
 

Molecular Dynamics Simulations 

  of 2-(4-butyloxyphenyl)-5-octyloxypyrimidine  

and 5-(4-butyloxyphenyl)-2-octyloxypyrimidine  

Liquid Crystal Phases 
 

 

by 

 

Rodica Pecheanu 
 

 

A thesis submitted to the Department of Chemistry 

In conformity with the requirements for 

the degree of Doctor of Philosophy 

 

 

Queen’s University 

Kingston, Ontario, Canada 

(October, 2009) 

 

Copyright ©Rodica Pecheanu, 2009 



 ii 

Abstract 

 

 

Molecular dynamics simulations of the liquid crystal phases of 2-(4-butyloxyphenyl)-5-

octyloxypyrimidine (2PhP) and 5-(4-butyloxyphenyl)-2-octyloxy-pyrimidine (5PhP) are 

the focus of this thesis. The 2PhP and 5PhP mesogens display different liquid crystalline 

phase sequences, despite having very similar molecular structures. Specifically, both 

mesogens consist of aromatic phenyl and pyrimidine cores in between two flexible 

alkoxy tails, but they differ in the preferred core conformation.  

 A multi-site coarse-grained model, in which the aromatic rings are represented by 

soft quadrupolar ellipsoids and the alkoxy chains are given a united atom representation, 

is proposed in this thesis. A parameterization route for the intra- and intermolecular 

potentials appropriate for liquid crystal simulations is developed. The ab initio based 

derivation of suitable molecular models for the two mesogens is discussed in detail, with 

particular emphasis on capturing proper phenyl-pyrimidine interactions which proved to 

be essential to correctly represent core-core interactions between neighboring molecules. 

A systematic determination of suitable Gay-Berne (GB) parameters has been adopted for 

the aromatic rings of 2PhP and 5PhP. To account for the π  electron cloud below and 

above the ring plane, a quadrupole was added perpendicular to the ring. In the end, four 

parameterizations for aromatic rings have been selected for the simulations. Model 

characterization via pair interactions proved to be valuable in identifying and analyzing 

the short range structure in the phases. 
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 Extensive molecular dynamics simulations of these fluids at various temperatures 

are performed. Intermolecular structure and order, in aromatic core and the flexible tail 

regions, are analyzed. Intermolecular structure is divided into contributions parallel and 

perpendicular to the layers, as indicated by a layer normal or by a director, to differentiate 

smectic A (SmA) from smectic C (SmC).  The presence of a ring quadrupole in the 

molecular model is shown to be essential to the correct reproduction of the 

experimentally observed phases. Simulations correctly indicate phases in agreement with 

experiment:  SmC and SmA phases for 2PhP, and only a SmA phase for 5PhP.   
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Chapter 1 

Introduction to Liquid Crystals 

 

1.1 History of Liquid Crystals 

 

It is a commonly held belief that the first material known to exhibit two distinct melting 

points (i.e. cholesteryl benzoate) was reported by the Austrian botanist Friedrich 

Reinitzer in 1888. He later turned for help to the German physicist Otto Lehmann, who 

realized that the cloudy liquid belongs to a league of its own and named the new state of 

matter “fliessende krystalle” to illustrate that it was something between a liquid and a 

solid.1 In the beginning, all the liquid crystalline substances investigated were naturally 

occurring, but as early as 1890 the first synthetic liquid crystal, p-azoxyanisole, was 

prepared by Gatterman and Ritschke.1  

Daniel Vorlänger, a German chemistry professor, is remembered as the “father of 

liquid crystal” technology because of his systematic synthetic work, done over a 30 year 

period, that shows the connection between the molecular structure of compounds and the 

occurrence of a liquid crystal phase, as well as of the discovery of polymorphism in 

1906.2 

In 1922, Friedel3, a French crystallographer, suggested a classification scheme, 

which is still in use today, with different phases of liquid crystals called nematics, 
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smectics, and cholesterics. These mesomorphic (“meso” comes from the Greek word 

meaning “in between”) forms of matter are distinct from the crystalline and liquid forms, 

and possess properties which cannot be found in either of the types of matter previously 

known. The most atypical feature is the combination of long range order (common to 

crystals) and mobility (as in liquids) which gives rise to materials having anisotropic 

physical properties (i.e.  the properties of the materials differ depending on the direction 

in which they are measured) switchable under the influence of external stimuli. 

Liquid crystalline materials remained a scientific curiosity for almost 80 years. In 

the early 1960s, only a few institutions and corporations were known to have been 

carrying out research in the field of liquid crystals.4 Around that time, a French 

theoretical physicist, Pierre-Gilles de Gennes, turned his attention to liquid crystals and 

found captivating analogies between them and superconductors as well as magnetic 

materials. For his contribution to the modern development of liquid crystal science, de 

Gennes was awarded the Nobel Prize in Physics in 1991.5  

Nowadays, liquid crystals are an important field of research for scientists from 

many different disciplines. For mathematicians, liquid crystals are a natural laboratory for 

broken symmetries and practical applications of pure mathematics (such as topology).6 

For the engineering community, cheap and compact liquid crystal display (LCD) 

technology provides the best replacement for the bulky cathode ray tube. LCD 

technology is now used in wrist-watches, telephones, computer monitors, and TV 

screens.7 Chiral smectic materials are used for a wide range of electro-optical devices, 

including micro-colour filters, tunable colour filters, and spatial light modulators.8 Liquid 
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crystalline materials are also used by biologists as building blocks for the much needed 

soft tissue out of which living cells and cell aggregates are made. The medical 

community is interested in liquid crystal research too. For example, liquid crystal 

temperature sensors are used in investigations of tumors and circulatory disorders.9 

Moreover, biosensors using liquid crystal technology are used for virus and bacterial 

detection.9 Finally, for physicists and chemists, liquid crystals have been a source of 

considerable interest. More recent applications of liquid crystal technology involve 

polymer dispersed liquid crystals with wider viewing angle10 or switchable windows9 that 

can be changed from clear to opaque with a flip of a switch. 
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1.2 Types of Liquid Crystals 

 

Liquid crystals are a different state of matter apart from the well-acknowledged solid, 

liquid, and vapour phases. A solid phase is characterized by its rigid arrangement of 

constituent molecules, which stay in a fixed position and orientation except for a small 

amount of variation. In the liquid phase, the molecules are free to move, having no fixed 

position and orientation, thus the phase is disordered although short range local structure 

exists. In the vapour phase, the motion of the molecules has increased to overcome 

intermolecular forces. As a consequence, the molecules spread out to fill any container 

that holds them.  

Some substances exhibit intermediate states lacking some of the order found in 

solids, and still are more ordered than an isotropic liquid. These thermodynamically 

stable states, characterized by the simultaneous presence of both order and disorder, are 

either plastic crystals or liquid crystals. From the structural point of view, they are both 

formed by partial melting of solid crystals in which the plastic crystals retain translational 

order, whilst liquid crystals preserve orientational order. Plastic crystals exist over a 

narrow temperature range, sufficiently high to overcome any rotational energy barriers 

and sufficiently low to not disrupt the lattice structure. However, plastic crystals consist 

of highly symmetric molecules as opposed to liquid crystals, which are formed by 

elongated or disk shape molecules.  
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The liquid crystal (LC) phases are also called mesophases or mesomorphic 

phases, since these types of phases are observed on the temperature scale between the 

true crystalline and liquid phases. The particles forming liquid crystal phases are called 

mesogenic, thus the term mesogen refers to a molecule that forms a mesophase. Liquid 

crystal phases have some unique characteristics based on the fact that the constituent 

mesogens exhibit a strong anisotropy in their molecular shape: they tend to be either 

elongated or disk-like. 

Liquid crystals can be divided into two main classes: thermotropic and 

lyotropic.11 The liquid crystals Reinitzer discovered are called thermotropic liquid 

crystals. By raising the temperature, their state changed from crystal to liquid crystal at 

temperature T1, and when increasing the temperature further the state changes again from 

liquid crystal to isotropic fluid at temperature T2. In principle, the process is reversible by 

lowering the temperature, though there may be a small temperature hysteresis. Thus, the 

prefix thermo refers to phase transition generated by a change in temperature. By 

contrast, the lyotropic (lyo refers to concentration) liquid crystal phases form in solution 

and thus, the liquid crystallinity is controlled by both concentration and temperature. In 

addition, there are some compounds able to form thermotropic as well as lyotropic liquid 

crystals, and they are named amphotropic.4 

 Considering the shape of the constituent molecules, liquid crystals can be 

classified as: calamitic (occurring in rod-like or cigar-like molecules) - considered as 

classical liquid crystals, discotic (derived from disk-like molecules) - discovered by 

Chandrasekhar,12 banana-shaped liquid crystals (bent-core molecules incorporating a 
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rather rigid bent aromatic core),13 and sanidic (occurring in lath-like or board-like 

molecules) - first found in polymeric liquid crystals.4, 14 The shape of the constituent 

molecules has a vital influence on the phase structure of the liquid crystals. Beside the 

fact that compounds with different shapes can form similar phases, the same compound 

may also exhibit several different phase structures. The liquid crystal phases can be 

divided into several types of sub-phases that differ in the degree of orientational ordering. 

Three important sub-phases, namely the nematic, smectic, and chiral phases, are 

discussed as follows.  

1.2.1 Nematic Phase 

In the nematic phase (“nematos” comes from the Greek word meaning “thread-like”) 

there is no long range translational order, but the molecular axes tend to align more or 

less along a certain direction called the director, D . This is a one-dimensional ordered 

phase and the simplest liquid crystalline phase, since the constituent molecules can 

translate freely and rotate around their long axes, resulting in a much lower viscosity than 

that for other liquid crystal phases. A schematic representation of a typical nematic phase 

is shown in Figure 1.1 (a). 

1.2.2 Smectic Phases 

In the smectic liquid crystal phases (“smectos” comes from the Greek word meaning 

“clay” or “grease”), the molecules are arranged in layers and show both orientational and 

translational order. For the latter, the order is short ranged within the layer but long 

ranged between layers. Thus, in the family of smectic phases, the long-range orientational 
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order is preserved and some degree of translational order is present in one dimension 

where the molecules are arranged on average in equidistant layers. The layers can slide 

relative to each other leading to high viscosity flow. The smectic phase is divided in 

several sub-phases with slightly different properties, and these are typically distinguished 

by a letter and denoted as smectic A, smectic B, etc. The most frequently observed 

phases, smectic A (SmA) and smectic C (SmC), are considered in this thesis and 

schematically presented in Figures 1.1 (b) and (c). 

 

 

 

 

 

(a) (b) (c) 

Figure 1.1 Schematic representation of the molecular order and arrangement in the nematic (a), 
smectic A (b), and smectic C (c) liquid crystal phases (reproduced from Ref.15). 
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In the SmA phase, the axes of orientational and positional order coincide, thus the 

director, D , is parallel to the smectic layer normal, L . Typically, the average distance 

between the layers (usually called “smectic layer spacing” or “layer thickness”) is smaller 

than the molecular length in compounds having longer alkyl chains, and can exceed the 

length of the molecule in compounds having strongly polar groups (i.e. longitudinal 

cyano or nitro substituents).4 Inside the layers, the molecules move like a liquid and there 

is little correlation among the molecules belonging to adjacent layers. 

By contrast, in the SmC phase, orientational and positional orders are observed 

along different axes in space. In this case, the director is tilted compared to the layer 

normal and a twist occurs along the normal but not parallel to the layers. The molecules 

forming the SmC phase are tilted in a preferred direction inside the layers, and the tilt 

direction of the molecules in various layers is correlated. The director, D , is tilted with 

respect to the layer normal, L , by the tilt angle,θ .  

1.2.3 Chiral Phases 

A molecule which is not superimposable on its mirror image is known as a chiral 

molecule. In liquid crystalline phases, chirality gives rise to the formation of helical 

superstructures in nematic phases (so-called cholesteric phases, noted N*), and tilted 

SmC phases (noted SmC*), as seen in Figures 1.2 (a) and (b). Chirality can induce 

additional phases exhibiting complex structures which do not occur in non-chiral liquid 

crystals, e.g. blue phases, smectic blue phases, twist grain boundary phases and several 

other 3D-ordered mesophases.13  
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(a) (b) 

Figure 1.2 Schematic diagram of the molecular order and arrangement in the cholesteric (N*) (a) 
and chiral SmC* (b) phases (reproduced from Ref.15). 

 

The chiral nematic or cholesteric liquid crystal phase is actually a nematic phase 

with additional helical change in the orientation of the director. The chiral molecules 

arrange themselves in the direction normal to the director and they pack to form a helical 

macrostructure rotating the director in a direction perpendicular to the long axis of the 

molecules. Contrary to the nematic phase in which the director has a constant direction, 

in a cholesteric phase it changes direction throughout the fluid. The cholesteric helix axis, 

which is non-superimposable on its mirror image, gives rise to supermolecular chirality. 

Similar to the nematic phase, the molecules have no long range positional order, and no 

layering exists. The helical internal structure has a characteristic pitch along the helix in 

D
r
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which the director rotates a full 360 degrees. The fact that each chiral nematic liquid 

crystal reflects light, having a characteristic wavelength determined by its pitch and by 

the viewing angle, is the key to the operation of cholesteric liquid crystal displays.7  

In chiral smectic C phases (SmC*), the director rotates from layer to layer around 

the cone generated by the tilt angle forming a helical structure. The helix can be 

suppressed by placing the liquid crystal between two glass plates.7 When this occurs and 

the directors in each layer are forced to lie in the plane of the glass plate, the chiral nature 

of the molecules creates a spontaneous polarization within each layer. Ferro-electric (FE) 

and Antiferro-electric (AF) Liquid Crystal Displays operate by applying an electric field 

which couples with the spontaneous polarization and switches the director in the layers.16 

The apparition of spontaneous polarization gives rise to chiral smectic LC phases (e.g. 

SmC* and SmCA* phases).17  

It is important to point out that there are non-chiral liquid crystal molecules able 

to form chiral layers. Molecules with a bent core, also known as banana-shaped 

molecules,13 show chiral layers in the liquid crystalline state. Here, the polar order in 

combination with the tilt of the molecules is responsible for the occurrence of chirality. In 

this configuration the layer normal, the tilt direction and the polar axis define a chiral 

system which is either right- or left-handed. Moreover, the polar packing of the banana-

shaped molecules can induce FE or AF structures.18  

To conclude, chirality plays a vital role for many liquid crystal applications, in 

particular for electro-optical diplays and thermochromic temperature displays.13 
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1.3 Molecular Structure 

 

The type of LC phases that a mesomorphic material can form depends fundamentally on 

the molecular properties of the substance. One of the important factors in the formation 

of liquid crystal phases is an overall strong anisotropy of the molecular shape of the 

mesomorphic compound. Another factor is the difference in chemical properties of the 

two distinct moieties that usually form the mesomorphic compound. In particular, 

compounds that possess one of the following pairs of molecular combinations: aliphatic / 

aromatic, flexible / rigid, or polar / nonpolar, are promising candidates for liquid crystal 

phase formation. Most of the time, calamitic mesogens contain a rigid core linked to one 

or more flexible alkyl chain(s). Moreover, these moieties give a dual personality to the 

overall molecule, and different parts of the molecular structure interact locally with 

similar regions of neighbouring molecules causing a type of internal phase separation. 

Ideally, there should be a balance between these interactions (strong and weak) in order 

for both to operate, although they should be restricted to different regions. The stability of 

LC phases can be amplified by increasing the lengths or polarizability of the molecules,19 

for example by adding a terminal cyano group to enhance polar interactions between the 

molecules. 

The length of the hydrocarbon chain(s) at terminal positions of the mesogen plays 

an important role in determining the phase structure. As a general rule,20 the compounds 

having short alkyl chains tend to be nematogens, while those having longer alkyl chains 

are smectogens.  
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A classical example of a room-temperature mesogen is the n-cyanobiphenyl or 

nCB family, shown in Figure 1.3. The rigid core is a para substituted biphenyl unit, 

having a flexible tail, an alkyl chain of n  carbons ( )12 +nn HC  at one end, and a polar 

cyano group at the other. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3 The 4-pentyl-4’-cyanobiphenyl (5CB) (a), and 4-octyl-4’-cyanobiphenyl (8CB) (b) 
molecules. 

 

The influence of the alkyl chain length is apparent from a comparison of the phase 

sequence of 5CB and 8CB, in which a longer alkyl chain adds a smectic phase on top of a 

nematic phase: 

5CB: Crystal    Co23    Nematic   Co35      Isotropic  

8CB: Crystal    Co21    SmC        Co532.    Nematic    Co40    Isotropic  

 

 

(a) 

 

 

 

 

(b) 
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Another standard demonstration of the strong coupling between the molecular 

structure and phase behavior is the so-called “odd-even” effect, which corresponds to 

large alternations in the properties and the phase transition temperatures for the 

homologous series containing an n-alkyl chain, as n varies from even to odd (Table 1.1).  

 

Table 1.1 The phase sequence of the first four homologues of the phenyl alkyl-4-(4’-

cyanobenzylidene)aminocinnamate series 

 

Alkyl chain   
length Phase Sequence 

n=0: Crystal Co0169.  Nematic Co0280.  Isotropic 

n=1: Crystal Co638.  Nematic Co6160.  Isotropic 

n=2: Crystal Co0146.  Nematic Co8187.  Isotropic 

n=3: Crystal Co536.  Nematic Co095.  Isotropic 

 

 

In the case of phenyl alkyl-4-(4’-cyanobenzylidene)aminocinnamate series, the 

large difference in transition temperature is qualitatively explained21, 22 by the observation 

that the terminal phenyl ring lies in line with the long molecular axis in the most extended 

conformation only for the n=0,2 alkyl chain spacers (Figure 1.4). 
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Figure 1.4 The first three homologues of the phenyl alkyl-4-(4’-cyanobenzylidene)-amino-
cinnamate series and the odd-even change of the shape of the fully extended conformation. 

 

Consider the dihedral angle of the alkyl chain attached to the terminal phenyl ring. 

The gauche conformations of the even alkyl chain dihedral angle permit the chain to lie 

along the molecular axis, such that the nematic phase is favored. Contrarily, the gauche 

conformations of odd alkyl chains force the ring to be positioned at an angle to the 

molecular axis, so that the nematic phase is disfavored. In this case, the position of the 

phenyl ring relative to the molecular axis defines the overall shape of the molecule, 

which in turn influences the transition temperatures.  
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1.4 Chiral Induction in Liquid Crystal Phases 

 

Chiral liquid crystal phases can either consist of exclusively chiral molecules or an 

achiral phase with a chiral dopant dissolved throughout.  

When a small amount of chiral molecule (dopant) is added to an achiral mesogen 

(host), it can transmit its chirality to the bulk system giving the liquid crystal a right- or 

left-handed helical twist. Thus, chiral bulk properties, such as the helical structures of 

chiral nematic (N*) and chiral smectic C (SmC*), and the spontaneous polarization of the 

SmC* phase, can be induced in achiral liquid crystals. The dopant itself may or may not 

have a liquid crystalline phase. The sign and the magnitude of the chiral perturbation 

strongly depend on the type and quantity of the dopant used, the structures of the host and 

dopant molecules, as well as the temperature and pressure of the fluid. The helical 

twisting power is an intrinsic parameter to every host-dopant combination and expresses 

the efficiency with which a dopant induces a helical organization in an achiral liquid 

crystal host. 

There are some advantages of doped LCs over the cholesteric LCs made up from 

chiral mesogens.23 Specifically, the pitch can be tuned by changing the host-dopant ratio 

or/and the nature of the chiral dopant. Moreover, the colour of a doped liquid crystal can 

be adjusted by changing the concentration, enantiomeric excess or helical twisting power 

of the chiral dopant. A quantitative correlation between the structures of chiral dopant 

molecule and the helicity of the chiral liquid crystal phase exists only for a few classes of 
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coumpounds.17 A complete description of the structure/response relationship is still 

lacking.  

Ferro-electric liquid crystals suitable for display applications are usually induced 

SmC* phases obtained by mixing a small amount of a chiral dopant with high 

polarization power into a SmC liquid crystal host having low viscosity and broad 

temperature range.24  

 Simulations of achiral host molecules are the focus of this thesis. The liquid 

crystal molecules considered in this thesis, namely the 2-(4-butyloxyphenyl)-5-

octyloxypyrimidine (2PhP), and 5-(4-butyloxyphenyl)-2-octyloxy-pyrimidine (5PhP), 

possess both aliphatic and aromatic regions as well as flexible and rigid parts. These 

mesogens have been well-characterized experimentally,25, 26 in particular, with respect to 

the chirality transfer into these “hosts” when chiral dopants are added. The two liquid 

crystals are presented in Figure 1.5 while their phase sequences are shown in Figure 1.6. 

 

2PhP 

 

 

5PhP 

 

Figure 1.5 Structures of 2-(4-butyloxyphenyl)-5-octyloxypyrimidine (2PhP), and 5-(4-
butyloxyphenyl)-2-octyloxypyrimidine (5PhP) liquid crystal molecules.  
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Despite the close resemblance of the shape of the two liquid crystals, their phase 

sequences are quite different: the 2PhP molecule shows a broad SmC phase, a SmA 

phase, and a narrow nematic phase25 while the 5PhP forms only a SmA phase26 between 

the crystal and liquid phases. The different positions of the nitrogen atoms in the 

pyrimidine rings of the two mesogens are the main factor influencing the distinction 

between their phase sequences. 

320 340 360 380 400 420 440 460

2PhP

5PhP

Crystal Smectic C Smectic A Nematic Isotropic
 

Figure 1.6 The phase sequences25,26 for the 2PhP, and 5PhP molecules. Black vertical lines 
identify the temperatures (in Kelvin) under consideration in this thesis. 

 

The chiral dopants used to induce chirality into a liquid cystal host are classified, 

depending on the position of the chiral element, as follows: (1) a type I chiral dopant, in 

which the chiral center(s) is situated in an alkyl side chain, and (2) a type II chiral dopant, 

bearing chiral center(s) in the rigid core.27 Characteristic of the type I chiral dopant is the 

fact that, generally, the magnitude of the induced polarization power does not depend 

significantly on the structure of the SmC host. On the contrary, the polarization power of 

a type II chiral dopant depends on the nature of the SmC host. For these reasons, type I 

T (K) 
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chiral dopants are known as “passive dopants” whilst the type II chiral dopants are been 

seen as “active dopants”. 24, 28 

For example, the 5,5’-bis(heptyloxy)-2,2’-spirobi[indene]-1,1’(3H,3’H)-dione 

(named Spiro) and the 2,2’,6,6’-tetramethyl-3,3’-dinitro-4,4’-bis[(4-alkyloxybenzoyl)-

oxy]biphenyl (abbreviated Dop5X-NO2, where X indicates the length of the attached 

alkoxy chains) are chiral molecules acting as type II dopants in many experimental 

studies. Specifically, it has been shown experimentally that the polarization power ( Pδ ) 

of Dop5X-NO2 dopants depends strongly on the core structure of the achiral SmC host.25 

For instance, the polarization power of Dop5a-NO2 dopant (the alkoxy chain has only one 

carbon atom) varies from -1738 nC/cm2 (in the 2PhP host) to less than -30 nC/cm2 (in a 

host with a phenyl benzoate core) depending on the nature of SmC host, over the same 

mole fraction range.25 Moreover, measurements of Pδ  as a function of the length of the 

Dop5X-NO2 dopants side chains revealed that the spontaneous polarization power 

induced in the 2PhP is influenced by the length of the alkoxy side chains, so that Pδ  is 

highest with octyloxy side chains (i.e.  -1738 nC/cm2), and decreases sharply as the side 

chains are shortened (e.g. -505 nC/cm2 for the butyloxy derivative). The effect of 

increasing the length of the dopant side-chains on Pδ  is correlated with an increase of the 

orientational order of the dopant in the smectic layer which enforces the propagation of 

chiral perturbation via core-core interactions.29 

More recent studies proved that it is possible to amplify the polarization power 

induced by the chiral atropisomeric biphenyl dopants in the SmC 2PhP achiral host by 



 

 19 

using achiral hosts as additives.30 These results confirmed that it is possible to rationally 

design achiral additives capable of amplifying the polarization power exerted by a chiral 

dopant in a SmC host. For instance, the reduced polarizations have been measured in the 

SmA* and SmC* liquid crystal phases formed by 4 mol% mixtures of the chiral 

2,2’,6,6’-tetramethyl-3,3’-dinitro-4,4’-bis[(4-alkyloxybenzoyl)-oxy]biphenyl in the 

binary host mixture of 2PhP and 5PhP over the mole fraction range 2400 5 .≤≤ PhPx . It 

has been found that the chiral perturbation propagates more effectively in the presence of 

the 5PhP as co-host, due to its twisted chiral core conformation. 

Furthermore, the axially chiral dopant (R)-5,5’-bis(heptyloxy)-2,2’-spirobi-

[indene]-1,1’(3H,3’H)-dione (Spiro) has been synthesized in optically pure form,31 and 

has been doped in four achiral liquid crystal hosts to give SmC* phases with spontaneous 

polarizations that vary with the core structure of the host. In particular, the addition of 

Spiro chiral dopant to the 2PhP liquid crystal host causes a severe destabilization of the 

SmC phase, whilst the calculated polarization power ( Pδ ) reaches a value of +749 

nC/cm2.32 The high positive value of the polarization power evaluated for Spiro dopant in 

the 2PhP host is correlated to the length of the host core (9.7 Å). 
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1.5 Computer Modelling of Liquid Crystals 

 

Molecular modelling investigations permit finding a link between microscopic and 

macroscopic properties and have been successfully applied in the field of liquid crystals, 

mainly restricted to achiral liquid crystals, e.g. nematic and smectic phases. 

1.5.1 Model Potentials for Liquid Crystal Phases 

At the heart of any simulation is the model potential describing how the molecules 

interact with each other. Different types of model potentials appropriate for the modelling 

of liquid crystals have been developed. Generally, model potentials can be divided into 

four classes: (1) lattice models, (2) single-site models, (3) atomistic models, and (4) 

multi-site coarse-grained models. 

 In the idealized lattice model, proposed by Lebwohl and Lasher,33 the system is 

considered as a set of classical spin vectors located on the sites of a cubic lattice, with 

nearest neighbor interactions of the following form: 

( )1cos3
2

2 −−= ijijU θε         (1.1) 

where ijθ  is the angle between the two vectors, and ε  is an energy parameter. Particular 

to this model is the representation of a small region of the liquid by each site, 

symbolizing the locally-arranged nematic ordering within, and not necessarily a single 

molecule. 
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 The single-site off-lattice models, the next step in increasing the complexity of the 

molecular model adopted, include both hard and soft non-spherical models. The hard 

non-spherical model considers that the liquid structure is dominated by the sharply 

repulsive interactions that occur between the atoms as they approach each other at short 

distances, and models these interactions using an infinitely steep hard sphere potential. 

The effects of attractive interactions are omitted. A characteristic of the hard models is 

that the phase behavior is governed by the entropy alone; as such it is not influenced by 

the temperature but it changes with density. Hard spheroids34 have been well-studied and 

they form only nematic phases. Hard spherocylinders,35-37 in contrast, arrange themselves 

in SmA, SmC, and nematic phases.  

Soft non-spherical models introduce some degree of complexity when describing 

the liquid structure by representing the molecular shape as a soft body. The interaction 

potential features a steep repulsive part, modelling the overlap between the electron 

clouds, and an attractive tail at larger intermolecular separations. Applications of this soft 

ellipsoid model are dominated by variants of the Gay-Berne (GB) potential,38 basically an 

anisotropic version of the Lennard-Jones (LJ) inverse 12-6 potential.39 The GB potential 

has been used to predict material properties, such as elastic constants,40, 41 rotational 

viscosities,42 and helical twisting powers.43-46 The Lennard-Jones pair potential will be 

discussed in more detail in Section 2.4.  

The soft non-spherical model was first developed in 1972 by Berne and 

Pechukas47, and corrected in 1981 by Gay and Berne38 to give a reasonable fit to a linear 

arrangement of four Lennard-Jones sites. This resulted in the first orientation-dependent 
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potential to describe an uniaxial ellipsoid of revolution, named the Gay-Berne (GB) 

potential: 

( ) ( ) [ ]612 RR4 −= ABBAABBAAB r,u,uε,ru,uU ˆˆˆˆˆ     (1.2) 

( ) 0

0
σσ

σ
+−

=
ABBAAB ruur

R
ˆ,ˆ,ˆ       (1.3) 

where Aû  and Bû  are unit vectors describing the orientations of the two particles A  and 

B , ABr  is the center-to-center distance, and ABr̂  is the unit vector along the 

intermolecular vector, ABrr   (shown in Figure 1.7). 

 

 

Figure 1.7 The relative orientation of two ellipsoidal particles defined by the vectors Aû  and Bû , 
describing the orientations of the two particles A  and B , and the intermolecular vector ABr

r
. 
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The anisotropic contact distance, ( )ABBA ruu ˆ,ˆ,ˆσ , and interaction anisotropy term, 

( )ABBA ruu ˆ,ˆ,ˆε , for ellipsoidal molecules depend on the orientations of the two molecules 

and the intermolecular vector, as follows: 
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 ( ) ( ) ( )ABBABAABBA ruuuuruu ˆ,ˆ,ˆˆˆˆ,ˆ,ˆ μν εεεε 210 ⋅=      (1.5) 

The strength anisotropy function depends now on the adjustable exponents μ  and 

ν , as well as the two terms defined as follows: 

( ) ( ) ][ 2122
1 1
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2 χχ
χε  (1.7) 

 A vital component of the uniaxial Gay-Berne potential is the shape anisotropy 

parameter, χ , that depends on the length-to-breath ratio, sseek σσ= , where eeσ  and 

ssσ  are the length and breadth of the molecule, respectively. The shape anisotropy 

parameter is defined as: 

1
1

2

2

+
−

=
k
kχ          (1.8) 

Particularly, the elongated molecules have eeσ > ssσ  and 0>χ , whilst flat discotic 

molecules have eeσ < ssσ and 0<χ . The anisotropy of the potential well depth is 

reflected by 'χ , which is given by: 
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1
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k          (1.9) 

The quantity 'k  provides a measure of the anisotropy of the well depth and it is defined 

as  eessk εε=' (following Luckhurst notation48), where ssε  and eeε  are the maximum 

well depths for the side-by-side and end-to-end interactions, respectively. 

From Figure 1.8, the Gay-Berne potential can be seen to take a similar shape to 

the well-known 12:6 Lennard-Jones potential. However, the relative orientation of the 

two particles influences both the distance at which the attractive and repulsive energies 

cancel, and the depth and width of the attractive well. 

 

Figure 1.8 The Gay-Berne potential for 3=k , 5='k , 2=ν , and 1=μ  plotted in reduced 
units for four fixed relative orientations: side-to-side, cross, T-shape, and end-to-end.42 The 
distance is plotted in terms of 0σ  whilst the potential is in terms of 0ε . 

0σ/r  

0ε/U  
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 The Gay-Berne potential is characterized normally by six adjustable parameters 

,,,,, ' νεσ kk00  andμ , which control the overall form of the potential. The 0σ  and 0ε  

parameters are generally used to define length and energy scales within simulations. 

Since there are an infinite number of possible parameterizations, Bates and Luckhurst49 

proposed to symbolize a particular set of parameters by the notation GB ( )νμ ,,, 'kk , 

where sseek σσ= and eessk εε=' . The flexibility of the model makes the Gay-Berne 

potential very versatile. As it was pointed out by Zannoni,50 the choice GB ( )00,,, 'kk  

corresponds to a soft ellipsoid whilst GB ( )νμ ,,,00  reduces to a spherical Lennard-Jones 

potential. The first parameterization, GB( 3, 5, 1, 2), suggested in the original work of 

Gay and Berne,38 shows a spontaneous isotropic to nematic transition.51 A slightly 

different parameterization GB( 3, 5, 2, 1), used by Luckhurst et al.,52  produced nematic, 

smectic A, and smectic B phases. Although the GB(3, 1/5, 3, 1) parameterization also 

formed nematic and smectic phases, it is worth noting that the increase of μ  gives rise to 

a wider nematic range.53 A considerably different parameterization GB(4.4, 39.6, 0.74, 

0.80) was used by Luckhust and Simmonds54 in the first attempt to model a real molecule, 

p-terphenyl. Later, Bates and Luckhurst49 showed that the mesogen GB(4.4, 20, 1, 1) 

exhibits nematic, smectic A, and smectic B phases depending on the choice of the 

pressure, and that the phase diagram of this mesogen is in good agreement with those 

expected for such real rod-like mesogens. 

Unfortunately, the form of the GB potential presented in Equations (1.2) to (1.9) 

applies to identical uniaxial particles. Some extensions of the Gay-Berne model have 
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been proposed to overcome this limitation by generalization to biaxial particles,55 

dissimilar particles,56 and dissimilar biaxial particles.57  

The rapid increase in computer power over the last decades has allowed an 

atomistic representation of liquid crystals via computer simulations. In a full atomistic 

model, the coordinates of all atoms including hydrogens are explicitly considered. 

Typically, these models will include bond stretching, angle bending, and torsional 

dihedral interactions. Using an atomistic model, Berardi et al.21 have reported the need of 

over 10-40 ns runs for the equilibration of a system of 98 molecules for each of the first 

three homologues of the phenyl alkyl-4-(4’-cyanobenzylidene)-aminocinnamates. More 

recently, Peláez and Wilson58 have reported the growth of a nematic phase from an 

isotropic liquid over a 100 ns timescale for a multi-component liquid crystal mixture 

simulated at a fully atomistic level. Making use of an atomistic model, Cacelli et al.59 

have reached a stable nematic phase for the 4-n-pentyl-4'-cyanobiphenyl over a 40 ns 

simulation starting from three different initial configurations. 

Despite the potential to better reproduce the properties of a molecular system, at 

present, detailed atomistic simulations simply cannot handle reasonable system sizes or 

the time scales required to predict phase behaviour in liquid crystal systems. Recently, 

progress has been made in this field through the development of effective parallel 

Molecular Dynamics methods,60-62 through significant increases in computer speed, 

multiple time step methods,63 and efficient treatment of long range interactions.64 

However, fully atomistic simulations of a realistic number of molecules bearing atomic 

charges over tens to hundreds of nanoseconds are still prohibitive. 
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Some limitations of atomistic models have been surmounted by united atom and 

coarse-grained approaches, capable of capturing the main physics of the problem while 

reducing computational expense. In the united-atom approach, the hydrogens covalently 

bound to non-electronegative atoms are combined to yield a united atom site, which is 

represented in simulations by a spherical Lennard-Jones potential. For a united atom site, 

the mass and charge are taken as a sum of the values for the involved atoms. 

The united-atom approach is frequently used in hybrid schemes where the flexible 

chains are represented in term of united atoms whilst the rigid parts are modeled as Gay-

Berne sites. For instance, a nonpolar united atom model for 4,4'-di-n-pentyl-

bibicyclo[2.2.2]octane has been used by McBride et al.22 to grow a nematic phase from 

an isotropic liquid over a period of 6-10 ns. A similar approach has been employed by 

McDonald and Hanna65 in the simulation of 4-n-octyl-4’-cyanobiphenyl and they found 

that the simulations required around 10-15 ns for the equilibration of the system. Using 

the united-atom potential to eliminate hydrogens and neglecting electrostatic interactions 

are major simplifications made in order to satisfy the need for computational efficiency 

without sacrificing too many atomistic details. 

Reducing the degrees of freedom via an effective-atom representation, as is done 

in a coarse-graining approach, leads to an important reduction in computational expenses, 

but may result in some loss of chemical realism. The philosophy behind the multi-site 

coarse-grained approach is to achieve a simpler description of the effective interactions 

while not losing the ability of the resulting models to predict the properties of interest. In 

particular, groups of atoms are treated as one “super atom” with one set of force field 
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parameters. Various coarse-grained approaches have been developed based on this 

idea.66, 67 For example, attempts have been made to replace the biphenyl cores of 4-n-

pentyl-4’-cyanobiphenyl by large spherical sites at the centre of each ring.68 There have 

been attempts to represent each aromatic ring by a single ellipsoidal GB site in the p-n-

oligophenyl series,69 in a typical 4,4’-dialkylbiphenyl,70 4-n-alkyloxy-4’cyanobiphenyl, 

and 4’-n-alkyloxy-4-F-benzylidene-aniline71 liquid crystal mesogens.  

Moreover, multi-site coarse-grained models are capable of describing the 

structure and dynamics of complex macromolecular liquid crystals, such as liquid crystal 

polymers and liquid crystal dendrimers. Stimson and Wilson72 used a multi-site coarse-

grained method to study the behaviour of a side-chain liquid crystal polymer, in which 

the flexible siloxane backbone and the alkyl spacers are modeled as spherical Lennard-

Jones sites while the coarse-grained mesogenic moieties are represented as Gay-Berne 

sites. Later, Ilnytskyi and Neher73 applied the same formalism in order to analyze the 

structure and dynamics of various liquid crystalline phases of a side-chain liquid crystal 

polymer. A similar concept has been used by Wilson et al.74 in the modelling of a third 

generation liquid crystalline dendrimer in isotropic, nematic, and smectic A solvent. 

More recently, the bulk structure of the liquid and smectic A phases of a liquid crystal 

dendrimer75 and the role played by terminal or lateral substitution in influencing its 

structure have also been studied.76 

 Despite the recent progress in using coarse-grained models, there is still work to 

be done towards determining a “general” (i.e. transferable) set of Gay-Berne parameters 
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to be used in a simple coarse-grained force-field that, along with the particular molecular 

flexibility, will correctly represent the bulk phase behavior of real mesogenic compounds. 

1.5.2 The Origin of the Tilt in the SmC Phase 

Over the last decades quite a number of experimental and theoretical studies have 

focused on the formation of the tilted SmC phase.70-90 Unfortunately, none of them are 

able to describe completely the origin of the SmC phase formation and the SmA-SmC 

phase transition. There are two main theoretical approaches to the SmC phase 

description: one based on purely steric interactions, and another relying upon electrostatic 

interactions between the constituent molecules. 

The zigzag model, based on steric repulsion, proposes that the origin of the tilt is 

associated with the Z-like molecular shape, usually due to the presence of two end alkyl 

chains attached to a rigid part of constituent molecules.77-79 The idea of a particular 

organization of core and tail tilt was motivated by the large discrepancy observed 

between the X-ray and optical microscopy data for the molecular tilt angle in SmC 

materials.80, 81 Specifically, a molecule within a SmC layer can be symbolized by a tilted 

central part (i.e. rigid core) measured by optical means, and two terminal parts, 

corresponding to the disorganized aliphatic chains, which are less tilted on average than 

the central part and that can be  deduced from X-ray investigations.16 

After studying zigzag-shaped molecules, Wulf79 has concluded that the tilted SmC 

phase is solely a result of the steric interactions between the constituent mesogens. Maiti 

et al.82 have studied a system of rigid zigzag-shaped molecules and reported that the 
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excluded-volume interactions arising from the molecular shape are sufficient to produce 

the tilted SmC phase even in the absence of electrostatic interactions. More recently, 

infrared (IR) dichroism and atomistic computer simulations have been employed by Jang 

et al.83 in order to prove that in molecules having a “zigzag” structure with tails visibly 

less tilted from the layer normal than the cores, the disordering of the tails near the core 

contribute to the layer shrinkage in SmC phases.  

A different approach is based on the idea that the tilted SmC phase originates 

from the formation of specific intermolecular electrostatic interactions. A number of 

studies have investigated the effects of electrostatic dipole and quadrupole moments on 

mesogenic behavior. In all the cases, these electrostatic interactions have been 

incorporated into established soft and hard particle potentials. McMillan84 and Cabib and 

Benguigui85 propose that electric dipole-dipole interactions are at the origin of the tilt in 

the SmC phase. Particularly, Meyer and McMillan86 associate the tilt apparition to the 

presence of terminal dipoles, exerting a torque on the system of rod-like molecules. The 

importance of dipolar interactions has been revealed by experimental studies done by 

Goodby et al.87 and DeJeu.88 Theoretical studies proved that the smectic phase stability is 

enhanced by adding central longitudinal dipoles89-91 to a Gay-Berne system, while the 

nematic phase is favored by moving the dipoles to a terminal location.92 To summarize, 

the magnitude, direction (either longitudinal or transversal), and location of the dipole 

(terminal or central) have an effect on the local molecular correlation in smectic phases. 

Models based on quadrupolar interactions, that induce a SmA-SmC transition, have been 

proposed by Goossens,93 and by Poniewierski and Sluckin.94 More recently, Neal and 
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Parker95-97 have demonstrated that the formation of a SmC phase is sensitive to the 

direction (longitudinal or transversal) and magnitude of a point quadrupole added to an 

elongated Gay-Berne model. 

Despite the interest in the molecular origin of the tilted SmC phase formation, 

which has been an issue of debate ever since the first observation of the temperature-

dependent tilt angle in the early 1970s,98 there is no satisfactory molecular theory to 

explain it. Moreover, existing theories cannot fully explain the properties of novel 

smectic liquid crystals with weak layer contraction. Most of the time, when a liquid 

crystal undergoes a transition from the SmA phase to the SmC phase, the layer spacing 

decreases by a factor of θcos , where θ  is the tilt angle.99 Recently, it has been observed 

that there are some materials which do not show a contraction of the smectic layers 

across the SmA-SmC phase transition. This is extremely interesting from the point of 

view of pure research but also is a key issue in the development of electro-optical 

devices, as layer shrinkage is problematic in the manufacturing and operation of such 

devices. A qualitative model to describe the absence of the layer shrinkage, known as de 

Vries model, has been developed by de Vries100-103 and Leadbetter and Norris.104  
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1.6 Organization of the Thesis 

 

The scope of this thesis is to simulate smectic phases of two common liquid crystal 

mesogens. To achieve this goal, a coarse-grained model potential has been specifically 

designed to accurately represent the intra- and intermolecular interactions. 

This thesis is organized as follows. In Chapter 2, the theory and practical details 

of Quantum Mechanics, Molecular Dynamics, and hybrid Molecular Dynamics/Monte 

Carlo methods used in this thesis are presented. A variety of properties that have been 

used to identify and analyze smectic phases are also described. Chapter 3 presents the 

approach applied in this thesis in order to model the smectic liquid crystal phases, and the 

parameterization route for the intra- and intermolecular parts of the potential suited for 

the two smectogens. Extensive molecular dynamics simulations of liquid crystalline 

phases are performed and the results are presented in Chapter 4. Brief conclusions are 

presented in Chapter 5. 

 

 



 

 33 

Chapter 2 

Computational Methods for Liquid Crystal 

Simulations 

 

This chapter presents an overview of the ab initio methods and computer simulation 

techniques used in the investigation of liquid crystal phases. 

Quantum Mechanical applications generally involve computational evaluation of 

many-electron molecular wave functions (or electron density distribution functions), 

through approximate solutions of Schrödinger’s equation. Ab initio and semi-empirical 

quantum mechanical methods are commonly used to compute electronic structure and 

molecular properties derived from the wave function. An alternative to wave function 

based methods is Density Functional Theory (DFT), which has become widely used in 

chemistry and physics in the past 25 years. A brief presentation of both ab initio and DFT 

methods is given in this chapter. 

Molecular Mechanics methods do not use quantum mechanical wave functions, 

but rather classical physics to view the molecule as a collection of atoms held together by 

bonds. The molecular energy is represented by a force field with embedded empirical 

parameters. To evaluate the average of a property by means of molecular mechanics one 

can either generate configurations time step after time step in their natural time sequence 

(Molecular Dynamics method), or generate random configurations consistent with their 
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equilibrium probability distribution (Monte Carlo approach). In this chapter, Molecular 

Dynamics and hybrid Molecular Dynamics - Monte Carlo methods used in this work are 

reviewed. 
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2.1 Quantum Mechanics Methods 

 

This section reviews the basics of the quantum mechanical approach, with an emphasis 

on the time-independent Schrödinger equation, and the Born-Oppenheimer 

approximation.  The ab initio approach is one of the strategies to obtain accurate values 

for the electronic energy and properties of a system as a function of its nuclear 

coordinates, by solving the electronic Schrödinger equation for the electronic energy at 

each nuclear configuration, while making as few assumptions as possible. Although ab 

initio methods give very accurate results, the huge computational cost has necessitated 

the development of much cheaper alternatives.  

The DFT method is introduced by discussing the Hohenberg-Kohn105 theorem 

that provides the justification for using the electron density as the central quantity in 

electronic structure calculations, and the Kohn-Sham equation106 that offers a route for 

using the DFT method in practical calculations.  

A different approach to solving the Schrödinger equation while keeping the 

computational cost in hand is to use the so-called semi-empirical methods, which 

introduce approximations into the time-consuming parts of the calculation. The 

approximations use various empirical parameters chosen so that the results of the 

calculations agree with experimental data or with the results of accurate ab initio 

calculations. 
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2.1.1 Ab initio Method 

All we need to know in order to describe a state of a system in quantum mechanics is the 

wave function or state function,Ψ , which depends on the coordinates of all the electrons 

and nuclei, that contains all the possible information about the system.  

In quantum mechanics, the numerical value of the energy, E , described by state 

function,Ψ , can be obtained by solving the time-independent, non-relativistic 

Schrödinger equation: 

Ψ=Ψ EĤ          (2.1) 

where Ĥ  is the Hamiltonian operator for the molecular system. This quantum 

mechanical operator corresponds to the classical total kinetic and potential energies of the 

system.  

Using i  and j  to index electrons, and A  and B  to index nuclei, we can write the 

Hamiltonian operator, Ĥ , representing the total energy of a system of N  electrons and 

M  nuclei: 
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where atomic units have been used. The Laplacian operator is 2
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AM , AZ  and BM , BZ  are the masses and charges of nuclei A  and B , respectively, in 

multiples of the mass of an electron (atomic units) and electron charge. The variables 

ABr , Air , and ijr  are the separation distances between the nucleus A  and the nucleus B ,  
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the nucleus A  and the electron i , and the i  and j  electrons, respectively. The kinetic 

energy is split into two summations: one over nuclei, and one over electrons. Similarly, 

the potential energy is divided into terms representing the attractive electrostatic 

interaction between the electrons and nuclei, and the repulsive potential due to the 

electron-electron and nucleus-nucleus interactions. 

 The Schrödinger equation can be further simplified if we take advantage of the 

Born-Oppenheimer approximation, which assumes that in molecules the electronic 

motion can be separated from the nuclear motion. This is a valid approximation as the 

electrons are roughly 2000 times lighter than the nuclei. Thus, if the nuclei are considered 

fixed in space and do not move, their kinetic energy is zero and the potential energy due 

to nucleus-nucleus repulsion is merely a constant. Taking into consideration the Born-

Oppenheimer approximation, the purely electronic Hamiltonian is: 
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where eT̂  represents the kinetic energy operator, and eeV̂  and NeV̂  are the potential energy 

operators, due to electron-electron repulsion and nuclear-electronic attraction, 

respectively. Thus, the total potential energy of a system is a sum of a constant nuclear 

repulsion energy term, ∑∑
= >

=
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, and the electronic energy, elecE , expressed as 

follows: 

 elecelecelecelec EH Ψ=Ψˆ         (2.4) 
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The electronic energy, elecE , is a function of nuclear positions, often having a very 

complex form, that defines the Potential Energy Surface of a system, that in turn 

influences the interactions between the nuclei, and the dynamics and structure of the 

system. 

To solve the Schrödinger equation for an arbitrary molecule, we have to know 

first the Hamiltonian that is specific to the quantum system at hand. From Equation (2.3), 

this is straightforward. Then, we have to find the eigenfunctions elecΨ  and the 

corresponding eigenvalues elecE  of the Hamiltonian. Once the elecΨ  are determined, all 

the properties of interest can be evaluated by applying the appropriate operators to the 

wave function. Unfortunately, there is no known strategy to solve exactly the Schrödinger 

equation for atomic and molecular systems, except for a few simple systems, because the 

wave function is a highly dimensional function which cannot be obtained exactly from 

Equation (2.4). As a result, it is necessary to obtain approximate wavefunctions and 

associated energies. The variational principle is used for this. According to this principle, 

the energy evaluated using an approximate wave function will always be equal to or 

greater than the exact ground state energy, 0E . The challenge is to identify the lowest 

possible energy, and this leads to a minimization process. 

In the context of the Hartree-Fock (HF) method,107 a many-electron wavefunction 

of a particular electronic state of a system is expressed as an antisymmetrized product of 

N one-electron wave functions, usually referred as a Slater determinant, SDΦ . Once the 

form of the wave function is known, the variational principle is used to find the best 
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Slater determinant, i.e. the particular SDΦ  which yields the lowest energy. The only 

flexibility in a Slater determinant is provided by the spin orbitals. A spin-orbital is a 

product of a spin-function and a spatial molecular orbital (MO). 

HF theory is viewed as a stepping stone on the way to exact solution of the 

Schrödinger equation. HF theory provides a very well-defined energy, one which can 

converge in the limit of an infinite basis set. The difference between the exact non-

relativistic energy (i.e. the energy calculated by the Born-Oppenheimer approximation) 

and the converged HF energy is known as the correlation energy of the molecule. It is a 

measure of the error introduced through the HF scheme. Electron correlation is caused by 

instantaneous repulsion of electrons, which is not covered by the effective HF potential. 

It is vital to recover some of this correlation energy, either by using wavefunction-based 

methods (such as the configuration interaction method,107 Möller-Plesset perturbation 

theory,108 and the coupled cluster109 approach) or electron density methods. 

2.1.2 Density Functional Theory Method 

Density Functional Theory (DFT) does not attempt to evaluate the molecular 

wavefunction, Ψ , but calculates the molecular electron probability density, ( )rrρ , and, 

with this in hand, the energy can be obtained.110  

The motivation for DFT is that the ground state properties of a system can be 

described by considering the ground state electron density. The real advantage is the fact 

that for an N  electron system, the wave function is a complicated function of N3 (or 
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N4  if the spin is included) variables, while the electron density is a function of only 

three variables. 

The Hohenberg-Kohn theorem105 states that the energy of the ground state of a 

system of electrons is a functional of the electronic density. The energy is at a minimum 

if the density corresponds to the exact density for the ground state. Once the energy is 

obtained, all other properties can be determined by the ground state density alone. 

However, this theorem does not provide any guidance as to how the functional should be 

constructed; it just proves that a functional of the density must exist. 

It is the Kohn-Sham method106 that introduced a formalism for the evaluation of 

the ground state electron density and the ground state energy by combining 

wavefunctions and the density approach. Kohn and Sham realized that it would be 

considerably simpler if only the Hamiltonian operator was one for a non-interacting 

system of electrons. They considered a fictitious system of N  non-interacting electrons 

(i.e. the electrons do not interact with each other via Coulomb repulsion) experiencing the 

same external potential energy function, ( )rvs
r , so that the exact ground state electron 

density, ( )rs
rρ , equals the exact ground state density of the real system, ( )rrρ , where the 

electrons do interact. The ground state energy of the real system is repartitioned into the 

following terms: 
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where the first term is the kinetic energy of non-interacting electrons, ( )[ ]rTs
rρ , the 

second term  is the classical electron-electron repulsion energy, the third term is the exact 

nuclear-electron attractive electrostatic energy, and the remainder, ( )[ ]rEXC
rρ , contains 

not only the non-classical effects of self-interaction correction, exchange, and electron 

correlation, which are contributions to the potential energy, but also the part of the true 

kinetic energy not covered by the ( )[ ]rTs
rρ (i.e. deriving from the interacting nature of the 

electrons). The only unknown term is of course ( )[ ]rEXC
rρ . Similar to the HF 

approximation, we now apply the variational principle and ask: what condition should the 

Kohn-Sham spin orbitals KS
i

θ  fulfill in order to minimize this energy expression? The 

resulting equation is: 

  ( ) ( ) ( )rrrv KSKSKS
effi iii

rrr θεθ =⎥⎦
⎤

⎢⎣
⎡ +∇− 2

2
1      (2.6) 

where the one-electron Kohn-Sham operator contains the effective potential, ( )rveff
r

. The 

effective potential of the reference system is uniquely determined and it is chosen so that 

the resulted density is equal to the ground state density of the real system of interacting 

electrons: 
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Once ( )[ ]rEXC
rρ  is known, the exchange-correlation potential is found as the functional 

derivative of the exchange-correlation energy: 
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For his work in the development of DFT, Walter Kohn shared the 1998 Nobel Prize in 

Chemistry.111  

DFT would yield the exact ground state electron density if the exchange-

correlation functional is known. In practice, the exact functional is not known, but one 

can use some approximate form. New variants of the exchange-correlation functionals are 

published on a regular basis. A hierarchy of exchange-correlation functionals in 

ascending complexity and accuracy should refer to: the local density approximation 

(LDA), that gives good structural properties but fails in binding energies, the generalized 

gradient approximation112 (GGA) for the exchange-correlation energy (e.g. Perdew-

Wang’s 86, Becke’s 88, Perdew-Wang’s 91, Becke’s 1988 exchange functional and the 

Lee-Yang-Parr correlation functional or BLYP), which provide fairly accurate results 

with an average error of 5 kcal/mol for atomization energies, and finally the hybrid 

functionals, that achieve the best performance in many applications nowadays.  

The hybrid approach, first introduced by Becke in 1993,113 is based on the idea of 

incorporating a portion of the exact exchange from Hartree-Fock theory with exchange 

and correlation from other sources. The most important examples of this class are the 

B3PW91 (i.e. Becke, three-parameter exchange, Perdew-Wang, 1991) and the B3LYP 

(i.e. Becke, three-parameter exchange, Lee-Yang-Par correlation) hybrid exchange-

correlation functionals. Today, the B3LYP has become the “workhorse” or default choice 

for practical applications in the organic chemistry community despite the significant 
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errors107 that this functional has. More recently, the hyper-generalized gradient 

approximation114 (HGGA) combines exact exchange with an existing semi-local 

functional that models dynamical correlation and an exchange-like functional developed 

to model static correlation, in an attempt to develop models that capture the exchange-

correlation effects. It is beyond the limit of this thesis to mention all the approaches 

developed over the years; however, the reader can find detailed coverage of orbital-

dependent functionals in a recent review presented by Kümmel and Kronik.115 

2.1.3 Basis Functions and Basis Sets 

A basis set represents a set of mathematical functions from which the molecular orbitals, 

that determine the wave function, are constructed. A large collection of basis sets is 

available in the literature and can be used to build approximate wave functions.  

In conventional wave function based approaches, such as the Hartree-Fock 

scheme, Gaussian-type orbitals (GTOs), are typically employed for the basis functions, 

and these have the general form: 
2r

e
n
az

m
ay

l
aNx

GTO αη −= , where N  is a normalization 

factor, aaa zyx ,,  are the Cartesian coordinates with the origin at nucleus a . The powers 

nml ,,  are non-negative integers, and α  is a positive orbital exponent used to define the 

compactness of the resulting function. The preference for GTO basis functions is 

motivated by the computational advantages these functions offer, as many efficient 

algorithms for the analytical calculation of the very large number of four-center-two-

electron integrals are available.  
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From a physical point of view, the natural choice for the basis set is the Slater-

type orbital (STO) that resembles the exact wave functions for the hydrogen atom. An 

STO is expressed as: ( )φ
ς

η ,ΘΥ
−−= m

l
are

n
aNr

STO 1 , where n  corresponds to the principal 

quantum number, N  is a normalization constant, ς  is the orbital exponent, and ( )φ,ΘΥm
l  

are the usual spherical harmonics describing the angular part of the function.  

The main difference between the STO and GTO expressions is the power of r  in 

the exponent, which determines their form at the nucleus (when 0=r ): a zero slope for 

GTO and a cusp for STO. It is important to point out that one usually needs several times 

more GTOs than STOs to achieve the same accuracy. For example, STO-3G is an 

approximation of a Slater-type orbital using three Gaussian functions in the 

approximation. For nonlinear molecules, it is very difficult to compute using STO basis 

functions, since no analytical techniques are available.  

In an attempt to improve accuracy while keeping computational cost in check, 

several Gaussian functions (“primitives”) are combined into a fixed linear combination to 

give one contracted Gaussian-type orbital (CGTO), of the following form: 

GTO
a

a
a

CGTO d ηη ττ ∑= , where the coefficients τad  are fixed. 

The minimal basis set, the simplest expansion of the molecular orbitals, uses only 

one basis function (or contracted function in the case of CGTO) for each atomic orbital 

(AO) up to and including the valence orbitals. A typical minimal basis set is the STO-3G 

basis set, in which three primitive GTO functions are combined into one CGTO. Double-
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zeta (DZ) and triple-zeta (TZ) basis sets have the sets of functions doubled, and tripled, 

respectively. Another possibility is to use split-valence type sets where the valence AOs 

are represented by doubled or tripled sets of functions, whilst using a minimal set for the 

inner core electrons. The 3-21G and 6-31G Gaussian basis sets, developed by Pople et 

al.,116 are typical examples of this kind of basis set. A more complex example, the 6-

311G basis set represents each inner-shell AO as a sum of six Gaussians, while each 

valence-shell AO is split into three parts as follows: the contracted part is a sum of three 

Gaussian primitives, a more diffuse part as one Gaussian primitive and a most diffuse 

part as one Gaussian primitive. 

In most applications, polarization functions are added to the basis sets to ensure 

that the atomic orbitals can distort away from their original atomic symmetry and better 

adapt to the molecular environment. The distortion of the atomic orbitals from their 

original shape, when the bonds are formed in molecules, is mimicked by adding basis 

functions representing an angular momentum higher than what is represented by the 

valence orbitals of the atom.110 Examples of polarization functions are p-functions on 

each hydrogen atom or d-functions for the first-row elements, such as the polarized 

double-zeta set 6-31G(d,p), which is equivalent to 6-31G** in the Pople-type notation. In 

general, polarization functions significantly improve the description of molecular 

geometries (bond lengths and angles).110 

The role of the diffuse basis functions added to a basis set is to allow the charge 

density of negative charge bearing atoms to expand. In the “Pople nomenclature”, the 

presence of diffuse functions is indicated by a ‘+’ in the basis set name. For example, the 



 

 46 

6-31+G(d) basis set is the 6-31G(d) basis set in which the heavy atoms have been 

augmented with an additional four diffuse functions ( zyx ppps ,,, ). The “++” version, 6-

31++G(d), is the 6-31G(d) basis set with diffuse functions added to the heavy atoms as 

well as hydrogen atoms ( s  type only). 
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2.2 Molecular Dynamics 

 

The Molecular Dynamics (MD) simulation method, utilized for the first time by Alder 

and Wainwright117, 118 in the late 1950’s, has been used as a powerful tool to describe the 

microscopic properties and structures of systems ranging from simple liquids to complex 

materials, such as liquid crystals, polymers, proteins, biological membranes, and 

macromolecules.119 

MD is a computer simulation technique in which the time evolution of a set of 

interacting atoms or molecules is followed by numerically integrating their equations of 

motion. When the system is considered equilibrated, the actual measurement of the 

system’s properties can be done. From the trajectories, one can also obtain information 

about the dynamics of the atoms and molecules, and/or compute structural properties of a 

given system.  

 A system consisting of N  particles is described by the classical Hamiltonian, the 

sum of kinetic and potential energy terms: 

( ) ( )i

N

i i
ii rU

m
p

rp i r
r

rr
+= ∑ 2

2

,H        (2.9) 

where iii rpm rr ,,  are the mass, momentum, and position of thi  particle, and ( )irU r  is the 

potential energy. The Hamiltonian is a function of N6  independent variables, the N3  

particle momenta and the N3 particle positions. 



 

 48 

In classical MD, the laws of classical mechanics are followed, specifically 

Newton’s law: iii amF rr
=  for each particle i  in a system comprised of N  particles, where 

22 dtrda ii
rr

=  is the acceleration of the thi  particle, and iF
r

 is the force acting upon it, 

due to its interactions with the other particles.  

Typically, a classical MD simulation program follows the steps:120 

 Specification of the conditions of the run: defining the number of particles, 

temperature, density, pressure, time step, simulation cell, etc. 

 Initialization of the system: setting up the positions and velocities initially assigned to 

all N  particles of the system; 

 Calculation of the force acting on every particle at each step by applying Newton’s 

law of motion to each particle. In Cartesian coordinates, the equations of motion 

become:  

( )
i

i

ii F
r
rU

dt
pd r

r

rr

=
∂

∂
−=         (2.10) 

i

ii

m
p

dt
rd rr

=            (2.11) 

where 
dt
pd i
r

 are the momenta derivatives (the forces), 
dt
rd i
r

 are the coordinate derivatives 

(the velocities), and the potential energy is obtained from a molecular mechanics force 

field.  
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For a system containing N  atoms, the potential energy can be divided into terms 

involving the coordinates of individual atoms, pairs, triplets, etc.: 

( ) ( ) ( ) ( ) ...)()()( +++= ∑∑ ∑∑∑∑
> >>>

kji
i ij ijk

ji
i ij

i
i

N rrrurrururU rrrrrrr ,,, 321  (2.12) 

where )(1u  accounts for the potential due to an external field, and the remaining terms 

represent particle interactions. Usually, in computer simulation of liquids the third and 

higher terms are rarely used since their evaluation is extremely time consuming. 

Within the framework of a MD simulation, the pairwise approximation gives a 

good approximation of the many-body effects by using an effective pair potential, )(2
effectiveu , 

where the parameters are adjusted based on fluid properties: 

( ) ( ) ( )ji
i ij

i
i

N rrururU effective

rrrr ,21 ∑∑∑
>

+≈ )()(      (2.13)  

 Integration of the equations of motion: combining the forces on all particles with 

current positions and velocities, one can generate new positions and velocities a short 

time ahead, by integrating Newton’s equations of motion using an appropriate 

algorithm. The algorithm used throughout this thesis is presented in section 2.2.3; 

 Computation of the properties of the system: at the end of the simulation run, the 

averages of measured quantities are obtained by summing up over M  time steps: 

∑
=

=
M

i
iA

M
A

1

1          (2.14) 
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where iA  is the instantaneous value of the property A . 

The natural ensemble for an isolated system evolving under Newton’s equations 

of motion is one in which the total energy is conserved; this corresponds to the 

microcanonical ensemble (N,V,E) simulation. However, using a thermostat it is possible 

to simulate a canonical ensemble with (N,V,T) fixed. Other ensembles can also be 

simulated, including constant pressure121, 122 and constant enthalpy systems.123-125 

When atomistic details are fully taken into account, it is unfeasible to simulate 

large macromolecular systems over microsecond time scales using the MD simulation 

within a reasonable wall clock time. This is why some reasonable assumptions have to be 

made in order to reduce the computational time of a simulation. 

2.2.1 Periodic Boundary Conditions 

In MD calculations it is common to use periodic boundary conditions119 (PBC) in order 

to reduce the computer time and to avoid surface effects due to the finite size of the 

simulation box. As the number of particles in a fixed volume is small (it is many orders 

of magnitude less than 1023), the fraction of particles near an interface is similar to the 

fraction in the bulk and the simulation results do not reflect those of an infinite system. 

Periodic boundary conditions eliminate the interface and allow feasible bulk simulations 

to proceed. In PBC, the simulation cell is replicated in all directions in space to form a 

lattice. When a particle “leaves” the system by passing through a “boundary”, an 

identical “image particle” enters through the opposite boundary. 
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The number of operations required for calculating the interparticle force on a 

given system is in principle proportional to the total number of pair interactions in the 

system, if we ignore the many-body interactions. For large systems it would be time-

consuming and unrealistic to include interactions between all of the ( ) 21−NN  pairs of 

particles, since with PBC, N  is infinite. Generally we would expect the interaction 

strength to decrease sharply beyond a modest number of neighbouring molecules. To 

limit the number of non-covalent interactions in the PBC, the minimum image convention 

and a spherical cutoff  (see Figure 2.1) have been used. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 A 2D periodic lattice built from square unit cells. The colored square illustrates the 
minimum image representation and the dashed circle shows a spherical cutoff. 

rcutoff
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In this scheme, a sphere of radius cutoffr  is centered at the particle of interest and 

each particle interacts with the nearest images of the other 1−N  particles that are inside 

that sphere but particles outside the sphere are excluded from interacting with the central 

particle. The cutoffr  is less than 2L , where L is the smallest dimension of the simulation 

box. In this thesis, I choose 052 .Lrcutoff = . This ensures that I employ the largest 

possible cutoff distances considering only the interactions of a given particle i  with the 

nearest periodic image of any other particle j . 

The use of the simple truncation method has shown to introduce significant errors 

and artificial behaviour in a MD simulation120 due to its impact on the potential and the 

force. To account for some of the errors introduced by the use of a spherical cutoff, the 

potential is truncated and shifted, so that the potential vanishes at the cutoff radius, as 

follows: 

( ) ( ) ( ),cutoff
shiftedtruncated rUrUrU −=−  cutoffrr <     (2.15) 

( ) ,0=− rU shiftedtruncated    cutoffrr ≥     (2.16) 

where ( )rU shiftedtruncated −  is the effective interaction potential energy function. The main 

advantage is that the force, based on ( )rU shiftedtruncated − , is continuous at all interparticle 

separations. 
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2.2.2 Ewald Summation Technique 

In order to simulate the properties of bulk systems with long-range electrostatic 

interactions it is necessary to sum these interactions over all the periodic images of the 

simulation cell.  

Consider a system of N  point charges ( iq ) at positions ( ir
r ) that satisfy the charge 

neutrality condition, 0
1

=∑
=

N

i
iq , in a rectangular simulation cell of size yx LL , , and zL , 

and their infinite replicas obtained from the application of PBC. The total electrostatic 

energy can be written as:  

∑ ∑∑
= = +

=
n

N

i

N

j ij

ji

nr

qq
U

r
rr

1 12
1 '        (2.17) 

where iq  is the charge of the thi  particle, ( )zzyyxx LnLnLnn ,,=
r  is the cell-coordinate 

vector with zyx nnn ,,  integers. The original cell is located at ( )000 ,,=nr  with image cells 

located at zzyyxx LnLnLn ,,  intervals in all three dimensions. The prime of the first sum 

indicates that the summation does not include the term for ji =  when ( )000 ,,=nr , since a 

charge does not interact with itself. The factor ( )041 πε  is omitted for simplicity ( 0ε  is 

the vacuum permittivity). 

The problem with the summation shown in Equation (2.17) is that the summation 

of ( ) mi r
rU 1

∝  is conditionally convergent for 3≤m , which means that in the case of 
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charge-charge, charge-dipole, dipole-dipole, and change-quadrupole interactions the 

result depends on the order of summation.  

The Ewald summation technique, introduced in 1921,126 is a solution to the above 

problem and the most common way to sum the long-range interactions between the 

particles and all their infinite periodic images efficiently. The Ewald sum splits the 

summation presented in Equation (2.17) into the following terms:119,127 

 ( )PMJUUUU omr
EWALD ,

r
+++=       (2.18) 

The idea is that each point charge in the system is viewed as being surrounded by 

a Gaussian charge distribution of equal magnitude and opposite sign (as shown in Figure 

2.2). To counteract this induced Gaussian distribution, a second Gaussian charge 

distribution of opposite sign but with the same magnitude as the original distribution is 

added for each point charge. This canceling distribution reduces the potential to that due 

to the original charges. A third term (of a negative sign) must be added to the total 

potential to correct for the self-interaction energy. In addition, a shape-dependent term, 

depending on the dielectric constant of surroundings and the total dipole moment of the 

unit cell, is needed for a rectangular simulation cell. 
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Figure 2.2 The Ewald sum components of a one-dimensional point charge system.128  

 

The direct space sum, rU , works in real space and calculates the interactions 

originating from the Gaussian charge distribution:119 

( )
nr

nrerfc
qqU

ij

ij
j

N

ji n
i

r
rr

rr

r +

+
= ∑∑

α

,2
1       (2.19) 

Here, the function )(xerfc  is the complementary error function that decreases 

monotonically to zero as x  goes to infinity. In practice, the parameter α  is chosen such 

that this sum converges when only ( )000 ,,=nr  is considered. 

The reciprocal sum, mU , is evaluated as follows:119 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
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⎛
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π 4
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N

ji
ji

m rr

r
    (2.20) 

where V  is the volume of the simulation cell given by zyx LLL ×× , and k
r

 is the 

reciprocal-space vector given by ⎟
⎟
⎠

⎞
⎜
⎜
⎝
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x
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' πππ 222
 with zyx nnn ',','  integers. 
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  Ewald sum          Direct sum                  Reciprocal sum 
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There is also a self-energy correction term, oU , which cancels the interactions of 

each of the introduced artificial counter-charges with itself: 

∑
=

−=
N

i
i

o qU
1

2

π
α         (2.21) 

 The shape-dependent correction term for a rectangular prism cell,127 ( )PMJ ,
r

, 

depends on the shape of the summation geometry P , and on the total dipole moment of 

the unit simulation cell ∑
=

=
N

i
ii rqM

1

rr
: for example, when a spherical geometry is used for 

the summation, the shape-dependent term becomes: 

( ) ( )
2

12
2, M

V
PMJ

S

rr

+
=

ε
π        (2.22) 

where V  is the volume of the unit simulation cell, and  Sε  is the dielectric constant of the 

surrounding medium. If the medium has an infinite dielectric constant, this term 

disappears, which corresponds to tin-foil boundary conditions.129 

Finally, the total electrostatic energy becomes:     
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The accuracy of the Ewald summation method depends on the approximations 

made. In Equation (2.23), the convergence of the sum is controlled by maxk
r

, which limits 

the summation range in reciprocal-space, and the Ewald convergence parameter, α , that 

determines the relative rate of convergence between the real and reciprocal sums. 

The precision and speed of the Ewald algorithm depend upon a careful balancing 

of these parameters. A large α  reduces the number of real space interactions while 

increases the number of reciprocal space terms to be evaluated in order to obtain 

comparable accuracy in the energies and forces. On the other hand, a small value of α  

increases the number of real space terms and decreases the reciprocal space summation. 

In practice, the value of α  has to be carefully chosen for each system, so that the real 

space sum can be calculated in the minimum image convention without increasing too 

much the number of reciprocal space terms ( maxk
r

 vectors).129 

2.2.3 Velocity Verlet Algorithm for Integration of Equations of Motion 

One of the simplest and best available algorithms to integrate the equations of motion, is 

the normal Verlet algorithm:130  

 Consider a truncated Taylor expansion of coordinates forward and backward in 

time: 

( ) ( ) ( ) ( ) 2

2
1p1rr ttF
m

tt
m

ttt δδδ
rrrr

++=+      (2.24) 

( ) ( ) ( ) ( ) 2

2
1p1rr ttF
m

tt
m

ttt δδδ
rrrr

+−=−      (2.25) 
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 Add these together: 

( ) ( ) ( ) ( ) 21r2rr ttF
m

ttttt δδδ
rrrr

+=−++      (2.26) 

 Rearrange: 

( ) ( ) ( ) ( ) 21rr2r ttF
m

ttttt δδδ
rrrr

+−−=+      (2.27) 

where ( )tr
r , and ( )tF

r
 are the position and force at the time t , m  is the particle’s mass, 

( )ttr ∂−
r  and ( )ttr ∂+

r  are the backward and forward positions, and tδ  is the time step.  

The normal Verlet algorithm has an important drawback in that the velocities of  

the atoms are not among the variables used in integrating the equations of motion, 

although they can be obtained with extra effort (i.e.  the velocities at time t  are available 

only once the positions at time tt δ+  have been calculated). A slightly modification of 

these equations produce an algorithm called “velocity” version of the Verlet algorithm,131 

in which the velocities are explicitly calculated as part of solving the equations of motion. 

The Velocity-Verlet integration of equations of motion that yield the 

microcanonical ensemble (NVE) can be implemented in the following stages: 

 Evaluate the force, ( )tF
r

, compute the position at new time, ( )tt δ+r
r , and advance 

the velocity a half time step, ⎟
⎠
⎞

⎜
⎝
⎛ +

2
v tt δr : 

( ) ( ) ( ) ( ) 2

2
1vrr ttF
m

ttttt δδδ
rrrr

++=+       (2.28) 
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( ) ( ) ttF
m

ttt δδ rrr

2
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2
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⎜
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⎛ +        (2.29) 

 Evaluate new force, ( )ttF δ+
r

, and fully advance the velocity to obtain the 

velocity at new time, ( )tt δ+vr : 

( ) ( ) tttF
m

tttt δδδδ ++⎟
⎠
⎞

⎜
⎝
⎛ +=+

rrr

2
1

2
vv      (2.30) 

This algorithm of integration of equation of motions is preferred over the Verlet 

and Leap-frog132 algorithms due to its convenience, numerical stability, and simplicity.  

2.2.4 RATTLE Algorithm 

In the framework of Molecular Dynamics simulations, complex systems experience 

different kinds of motions with various time scales. For example, the period for 

intramolecular vibrations can be as little as tens of femtoseconds while the reorientational 

motions or conformational changes have longer time scales (from few picoseconds to 

hundreds of nanoseconds). In a standard integration of Newtonian equations, all these 

motions, regardless of their time scale, have to advance by the same time step, whose size 

should be inversely proportional to the frequency of the fastest motion present in the 

system. In this context, stretches involving hydrogen atoms have very fast vibrational 

frequencies and unless the integration time step used in the MD simulation is much 

smaller than the vibrational period, the simulation will be problematic. 

To alleviate this problem, the bond distances can be constrained to their 

equilibrium lengths using the popular SHAKE or RATTLE algorithms133, 134 for 
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integration of equations of motion subject to intramolecular constraints. By freezing the 

fast degrees of freedom in the system (e.g. fast vibrational motions), the SHAKE and 

RATTLE algorithms allow the use of a larger time step. For the current simulations, the 

RATTLE algorithm is employed. 

The equations for constrained dynamics are: 

ii
i

i GF
dt

rd
m

rrr

+=2

2

        (2.31) 

where iF
r

 is the force on atom i  due to the intermolecular and intramolecular interactions 

not associated with the constraints, and iG
r

 is the force on atom i  due to the constraints.  

The constrained force is directed along the bond, and is given by:  

∑−=
j

ijiji rG rr
λ'         (2.32) 

where the prime shows that the summation goes only over the atoms j  that are 

connected with atom i  by a constraint, ijλ  are the unknown time-dependent Lagrange 

multipliers associated with the intramolecular constraint forces, and jiij λλ = . In practice, 

the algorithm involves calculation of the ijλ  multiplier. 

RATTLE is based on the Velocity-Verlet algorithm, and it guarantees that the 

coordinates and velocities of the atoms in a molecule satisfy, at each time t, the internal 
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constraints within a specified tolerance. It employs two different constraint forces, ( )tGRR

r
 

and ( )tGRV

r
,  to be used in the position and velocity equations, respectively.  

Within the framework of the Velocity-Verlet algorithm, the equations of 

RATTLE become: 

( ) ( ) ( ) ( ) ( )[ ] 2

2
1vrr ttGtF
m

ttttt RRiji
i

iii δδδ
rrrrr

+++=+     (2.33) 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ } tttGttFtGtF
m

ttt RVijiRRijiii δδδδ ++++++=+
rrrrrr

2
1vv   (2.34) 

where ( ) ( ) ( )∑−=
j

ijRRijRRij trttG rr
λ' ,  ( ) ( ) ( )∑ ++−=+

j
ijRVijRVij ttrttttG δδλδ rr ' , and 

( ) ( ) ( )trtrtr jiij
rrr

−= . 

Using the iterative procedure of Ryckaert et al.,134  the ( )tRRijλ  multiplier is 

chosen so that the new positions, ( )ttri δ+r , satisfy the constraints. With this in hand, the 

( )ttRVij δλ +  multiplier is selected so that the velocities are also consistent with the 

constraints. At each step of the simulation, an iterative procedure, where each constraint 

is applied in turn, is continued until all the constraints are satisfied to within the 

acceptable tolerance. 

2.2.5 Nosé-Hoover Thermostat 

MD simulations within the microcanonical (N,V,E) ensemble are easier to perform but 

commonly the type of system considered is a closed system, with a fixed volume, V , a 
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fixed number of particles, N , simulated at a constant temperature, T . Such a system is 

represented by a canonical ensemble or constant (N,V,T).  

In the canonical ensemble, the system can be considered to be in contact with a 

reservoir, assumed to be sufficiently large that any transfer of energy does not change its 

temperature. On the contrary, the temperature of the original (real) system fluctuates in 

time and the instantaneous kinetic energy K  is related to the instantaneous temperature 

T    through:  
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2 rKT        (2.35) 

where N  is the number of particles in the system, Bk  is Boltzmann’s constant, and ipr  

and im  are the momentum and mass of the thi  particle, respectively. 

The Nosé-Hoover thermostat, initially introduced by Nosé135-137 and later 

modified by Hoover,138, 139 has been selected for my MD simulations. The idea behind 

this extended system method is to include an additional degree of freedom s  associated 

with a mass 0>Q  as well as a velocity, s& .  

The Hamiltonian for a system of N  particles, with coordinates ir
r , masses im , 

and potential energy ( )NrrrU rrr ,...,, 21 , plus additional coordinate s  is given by: 
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where Q  is a constant corresponding to the mass of the particle and controlling the rate 

of fluctuations, spr  is the conjugate momentum of s , g  is the number of degrees of 

freedom in the physical system, and ir
r  is the position of the thi  particle.  The form of the 

last term, sTgkB ln , is chosen to guarantee that the algorithm produces averages 

consistent with a canonical ensemble. 

 The Nosé-Hoover equations of motion sample a microcanonical ensemble in the 

extended system, with a constant Nosé’s Hamiltonian ( éNosH ). However, the energy of 

the real system is not constant. The equations of motions from Nosé’s Hamiltonian are: 

i

ii

m
p

dt
rd rr

=          (2.37) 
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ζ==
dt

sd
sdt
ds ln         (2.40) 

where ζ  is a thermodynamic friction coefficient. Eqs. (2.37) to (2.39) form a closed set, 

and Equation (2.40) is used to check the conservation of the Nosé’s Hamiltonian. 

Accompanying fluctuations of ζ , the temperature of the system is regulated as follows. 

When ζ  is negative, the particles move faster raising the temperature of the system as 

seen in Equation (2.38). When the system temperature increases above T , the time 
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derivative of ζ  becomes positive due to Equation (2.39), and the particles slow down. 

Vice versa, when ζ  is positive the particles slow down until the temperature decreases 

below T . 

In this thesis, two independent Nosé-Hoover135, 136, 138 thermostats (one for 

translational and another for rotational motion) have been employed in order to generate 

the canonical NVT ensemble. For isotropic fluids, the use of independent thermostats 

should have little impact but, for the present study, separate thermostats ensure that the 

aromatic rings are not rotationally cold.  

The corresponding conserved quantity, the Nosé-Hoover Hamiltonian, is: 

rBrr
r

tBtt
tfull

NH sTkg
Q

sTkg
Q

EH ln
2

ln
2

22 ++++= ξξ    (2.41) 

where fullE  is the total kinetic and potential energy of the system, and new terms appear 

corresponding to the rotation and translation (denoted with an r  and t  subscript, 

respectively). Thus, tQ  and rQ  are the masses of two fictitious variables, noted ts  and 

rs , and tg , and rg  are the corresponding degrees of freedom. The Velocity Verlet 

integration of the equations of motion that yields the canonical NVT ensemble follows 

the scheme proposed by Martyna et al.140 
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2.3 Hybrid Molecular Dynamics - Monte Carlo Method 

 

In this thesis, MD simulations have been carried out initially in the canonical NVT 

ensemble. Unfortunately, as the temperature-density relationships for the simulated 

molecular systems are not available to us, a large number of simulations have to be 

performed to arrive at a crude phase diagram for the liquid crystal molecules. 

Molecular simulations at constant pressure are attractive as they mimic the 

conditions encountered in laboratory experiments. Generally, MD simulations in the NPT 

ensemble involve isotropic volume changes which are not well suited for smectic phase 

simulations due to different impacts on the intralayer and interlayer spacing. Anisotropic 

volume changes, where only one cell dimension is changed, are far more appropriate. In 

particular, this will allow independent adjustment of the interlayer spacing.  

Although anisotropic changes in the simulation cell can be accommodated within 

the Lagrangian formalism,121 the method becomes significantly more complicated due to 

the complexity of the simulated mesogens. Instead, for the isothermal-isobaric (NPT) 

simulations of liquid crystal phases in this thesis, I have opted to employ a combination 

of the MD and MC methods, in which the shape and dimensions of the box are allowed to 

vary in order to accommodate different structures and structural spacing (i.e. the 

simulation cell must accommodate an integral number of smectic layers).  

This hybrid MD-MC method follows the steps: 
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 During the production time of a simulation, identify when a MC move is attempted 

(i.e. an attempt is made every 256 iterations), and evaluate the potential energy of the 

current state oldU , and the volume oldV ; 

 A random number generated from a uniform distribution in the interval [0,1] is used 

to decide which side of the simulation cell (i.e. xL , yL , or zL ) will be changed,  and 

the maximum allowed volume change ( Vδ ); 

 The coordinates of all the atoms in the simulation box have to be changed, since an 

increase in volume will lead to cavities forming at the boundaries of the simulation 

box, while a decrease in volume will lead to overlap of molecules in same regions. 

Specifically, the coordinates of all molecules in the simulation box are changed by 

scaling the coordinates of the centers of mass of each molecule by the scaling factor 

evaluated as the ratio of the new to the old  box lengths, so that the whole molecule 

is moved whilst its intramolecular configuration (i.e. internal geometry) is left 

unchanged;  

 The potential energy of the new state newU , and the volume newV  are evaluated; 

 The selection criterion for accepting the move from the old  state to the new  state 

is:119 
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 where p  is the pressure of the system, TkB1=β , and Bk  and T  are  Boltzmann’s 

constant and  the system temperature, respectively. 

• If ( ) ( )[ ] ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+−

old

new
oldnewoldnew V

V
NVVpUU ln1β > 0, then accept the 

move, otherwise: 

• If ( ) ( )[ ] ( )
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⎬
⎫
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⎛
+−−+−

old
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oldnewoldnew V

V
NVVpUU ln1exp β  is greater than a 

random number between [0,1] accept the move, otherwise reject it. 

 If the move is accepted, then the positions of all the molecules are updated, a new 

cutoff distance for the LJ potential is possibly required, and the new density is 

evaluated. The MD sequence continues. 

 If the move is rejected, the old positions are kept and the MD sequence is continued. 

It is important to note, that since the scaling of the simulation cell is anisotropic, this 

algorithm allows the simulation cell to change shape and size. 
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2.4 Force Field 

 

Interactions between particles are treated using potential functions derived from classical 

mechanics. Individual potential functions are used to describe different types of 

interactions (e.g. bonded and non-bonded interactions). The combination of all these 

potential energy functions and the parameters used for their evaluation is known as a 

“force field”.110 An accurate force field, used to supply the potential energy for molecular 

dynamics computations, plays an important role in the success of any simulation.  

There are many efficient force fields to be use in computer simulations. 

Traditionally, force fields are derived from high-quality experimental data and/or high-

level quantum mechanical calculations. Different force fields make use of special forms 

of interactions within and between the particles of a system depending on the intended 

use.129 For instance, the MM family of force fields (i.e. MM2,141-144 MM3,145 and 

MM4146) is regarded as the “gold standard” as they have been derived and parameterized 

based on the most comprehensive and highest quality experimental data.110 They have 

been designed to accurately predict the molecular structure and properties of small 

organic molecules (e.g. alkanes, non-conjugated alkenes, aldehydes, ketones, ethers, 

esters, alcohols, acids). Particular to this type of force field is the fact that in order to 

reproduce accurately the experimental data it is necessary to use complicated functional 

forms. Consider the MM3 force field.145 It employs harmonic functional terms only for 

bond stretching, and takes into account nine different interactions of which there are 
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several types of cross terms, in addition to modelling the non-bonding potential via a 

combination of electrostatic and Hill terms. 

On the other hand, the OPLS147, 148 (Optimized Potential for Liquid Simulations), 

CHARMM149 (Chemistry at HARvard Macromolecular Mechanics) and AMBER150-152 

(Assisted Model Building with Energy Refinement) force fields have been designed to 

model large biological molecules (e.g. proteins, nucleic acids, and DNA in the case of  

AMBER110). As a result, this type of force field often uses simpler functional forms (i.e. 

only harmonic terms for the bond stretching and bending), may employ the united atom 

approximation, and models the non-bonding interactions via Lennard-Jones and 

electrostatic potentials. 

Usually, force fields use potentials of the general form:110 

vdWelectrtorsionimptorsionbendstretch UUUUUUU +++++= −    (2.43) 

in which the potential energy of a system, describing the N3  positions of its atoms, is 

composed of intramolecular parts, accounting for the bonded interactions, and 

intermolecular parts, representing the nonbonded interactions. 

The intramolecular part of a force field typically includes bond stretching 

( stretchU ), bending ( bendU ), improper torsion ( torsionimpU − ), and torsional ( torsionU ) 

energies. In order to improve the accuracy of the models, some force fields include 

additional terms to account for effects that are not covered by the terms above. For 

instance, cross term energies ( crossU ) are required to account for some interactions, like 
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the stretch-stretch, stretch-bend, bend-bend, stretch-torsion, bend-torsion, or torsion-

torsion coupling.110, 129 

The stretching and bending potentials are usually treated similarly; the energy 

increases with the displacement of the bond between atoms A and B or the bond angle 

from equilibrium values, eqr  and 0θ , respectively, where bk  and θk  are the 

corresponding force constants, while bondsN  and bendsN  are the corresponding numbers of  

bonds and bends (see Figure 2.3): 
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Figure 2.3 Schematic representation of the intramolecular equilibrium parameters eqr , 0θ , andφ . 

 

The total torsional energy, torsionU , is the sum of the torsional energies of all 

dihedralN  dihedral angles, φ . Each term captures the torsional cost of motion between 
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atoms separated by three bonds, such as the atoms A  and D  in Figure 2.3. The energy of 

this motion is modeled via a Ryckaert-Bellmans potential:153 

( )ni
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i n
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dihedrals

cU φcos
1

6

0
∑ ∑
= =

=        (2.46) 

where nc  is the torsional force constant. 

To ensure that the arrangement of a four atom system ABCD (Figure 2.4), where 

the central atom D  is bonded to other three atoms (e.g. a sp2 hybridized carbon atom in 

carbonyl group), remains essentially planar, an improper torsion term is defined: 

( )20
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ii
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i

torsionimp
impropers

kU ωωω −= ∑
=

−       (2.47) 

where ωk  is the force constant, and, iω and i
0ω  are the current out-of-plane ith angle and 

its equilibrium value.  

 

 

 

 

 

 

Figure 2.4 Schematic representation of an ABCD improper dihedral angle. 

 

As seen in Figure 2.4, the angle torsion defined in this case, ω , usually referred 

as an “improper torsion” (dihedral ABCD), is the angle between the plane containing the 
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first three atoms (ABC) and the plane containing the last three (BCD). The use of a 

harmonic potential ensures that the additional energy contribution coming from this 

particular improper torsion is zero when the angle between the two planes is at its 

equilibrium value i
0ω . 

The nonbonded interactions account for the electrostatic interactions described via 

a Coulomb potential ( electrU ) as well as the dispersion and short-ranged repulsion 

interactions captured by a Lennard-Jones potential ( LJU ). A third type of non-bonding 

energy term considered in some force fields is the polarization energy.129 

Most of the time, the electrostatic energy is obtained by summing the pairwise 

Coulombic interactions between atoms i  and j  with partial charges iq  and jq  according 

to Equation (2.17). 

The Lennard-Jones39 inverse 12:6 potential, LJU , capturing dispersion 

interactions and  short-range repulsive interactions, has the form: 
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where ijr  is the distance between the centre of particle  j  and the centre of particle  i, ijε  

is the well depth parameter, and 
ij

σ  is the length parameter. A schematic representation 

of the Lennard-Jones potential is plotted in Figure 2.5. The 121 ijr term produces the 

repulsive part of the curve, while the 61 ijr term is responsible for the attractive part. 
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Figure 2.5 Representation of the Lennard-Jones potential as a function of interatomic separation. 

 

To summarize, the reliability of molecular mechanical force fields relies on the 

parameters and the potential energy functions used to describe the total energy of a 

model. Parameters have to be optimized for a particular set of potential energy functions, 

and thus they are usually not transferable to other forms of force fields. 
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2.5 Analysis of Simulation Data 

 

Knowledge of the order parameter(s) and pair distribution functions provides a route to 

the identification of the phase of the molecular system being simulated and the 

characterization of its structure. Moreover, “snapshots” offer a complementary way to 

analyze the phase structure. Specifically, a snapshot provides an instantaneous picture of 

the molecular organization in the phase at a certain time during the simulation but it is not 

the average structure. By blending snapshots taken during the simulation runs, a movie 

reflecting the movement of the molecules in time can be obtained. To characterize the 

dynamic properties of a phase, the diffusion coefficients have also been evaluated. 

Properties of liquid crystal phases are often expressed relative to the director and 

layer normal. To measure the long-range order in the simulated systems, one can define  

orientation vectors within the molecules, such as the bonds in alkyl chain or the long axis 

of a rigid molecular segment. Then, with a chosen molecular vector, ( )tuα
r , the 

instantaneous average over these molecular types of vectors defines a director, ( )tD
r

. 

Order relative to the director is assessed by evaluating: 

( ) ( )∑
=

=
N

nn P
N

tP
1

αcosθ1

α
       (2.49) 

where the sum runs over all N molecules in the simulation cell, ( )cosθnP  is a Legendre 

polynomial, and ( ) ( )( ) ( )DutDtu αα

rr
⋅=αcosθ .  For a given choice of vector, consistency 

in alignment of the vectors between the molecules in the fluid indicates the degree of 
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orientational ordering. ( )tP2  is the most commonly used order parameter. It vanishes in a 

completely disordered isotropic phase and it is equal to unity for a perfectly ordered 

phase. 

In practice, ( )tP2  is evaluated by constructing the Q  tensor. By summing over all 

N  molecules in the system and averaging over all configurations, the Q  tensor is 

evaluated as:119 

[ ]abba
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uu
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Q δαα
α

αβ −= ∑
=1

3
2
1   zyxba ,,, =       (2.50) 

where auα  is the a  component of the chosen orientational vector for molecule α . The 

largest eigenvalue of the Q  tensor defines the ( )tP2  order parameter of the fluid, and the 

corresponding eigenvector is the director of the fluid, ( )tD
r

. 

For example, in the 2PhP and 5PhP molecules (Figure 1.5) three vectors have 

been defined as follows: the most relevant vector joins the phenyl and pyrimidine rings in 

the molecular core, and the other two vectors are along the carbon-carbon bonds 

decoding the order within the hydrocarbon tails. For each of these three vectors, the 

( )tPn , for 41−=n , along with the associated directors have been calculated, and the 

instantaneous and time averaged order parameters, ( )tPn  and ( )tPP nn =  respectively, 

will be reported in Chapter 4.  

It is important to note that in a SmA layer, the molecular orientation is on average 

perpendicular to the layer plane, so that the layer normal and the director coincide (Figure 
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1.1 (b)). On the contrary, in a SmC phase, the molecules tilt within layers, thus the layer 

normal is tilted to the director by a nonzero angle. The instantaneous layer normal has 

been calculated within the simulations to identify the presence of tilted SmC phase. A 

layer normal definition is conceptually very simple but difficult to calculate within 

simulations of complicated mesogens. After several attempts, I ultimately defined the 

local layer normal, ( )tLi
r

, for each molecule and evaluate the global layer normal, ( )tL
r

, 

and associated ( )tP2  order parameter via Equation (2.49). 

Specifically, the local layer calculation154 proceeds by choosing a site within the 

molecular core and finding equivalent sites in all neighbouring molecules within a radius 

of 6.36 Å. This distance is chosen so that at least two other molecules are generally found 

within the volume but molecules from neighbouring smectic layers are too far away to 

contribute to the calculation of local layer normal. In my case, the chosen site is one of 

the rings, and I have verified that both phenyl and pyrimidine rings yielded equivalent 

results, as did the normal defined using the midpoint of the ring centers. With the 

molecular site chosen, the position of this site along with the positions of all equivalent 

sites within nearby molecules are least squares fitted to a plane, and the vector normal to 

this plane is defined as the local layer normal, ( )tLi
r

. In cases where too few neighbours 

are found, the molecule is not assigned a local layer normal. The global layer normal, 

( )tL
r

, is obtained by summing over all N  molecules in the system with a local layer 

defined and averaging over all of these local layer normals.  
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Moreover, the instantaneous angle between the phase director, ( )tD
r

, and the 

global layer normal, ( )tL
r

, provides information on the phase; thus a SmA phase is 

expected to yield an angle of roughly zero while a SmC phase will have a nonzero 

average angle. The assessment of the phase via the angle between the director and the 

global layer normal is difficult within a simulation since the layers may be tilted relative 

to each other, due to constraints imposed by the size and shape of the simulation cell. 

Consider the following two definitions of the relative angle: 

( ) ( )( )tLtD
rr

⋅= −1
1 cosθ        (2.51) 

( ) ( ) ( ){ }∑
=

− ⋅=
N

LutLtu
N 1

1
2 /cos1

α
ααααθ

rr      (2.52) 

where the angular brackets denote time averaging.  For 1θ , all molecules contribute to the 

global director and layer normal, and the angle is calculated based on these average 

directions. This method implicitly includes any tilting between layers. The second 

method, yielding 2θ , is based on local differences in molecular tilt and local layering. 

Equation (2.52) will yield angles that are insensitive to relative layer orientations. 

When all local layers normal coincide with all local directors, 1θ  and 2θ  will 

average to zero. If the local layers are always perpendicular to the molecular director, 

then 2θ  will average to 90 degrees. These results are straightforward but, since the local 

layer normal can point in either direction (up and down from the layer), an ambiguity 

exists in the calculation of 2θ . By convention I always choose the smallest angle between 
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the local layer normal, ( )tLα
r

, and the local director, ( )tuα
r , so that completely random 

relative orientations yield a value of 57.3 degrees for 2θ . Both global and average tilt 

angles are important tools in order to distinguish between a titled and a nontilted smectic 

phase.  

More information about the structure of a phase is contained in pair distribution 

functions, which give the probability of finding two particles with particular positions and 

orientations, relative to that for a completely random distribution at the same density (i.e. 

the ideal gas). The simplest of these is the radial distribution function (RDF), ( )rg , which 

gives the probability of finding a particle at a distance r  from another, irrespective of 

their orientations. A schematic representation of ( )rg  is shown in Figure 2.6. 

 

 

 

 

 

Figure 2.6 Radial distribution function uses a spherical shell of thickness rd around the central 
particle. 

 

The radial distribution function is normalized, such that in the absence of 

positional correlations it is unity. It is defined as:119 

 r 

dr
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( ) ( )∑∑
≠

−=
N

i

N

ij
ijN

Vrg rrδ2        (2.53) 

where ( )rδ  is the Dirac delta function, 2N
V  normalizes the RDF relative to the 

probability expected for a completely random distribution at the same density, and ijr  is 

the interparticle separation. In computer simulations, ( )rg  is calculated by counting the 

number of pairs found between r  and rr δ+  and comparing to the number expected in 

an unstructured fluid. 

The RDF is a useful tool to describe the structure of a system. For an unstructured 

fluid, the RDF is equal to unity, as there is an equal probability of finding another particle 

at any given separation in space. The RDF of a liquid is intermediate between those of  a 

solid and a gas and shows a smaller number of peaks with a decay in the height of the 

peaks at short distances and an eventual converge to unity (i.e. there is no long-range 

order).  

For complex molecules, it is typical to calculate a number of site-site distribution 

functions as well. Here, a “site” may be an entire ring or atoms within a ring. Consider, 

for instance, the case of a benzene simulation by means of an atomistic model. It is 

customary to define ( )rg  not only in terms of molecular centre-of-mass but also in terms 

of site-site RDFs with a particular RDF for each possible distinguishable atomic 

combinations, such as ( ),rgCC  ( ),rgCH  and ( )rg HH . One advantage of using the 
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interatomic radial distribution functions is that they can be directly correlated with 

information obtained from neutron scattering and X-ray experiments.155 

The anisotropy of liquid crystal phases requires the introduction of additional 

positional distribution functions to reflect this structural feature (i.e. the properties of a 

material depend on the direction in which they are measured). Using the director, ( )tD
r

, 

or layer normal, ( )tL
r

, as reference vectors, intermolecular distributions are divided into 

components parallel and perpendicular to the chosen vector. If the layer normal is given 

by ( )tL
r

, then the vectors Lr||
r  and Lr⊥

r  are obtained as ( )LLr ij
L rrrr

⋅= r||  and L
ij

L rrr ||
rrr

−=⊥ , 

as shown in Figure 2.7 (a). 

  

(a) (b) 

 

 

 

 

 

 

   (a)      (b) 

Figure 2.7 Schematic representation of the Lr||
r

 and Lr⊥
r

 vectors relative to layer normal L
r

 in 

(a), and of the Dr||
r

 and Dr⊥
r

 vectors relative to director D
r

in (b). The interparticle vector, ijrr , is 
identified by a thick black arrow.  
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The longitudinal radial distribution function, ( )||
/

||
rg LD , is defined as:156 
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where ||r  is the component of separation between the two particles resolved along the 

chosen vector (either director, ( )tD
r

, or layer normal ( )tL
r

 ), and  
|||||| , rrrn δ+  is the number 

of intermolecular pairs with a projection along the same vector between ||r  and |||| rr δ+ . 

0n is the corresponding number expected in an unstructured fluid. 

Analogously, there is a transversal radial distribution function, ( )⊥
⊥

rg LD / , 

evaluated as: 
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where ⊥r  is the component of the separation resolved perpendicular to the chosen vector, 

and 
⊥⊥⊥ + rrrn δ,  is the number of intermolecular pairs with a projection perpendicular to 

the vector between ⊥r  and ⊥⊥ + rr δ .  

In a SmA phase, where the director and layer normal coincide, the choice of 

vector is irrelevant, and ( )||
/

||
rg LD  describes interlayer structure (i.e. determines, at least 
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approximately, the spacing - called “layer spacing” - between the smectic layers), whilst 

( )⊥
⊥

rg LD /  illustrates the molecular distribution within the layer.  

Furthermore, longitudinal distribution functions ( )||||
rg D  and ( )||||

rg L  allows us to find 

a third approach to the calculation of a relative angle. The peak position in the former 

will appear at longer separations than for the latter in a SmC phase (see Figure 2.7). The 

angle extracted from these peak positions is directly comparable to the tilt angle obtained 

from optical measurements.16 

Another function useful for characterizing the structure of a fluid, is the second-

order correlation function, ( )rg 2 , evaluated as: 

( ) ( )
r

Prg αβθcos22 =         (2.56) 

where αβθ  is the angle between the orientational vectors of molecules α  and β . This 

function vanishes when the molecular orientations are uncorrelated, reaches -0.5 when 

the molecules are in an orthogonal arrangement and approaches unity when parallel 

molecular alignment is highly probable. Characteristic of the isotropic phase is that ( )rg 2  

is short ranged but the range increases for nematic and smectic phases. At large 

separations, ( )rg 2  approaches the square of the second rank order parameter, i.e. 

( ) 2
22 Prg →  when ∞→r . 

In addition to collecting structural information, time correlation functions 

characterizing the dynamic properties of a system have been considered. The mean 
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square displacement (MSD) is a measure of the average distance a particle travels and it 

is evaluated as: ( ) ( ) 20ii rtrMSD rr
−= , where ( )tri

r  is the position vector of the thi  

particle at time t . The angle brackets indicate that the magnitude of this vector is 

averaged over many such time intervals; often, it is averaged also over all N  particles in 

the system. For fluids, the mean square displacement continually increases with time, 

varying linearly at long times according to the generalized Einstein formula:119 

( ) ( )
dt

rtr
D

ii

t 2

0
lim

2rr
−

=
∞→

       (2.57) 

where D  is the diffusion coefficient, d  is the dimensionality of the system (usually in 

three dimensions), and ( )0ir
r  and ( )tri

r  are the thi  particle positions at zero time and time 

t . For solids, the mean square displacement becomes constant rather than continually 

increasing with time. 
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Chapter 3 

Molecular Models 

 

The development of accurate, reliable, and computationally feasible interaction models is 

the scope of molecular modelling. There are different types of model potentials which 

can be used for liquid crystal molecules, as follows: fully atomistic (FA),21 united atom 

(UA),22 and coarse-grained (CG) models.157 Although coarse-graining can be carried out 

at a variety of levels,157 the common idea is to design a way of retaining information 

about the chemical structure while limiting computational expense.158 The 

implementation of CG models is usually divided into two distinct stages: the partition of 

the system into larger CG structural units, and the construction of an effective force field 

to describe the CG units. Depending on the way the system is partitioned, there are two 

possible ways of coarse graining, namely single-site and multi-site CG models. Unlike 

the single-site CG model which assimilates a whole molecule into a non-spherical site, 

the multi-site CG model commonly uses both spherical and non-spherical sites to 

represent a molecule.  

For example, the 5CB mesogen (Figure 3.1) can be represented by only one site if 

the single-site coarse-grained model is used (a), by nine sites if a multi-site coarse-

grained model is employed (b), by 19 sites in the case of a united atom model, and by 38 

sites in a fully atomistic representation model (c).  



 

 85 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3.1 Single-site coarse-grained (a), multi-site coarse-grained (b), and full atomistic50 (c) 
model representations of the 4’-n-pentyl-4-cyanobiphenyl (5CB) mesogen. 

 

In choosing which of the model potentials to use, one needs to consider the 

complexity of the real mesogenic molecule, the required simulation time, and the number 

of molecules to be simulated. In the case of 2PhP and 5PhP molecules (Figure 1.5), 

adopting the single-site representation comes with the cheapest computational cost at the 

expense of losing the particularities of each mesogen. In other words, a single-site CG 

model will not be able to distinguish between the two mesogens. In contrast, using a full 

atomistic representation comes with the highest and almost unfeasible computational cost 

but the difference between the two mesogens is completely taken into account. My 

(a) 
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approach for representing the two mesogens is to use a multi-site CG model that 

explicitly considers the inter-ring torsion while significantly reducing the computational 

cost. The molecular flexibility is important since the complex phase behavior of 

mesogenic molecules is the result of a delicate balance between subtle energetic and 

entropic effects.159 In fact, small changes of chemical structure can lead to significantly 

different organization (large positional and orientational order) in a particular phase, and 

hence to fundamentally different macroscopic properties. 

The multi-site coarse-grained potential, adopted in this thesis, contains 

intramolecular terms, controlling the energetic costs for molecular conformations, and 

intermolecular terms, accounting for the interactions between all pairs of atoms on 

different molecules, or within the same molecule if the atoms are not close to each other.  

In this hybrid model, all aromatic units are represented as discotic ellipsoidal 

Gay-Berne (GB) sites, and the flexible chain units by spherical Lennard-Jones (LJ) sites. 

For instance, in the 2PhP and 5PhP models both benzene and pyrimidine rings are 

represented as GB ellipsoids, and the methyl and methylene groups of the alkyl chains, as 

well as the oxygen atoms, are represented as spherical LJ sites. Thus, in the multi-site 

coarse-grained model adopted in this thesis, the force field contains three different non-

bonding terms to account for pairwise dispersion and repulsive interactions. The 

intermolecular potential is given by the sum of the electrostatic potential, with the form 

of Equation (2.17), and by the sum of the interaction potentials between two identical 

(LJ/LJ or GB/GB) or unlike (LJ/GB) sites: 
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where LJN , GBN , and chN  represent the number of Lennard-Jones, Gay-Berne, and total 

number of charges, respectively. 

The interactions between any two spherical sites, representing the oxygen atoms 

as well as methylene and methyl units, are modeled using the Lennard-Jones39 inverse 

12:6 potential, LJLJ
ABU / , given by Equation (2.48). For the LJ sites, values of 9330 .=LJσ Å 

and 598600 .=LJε  kJ/mol, taken from the work of Leggetter and Tildesley,160 are used 

throughout this thesis. To describe the interactions between two aromatic rings, a Gay-

Berne interaction potential, GBGB
ABU / , is employed. Finally, when a methylene or methyl 

unit interacts with an aromatic ring, the potential is described by the GBLJ
ABU /  potential. 

Specifically, the intermolecular potential is calculated for all pairs of atoms except when 

two atoms belong to the same molecule and are less than four bonds apart.  

The first section of this chapter describes the development of molecular models 

for the host and dopant molecules based on extensive series of density functional 

calculations. The form of the Gay-Berne potential, GBGB
ABU / , is presented and discussed in 

the second part of this chapter. Here, the approach used in order to parameterize the GB 

potential is described along with the work done in order to check the validity of the 

selected sets of GB parameters to model more complex mesogenic molecules. 
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3.1 Intramolecular Potential 
 

The ab initio methods, described in Section 2.1, have been used to calculate the bond 

lengths, bond angles, dihedral angles, improper dihedral angles, and charges on all atoms 

of each molecule. A broad set of ab initio geometry optimizations have been done to 

examine the structure and flexibility of the host and dopant molecules. Since the 

molecules are so large, each terminal alkyl chain has been replaced with a single methyl 

group for the ab initio calculations. This truncation was done for all the molecules, except 

for one of the dopant molecules (i.e. the Dop5a-NO2 shown in Figure 3.6), in which the 

ethyl group has been considered explicitly. Due to this simplification, the atomic charges 

corresponding to the part of flexible alkyl chains that was not optimized are set to zero.  

The geometry optimizations have been carried out using the GAUSSIAN 03161 

electronic structure program, using Density Functional Theory, with the B3LYP 

functional162 and the 6-311++G(d,p) basis set.163, 164 Polarization and diffuse functions 

were used in order to capture the interactions between atoms that are relatively far apart. 

The basis set employed was also imposed by the complexity of the molecules. Using the 

CHELPG algorithm165 at the global energy minimum of each molecule, the atomic 

charges have been evaluated. For the aromatic rings, a partial charge, equal to the net 

charge on the ring atoms, is placed at the centre of the ring. The charge on each 

individual site (i.e. atom or group of atoms) along with the site numbering is available in 

Appendices A and B, for the host and dopant molecules, respectively. 
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The full intramolecular potential used in this thesis contains energetic 

contributions from angle bending, and dihedral torsions, except for the Dop5a-NO2 

molecule in which an improper torsion term, torsionimpU − , has been added to restrict the 

out-of-plane motion of the carbonyl group:  

torsionbend UUU +=ularintramolec        (3.2) 

The bond stretching potential, stretchU , given by Equation (2.44), is omitted in this thesis 

as all the bond lengths have been kept fixed at their equilibrium value using the RATTLE 

algorithm.133 The equilibrium bond lengths have been extracted from the global energy 

minimum structure for the 2PhP, 5PhP, Dop5a-NO2, and Spiro molecules. For the alkyl 

chain, the equilibrium bond lengths and the corresponding force constants are taken from 

the work of Leggetter and Tildesley.160 

The bending potential is given by Equation (2.45). The equilibrium angles are 

obtained from the global minimum energy configuration. The corresponding force 

constants are obtained from a least-squares fit to eleven B3LYP/6-311++G(d,p) restricted 

geometry optimizations, where the angle of interest is given a value within 050 ±θ , but 

the remaining degrees of freedom are allowed to relax. For the alkyl chain, the 

equilibrium angle value and the bond angle force constant are taken from the work of 

Leggetter and Tildesley.160 Since the GB sites are bonded via their centres of mass, it is 

necessary to include an angle term for each site bonded to a GB particle. These terms, 

involving the angle between the long axis of the GB sites and the bond between them and 

the attached LJ sites, prevent the free rotation of GB particles around their centres of 
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mass. For these angles, values of o180=oθ  and force constants of values similar to the 

C-C-C bond angles are assigned.  

A Ryckaert-Bellemans153 type potential is used for torsional motion. Between 

eighteen to thirty-six B3LYP/6-311++G(d,p) restricted geometry optimizations, in which 

the selected dihedral angle is frozen at a fixed value while the other degrees of freedom 

are allowed to vary, were performed in order to describe each torsion. The expression of 

the torsional potential is specified by Equation (2.46). For the alkyl chain, the nc  

expansion coefficients are taken from the Leggetter and Tildesley’s work.160 

An improper torsional potential, expressed by Equation (2.47), has been used to 

impose planarity around the carbonyl groups inside the Dop5a-NO2 dopant molecule 

during simulations. The equilibrium angle values are extracted from the global minimum 

energy configuration. The corresponding force constants are obtained from least-squares 

fits to twenty B3LYP/6-311++G(d,p) restricted optimization calculations for angles 

within o5± of the corresponding equilibrium values. 

3.1.1 Host Models 

The host molecules considered in this thesis are: 2-(4-butyloxyphenyl)-5-octyloxy-

pyrimidine (2PhP), and 5-(4-butyloxyphenyl)-2-octyloxypyrimidine (5PhP). A schematic 

representation of 2PhP and 5PhP molecules, using the multi-site coarse-grained approach 

employed in this thesis, is presented in Figure 3.2 (a).  
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(a) 

 
1φ                                       2φ                                         3φ  

φ

(b) 

(c) 

Figure 3.2 (a) A schematic multi-site coarse-grained representation of the 2PhP and 5PhP 
molecules. The aromatic units, oxygen atoms, methylene groups, and methyl groups are shown in 
yellow, red, grey, and blue, respectively. (b) Structure of the 2PhP molecule. (c) Structure of 
5PhP molecule. The site numbering and the torsion indexing will be used throughout this thesis.  

 1φ                                          2φ                                       3φ  

1φ                                          2φ                                         3φ  

 OS                  OS

OS                   OS
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Furthermore, Figures 3.2 (b) and (c) show the site numbering used to identify atoms or 

group of atoms and the “ghost’ orienting sites (noted OS), corresponding to the ∞C  

symmetry axis of the GB sites.  

Both host molecules are represented by an equal number and type of sites (i.e. 14 

spherical LJ and two discotic ellipsoidal GB sites). On the other hand, the models are still 

unlike in that the torsional potentials between the phenyl and pyrimidine rings as well as 

the charges on the two GB sites are different. The inter-ring torsions are vital in 

modelling the liquid crystalline phases of the 2PhP and 5PhP molecules. Figure 3.3 

presents a comparison of the 360º rotation over the GB(7)-GB(6) bond, corresponding to 

the inter-ring 2φ  dihedral angle in both 2PhP and 5PhP molecules. 

 

Figure 3.3 Comparison between the phenyl-pyrimidine angle torsional energies. Ab initio points 
are represented by filled squares for 2PhP molecule and open circles for 5PhP molecule, 
respectively. The solid lines show the torsional potentials obtained by fitting. 
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As it is well-known for the biphenyl molecule,166, 167 the ring-ring torsional barrier 

is influenced by the competition between the steric repulsion of the ortho neighbouring 

hydrogen atoms belonging to the two rings, minimized when the two rings are 

orthogonal, and stabilization arising from the inter-ring π conjugation, enhanced by the 

planar configuration. In the case of 2PhP molecule, the planar configuration is preferred. 

In contrast, in the case of the 5PhP molecule, the competition gives a global minimum at 

around 40º, as the steric repulsion is equalized by the inter-ring π conjugation. The 

different positions of the nitrogen atoms in the pyrimidine ring of the two host molecules 

account for the difference in the preferred relative ring orientations and the significant 

difference in the associated torsional energy barriers (i.e. 40 kJ/mol, and 8 kJ/mol for the 

2PhP and 5PhP molecules, respectively).  

In the host molecules, ab initio calculations have been performed for all motions 

involving an aromatic ring. Within the core, bending potentials are introduced to preserve 

linearity along the O(5)-GB(6)-GB(7)-O(8) axis (see Figures 3.2 (b) and (c)). Since the 

ring atoms are not explicitly included in the potential, each ring is represented by its 

center via a GB site, and by a “ghost” site placed on the vector normal to ring plane and 

passing through the centre. These “ghost” sites are identified as orienting sites OS(17) 

and OS(18) in Figures 3.2 (b) and (c). Bending distortions of the ring can be represented 

via these two points. For instance, an O(5)-GB(6)-GB(7) potential accounts for the in-

plane energetic cost of a bend at GB(6). Likewise, an OS(17)-GB(6)-O(5) bend potential 

provides an energetic cost for out-of-plane motion of the ring. 
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Consider first the 2PhP host molecule. The force constants corresponding to the 

C(9)-O(8)-GB(7), and GB(6)-O(5)-C(4) bends have been calculated as 347.82 kJ mol-1 

rad-2, and 368.81 kJ mol-1 rad-2, respectively. Likewise, the torsions about the GB(6)-

O(5), and O(8)-GB(7) bonds, corresponding to 1φ  and 3φ  dihedral angles (see Figure 3.2 

(b)) have been considered. The fitted potentials, presented in Figure 3.4, reproduce very 

well the ab initio energies. Each dihedral angle has a minimum at around 0º, so that the 

C(4) and C(9) are in the same plane as their nearest ring. The energy barriers have been 

evaluated at 11.30 kJ/mol and 14.27 kJ/mol for the motion about GB(6)-O(5) and O(8)-

GB(7) bonds, respectively. 
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Figure 3.4 Torsional barriers from B3LYP/6-311++G(d,p) ab initio calculations. The torsional 
potentials are given for the rotation about (a) GB(6)-O(5), and (b) O(8)-GB(7) bonds in the 2PhP 
molecule, corresponding to the 1φ  and 3φ  dihedral angles, respectively. Ab initio points are 
represented by filled squares and fitted potentials by solid lines. 
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For the 5PhP host molecule, the force constants corresponding to the C(9)-O(8)-

GB(7) and GB(6)-O(5)-C(4) bends have been calculated. The corresponding force 

constants are 350.69 kJ mol-1 rad-2, and 379.77 kJ mol-1 rad-2, respectively. The motions 

about the GB(6)-O(5) and O(8)-GB(7) bonds, corresponding to 1φ  and 3φ  dihedral 

angles in the 5PhP molecule (see Figure 3.2 (c) ) have been evaluated and the comparison 

between the fitted and ab initio potentials is shown in Figures 3.5 (a) and (b), 

respectively.  
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Figure 3.5 Torsional barrier from B3LYP/6-311++G(d,p) ab initio calculations. The torsional 
potential are given for the rotation about (a) GB(6)-O(5), and (b) O(8)-GB(7) bonds in the 5PhP 
molecule, corresponding to the 1φ  and 3φ  dihedral angles, respectively. Ab initio points are 
represented by filled circles and fitted potentials by solid lines. 
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Both dihedral angles have their minimum at around 0º, with the C(4) and C(9) 

atoms in the same plane with the nearest ring. The torsional energy barriers are higher 

than for the 2PhP molecule; barriers of 13.33 kJ/mol and 29.26 kJ/mol for the motion 

about GB(6)-O(5) and O(8)-GB(7) bonds, respectively.  

The charge on each individual site, along with the equilibrium bond lengths, as 

well as the full sets of bending, and torsional potential parameters, calculated in this 

thesis or that have been taken from literature,160 are presented for the two host molecules 

in Appendix A. 

3.1.2 Dopant Models 

The 5,5’-bis(heptyloxy)-2,2’-spirobi[indene]-1,1’(3H,3’H)-dione (Spiro) and the 

2,2’,6,6’-tetramethyl-3,3’-dinitro-4,4’-bis[(4-alkyloxybenzoyl)-oxy]biphenyl (Dop5X-

NO2) are the two chiral molecules acting as dopants in the presence of the 2PhP and 5PhP 

hosts. As mentioned in Section 1.4, in the family of Dop5X-NO2 molecules the alkyl 

chain length is represented by X, and it is formed of 1, 8, and 9 carbon atoms in the 

Dop5a-NO2, Dop5d-NO2, and Dop5e-NO2 molecules, respectively. The discussion that 

follows refers exclusively to the Dop5a-NO2 molecule, given that the main difference 

between these dopants is the length of the hydrocarbon chains. Since literature potentials 

are used for the hydrocarbon chains, the other dihedral angles, bending angles, improper 

dihedral angles, and the corresponding force constants calculated for the Dop5a-NO2 

molecule would be transferable to other Dop5X-NO2 molecules. 
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Figure 3.6 (a) shows the schematic multi-site coarse-grained representation of the 

Dop5a-NO2 molecule. Consider the site numbering presented in the Figure 3.6 (b), where 

the “ghost” orienting sites assigned to the rings are numbered as OS(15), OS(16), OS(17), 

and OS(18). For Dop5a-NO2 molecule, the intramolecular motion is divided into 18 

bends, 13 torsions, and two improper torsions.  

 

 
(a) 

 

 

 

(b) 

Figure 3.6 (a) Schematic multi-site coarse-grained representation of Dop5a-NO2 molecule. The 
ellipsoidal GB sites are colored yellow, the oxygen atoms and the methylene and methyl groups 
are represented by red and grey spherical LJ sites, respectively. (b) Structure of the Dop5a-NO2 
molecule. The site numbering and the torsion indexing will be used throughout this thesis.  
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Within the ring regions, four bending potentials have been included in order to 

maintain linearity along C(4)-GB(3)-O(2), GB(7)-GB(6)-O(5), O(8)-GB(7)-GB(6), and 

O(11)-GB(10)-C(9) axes, while another four are used to describe the out-of-plane motion 

of the rings (i.e. OS(15)-GB(3)-O(2), OS(16)-GB(6)-O(5), OS(17)-GB(7)-GB(6), and 

OS(18)-GB(10)-C(9)). The discussion focuses only on five twisting motions, as follows: 

1φ  – corresponding to torsion about OS(17)-GB(7)-GB(6)-OS(16); 2φ  – corresponding to 

torsion about OS(17)-GB(7)-O(8)-C(9); 3φ  – corresponding to torsion about O(14)-C(9)-

O(8)-GB(7); 4φ  – corresponding to torsion about OS(18)-GB(10)-C(9)-O(8), and finally, 

5φ  – corresponding to torsion about OS(18)-GB(10)-O(11)-C(12). Other torsions can be 

obtained by symmetry, since this dopant molecule has a 2C  symmetry axis. 

For the inter-ring torsion about the GB(7)-GB(6) bond (see Figure 3.7), the almost 

orthogonal conformation of the two phenyl rings corresponds to the minimum energy. 

This is due to the steric repulsion between the 2,2’ and 6,6’ methyl group substituents. 

The energy barrier between the minimum and planar conformations is a significant 150 

kJ/mol. The fitted potential shows that a degree of flexibility is still present, since at room 

temperature the dihedral angle is allowed to twist ±20º around the minimum with less 

than 10 kJ/mol energy penalty. 
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Figure 3.7 Torsional barrier from B3LYP/6-311++G(d,p) ab initio calculations for the rotation 
about the GB(7)-GB(6) bond corresponding to the 1φ  dihedral angle in the Dop5a-NO2 molecule. 
Ab initio points are represented by filled diamonds and the fitted potential is given by a solid line. 

 

The OS(17)-GB(7)-O(8)-C(9) torsion, noted 2φ , with a minimum at -152º, 

controls the orientations of the last six sites (i.e. O(8), C(9), GB(10), O(11), C(12) and 

O(14)) relative to the two dimethyl-nitro phenyl fragments that form the molecular core. 

Figure 3.8 (a) indicates that the energetic cost of having the nitro substituent of the 

dimethyl-nitro phenyl ring, GB(7), in the closest position to the O(14) atom is around 38 

kJ/mol.  

The O(14)-C(9)-O(8)-GB(7) dihedral angle, noted 3φ  and presented in Figure 3.8 

(b), has a minimum at around 0º, and keeps the nitro substituent of the  dimethyl-nitro 

phenyl ring, GB(7), in the most distant conformation relative to the O(14) atom. The 

barrier to rotation is relatively high (i.e. 40 kJ/mol). However, there is flexibility near the 
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minimum, so that the O(14) atom is allowed to move around 45° below and above the 

GB(7) ring within 10 kJ/mol of the torsional minimum energy. 
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Figure 3.8 Torsional barrier from B3LYP/6-311++G(d,p) ab initio calculations for the rotation 
about the GB(7)-O(8) bond corresponding to the 2φ dihedral angle (a), and the O(8)-C(9) bond 
corresponding to the 3φ dihedral angle (b), in the Dop5a-NO2 molecule. Ab initio points are 
represented by filled diamonds and the fitted potentials are given by solid lines.  

 

The OS(18)-GB(10)-C(9)-O(8) dihedral angle (shown in Figure 3.9 (a)) has the 

global minimum at around 0º separated by an energetic barrier from a local minimum at 

180º. The energetic barrier to rotation is relatively high (i.e. 38 kJ/mol), so that the 

probability of passing from trans to cis arrangement of the orienting site OS(18) relative 

to the O(14) atom is virtually nonexistant at room temperature. 
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The potential for rotation about the O(11)-GB(10) bond, corresponding to the 5φ  

dihedral angle, shown in Figure 3.9 (b),  has a minimum at 0º, imposing an almost planar 

arrangement of the C(12), O(11), GB(10), C(9), and O(14) sites in the minimum energy 

configuration. However, the 18 kJ/mol rotation barrier may be surmounted to yield a 

conformation where the C(12) site (i.e.  methyl group) is opposite to the O(14) atom. 

0 45 90 135 180
φ4(deg)

0

10

20

30

40

E
ne

rg
y 

(k
J/

m
ol

)

0 45 90 135 180
φ5(deg)

0

5

10

15

20

E
ne

rg
y 

(k
J/

m
ol

)
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Figure 3.9 Torsional barrier from B3LYP/6-311++G(d,p) ab initio calculations for the rotation 
about GB(10)-C(9) corresponding to the 4φ  dihedral angle, in (a), and the O(11)-GB(10) bond, 
corresponding to the 5φ  dihedral angle, in (b), in the Dop5a-NO2 molecule. Ab initio points are 
represented by filled diamonds and the fitted potentials are given by solid lines.  

 

To constrain the planarity of carbonyl groups, two improper torsions around C(4) 

and C(9) carbonyl atoms, having their minima at around 0º, have been included in the 

force field. Without these terms, C(4) and C(9) atoms will have an exaggerated tendency 
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to oscillate above and below the plane of the neighbouring atoms. Force constants of 

533.02 kJ mol-1 rad-2 and 554.30 kJ mol-1 rad-2 have been calculated for the two improper 

torsional angles, respectively. 

In the Spiro chiral dopant molecule, the rigid core is replaced by two GB sites, 

while the oxygen atoms along with the methylene, and methyl groups are represented as 

LJ sites. A schematic multi-site coarse-grained representation of Spiro dopant molecule is 

shown in Figure 3.10 (a). As shown in Figure 3.10 (b), the two GB sites are directly 

bonded and “ghost” orienting sites assigned to them are numbered as OS(19) and OS(20). 

Bending potentials are explicitly included to account for the in-plane energetic cost of 

bending at GB(9) and GB(10) (i.e. to preserve linearity along the GB(10)-GB(9)-O(8), 

and O(11)-GB(10)-GB(9) axes) as well as for the out-of-plane motion of the two rings. 

Due to the presence of a carbon atom common to the two rigid cores, the rotation of one 

rigid core over the other is very improbable. Therefore, there are only two bending 

angles, GB(9)-O(8)-C(7) and C(12)-O(11)-GB(10), and  two torsional motions, about the 

GB(9)-O(8), and O(11)-GB(10) bonds, that have been parameterized using results from 

ab initio calculations. Potential energy terms for the alkyl chains are parameterized using 

potentials taken from literature.160 All in all, the spirobi[indene] core is rigid and the 

flexibility allowed here is given by the movement of the alkyl chains alone.  

The force constants corresponding to the GB(9)-O(8)-C(7), and C(12)-O(11)-

GB(10) bending have been calculated as 360.31 kJ mol-1 rad-2, and 336.56 kJ mol-1 rad-2, 

respectively. Likewise, the torsions about the GB(9)-O(8), and O(11)-GB(10) bonds, 
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corresponding to 1φ , and 2φ  dihedral angles (see Figure 3.10 (b) for torsion indexing) 

have been considered. 

 

(a) 

 

(b) 

 

Figure 3.10 (a) A schematic multi-site coarse-grained representation of Spiro molecule. The 
ellipsoidal GB sites, replacing the spirobi[indene] cores, are colored blue, the oxygen atoms and 
the methylene and methyl groups are represented by red and grey spherical LJ sites, respectively. 
(b) Structure of the Spiro molecule. The site numbering and the torsion indexing will be used 
throughout this thesis. 

 

Figure 3.11 shows the torsional barriers for the rotation over GB(9)-O(8) bond. 

Both alkyl chains are partially flexible as it costs a finite but achievable amount of energy 

(i.e. 15 – 17 kJ/mol) to rotate about the bond that joins each of them to the rigid core. The 

fitted potential reproduces very well the ab initio energies. 
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OS                          OS 
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Figure 3.11 Torsional barrier from B3LYP/6-311++G(d,p) ab initio calculations for the rotation 
about GB(9)-O(8) bond corresponding to the 1φ  dihedral angle in the Spiro dopant molecule. Ab 
initio points are represented by filled triangles and the fitted potential is given by a solid line. 

 

For the dopant molecules, details about the site types, charges values, equilibrium 

bond lengths, and the full sets of bending, torsional and improper torsional potential 

parameters (calculated in this thesis or taken from literature160) are given in Appendix B. 
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3.2 Aromatic Rings 

 

Since the ellipsoidal GB sites have been chosen to represent aromatic rings, my starting 

point was to find a set of Gay-Berne parameters able to reproduce the properties of the 

smallest and simplest aromatic molecule (i.e. benzene), to test the effectiveness of the 

model at representing a larger molecule (i.e. biphenyl), and finally to study the 

transferability of this model to other, more complex, mesogenic molecules. 

The approach proposed in this thesis for the parameterization of GB units is 

schematically presented in Figure 3.12. In the 1st step of this procedure, the form of the 

Gay-Berne potential is chosen and its parameters are fitted to the ab initio interaction 

energies of the benzene dimer in the gas phase. The resulting model potential combines 

the uniaxial form of the Gay-Berne potential with a point quadrupole placed along the 

ring axis to indirectly reflect the impact of the π  charge cloud. In step 2, the fitted model 

has been used to simulate the bulk properties of liquid benzene. Since this model, fitted to 

ab initio data of benzene dimer, did not reproduce the real bulk structure of liquid 

benzene (see Section 3.2.3), its parameters have been used as a starting point to generate 

multiple combinations of sets of GB parameters in the 3rd step. In the 4th step, all 

combinations of GB parameters along with three different point quadrupole values have 

been used in MD simulations of liquid benzene. The structure of liquid benzene has been 

analyzed in terms of intermolecular distribution functions, )(rg comcom− , and self-diffusion 

coefficients, D . In the 5th step, only six sets of GB models have been chosen following a 

two-step selection process in which the calculated properties (i.e. intermolecular 
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distribution functions and self-diffusion coefficients) have been compared to the 

corresponding experimental data. Next, in step 6, the six selected ring models have been 

used to simulate liquid biphenyl over a wide range of temperatures, and the calculated 

self-diffusion coefficients have been compared with experimental data and other 

theoretical investigations. Moreover, the six selected ring models are used to obtain the 

potential energy curves for the sandwich, T-shaped, and parallel-displaced configurations 

of the benzene dimer. The comparison between those curves to the ab initio curves as 

well as the fitted ring model helps to understand how much the ab initio fitted model’s 

parameters have been changed to better predict the bulk structure of liquid benzene. 

Finally, the 6561 initial ring models have been reduced to four. These are the best sets of 

GB parameters to be used in representing small ellipsoidal sites (e.g. phenyl and 

pyrimidine groups in the 2PhP molecule) via computer simulations in this thesis. 

 

 

 

 

 

 

 

 

 

 



 

 107 

 

Figure 3.12 Schematic explanation of the parameterization procedure of the GB potential. 

 

 

 

4. For each of the three quadrupole values chosen, perform 37 MD simulations of liquid    

benzene (298K and 0.87g/mL), in the NVT ensemble.  

   Compare the calculated g(r) and self-diffusion coefficients with experimental values. 

5. Select six sets of GB ring parameters with different quadrupole values. 

3. Select the point quadrupole values used in the ring model potential and vary the model’s 

parameters. For each of the 7 parameters varied, 3 values have been chosen, such as: 0.8, 1.0, 

and 1.2 times the ab initio fitted values. 

2. Use the fitted set of ring parameters to simulate the properties of liquid benzene.  

    Compare the calculated gcom-com(r) to similar published data.  

    Analyze snapshots taken during the simulation. 

7. Finally, from 6561 initial ring models four models are selected. 

1. Fit the ring Gay-Berne model potential to ab initio interactions energies of the benzene dimer.  

6.   Perform MD simulations of liquid biphenyl in the NVT ensemble at 348K, 358K, and 368 K 

and corresponding densities. Compare calculated self-diffusion coefficients with 

experimental data and other MD simulations. Compare the potential energy curves of the 

benzene dimer obtained using the six selected models with those from ab initio. 
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3.2.1 Gay-Berne Models 

The generalized Gay-Berne model potential preserves the functional form of the 

Lennard-Jones potential with attractive and repulsive interactions decreasing as 6 and 12 

inverse powers of the intersite distance. When the two sites ( A  and B ) are distinct and 

uniaxial ellipsoids, the generalized Gay-Berne potential has the form49 presented in 

Equations (1.2) and (1.3) except that the R  term depends on ABξ , as follows: 

( ) 0

0

ûû ABABABBAABAB

ABAB

rr
R

σξσ
σξ

+−
=

ˆ,,
     (3.3) 

The ABξ  is a dimensionless parameter helpful in varying the width of the potential well 

independently of its depth and position, thus improving the model flexibility. The 

orientations of the two anisotropic sites, A  and B , are denoted by the unit vectors Aû  and 

Bû , respectively, whilst the vector joining the ring centers, and the corresponding unit 

vector are ABrv  and ABr̂ , respectively. The unit vector points along the ∞C  symmetry axis 

of the ellipsoid. 0
ABε  and 0

ABσ  are the overall well depth and particle size, respectively.  

The anisotropy of the interactions is contained in the expressions for 

( )ABBAAB r̂,,ûû ε , and ( )ABBAAB r̂,,ûû σ . The total well-depth parameter ( )ABBAAB r̂,,ûû ε  is a 

product of two functions: 

( ) ( )[ ] ( )[ ] ABAB

ABBAABBAABABABBAAB rr
μν

εεεε ˆ,,,ˆ,, )()( ûû ûû ûû 210 ⋅⋅=  (3.4) 

where 

( ) ( )[ ] 21221 ûû1ûû 
−

⋅−= BAABBAAB χε ,)(      (3.5) 
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and 
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⎥
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(3.6) 

The range parameter, ( )ABBAAB r̂,û,û σ , is given by: 

( )

( ) ( ) ( )( )( )
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(3.7) 

The parameters ABχ , AB'χ , ABα , ABν , and ABμ  dictate the shape and depth of the 

potential energy surface as the GB sites approach with particular relative orientations. 

In practice, the model is defined for a pair of identical GB sites. That is, 0
AAσ , 

0
AAε , AAξ , AAν , and AAμ  are the optimized parameters for the a pair of interacting A  

sites. Likewise, 0
BBσ , 0

BBε , BBξ , BBν , and BBμ  parameters are optimized for B  sites. 

From these two sets, mixing rules are employed for a pair of unlike GB sites interacting. 

Cleaver et al.56 suggest the following combination rules to calculate 2
ABABαχ  and 2−

ABABαχ  

from the set of parameters characterizing each GB site: 

( ) ( )

( ) ( ) 22

22

2

ss
BB

ee
AA

ss
AA

ee
AA

ABAB

σσ

σσ
αχ

+

−
=        (3.8) 
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where ee
AAσ  and ss

AAσ  define the end-to-end and side-by-side distances for two identical 

sites A , respectively. Likewise, analogous notations are used for two identical B  sites. 

In order to calculate the other quantities, the Lorentz-Berthelot approach168, 169 for 

the standard Lennard-Jones mixing rules has been followed: 

( ) 21000
BBAAAB εεε =         (3.11) 

( )000

2
1

BBAAAB σσσ +=         (3.12) 

The ABμ  and ABν  exponents and the parameter ABξ  were combined as: 

( )BBAAAB μμμ +=
2
1         (3.13) 

( )BBAAAB ννν +=
2
1         (3.14) 

( ) 21
BBAAAB ξξξ =         (3.15) 

Mixing rules for the remaining parameters are:170 

( ) ( )
( ) ( ) BBAA

AAAA

ee
BB

ss
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ee
AA

ss
AA

ABAB

μμ

μμ

εε

εε
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11
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−
=''       (3.16) 
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where ee
AAε  and ss

AAε  are the energy well depths for the end-to-end and side-by-side 

configurations of the two identical A  sites. Analogous notations are used for two 

identical B  sites. 

It is important to point out that the above mixing rules (i.e. Equations (3.8) to 

(3.18)) correctly reproduce the GB interactions in the limiting case of two identical sites 

(i.e. BA = ). For example, when eeee
BB

ee
AA σσσ == , ssss

BB
ss
AA σσσ == , eeee

BB
ee
AA εεε == , 

ssss
BB

ss
AA εεε == , and μμμ == BBAA , Equation (3.10) reduces to Equation (1.8), and  

likewise, Equation (3.18) reduces to Equation (1.9), since sseek σσ=  and eessk εε=' . 

Furthermore, the generalized GB potential can be use to model interactions between an 

anisotropic GB site and a spherical LJ site. Consider the site A  as being a spherical LJ 

site having the parameters: 0
AA

ss
AA

ee
AA σσσ == , 0

AA
ss
AA

ee
AA εεε == , and 1== AAAA νμ . In the 

interaction between a LJ site A  and a GB site B ,  ABσ   term, given by the Equation 

(3.7), reduces to: 

( ) ( )[ ] 212
AB

20 rû1û 
−− ⋅−= ˆˆ, BABABABABBAB r αχσσ     (3.19) 
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In this case, ABσ  depends only on the angle between the LJ site A  and GB site B , and 

the GB orientation vector, Bû . 

All in all, the generalized GB model potential is completely defined by a set of 

thirteen parameters: 0
ABσ , 0

ABε , ee
AAσ , ee

BBσ , ss
AAσ , ss

BBσ , ee
AAε , ee

BBε , ss
AAε , ss

BBε , ABμ , ABν , and 

ABξ . For two identical GB sites, the number of parameters is reduced, as follows: 0
AAσ , 

0
AAε , AAk , AAk' , AAμ , AAν , and AAξ , where ss

AA
ee
AAAAk σσ= , and ee

AA
ss
AAAAk εε=′  describe 

the shape and well depth anisotropy, respectively. 

3.2.2 Quadrupolar Contribution 

The benzene molecule has a significant quadrupole moment perpendicular to the ring. 

This is typically neglected in simulations because an all atom force field cannot account 

for it. By directly incorporating the quadrupolar moment within the benzene model, I 

expect to recover its real bulk structure by reflecting the impact of the π charge cloud. 

Therefore, a point quadrupole has been added to the centre of the ellipsoidal site along 

the ring axis and its effect on modelling aromatic molecules using the proposed model 

potential has been investigated. As a result, the proposed GB ring potential becomes a 

sum of two terms: a generalized Gay-Berne interaction, ( )ABBA rU ,, ûû , given by Equation 

(1.2), and a quadrupole-quadrupole contribution, ( )ABBAQQ rU ˆ,, ûû . 

The interaction energy for a pair of point quadrupoles is given by: 
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⎥
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where AQ and BQ  are the quadrupole moment values of the interaction sites A  and B , 

respectively, and the unit vectors have been already defined for the GB interaction 

potential. 

3.2.3 Ab initio Fit 

Benzene dimer has been extensively studied, both experimentally171-174 and 

theoretically,175-179 in an attempt to obtain a clear picture of the strength and directionality 

of ππ −  interactions. There are three prototype configurations that are usually 

considered in studies of the benzene dimer; they are presented in Figure 3.13. The 

sandwich configuration places both benzenes on top of each other, the T-shaped 

configuration has one molecule pointed at the centre of the other one, and the parallel-

displaced configuration is reached from the sandwich configuration by a parallel shift of 

one ring away from the other. 

 

 

 

 

 

 

                (a) (b) (c ) 

 

Figure 3.13 Sandwich (a), T-shaped (b), and parallel-displaced (c) configurations of the benzene 
dimer.176 
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High-quality potential energy curves as a function of intermonomer distance R  of 

the sandwich and T-shaped configurations, and of 1R  and 2R  distances for the parallel-

displaced configuration of the benzene dimer (see Figure 3.13) have been reported by 

Sinnokrot et al.180, 181 At the MP2 level, potential energy curves are computed using the 

aug-cc-pVQZ* (truncated aug-cc-pVQZ) basis set, and high-quality CCSD(T) potential 

energy curves are estimated by combining the MP2 values with a ΔCCSD(T) correction. 

These data (i.e. pair energies for 118 benzene dimer configurations) form the starting 

point in the development of GB set of parameters. 

Following the first step in Figure 3.12, the parameters of the ring potential have 

been fitted to reproduce the nonbonded part of the ab initio interaction energy by 

minimizing the least-squares function: 

( ) ( ) ( ) ( )
2

∑ ⎥
⎦

⎤
⎢
⎣

⎡
−=

k
k

k
potentialk

k
abinitiofit rErEF rr      (3.21) 

where the sum is over all the distances where ab initio data is available, and ( ) ( )k
k

abinitio rE r  

and ( ) ( )k
k

potential rE r  are the ab initio and GB potential dimer energy in configuration k, 

respectively. The kr
r  defines the vector of atomic coordinates (i.e. intermonomer 

distances R, R1, and R2 in Figure 3.13). The ( ) ( )k
k

potential rE r  is calculated for each dimer 

configuration considering a fixed quadrupole moment of -1.38×10-39 C m2. This 

quadrupole underestimates the experimental value182 (i.e. -2.9×10-39 C m2) for a single 

benzene molecule but it is consistent with the quadrupole values recommended by 

Cacelli et al.183 for a quadrupolar benzene model. 
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The optimized GB parameter set, which reproduces the ab initio potential energy curves 

very accurately, is named GBQ1 and is given in Table 3.1.  

 

Table 3.1 The GBQ1 set of parameters obtained by fitting to ab initio potential energy curves180, 

181 of benzene dimer. 

 

Parameter GBQ1 model 

0ε (kJ/mol) 3.9507 

0σ (nm) 0.5562 

eess
00 εε /  0.5581 

ssee
00

σσ /  4.3860 

ξ  0.7088 

μ -2.5102 

ν  0.3070 

Q (10-39 C m2) -1.3800 

 

With this set of parameters in hand, MD simulations in the canonical NVT 

ensemble for a system of 500 benzene molecules were performed. A cubic simulation 

box under periodic boundary conditions was used. The temperature and density have 

been set to 300 K and 0.87 g/mL,184 respectively. A total of 100000 iteration steps was 

employed with an equilibration period of 20000 steps. To gain information about the bulk 

structure of liquid benzene, the centre-centre radial distribution function, gcom-com(r), has 

been evaluated using the procedure outlined in Chapter 2.6, and it is given in Figure 3.14. 
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The calculated center of mass pair distribution function, gcom-com(r), shows three 

visible peaks at 5.1 Å, 9.0 Å, and 13.5 Å, and two minima delimiting the solvation shells 

at 7.0 Å, and 11.5 Å, respectively.  
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Figure 3.14 The centre-centre radial distribution function, gcom-com(r), evaluated from MD 
simulation of liquid benzene, using the GBQ1 set of parameters. 

 

To judge the quality of my model potential, I compare the calculated distribution 

to available theoretical183, 185-190 as well as experimental (i.e. neutron diffraction) 

results.191-194 I observe that the overall agreement is satisfactory, and I note that the peak 

positions appear shifted to smaller separation distances and that the height of the first 

peak overestimates the values reported in those studies. This is an indication of a better 

packing of the molecules in the first shell of neighbors. For example, the calculated first 
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peak’s height overestimates by almost 40% the value reported by Tao et al.190 in a MD 

simulation study. It is important to note that, in this particular study, benzene was 

described by a 12-site model consisting of a rigid hexagonal ring of C-H groups, thus the 

centre of mass was not directly represented. Nevertheless, the main features of the centre 

of mass distribution function are preserved when working with the proposed set of fitted 

GBQ1 parameters. 

Despite the fact that this model potential is obtained by fitting the ab initio curves 

and the fact that the evaluated structural quantities of the liquid benzene (i.e. centre-of-

mass radial distribution functions) are in reasonable agreement with published theoretical 

and experimental results, a closer inspection of snapshots made during the simulations 

(see Figure 3.15) revealed holes inside the liquid structure. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.15 A snapshot obtained from the MD simulation of 500 liquid benzene molecules by 
employing the fitted GBQ1 set of parameters. The circles identify low density regions.  
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It is important to realize that the ab initio potential energy curves are obtained 

from two isolated benzene molecules in the gas phase. The presence of holes in the 

snapshots is a clear indication that a benzene molecule in the bulk is reasonably distinct 

from one in a dimer. In other words, many body effects impact the potential. This is why 

a different approach had to be taken to further refine the Gay-Berne parameters in order 

to reproduce the experimental data and to provide a real representation of benzene 

molecules in the bulk.  

3.2.4 Fits to X-ray Data of Benzene 

To capture the real bulk properties of liquid benzene, new sets of parameters for the ring 

model potential have been least-squares fitted to experimental data, specifically, the 

structure of benzene from X-ray data.155 Besides the X-ray experiments, the structure of 

liquid benzene has been extensively studied by neutron diffraction experiments191-194 as 

well as by computer simulations.183, 185-190 

Three different point quadrupole values have been selected in order to assess the 

influence of the quadrupolar moment on the model potential. Specifically, the magnitudes 

of the quadrupole moment used, in reduced units, are: -0.2486 for A  set, and -0.1989 for 

B  set. To quantify the influence of quadrupolar interactions on the behavior of GB sites, 

an extra set of parameters for uncharged sites, noted C , has been used. To summarize, in 

S.I. units, the magnitudes of point quadrupole used for the A  and B  sets varies between             

-0.63×10-39 C m2 and -2.68×10-39 C m2 while the C  set explores the absence of the point 
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quadrupole. It is important to note that the selected quadrupole values are still 

underestimating the experimental gas phase value.182  

For each of the seven parameters of GB model potential, three values have been 

considered: 80%, 100%, and 120% of the value obtained by optimization to ab initio pair 

potentials. Thus, it has been assumed that the dimer pair potentials obtained by fitting to 

ab initio data are roughly correct but the parameters have to be adjusted to some extent 

for bulk benzene. The values of the GB parameters used in least-squares fitting to 

experimental data of liquid benzene are given in Table 3.2.  

 

Table 3.2 Parameters of the GB model potential. 

Parameter First set Second set Third set 

0ε (kJ/mol) 3.1606 3.9508 4.7410 

0σ (nm) 0.4450 0.5562 0.6674 

eess
00 εε /  0.4465 0.5581 0.6697 

ssee
00

σσ /  3.5088 4.3860 5.2632 

ξ  0.5671 0.7088 0.8506 

μ  -2.0082 -2.5102 -3.0122 

ν  0.2456 0.3070 0.3684 

 

For each set with a particular quadrupole value, a total of 37 (2187) canonical MD 

simulations of 500 benzene molecules, in liquid phase (i.e. 300 K and 0.87 g/mL), have 

been carried out using the procedure outlined in the previous section. Fluid structure is 
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assessed after 100000 iterations. Since the X-ray scattering experiments155 measure the 

pair distribution function of carbon atoms rather than that of molecular centres, the 

centre-centre radial distribution function, gcom-com(r), has been computed and the site-site 

radial distribution function, gC-C(r), has been calculated for the GB model by 

reintroducing the six carbon atom positions into each GB ellipsoid. Since the calculations 

employ the GB potential, where the carbon atoms are not directly present, the six “atoms” 

are actually six “ghost” sites at locations corresponding to the carbon atoms. 

Assessment of the calculations proceeded by least-squares fitting to the 

experimental distribution between ring carbons: ( ) ( )( )[ ]∑ −
N

thexp Nrgrg
1

2 / , where r  is the 

distance between the two carbon atoms, and N  is the number of r  values used in the 

comparison. ( )rgexp  and ( )rgth  are the radial distribution functions from experiment 

and simulation, respectively. A second sum of squares biased toward larger separations 

has also been employed, ( ) ( )( )[ ]∑ ⋅−
N

th Nrrgrg
1

2 /exp . Based on these least-squares errors, ten 

models have been chosen for further consideration. These are identified as: GBQ2-A n , 

B n , and C n , where GBQ2 implies that this is the quadrupolar GB ring model designed 

by fitting to experimental data, n  is the model number, and the letters A , B ,C  identify 

the quadrupole moment value. The ten selected models are presented in Table 3.3, Table 

3.4, and Table 3.5. It is important to note that many other parameter sets give comparable 

least-squares errors but these ten are chosen based on their diverse optimized parameters 

sets. 
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Table 3.3 The six selected GBQ2-A n  sets of parameters ( 24860.* −=Q  reduced units). 

 

Parameter A1 A2 A3 A4 A5 A6 

0ε (kJ/mol) 3.1606 3.1606 3.9508 4.7410 4.7410 4.7410 

0σ (nm) 0.6674 0.6674 0.6674 0.6674 0.6674 0.6674 
eess
00 εε /  3.5088 3.5088 3.9508 3.5088 3.5088 3.5088 
ssee
00

σσ /  0.4465 0.4465 0.4465 0.4465 0.4465 0.4465 

ξ  0.5671 0.7088 0.8506 0.5671 0.7088 0.8506 
μ  -2.5102 -2.5102 -2.0082 -2.5102 -2.5102 -2.5102 
ν  0.2456 0.3684 0.3684 0.3684 0.3684 0.3684 

  Q (10-39 C m2)  -2.1872  -2.1872  -2.4450  -2.6787  -2.6787  -2.6787 

( ) ( )( )[ ]∑ −
N

th Nrgrg
1

2 /exp  0.002313 0.002389 0.002628 0.003066 0.003102 0.002673

( ) ( )( )[ ]∑ ⋅−
N

th Nrrgrg
1

2 /exp  0.009411 0.009987 0.011046 0.011369 0.012606 0.011349

 

Table 3.4 The three selected GBQ2-B n  sets of parameters ( 18680.* −=Q  reduced units). 

 

Parameter B1 B2 B3 

0ε (kJ/mol) 3.1606 3.1606 3.1606 
eess
00 εε /  3.5088 3.5088 5.2632 

0σ (nm) 0.6674 0.6674 0.6674 
ssee
00

σσ /  0.4465 0.4465 0.4465 

ξ  0.5671 0.5671 0.5671 
μ  -2.0081 -2.5102 -3.0122 
ν  0.3070 0.2456 0.3684 

  Q (10-39 C m2)    -1.7497  -1.7497   -1.7497 

( ) ( )( )[ ]∑ −
N

th Nrgrg
1

2 /exp  0.002746 0.002710 0.012895 

( ) ( )( )[ ]∑ ⋅−
N

th Nrrgrg
1

2 /exp 0.011080 0.010960 0.003167 
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Table 3.5 The selected GBQ2-C n  set of parameters (no point quadrupole). 

 

Parameter C1 

0ε (kJ/mol) 3.1606 
eess
00 εε /  3.5088 

0σ (nm) 0.6674 
ssee
00

σσ /  0.4465 

ξ  0.5671 
μ  -2.0081 
ν   0.3070 

  Q(10-26 esu cm2)    0.0000 

( ) ( )( )[ ]∑ −
N

th Nrgrg
1

2 /exp  0.002605 

 ( ) ( )( )[ ]∑ ⋅−
N

th Nrrgrg
1

2 /exp  0.011088 

 

A comparison between the calculated and experimental155 carbon-carbon radial 

distribution functions, gC-C(r),  is reported in Figure 3.16 for liquid benzene at 300K. The 

experimental distribution is characterized by the presence of a small peak at 4.0 Å, and 

three peaks at 6.3 Å, 10.9 Å, and 16.0 Å. In addition, the peak at 6.3 Å has a prominent 

shoulder at 5.8 Å. These “close contact” features are more sensitive to the atomic 

structure of the ring. As a result, the GBQ2 ring models cannot fully capture these 

structural details and predicts instead a broad peak between 5.2 Å and 6.3 Å. Beyond this 

region, the GB model performs well and reproduces the depth and position of interlayer 

minimum and the details of the following solvation shells. It is interesting to note that the 

ring model that does not include a quadrupole moment (i.e. GBQ2-C1 model) is clearly 

inferior and consistently predicts an understructured fluid.  
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Figure 3.16 Comparison between the C-C radial distribution function of liquid benzene at 300K 
from X-ray data155 and the ten selected GBQ2 sets of parameters. Results for ten GBQ2 ring 
models are shown:  A1 (filled squares), A2 (filled diamonds), A3 (open triangle up), A4 (open 
triangle down), A5 (filled triangle up), A6 (filled triangle down), B1 (open squares), B2 (filled 
circles), B3 (open diamonds), and C1 (open circles). The ab initio data is shown by solid line. 

 

For the ten selected sets of GB parameters, different trends are observed, as 

follows: (1) when using the GBQ2-A1, A2, A3, and A6 sets, the first peak appears 

around 6.3 Å and it has a visible left shoulder at 5.0 Å, while the second and the third 

peaks occur around 10.8 Å and 15.7 Å, respectively; (2) when using the GBQ2-A4, and 

A5 sets, the first peak is characterized by a broad plateau visible between 4.7 Å and 6.4 

Å, while the second and third peaks are observed at 10.8 Å, and 15.8 Å, respectively, (3) 
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when using the GBQ2-B1, B2, and B3 sets, a broad first peak having a maximum at 5.4 

Å and a shoulder at 6.0 Å are evident, whilst the second and third peaks are visible at 

10.7 Å and 15.6 Å, respectively; (4) when using the GBQ2-C1 set, the first peak has a 

maximum at 5.1 Å and a broad shoulder at 6.4 Å, and the second and third peaks are 

slightly reduced in intensity and shifted to smaller distances. This shows that the addition 

of a point quadrupole improves the accuracy of the GBQ2 model potential at least in 

terms of the carbon-carbon distribution in the liquid phase of benzene. 

The self-diffusion coefficient of liquid benzene ( D ) has been calculated from the 

long time behavior of the MSD via the Einstein relation119 given by Equation (2.57). To 

be precise, D  values has been calculated from the slope of the MSD between 20 ps and 

160 ps. The calculated D  values are compared with experimental data195-198 and other 

MD simulations185, 188, 189, 199 in Table 3.6. The range of self-diffusion coefficient values 

is significant for the ten models. As a general trend, simulations typically underestimate 

the experimental self-diffusion in benzene.195-198 Moreover, the importance of the 

quadrupole magnitude has been previously reported by Chelli et al.,199 which showed that 

an increase of the quadrupole magnitude is followed by a decrease of the calculated D  

below the experimental value. In my case, for six of the models (i.e. A1, A2, B1, B2, B3, 

and C1), the calculated D  are comparable with the values reported in other theoretical 

studies.187-189, 199 To summarize, four of the selected GBQ2 models with the lowest self-

diffusion coefficients have been eliminated from further consideration. 
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Table 3.6 Comparison of calculated and experimental self-diffusion coefficients of liquid 
benzene. 

 

D x 10-9 

(m2/sec) 
T (K) 

Density 

(g/mL) 
Source Observations 

2.27 298.15 0.874 Ref.195 experimental 

2.15 298.15 0.874 Ref.196 experimental 

2.13 298.15 0.874 Ref.197 experimental 

2.21 298.15 0.874 Ref.198 experimental 

1.20 300.00 0.872 Ref.185 MD / NVE 

2.17 303.15 0.879 Ref.188 MD / NVT 

1.25 303.15 0.972 Ref.189 MD / NPT 

1.40 290.00 0.897 Ref.199 MD / NVE 

1.90 290.00 0.873 Ref.199 MD / NVE 

1.29 300.15 0.870 This thesis MD / NVT GBQ2-A1 

1.17 300.15 0.870 This thesis MD / NVT GBQ2-A2 

0.91 300.15 0.870 This thesis MD / NVT GBQ2-A3 

0.60 300.15 0.870 This thesis MD / NVT GBQ2-A4 

0.74 300.15 0.870 This thesis MD / NVT GBQ2-A5 

0.72 300.15 0.870 This thesis MD / NVT GBQ2-A6 

1.27 300.15 0.870 This thesis MD / NVT GBQ2-B1 

1.26 300.15 0.870 This thesis MD / NVT GBQ2-B2 

0.97 300.15 0.870 This thesis MD / NVT GBQ2-B3 

1.20 300.15 0.870 This thesis MD / NVT GBQ2-C1 
 

Thus, from the initial 6561 ring models, only six models (i.e. A1, A2, B1, B2, B3, 

and C1) will be used in further study. Notice that the GBQ2-C1 model has been selected 

in order to assess the influence of the molecular quadrupole on the GB model potential, 
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despite the fact that this model does not do as well as the other models in representing the 

bulk structure of liquid benzene. 

3.2.5 Potential Energy Curves of Benzene 

The six selected GBQ2 sets of parameters (i.e. A1, A2, B1, B2, B3, and C1 sets)  have 

been used to evaluate the binding energies of benzene dimer in order to compare the 

results to the ab initio data. Since the GBQ2 sets of parameters have been obtained by 

fitting to bulk properties of liquid benzene (i.e. C-C radial distribution functions from 

experimental X-ray data), it is not expected to agree perfectly with the gas-phase ab initio 

calculations. 

The resulting potential energy curves have been plotted in Figures 3.20 (a), (b), 

and (c), for the sandwich, T-shaped, and parallel-displaced configurations, respectively. 

These three arrangements of the benzene dimer have been sketched in Figure 3.13. For 

the T-shaped and sandwich configurations, the centre-to-centre distance, R, was 

systematically varied. For the parallel-displaced configurations the vertical distance, R1, 

was systematically varied, and the horizontal distance between the centres of mass, R2, 

was kept constant at 3.2 Å.  
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Figure 3.17 Potential energy curves of benzene dimer computed using the GB ring models 
developed in this thesis and the ab initio data:180 (a) face-to-face or sandwich configuration, (b) 
T-shaped configuration, and (c) slipped–parallel configuration. Results for six selected GBQ2 
ring models are shown: A1 (filled squares), A2 (filled diamonds), B1 (open squares), B2 (filled 
circles), B3 (open diamonds), and C1 (open circles). The ab initio curves are shown by solid 
lines.     
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The sandwich dimer configuration (see Figure 3.17 (a)) is not favored when using 

the GBQ2-A1 set, as the interaction energies are very large at smaller intermolecular R 

distances (i.e. 3.95 Å) and remain repulsive even for larger R values. A similar trend is 

observed when using the GBQ2-A2, GBQ2-B1, and GBQ2-B2 sets, except for the 

apparition of slightly attractive interaction energies (< -0.5 kJ/mol) at intermolecular 

distances over 4.5 - 5.0 Å. On the contrary, the interaction energy evaluated for the 

sandwich benzene dimer is attractive at intermolecular distances larger than 3.5 - 4.0 Å 

when using the GBQ2-B3 set. The GBQ2-C1 set stabilizes the sandwich configuration by 

an additional 5 kJ/mol compared to the ab initio binding energy (i.e. -7.21 kJ/mol), at a 

smaller equilibrium monomer distance of 3.5 Å.  

For all six GBQ2 sets of parameters fitted to experimental data, the T-shaped 

benzene dimers separated by intermonomer distances larger than 5.1 - 5.2 Å have 

favorable binding energies (compared to the ab initio distance of only 4.5 Å), with the 

binding energy becoming small (< -2 kJ/mol) for dimers situated at more than 8 Å apart 

(see Figure 3.17 (b)). Moreover, the minimum energies evaluated using the GBQ2-A1 

(i.e. -7.79 kJ/mol), GBQ2-A2 (i.e. -7.67 kJ/mol), GBQ2-B1 (i.e. -7.41 kJ/mol), GBQ2-B2 

(i.e. -7.29 kJ/mol), GBQ2-B3 (i.e. -9.01 kJ/mol), and GBQ2-C1 (i.e. -6.51 kJ/mol) sets 

are less attractive than the estimated ab initio energy of -10.92 kJ/mol.  

The sandwich configuration of the benzene dimer represents a maximum (saddle 

point) along the horizontal displacement coordinate, R2, which connects two equivalent 

parallel-displaced configurations. 
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Comparing the benzene dimer interaction energy of the slipped-parallel 

configuration evaluated using the four selected sets of GBQ2 parameters to the 

corresponding ab initio energies (see Figure 3.17 (c)), it is apparent that the interaction 

energies are more repulsive (positive) when using the GBQ2-A1, and A2 sets, and 

slightly repulsive when using the GBQ2-B1, and B2 sets. The only interaction energy 

comparable to the reported ab initio energy was calculated using the GBQ2-B3 set of 

parameters, which is slightly less attractive (i.e. 14.15 kJ/mol vs. 15.53 kJ/mol) at R2 = 0 

Å and more repulsive (i.e. -11.50 kJ/mol) at R2 = 2.27 Å, for a constant vertical distance 

of R1 = 3.2 Å. A more attractive interaction energy is apparent for the GBQ2-C1 set of 

parameters, for any intermolecular horizontal R2 distance for a constant vertical distance 

R1 < 3.2 Å. In this situation the minimum interaction energy (i.e. -9.94 kJ/mol) is 

obtained at R2 = 0 Å and R1 = 3.2 Å. Since the GBQ2-C1 set has no quadrupole 

contribution added to the potential energy, it proves that when the quadrupole is switched 

off the proposed ring model potential is not able to accurately reproduce the ab initio 

calculation of the interaction energy of the benzene dimer in slipped-parallel 

configuration. 

The potential energy curves of benzene dimer calculated using the six selected 

GBQ2 model potentials point out the magnitude of refining that has been done to the ab 

initio fitted GBQ1 model in order to adequately represent the bulk structure of liquid 

benzene. 
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3.2.6 A Test Case: Liquid Biphenyl 

The biphenyl molecule has been extensively studied both experimentally200-202 and 

theoretically,203-212 since it is seen as a “building block” for the molecular core of many 

mesogens. Of particular interest is the low barrier to rotation about the inter-ring C-C 

bond. The potential associated with the inter-ring rotation has a minimum at the 

equilibrium dihedral angle, minθ . Studies of biphenyl by experimental techniques, such as 

X-ray diffraction201 (solid phase), electron diffraction213 (gas phase) and Raman 

spectroscopy214 (liquid phase), showed that minθ  is strongly affected by the medium. For 

instance, the magnitude of the equilibrium dihedral angle has been found to increase with 

temperature, such that the minθ  is around 0° in crystalline phase, 32° in the liquid phase, 

and around 44° in the gas phase. Generally speaking, the conformational nature of 

biphenyl is determined by the interplay between the conjugation of π  orbitals in different 

rings, favoring planarity, and the inter-ring steric repulsion between the ortho hydrogen 

atoms, favoring an orthogonal arrangement of phenyl rings. 

The biphenyl molecule is represented in this study as two GB sites with centres 

4.279 Å apart. The inter-ring distance is set based on the distance between the centres of 

the mass of the two phenyl groups that form the biphenyl molecule. A torsional potential 

has been used to explicitly account for the relative orientation of the two rings so that the 

internal flexibility of the molecule is considered. The torsional potential of Cacelli et 

al.,166 developed employing the B3LYP density functional with the 6-311G(2d,p) basis 

set, has been chosen to describe this torsional motion.  
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The transferability of my six proposed GBQ2 model potentials has been tested by 

simulating the structure of liquid biphenyl at three temperatures (i.e. 348K, 358K, 368K) 

and the corresponding densities. MD simulations of bulk liquid biphenyl are performed in 

the canonical (NVT) ensemble with periodic boundary conditions on a system of 500 

molecules. The Nosé-Hoover thermostat was employed to keep the temperature constant. 

The velocity Verlet algorithm, with a time step of 0.5fs, has been used throughout the 

runs to integrate the equations of motion. A cubic simulation cell was used. A total of 

100000 iteration steps have been employed with an equilibration period of 20000 steps. 

The radial distribution functions along with the mean square displacements have been 

evaluated. Intramolecular pairs are not included in radial distributions reported in this 

thesis. To my knowledge, there are no experimental radial distribution functions for 

liquid biphenyl. A snapshot of 500 biphenyl molecules simulated using the GBQ2-A1 set 

of parameters at 348 K and 0.9914 g/mL density215 is presented in Figure 3.18. 
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Figure 3.18 Snapshot of liquid biphenyl at 348 K and 0.9914 g/mL using GBQ2-A1 set of 
parameters. Each GB site of the biphenyl molecule is colored differently, to better show the 
random arrangement inside the liquid bulk structure. 

 

From the perspective of their centres of mass, the radial distribution functions, 

presented in Figure 3.19, show two visible shells at phenyl-phenyl distances, rPh-Ph, 

between 4 Å and 8 Å, and between 8 Å and 12 Å, respectively. All the GBQ2 ring 

models predict similar distributions except at small separations, where a shoulder is 

absent for the ring model that does not include a quadrupole (i.e. GBQ2-C1 model). A 

closer inspection of the snapshots indicates that this shoulder originates from crossed 

pairs of molecules, and this arrangement is energetically favored by the quadrupole.  
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Figure 3.19 The phenyl ring centre - phenyl ring centre radial distribution functions for liquid 
biphenyl at 348 K and 0.9914 g/mL, calculated using the six selected GBQ2 sets of parameters. 
Results for six GBQ2 ring models are shown:  A1 (filled squares), A2 (filled diamonds), B1 
(open squares), B2 (filled circles), B3 (open diamonds), and C1 (open circles).  

 

Figure 3.20 contains the results of a MD simulation of liquid biphenyl (i.e. 348 K 

and 0.9914 g/mL), using an atomistic model, reported by Tao et al.190 Despite the fact 

that in this study the values of ring-ring dihedral angle were fixed at 30° or 90°, their 

results are in good agreement with ours, except that the spike at 4.2 Å corresponds to the 

fixed distance between intramolecular phenyl rings.190 
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Figure 3.20 The phenyl ring centre-phenyl ring centre radial distribution functions for liquid 
benzene and biphenyl, with two different choices of biphenyl ring-ring dihedral angle ( o30=φ  

and o90 ). The biphenyl MD simulations were carried out at 348 K and 0.9914 g/mL (reproduced 
from Tao et al.’s work190). 

 

Self-diffusion coefficients have been evaluated at several temperatures and they 

are presented in Figure 3.21. The density of the liquid biphenyl has been evaluated as a 

function of temperature.216 The results have been compared to experimental temperature-

dependent diffusion coefficients reported by Červená.217  

 It is interesting and encouraging to note that the agreement with experiment is 

significantly better for biphenyl than for benzene. Based on self-diffusion coefficients, 

only four of the six GBQ2 ring models (i.e. A1, B1, B2, and C1) have been retained. 
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Figure 3.21 Comparison of the calculated and estimated self-diffusion coefficients of liquid 
biphenyl. Results for six GBQ2 ring models are shown:  A1 (filled squares), A2 (filled 
diamonds), B1 (open squares), B2 (filled circles), B3 (open diamonds), and C1 (open circles). 
The experimental diffusion coefficients are shown in black line. 

 

Models GBQ2-A1 and GBQ2-B2 are related in that the ring quadrupole value of 

B2 model is 80% of the value of A1 model. Likewise, GBQ2-B1 and GBQ2-C1 models 

are identical except for the ring quadrupole, with the latter not having a quadrupole. The 

GBQ2-C1 model potential has been selected in order to assess the influence of the 

absence of the quadrupolar contribution to the parameterized GB set, despite the fact that 

this model shows higher diffusion coefficients with a stronger temperature dependence. 
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3.3 Conclusions 

 

In order to attain total simulation times that are, at least, several nanoseconds, with at 

least several hundreds of molecules, it is imperative to choose an appropriate interaction 

model for the liquid crystal simulations.  

 An adequate treatment of intramolecular interactions plays an important role in 

modelling the subtle differences between mesophases. To capture the intramolecular 

flexibility of 2PhP and 5PhP, the internal degrees of freedom of each molecule have to be 

studied in detail to better understand the role of the aromatic cores and flexible tails on 

the preferred arrangements of the molecules in the bulk system. As a result, a realistic 

description of the inter-ring and alkyl-aryl connections has been undertaken. Dihedral 

angles, bending potentials, and improper-torsional potentials have been specifically 

designed for the molecules under investigation. They contribute to the description of the 

structure-shape relationship, which in turn, has a major impact on the phase behaviour. 

Models of the host and dopant molecules based on a comprehensive series of ab initio 

calculations are described in Section 3.1. Full details are provided in Appendices A and 

B. 

In the multi-site coarse-grained model potential used in this thesis, the non-

bonding interactions are modeled via LJ/LJ, LJ/GB, GB/GB, and electrostatic potentials. 

As usual, the intermolecular potential is calculated for all pairs of sites (i.e. atoms or 

groups of atoms) on different molecules, or within the same molecule if the sites are not 

very close to each other. In this regard, sites separated by fewer that four bonds are 
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considered close. The parameterization of the GB/GB potential designed to model the 

aromatic rings (e.g. benzene and pyrimidine in the host molecules) is discussed in detail 

in Section 3.2.  

The main advantages of using a coarse-grained approach are that it leads to an 

important reduction in computational expense and that it allows ring quadrupoles to be 

included. Fitting a set of GB parameters to the ab initio data of the benzene dimer has not 

given a correct representation of the bulk structure of liquid benzene. This occurs since 

benzene in the bulk is significantly different from the benzene in a dimer. To arrive at a 

satisfactory effective ring potential for benzene in the bulk, the parameters of the GB 

model potential have been least-squares fit to radial distributions from X-ray 

experiments.155 Specifically, for each of the nine parameters, three values were 

considered: 80%, 100%, and 120% of the value obtained by optimization to ab initio pair 

potentials. Thus, I assume that the pair potentials are roughly correct representations of 

the effective pair potentials, and adjust the parameters accordingly. Consistent to this 

approach, a range of quadrupole values varying from 21% to 92% of the experimental 

qaudrupole value was examined. In total, 6561 parameters sets have been examined, and 

six sets have been retained based on least-squares errors. Moreover, these six selected 

sets of GB parameters have been used to acquire potential energy curves of benzene 

dimer in order to characterize the interactions between the corresponding pairs of 

molecules. The number of sets of GB parameters has been further reduced by comparison 

of the diffusion coefficients of liquid biphenyl obtained over a range of temperatures with 

available experimental data. To summarize, from the initial 6561 GBQ2 ring models only 
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four models have been selected and they are termed as GBQ2-A1, GBQ2-B1, GBQ2-B2, 

and GBQ2-C1 (Tables 3.3, 3.4, and 3.5). From now on, I will only consider these four 

ring models and the “GBQ2” notation will be dropped. Models A1 and B2 are related in 

that the ring quadrupole value of the B2 model is 80% of the value of A1 model. 

Likewise, B1 and C1 models are identical except for the ring quadrupole, with the latter 

not having a quadrupole.  

 To summarize, this Chapter describes the model development for the host and 

dopant molecules, particularly the steps implemented to arrive to a suitable representation 

of the ring potentials. 
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Chapter 4 

Liquid Crystal Simulations 

 

Liquid crystals, by virtue of being intermediate between isotropic liquids and crystalline 

solids, display a range of unique properties. Their practical uses, most notably for 

displays on telephones, televisions, watches, computers, cameras and video recorders, are 

well known.15, 218, 219  Chiral smectic C liquid crystals exhibit ferroelectric properties and, 

for this reason, hold considerable promise for application purposes.220, 221  In most cases, 

chiral smectic phases are produced by the addition of a small amount of a chiral dopant to 

an achiral host. Systematic experimental studies have been undertaken28, 222, 223 to 

correlate host and dopant characteristics with the pitch and polarization of the phase.  

Multiple mechanisms for the chirality transfer have been proposed27, 28, 159 based on 

experimental results. However, theoretical studies have been restricted to predictions 

based on the attributes of the chiral additive alone.44, 45, 224, 225 While these studies have 

yielded important insights into the dopant impact, by design they cannot provide detailed 

molecular information on the mechanism of dopant-to-host chirality transfer. As a first 

step, the characteristics of the hosts and their phases must be understood. To this end, a 

comprehensive study of 2PhP, a well-known liquid crystal host,25, 30-32, 226-228  is carried 

out in this thesis. A similar mesogen, 5PhP, which differs from 2PhP only in the 

molecular core, is also examined. 5PhP has not been studied as a host but it has been 
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employed as a co-host for 2PhP where it enhanced the electroclinic coefficient26, 229 in the 

chiral SmA phase and the polarization power of the SmC phase.230 The experimental 

phase diagram of 2PhP is characterized by the presence of a SmC phase extending from 

58 degrees Celsius to 85 degrees Celsius whereas 5PhP only shows a SmA phase. The 

structure of 2PhP and 5PhP and their experimental phase diagrams have been provided in 

Figures 1.5 and 1.6.  

 Molecular dynamics simulations have provided important details on 

intermolecular structure and orientational order for many liquid crystalline phases.  

Typical simulations employ simple models, such as multipolar ellipsoids,231, 232 

cylinders,233, 234 or fused ellipsoids or cylinders.235, 236 Despite their simplicity, many of 

these models display a rich phase structure. The SmC phase, however, has proved 

elusive95 for many of these models. In 1998, Neal and Parker95 found that the 

introduction of a longitudinal quadrupole to an ellipsoidal molecular model produced 

SmC phases.  Quadrupoles are also of interest in this work and I explore their impact for 

the aromatic rings of 2PhP and 5PhP. The feasibility of more realistic molecular models 

has been discussed by Zannoni et al.50 The progression from simple models to complex 

ones is challenging for several reasons: the computational costs increase for a more 

sophisticated molecular representation; many molecules are required in the simulation 

cell to properly model the phase structure; and longer simulations (tens of nanoseconds) 

are needed as the dynamics slow down due to molecular entanglement. Despite these 

challenges, many mesogens require accurate molecular models to capture their phase 

behavior. A comparison between 2PhP and 5PhP, for example, requires detailed 
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molecular representations since their structures are very similar. To this end, I have 

developed multi-site coarse-grained models, where the aromatic rings are represented by 

soft quadrupolar ellipsoids, but the chains are given united atom representations.  In order 

to fully analyze the impact of the core representation, four ring models are explored for 

each mesogen. Ab initio calculations are employed to properly explore the energetic costs 

for bends and torsions, and these are used in the development of the molecular models. 

The inclusion of quadrupoles complicates and lengthens the simulations, but proper ring-

ring interactions are necessary to correctly represent core-core interactions between 

neighboring molecules. All-atom force fields appear to provide a superior alternative to 

my chosen models for 2PhP and 5PhP, however these models cannot account for the 

quadrupole that arises from the electron clouds above and below the plane of the ring. I 

show, by a detailed exploration of pair interaction energies, that the quadrupolar ring 

model leads to a crucial energetically favorable crossed-core conformation that is 

ultimately responsible for the presence of the SmC phase of 2PhP. I have also found that 

the proper representation of the phenyl-pyrimidine torsion within the molecular core is 

essential, and the phase difference between 2PhP and 5PhP is attributable to their 

different preferred arrangements (i.e. planar arrangement for 2PhP and twisted core 

conformation for 5PhP).  

 With suitable molecular models in hand, detailed MD simulations of 2PhP and 

5PhP are conducted to examine the smectic phases. I consider several order parameters, 

some defined by the molecular cores and others obtained for the alkoxy tails.  The layer 

normal and associated order parameter are also evaluated. Three corresponding directors 
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are obtained along with the layer normal. Intermolecular structure is analyzed via the 

decomposition of pair distributions parallel or perpendicular to the director and the layer 

normal. A comparison of these distributions differentiates SmC from SmA and reveals 

layer spacing as a function of temperature. Orientational distributions are also evaluated 

and show the relative positions of neighboring molecules. I find that the molecular cores 

are ordered but the alkoxy tails are fluid and their distribution is liquid-like. 
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4.1 The Starting Configuration 

 

In the beginning of any simulation, a starting configuration (i.e. a complete definition of 

the positions and velocities of all N  particles in the system) has to be assigned. The 

choice of the initial configuration is in principle arbitrary since equilibration will 

eventually be achieved. In practice, for liquid crystal simulations, the choice matters 

because phase formation and equilibration may require significant computer time. 

In this thesis, the following procedure has been used in order to create the starting 

configuration. Consider the simulation of a ( )34 n  molecules system. Initially, a perfectly 

ordered lattice formed by ( )314 +n  molecules is generated inside the simulation cell. 

Some of the molecules will be chosen at random and eliminated from the cell, so that 

only ( )34 n  molecules remain. Next, orientations have to be assigned (either random or 

not) to the remaining molecules. Following this, the system is relaxed by isotropically 

expanding the volume of the simulation cell in 5% increments of the box length. These 

expansions continue until all molecular overlaps have been eliminated, as confirmed by a 

calculation of the potential energy. After this, a sequence of Monte Carlo cycles (each 

consisting of 10000 attempted translations and rotations) has been used in order to 

“relax” the cell. Next, an isotropic compression of the volume of the simulation cell, in 

5% decrements of the box length, is introduced and followed by another sequence of 

Monte Carlo cycles. Finally, random linear and angular velocities are assigned to the 

molecules, consistent with the chosen temperature. 
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 Initially, an isotropic starting configuration was constructed following the above 

procedure, with random initial orientations assigned to the molecules. All attempts to 

grow smectic phases from this isotropic starting configuration (order parameter 2P < 

0.05) were not successful since, even after 6 ns, the order parameter had not grown 

significantly. This is in agreement with the results of McDonald et al.65 who were able to 

grow nematic phases starting from an isotropic configuration, only after a lengthy 

equilibration period of 10-15 ns. They employed a simplified model of the 8CB molecule 

(Figure 1.3 (b)) that completely neglected the electrostatic interactions and used the 

united-atom approach to eliminate all hydrogens. However, they noted65 that “it is 

possible for an imprint of the starting configuration to persist for longer time scales”. 

Furthermore, Berardi et al.21 reported that long equilibration runs, typically between 10-

40 ns, were required to equilibrate the nematic phase of complex cinnamate from an 

ordered starting configuration ( 2P  around 0.65). In this case, the simulations were 

performed at the atomistic level and the electrostatic interactions were fully accounted 

for. All in all, the time necessary for the equilibration of a liquid crystal system indicates 

that only samples preliminarily prepared with some order have been found to require 

feasible computational time. 

As a consequence, a nematic-like initial configuration was generated starting from 

a perfectly ordered lattice formed by ( )34 n  molecules inside of the simulation cell. The 

initial orientations of the molecules have now been forced to be similar to a perfect 

crystal (i.e. order parameter 2P =1). This system has then been expanded and contracted 
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using the already mentioned procedure. The MC cycles lead to reduced 2P  order 

parameters, between 0.56 and 0.81, after the recompression process. The equilibration 

period of the MD simulation will begin with this arrangement of molecules. Figure 4.1 

presents a snapshot of the initial configurations of 256 2PhP molecules arranged into a 

cubic cell. 

 

Figure 4.1 Initial nematic-like starting configuration of 256 2PhP molecules simulated in the 
NVT ensemble at 0.90 g/mL in a cubic simulation cell, using the A1 ring model. The alkyl chains 
are represented as grey spheres while the oxygen atoms are shown in red. The phenyl and 
pyrimidine rings are represented as bulky blue and orange spheres, respectively. 

 

As there is no literature data on the temperature dependence of the density for 

either of the simulated systems (i.e. 2PhP or 5PhP host molecules), a crude phase 

diagram scan is performed by varying the system density systematically with 

temperature.  
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Specifically, 4 ns MD simulations of 256 host molecules, for a total of 6656 

interaction sites, starting from this nematic-like configuration have been carried out in the 

NVT ensemble to provide a preliminary survey of the phase diagram. As a reference 

point, the density of the 8CB molecule65 is known and the smectic phases occur between 

1.05 g/mL and 0.95 g/mL. Considering that the length of the fully extended model of 

8CB molecule (~22 Å) is slightly less than that of the 2PhP or 5PhP host molecules (~25 

Å) and that 8CB also included two aromatic rings, the apparition of smectic phases is 

expected at similar densities for the 2PhP and 5PhP.  

With this in mind, a series of densities and temperatures have been explored for 

2PhP and 5PhP. Results of NVT simulations will be presented in detail in the following 

section. 
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4.2 Preliminary Simulations in the NVT Ensemble  

 

For the NVT simulations done in this thesis, practical limitations quickly emerged with 

the initial starting configuration of the system, the size of the simulated system, and the 

shape of the simulation cell. 

The simulation cell shape is an important factor to consider when simulating 

smectic phases in the NVT ensemble. While the boundary conditions have little effect on 

the structure of a nematic or isotropic phase, a strong dependence of the simulation cell 

dimensions is observed in smectic phases due to the presence of some positional order in 

these fluids. Imposing a cubic simulation cell may constrain the system when it forms a 

smectic-like structure. Specifically, the layers may not be clearly defined, and the 

calculated order parameter can be lower than expected. In smectic phases, the director 

reorients itself such that the periodicity of the simulation cell along the director will 

correspond exactly to an integral multiple of the smectic layer spacing. Thus, the box 

dimensions influences the director orientation and the number of smectic layers. 

To evaluate the impact of the constant box shape constraint, systems of 256 2PhP 

molecules in different but constant cell shape (i.e. 1:1:1, 1:1:1.5, and 1:1:2 ratios of the 

side lengths) have been simulated. Following the procedure detailed in Section 4.1, new 

starting configurations for systems of 256 molecules were obtained for each box shape. 

Tables 4.1 and 4.2 summarize the NVT ensemble simulations of systems of 256 2PhP 

and 5PhP molecules, respectively, at different densities and temperatures. 
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Table 4.1 Calculated average 2P  order parameters for systems of 256 2PhP host molecules 
simulated in the NVT ensemble using the A1 ring model, in parallelepipedic cells of different box 
length ratios. 

 
 

T (K) 

Box 
length 
ratio 

x : y : z  

Density (g/mL) 

0.82  0.85  0.88  0.90  0.92 0.95  1.00  1.08  

320 

1:1:1 

- - - - - 0.54 0.64 0.62 
335 - - - 0.57 - 0.58 0.66 - 
350 - 0.23 0.37 0.52 0.54 0.53 0.60 - 
365 - - 0.36 - - 0.52 0.53 - 
380 - 0.13 - 0.41 - 0.56 0.51 - 
400 0.13 0.11 - - - - - - 
450 - - - 0.26 - 0.47 - - 
350 1:1:1.5 - - - 0.24 - - - - 
380 - 0.18 - - - - - - 
335 

1:1:2 
- - - 0.57 - 0.32 - - 

350 - - - 0.49 - 0.32 - - 
380 - 0.24 - - - - - - 

 

 

Table 4.2 Calculated average 2P  order parameters for systems of 256 5PhP host molecules 
simulated in the NVT ensemble using the A1 ring model, in parallelepipedic cells of 1:1:2 box 
length ratio. 

 

T (K) 

Box 
length 
ratio 

x : y : z  

Density (g/mL) 

0.85  0.88  0.90  0.92 0.95  

360 

1:1:2 

- - 0.45 0.38 0.52 
370 - - 0.49 0.37 0.48 
380 - 0.22 - - - 
420 0.26 - - - - 
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By changing the simulation cell lengths ratio from x : y : z =1:1:1 to 1:1:1.5 and 

further to 1:1:2, the smectic structure often stabilizes faster and easier. This is evident 

from the snapshots of 256 2PhP molecules simulated in the NVT ensemble at 350K and 

0.90 g/mL using the A1 ring model and varying the box length ratios (see Figure 4.2). In 

addition, the interdigitation between the layers and weak correlation between the 

neighbouring layers are slowly disappear when the box shape is changed by increasing 

the z  axis relative to the x  and y  axes. On the whole, Tables 4.1 and 4.2 show that the 

shape of the simulation cell and the density strongly impact the structure of the fluid. For 

this reason, the NVT ensemble is not well suited to a study of smectic phases. 

 

 
 

1 : 1 : 1 1 : 1 : 1.5 1 : 1 : 2 

Figure 4.2 Snapshots of 256 2PhP host molecules simulated in the NVT ensemble at 350K and 
0.90 g/mL, using the A1 ring model, in simulation cells having different box length ratios. The 
alkyl chains are represented as grey lines, and oxygen atoms are shown in red. The phenyl and 
pyrimidine rings are represented as bulky blue and orange spheres, respectively. 
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To study the influence of the system size, a system of 108 2PhP molecules, at 

350K and 0.90 g/mL in a 1:1:2 ratio simulation cell was studied in the NVT ensemble. 

Simulation times are faster in a system of 108 molecules, but too few layers were formed 

rendering the result difficult to assess. As a result, I have chosen to simulate systems of 

256 molecules.  

The isothermal-isobaric (NPT) ensemble, being closer to the experimental 

conditions, is a better tool to understand the behavior of real liquid crystals. The NPT 

ensemble simulations can be done in two different ways, by using either a fixed aspect 

ratio121 (isotropic volume change), or a shape-varying cell140, 237 (anisotropic volume 

change). A smectic phase is not well suited to isotropic changes due to different impacts 

on the intralayer and interlayer spacing. An attempt to enlarge the cell, for example, may 

be favorable to the layer spacing but the additional space within the layers may be 

energetically unfavorable. Anisotropic volume changes, where only one cell dimension is 

changed, are far more appropriate since they allow independent adjustment of the 

interlayer spacing. Although anisotropic changes in the simulation cell can be 

accommodated within the extended Lagrangian formalism,121 the method becomes 

significantly more complicated. I have opted instead to employ Monte Carlo volume 

changes. By using a hybrid MD-MC method (presented in Section 2.3), the limitations 

coming from the constant box shape constraint are eliminated and the natural 

arrangement of smectic phases is promoted, by allowing the shape of the simulation cell 

and density of the simulated system to fluctuate.  
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4.3 Pair Energies 

 

Before examining the phase behavior of 2PhP and 5PhP, it is instructive to begin by 

considering interactions between pairs of molecules. To explore the effect of the ring 

quadrupole, “docking” studies have been performed for each mesogen, using the four 

ring models.  

Two minimization algorithms have been used to gain insights into the 

conformational characteristics of 2PhP and 5PhP dimers. First, to ensure a broad 

sampling of the potential energy surface and the conformations represented by it, 

between 800 and 1850 randomly generated starting configurations have been used for 

each of the four selected sets of ring parameters (i.e. A1, B1, B2, and C1 ring models 

shown in Tables 3.3, 3.4, and 3.5) and both host molecules. Specifically, two molecules 

are positioned randomly at the center of a very large simulation cell. Following this, MD 

simulations are performed for 50000 iterations with the temperature (initial at 300K) 

being halved every 10000 iterations. This “downhill” method does not easily allow 

crossing of energy barriers, and I have been able to identify local minima close to the 

point from which the minimization procedure started, for each of the dimers and all four 

selected sets of ring parameters, respectively. A schematic representation of the 

minimization procedure used in this thesis is shown in Figure 4.3. This minimization 

procedure helps us to identify the ease of finding a particular energy minimum, which is 

related to the density of points in a region.  
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Figure 4.3 A schematic representation of a minimization procedure leading to the closest local 
minimum. 

 

In addition, in order to determine the lowest possible pair energies, a large 

number of simulations have been performed imposing fixed core-core angles. 

Specifically, at least 800 diverse starting configurations have been used for each core-

core angle constrained at 20×n degrees, where 90 −=n . 

Figures 4.4 and 4.5 show the results of docking studies for the 2PhP and 5PhP 

liquid crystal molecules and each of the four selected ring models. In each panel, the pair 

energy is plotted as a function of relative core angle, thus each point corresponds to the 

final energy of a simulation. Each open circle represents an energy minimization 

following a random initial structure of the dimer. Each filled circle represents the lowest 

energy achieved for a series of fixed core-core angle simulation. 

  

 

 



 

 153 

0 45 90 135 180
Angle (deg)

-100

-75

-50

-25

0

-100

-75

-50

-25

0

-100

-75

-50

-25

0

-100

-75

-50

-25

0

E
ne

rg
y 

(k
J/

m
ol

)

(a)

(b)

(c)

(d)

 

Figure 4.4 The pair energy plotted as a function of relative angle between two 2PhP molecules, 
by means of using the: (a) A1, (b) B1, (c) B2, and (d) C1 ring models, respectively. Each open 
circle represents an energy minimization following a random initial structure of the dimer while 
every filled circle shows the lowest dimer energy obtained with a fixed core-core angle. 
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Figure 4.5 The pair energy plotted as a function of relative angle between two 5PhP molecules, 
by means of using the: (a) A1, (b) B1, (c) B2, and (d) C1 ring models, respectively. Each open 
circle represents an energy minimization following a random initial structure of the dimer while 
every filled circle shows the lowest dimer energy obtained with a fixed core-core angle. 
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The arrangements of dimers have been first classified taking into consideration 

the angle between the axes bonding the two GB sites of the same molecules, as syn, anti, 

or crossed. The angle is obtained from the dot product of the ring-ring bonds in both 

molecules. Next, it is important to distinguish between docked structures where the rings 

are face-to-face or parallel as opposed to slipped-parallel. For instance, Figure 4.6 

presents some of the arrangements that appear in the docking studies of the 2PhP and 

5PhP dimers. 

           

    syn-parallel                                      crossed                                     anti-parallel 
 

Figure 4.6  Possible arrangements of 2PhP and 5PhP dimers. The alkyl chains and oxygen atoms 

are represented by grey and red spheres, respectively. The phenyl and pyrimidine rings are 

represented by bulky yellow and blue spheres, respectively. 

 

Consider Figure 4.4 (a), which shows the results of docking studies for 2PhP 

when the A1 ring model is used. Clearly, in this case, the lowest pair energy occurs when 
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the rings are crossed, but the density of points in this region indicates that this energy 

minimum is somewhat difficult to reach, relative to conformations where the rings are 

parallel, or close to parallel. Overall, these docking studies indicate that within the 

simulations parallel arrangements may be entropically favored but energetics favor 

crossed arrangements.   

When the ring quadrupole decreases, the energetic bias towards crossed 

arrangements also decreases and this is evident by the smaller energy gap for parallel 

versus crossed arrangements when the B1 and B2 ring models are used (see Figures 4.4 

(b) and (c)). This gap vanishes entirely in the absence of a ring quadrupole (i.e. C1 ring 

model). Even in this case, the density of points indicates that parallel and anti-parallel 

arrangements are more easily found despite the absence of ring quadrupoles. This result 

is important in explaining the influence of the quadrupole to the ring model potential. 

Docking energies for 5PhP dimer are shown in Figure 4.5. Comparing between 

the two mesogens, the quadrupole has a smaller energy lowering effect for 5PhP. The 

non-planarity of the core region in 5PhP frustrates to a larger extent the energy lowering 

achievable for crossed core configurations. Low energy conformations are more evenly 

distributed among core angles for 5PhP suggesting that these molecules should display a 

broader array of core arrangements within the simulations.  

Figure 4.7 (a) shows the results of the docking study for 2PhP when the A1 ring 

model is used. Color coding is introduced within the figure to separate the docking 

minima according to the distance between the phenyl rings. Specifically, the energy 

minima below –10 kJ/mol are shown for phenyl-phenyl distances between 3.4  and 7.3 Å. 
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The green color identifies that the phenyl rings are within 3.4 and 4.4 Å, and this occurs 

exclusively for crossed configurations with a relative core angle of around 70 degrees 

with the phenyl rings closer together. At slightly different distances, between 4.4 and 5.8 

Å, two configurations (shown in red) contribute at energies below -10 kJ/mol. Either the 

molecules are roughly parallel, with face-to-face phenyl rings, or a crossed configuration 

with an inter-core angle of around 110 degrees occurs (i.e. anti-crossed). At larger 

distances, between 5.8 and 7.3 Å, anti-parallel configurations appear along with less 

energetically favorable parallel and crossed configurations (shown in blue). The latter 

tend to have an intercore twist so that the edge-to-edge ring arrangements occur. 

Figure 4.7 (b) categorizes all docking minima, with energies below -10 kJ/mol, 

according to the distance between the phenyl rings. The spatial subdivision reveals three 

definite regions: around 3.9 Å, around 4.8 Å, and around 6.5 Å. With the information in 

Figure 4.7 (a), only crossed configurations occur at small separations, parallel and anti-

crossed configurations occur between 4.4 and 5.8 Å, and anti-parallel configurations are 

the largest contributor between 5.8 and 7.3 Å. The correlation between phenyl-phenyl 

ring distance, docking energies, and intercore angle in Figures 4.7 (a) and (b) prove 

useful in understanding the structure in the smectic phases. 
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Figure 4.7 The pair energy plotted as a function of relative angle between two 2PhP molecular 
cores in (a) and as a function of phenyl-phenyl ring separation in (b). Each dot in (a) represents an 
energy minimization following a random initial structure of the dimer.  Results are presented for 
the A1 model.  In (a), green, red, and blue circles identify configurations where the inter-phenyl 
distance is between 3.4-4.4 Å, 4.4-5.8 Å, and 5.8-7.3 Å, respectively. Only configurations with an 
energy less than -10 kJ/mol contribute in (b).    
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4.4 Simulations of Liquid Crystals in the NPT Ensemble 

  

4.4.1 Simulations Details 

This section presents MD-MC simulations in the NPT ensemble for 2PhP and 5PhP 

mesogens. 2PhP is examined at four temperatures (335K, 365K, 400K, and 450K), which 

span the temperature range for SmC, SmA, nematic, and isotropic phases (Figure 1.6).25 

5PhP is examined at three temperatures (370K, 400K, and 450K), where SmA and 

isotropic phases are observed experimentally (Figure 1.6).26 

Results are presented for simulations of 256 molecules. This number is sufficient 

for 3-4 layers to form within the simulation cell. The methods of generating starting 

configurations have been discussed in detail in Section 4.1. The starting configuration 

typically has a P2 order parameter between 0.56 and 0.81 (see Appendix C), and visual 

inspection shows nematic-like positional order. This starting procedure is ideal for 2PhP 

and 5PhP since the latter does not have a stable nematic phase while the nematic phase of 

2PhP is only stable over a very narrow temperature range. At the lower temperatures, 

where smectic phases are expected, I find that layers form very quickly. An equilibration 

period of 0.5 ns is sufficient as the density in the simulation cell and the order parameters 

have stabilized after this time. The molecules are initially aligned as mentioned above, 

and once layers form, few molecules turn over the duration of the simulations. Thus, the 

P3 order parameters tend to be nonzero. The impact of this initial aligned configuration 

will be discussed in Section 4.4.4, but here I note that a few runs starting from an 

antiparallel molecular alignment were also performed and will be discussed later. 
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As discussed in Section 2.3, changes in the shape and size of simulation cell are 

allowed within the NPT ensemble simulations and these change the density of the 

systems. Specifically, at each iteration a random variable is chosen to decide upon 

whether a volume change is to be attempted. On average, an attempt is made every 256 

iterations. If the volume will be changed, the cell dimension to be changed is decided 

randomly, and the magnitude of the change is randomly chosen, subject to a maximum. 

The latter is adjusted during the equilibration so that the success rate is between 30% and 

70%.  

The initial density is 0.90 g/mL for all simulations, which is close to but slightly 

lower than densities employed for related mesogens.65  For all simulations, the density 

rapidly drops to around 0.77 g/mL as the nematic starting configuration reorganizes into 

layers. The density then gradually increases back to between 0.88 g/mL and 0.92 g/mL, 

with the lower average density for the C1 ring model at higher temperatures and the 

higher density for the quadrupolar models at 335K. 

Two types of simulations are performed: a series of short 2 ns runs, and longer 8-

14 ns runs. For the shorter runs, five independent runs are performed for 2PhP at 335K, 

2PhP at 365K, and 5PhP at 370K. For both mesogens, three independent simulations are 

performed at 400K, and results are reported from two independent simulations at 450K. 

Averaged results from the independent simulations, for a given temperature and 

mesogen, are reported below. All simulations are repeated for the A1, B1, B2, and C1 

ring models. In total, results from eighty 2 ns simulations are reported below. These 
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results are complemented by 8-14 ns runs for the B1 and C1 ring models of 2PhP at 365K 

and 5PhP at 370K.  

Within the 2PhP and 5PhP simulations, both phenyl and pyrimidine rings are 

represented as multipolar ellipsoids whilst the flexible tails are represented as spherical 

LJ sites. The non-polar portion of the ring representation is contained within the GB 

potential, and identical GB parameters are used for both rings. The ring models for 

phenyl and pyrimidine are very similar, but not identical. Specifically, they differ in the 

magnitude of the ring charge, as calculated from the CHELPG algorithm165 applied to the 

global energy minimum, and in their intramolecular potentials. The current models do 

employ identical ring quadrupoles and GB potential parameters and, likely, the 

differences between the rings are underestimated. Full details of the force field used are 

given in Chapter 3. 

 Returning to the ring representation, the inclusion of a ring quadrupole means that 

multipolar interactions include charge-charge, charge-quadrupole, and quadrupole-

quadrupole terms. Only the last of these was present for the model tests on benzene and 

biphenyl. For 2PhP and 5PhP, I have chosen to replace the point ring quadrupole by four 

charges placed above and below the ring plane, along the symmetry axis. The charges are 

defined so that they exactly reproduce the desired quadrupole moment, have a net charge 

of zero, do not introduce a net dipole on the ring, and they are located close to the ring 

center inside the repulsive wall of the GB potential. Specifically, the charges are located 

at ±1 Å and ±0.5 Å from the center of the GB site along the symmetry axis, and the 

magnitudes of the charges are ±0.9101 |e| for model A1 and ±0.7281 |e| for models B1 
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and B2. This simple representation of the ring quadrupole allows the use of charge-

charge Ewald summations64 for all electrostatic interactions within the fluid. The Ewald 

convergence parameter of 53.=α Å-1 has been tested and chosen for all the simulations 

with a reciprocal space cutoff of 462 ≤*k . Periodic boundary conditions119 and an initial  

rectangular 1:1:2 simulation cell were employed. A spherical cut-off ( =−offcutr  smallest 

box length/2.05) was used for the LJ and GB interactions. A Nosé-Hoover thermostat135-

139 is used to maintain a constant average temperature. In particular, separate rotational 

and translational thermostats have been implemented. After testing four different time 

steps, a time step of 0.25 fs is chosen for the simulations. Interatomic distributions, inter-

ring distributions, and order parameters are evaluated every 100 iterations. Distribution 

functions are averaged every 250000 iterations. Snapshots of the simulation cell are 

collected every 250000 iterations. A typical short simulation consists of 8 million 

iterations, with an equilibration period of 500000 iterations. Although the simulations are 

relatively short for liquid crystalline phases, it is important to realize that the system 

adopts a layered structure very quickly and that my systems are large, given the level of 

molecular detail. All simulations were performed with the MDMC program,238 which has 

been modified to include GB-GB and GB-LJ potential and force calculations. 

4.4.2 Convergence Issues 

Figure 4.8 (a) compares radial distributions for five independent 2 ns simulations of 

2PhP, at 365K, as predicted from the B1 model. The distributions in Figure 4.8 (a), and 

all distributions involving rings, report probabilities as a function of the distance between 
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the ring centres. Clearly, all the simulations predict equivalent ring-ring distributions 

beyond separations of 6 Å. At closer distances, where the rings are in contact, the 

simulations show the same peaks but with some differences evident in the peak 

intensities. The average of these distributions is also compared with the distributions 

from a single 12 ns run in Figure 4.8 (b).  

The simulations reported in this section begin with parallel molecules in the 

simulation cell. In Figure 4.8 (c) the phenyl-phenyl distribution is shown for an 

antiparallel starting configuration. Keeping in mind that the latter is a 2 ns simulation, the 

difference between the average over five simulations is consistent with the distributions 

in Figure 4.8 (a).  Thus, the intermolecular structure in the fluid is similar for both 

starting configurations.   

The use of multiple short simulations provides a simple and efficient means of 

exploring the fluid structure. This is particularly true for 2PhP and 5PhP where 

equilibration from a nematic starting configuration is rapid. Five independent simulations 

have been employed for the lower temperatures, where smectic phases are expected, and 

two or three simulations at higher temperatures, where isotropic phases occur. This 

number of simulations is sufficient to tentatively identify the phases and qualitatively 

analyze the fluid structure and order, but a greater number of simulations would be 

required to ensure full convergence of the properties of the fluid. In particular, the larger 

simulations suggest that a single long simulation would require over 100 ns to generate 

converged fluid properties. 
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Figure 4.8 Convergence tests illustrated for 2PhP (B1 ring model) at 365K. (a) Phenyl-phenyl 
radial distributions are shown for five independent 2 ns simulations (open circles, filled circled, 
open diamonds, open squares, filled squares). Their average is shown with a thick solid line. (b) 
The distribution from a single 12 ns simulation (open triangle down) is compared with the 
average over five independent 2 ns simulations (thick solid line). (c) Aggregate distribution 
functions parallel (thick solid line) and anti-parallel (filled triangle up) starting configurations. 
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A detailed dynamical analysis of neighbouring molecular pairs was performed for 

the B1 model of 2PhP at 335K. The analysis reveals that neighbour interaction time 

decreases exponentially but that prior neighbours are highly likely to re-establish their 

neighbour status. That is, dynamic fluctuations lead to temporary loss of neighbour status 

but the molecules quickly restore their proximity. I find that over two-thirds of molecular 

pairs identified as neighbours maintain their status, with brief interruptions, for longer 

than 1 ns. In viewing movies of the simulations, interlayer fluctuations are often more 

pronounced than intralayer fluctuations, partial layers tend to form in the simulation cell, 

and these are very slow to change once formed.   

4.4.3 The Impact of Ring Quadrupole 

The quadrupole moment perpendicular to the plane of an aromatic ring is substantial and 

an important contributor to ring-ring interactions. A typical atomistic molecular 

mechanics ring model cannot represent this quadrupole since the ring atoms are within 

the ring plane. In order to capture this effect, dummy atoms above and below the plane 

are required. A coarse-grained model is more readily adapted to incorporate a quadrupole 

and, in this section, I investigate the impact of the quadrupole on the structure of the 

liquid crystal phases.   Figure 4.9 illustrates the impact of the ring quadrupole by 

examining the ring-ring distribution between the phenyl rings of 2PhP at 365K. Average 

distributions of five short runs (2ns) started from different parallel starting configurations 

are compared. 
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Figure 4.9 The impact of the ring quadrupole on the liquid crystal phase of 2PhP at 365K.  
Phenyl-phenyl distributions are compared for B1 model (open squares) and C1 model (open 
circles). Radial distributions, second order correlations, structure perpendicular to the director, 
and structure parallel to the director are compared in (a), (b), (c), and (d) respectively. 
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Specifically, the figure compares inter-ring radial distributions g(r), the inter-ring 

orientational distribution ( )rg 2 , the inter-ring distribution perpendicular to the director 

( )⊥⊥ rg D , and the inter-ring distribution along the director ( )|||| rg D . Results for the B1 and 

C1 ring models, which differ only in the presence of a quadrupole for the former, are 

shown.   

The addition of a quadrupole to the ring has a dramatic impact on the fluid 

structure. Without a quadrupole, the phenyl-phenyl radial distribution has a simpler 

structure with a side-by-side contact peak at 5 Å and a second peak at 9.5 Å. The first 

peak corresponds to a contact peak, and, from Figure 4.7 (a), it originates primarily from 

parallel molecular cores, with some contribution from anti-crossed pairs. The presence of 

a quadrupole on the ring splits the contact peak, with the introduction of a feature at 4 Å. 

This peak is due to crossed-core molecular pairs that, according to Figure 4.7 (a), are now 

energetically favored. A shoulder at 6.2 Å also appears and this feature reflects a higher 

probability for anti-crossed arrangements when the rings include quadrupoles. The first 

minimum in the radial distribution appears at 7.8 Å regardless of the ring model. I can 

therefore easily and directly compare coordination numbers, obtained from integrating 

g(r) between 0 and 7.8 Å. I find that, on average, a given 2PhP molecule has 4.4 nearest 

neighbours regardless of the presence of the quadrupole. Thus, the quadrupole 

dramatically alters the orientation and position of the nearest neighbours without 

changing the overall number of neighbours.   

Second order correlations are shown in Figure 4.9 (b). At large distances, this 

distribution function approaches (P2)2. This limit is clearly higher in the absence of the 
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ring quadrupole indicating a more ordered fluid. Structure perpendicular and parallel to 

the director (see Figures 4.9 (c) and (d)) is also stronger in the absence of the quadrupole. 

All of these features are indicative of a simpler layer structure, with more order within the 

layers, when the rings do not include quadrupoles. It is important to realize, however, that 

the director is defined by the molecular core and with the introduction of crossed 

configurations the assessment of the order is more problematic.  

4.4.4 Structure and Order 

Figure 4.10 compares distributions within the core region with distributions in the tails. 

Average distributions of five independent 2ns runs started from different parallel starting 

configurations are compared. Specifically, distributions between C(1)-C(1) and C(16)-

C(16), the end groups in the hydrocarbon tails (Figure 3.2), are compared with the core 

phenyl-phenyl and pyrimidine-pyrimidine distributions. From the radial distributions in 

Figure 4.10 (a), the C(1)-C(1) and C(16)-C(16) distributions are similar even though the 

tails differ in length. In both cases, the radial distributions are liquid-like with a broad 

contact peak at around 4.3 Å and a weak secondary peak at around 8.5 Å. Unlike typical 

liquid distributions, the radial distribution function shows a broad region of low 

probability between 10 and 20 Å corresponding to separations where aromatic molecular 

cores are found. The ring-ring distributions are, by contrast, more structured with 

pronounced contact and secondary peaks. As with the end groups, the distributions show 

a broad region of low probability. In this case, the region corresponds to separations 

where alkoxy tails are found in the layered fluid.  
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The distribution functions can be subdivided into components parallel and 

perpendicular to the director. The component perpendicular to the director, given in 

Figure 4.10 (b), shows that the 5PhP rings have a well-defined intralayer structure with 

three peaks evident at 5 Å, 10 Å, and 15 Å. These peaks correspond to neighbour, next-

nearest neighbour, and next-next-nearest neighbouring rings, with a preference for 

parallel core alignment. In contrast, the distributions between tail atoms indicate that their 

structure is short ranged and weaker: ( )⊥
⊥

rg D  shows only a small, broad contact peak 

from neighboring molecular tails. Structure along the director, ( )|||| rg D , shown in Figure 

4.10 (c), reflects the layer spacing and impacts both core and tail atoms. 

Although the phenyl-pyrimidine axis is the most obvious choice for defining a 

director, other choices can be made. Directions defined from the C(1)-C(2) and C(15)-

C(16) bonds have been chosen for comparison. Figure 4.10 (d) shows the angular 

correlation between these chosen axes within neighbouring molecules. The inter-core 

axis distribution shows that, when the molecular cores are very close together, they prefer 

to be in a crossed configuration. If all molecules adopted this configuration then 

( ) ( ) 50cos22 .−→→ θPrg . The angular correlation between the phenyl-pyrimidine axes 

reaches this limit at small separations. The inter-core ( )rg2  quickly becomes positive at 

larger separations as parallel core arrangements begin to contribute to the orientational 

distribution. In contrast, the alkoxy tails show very little orientational correlation except 

at very small separations.  
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Figure 4.10 A comparison between tail and core structures in the 5PhP liquid crystal phase at 
370K, as predicted from the B1 model. In (a), (b), and (c), distributions between C(1)-C(1), 
phenyl-phenyl, pyrimidine-pyrimidine, and C(16)-C(16) are shown by solid circles, solid squares, 
open squares, and open circles, respectively. Panel (a) compares radial distribution functions 
while perpendicular and longitudinal distributions, relative to the director obtained from the 
phenyl-pyrimidine core axes, are shown in (b) and (c). Panel (d) shows intermolecular 
orientational distribution functions as determined from the phenyl-pyrimidine axis (solid circles), 
C(1)-C(2) axis (solid squares), and the C(15)-C(16) axis (solid diamonds).     
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The orientational distribution function tends to 2
2P  at large separations and 

Figure 4.10 (d) shows that the molecular cores have long-ranged orientational order but 

the tails do not. Thus, the region occupied by the tails is liquid-like in regards to structure 

and ordering.  

The time evolution of the fluid order is shown in Figure 4.11 for 5PhP at 370K 

and as represented by the B1 model. The starting configuration for the simulation is a 

nematic fluid. For the simulation shown, the starting P2 order parameter was 0.75 for the 

inter-ring axis and quickly dropped to between 0.4 and 0.5. This pattern is consistent for 

all my simulations:  the order initially imposed is reduced once the molecules form the 

layered structure. This is due, in part, to the absence of electrostatic charges during the 

preparation of the starting configuration. Once the charges are included, the fluid 

structure becomes more complex and the order parameter decreases. In particular the 

introduction of crossed configurations will lead to a reduction of P2, due to my protocol 

for the evaluation of the order rather that to a true reduction in order. The complexity of 

the molecular structure also leads to a lower order parameter, and values observed for 

simpler models50 are not expected to be observed here. 

A P2 order parameter for the layer normal, ( )tP L
2 , is also provided in Figure 4.11. 

This quantity reflects consistency between the local molecular layers normal, determined 

for each molecule by evaluating the normal to a plane defined by neighbour positions.  

From Figure 4.11 (a), the consistency between the local layers normal is higher than the 

agreement between the inter-ring axes through most of the simulation. This is due, in 

part, to the larger impact of crossed configurations to the order associated with the 
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director. The P2 order parameter obtained from the molecular tails is also shown. It is 

consistently low (< 0.2), as expected since the tails are less organized than the cores. 

However, P2 is slightly larger for C(1)-C(2), the shorter “tail”, than for C(15)-C(16). It 

follows that the order in the tail region will be smaller for atoms/bonds that are farther 

from the molecular core:  the core ordering is transferred, to some extent, to nearby bonds 

in the hydrocarbon chains. In 5PhP, a small amount of order remains for atoms five 

bonds away from the core, but not for atoms nine bonds away. 

 The P3 and P4 order parameters are also provided in Figures 4.11 (b) and (c). The 

P3 order parameter is not zero, although it is small, due to molecular propensity to align 

in the simulations. When simulations are started with parallel or antiparallel molecules, 

the original alignment is largely preserved over a 2 ns simulation. To be more precise, for 

a parallel starting configuration, the P3 order parameter drops initially as the fluid 

transitions away from a nematic to a smectic. Once the layers are formed, the P3 order 

parameter stabilizes, as shown in Figure 4.11 (b), and further decreases are very slow. 

Clearly, if the original configuration was isotropic, then the molecules would align with 

random orientations since energetics do not favour a particular alignment (see Figure 

4.5). A few simulations were also started with antiparallel molecules and, as expected, 

the P3 order parameter is zero (aside from instantaneous fluctuations) throughout the 

simulation. 
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Figure 4.11 The time evolution of order parameters for 5PhP, at 370K, as represented by the B1 
model. Order relative to the “directors” defined from the phenyl-pyrimidine, C(1)-C(2), and  
C(15)-C(16) axes are represented by red, blue, and green, respectively. The P2, P3, and P4 order 
parameters are shown in (a),(b), and (c), respectively. In (a), the P2 order parameter describing the 
consistency between local (molecular) layers normal is shown in black.   
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4.4.5 Layering and Phase Behaviour 

The layers formed by 2PhP and 5PhP often do not extend through the simulation cell or 

conform to the simple layering patterns observed for simpler models.77, 154, 239 This is 

evident from Figure 4.12 where a series of snapshots illustrates the partial layering. 

Several factors contribute to the formation of partial layers. First, the molecules are large 

and flexible, and “perfect” layers may not be realistic for molecules of this complexity.  

Second, the dynamics of layer reorganization is slow and extends beyond the time frame 

of the simulations. Nonetheless, the molecular cores clearly aggregate into layers with 

some crossed-core configurations and some parallel cores evident within the layers.   

Although the layers tend to align in parallel planes, this is not always the case, as 

shown by the central panel in Figure 4.12 (b), where the partial layers are oriented in 

several different directions.   
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(a) 

   

(b) 

   

(c) 

   

Figure 4.12 Snapshots from the 256 molecule simulations using the B1 model.  Snapshots from  
three independent simulations are shown for (a) 2PhP at 335 K, (b) 2PhP at 365K, and (c) 5PhP at 
370K. The alkyl chains are represented as grey lines, and oxygen atoms are shown in red. The 
phenyl and pyrimidine rings are represented as bulky blue and orange spheres, respectively. 
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Figures 4.13 and 4.14 present the most important results of this thesis. These 

figures show the phenyl-phenyl ring distributions in 2PhP and 5PhP, subdivided 

according to components parallel and perpendicular to the layer normal and the director.  

From Figure 4.13, the layer normal and the director are not equivalent for 2PhP at 335K 

and 365K.  This is evident from the difference between ( )||||
rg D  and ( )||||

rg L . At 365K, the 

latter indicates that the layers are roughly 16 Å apart whereas the former indicates a 

separation of 20 Å. From these peak positions, I calculate a relative angle of roughly 37 

degrees.  The peaks, and indeed the curves, coincide at 400K, as expected for a SmA 

phase, and a layer spacing of 20 Å is predicted. Both ( )||||
rg D  and ( )||||

rg L  are nearly unity at 

450K indicating that the phase is isotropic.   

Layer spacing has been measured26 for 2PhP at several temperatures. The 

experimental spacing is higher, varying from 24 Å in the SmC phase to 26 Å at the 

transition to SmA. The calculated values show the correct increase with temperature near 

the SmC to SmA transition, but they are smaller. This is due, in large part, to some 

retention of the initial parallel molecular orientation. Specifically, the tails are not of 

equal length – they are roughly 5 and 10 Å long. An anti-parallel, or randomized, starting 

configuration is predicted to lead to layer spacing of 21-27 Å in much better agreement 

with experiment.   
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Figure 4.13 The distribution between phenyl rings in 2PhP (B1 ring model) analyzed according 
to contributions perpendicular and parallel to the director (filled squares) and the layer normal 
(open squares). Results are shown for 335K (a), 365K (b), 400K (c), and 450K (d).   
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Figure 4.14 shows that, at all three temperatures, the layer normal and the director 

are equivalent for 5PhP. As well, the layer spacing is predicted to decrease from 20 Å at 

370K to 17 Å at 400K. While experimental layer spacings are not available for 

comparison, the spacing should decrease slightly with temperature. At 450K, ( )||||
rg D  

and ( )||||
rg L  are nearly unity and 5PhP is correctly predicted to be isotropic. 

 

 

Figure 4.14 The distribution between phenyl rings in 5PhP (B1 ring model) analyzed according 
to contributions perpendicular and parallel to the director (filled squares) and the layer normal 
(open squares). Results are shown for 370K (a), 400K (b), and 450K (c).  
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A corresponding analysis of the 2PhP and 5PhP phases predicted from the C1 ring 

model shows that only SmA phases are predicted at all temperatures. This model clearly 

does not provide a satisfactory representation of 2PhP or 5PhP. Thus, the presence of the 

ring quadrupole is necessary to produce a SmC phase and to encourage a transition to an 

isotropic fluid. My simulations indicate that differences in the phase sequences of 2PhP 

and 5PhP are due to both the phenyl-pyrimidine torsion and to the ring quadrupole. 

Together these two factors lead to substantially lower pair energies for crossed-core pairs 

of 2PhP molecules but only modestly lower energies for 5PhP pairs.   

Returning to the phase diagrams in Figure 1.6,  both 2PhP and 5PhP are predicted 

to be isotropic at 400K. Clearly, the multi-site coarse-grained model has extended the 

SmA range to higher temperatures. In addition, the SmC phase is not expected beyond 

358K for 2PhP although my model predicts this phase at 365K. Despite these differences, 

the tentative recovery of the proper phases for two structurally similar mesogens is very 

encouraging. Further model refinements may lead to better agreement with experiment. 

4.4.6 Dynamics 

Longer 8-14 ns simulations were performed for the B1 and C1 ring models of 2PhP at 

365K and 5PhP at 370K. These simulations provide some indication of the time scale for 

layer reorganization. Figure 4.15 shows the instantaneous variations in the density, the P2 

order parameter for the director and the layer normal, and the P2 order parameter for the 

C(1)-C(2) and C(15)-C(16) bonds in the alkoxy tails. The variation in the 1θ  and 2θ  

angles, calculated from Equations (2.51) and (2.52), is also shown.   
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2PhP      5PhP 

 

Figure 4.15  Instantaneous fluctuations for 2PhP at 365K (left) and 5PhP at 370K (right), as 
represented by the B1 model. Red, blue, and green pertain to the phenyl-pyrimidine, C(1)-C(2), 
and C(15)-C(16) vectors in the molecule, respectively. In (a), the P2 order parameter describing 
the consistency between local (molecular) layers normal is shown in black. Fluctuations in the 
order parameter associated with each of the vectors are shown in (a). The angles 1θ  and 2θ , 
evaluated from Equations (2.51) and (2.52), are given in (b) and (c). Fluctuations in the density 
are shown in (d). 

 

The uppermost panel in Figure 4.15 shows the P2 order parameter for the layer 

normal, the director, and the C(1)-C(2) and C(15)-C(16) bonds in the alkoxy tails. The 
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order is consistently near zero for the alkoxy tails and generally higher for the layer 

normal than for the director.   

The angle between the global layer normal, obtained from the average over all 

local layers normal, and the global director is captured by 1θ . Since this angle is 

measured based only on global vectors, all local contributions are averaged out, but 

contributions from imperfect layering will be observed. This angle has been calculated 

for the director and the alkoxy tail vectors C(1)-C(2) and C(15)-C(16). As one might 

expect from Figure 4.15 (b), the angle between the layer normal and the tail vectors 

oscillates rapidly between zero and ninety degrees. This indicates that the ends of the 

alkoxy tails are mostly uncorrelated with the layering in the core region. The oscillations 

are somewhat larger for C(15)-C(16) since these atoms are further removed from the 

molecular core.  The correlation between the director and the layer normal is, by contrast, 

evident in Figure 4.15 (b). The average angle fluctuates between 0 and 30 degrees for 

5PhP but is stable and less than 10 degrees for 2PhP.   

 A local picture of molecular orientation is provided by the angle between the local 

layer normal and the local director. The average of these angles is captured by 2θ  in 

Figure 4.15 (c). This angle is also calculated for the alkoxy tails, relative to the local layer 

normal, and the results show an average of 55-60 degrees. As discussed below Equation 

(2.52), if the tail orientations are uncorrelated with the local layer normal, an average 

angle of 57.3 degrees is expected. This is clearly the case for C(15)-C(16) and nearly true 

for C(1)-C(2). This indicates, once again, that the alkoxy tail region is isotropic. For the 

local director, defined by the phenyl-pyrimidine axis, a correlation with the local layer 
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normal is evident from the deviation from 57.3 degrees. Differences between 5PhP and 

2PhP are evident but relatively small.    

 Correlations between the panels are evident and transition regions, such as the dip 

in both the order parameter and instantaneous density at 4 ns for the 2PhP at 365K, 

provide a rough measure of the time frame for layer reorganization. This is only a rough 

guide however. 

Table 4.3 provides average angles, average densities, and average order 

parameters with the quantities obtained by accumulating instantaneous values over 

multiple 2 ns simulations. As expected, the density decreases with temperature. The 

results predicted from the C1 ring model indicate that the layer normal and the director 

are, within statistics, indistinguishable at all temperatures. The simulations also show that 

the C1 ring model predicts SmA phases at all temperatures although, at 450K, 

independent simulations for this model show very different order parameters. This signals 

that the transition from SmA to isotropic is occurring although the true fluids are 

isotropic at much lower temperatures. Between quadrupolar ring models, differences in 

order parameters and angles are less predictable. In my experience, the independent 

simulations are fairly distinct and the dynamics are slow for the A1 ring model. I suspect 

that the ring quadrupole is too large for this model. The properties evaluated from the B1 

and B2 ring models are similar in most respects.   
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Table 4.3 Average tilt angles, in degrees, P2 order parameters for the director and the layer 
normal, and the average density, in g/mL. Results are reported for the averages over for 5PhP at 
370K and 2PhP at 335K and 365K. The angles 1θ   and 2θ  are evaluated from Equations (2.51) 
and (2.52), respectively. The properties for 2PhP at 335K and 365K and 5PhP at 370K represent 
averages over five independent 2 ns simulations. Properties at 400K are obtained from averages 
over three 2 ns simulations while 450K properties are obtained from averages over two 2 ns 
simulations.  

 

Property 2PhP results for each ring model 5PhP results for each ring model 
A1 B1 B2 C1 A1 B1 B2 C1 

 335K  

1θ (degrees) 11 7 7 8     

2θ (degrees) 48 44 46 43     
DP2  0.21 0.33 0.27 0.44     
LP2  0.50 0.55 0.55 0.47     

<ρ> (g/mL) 0.89 0.92 0.91 0.89     
 365K 370K 

1θ (degrees) 12 9 12 7 14 14 15 10 

2θ (degrees) 49 46 46 42 46 45 46 43 
DP2  0.17 0.26 0.23 0.43 0.23 0.31 0.26 0.51 
LP2  0.45 0.52 0.50 0.49 0.39 0.42 0.41 0.48 

<ρ> (g/mL) 0.89 0.90 0.90 0.89 0.89 0.89 0.89 0.87 
 400K 400K 

1θ (degrees)  8  4  11  17 

2θ (degrees)  49  43  48  46 
DP2   0.19  0.45  0.20  0.31 
LP2   0.51  0.53  0.45  0.33 

<ρ> (g/mL)  0.89  0.88  0.88  0.86 
 450K 450K 

1θ (degrees)  23  8  32  10 

2θ (degrees)  52  49  52  44 
DP2   0.12  0.36  0.12  0.51 
LP2   0.34  0.34  0.30  0.49 

<ρ> (g/mL)  0.87  0.85  0.86  0.84 
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4.5 Conclusions 

In this section, the phases of 2PhP and 5PhP are examined in detail. Molecular dynamics 

simulations form the basis of the analysis, with Ewald summations for the electrostatics, 

anisotropic changes in the cell shape and size, and multiple thermostats for translation 

and rotation. 2PhP is explored at 335K, 365K, 400K, and 450K. Over this temperature 

range, this mesogen forms SmC, SmA, nematic, and isotropic phases. A closely related 

mesogen, 5PhP, is also examined at several temperatures. Specifically, I examine the 

fluid at 370K, 400K, and 450K where SmA and isotropic phases are expected. A 

comparison of 5PhP and 2PhP is interesting since these two molecules are structurally 

very similar, with the most notable difference being a preference for planarity in the 

molecular core of 2PhP while 5PhP adopts a twisted core conformation due to steric 

constraints. 

 The essential results of this thesis can be summarized as follows. First, the 

presence of ring quadrupoles is essential to reproducing the phase behaviour of, and 

differences between, 2PhP and 5PhP. Without ring quadrupoles, only SmA phases occur 

and they persist to high temperatures where the true fluids are isotropic. Studies of pair 

energies indicate that the quadrupoles lead to energetically favoured crossed-core 

configurations but that the energy lowering is more significant for 2PhP. Simulations of 

the mesogens indicate that the tail regions are less structured, showing distributions 

consistent with isotropic fluids, and have no long-ranged order even when the cores are 

ordered. The simulations tentatively reveal that 2PhP has a SmC phase at the lower 

temperatures, where the layer normal and the director do not coincide, while 5PhP shows 
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only equivalence between these two quantities. Thus, the simulations capture the 

difference between 2PhP and 5PhP, which is ultimately attributable to the interactions 

from the ring quadrupoles and the difference in the relative orientations of the phenyl and 

pyrimidine rings. The apparition of the SmC phase, for the 2PhP mesogen at 365K, is the 

result of stronger core-core interactions, in which the quadrupole plays an important role. 

A closer exploration of the differences between the layer normal and the director reveals 

that, at a local level, differences are significant regardless of the phase. 

 The most relevant results of this thesis are obtained from averages over multiple 2 

ns simulations. For liquid crystal simulations, these are considered quite short in duration.  

However, the fast transition from the initial nematic configuration renders this approach 

feasible. For the present study, the use of multiple simulations provides an exceedingly 

simple means of exploring the fluids without the need for prohibitively long simulations. 

A better approach is required in general but I note that simple annealing will not be 

helpful since any transition to an isotropic fluid will be irreversible on the time scale of 

the simulation. Clearly, algorithms that encourage partial loss of order, without the 

entanglement that occurs in the isotropic fluid, will improve the applicability of 

simulations to complex ordered fluids. 

 Phase characterization is challenging for 2PhP and 5PhP. In particular, the 

evaluation of order parameters is not straightforward. The director, in the present study, is 

determined from the phenyl-pyrimidine axis but, when crossed configurations become 

energetically favourable, this order parameter will necessarily decrease – there is less 

consistency between the molecules. The layer normal is also somewhat difficult to 
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calculate when the molecules are complex. The current approach of defining a set of 

neighbours, fitting a plane to their positions, and identifying the vector normal to the 

plane works well in general. The method is reasonably straightforward but does rely on 

the definition of a cutoff, beyond which molecules are not considered to be neighbours.  

The angle between the layer normal and the director is central to the characterization of 

the layered phase as either SmC or SmA. I have examined two definitions, shown in 

Equations (2.51) and (2.52), but each has advantages and drawbacks. However, the 

“local” angle from Equation (2.52) is relevant to the ideas of de Vries. In the end, 

analysis of the intermolecular structure parallel and perpendicular to the director and the 

layer normal proved to be more useful in terms of identifying the layered phases. 
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Chapter 5 

Conclusions and Outlook 

  

 

The main objective of this thesis is to examine, by means of molecular dynamics 

simulations, the phase characteristics of 2PhP and 5PhP. 2PhP and 5PhP display different 

phase sequences (Figure 1.6), despite having very similar molecular structures. In 

particular, the phase diagram of 2PhP is characterized by an extensive temperature range 

for the SmC phase, a large SmA phase, and a very narrow nematic phase. On the other 

hand, 5PhP only shows a SmA phase between the isotropic and crystalline phases. Both 

mesogens consist of joined phenyl and pyrimidine rings, and beyond the core, oxygen 

atoms connect to flexible hydrocarbon tails (Figure 3.2). In fact, the structures of the two 

molecules differ only in the connection point between the two rings. In order to capture 

the phase differences of 2PhP and 5PhP, it is important to derive realistic, feasible models 

for the two mesogens.  

 The methodology for the construction and validation of a force field suitable for 

liquid crystal molecules is presented in Chapter 3. Multi-site coarse-grained models offer 

many advantages over atomistic and fully coarse-grained models. Specifically, they can 

be easily adapted to include ring quadrupoles while capturing molecular flexibility and 

remaining computationally feasible. The multi-site coarse-grained model developed in 

this thesis represents the phenyl and pyrimidine rings as soft quadrupolar ellipsoids (i.e. 
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quadrupolar GB sites), while the flexible hydrocarbon chains and the oxygen atoms are 

given united atom representations (i.e. LJ sites). Model development is divided into two 

parts. First, ab initio studies of 2PhP and 5PhP yield intramolecular potentials and atomic 

charges. Second, a careful procedure for the development of ring models, starting with 

comparison to ab initio potentials for benzene dimers, is undertaken.  

A comprehensive series of ab initio full and constrained geometry optimizations 

have been performed to examine the structure and flexibility of 2PhP and 5PhP 

mesogens. Torsional and bending motions within the models are fully represented, 

including the inter-ring torsion and the flexibility of the alkoxy end group. These are used 

in the development of the molecular models. Specifically, the inter-ring torsion is 

essential in order to understand the phenyl-pyrimidine relative orientations, and the phase 

difference between 2PhP and 5PhP is certainly strongly connected to the different 

preferences. The ring models for phenyl and pyrimidine are very similar, but not identical 

since the rings bear some charges, as calculated from the CHELPG algorithm applied to 

the global energy minimum. Between 2PhP and 5PhP, the cores differ in the ring charges, 

in the inter-ring torsions, and in all other intramolecular degrees of freedom.  

 A systematic approach to the determination of optimal GB parameters has been 

adopted for the aromatic rings of 2PhP and 5PhP. Importantly, quadrupole moments are 

embedded within the rings in order to account for the quadrupole that arises from the π  

electron clouds above and below the plane of the rings, and full multipolar interactions 

are included in the simulations. First, I optimized the potential parameters for benzene, 

based on comparison with ab initio potential energy curves180, 181 for benzene dimers, and 
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by comparison with experimental distribution function and self-diffusion coefficients185, 

188, 189, 199 of bulk benzene. Then, I have proceeded to analyze the validity of the ring 

model for biphenyl.  

As a start, the parameters of the GB potential have been fitted to reproduce ab 

initio pair interaction energies180, 181 for the sandwich, T-shaped, and parallel-displaced 

configurations of the benzene dimers. Although simulations of liquid benzene, by means 

of using this ring model, yield radial distribution functions in reasonable agreement with 

published theoretical curves,191-194 a closer inspection of snapshots reveals the presence of 

holes in the simulation cell. Clearly this model, although providing a very accurate 

representation of gas phase benzene dimers, does not provide a good representation for 

benzene in the bulk. Thus, I assume that the pair potentials are roughly correct 

representations of the effective pair potentials and adjust the ring parameters accordingly. 

In total, 6561 parameter sets have been examined, and based on comparison to 

experimental radial distributions and diffusion coefficients of bulk liquid benzene, six 

models have been chosen for further consideration. MD simulations of liquid biphenyl 

using these six ring models have been performed and, based on diffusion coefficients, I 

have eliminated two ring models. The four remaining ring models, being termed as A1, 

B1, B2, and C1, have been examined in detail. Models B1 and C1 are identical except for 

the ring quadrupole, with the latter model not having a quadrupole. Likewise, models A1 

and B2 are related in that the ring quadrupole value of B2 model is 80% of the value of 

A1 model. Models B1 and B2 have identical quadrupole moments but differ in their GB 

parameters. The current models for 2PhP and 5PhP underestimate the differences 
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between the phenyl and pyrimidine rings, since identical GB parameters are used to 

represent both rings. Parameterisation of a ring model for pyrimidine is an obvious route 

to improvement of the molecular model. Less obvious, but possibly equally important, is 

the inclusion of in-the-plane ring quadrupoles. 

 In Chapter 4, extensive molecular dynamics simulations of 2PhP and 5PhP 

mesogens are conducted for the A1, B1, B2, and C1 ring models. 2PhP is examined at 

four temperatures (335K, 365K, 400K, and 450K) which correspond to temperature 

ranges for SmC, SmA, nematic, and isotropic phases. 5PhP is examined at three 

temperatures (370K, 400K, and 450K), where SmA and isotropic phases are 

experimentally observed. My simulations correctly suggest phases in agreement with 

experiment: SmC phase at 365K and SmA phases at 400K and 450K for 2PhP, and only a 

SmA phases for 5PhP regardless of the temperature considered. 

 Simulations of smectic phases are challenging due to many factors. First of all, 

simulations of smectogens cannot adequately represent a layered phase unless a 

minimum of a few hundred molecules are present in the cell. Moreover, the 

computational costs increase as the molecular representation gets more sophisticated. 

Generally, longer simulations (tens of nanoseconds) are needed for the equilibration of 

layered smectic phases as the dynamics slow down due to entanglement of complex and 

flexible molecules. From my studies, it is evident that the use of multiple short 

simulations is a simpler way to explore the liquid crystal phases although a greater 

number of simulations would be necessary for a full convergence of the fluid properties. 
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Analyzing the interactions between pairs of molecules, by means of performing 

“docking” studies, I learned that within the simulations parallel and anti-parallel 

arrangements may be entropically favored but, for the quadrupolar models, energetics 

favor crossed arrangements. Examining the smectic layers of the two mesogens, I find 

that intermolecular structure within the layers is complex, with parallel and crossed 

arrangements appearing for 2PhP and 5PhP.  

One of the most important findings of this thesis is that the presence of ring 

quadrupole is essential for reproducing the phase behavior as well as the differences 

between the two mesogens. Specifically, my results illustrate the importance of explicitly 

considering the quadrupolar moment embedded into each ring to properly represent the 

phases. In the absence of ring quadrupoles, only SmA phases occur for both 2PhP and 

5PhP mesogens at all the temperatures considered. Furthermore, the magnitude of the 

quadrupole is also an important factor to consider. In this regard, the quadrupole 

embedded into the A1 ring model is too large, so that the dynamics are very slow and 

layer frustration is increased. Moreover, the B1 and B2 ring models with similar 

quadrupoles attached give rise to similar fluid properties in most regards.  

Chiral doped liquid crystals, obtained by doping a chiral guest into an achiral 

liquid crystal host or mixture of hosts, have many properties of interest for display 

applications.15, 218, 219 For instance, the design of electroclinic SmA* materials as well as 

of ferroelectric SmC* liquid crystals with large spontaneous polarization power suitable 

for device applications has attracted great interest in the last decades. A range of chiral 

dopants have been considered, including the two dopants (i.e. Spiro and Dop5X-NO2) for 
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which appropriate representations have been modeled in this thesis via extensive series of 

ab initio calculations. It has been experimentally confirmed that it is possible to rationally 

design achiral additives capable of amplifying the polarization power exerted by a chiral 

dopant in a SmC host. For instance, chiral perturbation induced by a dopant propagates 

more effectively on the 2PhP host in the presence of the 5PhP as co-host, due to its 

twisted chiral core conformation. As future work, simulations of host-dopant mixtures in 

the SmC temperature range as well as host - co-host - dopant mixtures in the SmC and 

SmA temperature ranges will allow the investigation of the relationship between the 

molecular structure of host - dopant or host - co-host – dopant on the magnitude of 

induced property. Finally, the impact of different chiral guests on the achiral liquid 

crystal host(s), as a function of the ratio between guest and host(s) concentrations, can be 

studied by means of computer simulations.  

 The development of ferroelectric liquid crystals for device applications can be 

experimentally pursued by designing efficient chiral dopants that can be added to modify 

the properties of an existing mesophase. However, this is a time-consuming process and 

may involve difficult syntheses or expensive starting materials. It is here that computer 

simulations can play an important role, as a complementary technique, for improving the 

understanding of behaviours, which are not fully accessible to experimental investigation.  
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Appendix A 

Interaction Potentials for Liquid Crystal Molecules 

 

Table A1 Site types and charge values from the Density Functional Theory calculations for the 
2PhP and 5PhP liquid crystal molecules. The charges are given in units of e¯, the electron charge, 
and are obtained using the CHEPLG algorithm165 applied to the B3LYP/6-311++G(d,p) global 
energy minima. Lennard-Jones (LJ) and Gay-Berne (GB) parameters are identical for 2PhP and 
5PhP and are obtained from the references listed below. Site numbering is provided in Figures 3.2 
(a) and (b) for the 2PhP and 5PhP molecules, respectively. 

 

SITE NO. ATOM/GROUP SITE TYPE 2PhP 
Charge (|e|) 

5PhP 
Charge (|e|) 

1 CH3 LJ 0.0 0.0 
2, and 3 CH2 LJ 0.0 0.0 

4 CH2 LJ  0.2469  0.2533 
5 O LJ -0.3704 -0.4924 
6 Phenyl GB  0.2352  0.3118 
7 Pyrimidine GB  0.0570  0.1796 
8 O LJ -0.3996 -0.5034 
9 CH2 LJ  0.2309  0.2511 

10, 11, 12, 13, 
14, and 15 CH2 LJ 0.0 0.0 

16 CH3 LJ 0.0 0.0 
 

Table A2 Details of the equilibrium bond lengths of the 2PhP and 5PhP liquid crystal molecules 
from the B3LYP/6-311++G(d,p) global energy minimum. All carbon-carbon bond lengths, 
omitted from this table, are 0.1530 nm and are taken from literature.160    
 

BOND 2PhP 
Bond length (nm) 

5PhP 
Bond length (nm)

4-5 0.1421 0.1422 
5-6 0.2769 0.2744 
6-7 0.4236 0.4235 
7-8 0.2708 0.2686 
8-9 0.1424 0.1433 
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Table A3  Details of the bending potentials (see Equation (2.45)) for 2PhP and 5PhP liquid 
crystal molecules from B3LYP/6-311++G(d,p) constrained geometry optimizations. Bending 
potentials for carbons in the hydrocarbon tails are taken from literature,160 and have equilibrium 
angles of 109.47 degrees with force constants of 520.55 kJ mol-1 rad-2. 

 

ANGLE 
2PhP 5PhP 

θeq(degree) kθ (kJ mol-1 rad-2) θeq(degree) kθ (kJ mol-1 rad-2) 

6,5,4 118.70 347.82 118.65 350.69 
7,6,5 180.00 520.55 180.00 520.55 
8,7,6 180.00 520.55 180.00 520.55 
9,8,7 118.04 368.81 117.85 379.77 
17,6,5   90.00 722.26   90.00 722.26 
18,7,6   90.00 722.26   90.00 722.26 

 
  

Table A4  Details of the torsion potentials (Equation (2.46)) for 2PhP and 5PhP liquid crystal 
molecules extracted from B3LYP/6-311++G(d,p) constrained geometry optimizations. All other 
torsions involve hydrocarbon C-C bonds or C-O bonds and have torsion parameters taken from 
literature,160 in kJ/mol, as follows: c0=9.2789, c1=12.1557, c2=-13.1202, c3=-3.0597, c4=26.2405, 
and c5=-31.4952. 

 
TORSIONAL 

ANGLE 
Force Constant (kJ mol-1) 

C0 C1 C2 C3 C4 C5 C6 
2PhP

17,6,5,4 14.1815 -0.3000   -4.2736 -1.1496 -13.4783 1.4019  3.6093 
18,7,6,17 39.7173  0.2148 -56.5847 -0.6538 22.1939 0.3690  -5.3310 
18,7,8,9 11.2939 -0.1627    0.1449 -1.4771 -16.4432 1.5987 4.6900 

5PhP 
17,6,5,4 13.3603 -1.3212  -8.1129   4.1272  -5.2828 -2.5142 -0.1608 
18,7,6,17  7.7220  0.0026 -30.1835 -0.3058 29.3834 -0.2430  0.3252 
18,7,8,9 28.9044 -0.8658 -26.5883   0.0976 -2.3290  0.8506 -0.0693 
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Appendix B  

Interaction Potentials for Chiral Dopant Molecules 

 

Table B1 Site types and charge values from the Density Functional Theory calculations for the 
Dop5a-NO2 chiral dopant molecule. The charges are given in units of e¯, the electron charge, and 
are obtained using the CHELPG algorithm165 applied to the B3LYP/6-311++G(d,p) global energy 
minima. Site numbering is provided in Figure 3.6 (b). 

 

SITE NO. ATOM/GROUP SITE TYPE Charge (|e|) 
1 CH3 LJ  0.2409 
2 O LJ -0.3881 
3 Phenyl GB  0.1708 
4 C(CO)a LJ  0.7304 
5 O LJ -0.4340 
6 GBBb GB  0.1960 
7 GBBb GB  0.1960 
8 O LJ -0.4349 
9 C(CO) a LJ  0.7307 
10 Phenyl GB  0.1710 
11 O LJ -0.3887 
12 CH3 LJ  0.2412 
13 O(CO)c LJ -0.5156 
14  O(CO) c LJ -0.5157 

 
a - C(CO) represents the carbon atom from carbonyl group 
b - GBB represents the 2,6-dimethyl-3-nitro-phenyl group 
c- O(CO) represents the oxygen atom from carbonyl group 
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Table B2  Details of the equilibrium bond lengths of the Dop5a-NO2 chiral dopant molecule from 
the B3LYP/6-311++G(d,p) global energy minimum.  

 

BOND Bond length (nm) 

 1- 2 0.1423 
 2- 3 0.2754 
 3- 4 0.2874 
 4-13 0.1203 
 4- 5 0.1384 
 5- 6 0.2778 
 6- 7 0.4309 
 7- 8 0.2778 
 8- 9 0.1384 
 9-14 0.1232 
 9-10 0.2875 
10-11 0.2754 
11-12 0.1423 
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Table B3  Details of the bending potentials (see Equation (2.45)) for the Dop5a-NO2 chiral 
dopant  molecule from B3LYP/6-311++G(d,p) constrained geometry optimizations.  

 

ANGLE θeq(degree) kθ (kJ mol-1 rad-2) 

3,2,1 118.92 483.98 
4,3,2 180.00 520.55 
13,4,3 126.00 461.41 
5,4,3 110.44 605.26 
5,4,13 123.55 557.39 
6,5,4 124.29 261.10 
7,6,5 180.00 520.55 
8,7,6 180.00 520.55 
9,8,7 124.31 261.10 
14,9,8 123.56 557.39 
10,9,8 110.44 605.26 
10,9,14 126.00 461.41 
11,10,9 180.00 520.55 
12,11,10 118.92 483.98 
15,3,2  90.00 722.26 
16,6,5  90.00 722.26 
17,7,6  90.00 722.26 
18,10,9  90.00 722.26 
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Table B4 Details of the torsional potentials (see Equation (2.46)) for the Dop5a-NO2 chiral 
dopant molecule from B3LYP/6-311++G(d,p) constrained geometry optimizations.  

 

TORSIONAL 
ANGLE 

Force Constant (kJ mol-1) 
C0 C1 C2 C3 C4 C5 C6 

15,3,2,1  18.9691  -1.0791   -9.0298  -0.9039   -12.9285   1.3096     3.9366 
16,6,5,4 -30.0139    4.3999    7.4110  -9.1782   -47.5262 18.6368   56.2704 
6,5,4,13  24.7293 -17.5359 -12.8985   3.4379    -8.3129  -5.0870   15.8061 
5,4,3,15  36.6224   -9.6001 -50.5466   7.5763   14.9911   0.0854   -0.0002 
6,5,4,3  27.2387  11.6175 -12.7658  -2.6950     5.9270 11.1139   -0.6461 
13,4,3,15  37.3396    5.6299 -45.4565  -3.3915    12.4416   0.2343   -2.0275 
17,7,6,16   -3.0561    4.2947 121.7769  -9.7056 -267.5822   6.4271 284.4751 
18,10,9,14  37.3396    5.6299 -45.4565  -3.3915    12.4416   0.2343   -2.0275 
10,9,8,7  27.2387  11.6175 -12.7658  -2.6950      5.9270 11.1139   -0.6461 
18,10,9,8  36.6224   -9.6001 -50.5466   7.5763    14.9911   0.0854   -0.0002 
14,9,8,7  24.7293 -17.5359 -12.8985   3.4379     -8.3129  -5.0870   15.8061 
9,8,7,17 -30.0139    4.3999    7.4110  -9.1782    47.5262 18.6368   56.2704 
12,11,10,18  18.9691   -1.0791   -9.0298  -0.9039   12.9285   1.3096     3.9366 

 

 

 

Table B5  Details of the improper torsional potentials (see Equation (2.47)) for the Dop5a-NO2 
chiral dopant  molecule from B3LYP/6-311++G(d,p) constrained geometry optimizations.  

 

IMPROPER 
DIHEDRAL 

ANGLE 
θeq(degree) kθ (kJ mol-1 rad-2) 

13,5,3,4 0.02 553.03 
14,8,10,9 0.02 554.30 
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Table B6 Site types and charge values from the Density Functional Theory calculations for the 
Spiro chiral dopant molecule. The charges are given in units of e¯, the electron charge, and are 
obtained using the CHELPG algorithm165 applied to the B3LYP/6-311++G(d,p) global energy 
minimum. Site numbering is provided in Figure 3.10 (b). 

 
 

SITE NO. ATOM/GROUP SITE TYPE Charge (|e|) 
1 CH3 LJ 0.0 

2, 3, 4, 
5, and 6 CH2 LJ 0.0 

7 CH2 LJ  0.2357 
8 O LJ -0.3835 
9 SP* GB  0.1489 
10 SP* GB  0.1489 
11 O LJ -0.3814 
12 CH2 LJ  0.2414 

13, 14, 15, 
16, and 17 CH2 LJ 0.0 

18 CH3 LJ 0.0 
 

* SP represents a half of the 2,2’-spirobiindan-1,1’-dione group 

 

Table B7 Details of the equilibrium bond lengths of the Spiro chiral dopant molecule from the 
B3LYP/6-311++G(d,p) global energy minimum. All carbon-carbon bond lengths omitted from 
this table are 0.1530 nm and are taken from Legetter and Tildesley’s work.160  

 

BOND Bond length (nm) 

7-8 0.1424 
8-9 0.3850 
9-10 0.4726 
10-11 0.3850 
11-12 0.1424 
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Table B8 Details of the bending potentials for the Spiro chiral dopant  molecule from B3LYP/6-
311++G(d,p) constrained geometry optimizations. Bending potentials for carbons in the 
hydrocarbon tails are taken from Legetter and Tildesley’s work160 and have equilibrium angles of 
109.47 degrees with force constants of 520.55 kJ mol-1 rad-2. 

 

ANGLE θeq(degree) kθ (kJ mol-1 rad-2) 

9,8,7 119.27 360.31 
10,9,8 180.00 520.55 
11,10,9 180.00 520.55 
12,11,10 119.04 336.56 
19,9,8   90.00 722.26 
20,10,9   90.00 722.26 

 

 

 

Table B9 Details of the torsional potentials (see Equation (2.46)) for the Spiro chiral dopant  
molecule from B3LYP/6-311++G(d,p) constrained geometry optimizations. All other torsions 
involve hydrocarbon C-C bonds or C-O bonds and have torsion parameters taken from 
literature,160 in kJ/mol, as follows: c0=9.2789, c1=12.1557, c2=-13.1202, c3=-3.0597, c4=26.2405, 
and c5=-31.4952. 

 

TORSIONAL 
ANGLE 

Force Constant (kJ mol-1) 
C0 C1 C2 C3 C4 C5 C6 

19,9,8,7 16.0149 -0.0429 -9.2516 -2.1759 -6.6604 1.8743 0.0501 
12,11,10,20 17.0287  0.2369 -9.1269 -2.5237 -7.6027 1.8557 0.0642  
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Appendix C  
NPT Ensemble Simulations Details 

 

Table C1  Details of the NPT ensemble simulations of 256 2PhP molecules. An initial 1:1:2 ratio 
simulation cell and a nematic-like parallel starting configuration at initial density of 0.90 g/mL 
has been used in all simulations. The temperature has been kept constant using two independent 
Nosé-Hoover thermostats, for rotational and translational motions. Five independent 2ns 
runs at 335K and 365K, three independent 2ns runs at 400K, and two 2ns runs for 450K 
have been simulated. All simulations at 335K and 365K have been repeated for the A1, 
B1, B2, and C1 ring models, while all simulations at 400K and 450K have been done 
using only the B1 and C1 ring models. In total, results from 50 independent shorter runs 
(2ns) have been reported for the 2PhP molecule. Longer runs at 365K using the B1 ring 
model (12ns) and the C1 ring models (14 ns) have also been employed. In addition, a 
short 2ns run starting from an anti-parallel initial configuration has been employed for 
2PhP at 365K using the B1 ring model (initial DP2 =0.80 and density=0.90 g/mL). The 
initial order parameters relative to the director, DP2 , are shown. 

 

 

Temperature 335K 365K 
Ring Model A1 B1 B2 C1 A1 B1 B2 C1 
Property Initial DP2  Initial DP2  

Run 1 0.77 0.77 
Run 2 0.56 0.56 
Run 3 0.81 0.81 
Run 4 0.79 0.79 
Run 5 0.78 0.78 

Temperature 400K 450K 
Ring Model B1 C1 B1 C1 
Property Initial DP2  Initial DP2  

Run 1 0.81 0.78 
Run 2 0.79 0.79 
Run 3 0.76 - 
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Table C2  Details of the NPT ensemble simulations of 256 5PhP molecules. An initial 1:1:2 ratio 
simulation cell and a nematic-like parallel starting configuration at initial density of 0.90 g/mL 
has been used in all simulations. The temperature has been kept constant using two independent 
Nosé-Hoover thermostats, for rotational and translational motions. Five independent 2ns 
runs at 335K and 365K, three independent 2ns runs at 400K, and two 2ns runs for 450K 
have been simulated. All simulations at 370K have been repeated for the A1, B1, B2, and 
C1 ring models, while all simulations at 400K and 450K have been done using only the 
B1 and C1 ring models. In total, results from 30 independent shorter runs (2ns) have been 
reported for the 2PhP molecule. Longer runs at 370K using the B1 ring model (8ns) and 
the C1 ring models (12 ns) have also been employed. The initial order parameters relative 
to the director, DP2 , are shown. 

 

Temperature 370K 400K 450K 
Ring Model A1 B1 B2 C1 B1 C1 B1 C1 
Property Initial DP2  Initial DP2  Initial DP2  

Run 1 0.77 0.81 0.78 
Run 2 0.79 0.79 0.79 
Run 3 0.81 0.76 - 
Run 4 0.79 - - 
Run 5 0.78 - - 
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