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 Malaria is a mosquito-borne disease that has afflicted humans for thousands of 

years.  Today it is considered a re-emerging disease.  Malaria is most prevalent in tropical 

and subtropical parts of the world.  The disease has been linked to several environmental 

parameters, including precipitation, temperature, and deforestation.  However, these 

relationships have mainly been studied in Africa and have not been explored in other 

parts of the world.  The study area for this thesis was the South American country of 

Paraguay. 

 Paraguay has experienced an oscillation in malaria cases over the past 20 years, 

with monthly cases ranging from 0 to 1200.  Additionally, the country has experienced 

vast amounts of deforestation and climate variations.  The thesis study area was two 

Paraguayan departments, Alto Parana and Canindeyú.  Both departments had a record of 

monthly malaria cases for the years of 1981-2003. 

 It was discovered that there was a positive correlation between malaria and 

temperature and vegetation strength and a negative correlation between precipitation and 

malaria.  Spatial comparisons of deforestation maps and maps of malaria risk based on 

the selected environmental parameters, suggests recent deforestation increases the 

probably of malaria occurrence.  Additionally, time series analysis provides evidence that 

an increase in temperature increases malaria cases every 2-3 years.  The annual 



    

oscillation of temperature, precipitation, and vegetation change from the wet and dry 

seasons corresponds with the low and high activity time periods for malaria case rates.
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Chapter 1 

Introduction 

 

 Malaria, a disease spread by mosquitoes, has afflicted human beings for 

thousands of years (Suh et al. 2004).  Although many advances have been made in 

mosquito control and in the treatment of the disease, malaria remains a significant public 

health issue, with over 247 million cases reported in the year 2006 (WHO 2008).  Today 

malaria is being viewed as a re-emerging disease, with more people dying of malaria 

today, anywhere between 700,000 and 2.7 million, than 40 years ago (Patz and Olson 

2006, Pattanayak et al. 2003, Gagnon et al. 2002).   

 Malaria is most prevalent in tropical and subtropical regions of the world, 

especially in South and Latin America, Africa, and Southeast and Central Asia, (WHO 

2008, Pascual et al. 2006, Prothero 1995). Most cases occur within African nations 

(WHO 2008, Patz et al. 2005).  However, the disease is of considerable importance in 

other parts of the world, particularly South America (Prothero 1995).  Out of the 869 

million individuals living in the Americas, over 260 million reside in areas prone to 

malaria (PAHO 2004) and approximately 41 million of these people live in an area of 

moderate to high risk of the disease (PAHO 2004).  

Previous research has shown that climate is a key factor in explaining the 

incidence of malaria (Mantilla et al. 2009, Jones et al. 2007, Anyamba et al. 2006, 

Campbell-Lendrum and Woodruff 2006, Pascual et al. 2006, Thomson et al. 2006, Patz 

et al. 2005, Zhou et al. 2004, Hay et al. 2002, Gagnon et al. 2002, Poveda et al. 2001, 

Craig et al. 1999).  Past studies have focused on a wide variety of climatic factors and 

anomalies, such as temperature, precipitation, humidity, and atmospheric pressure 

(Mantilla et al. 2009, Jones et al. 2007, Anyamba et al. 2006, Campbell-Lendrum and 
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Woodruff 2006, Pascual et al. 2006, Thomson et al. 2006, Patz et al. 2005, Zhou et al. 

2004, Hay et al. 2002, Gagnon et al. 2002, Poveda et al. 2001, Craig et al. 1999).  There 

is concern that global climate change over the next century may exacerbate the spread of 

malaria (Figure 1.1). 

 

Figure 1.1:  WHO estimated mortality (per million people) attributable to climate change 

by the year 2000 (Patz et al. 2005). 

 

According to Pascual et al. (2006), increased temperatures can translate into a 30-

100% increase in mosquito abundance (Pascual et al. 2006).  Increased temperatures also 

shorten the larval development, decreasing the amount of time needed for adult 

mosquitoes to spread malaria and allowing for the development of more mosquitoes (Patz 

and Olson 2006).  Land cover change, such as conversion from forest to agriculture, can 

exert a large impact on the microclimate of the region, increasing the mean annual 

average temperature (Patz and Olson 2006, Patz and Olson 2005).  Treeless habitats tend 

to experience warmer temperatures than their forested counterparts (Patz and Olson 

2005).   

 Precipitation also influences the incidence and transmission of malaria (Thomson 

et al. 2005, Zhou et al. 2004, Small et al. 2003, Hay et al. 2002).  Mosquitoes require 
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standing water in order to complete their life cycle (Olson et al. 2009). Although the link 

between precipitation and malarial incidence is not as strong as that with temperature, it 

has been shown that precipitation is a factor that is locally important and may also be 

related to land use change (Olson et al. 2009, Briet et al. 2008, Thomson et al. 2005, 

Small et al. 2003).  

 In general, inhabitants of environments that have undergone significant land use 

change tend to be more susceptible to mosquito-borne diseases (Norris 2004).  

Deforestation, for example, has been shown to greatly affect malaria case rates in varying 

parts of the world (Guerra et al. 2006, Massarani and Shanahan 2006, Vittor et al. 2006, 

Barbieri et al. 2005, Patz et al. 2005, Norris 2004, Pattanayak et al. 2003).  Land cover 

change, e.g. forest to agricultural, increases the number of biting mosquitoes in a region 

(Guerra et al. 2006, Massarani and Shanahan 2006, Vittor et al. 2006).  Cleared lands are 

also more prone to the development of pools of sunlit water, which provide breeding 

grounds for mosquitoes.  Additionally, the cutting down of forests is often completed by 

migrant workers who have a lower immunity to malaria (Norris 2004, Pattanayak et al. 

2003).  These workers are then able to spread the disease amongst a transient population 

(Pattanayak et al. 2003).  This trend of increased deforestation and malaria has been 

observed in South America, where more malaria cases are occurring on the borders of 

regions that have recently been changed from forest to agriculture (Guerra et al. 2006). 

 Within South America most malaria research has been conducted within the 

Amazon basin (Olson et al. 2009, Briet et al. 2008, Guerra et al. 2006, Massarani and 

Shanahan 2006, Vittor et al. 2006, Barbieri et al. 2005, Thomson et al. 2005, Norris 

2004, Small et al. 2003, Pattanayak et al. 2003, Singh et al. 2002,).  Considering the fact 



  4  

  

that deforestation tends to affect malaria differently in Africa, the Americas, and 

Southeast Asia (Guerra et al. 2006), it is essential to look at the association of 

deforestation and malaria in countries where the relationship has not been investigated.  

 In recent decades, it has been well demonstrated that satellite remote sensing can 

be a reliable source for information on land use and land cover change (Jensen 2007).  

Earth-observing systems such as Landsat have been used to monitor and map the land 

surface.   However, tropical and subtropical regions of the earth are often covered with 

clouds, making it difficult for Landsat to monitor monthly variation in landscape, which 

is important when comparing to monthly cases of malaria.  The Advanced Very High 

Resolution Radiometer (AVHRR), mounted on the National Oceanic and Atmospheric 

Administration (NOAA) series of satellites, has been used as an alternative to Landsat 

(Baldi et al. 2008). Although the AVHRR was designed for atmospheric rather than land 

surface observation, the sensor has been found to be useful for land cover assessment 

(AVHRR 2009, Baldi et al. 2008).   

 In most instances, data from AVHRR channels 1 (reflected red light - 0.58 to 0.68 

micrometers), and 2 (reflected near infrared - 0.725 to 1.10 micrometers) are used to 

compute an index of vegetation "greenness," the Normalized Difference Vegetation 

Index (NDVI).  NDVI has been shown to be broadly correlated with different vegetation 

types (Loveland et al. 1991, Goward 1985, Justice et al. 1985, Tucker et al. 1985) and 

with several biophysical parameters such as levels of photosynthetic activity, primary 

production, leaf area, and albedo (Jensen 2007). 

 NDVI values have also been shown to be associated with precipitation and 

temperature (Chamaille-Jammes and Fitz 2009, Piao et al. 2003, Schultz and Halpert 
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2002, Fuller and Prince 1996).  For example, Fuller and Prince (1996) found a positive 

correlation between NDVI and rainfall levels. Other studies have found a positive 

correlation between NDVI and temperature (Piao et al. 2003, Schultz and Halpert 2002).   

 Recently, Wayant et al. (2010), using Paraguay as a study area, found a positive 

relationship between AVHRR-derived NDVI and malaria.  Although Wayant et al. 

(2010) demonstrated that NDVI was well correlated with incidences of malaria; the 

specific drivers of the observed spatio-temporal change in NDVI were not identified.  

More research needs to be conducted investigating the spatio-temporal drivers, such as 

temperature, precipitation and land cover change, of the relationship between NDVI and 

malaria.  Additionally, time series analysis would provide needed in-depth information 

into the periodic behavior of malaria and its potential relationship with precipitation, 

temperature, and land cover.   

Research Objectives 

 The principal objective of this research was to investigate the spatio-temporal 

interactions between malaria, multi-temporal AVHRR/NDVI data (as a surrogate for land 

use change), temperature and precipitation.  Building on the previous investigation of 

Wayant et al. (2010), this research will also be conducted in Paraguay, focusing on the 

departments of Alto Parana and Canindeyú (Wayant et al. 2010). The study examined 

data for the time period 1983-2003.  

 Four specific questions were asked: 

1.  Will regions of high correlation between malaria and temperature and malaria 

and precipitation be similar to areas of correlation between malaria and NDVI? 

2.  Will time series analysis of the variables provide information about periodic     
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     trends and cycles of individual variables as well as cycles of correlation? 

3.  By combining a selection of environmental parameters of malaria   

    (temperature, precipitation, land cover change), will regions and times which   

    can be highly associated with malaria incidents be discovered? 

4.  Does recent land cover change coincide with regions environmentally prone to  

    malaria? 

Overview of Methods 

 For all forms of analysis, monthly data consisting of malaria cases, AVHRR-

NDVI, precipitation, and temperature, for the period 1981-2003 were used.  To correct 

for data collection errors and prepare the data for statistical tests, the spatial datasets of 

NDVI, precipitation, and temperature, were smoothed using a Fourier Transform.  

Time series analysis was used to determine whether or not trends and cycles 

existed within the malaria, NDVI (a proxy for vegetation and land cover change), 

temperature, and precipitation datasets.  The analysis also determined if trends of 

correlation existed.  Additionally, a lagged regression analysis was carried out to evaluate 

the change in malaria and its possible association with NDVI, temperature, and 

precipitation (Shumway and Stoffer 2006).  This determined if there was a temporal 

relationship between malaria and precipitation, temperature, and vegetation change, and 

if a lag existed within that relationship.  Because of the length of the time series, all 

analysis was completed within the frequency domain, utilizing the properties of Fourier 

analysis.   

The temperature and rainfall data were transformed into the same length of 

moving windows and tested for correlation with malaria on a pixel by pixel basis. 
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Principal Component Analysis (PCA) was utilized to assess whether spatial and temporal 

patterns of malaria, rainfall and temperature were similar to patterns observed in the 

NDVI data observed by Wayant et al. (2010). 

Lastly, a 1975 NASA GeoCover Landsat map of forest and non-forest areas was 

used to initialize the assessment of the extent of deforestation using NDVI as a surrogate 

of forest/non-forest change over the study period. The standard deviation of the average 

NDVI values for forest pixels was calculated based on the first year of the times series.  

Next, a map was produced of the average NDVI values for every pixel.  If the average 

NDVI values were outside of two standard deviations (a standard statistical confidence 

interval (Hayter 2007)) of the original forest pixels NDVI values, it was concluded that a 

land cover change had occurred in the corresponding area.  Since the majority of the 

study area was originally forest, it was assumed that any land cover change was 

associated with deforestation, primarily conversion to cropland. 

Once the times and places of land cover change were identified, the average 

NDVI maps for this time period was compared to the average correlation of NDVI and 

malaria for that particular year.  It was then determined whether or not land cover change 

was associated with malaria. 

Thesis Outline 

 This thesis is organized into five chapters.  The first chapter outlines the problem 

and establishes the overall focus and objectives of the project.  Chapter 2 comprises a 

review of important background literature including discussion of previous research on 

relationships between malaria and vegetation, land use change (e.g. deforestation), 

precipitation, and temperature.  The third chapter provides details on the data and 
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analysis procedures used to try to address the questions outlined in the introduction.  

Research results are presented and discussed in Chapter 4.   In chapter 5, the project is 

summarized and the major findings, their implications and directions for future research 

are identified. 

 

  



  9  

  

Chapter 2 

Background 

 

Introduction 

 According to the World Health Organization (WHO) over half of the world’s 

population is at risk to malaria transmission (WHO 2008) with 700,000 to 2.7 million 

people dying of the disease each year (Patz and Olson 2006, Gagnon et al. 2002).  The 

Pan-American Health Organization (PAHO), the South and Latin American version of 

WHO, notes that worldwide, every thirty seconds a child dies of malaria (PAHO 2009).  

The only way to cure the disease is to begin treatment as soon as symptoms appear, 

usually 10 to 15 days after infection (PAHO 2009, WHO 2008). However, the individuals 

with the highest risk of contracting the disease also live in some of the poorest countries 

of the world which lack the resources to treat all of their infected citizens (PAHO 2009, 

WHO 2008, Pattanayak et al. 2003). 

 Previous research has focused mainly on the incidence of malaria within Africa.  

However, in 2008 there were over 500,000 collective cases of malaria reported in the 

North and South America (WHO 2008).  The different strains of malaria carried by 

varying mosquitoes, behave differently based on its surrounding environment (Olson et 

al. 2009, Pascual et al. 2006, Kotwal et al. 2005, Zhou et al. 2004, Wongsrichanalai et al. 

2002, Rab et al. 2001).  For example, a positive relationship between malaria and 

precipitation has been established within the Amazon Basin (Olson et al. 2009) whereas a 

negative relationship between malaria and precipitation exists on the island of Sri Lanka 

(Briet et al. 2008).    

 The focus of this chapter is a literature review of past research pertaining to the 

relationship between malaria and temperature, precipitation, and deforestation.  These 
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particular parameters of malaria are of special importance considering the intense focus 

on climate change and public health.  A review of journal articles portrays the importance 

of studying these climatic and environmental drivers of malaria on a local basis.  

Additionally, past research has displayed a lack of time series analysis, especially within 

the frequency domain, leaving a large hole in the understanding of the temporal 

dimensions of malaria and its environmental indicators. 

Malaria 

 Malaria is a disease caused by a parasite belonging to the genus Plasmodium 

(CDC 2010, WHO 2008, White 2007).  Although over 400 species exist, only four are 

known to routinely infect humans:  Plasmodium falciparum, P. vivax, P. ovale, and P. 

malariae (White 2007).  Not only does each type of parasite affect its human host 

differently, but each malaria parasite resides in a different geographic region.  P. 

falciparum and P. vivax can mostly be found in the tropics and subtropics whereas P. 

ovale  and P. vivax are more prevalent in west Africa and southeast Asia (White 2007). 

 Each of these strains is carried and transferred to humans by female mosquitoes 

that need blood to lay their eggs within shallow pools of water (CDC 2010, WHO 2008).  

The genus of mosquitoes that carry malaria is Anopheles.  Of this particular genus, there 

are between 30-40 species of mosquitoes that are capable of carrying the disease (CDC 

2010).  The variation in geographic distribution of these mosquitoes and the malaria 

parasite they carry is thought to be related to variations in the effect of deforestation, 

precipitation, and temperature.   
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Climate and Malaria 

Many studies have shown there is an association between the incidence of malaria 

and certain climatic variables, especially temperature and rainfall (Mantilla et al. 2009, 

Jones et al. 2007, Anyamba et al. 2006, Campbell-Lendrum and Woodruff 2006, Pascual 

et al. 2006, Thomson et al. 2006, Zhou et al. 2004, Hay et al. 2002, Gagnon et al. 2002, 

Poveda et al. 2001, Craig et al. 1999). However, for different countries, temperature and 

rainfall appeared to have varying effects on mosquito vectored diseases, which will be 

explained later in more detail (Olson et al. 2009, Briet et al. 2008, Thomson et al. 2005, 

Zhou et al. 2004, Small et al. 2003, Hay et al. 2002). 

 Zhou et al. (2004) investigated the relationship between malaria and climate in 

the highlands of East Africa.   This investigation found a positive association between 

malaria outbreaks and short-term fluctuation from the annual mean of temperature and 

precipitation (Zhou et al. 2004).  While the study provided insight into the general 

increase of malaria due to climate instability, the length of the time series data was 

relatively short, varying from 10-20 years for each study area, allowing no understanding 

of the long-term effect climate variability has had on the disease. 

 Additionally, the microclimate of a region can be influenced by land cover 

change, such as the conversion of forest to agriculture (Patz and Olson 2006, Lindblade et 

al. 2000).  The change in land cover can exacerbate the effect of greenhouse-gas-induced 

warming and severely impact local climatic conditions (Patz et al. 2005).  Land use 

change, particularly from forest to non-forest, can increase malaria incidence by 

increasing the temperature of the region (Patz etl al 2006, Patz et al. 2005, Lindblade et 

al. 2000).  According to Pascual et al. (2006), an increased temperature of just a half-
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degree Celsius can significantly increase the abundance of mosquitoes, sometimes up to 

100%.   

 The connection between land cover change and increased temperatures is 

pertinent to Paraguay.  Since the 1970’s Paraguay has undergone rapid deforestation due 

to land disputes among peasants, construction of large farms, ranches, and urban areas as 

well as small scale agriculture (Huag 2009).  Considering the relationship between 

deforestation and climate (Pascual et al. 2006, Patz and Olson 2006, Lindblade et al. 

2000, Patz et al. 2005), it can be hypothesized that Paraguay’s local temperature should 

have increased, thus, escalating the risk of malaria for the region.   

 Rainfall has often been associated with malaria due to the creation of standing 

pools of water, which are prime mosquito breeding grounds (Dahal 2008, Thomson et al. 

2005, Small et al. 2003). However, the relationship is non-linear and as such, there are 

times when rainfall appears to result in less malaria than was predicted (Thomson et al. 

2005, Small et al. 2003).   

 While precipitation tends to be associated with an increase in mosquito breeding 

grounds, it has not been directly related to actual malaria cases (Olson et al. 2009, Briet 

et al. 2008, Thomson et al. 2005, Small et al. 2003).  The relationship between 

precipitation and malaria is extremely complex (Briet et al. 2008), varying from region to 

region (Olson et al. 2009, Briet et al. 2008, Thomson et al. 2005, Small et al. 2003).  

Within the Indian island of Sri Lanka, malaria has been shown to be more prominent in 

the dry season than the wet season (Briet et al. 2008).  This conclusion is based strictly 

on the region’s mosquito that carries the disease; a mosquito which breeds in water 

pockets in dry river beds (Briet et al. 2008). 
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 In the Amazon Basin, Olson et al. (2009) confirmed that precipitation drives 

regional malaria risk (Olson et al. 2009).  However, precipitation had both a positive and 

negative association with malaria as regions with a more rugged topography experienced 

more malaria cases with an increase of precipitation (Olson et al. 2009).  Low-lying areas 

experienced fewer malaria cases with an increase in precipitation levels (Olson et al. 

2009).   

 While mosquitoes need water in order to breed and complete their life cycle 

(Dahal 2008, Thomson et al. 2005, Small et al. 2003), this does not always result in a 

correlation between rainfall and malaria.  From past research, this relationship can be 

affected by the type of vector carrying the disease, the topography of the region, local 

types of vegetation, and land use and land cover change (Olson et al. 2009, Briet et al. 

2008, Thomson et al. 2005, Small et al. 2003, Singh et al. 2002). 

Deforestation and Malaria 

 It has been shown that deforestation can play an important role in malaria 

occurrence (Guerra et al. 2006, Massarani and Shanahan 2006, Vittor et al. 2006, 

Barbieri et al. 2005, Norris 2004, Pattanayak et al. 2003).  In the Peruvian Amazon, 

regions which had experienced deforestation had 278 times more biting mosquitoes than 

predominately forested areas (Vittor et al. 2006).   However, in the Mekong region of 

Southeast Asia, mosquitoes tend to favor densely forested regions, leaving when land 

cover change occurs (Guerra et al. 2006). 

 In Brazil, the city of Belém had assumed the disease had been eradicated in 1968.  

Vittor et al. (2006), however, found that deforestation in the region led to an increase and 

spread of malaria. Others have found that the occurrence of malaria decreases under 
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conditions where land use is stable (Guerra et al. 2006, Massarani and Shanahan 2006, 

Patz and Olson 2006, Barbieri et al. 2005, Norris 2004, Pattanayak et al. 2003, Vittor et 

al. 2003).  Therefore, it is important to identify regions and time periods of recent land 

use change.     

 Malaria research conducted by Wayant et al. (2010) in Paraguay found that 

regions of high correlation between AVHRR derived NDVI and malaria were associated 

with regions which had been deforested.  Unfortunately, land cover data were only 

available for the years of 1979, 1990, and 2000.  In order to gain a better understanding 

of how malaria relates to deforestation both spatially and temporally, land cover maps 

distinguishing between forest and non-forest for every individual year of a time series are 

required.   

Remote Sensing, Land Cover Analysis and Malaria 

 Earth-observing satellites (e.g., Landsat) have been collecting data for more than 

35 years (Jensen 2007).  These data are routinely used for land cover assessment, 

although several practical issues have limited their usefulness for land cover mapping 

over sub-continental or larger areas (Jensen 2007).  The large volume of data (number of 

scenes and number of pixels) required to cover one continent for a single date and the 

associated costs and complexity of data acquisition and analysis have made such analyses 

prohibitively expensive.  As stated before, malaria-prone regions tend to be in the tropics 

and subtropics, which are areas that experience cloud cover throughout most of the year.  

Even with bimonthly (Landsat) revisit times, the generation of a cloud-free high-quality 

set of images entails assembling scenes acquired over several years and many seasons.  
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This can make it extremely difficult to determine land cover change on a yearly or 

monthly basis.     

 Because of such difficulties in using earth-observing satellites for large-area land 

cover assessments, recent attention has shifted to the potential application of 

meteorological satellite data for such ventures (Jensen 2007).  Most efforts have focused 

on the Advanced Very High Resolution Radiometer (AVHRR), a sensor carried on the 

National Oceanic and Atmospheric Administration's (NOAA) series of polar-orbiting 

meteorological satellites.  While the MODIS sensor is able to monitor large area land 

cover change, the length of its time series only extends back to 1999, whereas AVHRR’s 

begins in 1981 (Jensen 2007).  The AVHRR provides low-cost daily global coverage at 

approximately 1-km spatial resolution (Advanced Very High Resolution Radiometer-

AVHRR 2009, DeFries et al. 2008).  The high frequency of observation affords many 

opportunities for acquisition of cloud-free data over relatively short periods of time (e.g., 

10 days) and enables one to compile information on relatively short-term changes in 

land-surface characteristics (Jensen 2007).  Moreover, the 1-km spatial resolution 

produces a manageable volume of data for regional and even global applications.    

Although the AVHRR was designed for atmospheric rather than earth observation, the 

sensor has been shown useful for synoptic land cover assessment.  

 Of the five bands aboard the AVHRR sensor, two are significant for the short 

term assessment of land cover (Baldi et al. 2008, DeFries et al. 2008, Jensen 2007).  

Band 1 (the red portion of the spectrum) and Band 2 (the near-infrared portion of the 

spectrum-NIR) are often transformed to a vegetation index, most commonly the 
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Normalized Difference Vegetation Index (NDVI) (Rouse 1976).  NDVI is a ratio of the 

NIR and red portions of the spectrum, in a simple equation: 

 (NIR-Red)/(NIR+Red)   (2.1) 

 Using AVHRR NDVI, seasonal and inner-annual variations in vegetation growth 

and activity can be observed (Jensen 2007).  When used in a long-term study over twenty 

years, NDVI can be used to help identify functional changes in ecosystems (Baldi et al. 

2008, Hansen and DeFries 2004, Piao et al. 2003, Lyon et al. 1998).  Additionally, NDVI 

has been shown to be positively correlated with many infectious diseases, such as malaria 

and rift valley fever (Wayant et al. 2010, Tourre et al. 2008, Hay el al 1998, Linthicum et 

al. 1987). 

Wayant et al. (2010) proposed that there might be an association between land 

cover and malaria.  They hypothesized that greenness information expressed in NDVI 

could be used to identify phenological cycles in vegetation that might reflect 

precipitation, an environmental parameter assumed to be associated with malaria 

(Chamaille-Jammes and Fitz 2009, Fuller and Prince 1996, Schultz and Halpert 1993). 

 Using Paraguay as a study area, they used monthly NDVI and monthly malaria cases for 

1981-2003.  The NDVI data were obtained from the Global Inventory Modeling and 

Mapping Studies (GIMMS) data set, a calibrated AVHRR-derived dataset resampled to 

8-km (NASA 2009).  Non-spatial monthly malaria cases for two departments, Alto 

Parana and Canindeyú (Figure 2.1), were obtained from the Pan American Health 

Organization (PAHO). 
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Figure 2.1: Map depicting departments of interest in Paraguayan malaria research 

(Wayant et al. 2010). 

 

 The data were placed into moving temporal windows, and malaria rates were 

tested for correlation on a pixel by pixel basis to NDVI data to discern spatial and 

temporal patterns of malaria across each of the departments, as well as the time periods 

when malaria was most closely correlated with NDVI (Figure 2.2).  This procedure 

created hundreds of images depicting the spatial relationship between NDVI and malaria.  

Principal component analysis (PCA) was used to reduce the number of graphs and 

images into one map.  (See Figure 2.3) 
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A) 

 

B) 

 

Figure 2.2:  Average correlation over time for moving windows of 3-7 years for a) 

Alto Parana and b) Canindeyú.  From these graphs, it was determined that a 4 year 

moving window best described the original malaria case numbers and provided the 

overall most accurate correlation between malaria and NDVI. 
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Figure 2.3:  First component loading of PCA of the correlation between NDVI 

and malaria for both Alto Parana and Canindeyú.  Regions of lighter colors depict areas 

of higher correlation between NDVI and malaria. 

 

Although the research was able to portray general patterns of the relationship 

between malaria and NDVI, it was not possible to determine why there are high malaria 

correlations in certain regions or why certain time periods displayed a higher correlation.  

The study also did not investigate the role of additional environmental variables, such as 

precipitation or temperature, in the relationship of NDVI and malaria as well as in the 

behavior of the disease itself.  Additional research is required to improve understanding 

of the spatial and temporal relationships between malaria and NDVI and possible 

interactions between malaria and precipitation, temperature, and deforestation. 
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Time Series Analysis 

 The malaria datasets used for this thesis were comprised of raw numbers of 

incidents for each month of each year in each of the two departments.  Graphing of the 

datasets on the Cartesian plane does not provide any information about the long and 

short-term temporal behavior of the malaria case data.  Many epidemiological time series, 

such as malaria, do not follow precise patterns throughout time.  These variations are 

often caused by biological, physical, or environmental phenomena (Cazelles et al. 2007, 

Shumway and Stoffer 2006) and cannot be observed using descriptive statistics.  Time 

series statistics, particularly within the frequency domain, allow for the periodic 

comparison of malaria to its environmental parameters (Gonzalez et al. 2008, Cazelles et 

al. 2007, Shumway and Stoffer 2006).   

 Fourier analysis, a form of spectral analysis, has often been used to investigate the 

complex inter-relationships between precipitation, climate and vegetation (Xu et al. 2004, 

Couteron and Lejeune 2001, Pelletier 1997, Thompson 1995, Selvam et al. 1992).  For 

example, Periodic relationships were discovered, such as a three month correlation 

between precipitation and certain desert vegetation, which was not apparent in the raw 

data (Couteron and Lejeune 2001).  A similar approach is important when studying 

epidemiological data.  Studies show the spatio-temporal behavior of the disease is 

changing, possibly due to climate variations ((Mantilla et al. 2009, Jones et al. 2007, 

Anyamba et al. 2006, Campbell-Lendrum and Woodruff 2006, Pascual et al. 2006, 

Thomson et al. 2006, Zhou et al. 2004, Hay et al. 2002, Gagnon et al. 2002, Poveda et al. 

2001, Craig et al. 1999).  Understanding the temporal behavior of malaria as well as its 
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periodic relationship to land cover change, temperature, and precipitation, will increase 

the spatial understanding and risk of the disease. 

Summary 

  A review of the literature shows that climate and increasingly climate change 

play important roles in explaining the incidence of malaria.  In many locations, increasing 

temperatures have been associated with an increase in malaria cases.  Precipitation and 

malaria are also likely linked, but the linkage varies by locale and requires investigation 

on a regional basis. 

 Previous research has also shown that deforestation can increase malaria case 

rates as the act of deforestation creates near-perfect breeding grounds for many 

mosquitoes.  Like precipitation, the exact relationship between deforestation and malaria 

is difficult to decipher and requires investigation on a location by location basis. 

 Lastly, time series analyses will improve understanding of the long term and 

periodic behavior of malaria as well as its selected environmental parameters of 

precipitation, temperature, and land cover change.  A greater temporal understanding will 

be gained of these environmental variables and if they influence malaria case rates. 
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Chapter 3 

Methods 

Introduction 

 The overarching goal of this research project was to assess possible the spatial 

and temporal relationships between malaria and key environmental parameters of, 

temperature, precipitation, and land cover.  However, since the malaria data were non-

spatial and the environmental parameters were spatial.  Therefore, it is difficult to 

determine if any kind of temporal, and especially spatial, relationships exist.  Because of 

this, a variety of statistical, mathematical, and data manipulation techniques were 

utilized.   

Study Area 

 The study area for this project included the Paraguayan departments of Alto 

Parana and Canindeyú (Figure 2.1).  This region was selected in part because it is the 

same area studied in previous research by Wayant et al. (2010), thus allowing the results 

to be compared.  Monthly malaria data were available for both departments for the years 

1981-2003.   

 The departments of Alto Parana and Canindeyú are in the eastern portion of 

Paraguay.  They belong to the region Paraneña, also known as the Orient (Hanratty  and 

Meditz 1998).  This portion of the country is relatively flat, with rolling hills in the 

eastern region of Canindeyú.   

 The graphs shown below (Figure 3.1) portray the number of raw malaria cases for 

each department throughout the study period.  As can be observed, the number of cases 

for each department varies temporally and it is difficult to determine any kind of temporal 

pattern.  For each department there appears to be two time periods, 1988 and 1999 for 
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Alto Parana and 1986 and 2000 for Canindeyú, where the most number of cases have 

been recorded.  This could be attributed to climatic variations, recording errors, or even 

disease prevention measures made by the government. 

a.)  

b.)  

Figure 3.1:  Monthly raw malaria cases for (a) Alto Parana and (b) Canindeyú.  
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From the graphs of malaria above, it can be observed that malaria cases were not 

common at the beginning of the study period.  However, as time progressed there were 

periods of almost 1200 cases in one month compared to 0 in others.    

 The departments of Alto Parana and Canindeyú have undergone a relatively large 

population increase since the early 1980s.  At the beginning of the study time period Alto 

Parana had a population of 188,540 and Canindeyú a population of 62,671.  By 2003, the 

respective populations had increased to 573,575 and 144,907.  This population boom is 

due in part to the immigrant east of Paraguayans as well as immigrants coming into 

eastern Paraguay from Brazil (Hanratty and Meditz 1988).  Most of the immigrated 

population came to eastern Paraguay to convert forest into agricultural lands to develop 

their own farms (Huang et al. 2009). 

 Originally, the Atlantic forest, which encompasses Alto Parana and Canindeyú, 

has gone from a land area of 1.2 million km
2
 to about 100,000 km

2
 (Huang et al. 2009).  

Once home to many endemic species, the region formerly covered by forest is now 

predominantly farms (Biodiversity Hotspots 2011). 

 Overall, Alto Parana and Canindeyú exhibit similar annual average precipitation 

and temperature patterns (Figure 3.2).  However, the graphs of average precipitation 

values for each department show that regionally more rain falls on Alto Parana than 

Canindeyú (Figure 3.3).  Temperature values for both departments are similar throughout 

the study time period, although southern Alto Parana appears to be slightly cooler than 

Canindeyú (Figures 3.2 and 3.4).  Note that, peaks of temperature variations seem to 

coincide with peaks in malaria case numbers. 
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a.) 
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b.) 

Figure 3.2:  Maps of average annual (a) precipitation and (b) temperature for Paraguay 

(Best Country Reports 2008). 
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a.)  

b.)  

Figure 3.3:  Total monthly precipitation values for (a) Alto Parana and (b) Canindeyú, 

measured in millimeters. 
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a.)  

b.)  

Figure 3.4:  Average monthly air temperature in degrees Celsius for (a) Alto Parana and 

(b) Canindeyú. 

 

 Data 

 Climatic data were obtained from the Willmott, Matsuura and Collaborators 

Global Climate Resource at the University of Delaware (University of Delaware:  
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Willmott, Matsuura and Collaborators Global Climate Resource 2010).  The temperature 

data were the monthly mean air temperature in degrees Celsius.  The precipitation data 

were the monthly total precipitation values measured in millimeters.  Precipitation and 

temperature values were measured at the Global Historical Climatology Network 

(GHCN2) gauge stations. However, throughout the time period of this study, gauge 

stations were not always active and thus sometimes did not provide precipitation or 

temperature measurements.  When this occurred, other station records were merged to 

create a composite monthly station record series.  When there was only one station 

observation for a month, it was taken as the precipitation or temperature value for that 

month.  To create a continuous spatial dataset, climatologically aided interpolation (CAI) 

was utilized. In order to assure spatial accuracy, station-by-station cross validation was 

employed (Willmott and Matsuura, 1995).  One station was removed at a time, and the 

precipitation or temperature value for that location was then interpolated to the removed 

station location from the surrounding nearby stations. The difference between the real 

station and the interpolated value was then calculated to determine an absolute error for 

the location.  The spatial resolution of both precipitation and temperature datasets was 0.5 

degrees. 

 Land cover change was estimated using GIMMS AVHRR-derived NDVI data as 

a surrogate (see Chapter 2 and Wayant et al. (2010)).  The annual NDVI values were 

compared to a 1975 NASA GeoCover Landsat derived land cover map.  This map 

distinguished between forest, non-forest, and water regions for the study area.  Periodic 

NDVI values for each type of land cover were determined and used to create general 

maps of annual deforestation for the study period.  The deforestation map for the year 
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2001 was tested for accuracy against a 2001 Moderate Resolution Imaging 

Spectroradiometer (MODIS)-derived vegetation map produced by the Global Land Cover 

Facility (GLCF) (Hansen et al. 2001). 

 Lastly, the monthly malaria cases for Alto Parana and Canindeyú were supplied 

by the Pan American Health Organization (PAHO) for the years 1981-2003 (Figure 3.1).  

The graphs show a wide variation of malaria cases throughout time and also portray time 

periods of extreme malaria activity as well as dormancy.  

Procedures 

 

Pre-Processing and Data Preparation 

 

 First, the climatic data were re-sampled from an initial resolution of 0.5 degrees to 

the same 8-km resolution as the AVHRR-derived NDVI.  Then the climatic datasets were 

smoothed on a pixel by pixel basis using Fourier Transform. 

 Next, for the time series analysis, an average value for each month was 

determined for each of the spatial dataset (precipitation, temperature, and NDVI).  Then 

the time series were analyzed to determine if they had a constant mean and standard 

deviation (stationary).  It was that found none of the time series were stationary, meaning 

the raw data were not acceptable for time series analysis.  All of the series were 

seasonally differenced to provide a constant mean and standard deviation throughout 

time. 

Testing for Correlation and Principal Component Analysis 

As mentioned before, the malaria dataset contained one case number per month 

for each department for the years of 1981-2003, making it impossible to test for 

correlation between the disease and the finer resolution on precipitation and temperature.  
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Additionally, the length of the time series, only 260 points in time, made it complicated 

to observe the effect climatic variations might have had on the disease.   

To deal with this issue malaria was used to test for correlation within a four-year 

moving window.  A four-year moving window was selected by Wayant et al. (2010) to 

analyze the spatial relationship between malaria and NDVI because it modeled the 

original malaria signal and produced the most accurate results of correlation between the 

two variables.  Using this technique resulted in a set of “correlation” images of about 200 

windows where each pixel had an r
2
 value. 

 In order to efficiently analyze the hundreds of images, principal component 

analysis (PCA) was utilized.  PCA is a non-parametric method that is often used extract 

information from multidimensional datasets (Slens 2005, Smith 2002, Mitra and Pesaran 

1999).  The results are graphs and images which are easier to analyze than the original 

hundreds of datasets (Mitra and Pesaran 1999).  The number of components calculated 

equals the number of original dimensions.  Typically, the first component encompasses 

most of the variance the dataset, describing the general behavior of the dataset (Mitra and 

Pesaran 1999).  The first component can be observed in both a graphical and image 

context.  The image can then be transformed into a map of the study area, enabling the 

visualization of possible spatial correlation.  The map and graph of the first component of 

correlation tests between malaria and precipitation and temperature were used to classify 

the spatial and temporal behavior of the disease.  

Deforestation 

Ideally, land cover maps would be produced for every year of the study period 

based on satellite and aerial imagery and field samples.  Unfortunately, data, funding, and 
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time did not allow for such classification methods.  However, GIMMS NDVI data are 

often used as a surrogate measure of biomass and vegetation activity (Brown et al. 2006, 

Lyon et al. 1998).  Andres et al. (1994) demonstrated that a classification between forest 

and agricultural land can be completed using only the first and second power density 

frequency of a Global Vegetation Index (GVI).  The power density describes how the 

strength of a time series is distributed through the frequency domain and is calculated by 

squaring the absolute value of the Fourier Transform coefficient (Mathworks 2010, 

Shumway and Stoffer 2006, Andres et al. 1994). 

                   (3.1) 

Where w is in the units of radians per sample, n=[1,N], N=length of series, and  j=   

(Mathworks 2010).  The basis behind this approach is that the periodicity of vegetation 

aligns itself with the composition of sine and cosine waves of Fourier analysis (Shumway 

and Stoffer 2006, Mitra and Pesaran 1999, Andres et al. 1994). 

This methodology was used to create annual forest/non-forest maps.  The power 

density at the semi-annual frequency was calculated for every pixel vector of every year 

of the time series.  Next, using a 1975 Landsat derived land cover map (Tucker et al. 

2004), the mean and standard deviation of forested power density values were calculated 

for the 1982, first full year of the time series. 

To determine if land cover change had occurred, a loop was run through every 

pixel.  Based on where the pixel value fell, the following general land cover classification 

was made: 
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-2σ < pixel value:   Non-Forest 

-2σ < pixel value < 2σ:  Forest 

2σ > pixel value:  Non-Forest 

 

The 8-km resolution of the results was the same as the source NDVI, 8-km.  From this 

procedure, a map of forested and non-forested regions was created for the study area for 

each year of the study period.  (See Figure 4.8)  

 Next, the results were compared to a 2001 MODIS–derived vegetation map 

produced by the Global Land Cover Facility (GLCF) (Hansen et al. 2001).  The spatial 

resolution of the MODIS product was 1-km so it had to be degraded to 8-km to match the 

source NDVI resolution.  A pixel-by-pixel comparison showed that the GIMMS-derived 

classification technique produced results similar to the GLCF map for 85% of the pixels 

for Alto Parana and 78% of the pixels for Canindeyú. 

a.)     b.)  

Figure 3.5: Comparison of (a)1-km resolution MODIS-derived and  (b) 8-km resolution 

AVHRR-NDVI derived land cover maps. 
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Time Series Analysis 

Fourier analysis techniques were used to determine the possible relationship 

between Paraguayan malaria and temperature, precipitation, and vegetation change (in 

the form of NDVI).  After the time series had been prepared, analysis proceeded by 

looking at the behavior of all the variables over time.  Non-parametric techniques were 

used to calculate the spectra for the time series, allowing for the investigation of 

dominant frequencies.  

 A bandwidth of 0.02682 was chosen as the kernel to complete the spectral 

analysis.  A kernel is typically used to filter the noise out of a time series (Shumway and 

Stoffer 2006).  This bandwidth balanced smoothing the time series and yet still 

maintained the smaller, faster frequencies. 

 Fourier analysis was used to create periodograms, a graph of the frequencies of a 

series, for all of the individual variables being studied: malaria, temperature, 

precipitation, and vegetation change.  These graphs depict the strength of the frequencies 

of a series as a measure of their spectra value.  It is important to note that frequency is the 

number of times something occurs over a certain period of time.  For example, 

periodograms of precipitation depict a significant frequency at three months.  This means 

that a three month period exists within the precipitation time series.  Significant 

frequencies are determined by the confidence interval (Equation 3.1): 

 [2 I(wj:n)/χ
2

2 (1-α/2)] ≤ f(w) ≤ [2 I(wj:n)/χ
2

2 (α/2)]     (3.2) 

Where I(wj:n) is the periodogram value, χ
2
 is the Chi-Square statistic, and α the 

statistically significance level (95%) (Shumway and Stoffer 2006). 
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Next, the cross-spectra were computed between the environmental parameters and 

malaria for both Alto Parana and Canindeyú.  Cross-spectra, or coherence, can be thought 

of as a correlation indexed by frequency and can be interpreted like r
2
 values (Shumway 

and Stoffer 2006).  The results of a cross-spectra analysis are squared coherence values 

which measure the strength of a relationship between two time series (Shumway and 

Stoffer 2006).  The squared coherence also represents the percent of variance of the time 

series at a particular frequency (Shumway and Stoffer 2006).  The significance of the 

cross-spectrum values are determined by the confidence interval (Equation 3.2):  

Cα     =  ____F2,2l-2(α)_____ 

 (L-1) + F2,2L-2(α) 

(3.3) 

 

Where L denotes the bandwidth, α the significance level (95%), and F represents the F-

statistic. 

Last, a stationary regression analysis was completed.  The regression analysis 

extended the coherence test to look at adjacent lagged values between malaria and 

temperature, precipitation, and NDVI as one series.  This analysis attempted to estimate 

an output series – malaria cases – based upon several one month lagged input series of 

temperature, precipitation, and NDVI.  It determined if a lag existed between any of the 

variables, the length of the lag, and created an equation that calculates the output series 

(malaria) based on past values of the input series. 
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Chapter 4 

Results and Discussion 
 

Introduction 

 

 The goal of this research was to investigate possible spatio-temporal relationships 

between malaria and selected environmental parameters including temperature, 

precipitation, and land cover change (deforestation).  This in turn may help to identify 

cycles of malaria outbreaks, possible environmental triggers of periodic malaria cycles, 

and regions environmentally prone to support malaria vectors. 

Testing for Correlation and Principal Component Analysis 

 

 As described in Chapter 3, correlation tests were run for each selected 

environmental indicator of malaria:  vegetation change, temperature, and precipitation.  

The tests were conducted on a pixel-by-pixel basis in a 4 year moving window time 

series.  Principal component analysis (PCA) was employed to reduce dimensionality of 

the data.  This section summarizes results of the PCA tests.  On the graphs of the 

component loadings, the y-axis can be interpreted as representing r
2
 values.  To assist in 

the interpretation of results, review the map of the research study area (Figure 2.1). 

 

Precipitation and Malaria 

 

 Regions of high correlation between malaria and precipitation appear to be 

exactly opposite of those discovered in previous research that has examined relationships 

between malaria and NDVI (Wayant et al. 2010).  Specifically, the western portion of 

Canindeyú and the borders of Alto Parana were observed to have high component 

loadings of correlation while the other regions remain relatively low (Figure 4.1).  The 
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results suggest that there may be a negative relationship between precipitation and 

malaria. 

 First component loadings differ for each department (Figure 4.2).  The first 

principal component captured the most variation of the relationship between rainfall and 

malaria, implying it represents the overall correlation between the two variables.  

Temporally, the relationship between malaria and precipitation is generally stable for 

Canindeyú until the end of the time series.  However, the graph of the first principal 

component for Alto Parana oscillates between low or even negative component loadings 

to extremely high component loadings.  Often the opposite of the original malaria signal, 

the graphs of component loadings are suggestive of a negative relationship between 

precipitation and malaria.  The reason the first components differ so drastically could 

possibly be linked to the varying stability of land cover.  Alto Parana, for example, has 

undergone more land cover change in recent decades than its northern neighbor, a topic 

that will be discussed further in the deforestation section of the thesis. 
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Figure 4.1:  Map portraying the first principal component of the correlation test between 

precipitation and malaria.  High component loadings designate clusters of regions with 

significantly high correlation values.   
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a.)  

 
b.) 

 

Figure 4.2:  Graphs portraying the temporal relationship between precipitation and 

malaria for (a) Alto Parana and (b) Canindeyú.  The y-axis component loadings can be 

interpreted as r
2
 values. 
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Temperature and Malaria 

 

 The first principal component of the correlation between malaria and temperature 

captured the most variation of the analysis, implying that it represents the behavior of the 

correlation of the two series.  The PCA results of the correlation were similar to the 

results testing the relationship between vegetation change and malaria found in Wayant et 

al. (2010).  Regions of high correlation for the interior of Alto Parana and the northwest 

portion of Canindeyú were observed in both studies (Figure 4.3).   

However, there are also several differences between the results of the two studies.  

Within Canindeyú, correlation clusters occur in the extreme northern part of the 

department.  Similarly, there appear to be clusters of significant correlation values in the 

northern portion of Alto Parana.  This is probably due to slight variations in temperature 

patterns, an artifact of land cover and most likely population distribution and migration 

(Hanratty and Meditz 1988).   

 Temporally, the first component for both departments exhibit high values of 

component loadings during periods of a high number of malaria cases (Figure 4.4).  

Additionally, the first component graphs display time periods of low component loadings 

during time periods of relatively low malaria.  Spatially, the correlation tests between 

malaria and temperature are visually similar to the results of the study conducted by 

Wayan et al. (2010) which found a positive relationship between malaria and vegetation 

change.  This suggests that both high temperatures and NDVI values are correlated with 

higher malaria case rates. 

 



  41  

  

 
Figure 4.3:  Map portraying the first principal component of the correlation test between 

temperature and malaria.  High component loadings designate clusters of regions with 

significantly high correlation values.   
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a.)  

b.)  

 

Figure 4.4:  Graphs portraying the temporal relationship between temperature and 

malaria.  The y-axis component loadings can be interpreted as r
2
 values. 

 

Research Question Explored 

 One of the principal goals of this thesis was to answer the following research 

question (Chapter 1): 

 - Will regions of high correlation between malaria and temperature and malaria 

and precipitation be similar to areas of correlation between malaria and NDVI? 
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 The PCA of the correlation analysis produced maps and graphs detailing the 

temporal and spatial relationship between malaria and precipitation and temperature.  

Visually, regions of observed correlation between malaria and temperature were similar 

to the spatial correlation found with NDVI, although there are some slight differences in 

the northwest portion of Canindeyú.  These differences may be attributed to the coarse 

resolution of the climatic data, which eliminates all temperature variation within an 8-km 

area, as well as any land cover change (Huang et al. 2009, Huang et al. 2007) toward the 

end of the time series.  The observed positive relationship between malaria and 

temperature is very similar to results from other studies performed throughout the world 

(Pascual et al. 2006, Thomson et al. 2006, Thomson et al. 2005, Zhou et al. 2004, Small 

et al. 2003, Hay et al. 2002, Gagnon et al. 2002).  That showed that higher temperature 

values correspond to shorter mosquito development time resulting in higher malaria case 

rates. 

 Results from the precipitation analysis showed a negative correlation between 

rainfall and malaria.  Negative relationships between malaria and precipitation have been 

documented in Sri Lanka, the Amazon Basin, and Romania (Olson et al. 2009, Briet et al. 

2008).  This may be attributable to the changing landscape of the region from forest to 

agriculture (Chaves et al. 2008, Guerra et al. 2006, Massarani and Shanahan 2006), as 

well as the topography (Olson et al. 2009).  The relatively flat ground combined with 

deforestation, created prefect breeding grounds for mosquitoes.  However, rainfall would 

wash the breeding ground away.  (Olson et al. 2009).    

 Overall, the hypothesis indicated true for temperature and false for precipitation.  

Correlations values between malaria and temperature corresponded to similar regions of 
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high correlation between malaria and NDVI.  While the precipitation results differed 

from the NDVI correlations, the spatio-temporal patterns of correlation between rainfall 

and malaria as well as temperature can be used to help explain the spatial relationship 

between NDVI and malaria. 

 

Lagged Regression Analysis 

 

 The lagged regression analysis combined all of the quantifiable variables 

(malaria, temperature, vegetation change, and precipitation) and tested adjacent lagged 

values of the input series to the output time series of malaria.  Test results show there is a 

one month lag between malaria and any of the environmental parameters.  Using this 

information, a possible model for malaria was developed for each department.  The 

malaria equation models are as follows: 

 Alto Parana:  Predicted Malaria Cases = 8.2123*NDVI + 0.3470*Precipitation 

     + 1.666*Temperature + 0.1215*Malaria 

 

 Canindeyú:  Predicted Malaria Cases = 10.5029*NDVI +0.5344*Precipitation 

     + 2.4138*Temperature + 0.0726*Malaria 

 

 As can be observed in Figure 4.5, these equations are not perfect representations 

of the malaria time series.  In fact, there is an 81% relative error for both departments.  

However, while the extreme amplitudes of the peaks are not captured, the regression 

model equations do an excellent job of capturing the oscillations between high and low 

malaria cases.   

 Using this information, a map of probable regions for malaria cases was created 

(Figure 4.6).  Clusters of high component loadings are located at the northern border 

between the two departments, along the western border of Alto Parana, and in the western 
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portion of Canindeyú.  This could be due to the deforestation occurring in these portions 

of the departments.  Additionally, these are areas that experienced positive correlation 

between temperature and malaria and negative correlation between malaria and rainfall. 

a.)   
 

b.)  
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Figure 4.6:  Graphs displaying the regression analysis results for (a) Alto Parana and (b) 

Canindeyú.  Potential malaria cases are represented by a green line and recorded malaria 

cases by a blue line. 

 
Figure 4.7:  Map displaying the results of the regression analysis.  

 

Research Question Explored 

 

  The lagged regression analysis asked the following question: 

- By combining a selection of environmental parameters of malaria   

    (temperature, precipitation, land cover change), will regions and times which   

    can be highly associated with malaria incidents be discovered? 

Although the relative error of this analysis was high, the graphs capture the overall 

sinusoidal behavior of malaria cases.  The equation was able to correctly predict the 

peaks and valleys of the malaria time series, just not the amplitude of these curves.  By 

applying the equations generated from the lagged regression analysis, the hypothesis was 
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proven true that a map could be developed that found environmental regions that were 

highly associated with malaria.  Additionally, the graphs of the predicted malaria cases 

provide a general idea of time periods when environmental parameters provide greater 

risk to the disease. 

Deforestation 

 

 As detailed in Chapter 3, binary forest/non-forest maps were created for each year 

of the time series:  1982-2002 (Figure 4.8). 
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Figure 4.8:  Maps displaying deforestation from 1982-2002. 

 

 The maps of deforestation display land cover change from forest to non-forest and 

then back to forest.  Some of the land cover change can be explained by the culture of 

Eastern Paraguay.  Until the early 1990s, slash and burn was a popular form of 

agriculture in Eastern Paraguay (Kammesheidt 1998, Hanratty and Meditz 1988).  

Additionally, starting in the 1960s and continuing into the 1990s, there was a migration 

of Paraguayans to the eastern departments to convert forest land into individually owned 

farms (Huang et al. 2009, Hanratty and Meditz 1988).  It is important to note that while 

the maps of forest/non-forest cover provide an idea of where deforestation has occurred; 

due to the coarseness of the AVHRR-derived NDVI data (8-km) variability of land cover 

change within a pixel has been lost. 

 Comparing maps of deforestation to the map of areas more likely to support 

malaria transmission (Figure 4.7) it can be observed that regions that are less 
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environmentally prone to malaria have experienced less deforestation throughout time.  

Additionally, times of extreme land cover change (1986-1990 and 1998-2002); coincide 

with periods of the most recorded malaria cases. 

Research Question Explored 

 

 The research questioned asked was: 

 

-Does recent land cover change coincide with regions environmentally prone to  

malaria? 

Based on the lagged regression map of potential malaria risk, it can be observed that 

deforestation appears to be associated with malaria.  Regions with lower probability of 

malaria generally coincide with lower deforestation compared to regions of higher 

malaria risk.  Regions of deforestation are prime habitat for mosquitoes. These 

observations are similar to those of other researchers who have studied malaria in South 

America (Vittor et al. 2006, Barbieri et al. 2005, Norris 2004).  Higher resolution malaria 

data will be required in order to confirm the relationship between malaria and 

deforestation. 

 

Time Series Analysis 

 

 Time series analysis was employed to derive a better understanding of the 

periodic behavior of malaria and its environmental parameters.  Periodograms, which are 

graphs of frequencies, were generated to portray the temporal behavior of each variable 

and the relationships between variables.  Peaks above the horizontal blue represent 

statistically significant frequencies within the time series. 
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a.)  

b.)  

 

Figure 4.8:  The malaria periodograms for (a) Alto Parana and (b) Canindeyú are similar.   

 

 The periodograms for malaria show a significant frequency of 0.0278 for both 

departments and an additional significant frequency at 0.125 for Alto Parana (Figure 4.8).  

The decimal 0.0278 translates into a fraction of 1/36 and 0.125 into a fraction of 1/8.  The 

denominator of these fractions represents the number of months within one period, which 

for malaria are 36 and 8 months.  
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Alto Parana:  NDVI Periodogram 

a.)  

 

 
Canindeyu:  NDVI Periodogram 

b.)  

 

Figure 4.9:  NDVI periodograms for (a) Alto Parana and (b) Canindeyú  

 

 It was also observed that there was a recurring frequency for NDVI at 0.08333 

(1/12) or 12 months. (Figure 4.9) This means there is an annual cycle of NDVI values for 

Alto Parana and Canindeyú.  While not statistically significant, it is can also be observed 

that there are faster frequencies of 2-6 months of NDVI values, which are weaker than 

the 12 month period.  This would explain some of the oscillation of correlation observed 

in the PCA graphs. 
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a.)  

b.)  

 

Figure 4.10:  Precipitation periodograms for (a) Alto Parana and (b) Canindeyú. 

 

 Precipitation frequencies are similar, although not the same, for each department.  

Significant frequencies occur at about 24, 12, 6, 4, and 3 months for Alto Parana and 24, 

9, 5, and 3 months for Canindeyú.  Slight differences in the periodic behavior of 

precipitation are to be expected due to the coarse resolution of the selected climatic data, 

especially in the higher faster frequencies as seen here.  The resolution of the original 

dataset was an extremely coarse 0.5 degree, which could have allowed for regional 

variability to be masked.  What is important to note is higher frequencies are significant 
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for periodic behavior of precipitation, again giving evidence to the oscillations observed 

in the PCA correlation between rainfall and malaria. 

Alto Parana:  Temperature Periodgram 

a.)   

 
Canindeyu:  Temperature Periodogram 

b.)  

 

Figure 4.11:  Temperature periodograms for (a) Alto Parana and (b) Canindeyú. 

 

 Peak frequencies for temperature occur at both 36 and 12 month intervals.  The 

12-month period is probably related to the annual variation in temperature in a typical 

year.  Typically there are only two seasons in a year for Paraguay, wet and dry.  These 

seasons, and their transitions, occur within a one-year time period (Hanratty and Meditz 

1988).  The 36-month period may be related to the El-Nino Southern Oscillation (ENSO), 
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which occurs about every 3 to 7 years. (Xu  et al. 2004, Gagnon  et al. 2002, Bouma and 

van der Kaay 1996). 

Coherency Test 

 The graphs below portray results of coherence tests between malaria and 

precipitation, temperature, and vegetation (NDVI).  Coherency is basically a correlation 

indexed by frequency (Shumway and Stoffer 2006).  It provides a greater understanding 

of the interworking relationship between two different time series.  When analyzing 

coherency periodograms (Figure 4.12 and Tables 4.1, 4.2), the squared coherency can be 

associated with r
2
 values in the frequency domain.  Statistically significant coherency 

values are peaks that lie above the horizontal line drawn across the graph (See Equation 

3.3). 
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a.)  

b.)  

 

Figure 4.12:  Cross-Spectra of precipitation and malaria for (a) Alto Parana and (b) 

Canindeyú.  The coherency centers on the faster frequencies. 
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Frequency Squared Coherence Coherence 

4 0.626 0.791 

3 0.780 0.883 

2 0.443 0.666 

 

 

Table 4.1:  Significant coherency values for Alto Parana precipitation and malaria 

 

 

Frequency Squared Coherence Coherence 

6 0.544 0.738 

3 0.696 0.835 

2.5 0.555 0.745 

2 0.675 0.822 

 

Table 4.2:  Significant coherency values for Canindeyú precipitation and malaria 

 

 From the graph of coherency between precipitation and malaria, and the tables of 

significant frequencies, it can be observed there is a seasonal relationship between 

rainfall and malaria.  All of the significant frequencies are between 2 and 6 months, 

meaning rainfall contributes to malaria cases on a 2-6 month period.   
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a.)  

b.)  

 

Figure 4.13:  Coherence graphs of temperature and malaria for (a) Alto Parana and (b) 

Canindeyú. 
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Frequency Squared Coherence Coherence 

24 0.57 0.755 

16 0.51 0.714 

5 0.41 0.64 

4 0.58 0.762 

3 0.572 0.756 

2 0.615 0.784 

 

Table 4.3:  Significant coherency values for Alto Parana temperature and malaria. 

 

Frequency Squared Coherence Coherence 

24 0.43 0.656 

6 0.618 0.786 

4 0.588 0.767 

3 0.405 0.636 

2 0.435 0.660 

 

Table 4.4:  Significant coherency values for Canindeyú temperature and malaria. 

 

 For temperature and malaria, there are significant coherency values at a frequency 

of 24 months, or every two years.  Because both temperature and malaria have longer 

significant temporal periods (36 and 12 months), it makes sense that there would be a 

slow coherence frequency between the two.  Additionally, the highest coherence values 

belong to the faster, higher frequencies (2-6 months).  This suggests that temperature 

affects malaria case rates seasonally throughout the year every 2, 3, 5, and 6 months.  The 

24 month period means there is a reoccurring outbreak of malaria every two years due to 

temperature values. 
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a.)  

b.)  

 

Figure 4.14:  Coherency values for NDVI and malaria for (a) Alto Parana and (b) 

Canindeyú. 
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Frequency Squared Coherence Coherence 

4.5 0.76 0.872 

3 0.575 0.758 

2.4 0.595 0.771 

 

Table 4.5:  Significant coherence values of Alto Parana NDVI and malaria 

 

Frequency Squared Coherence Coherence 

7 0.411 0.641 

2.5 0.42 0.648 

2 0.475 0.689 

 

Table 4.6:  Significant coherence values of Canindeyú NDVI and malaria 

 

 Significant coherency values once again center on the higher faster frequencies.  

Alto Parana experiences a reoccurrence of land cover change contributing to malaria 

values every 2, 3, and 4.5 months.  Land cover change contributes to Canindeyú malaria 

cases every 2, 2.5 and 7 months. 

 The multiple coherency graphs below completed the coherency test for all of the 

variables, malaria, precipitation, land cover change, and temperature, as one complete 

system.  Significant coherency values are determined by the graph of the F statistic below 

the multiple coherence graphs. 
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a.) 

b.)  

 

Figure 4.15:     Coherency values between all of the variables for (a) Alto Parana and (b) 

Canindeyú. 
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Frequency Squared Coherence Coherence 

18-12 0.632 0.795 

5 0.495 0.704 

4 0.496 0.704 

3 0.35 0.592 

 

Table 4.7:  Significant frequencies for multiple coherence for Alto Parana 

 

Frequency Squared Coherence Coherence 

12 0.352 0.593 

6 0.349 0.591 

3 0.255 0.505 

 

Table 4.8:  Significant frequency for multiple coherence for Canindeyú 

 

 Every 12 months, all of the environmental variables contribute to the number of 

malaria cases.  Additionally, the collection of environmental variables also contributes to 

malaria on a seasonal basis, every 3-6 months.  For every coherency test, the higher faster 

frequencies (seasonal 2-6 months), were statistically significant.  This leads to the 

conjecture that there is a seasonal-harmonic relationship between malaria and rainfall, 

temperature, and land cover change. 

 

Research Question Explored 

 

 Time series analysis in the frequency domain provides information about the 

periodic behavior of a time series.  Looking at the coherency between time series gives 

insight into the interworking relationship between two different time series.  It was 

questioned whether: 

- Will time series analysis of the variables provide information about periodic 

trends and cycles of individual variables as well as cycles of correlation? 

 

 It can be suggested that the answer to this question is yes.  The significance tests   

(see Chapter 3) showed that all time series analysis results are statistically significant 
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(See Figures 4.9 – 4.16 and Tables 4.1-4.8).  Significant coherency between malaria and 

temperature, vegetation change, and precipitation occurred at both low and high 

frequencies.  The low frequency oscillations center on a 2-year (or 24-month) correlation.  

The higher faster frequencies tend to be between 2 to 6 months.  This coherence 

periodicity suggests there is a seasonal or harmonic relationship between malaria and its 

environment. 

 Multiple coherency tests provided insight into the relationship between malaria 

and its environmental variables as one system.  Significant squared coherence values 

between all of the environmental variables for both departments were observed.  While 

the low frequency of 12 months (an annual cycle) was significant, the faster frequencies 

also displayed high coherence values.  There is a harmonic, inter-seasonal relationship 

between malaria and selected key environmental parameters.  This may explain the 

periodic outbreaks of malaria over the study period. 

Summary 

 The PCA results depict a positive temporal relationship between temperature and 

malaria.  This was reinforced spatially when it was observed that the spatial pattern of 

correlation between malaria and temperature was similar to the spatial pattern between 

vegetation change and malaria. 

 The temporal PCA results for precipitation and malaria were negative and the 

spatial results were the opposite of the pattern observed in the correlation between 

malaria and vegetation.  There is likely a negative relationship between precipitation and 

malaria in eastern Paraguay.  This is probably due to destruction of breeding habitats 

created by deforestation. 
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 The lagged regression analysis was able to combine all of the environmental 

parameters of malaria:  temperature, rainfall, and vegetation, into one system.  An output 

equation of malaria cases was created based on past values of the environmental 

variables.  The equation was able to capture the general sinusoidal behavior of malaria, 

capturing the peaks and valley.  This equation was then applied to the spatial data and a 

map of malaria risk based on its environment was developed. 

 Deforestation maps were created for every individual year of the time series using 

AVHRR derived GIMMS-NDVI data.  These designated between areas of forest and 

non-forest.  When tested against a 2001 MODIS derived vegetation map (Hansen et al. 

2003), they correctly classified the land cover about 80% of the time.  By comparing 

these maps to the map of environmental malaria risk, it was determined that deforestation 

contributed malaria cases in eastern Paraguay. 

 Lastly, time series analysis provided information about malaria and its tested 

parameters that were not overly apparent in the raw data.  Malaria case rates are affected 

by both multi-year and seasonal cycles.  The discovery of multi-year cycles helps to 

explain the extreme peaks of the raw malaria data and the multi-year cycles of its 

environmental parameters give reasons for the amplitude of those peaks.  Additionally, 

the harmonic seasonal relationship between malaria and temperature, precipitation, and 

vegetation change shows changes in environmental variables within a short time period 

can have an effect on the number of malaria cases. 
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Chapter 5 

Summary and Conclusions 

 

Introduction 
 

 Malaria is a mosquito-borne disease that has afflicted humans for thousands of 

years.  Every year between 700,000 and 2.7 million people die of the disease (Patz and 

Olson 2006, Pattanayak et al. 2003, Gagnon et al. 2002).  The disease has been linked to 

precipitation, temperature, and deforestation (land cover change) (Mantilla et al. 2009, 

Jones et al. 2007, Anyamba et al. 2006, Campbell-Lendrum and Woodruff 2006, Guerra 

et al. 2006, Massarani and Shanahan 2006, Pascual et al. 2006, Thomson et al. 2006, 

Vittor et al. 2006, Barbieri et al. 2005, Patz et al. 2005, Norris 2004, Zhou et al. 2004, 

Pattanayak et al. 2003, Hay et al. 2002, Gagnon et al. 2002, Poveda et al. 2001, Craig et 

al. 1999).  Although most prevalent in Africa, the relationship between different vectors 

of malaria and their environment vary greatly around the world (Olson et al. 2009, Briet 

et al. 2008).     

 Central to this project was a time series of monthly malaria cases for the 

Paraguayan departments of Alto Parana and Canindeyú, from 1981-2003.  Using this 

information, the following research questions were asked: 

1.  Will regions of high correlation between malaria and temperature and malaria 

and precipitation be similar to areas of correlation between malaria and NDVI? 

2.  Will time series analysis of the variables provide information about periodic     

     trends and cycles of individual variables as well as cycles of correlation? 

3.  By combining a selection of environmental parameters of malaria   

    (temperature, precipitation, land cover change), will regions and times which  

     can be highly associated with malaria incidents be discovered. 
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4.  Does recent land cover change coincide with regions environmentally prone to  

    malaria? 

 

The conclusions listed below suggest that all of these hypotheses are true, with the 

exception of the relationship between precipitation and malaria.  As will be discussed 

later on in this chapter, precipitation and malaria appear to be negatively correlated.  

 

Conclusions 
 

 The principal component analysis (PCA) results exhibited a positive correlation 

between malaria and vegetation change and temperature.  However, a negative 

relationship between precipitation and malaria was also discovered.  The negative 

correlation between malaria and rainfall may be related to the creation of breeding 

grounds due to deforestation which are washed away during rainfall (Olson et al. 2009).   

Time series analysis indicated that abnormal increases in temperature raise the 

number of malaria cases about every twenty-four months.  This may explain why there 

are years with almost no recorded malaria cases and years with several hundred reported 

malaria cases.  Additionally, an atypical rise in temperature every 2-6 months increases 

malaria case rates.  Temporally and spatially, a variation from normal temperatures 

corresponds with an increase in malaria case numbers. 

Precipitation and vegetation change influence malaria rates on a seasonal basis, 

every 2-6 months.  Stable vegetation cover corresponds with relatively low malaria case 

numbers.  Within the same month, an increase in monthly precipitation (during the wet 

season) decreases the number of reported malaria cases.  Because of the negative spatial 
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relationship between rainfall and malaria, precipitation possibly washes away mosquito 

breeding pools. 

 The lagged regression analysis looked at the relationship between malaria and the 

selected environmental variables together.  Even though there was an extremely high 

relative error of 81%, the equations developed for each department, did capture the 

general oscillations of the original malaria time series.  The equations also displayed the 

strength with which land cover change, temperature, and precipitation affected malaria 

case rates.  For both departments, the strongest environmental contributor to malaria was 

land cover change.  Furthermore, by applying these equations on a pixel-by-pixel basis, a 

map was developed of probable risk to malaria (Figures 4.6 and 4.7).  

 Lastly, using the map generated from the lagged regression analysis, it was 

determined that there exists a general positive spatial and temporal relationship between 

malaria and deforestation.  Deforestation maps distinguishing between forest and non-

forest portray an increase in area designated as non-forest during time periods of 

increased malaria cases.  Areas which have experienced less land cover change 

throughout time are less prone to contain malaria carrying vectors.  If land cover change 

were to decrease, the number of malaria cases would decrease as well. 

 There is also a spatial association linking deforestation and malaria’s 

relationship between precipitation and temperature.  On an annual basis, regions which 

have experienced land cover change are similar to regions of low component loadings 

between precipitation and deforestation.  This provides evidence towards the theory that 

rainfall washes away mosquito breeding grounds created by land cover change.  

Additionally, regions which have experienced deforestation also portray spatial 
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similarities between malaria and deforestation.  Land cover could possibly be responsible 

for changes in the microclimate of recently deforested areas, increasing the malaria risk 

of the region. 

Future Research 
 

 This thesis has contributed to a better understanding of the spatio-temporal 

behavior of malaria and its relationship to some of its environmental parameters such as 

precipitation, temperature, and vegetation.  However, there are several short-comings of 

the research results due to the coarse spatial resolution of data, research time restraints, 

and available demographic data. 

 First, the malaria data  only contained raw case numbers for each  month for each 

department from 1981-2003, making it impossible to test the results of probable 

correlation between malaria, precipitation, temperature, and vegetation change, as well as 

the lagged regression map.  The resolution coarseness of the spatial datasets, 8-km, was 

too coarse to distinguish local variations in land cover and climatic conditions.  This was 

especially obvious when comparing the 2001 NDVI-derived deforestation map against 

the 2001 MODIS-derived vegetation cover map.  The 1-km resolution of the MODIS 

map, used to test for accuracy of the forest cover maps, was able to capture more 

variation in vegetation cover across the departments and thus was a more accurate 

representation of the land cover. 

 Additionally, the number of malaria cases could be considerably affected by 

human efforts to combat the disease (Weil 2008, Sachs and Malaney 2002, Gallup and 

Sachs 2001, Goodman et al. 2000).  These efforts include but are not limited to the 

distribution of anti-malaria drugs and mosquito netting, the destruction of mosquito 
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breeding grounds, and the periodic immunity of older generations to the disease.  The 

migration of citizens around the country could also be affecting the spread of malaria 

(Vittor et al. 2006).  To improve future investigations, detailed data are needed describing 

the spatial distribution and movement of human population, the characteristics of the 

population, and information on how government agencies are attempting to combat the 

disease. 

 As stated earlier, most of the time series used in this study were non-stationary, 

which means they did not have a constant mean and standard deviation throughout time.  

This is not atypical in naturally occurring series.  However, in order to complete the 

spectral analysis the series had to be differenced to become stationary.  Wavelet analysis 

is better able to capture the local behavior of a non-stationary time series.  In the future, 

wavelet analysis should be examined as an alternative method for studying the temporal 

behavior of the variable data used to diagnosis malaria.  

 It would also be beneficial to test the results of this research in varying locations 

around the world.  These locations should vary in topography, vegetation cover, and 

climatic conditions in order to gain a better understanding of malaria in diverse situations.  

Suggested locations are Afghanistan, western Paraguay, and South Korea.  All of these 

areas are either experiencing a re-emergence of the disease (South Korea), changing 

malaria behavior (Afghanistan), or reside within a country where malaria research has 

been conducted, but not in that specific region (Kotwal et al. 2005, Lee et al. 2002).    
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