

Jander [134] used the parabolic law (Eq. (127)) to define x. Therefore, 

subsitituing Eq. (131) (after squaring x) into Eq. (127) gives: 

 

 
( )( ) ktR   11

23/12 =−− α
 

(132)
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Assuming 2
'

R

k
k = , Eq. (132) becomes the D3 (Jander) model: 

 
( )( ) tk '  11

23/1
=−− α

 
(133)

 

Ginstling and Brounshtein [135] have shown that the Jander model (Eq. (133)) 

which used the parabolic law (derived for a plane surface) is oversimplified and only 

holds at low conversion values (i.e., low x/R values). The steady-state solution of Fick’s 

first law for radial diffusion in a sphere is [136]: 

 

 

( ) ( )
( )

 21
)(

abr

arbCrbaC
C r

−

−+−
=  (134)

 

Where C(r) is the reactant concentration at a particular value of r (a<r<b), C1 is 

the concentration of the diffusing species at surface r=a and C2 is the concentration of the 

diffusing species at surface r=b. The reaction at the interface is assumed to occur at a 

much faster rate than diffusion, therefore, C1 ≈ 0 and Eq. (134) becomes: 
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C r

−

−
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Taking the derivative of the above equation with respect to r at r=a gives: 
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According to Figure 15, a=R-x and b=R, so that Eq. (136) becomes: 
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 2
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−
=  (137)

 

The rate of reaction zone advance, dx/dt, can be related to dC/dr by [135]: 
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dr

dCD

dt

dx

ε
=  (138)

 

Where, D, is the diffusion coefficient, ε is a proportionality constant equal to ρn/µ 

(ρ and µ are the specific gravity and molecular weight of the product, respectively and n 

is the stoichiometric coefficient of the reaction). Subsituting Eq. (137) into Eq. (138) 

gives: 

 

 ( )
 2

xxR

RCD
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dx

−
=

ε  (139)
 

which can be rewritten as: 

 

 ( )
 

2xRx

R
k

dt
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−
=  (140)

 

Where, k=DC2/ε. Separating variables and integrating Eq. (140) gives: 
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Substituting for x in Eq. (141) with the value of x in Eq. (131) and rearranging 

gives: 

 

 
( ) kt=−−−

3/21
3

2
1 αα  (142)

 

Equation (142) is the Ginstling-Brounshtein (D4) model. The D4 model is another 

type of three-dimensional model. Buscaglia and Milanese [137] have proposed a 

generalized form of the Ginstling-Brounshtein model and have discussed limitations 

related to the boundary conditions for this model.  The reaction between manganese 

oxide (Mn3O4) and sodium carbonate was shown to follow the D4 model [138]. 

If solid particles are assumed to be cylindrical, and diffusion occurs radially 

through a cylindrical shell with an increasing reaction zone, a two-dimensional diffusion 
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(D2) model can be derived. The D2 model can be derived using the same general 

approach used for the D3 model. For a cylindrical particle, Eq. (131) is defined as: 

 

 
( )( ) 11 2/1

α−−= Rx
 

(143)
 

If the Jander’s approach is followed, the resulting equation is 

 

 
( )( ) tk '  11

22/1
=−− α

 
(144)

 

Where, k′= k/R2. Equation (144) is not the D2 model usually cited in the 

literature. The usual D2 model is derived following the Ginstling-Brounshtein approach. 

The steady-state solution of Fick’s first law for radial diffusion in a cylinder is [139]: 
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Where C(r) is the reactant concentration at a particular value of r (a<r<b), C1 is 

the concentration of the diffusing species at surface r=a and C2 is the concentration of the 

diffusing species at surface r=b. The reaction at the interface is assumed to occur at a 

much faster rate than diffusion making C1 ≈ 0. Therefore, Eq. (145) becomes: 
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Taking the derivative of the above equation with respect to r at r=a gives: 
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According to Figure 16, a=R-x and b=R, therefore, Eq. (147) becomes: 
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Subsituting Eq. (148) into (138) gives: 

 

 ( ) ( )( )
 

/ln xRRxR
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=  (149)

 

Where k=DC2/ε. Substituting for the value of x in Eq. (149) with x from Eq. (143) 

and rearranging gives: 
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The derivative of Eq. (143) is: 
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Substituting Eq. (151) into Eq. (150) and rearranging gives: 
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d
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Where k′=4k/R2. Equation (152) is the differential form of the D2 model. The 

integral form (Table 1) of the D2 model can be obtained by separating variables and 

integrating Eq. (152). 

Order-based (F) models 

Order-based models are the simplest models as they are similar to those used in 

homogenous kinetics. In these models, the reaction rate is proportional to concentration, 

amount or fraction remaining of reactant(s) raised to a particular power (integral or 

fractional) which is the reaction order. Some kinetic analysis methods force data into an 

order-based model which may not be appropriate [72, 95]. Order-based models are 

derived from the following general equation: 
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( )n

k
dt

d
α

α
−= 1  (153)

 

Where, dα/dt is the rate of reaction, k is the rate constant and n is the reaction 

order.  

If n = 0 in Eq. (153), the zero-order model (F0/R1) model is obtained and Eq. 

(153) becomes, 

 

 
k

dt

d
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α
 (154)

 

After separating variables and integrating, Eq. (154) becomes: 

 

 
kt=α

 
(155)

 

If n=1 in Eq. (153), the first-order model (F1) model is obtained and Eq. (153) 

becomes, 
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α
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d

 (156)
 

Separating variables and integrating Eq. (156) leads to the first-order integral 

expression: 

 

 
( ) kt=−− α1ln

 (157)
 

The first-order model, also called the Mampel model [140, 141], is a special case 

of the Avrami-Erofeev (A) models where n=1. Similarly, second-order (n=2) and third-

order (n=3) models can be obtained (Table 1). Lopes et.al. [142] have shown that 

decomposition of gadolinium(III) complexes follows a zero-order model. Thermal 

oxidation of porous silicon [143] and desorption of 2-phenylethylamine (PEA) from 

silica surfaces [144] were shown to follow a first-order model. 
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Summary 

This chapter has summarized the assumptions and mathematical derivation of the 

most commonly used reaction models in solid-state kinetics. This review has not been 

exhaustive but rather representative of the common models used. Even though this 

review has focused on reactions involving weight loss (A(s)→B(s)+C(g)), many of the 

models are applicable to other solid-state reactions where, for example, evolution or 

consumption of heat is measured. Hopefully, this review has demonstrated that solid-state 

kinetic models have a theoretical physical meaning and are not merely based on goodness 

of fits of complex mathematical expressions to data. 
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Figure 9.  Isothermal dα/dt-time and α-time plots for solid-state reaction models (Table 
1); data simulated with a rate constant of 0.049 min-1: a, acceleratory; b–d, 
deceleratory; e, constant; f, sigmoidal. 



 

 

73 

 

 

d. 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

d
αα αα

/d
t 

(m
in

-1
)

R2

R3

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Time (min)

αα αα

R3

R2

 

e. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

d
αα αα

/d
t 

(m
in

-1
)

F0/R1

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Time (min)

αα αα

F0/R1

 

f. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

d
αα αα

/d
t 

(m
in

-1
)

A2

A3

A4

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Time (min)

αα αα

A2

A3

A4

 

Figure 9, continued 
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Figure 10.  Nonisothermal dα/dT and α-temperature plots for solid-state reaction models 
(Table 1); data simulated with a heating rate of 10 K/min, frequency factor of 
1x1015 min-1 and activation energy of 80 kJ/mole. 
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Figure 10, continued 
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Table 4.  Mathematical expressions for nucleation rates. 

Nucleation rate law 

Differential form 

dT

dN

 

Integral form 

N 

Exponential1 tk

N
NeNk

−

0  ( )tkNeN
−−10  

Linear1 
0NkN  tNkN 0  

Instantaneous1 ∞ N0 

Power2 1−ββtD  β
Dt  

1 Single-step nucleation. 
 
2 Multi-step nucleation. 
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Figure 11.  Two types of nuclei growth restrictions: black dots are nucleation sites and 
shaded areas are nuclei growth regions. 
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Figure 12.  Isothermal α-time plots for the Prout-Tompkins reaction model (Table 1); 
data simulated with a rate constant of 0.152 min-1: �, data simulated 
according to Eq. (110); �, data simulated according to Eq. (109) where c = 
tmax (30.21 min.). 
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 Figure 13.  Geometrical crystal shapes: a, cylinder; b, sphere and c, cube. 
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Figure 14.  One-dimensional diffusion through a flat plane [133]. A and B are reactants, 
AB is the product interface, l is the thickness of the interface AB and x is the 
distance measured from interface Q into AB. 
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Figure 15. Schematic representation of a spherical particle reaction. 

 

 

 

Figure 16. Schematic representation of a cylindrical particle reaction. 
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CHAPTER 3  

EXPERIMENTAL METHODS 

 

Solvates: description and identification. 

A solvate crystal form (i.e., pseudopolymorphism) is a form in which solvent 

molecules (guest molecules) occupy specific positions within the crystal structure (host 

molecules). Solvates are usually generated during processing or purification of the 

crystal. Therefore, any solvent can be incorporated in a crystal during recrystallization, 

hydrates are usually the most common solvates as water is a common solvent in many 

purification systems. Solvent molecules usually exist in stoichiometric ratios with respect 

to the host molecules in solvates. Desolvation reactions are characterized by the removal 

of solvent molecules from the crystalline solvate below its melting point [7]. These 

reactions are best characterized by gravimetric analysis and/or microscopy. In this work, 

solvates were identified by: 

1. Thermogravimetric analysis – weight loss with heating showed a 

stoichiometric ratio of a solvent to drug. 

2. Hot stage microscopy – observed crystal changes (crystal fracture, changes in 

opacity or crystal movement [7]) during heating demonstrated a crystal 

transformation. 

Thermal analysis (TGA and DSC) was also conducted on the parent drug (non-

solvate), to show the lack of thermal history prior to melting.  

Drug solvate screening 

Many drug-solvate systems have been reported in the literature [145, 146], 

however, only a limited number of these systems have interesting characteristics. 

Characteristics of interest in a drug-solvate system include [147]: 
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1. Mixed solvate systems, such as doxycycline hydrochloride [147] which forms 

a mixed ethanol–water solvate (i.e., hyclate) or triamterene [148] which forms 

mixed solvates of dimethylformamide and water. 

2. Drugs with multiple solvates of different drug:solvent stoichiometries of the 

same drug and solvent such as the ouabain [149] and scopolamine HBr [150] 

hydrate systems.  

3. Solvate polymorphism in which the drug-solvate of one stoichiometry shows 

two or more different crystal structures, such as the amiloride HCl [151] or 

nitrofurantoin hydrates [152].  

4. Solvates that desolvate to give an amorphous form of the drug such as the 

carbamazepine hydrate [153]. 

5. Drug solvates having many structurally similar solvates, such as: cortisone 

acetate [147], erythromycin [154], spironolactone [155, 156] and sulfameter 

[157] solvates.  

 

Solvates should be stable enough at room temperature for kinetic analysis to be 

performed. For example, the onset of desolvation should be relatively high (i.e., above 

room temperature) such that the solvate does not lose solvent molecules during 

preparation or storage.   

Table 5 lists several drugs that were screened for solvate formation. Table 6 lists 

the commercial sources and batch/lot numbers of most chemicals used in this work. 

The sulfameter solvate system 

Sulfameter (structure below) was found to be the most suitable drug for kinetic 

analysis because it formed solvates that met the requirements for desolvation kinetic 

studies.  

 



 

 

84 

H2N S

O

O

N
H

N

N

O CH3

 

 
Sulfameter (5–methoxysulfadiazine) 

MW – 280.3 

 

Table 7 lists solvents screened for sulfameter solvate formation and Table 8 shows the 

drug:solvent stoichiometric ratios of some of the sulfameter solvates obtained. For 

solvents screened, guest molecules (i.e., solvents) were changed but the host molecule 

(sulfameter) was not, an attempt was made to change the host to other structurally similar 

structures (Table 9) and study the kinetics of desolvation of these new structures for the 

same guest molecules and compare it to that obtained from sulfameter. Results showed 

that although minimal changes were done in the structure, solvate forming ability and 

other physical properties such as solubility dramatically changed, therefore, each host 

structure should be explored as a separate system and a relationship between desolvation 

of structurally similar compounds can not be directly deduced.  

Solvate preparation 

Solvates were prepared by recrystallization from the neat solvents. A specific 

weight of drug (~ 0.5 g) was dissolved in an Erlenmeyer flask in a suitable volume of 

solvent and heated to the boiling point of the solvent. More solvent was then added drop 

wise until the drug completely dissolved and a saturated solution was formed at the 

boiling point. The solution was left to cool at room temperature and crystals formed. The 

precipitated solid was dried under suction on a Büchner funnel for 1–3 minutes. The solid 

was sieved to obtain a powder having the desired particle size. Sieved solid fractions 

were stored in small vials in a freezer below –10ºC. 
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Drug and solvate characterization 

Characterization methods 

Drugs and their solvates were characterized by one or more of the following 

analytical methods: 

1. Light microscopy. 

2. Thermogravimetric analysis. 

3. Differential scanning calorimetry. 

4. Powder X-ray diffraction.  

Light microscopy 

An Olympus BX600 microscope system equipped with a Kodak MDS100 digital 

camera was used to examine crystal morphology under a 5X magnification.  

Thermogravimetric analysis (TGA) 

Thermogravimetric analysis was performed using a Perkin-Elmer TGA 7. 

Temperature calibration of the TGA was performed by a two-point calibration method 

through measuring the Curie point (Cp) of alumel (Cp=163°C) and nickel (Cp=354°C). The 

Curie point is a characteristic physical property of a metal, it represents the temperature 

above which the metal loses its ferromagnetic properties (i.e., the ability to spontaneously 

possess a net magnetization in the absence of an external magnetic field). Weight was 

calibrated using the supplied reference standard weight (100 mg). Nitrogen gas was used as 

a purge gas with a flow of 40-50 ml/min. A sample size of 3–5 mg was used for TGA 

analysis. 

Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry analysis was performed using a Perkin-Elmer 

DSC 7. The DSC was calibrated using indium. A sample size of 2–8 mg was used for DSC 
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analysis at 16 K/min. Analysis was done using open aluminum pans, a blank reference pan 

with the same composition to the sample pan was used in all DSC runs. 

Powder X-ray diffraction (PXRD) 

Powder X-ray diffraction was performed using a Bruker D-5000 diffractometer 

with a 2θ range of 5–40° (step size= 0.02°, step time = 2 sec and 50 kV, 30 mA). The 

wavelength used was 1.54056 Å (CuKα) which was incorporated in the Bragg equation to 

calculate crystal d-spacings.  

Sulfameter characterization 

Sulfameter was obtained from Sigma Chemical Co. (lot no. 107F0910). The drug 

was analyzed (as supplied) by thermogravimetry (Figure 24a), DSC (Figure 24b), PXRD 

(Figure 25, Table 10). Thermal analysis (Figure 24) confirmed the absence of any 

thermal events prior to melting (m.p. 212°C). Therefore, any event occurring for the 

solvated forms is expected to be from the desolvation reaction. Many solvents were 

screened for whether they formed solvates with sulfameter (Table 7). A total of 12 

solvates were prepared from the 35 solvents investigated, seven solvates (Table 8) were 

further characterized and investigated kinetically; their stoichiometries were 1:1, as 

determined by TGA. Morphology of sulfameter and its seven solvates described in Table 

8 is shown in Figure 26.   

Sulfameter tetrahydrofuran solvate characterization 

The tetrahydrofuran solvate of sulfameter was analyzed by TGA (Figure 27a), 

DSC (Figure 27b) and PXRD (Figure 28, Table 11). Thermal analysis shows that 

desolvation occurs in a single step with a maximum rate at 91°C. 



 

 

87 

Sulfameter dioxolane solvate characterization 

The dioxolane solvate of sulfameter was analyzed by TGA (Figure 29a), DSC 

(Figure 29b) and PXRD (Figure 30, Table 12). Thermal analysis shows that desolvation 

occurs in a single step with a maximum rate at 89°C.   

Sulfameter oxane solvate characterization 

The oxane solvate of sulfameter was analyzed by TGA (Figure 31a), DSC (Figure 

31b) and PXRD (Figure 32, Table 13). Thermal analysis shows that desolvation occurs in 

a single step with a maximum rate at 96°C.  

Sulfameter dioxane solvate characterization 

The dioxane solvate of sulfameter was analyzed by TGA (Figure 33a), DSC 

(Figure 33b) and PXRD (Figure 34, Table 14). Thermal analysis shows that desolvation 

occurs in a single step with a maximum rate at 104°C. 

Sulfameter oxepane solvate characterization 

The oxepane solvate of sulfameter was analyzed by TGA (Figure 35a), DSC 

(Figure 35b) and PXRD (Figure 36, Table 15). Thermal analysis shows that desolvation 

occurs in a single step with a maximum rate at 103°C.  

Sulfameter chloroform solvate characterization 

The chloroform solvate of sulfameter was analyzed by TGA (Figure 37a), DSC 

(Figure 37b) and PXRD (Figure 38, Table 16). Thermal analysis shows that desolvation 

occurs in a single step with a maximum rate at 91°C.   

Sulfameter bromoform solvate characterization 

The bromoform solvate of sulfameter was analyzed by TGA (Figure 39a), DSC 

(Figure 39b) and PXRD (Figure 40, Table 17). Thermal analysis shows that desolvation 
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occurred in two overlapping steps (peaks at 70°C and 110°C) as shown by the derivative 

TGA curve (DTG, Figure 39a). 

Particle size effect on desolvation TGA analysis 

Controlling experimental variables is important for solid-state kinetics. One such 

variable is particle size. Uncontrolled particle size can have a dramatic impact on TGA 

thermograms. Most importantly, lack of particle size control can lead to problems for 

data reproducibility, which significantly affects kinetics analysis (Chapter 4). Particle size 

effects were studied for the desolvation of sulfameter dioxane solvate both isothermally 

and nonisothermally (Figures 41–44). The results clearly show the effect of particle size 

control on data reproducibility which is further verified by the nonisothermal desolvation 

of the sulfameter oxane solvate (Figure 45).   

Kinetic analysis of the desolvation reaction 

Desolvation kinetics was evaluated isothermally and nonisothermally from several 

TGA thermograms. Isothermal TGA runs were performed at temperatures of 50, 55, 60, 65 

and 70ºC. Nonisothermal runs were performed at heating rates of 1, 2, 4, 8 and 16 K/min. 

Kinetic analysis methods have been described and derived previously (Chapter 1). Before 

these methods were applied, some pretreatment of the data was necessary to transform it 

into a suitable form for analysis. Kinetic analysis was in three steps: 

1. Data collection. 

2. Data pretreatment. 

3. Data analysis. 

Data collection 

Thermal data were collected by the Perkin-Elmer v.4.0 thermal analysis software 

with a data set size of at least 3000 points for each TG run. The data were then exported 

as ANF files (Non-Pyris software files) which were transformed by the Windows-based 
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Perkin-Elmer Pyris software (version 5.0) to TGD files (Pyris software TGA files) which 

were then exported by the Pyris software as ASCII files each containing time, 

temperature and weight at each data point. ASCII files were imported into Microsoft 

Excel® to obtain spreadsheet formats which were further processed.  

Data pretreatment  

Data pretreatment involved two steps:  

1. Data set reduction,  

2. Determination of actual heating rates (nonisothermal reactions) and actual 

temperatures (isothermal reactions). 

Data size reduction 

The first step of data analysis was to convert each Excel® thermogram file of data 

points (time, temperature and weight) to one containing time, temperature and α 

(conversion fraction) according to Eq. (6). The larger set of α points was then reduced to 

one containing 99 points corresponding to α of 0.01-0.99 in 0.01 increments. This 

transformation was to obtain a standard set of α values for all TG runs which would 

enable calculation of kinetic parameters for the same α value across multiple 

thermograms (i.e., isoconversional), as described earlier (Chapter 1). To achieve this data 

reduction, three approaches can be pursued: 

a. Perform nonlinear regression on the TG curve to obtain a nonlinear equation 

that could be used to generate 99 α data points from the fitted equation. 

b. Perform multiple linear regressions (MLRs) over small regions of α values 

(i.e., linear fits at 0.01 α increments). Thus, 99 linear equations would result 

which could be used to generate 99 α points.   

c. Reduce (i.e., truncate) the number of data points in each file. This is done by 

rounding down (ROUNDDOWN function in Excel) each α in the original file 

to two significant figures, and taking the α value that rounds down to the next 
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0.01 increment, thus ignoring repeated α values (Table 18) until the next 0.01 

increment in α is reached. 

 

Of the above three methods, the last two (b and c) were tested on dehydration 

thermograms of calcium oxalate monohydrate at three heating rates: 2, 4 and 8 K/min 

(Figure 46). 

According to Figure 46, both the MLR and truncation approaches gave the same 

results (points for both methods coincide). However, the MLR approach involves more 

computation, is slower and more sensitive to errors resulting from insufficient data 

points. Therefore, the truncation method was used in data analysis for pretreatment of all 

TGA data for kinetic analysis.  

Calculating the actual nonisothermal heating rates. 

The value of the heating rate is important in calculating kinetic parameters from 

non isothermal data in solid-state kinetics where errors in heating rate values could lead 

to erroneous kinetic parameters. One of the major sources of error in kinetic analysis 

involves miscalculating the heating rate (see Chapter 4). This is because the programmed 

heating rates are generally assumed to be the actual heating rates, whereas, in reality, this 

may not be the case as there are many factors (i.e., self-heating/cooling, purge gas 

cooling) that would change the actual heating rates of nonisothermal thermograms. To 

study this, thermograms for several linear heating rates were obtained from runs of empty 

TG pans and pans containing several compounds (Table 19). Actual heating rates were 

calculated from the slope of the linear relationship between time and temperature 

according to Eq. (17) as shown in Figure 47 for a nonisothermal run of an empty TG pan 

at 10 K/min giving an observed heating rate of 10.29 K/min. Results in Table 19 show 

that the programmed and calculated heating rates deviate from one another and the 

deviation depends on the type of compound heated, its quantity and the heating rate. 
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Calculating the actual isothermal temperature 

The actual value of the isothermal temperature is important in kinetic analysis; the 

programmed temperature is usually different from the actual one which causes some 

errors in kinetic analysis if the incorrect value is used (see Chapter 4). The actual 

temperature was calculated by averaging the measured temperatures at which a 

significant rate of weight loss occurs (Figure 48). 

 The isothermal desolvation thermogram of sulfameter-tetrahydrofuran solvate 

(T=55°C, Figure 48), where weight is plotted as a function of temperature, can be divided 

into two regions: A and B. Region A represents the heat up region and the time in this 

region is considered the heat up time (t0), while region B is the actual experimental 

region. Averaging measured temperatures in region B gives the actual experimental 

temperature that should be used in kinetic analysis (53.61°C for the thermogram in 

Figure 48) rather than using the programmed value of 55°C. 

Data analysis of pretreated data 

Data analysis was performed with Microsoft Excel® for all kinetic analysis 

methods (Chapter 1). Direct calculations were used for the conventional, standard, 

Friedman, Ozawa-Flynn-Wall (OFW) and Coats-Redfern methods. Other methods such 

as the Vyazovkin and advanced isoconversional (AIC) methods required use of Excel’s 

Solver ® tool; the Solver ® was used to iteratively find solutions for equations that 

required minimization (Eqs. (59) and (63)). Parameters used for the Solver ® are shown in 

Figure 49.  

Data simulation 

Data simulation involved generating α, time (isothermal) or α, temperature 

(nonisothermal) data points for particular values of A, Ea and g(α) (model) in reaction 

rate laws (Eqs. (16) and (22)). A specific random error was usually introduced to time or 

temperature values. Percent random errors introduced in temperature was based on a 
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percentage of the temperature in °C.  Data simulation was used to prove a hypothesis 

(Chapter 4) or to validate model-fitting results (i.e., curve reconstruction, see Chapter 5).  

Isothermal simulation 

Equation (16) can be rearranged to: 

 

 RT

Ea

Ae

g
t

−

=
)(α

 (158)
 

Isothermal simulation was performed by assigning values to the above parameters (g(α), 

Ea, A and T) and calculating the time (t) for α values between 0.01–0.99.  

Nonisothermal simulation 

Equation (22) can be rearranged to: 

 

 
p(x)

AE

R
g

a

 )( −=Ψ
β

α
 (159)

 

Where, ψ is a constant. The exponential integral (p(x)) in Eq. (159) was 

approximated by the 3rd degree Senum-Yang approximation (Chapter 1). Nonisothermal 

simulation was performed by assigning values to the above parameters (g(α), Ea, A and 

 β) and using Microsoft Excel’s Solver, the value of T at each α between 0.01-0.99 which 

minimizes Ψ was calculated. Parameters for the Solver utility are shown in Figure 49. 

Validation of activation energy calculations  

The activation energy represents the theoretical energy barrier that must be 

overcome for a reaction to occur. For physical processes, such as evaporation or 

sublimation, this could equal the enthalpy change (∆H) of the process (i.e., ∆Hvap or 

∆Hsub). Using TGA to study the kinetics of such phase transformations could serve as a 

means of validating activation energy values obtained by thermokinetic methods if both 
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Ea and ∆H values were comparable for such basic physical processes. Ideally, 

isoconversional methods would be a good candidate for such analysis since no model is 

assumed for the process. 

 Evaporation activation energies were calculated for several compounds by 

Vyazovkin’s isoconversional method (Figure 50). Isoconversional plot shapes were 

deceleratory (i.e., not flat, Figure 50) which is expected for nonisothermal runs because 

enthalpies of vaporization are inversely related to temperature. Therefore, apparent 

activation energies are obtained by averaging Ea values calculated for α of 0.1–0.9. 

 Table 20 lists literature enthalpies of vaporization ∆Hvap compared to averaged 

evaporation activation energies (Ea) obtained from Figure 50 for five compounds. Results 

show a general agreement between enthalpy change and averaged Ea values for the 

compounds (Table 20), this general agreement is significant because it may give physical 

meaning to activation energies generated for desolvation kinetics. This procedure 

introduces another method of measuring enthalpies of vaporization. However, this 

method can not replace the more accurate physical methods for measuring vaporization 

enthalpies (i.e., calorimetry) because isoconversional methods are associated with many 

errors (see Chapter 4). Further refinements in both experimental procedures and data 

analysis are needed for TGA results to equal those of other methods.  
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Table 5.  Drugs screened for solvate formation. 

Drug Solvents Results 

Doxycycline HCl a Water and ethanol 

Studied hyclate (water+ethanol) 
desolvation; desolvation, degradation 
and melting simultaneously occurred 

during heating (Figure 17) 

Triamterene a Dimethylformamide*, water 
Only dimethylformamide formed a 

solvate (Figure 18) 

Ouabain b Water* 
Unstable at room temperature; 

dehydrates at room temperature 
(Figure 19) 

Nitrofurantoin c Water* 

Procedures in Ref. [152] claims two 
hydrate forms, but only Form II was 
produced. Form I was not obtained 

(Figure 20) 

Carbamazepine d Water* 
Unstable; hydrate dehydrates at room 

temperature (Figure 21) 

Cortisone acetate e 
Acetic acid, acetonitrile, 

dimethylformamide*, dioxane and 
propanol.  

Only dimethylformamide formed a 
solvate (Figure 22) 

Erythromycin e
 

Acetone, methylethyl ketone, 
ethanol, propanol, isopropanol, 

chloroform. 
No solvates formed. 

Spironolactonee 
Methanol, ethanol, ethyl acetate, 

benzene*   
Only benzene formed a solvate 

(Figure 23). 

Sulfameter e
 

See Table 7 
12 solvates obtained and 7 studied 

kinetically. 
a Example of mixed solvate systems. 
 

b Example of a systems with multiple drug:solvent ratios of the same drug and solvent 
 

c Example of a solvate polymorphism systems. 
 

d Example of a solvate desolvating to form an amorphous drug. 
 

e Example of systems having structurally related drug solvates. 
 
* Solvate formed. 
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Table 6.  Sources for chemicals and their batch/lot numbers. 

Substance Supplier Batch/Lot number 

Carbamazepine Sigma Chemical 053K0599 

Doxycycline HCl Sigma Chemical 063K1572 

Hydrocortisone acetate Sigma Chemical 078H0468 

Nitrofurantoin Sigma Chemical 104K1138 

Ouabain Sigma Chemical 56H2616 

Sulfasoxazole Sigma Chemical 071K1891 

Sulfadiazine Sigma Chemical 054K0837 

Sulfameter Sigma Chemical 107F0910 

Triameterine Sigma Chemical 81K1189 

Calcium oxalate monohydrate Fluka 452439/1 

Dioxane Fisher Scientific 023029 

Bromoform Aldrich 13107T0 

Dioxolane Aldrich 06210EC and LO14921KO 

Oxane Alfa Aesar I6160A and 10100417 

Dimethylformamide Fisher Scientific 963127 

Ethanolamine Fisher Scientific 863303 

1-propanol Fisher Scientific 716121 

Tetrahydrofuran Fisher Scientific 011510 

Methanol J.T. Baker X29B24 

Oxepane TCI HAN01 
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Figure 17.  Desolvation TGA thermograms of doxycycline HCl hyclate at a heating rate 
of 5 K/min.  
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Figure 18. TGA thermograms of triamterene crystallized from different solvents: a, 
original material (10 K/min); b, butanol (10 K/min); c, dimethylformamide 
(10 K/min) and d, ethanol (20 K/min). 
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Figure 19. Dehydration TGA thermogram of ouabain octahydrate at 1K/min. 

 

a. b. 

0

20

40

60

80

100

120

0 50 100 150 200 250

Temperature (°C)

W
e

ig
h

t 
(%

)

 

0

20

40

60

80

100

120

0 50 100 150 200 250

Temperature (°C)

W
e

ig
h

t 
(%

)

 

Figure 20.  Dehydration TGA thermograms for two nitrofurantoin hydrates at 10 K/min, 
prepared according to ref. [152] to obtain: a. Form I; b. Form II. 
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Figure 21. Dehydration TGA thermogram of carbamazepine hydrate at 16 K/min. 
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Figure 22.  TGA thermograms of cortisone acetate crystallized from different solvents: a, 
original material (10 K/min); b, acetonitrile (10 K/min); c, 
dimethylformamide (5 K/min); d, n-propanol (16 K/min); e, acetic acid (16 
K/min) and f, dioxane (16 K/min). 
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Figure 23. TGA thermograms of spironolactone crystallized from: a, methanol (10 
K/min); b, ethanol (16 K/min); c, benzene (10 K/min) and d, ethyl acetate (16 
K/min). 
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Table 7.  Solvent screening for sulfameter solvate formation. 

Solvent Structure Molecular weight Solvate formed 

Acetone 
CH3CCH3

O

 
58.08 NO

 

Acetonitrile CH3C N
 

41.05 NO 

Acetic acid 
CH3COH

O

 
60.05 NO 

Aniline 
NH 2

 
93.13 YES 

Benzene 

 

78.11 NO 

Carbon tetrachloride CCl4 153.80 NO 

Chloroform 
CH ClCl

Cl

 

119.40 YES 

Bromoform 
CH BrBr

Br

 
252.73 YES 

Cyclohexane 
 

84.16 NO 

Cyclohexanone 
O

 

98.14 NO 

Diethyl ether (C2H5)2O 74.12 NO 

Dimethylformamide HCN

O CH3

CH3  

73.10 YES 

Dimethylsulfoxide 
CH3SCH3

O

 
78.13 NO 

 



 

 

103 

 

 

Table 7, continued 

Solvent Structure Molecular weight Solvate formed 

Oxole 
O  

68.07 NO 

Tetrahydrofuran 
O  

72.11 YES 

Dioxolane O O

 
74.08 YES 

Oxane 
O

 
86.13 YES 

Dioxane O O

 
88.11 YES 

Oxepane 

O

 
100.20 YES 

Dioxepane 
OO

 
102.13 YES 

Morpholine 
N H

O

 

87.12 NO 

Trioxane 
O O

O

 
90.08 NO 
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Table 7, continued 

Solvent Structure Molecular weight Solvate formed 

Ethanol C2H5OH 46.00 NO 

Ethyl acetate 
CH3COHC2H5

O

 
88.11 NO 

Hexane CH3(CH2)4CH3 86.18 NO 

Methanol CH3OH 32.00 NO 

Methylene chloride 
(Dichloromethane) CH2Cl2 84.93 NO 

1- Propanol  (n-
propanol) 

CH 2 CH 2H3C OH
 60.10 NO 

2- Propanol (Iso-
propanol) CH CH 3H3C

OH

 
60.10 NO 

Pyridine 
N

 
79.10 YES 

Pyrrolidine 
N

H

 

71.12 NO 

Sulfolane S
OO  

120.20 NO 

Thiolane 
(Tetrahydrothiophen, 

Thiophane) 

S

 
88.17 NO 

Trichloroethylene 
C CHCl

Cl

Cl  
131.40 YES 

Water H2O 18.00 NO 
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Table 8.  Drug:solvent stoichiometries (1:1) by TGA for selected sulfameter solvates. 

Solvate % Theory (1:1) % Actual a 

THF 20.46 20.44 ± 0.12 

Dioxolane 20.90 20.93 ± 0.20 

Oxane 23.50 23.72 ± 0.07 

Dioxane 23.92 23.94 ± 0.06 

Oxepane 26.33 26.30 ± 0.06 

Dioxepane 26.70 27.06 b 

Chloroform 29.87 29.60 ± 0.10 

Bromoform 47.41 47.42 ± 0.19 
a n=5. 
 

b n=1. 
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Table 9.  Solvent screening for solvate formation for various structurally related 
sulfonamides.  

Substance Solvents screened 

NH2 S

O

O

NH

N

N

OCH3

 
Sulfameter 

See Table 7 

NH2 S

O

O

NH

N N

OCH3

 
Sulfamethoxypyridazine 

Acetone, Acetonitrile, Chloroform, 
Dimethylformamide, Dioxane, Ethanol, 

Methanol, Tetrahydrofuran, Water 

NH2 S

O

O

NH

N

N

CH3

 
Sulfamerazine 

Tetrahydrofurana, dioxanea, chloroforma 

NH2 S

O

O

NH

N

N

CH3

CH3  
Sulfamethazine 

Tetrahydrofuran, dioxane, chloroform 

NH2 S

O

O

NH

N

N  
Sulfadiazine 

Dichloro methane, Dioxaneb, 
Tetrahydrofuranb, chloroforma 

a Insoluble in this solvent. 
 

b Solvate formed.
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Figure 24.  Thermal analysis of sulfameter from Sigma Chemical (lot no. 107F0910) by: 
a, TGA at a heating rate of 20 K/min and b, DSC at a heating rate of 10 
K/min. 
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Figure 25.  Powder X-ray diffraction pattern for sulfameter as supplied (Sigma Chemical, 
lot no. 107F0910).  
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Table 10.  X-ray diffraction data (I/I0 ≥ 20) for sulfameter (Sigma Chemical, lot no. 
107F0910). 

d (Å) I/I0 

7.57 28.12 

5.15 64.78 

4.73 100.00 

4.45 26.82 

3.89 26.82 

3.87 27.02 

3.76 22.60 

3.74 24.97 

3.73 20.64 

3.58 27.95 

3.57 29.73 

3.43 20.47 

3.41 24.76 
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a. b. 

c. d. 

  

Figure 26.  Light microscopy of sulfameter and different sulfameter solvates at 5X 
magnification: a, sulfameter; b, tetrahydrofuran; c, dioxolane; d, oxane; e, 
dioxane; f, oxepane; g, chloroform and h, bromoform. 
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Figure 26, continued 
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Figure 27. Thermal analysis of sulfameter tetrahydrofuran solvate at a heating rate of 16 
K/min by: a, TGA and b, DSC.



 

 

113 

 

0

20

40

60

80

100

0 10 20 30 40 50

2θ (°)2θ (°)2θ (°)2θ (°)

I/
I 0

 

 

Figure 28. Powder X-ray diffraction pattern for sulfameter tetrahydrofuran solvate. 
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Table 11.  X-ray diffraction data (I/I0 ≥ 10) for sulfameter tetrahydrofuran solvate. 

d (Å) I/I0 

9.48 13.35 

7.89 15.69 

5.52 48.19 

5.29 100.00 

4.78 37.03 

4.72 11.03 

4.39 44.78 

4.24 17.99 

4.18 11.07 

4.16 16.83 

3.62 14.18 

3.52 11.84 

3.50 23.20 

3.35 11.29 

3.34 13.37 

2.73 15.85 
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Figure 29. Thermal analysis of sulfameter dioxolane solvate at a heating rate of 16 K/min 
by: a, TGA and b, DSC. 
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Figure 30. Powder X-ray diffraction pattern for sulfameter dioxolane solvate. 
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Table 12.  X-ray diffraction data (I/I0 ≥ 10) for sulfameter dioxolane solvate. 

d (Å) I/I0 

7.89 16.29 

5.53 39.55 

5.49 69.50 

5.45 100.00 

5.27 12.39 

5.24 16.15 

4.75 12.09 

4.74 12.44 

4.70 13.18 

4.41 13.63 

4.38 28.30 

3.62 16.36 

3.48 38.06 

2.73 18.60 
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Figure 31. Thermal analysis of sulfameter oxane solvate at a heating rate of 16 K/min by: 
a, TGA and b, DSC. 
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Figure 32. Powder X-ray diffraction pattern for sulfameter oxane solvate. 
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Table 13.  X-ray diffraction data (I/I0 ≥ 10) for sulfameter oxane solvate. 

d (Å) I/I0 

8.63 14.91 

5.98 16.65 

5.54 14.58 

5.34 18.13 

5.13 17.62 

4.71 35.26 

4.65 17.11 

4.60 100.00 

4.18 10.99 

2.94 14.85 

 



 

 

121 

 

 

a. 

0

20

40

60

80

100

120

0 50 100 150

Temperature (°C)

W
e

ig
h

t 
(%

)

b. 

0

20

40

60

80

100

120

0 50 100 150 200 250

Temperature (°C)

H
e

a
t 

fl
o

w
 (

m
W

)

e
n

d
o

Figure 33. Thermal analysis of sulfameter dioxane solvate at a heating rate of 16 K/min 
by: a, TGA and b, DSC. 
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Figure 34. Powder X-ray diffraction pattern for sulfameter dioxane solvate. 
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Table 14.  X-ray diffraction data (I/I0 ≥ 20) for sulfameter dioxane solvate. 

d (Å) I/I0 

9.58 24.90 

5.63 40.94 

5.59 72.25 

5.53 79.90 

5.32 100.00 

4.91 38.91 

4.81 41.45 

4.78 24.02 

4.76 30.89 

4.46 92.62 

4.21 28.63 

3.99 22.45 

3.58 22.50 

3.55 32.27 

3.54 40.25 

3.53 52.24 
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Figure 35. Thermal analysis of sulfameter oxepane solvate at a heating rate of 16 K/min 
by: a, TGA and b, DSC. 
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Figure 36. Powder X-ray diffraction pattern for sulfameter oxepane solvate. 
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Table 15.  X-ray diffraction data (I/I0 ≥ 20) for sulfameter oxepane solvate. 

d (Å) I/I0 

8.79 79.81 

8.40 28.38 

7.19 23.72 

6.05 55.02 

5.64 60.40 

5.61 74.71 

5.39 92.32 

5.20 97.53 

5.15 36.29 

4.88 31.41 

4.79 30.90 

4.72 21.48 

4.66 78.86 

4.59 86.37 

4.58 95.51 

4.40 43.97 

4.36 100.00 

4.21 55.75 

4.20 63.04 

4.16 27.43 

4.01 95.68 

3.92 23.44 

3.62 22.99 

3.60 37.46 

3.51 23.44 

3.47 40.66 

3.44 30.57 

3.42 21.99 

3.05 31.52 

 



 

 

127 

  

a. 

0

20

40

60

80

100

120

0 50 100 150 200

Temperature (°C)

W
e

ig
h

t 
(%

)

b. 

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

Temperature (°C)

H
e

a
t 

fl
o

w
 (

m
W

)

e
n

d
o

Figure 37. Thermal analysis of sulfameter chloroform solvate at a heating rate of 16 
K/min by: a, TGA and b, DSC. 
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Figure 38. Powder X-ray diffraction pattern for sulfameter chloroform solvate. 
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Table 16.  X-ray diffraction data (I/I0 ≥ 25) for sulfameter chloroform solvate. 

d (Å) I/I0 

10.02 28.71 

9.71 31.81 

9.34 30.32 

5.50 100.00 

5.29 33.83 

4.76 57.55 

4.42 90.16 

4.39 41.37 

4.37 52.70 

3.98 28.98 

3.97 31.54 

3.61 54.85 

3.51 39.35 

3.49 50.94 

3.47 71.16 

3.40 29.78 

3.39 35.18 

2.76 33.96 
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Figure 39. Thermal analysis of sulfameter bromoform solvate at a heating rate of 16 
K/min by: a, TGA (black); DTG (gray) and b, DSC. 
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Figure 40. Powder X-ray diffraction pattern for sulfameter bromoform solvate. 
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Table 17.  X-ray diffraction data (I/I0 ≥ 30) for sulfameter bromoform solvate. 

d (Å) I/I0 

9.54 33.51 

8.37 34.84 

6.49 59.04 

5.96 40.03 

5.73 59.04 

5.19 52.93 

5.06 48.54 

4.81 66.22 

4.21 45.74 

3.69 52.66 

3.48 37.77 

3.44 61.70 

3.41 99.07 

3.12 34.44 

3.10 100.00 

3.07 30.98 

2.82 44.28 

2.81 41.36 

2.73 55.32 

2.68 43.62 
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Figure 41.  Isothermal desolvation thermograms at 70°C for sulfameter dioxane solvate 
having an uncontrolled particle size (i.e., unsieved sample).
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Figure 42.  Isothermal desolvation thermograms at 75°C for sulfameter dioxane solvate 
having a particle size range of 90 – 300 µm. 
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Figure 43.  Nonisothermal desolvation thermograms at 16 K/min for sulfameter dioxane 
solvate having an uncontrolled particle size (i.e., unsieved sample). 
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Figure 44.  Nonisothermal desolvation thermograms at 16 K/min for sulfameter dioxane 
solvate having a particle size range of 90 – 300 µm.
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Figure 45. Nonisothermal desolvation thermograms at 16 K/min for sulfameter oxane 
solvate having a particle size range of 90 – 300 µm. 
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Table 18.  Data reduction example using the truncation method by rounding down data. 
(11 data points reduced to 3).  

Time (min)
 

Temperature 
(°C) 

α Rounded α Result 

14.10 69.647 0.102427903 0.10 0.10 

14.12 69.728 0.104828610 0.10 Ignored 

14.14 69.807 0.107496248 0.10 Ignored 

14.16 69.880 0.109896954 0.10 Ignored 

14.18 69.957 0.112829845 0.11 0.11 

14.20 70.025 0.115764415 0.11 Ignored 

14.22 70.081 0.118165122 0.11 Ignored 

14.24 70.151 0.121099691 0.12 0.12 

14.26 70.231 0.124034261 0.12 Ignored 

14.28 70.250 0.126967152 0.12 Ignored 

14.30 70.264 0.129901722 0.12 Ignored 
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Figure 46.  Calcium oxalate monohydrate dehydration thermograms at: 2, 4 and 8 K/min 
evaluated by two data reduction methods: �, MLR and �, Truncation. 
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Table 19.  Programmed and calculated heating rates for several nonisothermal TGA 
thermograms. 

Sample 
Programmed rate 

(K/min) 
Calculated rate 

(K/min) r a 

Empty pan 5.00 5.15 0.9999 

Empty pan 10.00 10.29 0.9999 

Empty pan 20.00 20.50 0.9999 

Empty pan 40.00 40.71 0.9998 

Water evaporation 2.50 2.53 0.9953 

Water evaporation 4.00 4.16 0.9912 

Water evaporation 5.00 5.03 0.9984 

Water evaporation 8.00 8.05 0.9989 

Water evaporation 10.00 9.86 0.9993 

Water evaporation 16.00 14.56 0.9977 

Water evaporation 32.00 29.58 0.9973 

Water evaporation 64.00 56.91 0.9988 

n-Propanol evaporation 1.00 1.09 0.9939 

n-Propanol evaporation 16.00 14.53 0.9998 

n-Propanol evaporation 64.00 56.06 0.9998 

Hexane evaporation 8.00 8.47 0.9999 

Hexane evaporation 16.00 14.02 0.9999 

Hexane evaporation 64.00 50.62 0.9997 

Calcium oxalate dehydration 1.00 1.01 0.9999 

Calcium oxalate dehydration 16.00 15.94 1.0000 

Citric acid b 10.00 10.34 0.9997 

Cortisone acetate b 10.00 10.12 0.9997 

Brompheniramine maleate b 10.00 10.37 0.9999 

Diphnehydramine HCl b 10.00 10.33 0.9998 

Pramoxine HCl b 10.00 10.36 0.9998 

Dibucaine HCl b 10.00 10.27 0.9998 
a Correlation coefficient of heating profile. 
 

b Heated until melting. 
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Figure 47.  Linear heating rate profile of an empty TG pan for a nonisothermal run at a 
programmed heating rate of 10 K/min. 
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Figure 48. Determination of actual experimental temperature of an isothermal 
desolvation reaction (sulfameter-tetrahydrofuran solvate at T=55°C). Region 
A represents the heat up period, while region B is the portion where the 
desolvation reaction occurs at a rapid rate. 
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a. 

 
b. 

SolverOptions MaxTime:=500, Iterations:=5000, Precision:=0.00000000001, 
AssumeLinear:=False, StepThru:=False, Estimates:=1, Derivatives:=1, SearchOption:=1, 
IntTolerance:=0.1, Scaling:=False, Convergence:=0.00000000001, 
AssumeNonNeg:=False 

Figure 49. Microsoft Excel’s Solver® parameters used for iterative solving of kinetic 
equations: a, graphical interface and b, Visual Basic® code used in Excel’s 
Macros. 
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Figure 50.  Nonisothermal thermograms for the evaporation of five substances and their 
isoconversional plots: a, water; b, deuterium oxide; c, propanol; d, hexane and 
e, naphthalene. 

 



 

 

145 

 

 

d. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 300 350 400

Temperature (K)

αα αα

K/min

■ 8.80

□ 26.68

■ 48.88

 

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

E
a

 (
k

J
/m

o
le

)

 
e. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

250 300 350 400 450

Temperature (K)

αα αα

K/min

■ 2.33

□ 4.74

■ 9.48

 

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

E
a

 (
k

J
/m

o
le

)

 

Figure 50, continued 
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Table 20.  Heats of vaporization (literature) compared to averaged vaporization 
activation energies (Ea) for five substances; activation energies calculated by 
the Vyazovkin isoconversional method for conversion values (α) of 0.1–0.90. 

Substance ∆HVap (kJ/mole) Average Ea (kJ/mole) 

Water 40.68 41.33 

Deuterium oxide 41.52 33.31 

Propanol 41.44 42.48 

Hexane 28.64 27.15 

Naphthalene 43.85 47.95 
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CHAPTER 4  

ROLE OF ISOCONVERSIONAL METHODS IN VARYING 

ACTIVATION ENERGIES OF SOLID-STATE KINETICS 

 

Introduction  

Solid-state kinetic studies have caused numerous debates and controversies [66, 

68]. One controversial issue is the variation of activation energy as a function of reaction 

progress. In a recent article, Galwey [76] questioned the meaning of variable activation 

energy in solid-state decompositions and proposed several explanations for this 

observation.  

Vyazovkin [158], in reply, provided alternative explanations for this behavior. 

Most explanations focus on the complexities inherent in solid-state kinetics with little 

consideration being given to secondary effects such as the effects of mathematical or 

computational methods. The aim of this work is to test the sensitivity of some of these 

methods, which will be done through kinetic analysis of simulated isothermal and 

nonisothermal data, in addition to actual experimental kinetic results. 

Varying activation energy 

Solid-state kinetics was developed from reaction kinetics in homogenous systems 

(i.e. gases and liquids). The Arrhenius equation (Eq. (14) relates the rate constant of a 

simple one-step reaction to the temperature through the activation energy (Ea) and pre-

exponential factor (A). It has been generally assumed that activation energy (Ea) and 

frequency factor (A) remain constant, however, it’s been shown [72-74] that in solid-state 

reactions these kinetic parameters may vary with the progress of the reaction (α). This 

variation can be detected by isoconversional methods. While this variation appears to be 

in conflict with basic chemical kinetic principles, in reality, it may not be. Such behavior 
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may show that solid-state kinetics are more complex and/or multi-step compared to 

reactions in homogenous phases. There are several proposed explanations for varying Ea 

with reaction progress. Vyazovkin [73] has shown this behavior in homogenous phases.  

Possible explanations for such variation in solid-state reactions have been summarized by 

Galwey [76]. Explanations for this variation usually focus on the complexities inherent in 

solid-state kinetics with little consideration being given to secondary effects such as 

artifacts from mathematical or computational methods. Solid-state reactivity of an 

elementary reaction could also be affected by experimental variables that could change 

the reaction kinetics by affecting heat or mass transfer at a reaction interface [76].  

If two or more elementary steps, each having a unique activation energy, control 

the rate of product formation, the reaction is usually called a complex reaction [9]. In 

such a reaction, a change in the activation energy as the reaction progresses would be 

observed. This change will depend on the contribution of each elementary step, which 

gives an “effective” activation energy that varies with reaction progress. Kinetic 

complexities are not limited to multiple chemical steps. They may also include physical 

processes (e.g. sublimation, localized melting, adsorption-desorption, diffusion of a 

gaseous product, particle size and morphology effects, etc.) that have different activation 

energies [76], as discussed in Chapter 1.  

Isoconversional methods, use several TGA or DSC data sets for kinetic analysis. 

When performing isothermal experiments, care should be taken to ensure that every run 

is done under the same experimental conditions (i.e., sample weight, purge rate, sample 

size distribution, particle morphology, etc.) so that only the temperature varies for each 

run. Similarly, when performing nonisothermal experiments, care must be taken to ensure 

that each run is conducted under the same experimental conditions so that only the 

heating rate is the only variable. 
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 Experimental variation can be minimized, but not totally removed which alters a 

thermogram such that it falls above or below its expected location. This could introduce 

errors in the calculation of the activation energy obtained from isoconversional methods. 

We propose that the observed variation in activation energy, as detected by 

isoconversional methods could be an artifact that results form the sensitivity of these 

methods to different experimental variables. This sensitivity was tested through kinetic 

analysis of simulated and actual experimental data. Actual experimental data was based 

on studying desolvation reaction kinetics of sulfameter dioxolane solvate (Chapter 3) 

isothermally and nonisothermally.  

The sulfameter solvate system was selected for this study because it has been 

previously shown [157] that desolvation of sulfameter solvates is a simple process 

because solvent molecules fill channels within the crystal structure and desolvation 

involves the removal of solvent from such channels. Although desolvation does not 

reflect the inherent complexities observed in many other solid-state systems, it does 

represent simple solid-state reactions that occur in many pharmaceutical solids. 

Experimental 

There are two parts to this investigation: an isothermal and a nonisothermal part. 

Each part involves mathematical analysis of simulated and actual experimental data of 

the desolvation of sulfameter-dioxolane solvate. 

The methods for evaluating isothermal kinetic data include the standard 

isoconversional method [41], Friedman’s isoconversional method [58], Vyazovkin’s 

advanced isoconversional (AIC) method [25, 63] and the conventional model-fitting 

method (see Chapter 1). Nonisothermal data were analyzed by model-fitting methods 

(Coats-Redfern) [48, 49] in addition to isoconversional methods which include the 

Ozawa-Flynn-Wall (OFW) method [59, 60] and Vyazovkin’s (VYZ) isoconversional [62] 

and advanced isoconversional (AIC) [25, 63] methods (see Chapter 1). 
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Data simulation 

A simple, one-step reaction was simulated. Fifteen isothermal and twenty four 

nonisothermal simulations were generated, as described in Chapter 3. 

The first isothermal simulation (A1) consisted of five isothermal (α-t) curves 

which were simulated (error-free) at five temperatures (323, 328, 333, 338 and 343 K) 

using a first-order model (g(α)=-ln(1-α)) with A=1x1015 min-1 and Ea=100 kJ/mole as 

seen in Figure 51. Fourteen additional simulations (A2–15) were generated from A1 

using the same kinetic parameters and model but introducing different perturbations in 

each (Table 21). These perturbations included shifting one or more curves and/or 

changing the temperature of a curve. A curve shift simulates a thermal lag in a sample, 

while a temperature change simulates possible self cooling/heating effects or the effect of 

using an apparent sample temperature rather than the true temperature. 

Nonisothermal runs were simulated in two data sets (sets B and C). The first 

simulation in set B (B1) consisted of five error-free nonisothermal (α-T) curves 

generated at five heating rates (2, 4, 8, 16 and 32 K/min) using a first-order model 

(g(α)=-ln(1-α)) with A=1x1015 min-1 and Ea=100 kJ/mole (Figure 52). Thirteen 

additional simulations (B2–14) were generated from B1 using the same kinetic 

parameters and model but with perturbations in temperature or heating rate (Table 22). 

The first simulation in set C (C1) consisted of five error-free nonisothermal (α-T) 

curves which were generated using the same parameters for simulation B1 except the 

heating rates (0.5, 1, 1.5, 2 and 2.5 K/min) (Figure 53) covered a narrower range. Nine 

additional simulations (C2-C10) were generated from C1 using the same kinetic 

parameters and model but with different perturbations in each (Table 23). The use of low 

heating rates as in simulation set C has been previously suggested [37] to narrow the 

temperature range of nonisothermal experiments. Narrow temperature ranges may reduce 

differences between isothermal and nonisothermal experiments [37]. Perturbations 

introduced into each nonisothermal simulation set included shifting one or more curves or 
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changing their nominal heating rate. A curve shift simulates thermal lag in a sample, 

while a change in the nominal heating rate simulates possible self cooling/heating effects 

or the effect of using the programmed heating rate rather than the actual one. 

Kinetic analysis of each isothermal simulation was done by the conventional 

model-fitting method and several isoconversional methods (i.e. standard method [41], 

Friedman’s method [58] and the advanced isoconversional method, AIC [25, 63]).  

Nonisothermal kinetic analysis was done by the Coats-Redfern model-fitting 

method [48, 49] in addition to several isoconversional methods: Ozawa-Flynn-Wall 

(OFW) [59, 60]; Vyazovkin’s isoconversional (VYZ) [62]; and, the advanced 

isoconversional (AIC) [25, 63]. 

All kinetic analysis was done with Microsoft Excel®, as discussed in Chapter 3. 

The differential (dα/dt) in Friedman’s method was numerically evaluated without 

smoothing. 

Sulfameter solvate desolvation 

Sulfameter was obtained from Sigma® Chemical Co. while dioxolane was 

obtained from Aldrich® Chemical Co. These chemicals were used as supplied. A 

dioxolane solvate of sulfameter was prepared by recrystallizing sulfameter from the neat 

solvent, as described in Chapter 3. Samples were sieved and a particle size range of 90 – 

355 µm was used for isothermal experiments and a range of 850–1700 µm was used for 

nonisothermal experiments. 

Desolvation kinetics for this solvate was followed by thermogravimetry using a 

Perkin-Elmer TGA 7, as explained in Chapter 3.  

Isothermally, four different batches of sulfameter dioxolane solvate were 

separately prepared, a sample from each batch was analyzed (samples 1 – 4). Samples 1 

and 2 were run without controlling particle size or weight while samples 3 and 4 were 

sieved and a particle size range of 90 – 355 µm was used and weights were within 5% of 
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each other. Runs were performed at nominal temperatures of 323, 328, 333, 338 and 343 

K, the exact sample temperature was obtained by averaging observed sample 

temperatures over the time of the TGA run as explained in Chapter 3.  

Nonisothermally, five data sets, each containing five samples of sulfameter-

dioxolane were desolvated at different heating rates, within each set, sample weights 

were within 5% of each other. Runs were performed at nominal heating rates of 1, 1.5, 2, 

2.5 and 3 K/min for two sets while nominal heating rates for the remaining three sets 

were 1, 2, 4, 8 and 16 K/min. The exact heating rate was obtained from the slope of the 

linear heating curve of the TGA run during the time period of significant weight loss, as 

explained in Chapter 3. 

Kinetic analysis for desolvation data was done by model-fitting and 

isoconversional methods, as described in Chapter 3. 

Results and Discussion 

Figure 54 shows four isothermal desolvation thermograms for sulfameter-

dioxolane samples (samples 1 –4) while Figure 55 shows five sets of nonisothermal 

desolvation thermograms for sulfameter-dioxolane samples. Gravimetric weight loss for 

these solvates showed a 1:1 drug – solvent ratio (~ 21% w/w). Kinetic analysis for 

simulated and real data sets is described below. 

Kinetic analysis of simulated data 

Isothermal data 

Isoconversional methods 

Isoconversional analysis (Figures 56–61) showed that changing the temperature in 

isothermal runs does not affect the shape (i.e. linearity or slope) of the isoconversional 

(Ea–α) plot. However, it does significantly change calculated Ea values, as seen in 
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simulations A7–8 (Figure 58). A change in the shape of an isoconversional plot 

represents an artificial variation in activation energy.  

Shifting one or more curves had different effects based on the type of curve shift 

introduced. Systematic curve shifts (moving a curve by a constant percent, (A2–6)) had 

no effect on the shape of the isoconversional plot, but considerably altered calculated 

values of Ea from all three isoconversional calculation methods (Figure 57). On the other 

hand, shifting a curve by a fixed time (A9–13) significantly changed the shape of 

isoconversional plots calculated from the standard isoconversional method while those 

calculated from the Friedman and AIC methods were unaffected (Figures 58–60). 

Changes in the shape of isoconversional plots (i.e. the artifactual variation in activation 

energy), are due to variation of introduced errors at each α, the highest error being at low 

α values, which accounts for the observed deviation in Ea from 100 kJ/mole in some 

simulations. For example, A9 and A10 (Figure 58) show opposite deviations in Ea values 

that result from a ±0.016 minute curve shift (Table 21), which occur up to α = 0.5. A 

similar result is seen for A11–14 (Figures 59–60) where larger Ea deviations are seen 

compared to A9 –10 due to larger introduced curve shifts (Table 21). Traditionally, 

researchers [132] have suggested analyzing solid-state kinetics over selected conversion 

values (i.e. 0.1 – 0.9) because errors are usually highest at extreme conversion values 

(i.e., α<0.1 and α>0.9).  

Our results also show that some simulated runs were more sensitive to the same 

perturbation than others. Perturbations affecting the middle curve (third of five) 

introduced less error than those affecting extreme curves (i.e. first or fifth curve). For 

example, when curves were systematically shifted by –10% minutes in A2–6 (Figure 57), 

calculated values of Ea increased by about 0.6% in A4 where the third curve was shifted 

compared to a change of about 4% in A2 and A6 that involved shifting the first or last 

curve. Similarly, curves shifted by a fixed time as in A9–12 (Figures 58–59) showed 

variable effects in the results calculated from the standard isoconversional method. For 
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example, when the fifth curve (343 K curve) was shifted by ±0.016 minutes as seen in 

A9–10 (Figure 58), deviations in calculated Ea values as large as 25% were seen, 

however when the curve shift was six times higher (curve shifted by ±0.1 minutes) on the 

middle curve (333 K curve) as in A11–12 (Figure 59), the deviation in calculated Ea 

values did not exceed 0.6%. 

Model-fitting results 

Kinetic analysis of each simulation was done by the conventional model-fitting 

method where several kinetic triplets (model, A and Ea) were obtained (Table 24). Model 

selection (i.e., the first fit) was not affected by any introduced perturbation. The correct 

model (F1) was selected for all isothermal simulations (A1–15) and essentially perfect 

first-order plots were obtained (r=1.000). Model-fitting results agreed with those obtained 

from the Friedman and AIC methods which showed that the model-fitting method is less 

sensitive to some of the perturbations (namely, curve shifts by a fixed time) compared to 

the standard isoconversional method. While the shape of the standard isoconversional 

plot changed for A9–13 (Figures 58–60). Kinetic parameters obtained by the model-

fitting method for these simulations were not affected (Table 24). Both isoconversional 

and model-fitting results were similarly affected by either changing the isothermal 

temperature as in A7– 8 (Figure 58) or systematically shifting one or more curves as in 

A2–6 (Figure 57). 

Nonisothermal data 

Isoconversional methods 

Kinetic results for nonisothermal data (Figures 62–68) show the sensitivity of 

isoconversional methods to introduced perturbations. This sensitivity is manifested either 

as an inaccurate value of Ea or as an artifactual variation of Ea as a function of α.  
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Perturbations involving curve shifts had two effects on kinetic analysis. First, 

calculated Ea values were significantly affected and second, the linearity of 

isoconversional plots was affected producing an artifactual variation in Ea. These effects 

were seen for both simulation sets B (B2–7, Figure 63; B13, Figure 64) and C (C2–9, 

Figure 67).  

Perturbations which changed the heating rate did not affect the shape (i.e., 

linearity) of the isoconversional (Ea–α) plot. However, they significantly changed 

calculated Ea values, as seen in simulations B8–12 (Figure 64). 

Analysis of simulation results also showed that the same perturbation had 

different effects on each curve, which has been previously shown isothermally. In 

simulation set B, perturbations affecting the middle curve (3rd of five) produced less error 

than those affecting the outer curves (i.e. 1st or 5th curve). For example, in simulations B3 

and B7 (Figure 63), shifting an outer curve (1st or 5th) by –2 K produced a larger error in 

Ea compared to simulation B5 with the same shift on a middle curve (~6% versus 0.8%). 

A similar observation is seen for simulations B8 and B12 where a larger error in Ea was 

produced when an outer curve was shifted compared to less error for B10 which involved 

a shift in the middle curve (~3% versus <0.1%, Figure 64). The maximum error in Ea was 

produced in simulation B13 where more than one curve was shifted (~18%, Figure 64). 

For simulation set C, fitted results also showed that perturbations affecting outer curves 

(i.e., 1st or 5th) produced higher Ea variation than those affecting the middle curve (i.e., 

3rd). However, errors in Ea differed if the direction of the perturbation changed (Figure 

67). For example, simulations C2 and C6, involved shifting the first (C2) and fifth (C6) 

curves by + 2K or -2K, respectively, gave ~ 16% error in Ea (C2) compared to ~10% 

error (C6). Similarly, C2 and C7 involved shifting the first curve (0.5 K/min curve) by +2 

K and –2 K, respectively, producing ~16% (C2) compared to ~14% (C7) errors in Ea. 

Also, C4 and C8 involved shifting the third curve (1.5 K/min curve) by +2 K and –2K, 

respectively, producing errors of ~4.5% (C4) or ~0.7% (C8).  
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Errors produced in simulation set C were generally higher than those in set B. For 

example, a curve shift of –2K for the first curve in simulations B7 and C7 produced an Ea 

error of ~7% (B7) versus ~14% (C7). Shifting the last curve by +2K and –2K in B2 and 

B3 produced ~ 6% error in Ea for each. However, these shifts (+2K and -2K in the last 

curve) produced Ea errors ~ 10% (C6) and 8% (C9) in set C. Larger errors in simulations 

C are probably due to the experimental design. In this simulation set (set C), heating rates 

were selected to yield curves that cover a narrower temperature range, which produced 

curves less separated than those over the wider temperature range in simulation set B. For 

example, C1 curves were closely spaced (Figure 53) with each curve separated by the 0.5 

K/min difference in heating rate (i.e., 0.5, 1, 1.5, 2 and 2.5 K/min), whereas, curves in 

simulation B1 (Figure 52) were separated by a twofold heating rate difference (i.e., 2, 4, 

8, 16 and 32 K/min). As a result, any curve shift is likely to affect closely spaced curves 

(set C) more than widely spaced ones (set B).  

Because narrow temperature-range curves are so closely spaced, any shift within 

these curves may cause a curve to shift to a position were it overlaps the curve that 

follows it (i.e., curve having a higher heating rate) or overlaps the curve that precedes it 

(i.e., curve having a lower heating rate). This overlap was observed in simulations C4 

(1.5 and 2 K/min curves), C5 and C9 (2 and 2.5 K/min curves) as seen in Figure 69a–c, 

but this effect is less likely in wider temperature-range curves as they are more widely 

spaced. Even when maximal curve shifts were introduced (B13), simulated curves 

remained well separated (Figure 69d). 

Data analysis also showed that the AIC method was slightly more accurate in 

calculating Ea than the OFW or VYZ methods, however, it was more sensitive to random 

errors (Figures 65 and 68). The higher random error is probably due to integration over 

small α intervals (∆α=0.05) in Eq. (66); the scatter could be reduced by smoothing but 

experimental information could be lost if too much smoothing is done. 
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Model-fitting methods 

Kinetic analysis of simulated data by the Coats-Redfern model-fitting method 

show that perturbations introduced had little effect on calculated kinetic parameters 

(Table 25) as A and Ea were calculated with little error. However, two problems were 

encountered: all models gave acceptable fits (r>0.93); some models were 

indistinguishable (A2, A3, A4 and F1) based on quality of the fit (i.e., all r-values equal). 

Therefore, quality of fit is a poor indicator of the best model when using model-fitting 

methods, as other authors have reported [37] and is further explained in Chapter 5. 

Kinetic analysis of sulfameter desolvation 

Isothermal data 

Kinetic analysis of sulfameter-dioxolane desolvation using the standard 

isoconversional method showed that shapes of isoconversional plots are substantially 

different. For the first two samples (Figure 70a–b), this variation was anticipated since 

experimental variables were not as carefully controlled. However, for the second two 

samples (Figure 70c–d), experimental conditions were nearly identical but the 

isoconversional plot still showed large differences at low conversion values, whereas at 

α>0.4 both isoconversional plots obtained from the standard method are almost identical 

for these samples. This finding resembles results obtained for the same method for 

simulations A9–10 (Figure 58) and A11–12 (Figure 59).  

Kinetic analysis done with the Friedman and advanced isoconversional (AIC) 

methods showed less variable activation energy compared to the standard isoconversional 

method (Figure 71). However, calculated activation energies were highly scattered with 

the Friedman’s method which was also seen in simulation A15 (Figure 61) which is 

common with differential methods, the scatter could be reduced by smoothing but 

experimental information could be lost if this is not done carefully. There was also some 

scatter in the isothermal desolvation results obtained by the AIC method for both 
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simulated (Figure 61) and experimental data (Figure 71), which can also be seen in some 

other AIC results [63]. This scatter is probably due to integration over small  α intervals. 

Kinetic analysis done with the model-fitting method (Table 26) gave Ea values 

that agreed with those obtained from the AIC method. Results obtained from the model-

fitting method also showed an agreement with those obtained from the standard 

isoconversional method for α>0.4. Model-fitting results also showed that calculated 

activation energies were not very dependent upon the kinetic model (Table 26). This 

means that for the same run, any model gives very comparable activation energies which 

agrees with previous reports [38, 159]. 

Comparison of activation energies obtained from different methods suggests that 

the observed variation in Ea in the standard isoconversional method for samples 3–4 is 

artifactual, which could be due to a less controlled experimental variable that may have 

shifted any of the α–time curves for these two samples (Figure 54). These two samples 

gave widely varying Ea values up to α ~ 0.4. It seems that desolvation of sulfameter 

dioxolane solvate having a particle size of 90–355 µm (samples 3–4) has an activation 

energy of 75-85 kJ/mol if the results of the standard method for α> 0.4 are to be believed, 

which agrees with the results obtained from the AIC (Figure 70c–d) and model-fitting 

(Table 26) methods.   

Nonisothermal data 

Figure 72 shows Ea–α plots for the desolvation of five experimental data sets for 

sulfameter-dioxolane solvate desolvation. The isoconversional plots of all sets show 

variation in Ea. Sample sets 1–2 (Figure 72a–b) show the highest random scatter (AIC 

method) and systematic variation in Ea. The isoconversional plots for the two sets were 

also significantly different, especially for α< 0.5 (Figure 73). On the other hand, sample 

sets 3–5 (Figure 72c–e) showed less systematic Ea variation and random scatter. 
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However, the isoconversional plots for all three data sets were comparable (Figure 73) 

indicating better consistency of more widely spaced heating rates. 

Isoconversional plots for sets 1–2 are comparable to those for simulation set C as 

they involve heating rates that produce closely spaced curves (i.e., cover a narrow 

temperature range) while plots for sets 3–5 are comparable to those obtained from 

simulation set B as they involve heating rates that produce widely spaced curves (i.e., 

cover a wider temperature range). Large errors seen in sample sets 1–2 compared to sets 

3–5 are perhaps due to the nature of the experimental protocol as was seen for simulation 

set C. Like simulation C1, curves in sample sets 1–2 were closely spaced where small 

curve shifts in these sets caused their positions to move above or below their expected 

positions (Figure 74a) which dramatically affects the shape of isoconversional plots 

(Figure 73). Similarly, simulation B1 resembles those of sample sets 3–5 as they were 

widely spaced and curve shifts due to experimental variation had less effect on curve 

positions (Figure 74b) and the shape of isoconversional plots (Figure 73). 

Also, experimental TGA curves are generally expected to produce more errors in 

the isoconversional kinetic analysis because, in addition to any observed curve shift that 

might occur, actual heating rates are usually different from those programmed due to self 

heating/cooling effects. Therefore, in reality, curves are more tightly spaced than 

expected in the experimental protocol.  

Model-fitting results of sample sets showed that kinetic parameters (A and Ea) of 

all sets gave comparable values for each model (Table 27). Therefore, curve shifts that 

occurred from different experimental variables had less effect on kinetic parameters 

calculated by the Coats-Redfern method. This finding was also substantiated by the 

analysis of simulated data. Problems encountered with the Coats and Redfern model-

fitting method were similar to those seen for simulated data which included excellent fits 

for all models (r>0.94, Figure 75) with some models being indistinguishable (A2, A3, A4 

and F1) based on a statistical criterion (see variation in r for each model, Figure 75). 
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Confidence intervals for activation energies 

To minimize experimental errors encountered, it is often necessary for 

experimental conditions to be rigorously controlled. For solid-state kinetic studies, this 

can be achieved by sieving the sample, using the same weight for each run (±5%), 

controlling purge gas flow rate as well as other variables. However, such variations can 

not be totally eliminated and random experimental errors could produce significant 

variation in calculated kinetic parameters. Therefore, replicate samples should be 

analyzed, which permits calculating an average value of the activation energy with a 

confidence interval. The 95% confidence interval of the activation energy was calculated 

for the isothermal desolvation of sulfameter dioxolane solvate (Figure 76) by averaging 

all four previous runs (samples 1 – 4) even though two runs had less well controlled 

particle size and weights. For the standard isoconversional method (Figure 76a), this 

average showed the widest confidence intervals (±40 %) for low α (α ≤0.2) while the 

smallest were ± 8–12% for α>0.2. On the other hand, averaging all four runs for the AIC 

method (Figure 76b) showed uniform confidence intervals of ±10–20% at all values of α. 

Judging from the simulation results, plot (Figure 76b) is probably more 

representative of the actual activation energy than that in (Figure 76a). 

The systematic decrease of confidence intervals with reaction progress seen in the 

standard isoconversional method further supports the somewhat artifactual activation 

energy variation at low α.  

Conclusions 

The debate over variable activation energy is most often due to viewing 

heterogeneous solid-state kinetics from a homogenous perspective. However, 

explanations are necessary for this behavior to better understand solid-state reaction 

mechanisms. 
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Activation energy variation could be real or artifactual. A true variation in 

activation energy is one that occurs because of the inherent complexity of the solid 

sample which includes different reactivity of individual particles due to particle size 

variations or crystal imperfections. Artifactual variations arise from the kinetic 

calculation methods employed. Our results showed the sensitivity of some calculation 

methods to introduced experimental variables. This sensitivity is manifested by an 

artifactual variation in activation energy as a function of α. Methods do not equally 

contribute to the observed variation in activation energy.  

Isothermally, the standard isoconversional method gives the most activation 

energy variation, which does not occur with Friedman’s or AIC methods. However, both 

methods show some data scattering, which is quite significant in Friedman’s method such 

that it is far less useful for analyzing real experimental data if no data smoothing is 

employed. Activation energy calculated from the model-fitting method like the Friedman 

and AIC methods, is apparently least affected by experimental variables. The AIC 

method appears to be a superior isoconversional method and its use should be encouraged 

in isothermal experiments. Results from this method should be used in conjunction with 

those from the model-fitting method to determine the most accurate values of Ea and A.  

Nonisothermally, results showed that all tested isoconversional methods produced 

artifactual variation in Ea. While the magnitude of this variation appears to be small in 

some experiments where curves were well separated, the magnitude of artifactual 

variation was quite high in others which had little separation between curves. Artifactual 

Ea variation can be attributed to various experimental variables that can shift 

thermogravimetric curves from their expected positions (e.g., less systematic shift with 

increasing heating rate) which are manifested as variations in Ea with isoconversional 

analysis methods. Such variations in Ea will be observed in all nonisothermal 

isoconversional methods. Therefore, such a variation can not be reduced or prevented in 

any isoconversional method unless more careful control of experimental variables and 
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better experimental design are applied. Nonisothermal experiments should be designed so 

that curves are widely separated. A twofold difference in heating rates between curves 

produced more consistent Ea values in our experimental work. Model fitting methods 

were least affected by experimental variables that cause curve shifts. Inaccurate 

determination of heating rates affects all calculation methods in solid-state kinetic 

analyses. Therefore, the actual heating rate of each run rather than that programmed 

should be used in kinetic analyses.   

Generally, care should be taken when interpreting kinetic results from 

isoconversional methods, if the variation in activation energy is artifactual, this variation 

can lead to a false mechanistic conclusion about a reaction being complex while, in fact, 

it is not. 

Finally, variation in activation energy could be a combination of the two 

aforementioned sources of variation (i.e., true and artifactual), making the resolution into 

individual contributions difficult or impossible. There seems to be no ideal method for 

evaluating solid-state kinetics because calculated values of activation energy could be in 

error, even when results from isoconversional and the model-fitting methods agree. To 

overcome this, experimental variables should be adequately controlled and experiments 

replicated, so that averaged kinetic parameters and their confidence intervals can be 

estimated. 
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Figure 51.  Error-free simulation (A1) of α versus time for several isothermal kinetic runs 
at: ▲, 323 K; �, 328 K; �, 333 K; �, 338 K; and �, 343 K. The inset gives 
the simulation model, pre-exponential factor (A) and activation energy (Ea).
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Table 21.  Variations in isothermal simulations generated from simulation A1 (error-
free), produced using a first-order reaction model (F1) with A=1x1015 min-1 
and Ea=100 kJ/mole. 

Simulation Simulation characteristics 

A1 Error-free simulation of five isothermal curves at 323, 328, 333, 338 and 
343 K. 

A2 323 K curve of simulation A1 shifted by –10% in time. 

A3 328 K curve of simulation A1 shifted by –10% in time. 

A4 333 K curve of simulation A1 shifted by –10% in time. 

A5 338 K curve of simulation A1 shifted by –10% in time. 

A6 343 K curve of simulation A1 shifted by –10% in time. 

A7 Temperature of 343 K curve in simulation A1 taken as 340 K. 

A8 Temperature of 333 K and 343 K curves in simulation A1 taken as 335 K 
and 340 K, respectively. 

A9 343 K curve of simulation A1 shifted by – 0.016 min. 

A10 343 K curve of simulation A1 shifted by + 0.016 min. 

A11 333 K curve of simulation A1 shifted by – 0.1 min. 

A12 333 K curve of simulation A1 shifted by + 0.1 min. 

A13 333 K and 343 K curves of simulation A1 shifted by + 0.2 and – 0.1 min. 
respectively.  

A14 Simulations A7 and A9 combined. 

A15 0.5% random error in time introduced to each curve in simulation A1 

 

 

 

 



 

 

165 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

295 305 315 325 335 345 355 365 375 385

Temperature (K)

αα αα

Model: First-order (F1)

A: 1x10
15

 min
-1

Ea: 100 kJ/mole

 

Figure 52.  Error-free simulations (B1) of α versus temperature for nonisothermal kinetic 
runs at:  ▲, 2 K/min; �, 4 K/min; �, 8 K/min; �, 16 K/min and �, 32 
K/min. The inset gives the model, pre-exponential factor (A) and activation 
energy (Ea) for these simulations. 
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Table 22.  Nonisothermal simulations generated from simulation B1 (error-free), 
produced using a first-order reaction model with (F1) with A=1x1015 min-1 
and Ea=100 kJ/mole. Simulations B2–B13 are perturbations of B1. 

Simulation Simulation characteristics 

B1 Five nonisothermal curves at heating rates of 2, 4, 8, 16 and 32 K/min. 

B2 32 K/min curve shifted by + 2 K 

B3 32 K/min curve shifted by – 2 K 

B4 16 K/min curve shifted by – 2 K 

B5 8 K/min curve shifted by – 2 K 

B6 4 K/min curve shifted by – 2 K 

B7 1 K/min curve shifted by – 2 K 

B8 Heating rate of 32 K/min curve taken as 28.2 K/min. 

B9 Heating rate of 16 K/min curve taken as 14.4 K/min. 

B10 Heating rate of 8 K/min curve taken as 7.2 K /min. 

B11 Heating rate of 4 K/min curve taken as 3.6 K /min. 

B12 Heating rate of 2 K/min curve taken as 1.8 K /min. 

B13 2 K/min and 32 K/min curves shifted by +3 K and –2 K respectively. 

B14 0.5% random error in temperature (ºC) added to each curve. 
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Figure 53.  Error-free simulations (C1) of α versus temperature for nonisothermal kinetic 
runs at: ▲, 0.5 K/min; �, 1 K/min; �, 1.5 K/min; �, 2 K/min and �, 2.5 
K/min. The inset gives the model, pre-exponential factor (A) and activation 
energy (Ea) for these simulations. 

 



 

 

168 

 

 

Table 23.  Nonisothermal simulations generated from simulation C1 (error-free), 
produced using a first-order reaction model with (F1) with A=1x1015 min-1 
and Ea=100 kJ/mole. Simulations C2–C10 are perturbations of C1. 

Simulation Simulation characteristics 

C1 Five nonisothermal curves at heating rates of 0.5, 1, 1.5, 2 and 2.5 K/min. 

C2 0.5 K/min curve shifted by + 2 K 

C3 1 K/min curve shifted by + 2 K 

C4 1.5 K/min curve shifted by + 2 K 

C5 2 K/min curve shifted by + 2 K 

C6 2.5 K/min curve shifted by + 2 K 

C7 0.5 K/min curve shifted by – 2 K 

C8 1.5 K/min curve shifted by – 2 K 

C9 2.5 K/min curve shifted by – 2 K 

C10 0.5% random error in temperature (ºC) added to each curve. 
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Figure 54.  α versus time plots  for the isothermal desolvation of sulfameter-dioxolane 
solvate samples: a, sample1; b, sample 2; c, sample 3 and d, sample 4. 
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Figure 55.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
dioxolane solvate sets: a, set 1; b, set 2; c, set 3; d, set 4 and e, set 5. 
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Figure 56.  Ea versus α plots of simulated isothermal runs (A1), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 
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Figure 57.  Ea versus α plots of simulated isothermal runs (A2–6), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 
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Figure 58.  Ea versus α plots of simulated isothermal runs (A7–10), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 



 

 

174 

 

 

99.2

99.4

99.6

99.8

100.0

100.2

100.4

100.6

100.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

αααα

E
a
 (

k
J

/m
o

le
)

A12

A11

 

Figure 59.  Ea versus α plots of simulated isothermal runs (A11–12), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 
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Figure 60.  Ea versus α plots of simulated isothermal runs (A13–14), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 
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Figure 61.  Ea versus α plots of simulated isothermal runs (A15), evaluated by three 
isoconversional methods: ▲, standard; �, Friedman and �, AIC. 
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Table 24.  Fitted kinetic parameters for simulated isothermal data (Table 21) using 
model-fitting methods.* 

Simulation A (min-1) Ea (kJ/mole) r  ** 

A1 1.00 × 1015 100.00 - 1.0000 

A2 2.46 × 1014 96.06 - 0.9992 

A3 5.12 × 1014 98.09 - 0.9986 

A4 1.04 × 1015 100.06 - 0.9985 

A5 2.08 × 1015 101.97 - 0.9987 

A6 4.07 × 1015 103.83 - 0.9993 

A7 5.23 × 1016 110.77 - 0.9916 

A8 2.89 × 1016 108.93 - 0.9824 

A9 1.00 × 1015 100.00 - 1.0000 

A10 1.00 × 1015 100.00 - 1.0000 

A11 1.00 × 1015 100.00 - 1.0000 

A12 1.00 × 1015 100.00 - 1.0000 

A13 1.02 × 1015 100.06 - 1.0000 

A14 5.23 × 1016 110.77 - 0.9916 

A15 9.85 × 1014 99.96 - 1.0000 

* Results shown for the F1 (i.e., first-order) model. 
 
** Correlation coefficient for ln k vs. 1/T plot. 
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Figure 62.  Ea versus α plots of simulated nonisothermal runs (Simulation B1), evaluated 
by three isoconversional methods: �, VYZ; �, OFW and �, AIC. 
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Figure 63.  Ea versus α plots of simulated nonisothermal runs (Simulations B2–7), 
evaluated by two isoconversional methods: �, VYZ and �, AIC. 



 

 

180 

 

 

95

98

101

104

107

110

113

116

119

122

125

0 0.2 0.4 0.6 0.8 1

αααα

E
a
 (

k
J
/m

o
le

)

B13

B12

B11

B10

B9

B8

Figure 64.  Ea versus α plots of simulated nonisothermal runs (Simulations B8–13), 
evaluated by two isoconversional methods: �, VYZ and �, AIC. 
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Figure 65.  Ea versus α plots of simulated nonisothermal runs (Simulation B14), 
evaluated by three isoconversional methods: �, VYZ; �, OFW and �, AIC. 
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Figure 66.  Ea versus α plots of simulated nonisothermal runs (Simulation C1), evaluated 
by three isoconversional methods: �, VYZ; �, OFW and �, AIC. 
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Figure 67.  Ea versus α plots of simulated nonisothermal runs (Simulations C2–9), 
evaluated by two isoconversional methods: �, VYZ and �, AIC. 
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Figure 68.  Ea versus α plots of simulated nonisothermal runs (Simulation C10), 
evaluated by three isoconversional methods: �, VYZ; �, OFW and �, AIC. 
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Figure 69.  α versus temperature curves for simulations C4, C5 and C9 (a-c) at nominal 
heating rates of: ▲, 0.5 K/min; �, 1 K/min; �, 1.5 K/min; �, 2 K/min; �, 
2.5 K/min and simulation B13; (d) at: ▲, 2 K/min; �, 4 K/min; �, 8 K/min; 
�, 16 K/min and �, 32 K/min. 
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Table 25.  Fitted kinetic parameters for simulated nonisothermal data (B and C), using 
the Coats-Redfern method.*† 

Simulation A (min
-1

) ×××× 10
14

 Ea (kJ/mole) 

B1 9.5 99.9 
B2 10.0 100.1 
B3 9.2 99.6 
B4 9.1 99.6 
B5 9.1 99.6 
B6 9.1 99.6 
B7 9.1 99.6 
B8 9.3 99.9 
B9 9.3 99.9 
B10 9.3 99.9 
B11 9.3 99.9 
B12 9.3 99.9 
B13 9.8 100.0 
B14 9.7 99.9 
C1 9.6 99.9 
C2 10.1 100.1 
C3 10.0 100.1 
C4 10.0 100.1 
C5 10.0 100.1 
C6 10.0 100.1 
C7 9.1 99.6 
C8 9.1 99.6 
C9 9.1 99.6 
C10 9.4 99.8 

* Results shown for first-order (F1) model. 
 
† Results averaged from five heating rate curves using the geometric mean of A and Ea. 
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Figure 70.  Ea versus α plots for isothermal sulfameter-dioxolane solvate desolvation runs 
(samples 1–4), evaluated by three isoconversional methods: �, standard; �, 
Friedman and �, AIC. 
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Figure 71.  Ea  versus α plots for isothermal sulfameter-dioxolane solvate desolvation runs 
of four samples. Plots a, c and e are for samples 1–2. Plots b, d and f are for 
samples 3–4. 
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Table 26.  Fitted kinetic parameters for sulfameter-dioxolane isothermal desolvation 
kinetics by model-fitting methods. 

Sample 1 Sample 2 
Model 

A (min
-1

) Ea (kJ/mole) r A (min
-1

) Ea (kJ/mole) r 

A2 6.89 x 1013 94.61 0.9980 5.26 x 109 67.90 0.9992* 

A3 5.36 x 1013 94.92 0.9890 3.67 x 109 67.88 0.9954 

A4 4.39 x 1013 95.07 0.9790 2.84 x 109 67.88 0.9884 

D1 4.34 x 1013 94.51 0.9879 3.09 x 109 67.63 0.9805 

D2 3.13 x 1013 94.04 0.9785 2.71 x 109 67.70 0.9676 

D3 1.15 x 1013 93.33 0.9275 1.43 x 109 68.01 0.9136 

D4 8.13 x 1012 93.80 0.9674 7.88 x 108 67.79 0.9552 

F1 1.03 x 1014 93.80 0.9666 1.09 x 1010 68.02 0.9576 

F2 4.56 x 1014 92.11 0.6227 1.46 x 1011 69.39 0.6130 

F3 1.04 x 1016 91.61 0.3870 6.38 x 1012 70.69 0.3821 

P2 4.91 x 1013 95.67 0.9377 2.52 x 109 67.81 0.9520 

P3 4.13 x 1013 95.83 0.9125 2.02 x 109 67.83 0.9310 

P4 3.50 x 1013 95.91 0.8968 1.67 x 109 67.84 0.9176 

R1 5.39 x 1013 95.22 0.9783 3.12 x 109 67.74 0.9825 

R2 3.56 x 1013 94.61 0.9981* 2.60 x 109 67.78 0.9954 

R3 2.65 x 1013 94.36 0.9962 2.15 x 109 67.83 0.9913 

* Best fit model. 
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Table 26, continued 

Sample 3 Sample 4 
Model 

A (min
-1

) Ea (kJ/mole) r A (min
-1

) Ea (kJ/mole) r 

A2 2.67 x 1011 75.91 0.9995* 5.12 x 1012 84.55 0.9983* 

A3 1.78 x 1011 75.78 0.9915 3.04 x 1012 84.09 0.9943 

A4 1.34 x 1011 75.70 0.9822 2.17 x 1012 83.86 0.9871 

D1 1.96 x 1011 76.24 0.9846 3.82 x 1012 84.92 0.9818 

D2 1.67 x 1011 76.23 0.9761 3.98 x 1012 85.49 0.9672 

D3 7.82 x 1010 76.17 0.9278 2.59 x 1012 86.37 0.9103 

D4 4.71 x 1010 76.22 0.9657 1.25 x 1012 85.78 0.9538 

F1 5.71 x 1011 76.09 0.9675 1.55 x 1013 85.72 0.9554 

F2 4.45 x 1012 75.92 0.6315 3.18 x 1014 88.29 0.6069 

F3 1.17 x 1014 75.76 0.3981 1.51 x 1016 89.82 0.3772 

P2 1.19 x 1011 75.66 0.9402 1.49 x 1012 83.08 0.9528 

P3 8.92 x 1010 75.50 0.9167 1.07 x 1012 82.80 0.9307 

P4 7.1 x 1010 75.40 0.9019 8.37 x 1011 82.66 0.9166 

R1 1.72 x 1011 75.99 0.9774 2.49 x 1012 83.83 0.9846 

R2 1.47 x 1011 76.07 0.9971 2.75 x 1012 84.65 0.9959 

R3 1.2 x 1011 76.09 0.9955 2.51 x 1012 84.98 0.9909 
* Best fit model. 
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Figure 72.  Ea versus α plots for nonisothermal sulfameter-dioxolane solvate desolvation 
runs (sets 1–5), evaluated by three isoconversional methods: �, OFW; �, 
VYZ and �, AIC. 
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Figure 73.  Ea versus α plots for nonisothermal sulfameter-dioxolane solvate desolvation 
evaluated by the Vyazovkin (VYZ) method. 
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Figure 74.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
dioxolane solvate for five experimental sets: a. sets 1–2 with nominal heating 
rates of 1, 1.5, 2, 2.5 and 3K/min; b. sets 3–5 with nominal heating rates of 1, 
2, 4, 8 and 16 K/min. 
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Table 27.  Fitted kinetic parameters for nonisothermal sulfameter-dioxolane desolvation 
data sets (Figure 55), using the Coats-Redfern method.*  

ln A (min
-1

) Ea (kJ/mol) 
Model 

Set-1 Set-2 Set-3 Set-4 Set-5 Set-1 Set-2 Set-3 Set-4 Set-5 

A2 30.5 30.1 31.9 30.6 28.4 91.0 89.6 94.5 91.2 84.7 

A3 18.7 18.5 19.9 19.0 17.5 58.8 57.9 61.1 58.9 54.5 

A4 12.8 12.6 13.8 13.1 12.0 42.7 42.0 44.4 42.7 39.5 

D1 97.3 96.2 99.6 97.1 90.3 279.8 276.0 289.8 283.6 263.3 

D2 106.3 105.0 108.7 105.7 98.3 305.9 301.8 317.1 309.2 287.3 

D3 117.7 116.3 120.5 116.5 108.5 341.3 336.4 354.0 343.6 319.7 

D4 109.0 107.7 111.5 108.2 100.6 317.4 313.0 329.1 320.4 297.8 

F1 65.4 64.6 67.3 64.8 60.4 187.6 184.8 194.8 188.1 175.0 

F2 94.0 92.7 96.7 91.8 86.1 265.2 260.8 276.3 263.0 245.8 

F3 129.7 127.8 133.5 125.5 118.1 362.7 356.2 378.7 356.9 334.7 

P2 21.0 20.8 22.1 21.5 19.8 65.7 64.8 68.2 66.6 61.6 

P3 12.3 12.1 13.3 12.9 11.7 42.0 41.3 43.5 42.5 39.1 

P4 7.9 7.8 8.8 8.5 7.6 30.1 29.6 31.2 30.5 27.9 

R1 46.7 46.1 48.2 46.9 43.5 137.1 135.2 142.0 139.0 128.8 

R2 54.2 53.5 55.9 54.1 50.2 159.1 156.9 165.0 160.5 149.0 

R3 57.0 56.3 58.8 56.7 52.7 167.8 165.4 174.1 168.9 157.0 

* Results in each data set are averaged from five heating rate curves (geometric mean of 
Ea and A). 
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Figure 75.  Model-fitting correlation coefficients (r) for nonisothermal sulfameter-
dioxolane solvate desolvation evaluated by the Coats-Redfern method: �, set 
1; �, set 2; �, set 3; �, set 4 and �, set 5. Values from each set are averages 
from five curves. 
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Figure 76.  Ea versus α plots for isothermal sulfameter-dioxolane solvate desolvation 
using the average of samples 1–4 with 95% confidence intervals, evaluated by 
the: a, standard method and b, AIC method. 
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CHAPTER 5  

COMPLEMENTARY USE OF MODEL-FREE AND MODELISTIC 

METHODS IN THE ANALYSIS OF SOLID-STATE KINETICS 

 

Introduction  

Many methods have been developed for studying solid-state kinetic data. These 

methods can be classified according to the experimental conditions selected and the 

mathematical analysis performed. Experimentally, either isothermal or nonisothermal 

methods are employed. The mathematical approaches employed can be divided into 

model-fitting and isoconversional (model-free) methods. Model-fitting methods were 

amongst the first and most popular methods to be used in evaluating solid-state kinetics, 

especially for nonisothermal experiments. The popularity of these methods has recently 

declined in favor of isoconversional methods which can compute kinetic parameters 

without modelistic assumptions. However, these methods, like the model-fitting methods, 

have some limitations, as described in Chapter 4.  

Results obtained from different mathematical analysis methods have been viewed 

as conflicting rather than complementary. Selection of the best model for experimental 

data is problematic because a statistical fit parameter (i.e., r) may be quite high for a 

number of fitted models [37]. The aim of this work is to show the utility of a model-free 

method to obtain activation energy (Ea) and a modelistic approach to obtain frequency 

factor (A). We feel that such an approach gives the highest probability of selecting the 

most accurate kinetic triplet (A, Ea and model). The kinetic triplet is essential for accurate 

kinetic description of any solid-state reaction since the reaction rate expression (Eq. (22)) 

requires all three. If only one or two of the triplet are known, an incomplete kinetic 

picture is generated [40, 92, 160]. Just as in homogenous phase kinetics, obtaining all 

kinetic parameters for a solid-state reaction is essential for understanding reaction 
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dynamics. In this chapter, we will demonstrate how such a complete analysis can be 

accomplished using simulated kinetic data and real data for a desolvation reaction. 

 Modelistic and model-free methods 

The use of modelistic methods has been criticized in nonisothermal studies [39-

43, 159] because regression methods may lead to indistinguishable fits or mathematical 

expressions with high correlation because of the form of the equation. This casts serious 

doubt on using these methods to obtain mechanistic information (A, Ea and model). 

Model-fitting problems are especially evident with the Coats and Redfern method in 

which the ordinate (ln(g(α)/T2) and abscissa (1/T) axes are correlated because of the form 

of each variable which violates a basic assumption of linear regression [161]. As a result, 

all models would show relatively good fits (i.e. high r) even though they may be poor 

descriptors of the mechanism. Another problem with the Coats-Redfern method is that 

some models are indistinguishable. For example, the F1, A2, A3 and A4 models are 

indistinguishable when linear regression is performed as they all show very similar 

correlation coefficients.  

Vyazovkin and Wight [159] reviewed several alternative non-statistical 

approaches for model selection. These include using predictions of the activated complex 

to obtain the frequency factor, selecting a model from an isothermal experiment [162] or 

choosing a reaction model from the extent of the reaction at the maximum reaction rate 

(αmax) [163]. These approaches have not gained wide use. Therefore, Vyazovkin and 

Wight have recommended using isoconversional methods instead of modelistic 

approaches.  

Isoconversional methods calculate Ea values at progressive degrees of conversion 

without modelistic assumptions. 

Despite concerns over use of model-fitting methods, these methods have the 

advantage of directly calculating Ea and A from a single non-isothermal kinetic run. This 
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is not seen in isoconversional methods as they require multiple kinetic runs at different 

heating rates and do not allow direct calculation of A. An indirect method has been 

suggested [164] to calculate A for isoconversional methods, however, this procedure 

utilizes an artificial isokinetic relationship that is not fully supported theoretically [86]. 

This work utilizes isoconversional methods to obtain Ea values which are 

compared to values obtained by modelistic methods. The most accurate model is assumed 

to be the one which produces an activation energy closest to that from the isoconversional 

analysis. This allows one to select models that might otherwise be indistinguishable 

based on quality of the regression fit alone. We demonstrate the utility of this approach 

by analyzing both simulated and experimental data.  

Experimental data were obtained for the desolvation kinetics of three sulfameter 

solvates of cyclic ether solvents. These solvents were tetrahydrofuran, dioxolane and 

dioxane, as detailed in Chapter 3). 

Experimental 

Simulated data were isothermally and nonisothermally generated and then 

analyzed. Sulfameter desolvation was followed nonisothermally by TGA, as described in 

Chapter 3. Isothermal calculation methods included the conventional model-fitting 

method (modelistic) and the standard isoconversional method (model-free). 

Nonisothermal calculation methods included the Coats and Redfern method (modelistic) 

in addition to Vyazovkin’s method (model-free). 

Data simulation 

A simple, one-step reaction was isothermally and nonisothermally simulated 

using Microsoft Excel ®, as described in Chapter 3.  

The isothermal simulation (S1) consisted of five isothermal (α–time) curves 

which were simulated at five temperatures (340, 345, 350, 355 and 360 K) using a 

contracting volume (R3) model (g(α)=[1-(1-α)1/3]) with A=1×1013 min-1 and Ea=100 
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kJ/mole. A 0.25% random error in time was introduced to each curve in the simulation 

(Figure 77). 

The nonisothermal simulation (S2) consisted of five nonisothermal (α–T) curves 

which were simulated at five heating rates (1, 2, 4, 8 and 16 K/min) using the same 

kinetic parameters (model, Ea and A) used for simulation S1. A 0.25% random error in 

temperature (ºC) was introduced to each curve in the simulation (Figure 78). 

Sulfameter solvate desolvation 

Three sulfameter solvates were prepared from the following solvents: 

tetrahydrofuran, dioxolane and dioxane, as described in Chapter 3. 

The prepared solvates were sieved and a particle size range of 355–710 µm was 

used for desolvation studies. 

Desolvation kinetics was followed nonisothermally by TGA as explained in 

Chapter 3. Nonisothermal runs were performed at nominal heating rates of 1, 2, 4 and 8 

K/min. The exact heating rate was obtained from the slope of the linear heating curve of 

the TGA run during the time period of significant weight loss, as discussed in Chapter 3. 

Kinetic analysis 

Kinetic analysis of data was conducted by model-fitting and isoconversional 

methods. Simulated isothermal data were analyzed by the conventional model-fitting 

method and the standard isoconversional method while nonisothermal data were analyzed 

by the Coats-Redfern model-fitting method in addition to Vyazovkin’s isoconversional 

method.  

Model selection was done by means of an isoconversional-model (IM) plot in 

which a plot of Ea for each model, as calculated from the Coats-Redfern method, was 

plotted along with Ea calculated from Vyazovkin’s isoconversional method as a function 

of  α. The model for which Ea matched that from the isoconversional plot was selected as 

the model of choice.  
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Curve reconstruction and stability prediction 

TGA curves were reconstructed to verify that the most accurate kinetic triplet (A, 

Ea and model) was selected by the isoconversional method for each heating rate. A sum 

of squares plot ((Tactual – Treconstructed)
2) for each solvate was created to show the sum of 

squared difference between experimental and reconstructed curves for each kinetic triplet 

obtained from the modelistic method. For each α-T thermogram, (Tactual – Treconstructed)
2 

values were calculated at each α in 0.01 increments (i.e., 0.01-0.99) and these values 

summed for that thermogram. (Tactual – Treconstructed)
2 values were averaged for all five α-T 

thermograms. The choice of a kinetic triplet is that which gives the lowest sum of squared 

values which would further validates the triplets selected by the isoconversional-model 

(IM) plot. 

The selected kinetic triplet was also used to predict the stability of solvates at 

three different heating rates that were not used in the kinetic analysis. The exact heating 

rate was obtained from the slope of the linear heating curve of the TGA run during the 

time period of significant weight loss, as described in Chapter 3. Equation (159) was used 

to reconstruct/predict each curve. 

Results and Discussion 

Thermogravimetric results for sulfameter desolvation are shown in Figures 79–81. 

Gravimetric weight loss for these solvates showed a 1:1 drug–solvent ratio, as described 

in Table 8 (Chapter 3). Kinetic analysis for the simulated and real data sets is described 

below. 

Simulated data 

Model-fitting methods produced several kinetic triplets (A, Ea and model) for 

each simulation. The conventional model fitting results for simulation S1 are given in 

Table 28, while results obtained by the Coats-Redfern method for simulation S2 are in 

Table 29.  



 

 

202 

Isoconversional-model (IM) plots containing activation energies calculated by 

model-fitting along with that calculated from an isoconversional method are shown in 

Figures 82 - 83. IM plots of isothermal data (S1, Figure 82) show that no particular model 

can be selected because all models give comparable values of Ea (~100 kJ/mole, Table 

28). Previous reports have demonstrated similar constancy of Ea [37, 38, 159] which is 

the reason that the desolvation reaction was not further studied isothermally.  

IM plots of nonisothermal data (S2, Figure 83) show that the R3 model is selected 

as the best model because Ea for R3, calculated by the Coats-Redfern method, is almost 

the same as that calculated by Vyazovkin’s isoconversional method (~99.7 kJ/mole, 

Table 29). If model selection is to be based on the correlation coefficient (r), no single 

model can be chosen because several models are equivalent (A2, A3, A4, D2, D3, D4, 

F1, R2 and R3) as indicated in Table 29. This shows that, model selection based on IM 

plots is more appropriate than that using the correlation coefficient. 

Sulfameter desolvation 

Several kinetic triplets were calculated from the Coats-Redfern model-fitting 

method for each solvate (Tables 30–32). Results based on curve fitting clearly show that 

using the correlation coefficient (r), several models were indistinguishable, namely the 

A2, A3, A4 and F1 models. On the other hand, IM plots of desolvation data (Figures 84–

86) show that the A3 model can be selected for both the tetrahydrofuran and dioxane 

solvates while the A2 model is the model of choice for the dioxolane solvate, these 

selection were further verified by sum of squares plots (Figures 87–89). Model selection 

is not as clear for the dioxane solvate as it is for tetrahydrofuran and dioxolane solvates. 

For dioxane, another model (P2) can also be selected because the isoconversional curve 

intersects Ea values for both the A3 and P2 models (Figure 86). This could be due to 

small variations in the isoconversional curve as the reaction progresses or because these 

models are mechanistically similar (i.e. both are nucleation models), which in turn results 
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in similar values of Ea. To better judge which is the most accurate model, TGA curve 

reconstructions from Ea and A values for both models were conducted and compared.  

Figures 90–92 show reconstructed α–T plots for the nonisothermal desolvation of 

the different sulfameter solvates. For each solvate, the kinetic triplet (A, Ea and model) 

was selected based on isoconversional-model plots (Figures 84–86). There is good 

correlation between the reconstructed and actual experimental data in most cases. In 

some cases, there is less correlation between reconstructed and experimental curves 

which may be due to using average values of Ea and A from the Coats and Redfern 

analysis. Figure 92 shows reconstructed α–T plots for the nonisothermal desolvation of 

the dioxane solvate for two models, A3 (Figure 92a) and P2 (Figure 92b). It is clear that 

the A3 model accurately predicts while the P2 model less accurately predicts 

experimental curves, especially at  α>0.5.  

If a mechanistic model is selected based on the correlation coefficient, the model 

of choice for the dioxane solvate (Table 32) would be a first-order (F1) model. However, 

when α–T curves are reconstructed with the F1 model, they poorly correlate with 

experimental α–T results, as seen in Figure 93. Therefore, such an approach is not 

satisfactory compared to model selection based on isoconversional methods. Figures 94–

96 show predicted and experimental α–T plots for the nonisothermal desolvation of 

sulfameter solvates. These plots show that nonisothermal curves have been reasonably 

well predicted from the kinetic triplet (A, Ea and model). These results also agree with 

those of Caira and Mohamed [29] for the tetrahydrofuran solvate where they reported an 

activation energy of 103 kJ/mole by a model-independent method which is similar to the 

value of 104.5 kJ/mole we obtained for the same solvate.  

Conclusions 

The large number of methods for evaluating solid-state kinetics has created some 

debate over the appropriate method or group of methods that should be used for 
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analyzing such data. Different kinetic analysis methods have been treated by some 

investigators as competing rather than complementary. The increasing popularity of 

isoconversional methods has been at the expense of model-fitting methods. However, to 

fully study any kinetic process, it should be adequately described by a kinetic triplet (A, 

Ea and model), which is not directly obtained from isoconversional methods. Yet, model-

fitting methods suffer from severe shortcomings that limit their sole use for analyzing and 

understanding solid-state reactions. 

Kinetic analysis of simulated data, in addition to that for the desolvation of 

sulfameter solvates, has shown that, selecting a model based on statistical methods using 

a common model-fitting method (i.e., Coats and Redfern) can produce misleading results, 

as shown by other investigators [37, 159].  

Our approach combines the power of isoconversional and model-fitting methods 

for the evaluation of solid-state kinetics. This has produced promising results for 

simulated and real experimental data but, as with any kinetic method, this approach has 

some limitations. One is the assumption of a simple reaction or a flat isoconversional plot 

(i.e., constant activation energy throughout the reaction). This assumption seems to be 

applicable to the sulfameter-solvate system where solvent molecules fill channels within 

the crystal structure and desolvation involves the removal of solvent from such channels 

[157]. This approach is also not applicable to isothermal experiments where different 

models yield comparable values of the activation energy. The success of this approach 

also depends on careful control of experimental variables because poorly executed 

experimental protocols can lead to inaccurate isoconversional results which in turn can 

lead to inappropriate model selection. One must be able to carefully and reproducibly 

generate TGA data for accurate comparison of results at different heating rates as 

explained in Chapter 4. When more than one model is selected using this approach, α–T 

curve reconstruction can be further used to select the most appropriate model. 
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Results from both modelistic and model-free approaches have been separately 

reported and compared in the literature [36, 165, 166]. Our approach represents a 

complementary means for using the strengths of both methods in the evaluation of solid-

state kinetics.
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Figure 77. Simulations of α versus time for isothermal kinetic runs with 0.25% random 
error in time at: ▲, 340 K; �, 345 K; �, 350 K; �, 355 K and �, 360 K 
(simulation S1). The inset gives the simulation model, pre-exponential factor 
(A) and activation energy (Ea). 
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Figure 78.  Simulated α-temperature plots with 0.25% random error in temperature (ºC) 
for nonisothermal kinetic runs at: ▲, 1 K/min; �, 2 K/min; �, 4 K/min; �, 8 
K/min and �, 16 K/min (simulation S2). The inset gives the simulation 
model, pre-exponential factor (A) and activation energy (Ea). 
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Figure 79.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
tetrahydrofuran solvate at: ▲, 0.95; �, 1.93 �, 3.86 K and �, 7.61 K/min. 
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Figure 80.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
dioxolane solvate at: ▲, 0.96; �, 1.92 �, 3.80 K and �, 7.62 K/min. 
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Figure 81.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
dioxane solvate at: ▲, 0.98; �, 1.99 �, 3.94 K and �, 7.71 K/min. 
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Table 28. Fitted kinetic parameters for simulated isothermal data (S1) using the 
conventional model-fitting method.  

Model A (min-1) Ea (kJ/mole) r * 

A2 2.40 × 1013 100.05 0.9933 

A3 1.66 × 1013 100.06 0.9761 

A4 1.28 × 1013 100.06 0.9618 

D1 1.58 × 1013 100.05 0.9922 

D2 1.36 × 1013 100.05 0.9917 

D3 6.56 × 1012 100.04 0.9514 

D4 3.87 × 1012 100.05 0.9846 

F1 4.88 × 1013 100.05 0.9809 

F2 4.10 × 1014 100.04 0.6506 

F3 1.13 × 1016 100.04 0.4084 

P2 1.14 × 1013 100.06 0.9090 

P3 8.99 × 1012 100.07 0.8790 

P4 7.38 × 1012 100.07 0.8610 

R1 1.49 × 1013 100.06 0.9631 

R2 1.25 × 1013 100.05 0.9967 

R3** 1.02 × 1013 100.05 1.0000 

* Correlation coefficient for g(α) vs. t plot. 
 
** Best fit model. 
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Table 29. Fitted kinetic parameters for simulated nonisothermal data (S2) using the 
Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2 4.18 × 1006 52.21 -0.9970† 

A3 5.46 × 1003 32.80 -0.9967† 

A4 1.86 × 1002 23.10 -0.9963† 

D1 2.06 × 1023 171.44 -0.9924 

D2 1.67 × 1025 186.01 -0.9974† 

D3 3.07 × 1027 205.38 -0.9999† 

D4 3.31 × 1025 192.31 -0.9988† 

F1 1.18 × 1015 110.44 -0.9972† 

F2 2.45 × 1021 152.26 -0.9576 

F3 1.69 × 1029 204.49 -0.9059 

P2 2.80 × 1004 38.35 -0.9903 

P3 1.82 × 1002 23.56 -0.9883 

P4 1.44 × 1001 16.16 -0.9858 

R1 6.78 × 1010 82.71 -0.9918 

R2 2.52 × 1012 94.90 -0.9993† 

R3** 9.02 × 1012 99.68 -0.9999† 

* Results averaged from five curves, using the geometric mean of A and Ea and 
arithmetic mean of r. 
 
** Model selected based on isoconversional-model (IM) plots. 
 
† Equivalent models based on goodness of fit. 
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Figure 82.  Isoconversional-model plot of activation energies for simulation S1 calculated 
by: �, conventional model-fitting method and �, standard isoconversional 
method. 
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Figure 83. Isoconversional-model plot of activation energies for simulation S2 calculated 
by: �, Coats-Redfern’s modelistic method and �, Vyazovkin’s 
isoconversional method. 
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Table 30.  Fitted kinetic parameters for the nonisothermal desolvation of sulfameter-
tetrahydrofuran solvate using the Coats-Redfern method* 

Model A (min-1) Ea (kJ/mole) r 

A2 3.12 × 1023 159.64 -0.9916† 

A3** 1.21 × 1015 104.50 -0.9913† 

A4 6.90 × 1010 76.93 -0.9909† 

D1 3.07 × 1071 480.96 -0.9527 

D2 1.17 × 1078 525.89 -0.9665 

D3 5.96 × 1086 587.13 -0.9817 

D4 2.84 × 1080 545.76 -0.9721 

F1 3.21 × 1048 325.07 -0.9919† 

F2 2.18 × 1069 461.28 -0.9921† 

F3 3.09 × 1095 632.71 -0.9663 

P2 5.11 × 1016 115.90 -0.9493 

P3 3.27 × 1010 75.34 -0.9468 

P4 2.41 × 1007 55.06 -0.9442 

R1 1.17 × 1035 237.59 -0.9516 

R2 4.09 × 1040 275.58 -0.9746 

R3 5.68 × 1042 290.68 -0.9813 

* Results averaged from four curves using the geometric mean of A and Ea and arithmetic 
mean of r.  
 
** Model selected based on isoconversional-model (IM) plots. 
 
† Equivalent models based on goodness of fit. 
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Table 31.  Fitted kinetic parameters for the nonisothermal desolvation of sulfameter-
dioxolane solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2** 1.26 × 1013 88.30 -0.9918† 

A3 1.22 × 1008 57.01 -0.9913† 

A4 3.48 × 1005 41.37 -0.9907† 

D1 3.13 × 1041 271.90 -0.9572 

D2 1.98 × 1045 297.26 -0.9704 

D3 1.48 × 1050 331.53 -0.9841 

D4 2.75 × 1046 308.40 -0.9756 

F1 8.57 × 1027 182.15 -0.9924† 

F2 1.30 × 1040 257.57 -0.9854 

F3 2.23 × 1055 352.29 -0.9544 

P2 1.13 × 1009 63.81 -0.9517 

P3 2.22 × 1005 40.68 -0.9475 

P4 2.88 × 1003 29.12 -0.9427 

R1 9.27 × 1019 133.17 -0.9555 

R2 1.41 × 1023 154.54 -0.9775 

R3 2.22 × 1024 162.98 -0.9836 

* Results averaged from four curves using the geometric mean of A and Ea and arithmetic 
mean of r. 
** Model selected based on isoconversional-model (IM) plots. 
† Equivalent models based on goodness of fit. 
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Table 32.  Fitted kinetic parameters for the nonisothermal desolvation of sulfameter-
dioxane solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2 7.00 × 1016 118.22 -0.9942† 

A3** 4.03 × 1010 76.84 -0.9939† 

A4 2.82 × 1007 56.14 -0.9935† 

D1 3.74 × 1052 362.15 -0.9623 

D2 2.06 × 1057 395.38 -0.9744 

D3 2.93 × 1063 440.35 -0.9871 

D4 7.45 × 1058 409.99 -0.9793 

F1 2.19 × 1035 242.38 -0.9945† 

F2 2.33 × 1050 341.57 -0.9858 

F3 1.52 × 1069 466.14 -0.9539 

P2 7.66 × 1011 86.09 -0.9585 

P3 1.81 × 1007 55.41 -0.9556 

P4 8.12 × 1004 40.07 -0.9523 

R1 3.52 × 1025 178.11 -0.9611 

R2 3.33 × 1029 206.12 -0.9812 

R3 1.08 × 1031 217.21 -0.9867 

* Results averaged from four curves using the geometric mean of A and Ea and arithmetic 
mean of r. 
 
** Model selected based on isoconversional-model (IM) plots. 
 
† Equivalent models based on goodness of fit. 
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Figure 84.  Isoconversional-model plot of activation energies for the nonisothermal 
desolvation of sulfameter-tetrahydrofuran solvate calculated by: �, Coats-
Redfern’s modelistic method and �, Vyazovkin’s isoconversional method. 
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Figure 85.  Isoconversional-model plot of activation energies for the nonisothermal 
desolvation of sulfameter-dioxolane solvate calculated by: �, Coats-
Redfern’s modelistic method and �, Vyazovkin’s isoconversional method. 
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Figure 86. Isoconversional-model plot of activation energies for the nonisothermal 
desolvation of sulfameter-dioxane solvate calculated by: �, Coats-Redfern’s 
modelistic method and �, Vyazovkin’s isoconversional method. 
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Figure 87  Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) of sulfameter tetrahydrofuran 
solvate.  
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Figure 88.  Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) of sulfameter dioxolane solvate. 
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Figure 89.  Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) of sulfameter dioxane solvate.
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Figure 90.  Reconstructed α–T plots for nonisothermal desolvation of sulfameter-
tetrahydrofuran solvate for four heating rates (0.95, 1.93, 3.86, 7.61 K/min): 
�, experimental curves and �, reconstructed curves (A3). 
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Figure 91.  Reconstructed α–T plots for nonisothermal desolvation of sulfameter-
dioxolane solvate for four heating rates (0.96, 1.92, 3.80, 7.62 K/min): �, 
experimental curves and �, reconstructed curves (A2). 
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Figure 92.  Reconstructed α–T plots for nonisothermal desolvation of sulfameter-dioxane 
solvate for four different heating rates (0.98, 1.99, 3.94, 7.71 K/min): �, 
experimental curves and �, reconstructed curves (a. A3; b. P2) 
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Figure 93.  Reconstructed α–T plots for nonisothermal desolvation of sulfameter-dioxane 
solvate for four heating rates (0.98, 1.99, 3.94, 7.71 K/min): �, experimental 
curves and �, reconstructed curves (F1). 
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Figure 94.  Predicted α–T plots for nonisothermal desolvation of sulfameter-
tetrahydrofuran solvate at three heating rates (2.97, 4.96, 9.66 K/min): �, 
experimental and �, predicted (A3). 
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Figure 95.  Predicted α–T plots for the nonisothermal desolvation of sulfameter-
dioxolane solvate at three heating rates (4.84, 9.42, 28.42 K/min): �, 
experimental and �, predicted (A2). 
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Figure 96.  Predicted α–T plots for the nonisothermal desolvation of sulfameter-dioxane 
solvate at three heating rates (1.52, 4.93, 8.80 K/min): �, experimental and �, 
predicted (A3). 
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CHAPTER 6  

AVERAGING KINETIC PARAMETERS IN SOLID-STATE STUDIES 

 

Introduction 

Statistically, measures of central tendency for multiple data points are measures of 

the location of the middle or the center of a distribution, the most common of these 

measures are the: mean, median and mode. The mean is the most common measure of 

central tendency. Traditionally, the mean or “average” usually refers to an arithmetic 

mean. For a set of n values (X1, X2,…,Xn), the arithmetic mean (A) [167] can be 

calculated by summing the values and dividing by n as shown below: 
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Mathematically, there are several types of means. The geometric mean (G) [168] 

is defined by Eq.(161),   
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The harmonic mean (H) [169] is a reciprocal of the arithmetic mean that is 

defined by Eq.(162), 
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The arithmetic, geometric and harmonic means are usually called the Pythagorean 

means [170]. Pythagorean means are usually expressed in a general expression called the 

generalized mean (Mt) also known as power mean or Hölder mean [171] defined by, 
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Where, t is a number that specifies the type of mean.  

The arithmetic mean (M1) is obtained when t=1, the geometric mean is obtained 

as lim t→0 (M0) and the harmonic mean is obtained when t = –1 (M -1). The order of 

these means is: M1 ≥ M0 ≥ M-1. Equality of these means is achieved only when all Xi 

values are equal.  

Kinetically, if several nonisothermal thermograms are analyzed by model-fitting 

methods, such as the Coats-Redfern method, a range of of A and Ea values will be 

calculated for each model. Therefore, it is necessary to find the appropriate mean that 

would properly “average” these A and Ea values. By default, researchers assume the 

arithmetic mean to be the mean that would achieve this, however, this may not always be 

true. This chapter will investigate use of different means for averaging kinetic parameters 

obtained from nonisothermal model-fitting methods. 

Solvates (particle size of 355–710 µm) 

Desolvation data of three sulfameter solvates (tetrahydrofuran, dioxolane and 

dioxane) with particle sizes of 355–710 µm previously reported in Chapter 5, where 

investigated. The complementary approach lead to the A3 (tetrahydrofuran and dioxane) 

and A2 models (dioxolane) as the models of choice for the three sulfameter solvates. For 

each solvate, four nonisothermal curves (four different heating rates) were analyzed by 

the Coats-Redfern method (Tables 33–35). Ea and A values of each solvate were 

averaged by the arithmetic, geometric and harmonic means. Nine different combinations 

of means are possible for each solvate as shown in Table 36. Each combination was used 

to reconstruct experimental curves for each solvate, the sum of squared differences 

((Tactual – Treconstructed)
2) between actual and reconstructed desolvation curves  for each 

combination were computed for each solvate. The combination that gave the least sum of 
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squared differences between experimental and reconstructed curves was taken as the 

combination that best averaged A and Ea values.   

Table 37 shows the sum of squared differences between actual and reconstructed 

curves for the nine possible A and Ea mean combinations of each solvate, Figure 97 also 

shows plots of actual sulfameter dioxolane desolvation data at 1.92 K/min and 

reconstructed data from each of the nine possible combinations in Table 36. It can be 

seen that the least sum of squares occurs when the geometric mean of frequency factors 

and the arithmetic mean of activation energies were taken as the average. 

Dioxolane solvates (particle size of 850–1700 µm) 

Desolvation data of sulfameter-dioxolane solvate with a particle size of 850–

1700 µm was also investigated. Twenty three nonisothermal thermograms (Figure 98) 

were analyzed by the Coats-Redfern method (Table 38). All possible combinations of A 

and Ea means (Table 36) were used to reconstruct experimental curves for this solvate. 

The sum of squared differences ((Tactual – Treconstructed)
2) between actual and reconstructed 

desolvation curves for each combination of means were computed for this solvate and are 

given in Table 39. The results agreed with those obtained for the previous solvates in that 

the least sum of squares occurs when frequency factors were averaged by the geometric 

mean while the activation energies were averaged by the arithmetic mean. 

Conclusions 

Results show that kinetic parameters calculated for the dioxolane solvate were 

comparable for the two particle sizes tested, indicating a minimal effect of particle size 

tested on the kinetic parameters. Results also show that the geometric mean should be 

used to average preexponential factor values while the arithmetic mean should be used 

for averaging activation energies. An example recently introduced in the literature [172] 

averages kinetic parameters from four thermograms and attempts to reconstruct the 

experimental curves from these averaged values, the mean used for averaging the results 
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was not specified but was assumed to be the arithmetic mean, reconstructed values 

disagreed with experimental ones. Authors concluded that this deviation was “inevitable” 

and that “much work needs to be done in solid-state kinetics”. Use of appropriate means 

to average the kinetic results could have reduced such deviation between experimental 

and reconstructed curves.  
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Table 33. Fitted kinetic parameters (A3 model) for the nonisothermal desolvation of 
sulfameter-tetrahydrofuran solvate (Figure 79) using the Coats-Redfern 
method. 

Heating rate A (min-1) Ea (kJ/mole) 

0.95 3.93 × 1015 107.76 

1.93 5.97 × 1014 102.47 

3.86 8.10 × 1014 103.42 

7.61 1.11 × 1015 104.43 

Arithmetic mean 1.61 × 1015 104.52 

Geometric mean 1.21 × 1015 104.50 

Harmonic mean 9.84 × 1014 104.48 
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Table 34. Fitted kinetic parameters (A2 model) for the nonisothermal desolvation of 
sulfameter-dioxolane solvate (Figure 80) using the Coats-Redfern method. 

Heating rate A (min-1) Ea (kJ/mole) 

0.96 5.22 × 1013 91.85 

1.92 1.06 × 1013 87.87 

3.80 2.91 × 1013 90.47 

7.62 1.59 × 1012 83.23 

Arithmetic mean 2.34 × 1013 88.36 

Geometric mean 1.26 × 1013 88.30 

Harmonic mean 5.15 × 1012 88.23 
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Table 35. Fitted kinetic parameters (A3 model) for the nonisothermal desolvation of 
sulfameter-dioxane solvate (Figure 81) using the Coats-Redfern method. 

Heating rate A (min-1) Ea (kJ/mole) 

0.98 3.59 × 1010 77.72 

1.99 1.75 × 1012 87.79 

3.94 6.97 × 1008 65.32 

7.71 6.02 × 1010 78.21 

Arithmetic mean 4.62 × 1011 77.26 

Geometric mean 4.03 × 1010 76.84 

Harmonic mean 2.71 × 1009 76.40 
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Table 36. Possible combinations of means of A and Ea. 

Possible combinations Combination 
Number Frequency factor (A) Activation energy (Ea) 

1 Arithmetic Arithmetic 

2 Arithmetic Geometric 

3 Arithmetic Harmonic 

4 Geometric Arithmetic 

5 Geometric Geometric 

6 Geometric Harmonic 

7 Harmonic Arithmetic 

8 Harmonic Geometric 

9 Harmonic Harmonic 
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Table 37. Sum of squared differences between actual and reconstructed curves for 
possible A and Ea mean combinations for each solvate. 

Mean used Sum of squared differences (K2) ((Tactual – Treconstructed)
2) 

 (A)  (Ea) Tetrahydrofuran Dioxolane Dioxane 

Arithmetic Arithmetic 3,140 17,265 329,098 

Arithmetic Geometric 3,274 18,419 369,799 

Arithmetic Harmonic 3,410 19,631 413,913 

Geometric Arithmetic 120 1,018 1,606 

Geometric Geometric 127 1,108 3,278 

Geometric Harmonic 137 1,242 7,885 

Harmonic Arithmetic 1,322 31,497 566,589 

Harmonic Geometric 1,238 29,886 506,404 

Harmonic Harmonic 1,158 28,296 448,330 
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Figure 97. Actual (�) and reconstructed (�) curves for the desolvation of sulfameter 
dioxolane solvate at 1.92 K/min. Curves reconstructed according to possible 
combinations of means of A and Ea given in Table 36: a, 1; b, 2; c, 3; d, 4; e, 
5; f, 6; g, 7; h, 8 and i, 9 
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Figure 98.  α versus temperature plots for the nonisothermal desolvation of sulfameter-
dioxolane for 23 samples having a particle size of 850–1700 µm at various 
heating rates.  
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Table 38. Fitted kinetic parameters (A2 model) for the nonisothermal desolvation of 
sulfameter-dioxolane solvate (Figure 98) with a particle size of 850–1700 µm 
using the Coats-Redfern method. 

Heating rate A (min-1) Ea (kJ/mole) 

1.01 1.22 × 1013 89.31 

1.01 3.40 × 1014 99.01 

1.02 4.25 × 1013 92.89 

1.02 1.30 × 1013 90.47 

1.52 1.25 × 1012 83.5 

1.53 1.35 × 1012 84.6 

2.01 1.40 × 1012 83.96 

2.02 1.77 × 1014 97.81 

2.02 4.11 × 1012 86.86 

2.03 6.24 × 1013 94.61 

2.53 5.58 × 1012 88.03 

2.65 2.49 × 1013 91.23 

3.01 3.83 × 1013 93.37 

3.15 5.76 × 1012 86.98 

4.00 3.12 × 1013 92.32 

4.00 1.52 × 1012 84.11 

4.01 1.94 × 1013 91.46 

7.87 2.03 × 1012 84.45 

7.88 8.52 × 1014 101.79 

7.89 1.43 × 1013 90.03 

15.27 1.09 × 1013 89.43 

15.29 6.87 × 1011 81.66 

15.36 4.41 × 1013 93.47 

Arithmetic mean 7.42 × 1013 90.06 

Geometric mean 1.32 × 1013 89.91 

Harmonic mean 3.83 × 1012 89.77 
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Table 39. Sum of squared differences between actual and reconstructed curves for 
possible A and Ea mean combinations for sulfameter-dioxolane solvate with a 
particle size of 850–1700 µm. 

Mean used 

 (A)  (Ea) 

Sum of squared differences (K2) 
((Tactual – Treconstructed)

2) 

Arithmetic Arithmetic 654,303 

Arithmetic Geometric 694,155 

Arithmetic Harmonic 734,673 

Geometric Arithmetic 5,564 

Geometric Geometric 6,377 

Geometric Harmonic 8,465 

Harmonic Arithmetic 392,208 

Harmonic Geometric 359,933 

Harmonic Harmonic 329,445 
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CHAPTER 7  

DESOLVATION AND POLYMORPHIC TRANSFORMATIONS OF 

SULFAMETER SOLVATES 

 

Solid-state kinetic principles were introduced and discussed in previous chapters. 

Chapter 5 introduced a method to obtain reliable kinetic data nonisothermally by 

combining modelistic and model-free approaches in a complementary approach which 

was tested on three sulfameter solvates (tetrahydrofuran, dioxolane and dioxane). 

Although kinetic parameters needed to characterize the desolvation reactions were 

obtained, general mechanistic conclusions about sulfameter solvate desolvation can not 

be drawn due to the limited number of solvates studied. Through the study of more such 

sulfameter solvates we hope that a correlation of kinetic parameters with solvent 

structure/size will emerge. Therefore, this chapter expands nonisothermal solvate analysis 

to four more sulfameter solvates including: oxane, oxepane, chloroform and bromoform. 

In addition, five solvates (tetrahydrofuran, dioxolane, oxane, dioxane and oxepane) were 

isothermally desolvated and their desolvation kinetics analyzed. The isothermal and 

nonisothermal kinetic parameters will be compared in the next chapter. Finally, 

polymorphic transformations of the tetrahydrofuran, dioxolane, oxane, dioxane, oxepane, 

chloroform and bromoform solvates after desolvation, melting and recrystallization were 

studied and will be discussed. 

Experimental 

Sulfameter solvates were prepared from the following solvents: tetrahydrofuran, 

dioxolane, oxane, dioxane, oxepane, chloroform and bromoform, as described in Chapter 

3. The prepared solvates were sieved and a particle size range of 355–710 µm was used 

for desolvation studies. 
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Sulfameter solvate desolvation 

Desolvation kinetics of the tetrahydrofuran, dioxolane, oxane, dioxane and 

oxepane solvates was followed isothermally by TGA, as described in Chapter 3. 

Isothermal runs were done at nominal temperatures of 323, 328, 333, 338 and 343 K for 

the five solvates. An additional sample of the dioxane solvate was desolvated at the 

following nominal temperatures: 328, 333, 338, 343 and 348 K. The exact reaction 

temperature was calculated by averaging measured reaction temperatures during the time 

period of significant weight loss, as discussed in Chapter 3. 

Additionally, desolvation kinetics of the oxane, oxepane, chloroform and 

bromoform solvates was followed nonisothermally by TGA, as described in Chapter 3. 

Nonisothermal runs were performed at nominal heating rates of 1, 2, 4, 8 and 16 K/min. 

Runs were done in duplicate for the oxane solvate (i.e., 10 curves total). The exact 

heating rate was obtained from the slope of the linear heating curve of the TGA run 

during the time period of significant weight loss, as discussed in Chapter 3.  

Kinetic analysis of desolvation 

Kinetic analysis of isothermal data was done by the conventional (model-fitting) 

method and the advanced isoconversional (model-free) method, as described in Chapter 1. 

Model-fitting results were displayed on a reduced time plot which is an α-time plot 

where the time axis has been normalized (i.e., reduced) by the time required for 90% 

conversion (t0.9) for each model. Instead of time (minutes) on the x-axis, the reduced time 

(t/t0.9) which is unitless is displayed. The advantage of reduced time plots is that the 

experimental data and all models can be displayed in a single figure and the best fitting 

model appears to closely follow the actual data. 

Kinetic analysis of nonisothermal data was done by the complementary method 

(see Chapter 5) from which a model was selected, the choice of model was verified by 

reconstructing the original experimental TGA curves from the parameters (A and Ea) 
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obtained with the selected model. Reconstruction results were shown as the sum of 

squared differences between experimental and reconstructed models for each possible 

kinetic triplet. The model of choice was that which had the least sum of squared 

differences. 

Polymorphic transformation of sulfameter solvates 

Sulfameter has been reported to occur in several polymorphic forms [173-178]. 

Bettinetti et. al. [178] have investigated and compared these polymorphic forms and 

reported an amorphous and three crystalline forms of sulfameter (see Table 40).  

Sulfameter characterization (DSC; Figure 24b and PXRD; Figure 25) shows that 

the crystal form supplied by Sigma (lot no. 107F0910) is form I. This chapter discusses 

the transformations of the parent drug and seven of the sulfameter solvates 

(tetrahydrofuran, dioxolane, oxane, dioxane, oxepane, chloroform and bromoform) upon 

heating, cooling and reheating. Sulfameter and its solvates were nonisothermally heated 

at 16 K/min. up to 220°C in the DSC and then immediately allowed to cool 

(uncontrolled) to room temperature (10-20 minutes) and then re-heated at 16 K/min. to 

220°C. The objective was to determine the resulting crystal forms after solvate 

desolvation and sulfameter melting.  

Results and Discussion 

Isothermal desolvation results 

Thermogravimetric results for the isothermal desolvation of the tetrahydrofuran, 

dioxolane, oxane, dioxane and oxepane solvates are shown in Figures 99–103. 

Gravimetric weight loss for these solvates showed a 1:1 drug–solvent ratio (Table 8, 

Chapter 3). 

The conventional model-fitting results (Tables 41–45) showed that the A2 model 

was the model of choice for the desolvation of the tetrahydrofuran, dioxolane, dioxane 
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and oxepane solvates while the R3 model was the model of choice for the oxane solvate 

which is also shown in the reduced time plots (Figures 104–108). Model-free analysis 

results (Figures 109–113) show that Ea values calculated by the advanced isoconversional 

(AIC) method are comparable to those obtained from model-fitting methods.  

Nonisothermal desolvation results 

Thermogravimetric results for the nonisothermal desolvation of the oxane, 

oxepane, chloroform and bromoform solvates are shown in Figures 114–117. Gravimetric 

weight loss for these solvates showed a 1:1 drug–solvent ratio (Table 8, Chapter 3).  

Several kinetic triplets were calculated from the Coats-Redfern model-fitting 

method for each solvate (Tables 46–49). Sum of squares ((Tactual – Treconstructed)
2) plots 

(Figures 118–120) and α–temperature reconstruction plots (Figures 121–123) show that 

the A2 is the model of choice for the oxane and chloroform solvates while the A3 model 

is the model for the oxepane solvate. The bromoform solvate shows two overlapping 

weight loss steps (Figures 39 and 117) which is further confirmed from its desolvation 

isoconversional plot (Figure 124) that does not show a flat isoconversional plot. 

However, it can be fairly described by a single kinetic triplet (R3 model) as seen in the 

sum of squares plot (Figure 125) and α–temperature reconstruction plot (Figure 126). 

 Results of sulfameter solvate desolvation isothermally and nonisothermally are 

examined and further discussed in the next chapter.  

Polymorphic transformations of sulfameter solvates 

Figure 127 shows two successive DSC thermograms for sulfameter: the first 

heating cycle (black thermogram) shows sulfameter melting at around 209°C indicating 

the presence of Form I and no evident thermal event prior to the melting peak. After 

slowly cooling the melt to room temperature, an amorphous form is produced (Figure 

128a) which agrees with literature reports [177, 178]. Upon heating the amorphous form 

(gray thermogram), an exothermic peak is observed at 120°C which represents 
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crystallization of form I, which subsequently melts at 209°C. There is also a small 

endotherm at 197°C which could be due to a small fraction of form III melting; form III 

could have crystallized from the amorphous form but its crystallization exotherm was 

either too small to be detected or could have overlapped with the crystallization exotherm 

of form I.  

The transformation patterns of sulfameter solvates falls in one of three patterns 

(Figure 129): 

1. Pattern A – follows the behavior of the parent drug (non-solvated) 

where in the first heating cycle (black thermogram) the solvate 

desolvates to form I which melts at ~209°C then, upon cooling, an 

amorphous form is produced (Figure 128a) which crystallizes upon 

heating (gray thermogram) at 120-124°C to give: form I (major) and 

form III (minor). These forms subsequently melt at ~198°C and 

~209°C, respectively. Such behavior is seen with the dioxolane and 

dioxane solvates (Figures 130–131).  

2. Pattern B – In the first heating cycle (black thermogram), the solvate 

desolvates to give form I which melts at ~209°C, then upon cooling, an 

amorphous form is produced (Figure 128a) which crystallizes upon 

heating (gray thermogram) at 125°C to form I which subsequently melts 

at ~209°C. This behavior is seen in the oxane solvate (Figure 132). 

3. Pattern C – In the first heating cycle (black thermogram), the solvate 

desolvates to give form I which melts at ~209°C, then upon cooling, an 

amorphous form is produced (Figure 128b) which crystallizes upon 

heating (gray thermogram) at 128–135°C to form III. Form III 

subsequently melts at ~197°C. This behavior is seen in the 

tetrahydrofuran, oxepane, chloroform and bromoform solvates (Figures 

133–136). 



 

 

249 

This unusual behavior suggests that the effect of desolvation extends beyond 

melting, so that although all sulfameter solvates desolvate to give form I of sulfameter, 

the resultant amorphous phase from the melt is different. There could be some 

degradation of sulfameter upon melting which would account for difference in color of 

the amorphous form for some solvates (Figure 128b) compared to that  of “yellowish” 

amorphous form from other solvates or the parent drug (Figure 128a). (i.e., orange versus 

yellow). The same behavior was also observed isothermally and with different particle 

sizes of the solvates. This behavior suggests that the melt has some “structure” dependent 

on what solvate it came from. 
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Table 40. Sulfameter polymorphic forms. 

Form Melting point (°C) Comments 

I 210 –  212 Also called Form α (Ref. [173]) or Form A 
(Ref. [174]) 

II Not reported *  

III 197 – 199 Also called Form B (Ref. [174] ) 

* Form II is believed to transform to either Form I or III and the transformation is too 
small to be detected [178].   
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Figure 99. α versus time plots for the isothermal desolvation of sulfameter-
tetrahydrofuran solvate at: �, 341.19 K; �, 336.00 K; �, 330.71 K; �, 
325.41 K and ▲, 320.34 K. 
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Figure 100. α versus time plots  for the isothermal desolvation of sulfameter-dioxolane 
solvate at: �, 341.33 K; �, 336.02 K; �, 330.83 K; �, 325.70 K and ▲, 
320.48 K. 
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Figure 101. α versus time plots  for the isothermal desolvation of sulfameter-oxane 
solvate at: �, 341.64 K; �, 336.26 K; �, 330.38 K; �, 325.68 K and ▲, 
320.21 K. 
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Figure 102. α versus time plots for the isothermal desolvation of sulfameter-dioxane 
solvate at: a. �, 341.38 K; �, 336.04 K; �, 330.87 K; �, 325.53 K and ▲, 
320.33 K; b. �, 346.33 K; �, 341.07 K; �, 335.90 K; �, 330.64 K and ▲, 
325.45 K. 
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Figure 103. α versus time plots  for the isothermal desolvation of sulfameter-oxepane 
solvate at: �, 341.64 K; �, 336.26 K; �, 330.38 K; �, 325.68 K and ▲, 
320.21 K. 
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Table 41.  Fitted kinetic parameters for sulfameter-tetrahydrofuran isothermal 
desolvation kinetics by the conventional model-fitting method. 

Model A (min-1) Ea (kJ/mole) r  * 

A2** 3.07 × 1014 100.23 0.9946 

A3 2.28 × 1014 100.40 0.9881 

A4 1.82 × 1014 100.47 0.9801 

D1 2.27 × 1014 100.62 0.9649 

D2 1.66 × 1014 100.18 0.9606 

D3 5.92 × 1013 99.33 0.9258 

D4 4.29 × 1013 99.92 0.9540 

F1 4.92 × 1014 99.61 0.9656 

F2 1.94 × 1015 97.41 0.6679 

F3 4.21 × 1016 96.60 0.4442 

P2 1.98 × 1014 101.00 0.9344 

P3 1.58 × 1014 101.00 0.9149 

P4 1.30 × 1014 100.99 0.9024 

R1 2.46 × 1014 100.93 0.9631 

R2 1.71 × 1014 100.45 0.9846 

R3 1.28 × 1014 100.21 0.9854 

* Correlation coefficient for g (α) vs. t plot. 
 
** Best fit model. 
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Table 42.  Fitted kinetic parameters for sulfameter-dioxolane isothermal desolvation 
kinetics by the conventional model-fitting method. 

Model A (min-1) Ea (kJ/mole) r  * 

A2** 3.09 × 1011 78.14 0.9990 

A3 2.15 × 1011 78.14 0.9900 

A4 1.67 × 1011 78.13 0.9802 

D1 2.03 × 1011 78.15 0.9869 

D2 1.69 × 1011 78.08 0.9784 

D3 7.86 × 1010 78.01 0.9294 

D4 4.73 × 1010 78.05 0.9678 

F1 6.08 × 1011 78.09 0.9684 

F2 5.28 × 1012 78.22 0.6306 

F3 1.72 × 1014 78.66 0.3965 

P2 1.55 × 1011 78.22 0.9378 

P3 1.22 × 1011 78.19 0.9133 

P4 9.91 × 1010 78.16 0.8980 

R1 2.01 × 1011 78.24 0.9774 

R2 1.61 × 1011 78.16 0.9979 

R3 1.30 × 1011 78.13 0.9965 

* Correlation coefficient for g (α) vs. t plot. 
 
** Best fit model. 
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Table 43.  Fitted kinetic parameters for sulfameter-oxane isothermal desolvation kinetics 
by the conventional model-fitting method. 

Model A (min-1) Ea (kJ/mole) r  * 

A2 8.10 × 1016 117.54 0.9916 

A3 5.78 × 1016 117.63 0.9722 

A4 4.55 × 1016 117.69 0.9569 

D1 4.92 × 1016 117.32 0.9872 

D2 4.16 × 1016 117.25 0.9917 

D3 2.02 × 1016 117.23 0.9609 

D4 1.18 × 1016 117.24 0.9875 

F1 1.56 × 1017 117.36 0.9872 

F2 1.46 × 1018 117.54 0.6769 

F3 4.71 × 1019 117.91 0.4360 

P2 4.21 × 1016 117.81 0.8985 

P3 3.43 × 1016 117.91 0.8686 

P4 2.86 × 1016 117.96 0.8506 

R1 5.08 × 1016 117.59 0.9537 

R2 4.07 × 1016 117.44 0.9929 

R3** 3.29 × 1016 117.41 0.9990 

* Correlation coefficient for g (α) vs. t plot. 
 
** Best fit model. 
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Table 44.  Fitted kinetic parameters (averaged from two experiments)a for sulfameter-
dioxane isothermal desolvation kinetics by the conventional model-fitting 
method. 

Model A (min-1) Ea (kJ/mole) r  b 

A2 c 9.59 × 1015 112.53 0.9978 

A3 6.78 × 1015 112.56 0.9939 

A4 5.29 × 1015 112.57 0.9870 

D1 6.46 × 1015 112.66 0.9751 

D2 5.32 × 1015 112.56 0.9641 

D3 2.36 × 1015 112.36 0.9146 

D4 1.47 × 1015 112.50 0.9530 

F1 1.82 × 1016 112.41 0.9582 

F2 1.19 × 1017 111.77 0.6252 

F3 2.87 × 1018 111.36 0.3966 

P2 4.98 × 1015 112.67 0.9489 

P3 3.95 × 1015 112.66 0.9289 

P4 3.25 × 1015 112.65 0.9159 

R1 6.36 × 1015 112.69 0.9776 

R2 5.05 × 1015 112.60 0.9919 

R3 4.03 × 1015 112.55 0.9887 
a Results averaged from two experiments, by taking the geometric mean of A and 
arithmetic mean of Ea and r. 
 

b Correlation coefficient for g (α) vs. t plot. 
 

c Best fit model. 
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Table 45. Fitted kinetic parameters for sulfameter-oxepane isothermal desolvation 
kinetics by the conventional model-fitting method. 

Model A (min-1) Ea (kJ/mole) r  * 

A2** 2.81 × 1020 139.79 0.9966 

A3 1.84 × 1020 139.61 0.9875 

A4 1.39 × 1020 139.54 0.9782 

D1 1.07 × 1021 139.81 0.9841 

D2 1.57 × 1020 139.40 0.9694 

D3 1.56 × 1020 139.79 0.9685 

D4 1.04 × 1020 140.67 0.9373 

F1 4.89 × 1019 140.06 0.9634 

F2 7.17 × 1020 140.43 0.9738 

F3 2.00 × 1022 143.59 0.6771 

P2 1.41 × 1024 146.02 0.4486 

P3 1.03 × 1020 139.03 0.9282 

P4 8.19 × 1019 139.03 0.9074 

R1 6.77 × 1019 139.03 0.8943 

R2 1.36 × 1020 139.11 0.9610 

R3 1.33 × 1020 139.56 0.9874 

* Correlation coefficient for g (α) vs. t plot. 
 
** Best fit model. 
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Figure 104. α versus reduced time plots (t/t0.9) for the isothermal desolvation of 
sulfameter-tetrahydrofuran solvate and various reaction models: �, 
desolvation data (Figure 99); �, A2; �, A3; ▲, A4; �, D1; �, D2; ▲, D3; 
�,D4; �, F1; �, F2; ▲, F3; �, P2; �, P3; �, P4; �, R1; �, R2 and ▲, 
R3. 
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Figure 105. α versus reduced time plots (t/t0.9) for the isothermal desolvation of 
sulfameter-dioxolane solvate and various reaction models: �, desolvation 
data (Figure 100); �, A2; �, A3; ▲, A4; �, D1; �, D2; ▲, D3; �,D4; �, 
F1; �, F2; ▲, F3; �, P2; �, P3; �, P4; �, R1; �, R2 and ▲, R3. 
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Figure 106. α versus reduced time plots (t/t0.9) for the isothermal desolvation of 
sulfameter-oxane solvate and various reaction models: �, desolvation data 
(Figure 101); �, A2; �, A3; ▲, A4; �, D1; �, D2; ▲, D3; �,D4; �, F1; 
�, F2; ▲, F3; �, P2; �, P3; �, P4; �, R1; �, R2 and ▲, R3. 
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Figure 107. α versus reduced time plots (t/t0.9) for the isothermal desolvation of 
sulfameter-dioxane solvate and various reaction models: �, desolvation data 
(Figure 102 a and b); �, A2; �, A3; ▲, A4; �, D1; �, D2; ▲, D3; �,D4; 
�, F1; �, F2; ▲, F3; �, P2; �, P3; �, P4; �, R1; �, R2 and ▲, R3. 
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Figure 108. α versus reduced time plots (t/t0.9) for the isothermal desolvation of 
sulfameter-oxepane solvate and various reaction models: �, desolvation data 
(Figure 103); �, A2; �, A3; ▲, A4; �, D1; �, D2; ▲, D3; �,D4; �, F1; 
�, F2; ▲, F3; �, P2; �, P3; �, P4; �, R1; �, R2 and ▲, R3.
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Figure 109. Ea versus α plots for isothermal sulfameter-tetrahydrofuran solvate 
desolvation evaluated by the AIC method. 
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Figure 110. Ea versus α plots for isothermal sulfameter-dioxolane solvate desolvation 
evaluated by the AIC method.  
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Figure 111. Ea versus α plots for isothermal sulfameter-oxane solvate desolvation 
evaluated by the AIC method. 
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Figure 112. Ea versus α plots for isothermal sulfameter-dioxane solvate desolvation 
evaluated by the AIC method using two data sets. 
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Figure 113. Ea versus α plots for isothermal sulfameter-oxepane solvate desolvation 
evaluated by the AIC method. 
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Figure 114. α versus temperature plots for the nonisothermal desolvation of sulfameter-
oxane solvate at: ▲, 1; �, 2; ▲, 4; �, 8 and �, 16 K/min. 
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Figure 115. α versus temperature plots for the nonisothermal desolvation of sulfameter-
oxepane solvate at: ▲, 1; �, 2; �, 4; �, 8 and �, 16 K/min. 
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Figure 116. α versus temperature plots for the nonisothermal desolvation of sulfameter-
chloroform solvate at: ▲, 1; �, 2; �, 4; �, 8 and �, 16 K/min. 
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Figure 117. α versus temperature plots for the nonisothermal desolvation of sulfameter-
bromoform solvate at: ▲, 1; �, 2; �, 4; �, 8 and �, 16 K/min. 
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Table 46.  Average fitted kinetic parameters for the nonisothermal desolvation of 
sulfameter-oxane solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2** 1.35 × 1011 79.10 -0.9953 

A3 6.38 × 1006 50.78 -0.9949 

A4 4.07 × 1004 36.63 -0.9945 

D1 4.25 × 1035 246.22 -0.9640 

D2 6.71 × 1038 268.90 -0.9761 

D3 7.71 × 1042 299.57 -0.9886 

D4 5.08 × 1039 278.86 -0.9809 

F1 7.73 × 1023 164.03 -0.9957 

F2 1.93 × 1034 231.63 -0.9857 

F3 1.92 × 1047 316.54 -0.9527 

P2 4.64 × 1007 57.17 -0.9584 

P3 2.86 × 1004 36.17 -0.9539 

P4 6.66 × 1002 25.67 -0.9487 

R1 1.22 × 1017 120.19 -0.9623 

R2 5.74 × 1019 139.30 -0.9826 

R3 5.70 × 1020 146.87 -0.9881 

* Results averaged from ten curves using the geometric mean of A and arithmetic mean 
of Ea and r. 
 
** Model selected by the complementary approach. 
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Table 47.  Average fitted kinetic parameters for the nonisothermal desolvation of 
sulfameter-oxepane solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2 4.11 × 1018 130.60 -0.9927 

A3** 7.10 × 1011 85.09 -0.9923 

A4 2.72 × 1008 62.33 -0.9920 

D1 9.53 × 1057 402.58 -0.9695 

D2 9.44 × 1062 438.02 -0.9785 

D3 3.18 × 1069 486.18 -0.9881 

D4 4.50 × 1064 453.65 -0.9823 

F1 4.76 × 1038 267.16 -0.9930 

F2 4.30 × 1054 374.13 -0.9791 

F3 4.23 × 1074 508.59 -0.9443 

P2 2.45 × 1013 96.18 -0.9665 

P3 2.12 × 1008 62.14 -0.9644 

P4 5.78 × 1005 45.12 -0.9620 

R1 2.25 × 1028 198.32 -0.9685 

R2 3.53 × 1032 228.24 -0.9838 

R3 1.42 × 1034 240.12 -0.9878 

* Results averaged from five curves using the geometric mean of A and arithmetic mean 
of Ea and r. 
 
** Model selected by the complementary approach. 
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Table 48.  Average fitted kinetic parameters for the nonisothermal desolvation of 
sulfameter-chloroform solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2** 1.62 × 1009 64.76 -0.9981 

A3 3.23 × 1005 41.29 -0.9979 

A4 4.25 × 1003 29.55 -0.9977 

D1 1.78 × 1030 204.79 -0.9733 

D2 7.91 × 1032 223.26 -0.9834 

D3 1.60 × 1036 248.18 -0.9934 

D4 3.41 × 1033 231.35 -0.9874 

F1 1.25 × 1020 135.19 -0.9983 

F2 6.61 × 1028 190.00 -0.9816 

F3 5.06 × 1039 258.78 -0.9442 

P2 1.94 × 1006 46.95 -0.9682 

P3 3.35 × 1003 29.41 -0.9639 

P4 1.32 × 1002 20.64 -0.9589 

R1 2.35 × 1014 99.56 -0.9717 

R2 3.79 × 1016 115.11 -0.9888 

R3 2.45 × 1017 121.26 -0.9931 

* Results averaged from five curves using the geometric mean of A and arithmetic mean 
of Ea and r. 
 
** Model selected by the complementary approach. 
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Table 49.  Average fitted kinetic parameters for the nonisothermal desolvation of 
sulfameter-bromoform solvate using the Coats-Redfern method.* 

Model A (min-1) Ea (kJ/mole) r 

A2 4.62 × 1005 43.71 -0.9934 

A3 1.26 × 1003 27.21 -0.9925 

A4 6.30 × 1001 18.97 -0.9913 

D1 2.74 × 1020 145.13 -0.9904 

D2 1.30 × 1022 157.54 -0.9954 

D3 1.15 × 1024 173.97 -0.9976 

D4 2.03 × 1022 162.89 -0.9967 

F1 1.48 × 1013 93.21 -0.9942 

F2 6.15 × 1018 128.58 -0.9525 

F3 5.57 × 1025 172.71 -0.8996 

P2 5.25 × 1003 31.94 -0.9872 

P3 6.06 × 1001 19.37 -0.9842 

P4 6.76 13.08 -0.9801 

R1 2.43 × 1009 69.67 -0.9895 

R2 5.74 × 1010 80.04 -0.9970 

R3** 1.71 × 1011 84.09 -0.9974 

* Results averaged from five curves using the geometric mean of A and arithmetic mean 
of Ea and r. 
 
** Model selected by the complementary approach. 
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Figure 118. Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) for the sulfameter oxane solvate. 
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Figure 119. Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) for the sulfameter oxepane solvate. 
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Figure 120. Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) for the sulfameter chloroform 
solvate. 
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Figure 121. Reconstructed α–T plots for nonisothermal desolvation of sulfameter-oxane 
solvate for five heating rates (1, 2, 4, 8 and 16 K/min): �, experimental curves 
and �, reconstructed curves (A2). 
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Figure 122. Reconstructed α–T plots for nonisothermal desolvation of sulfameter-
oxepane solvate for five heating rates (1, 2, 4, 8 and 16 K/min): �, 
experimental curves and �, reconstructed curves (A3). 
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Figure 123. Reconstructed α–T plots for nonisothermal desolvation of sulfameter-
chloroform solvate for five heating rates (1, 2, 4, 8 and 16 K/min): �, 
experimental curves and �, reconstructed curves (A2). 
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Figure 124. Ea–α plot for nonisothermal sulfameter-bromoform solvate desolvation 
evaluated by the Vyazovkin (VYZ) isoconversional method. 
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Figure 125. Sum of squared differences between actual and reconstructed nonisothermal 
desolvation curves ((Tactual – Treconstructed)

2) for the sulfameter bromoform 
solvate. 
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Figure 126. Reconstructed α–T plots for nonisothermal desolvation of sulfameter-
bromoform solvate for five heating rates (1, 2, 4, 8 and 16 K/min): �, 
experimental curves and �, reconstructed curves (R3).  
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Figure 127. DSC analysis of sulfameter at a heating rate of 16 K/min: (––); first heating 
cycle, (––) and second heating cycle (after cooling sample at room 
temperature). 
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a. b. 

  

Figure 128. Amorphous forms of sulfameter prepared by melting any crystalline form 
and slowly cooling: a, amorphous form produced from original bulk drug; 
dioxolane; oxane and dioxane solvates; b, amorphous form produced from 
tetrahydrofuran; oxepane; chloroform and bromoform solvates. 
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Figure 129. Polymorphic transformations of sulfameter and its solvates upon heating; 
bolded forms are the major component.  
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Figure 130. DSC analysis of sulfameter–dioxolane solvate at a heating rate of 16 K/min: 
(––) first heating cycle and (––) second heating cycle (after cooling sample to 
room temperature).  
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Figure 131. DSC analysis of sulfameter–dioxane solvate at a heating rate of 16 K/min:    
(––) first heating cycle and (––) second heating cycle (after cooling sample to 
room temperature). 
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Figure 132. DSC analysis of sulfameter–oxane solvate at a heating rate of 16 K/min: (––) 
first heating cycle and (––) second heating cycle (after cooling sample to room 
temperature). 
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Figure 133. DSC analysis of sulfameter–tetrahydrofuran solvate at a heating rate of 16 
K/min: (––) first heating cycle and (––) second heating cycle (after cooling 
sample to room temperature).  
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Figure 134. DSC analysis of sulfameter – oxepane solvate at a heating rate of 16 K/min: 
(––) first heating cycle and (––) second heating cycle (after cooling sample to 
room temperature). 
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Figure 135. DSC analysis of sulfameter–chloroform solvate at a heating rate of 16 K/min: 
(––) first heating cycle and (––) second heating cycle (after cooling sample to 
room temperature).  

 



 

 

297 

 

 

 

40

45

50

55

60

65

70

75

80

0 50 100 150 200 250

Temperature (°C)

H
e

a
t 

fl
o

w
 (

m
W

)

e
n

d
o

 

Figure 136. DSC analysis of sulfameter–bromoform solvate at a heating rate of 16 K/min: 
(––) first heating cycle and (––) second heating cycle (after cooling sample to 
room temperature). 
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CHAPTER 8  

SUMMARY AND CONCLUSIONS 

 

Isothermal and nonisothermal experiments 

I have covered desolvation of different sulfameter solvates both isothermally and 

nonisothermally. Isothermally, five sulfameter solvates were kinetically analyzed 

(tetrahydrofuran, dioxolane, oxane, dioxane and oxepane; Chapter 7). Nonisothermally, 

seven sulfameter solvates were analyzed: (tetrahydrofuran, dioxolane, dioxane (Chapter 

5) and oxane, oxepane, chloroform, bromoform (Chapter 7). Desolvation results are 

summarized in Tables 50 (isothermal) and 51 (nonisothermal). Results show that 

desolvation kinetic parameters were different for isothermal and nonisothermal 

experiments. The reaction models were also different for the tetrahydrofuran, oxane, 

dioxane and oxepane solvates while the same reaction model (A2 model) was selected for 

the dioxolane solvate isothermally and nonisothermally. Isothermal desolvation curves 

were reconstructed for each solvate from the kinetic parameters obtained nonisothermally 

(Table 51) and were compared to experimental desolvation curves obtained isothermally 

(Figure 137). Figure 137 shows that none of the isothermal desolvation curves (except for 

the dioxolane solvate) was correctly predicted from nonisothermal parameters; the shape 

of dioxolane desolvation curves were fairly predicted, however their position was not 

because the activation energy obtained nonisothermally (Table 51) is higher than that 

calculated isothermally (Table 50) for the dioxolane solvate.  

The order of activation energies was also different from both isothermal and 

nonisothermal experiments. Isothermally, the order of activation energies was: oxepane > 

oxane > dioxane > tetrahydrofuran > dioxolane and all followed the A2 model except 

oxane (R3 model). Nonisothermally, the order was: tetrahydrofuran > dioxolane > 

oxepane > oxane >dioxane and all followed the A3 model except for dioxolane and 
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oxane solvates (A2 model). The results show that neither isothermal nor nonisothermal 

kinetics can be predicted from one another which raises the question – which method 

should be used to analyze solid-state kinetics?  

This question and many others have been raised about analysis and calculation 

methods used in solid-state kinetics [1]. The use of nonisothermal experiments has been 

criticized in favor of isothermal experiments for two reasons – firstly, temperature is an 

experimental variable in nonisothermal analyses while it is fixed in isothermal analyses, 

which reduces the total number of variables; secondly, nonisothermal experiments 

involve a temperature integral that has no analytical solution, therefore approximations of 

this integral are necessary. On the other hand, nonisothermal studies are considered more 

convenient than isothermal studies because a sample is not subjected to a rapid 

temperature rise to a fixed reaction temperature (i.e., heat-up time) [53] in which reaction 

could occur but is not measured which introduces errors in the analysis. This is especially 

true if the isothermal temperature is high because decomposition likely occurs before the 

fixed temperature study is initiated. 

Another complicating factor is the wide belief that kinetic parameters obtained by 

both isothermal and nonisothermal experiments should be the same. It was noted [37, 40, 

53] that the disagreement in results from isothermal and nonisothermal experiments 

should be expected because each covers a different temperature range (Table 52) which 

could affect the complex nature of some solid-state reactions. Our results have 

demonstrated the differences for the desolvation of different sulfameter solvates. 

However, the disagreement can not be totally attributed to temperature range difference 

between isothermal and nonisothermal experiments because if the temperature range was 

the only variable, it would be expected that nonisothermal runs having low heating rates 

(i.e. 1 K/min) would be kinetically described by the same isothermal parameters since the 

temperature range covered in these runs is comparable to those done isothermally.  
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Variation of results between isothermal and nonisothermal kinetics could be due 

to the variation of heat dissipation within the crystal in both modes. For example, 

tetrahydrofuran, dioxane and oxepane show an A2 reaction model for isothermal 

desolvation while these same solvates show an A3 model nonisothermally. Both models 

(A2 and A3) are nucleation and growth models that are similar in all aspects except the 

dimension of crystal growth (Chapter 2). A3 models indicate that crystals are growing in 

two dimensions while A2 are one-dimensional growing crystals. The rising (dynamic) 

heat input nonisothermally could generate a two-dimensional nuclei growth while the 

constant temperature in isothermal experiments could limit growth to one-dimension. The 

oxane solvate followed the R3 model, which assumes that nuclei growth follows a 

geometrical shape (contracting cube, Chapter 2); light microscopy of the oxane solvate 

(Figure 26d) agrees with this finding. Nonisothermal heating of the oxane solvate 

changes the desolvation kinetic behavior from the R3 to A2 model.  

The choice of isothermal or nonisothermal experiments is governed by needs of 

the study, whether it is desired to study reaction kinetics over a wide temperature range 

(i.e. up to melting) or if a narrow range is sufficient. However, results show that we can 

not predict stability isothermally from experiments done nonisothermally or vice versa, 

unless we ascertain that the kinetics do not change.  

Sulfameter system 

The sulfameter solvate system has proven to be a good model for studying solid-

state kinetics because sulfameter forms many solvates, several of which are structurally 

related and easy to prepare. One of the most important properties of the sulfameter 

solvate system is that desolvation is a simple process that can be described by a single 

kinetic triplet. This was evident from the reconstruction results of desolvation curves 

where they were described by a single value of the activation energy and preexponential 

factor for a specific model. Simplicity of the desolvation reaction is also demonstrated by 
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nearly flat isoconversional plots for desolvation reactions. No other solid-state system has 

shown these kinetic properties. Calcium oxalate monohydrate is usually used as a 

reference material to study solid-state kinetic – either the dehydration reaction or the 

subsequent degradation to calcium oxide and carbon dioxide. There is some disagreement 

in the reported results [92] and these reactions (dehydration or degradation) can not be 

described by a flat isoconversional plot as seen in the sulfameter solvate system.  

The relationship between kinetic parameters for the desolvation of sulfameter-like 

compounds (i.e., other sulfonamides) can not be established because results showed that 

although there were minimal differences in structure, the ability to form solvates changed 

dramatically. This behavior could be due to changes in drug solubility or change in 

preferred orientation of a host molecule needed to form a solvate. Therefore, each host 

structure should be considered separately.  

On the other hand, changing guest molecules (i.e., different solvents) for 

sulfameter produced several structurally-similar solvates with different desolvation 

kinetic parameters (Tables 50 and 51). Isothermally, there seems to be a relation between 

solvent size and activation energy (Table 50). Five membered ring solvents 

(tetrahydrofuran and dioxolane) have a lower activation energy than six membered ring 

solvents (dioxane and oxane), which was also lower than the seven membered ring 

solvent (oxepane). This could be due to the bulkiness of the solvent molecule – the more 

bulky the solvent, the higher the energy barrier for it to desolvate. This is also seen within 

the same ring sizes. For example, tetrahydrofuran and dioxolane are both five membered 

rings, however, because dioxolane has a –CH2 group replaced with oxygen, it is a little 

less bulky than tetrahydrofuran (i.e., CH2 is bigger than O) correlating with a lower 

desolvation activation energy for the dioxolane solvate. This also accounts for why 

dioxane has a lower Ea than oxane. The relation between the solvent molar volume and 

desolvation activation energy is shown in Figure 138a which agrees with our conclusion.  
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Results can be further explained by examining the single crystal structure of 

sulfameter solvates. The single crystal X-ray structure of  three sulfameter solvates 

(tetrahydrofuran, dioxane and chloroform) was previously reported by Caira and 

Mohamed [157]. They found a common isostructural host framework where sulfameter 

forms centrosymmetric dimers via pairs of N–H			N hydrogen bonds giving rise to a 

cage-like structure in which guest molecules (i.e., solvents) are entrapped. Solvent can 

escape from the cavities which are 2Å in width at the narrowest point. They concluded 

that, “the entrapment of relatively bulky solvent molecules in such cavities provide an 

explanation for the high threshold temperature for desolvation” [157]. These cavities may 

account for the observed pattern of desolvation Ea increasing with solvent size. Caira and 

Mohamed [157] further investigated the cavity topology and concluded that there are no 

guest molecules escaping along the x- or y- directions in the crystal and that the cavities 

only occur in the z-direction. This finding supports the one dimensional isothermal 

desolvation mechanism suggested by the A2 model. 

Nonisothermally, a relation between solvent size and desolvation energy is not 

apparent (Figure 138b). This may be due to the difference between isothermal and 

nonisothermal kinetic behavior discussed above. 

A type-1 kinetic compensation effect exists for the different sulfameter solvates 

both isothermally and nonisothermally (Figure 139). This could indicate a systematic 

relationship between different sulfameter solvates which was established for isothermal 

kinetics but it is less evident nonisothermally.  

There still exists many aspects of the sulfameter solvate system that can be 

explored kinetically. Although kinetic results obtained isothermally and nonisothermally 

are reliable, kinetic information is a piece of the larger picture. Single crystal X-ray 

studies are needed for each solvate to further explore other physical properties of the 

solvates and how these properties interact with desolvation kinetic results.  
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Hopefully, this work has helped narrow the gap between thermochemical kinetics 

and pharmaceutical science worlds. It has been demonstrated how collected kinetic data 

of different drug solvates can be transformed or analyzed to obtain modelistic or model-

free results. Pharmaceutical investigators should have a better understanding of the 

models, mathematical tools and software they apply to solid-state kinetic reactions. In 

addition, principles from solid-state kinetics should be further investigated and applied to 

nonisothermal solution state kinetic studies, in hopes of improving drug stability testing 

protocols. 

Solid-state kinetics future 

Solid-state kinetics like any research field is affected by experimental variables 

and data reproducibility that could be enhanced by tighter control of experimental 

variables. Calculated results by any method should be verified by reconstruction of data 

to determine their correspondence to the original data. 

Calculation methods used in the analysis of solid-state kinetics have raised many 

controversies because there are many methods and their range of application and validity 

is unclear. Results obtained by various calculation methods have often been different, 

even when applied to the same data set. Results from model-fitting methods, such as the 

Coats and Redfern method, have been in disagreement with those from model-free 

methods. Different calculation methods have been viewed as competing and conflicting, 

but, hopefully our complementary approach has helped bridge the gap between these two 

methods. Both modelistic and model-free methods can be used in a complementary 

fashion to reach reliable kinetic conclusions. 

Confusion and conflict in results from different methods continues to appear in 

the literature and there seems to be no near end to this issue which is partly due to new 

analysis methods that continue to appear in the literature and add to the many analysis 

methods already present. Currently, many methods and temperature integral 
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approximations are being introduced that are claimed to be “more accurate” than those 

already in place. However, there is little benefit in introducing analysis methods that are 

claimed to be accurate up to the fourth significant figure while experimental error may be 

as high as 20% or higher. The current overwhelming number of analysis methods in the 

literature needs to be appraised and evaluated. A critical evaluation of these methods was 

initiated in the ICTAC “kinetic project” [39-43] (Chapter 1). This project was vital for 

evaluating and standardizing the field of solid-state kinetics. However, views of this 

project were somehow “biased” towards the use of isoconversional methods, which did 

not reduce the controversy present in this field. Isoconversional analysis methods are 

useful tools for the analysis of solid-state kinetics. Theoretically, they possess many 

advantages and applications. However, practically, they have some disadvantages, 

especially regarding reproducibility (Chapter 4). They, therefore, can not be used solely 

for kinetic analysis but can be used in conjunction with modelistic methods and should 

not “replace” them as the kinetic project suggested. Claims that these methods can be 

universally used to predict isothermal and nonisothermal experiments for any 

experimental conditions [164] are practically impossible. I believe that the overwhelming 

focus on isoconversional methods is a step in the wrong direction. Sole use of 

isoconversional methods will continue to generate more literature in which the results 

have no useful application. Such papers will report numbers obtained by isoconversional 

methods and will have no mechanistic interpretation of the results except that “solid-state 

kinetics is complex.” 

Finally, researchers are challenged to develop more models and more work needs 

to be done to standardize the field of solid-state kinetics experimentally, computationally 

and conceptually. I hope my contribution has helped move us in that direction. 
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Table 50. Kinetic results for the isothermal desolvation reaction of several sulfameter 
solvates evaluated by the conventional model-fitting approach.a 

Solvate Model A (min-1) Ea (kJ/mole) 

Tetrahydrofuran  A2 3.07 × 1014 100.23 

Dioxolane A2 3.09 × 1011 78.14 

Oxane R3 3.29 × 1016 117.41 

Dioxaneb A2 9.59 × 1015 112.53 

Oxepane A2 2.81 × 1020 139.79 
a Results extracted from Tables 41–45.  
 

b Results averaged by taking the geometric mean of A and arithmetic mean of Ea and r. 

Table 51.  Averaged kinetic results for the nonisothermal desolvation reaction of several 
sulfameter solvates evaluated by the complementary approach.a 

Solvate Model A (min-1) Ea (kJ/mole) 

Tetrahydrofuran b A3 5.99 × 1014 102.48 

Dioxolane b A2 9.72 × 1012 87.67 

Oxane c A2 1.35 × 1011 79.10 

Dioxane b A3 2.72 × 1010 75.98 

Oxepane d A3 7.10 × 1011 85.09 

Chloroform d A2 1.62 × 1009 64.76 

Bromoform d R3 1.71 × 1011 84.09 
a Results averaged from several curves using the geometric mean of A and arithmetic 
mean of Ea. 
 

b Results averaged from seven curves. 
 

c Results averaged from ten curves. 
 

d Results averaged from five curves. 
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Figure 137. Reconstructed α–time plots for isothermal desolvation of sulfameter solvates 
(�, experimental and �, reconstructed) at five temperatures (323, 328, 333, 
338 and 343 K): a, tetrahydrofuran; b, dioxolane; c, oxane; d, dioxane and e. 
oxepane. Plots reconstructed from parameters calculated nonisothermally 
(Table 51). 
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Table 52. Temperature ranges covered in isothermal and nonisothermal desolvation 
experiments for several sulfameter solvates.   

Isothermal Nonisothermal 
Solvate 

Range (K) Difference (K) Range (K) Difference (K) 

Tetrahydrofuran 320.34 – 341.19 20.85 327.75 – 369.48 41.73 

Dioxolane 320.48 – 341.33 20.85 310.13 – 373.75 63.62 

Oxane 320.21 – 341.64 21.43 321.21 – 384.50 63.29 

Dioxane 320.33 – 341.38 21.05 332.51 – 380.45 47.95 

Oxepane 320.43 – 341.01 20.58 330.34 – 376.08 45.74 
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Figure 138. Desolvation activation energy versus solvent molar volume for different 
sulfameter solvates (�, tetrahydrofuran; �, dioxolane; �, oxane; �, dioxane 
and �, oxepane): a. isothermal and b. nonisothermal. 
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Figure 139. Kinetic compensation effect for different sulfameter solvates (�, 
tetrahydrofuran; �, dioxolane; �, oxane; �, dioxane and �, oxepane): a. 
isothermal and b. nonisothermal.  
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APPENDIX  

DERIVATION OF THE SENUM-YANG APPROXIMATION TERMS 

 

According to Eq. (27), the four terms of the Senum-Yang approximation can be 

derived as follows:  
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